University of Leicester
Browse

Weakly Supervised Learners for Correction of AI Errors with Provable Performance Guarantees

Download (1.3 MB)
preprint
posted on 2024-02-26, 12:59 authored by Ivan Tyukin, Daniel van Helden, Tatiana Tyukina, Zedong Zheng, Evgeny Mirkes, O Sutton, Q Zhou, A Gorban, Penelope AllisonPenelope Allison

We  present  a  new  methodology  for  handling  AIerrors by introducing weakly supervised AI error correctors witha prioriperformance guarantees. These AI correctors are auxiliarymaps  whose  role  is  to  moderate  the  decisions  of  some  previouslyconstructed underlying classifier by either approving or rejectingits  decisions.  The  rejection  of  a  decision  can  be  used  as  a  signalto  suggest  abstaining  from  making  a  decision.  A  key  technicalfocus  of  the  work  is  in  providing  performance  guarantees  forthese new AI correctors through bounds on the probabilities ofincorrect decisions. These bounds are distribution agnostic anddo not rely on assumptions on the data dimension. Our empiricalexample illustrates how the framework can be applied to improvethe performance of an image classifier in a challenging real-worldtask  where  training  data  are  scarce.

History

Author affiliation

College of Social Sci Arts and Humanities/Archaeology & Ancient History

Version

  • VoR (Version of Record)

Published in

arXiv

Volume

2402.0089

Pagination

1 - 8

Publisher

Cornell University

Copyright date

2024

Available date

2024-02-26

Language

en

Deposited by

Professor Penelope Allison

Deposit date

2024-02-26

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC