University of Leicester
Browse

Stable multispeed lattice Boltzmann methods

Download (229.26 kB)
report
posted on 2009-03-02, 12:55 authored by R.A. Brownlee, Alexander N. Gorban, Jeremy Levesley
We demonstrate how to produce a stable multispeed lattice Boltzmann method (LBM) for a wide range of velocity sets, many of which were previously thought to be intrinsically unstable. We use non-Gauss--Hermitian cubatures. The method operates stably for almost zero viscosity, has second-order accuracy, suppresses typical spurious oscillation (only a modest Gibbs effect is present) and introduces no artificial viscosity. There is almost no computational cost for this innovation. DISCLAIMER: Additional tests and wide discussion of this preprint show that the claimed property of coupled steps: no artificial dissipation and the second-order accuracy of the method are valid only on sufficiently fine grids. For coarse grids the higher-order terms destroy coupling of steps and additional dissipation appears. The equations are true.

History

Publisher

Dept. of Mathematics, University of Leicester

Available date

2009-03-02

Book series

MA 06-026

Language

en

Usage metrics

    University of Leicester Publications

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC