University of Leicester
Browse
TEXT
2011OAC-data-norm-and-zscores.R (2.47 kB)
TEXT
nagae_models.py (7.86 kB)
TEXT
nagae_train.py (22.52 kB)
JUPYTER
GNN-CorrNet__Step1_SpatialGraphConstruction.ipynb (3.38 kB)
JUPYTER
GNN-CorrNet__Step2-GCN_SaptiallyEmbeddingGeneration.ipynb (20.1 kB)
JUPYTER
GNN-CorrNet__Step2-GS_SaptiallyEmbeddingGeneration.ipynb (79.94 kB)
JUPYTER
GNN-CorrNet__Step3_CorrNet-Kmeans.ipynb (9.14 kB)
TEXT
SFCM-geocmeans-oac.R (17.38 kB)
TEXT
SFCM-geocmeans-oac-PCA60.R (16.3 kB)
JUPYTER
kmeans-oac-PCA60.ipynb (36.5 kB)
TEXT
compare-geodemo-classifications.R (1.47 kB)
TEXT
compare-geodemo-classifications-report.Rmd (25.36 kB)
TEXT
compare-geodemo-evaluation-summary.R (7.15 kB)
1/0
13 files

Code for "A graph neural network framework for spatial geodemographic classification"

software
posted on 2023-08-24, 15:49 authored by Stefano De SabbataStefano De Sabbata, Pengyuan Liu

This repository contains the code necessary to implement the geodemographic classifications defined through our graph convolutional neural network framework for spatial geodemographic classification (forthcoming), as well as three baseline models created using spatial fuzzy c-means and evaluate them in comparison with the London Output Area Classification by Singleton and Longley (2015).


References


Singleton A D, Longley P A (2015) The Internal Structure of Greater London: A Comparison of National and Regional Geodemographic Models. Geo: Geography and Environment. Available from: dx.doi.org/10.1002/geo2.7

History