University of Leicester
Browse
- No file added yet -

A comparison of gene structure in amoebae and plasmodia of Physarum polycephalum.

Download (147.46 MB)
thesis
posted on 2015-11-19, 09:07 authored by David Ian. Watts
The control of gene expression by rearrangement of DNA sequences, in prokaryotes and eukaryotes, is recorded in several instances. These accompany the differentiation of cells, yielding a new phenotype. The possibility of such a means of gene control operating in Physarum was considered; this organism undergoes marked changes in cell morphology and function during the amoebal-plasmodial transition. Genes activated or inactivated in this transition were examined for possible changes in structure. This was done by using amoebal- and plasmodial-specific cDNAs to probe Southern blots of amoebal and plasmodial DNA, digested with restriction endonucleases. This procedure should have revealed any restriction enzyme polymorphisms that might have existed between amoebae and plasmodia as a result of DNA rearrangements. However, no changes in DNA structure were observed between amoebae and plasmodia. The scope of this investigation is critically assessed. The methylation of cytosine residues has also been proposed as a means of controlling gene expression in eukaryotes. The available amoebal- and plasmodial-specific cDNAs were used therefore to probe Southern blots of amoebal and plasmodial DNA digested with methylation sensitive and insensitive restriction enzymes, in order to examine the methylation patterns of DNA from the two forms. For all phase-specific genes tested, the patterns in amoebae and plasmodia were identical, suggesting that no changes had occurred. Again, the scope of this investigation is assessed, and the possibility of a more extensive search for putative DNA rearrangements or changes in methylation pattern is mooted. To study closely the structure of three plasmodial-specific genes, attempts were made to clone regions of Physarum genomic DNA containing these sequences. It was not possible to isolate positive clones in any useful quantity. The probable reasons for the difficulties encountered are discussed.

History

Date of award

1987-01-01

Author affiliation

Biochemistry

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC