University of Leicester
Browse

Adaptive Discontinuous Galerkin Methods for Fourth Order Problems

Download (2.29 MB)
thesis
posted on 2012-02-09, 09:59 authored by Juha Mikael Virtanen
This work is concerned with the derivation of adaptive methods for discontinuous Galerkin approximations of linear fourth order elliptic and parabolic partial differential equations. Adaptive methods are usually based on a posteriori error estimates. To this end, a new residual-based a posteriori error estimator for discontinuous Galerkin approximations to the biharmonic equation with essential boundary conditions is presented. The estimator is shown to be both reliable and efficient with respect to the approximation error measured in terms of a natural energy norm, under minimal regularity assumptions. The reliability bound is based on a new recovery operator, which maps discontinuous finite element spaces to conforming finite element spaces (of two polynomial degrees higher), consisting of triangular or quadrilateral Hsieh-Clough-Tocher macroelements. The efficiency bound is based on bubble function techniques. The performance of the estimator within an h-adaptive mesh refinement procedure is validated through a series of numerical examples, verifying also its asymptotic exactness. Some remarks on the question of proof of convergence of adaptive algorithms for discontinuous Galerkin for fourth order elliptic problems are also presented. Furthermore, we derive a new energy-norm a posteriori error bound for an implicit Euler time-stepping method combined with spatial discontinuous Galerkin scheme for linear fourth order parabolic problems. A key tool in the analysis is the elliptic reconstruction technique. A new challenge, compared to the case of conforming finite element methods for parabolic problems, is the control of the evolution of the error due to non-conformity. Based on the error estimators, we derive an adaptive numerical method and discuss its practical implementation and illustrate its performance in a series of numerical experiments.

History

Supervisor(s)

Georgoulis, Emmanuil

Date of award

2010-12-01

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC