2015metcalfesaphd.pdf (2.08 MB)
Download fileAdaptive discontinuous Galerkin methods for nonlinear parabolic problems
thesis
posted on 2015-04-22, 14:56 authored by Stephen Arthur MetcalfeThis work is devoted to the study of a posteriori error estimation and adaptivity
in parabolic problems with a particular focus on spatial discontinuous Galerkin
(dG) discretisations.
We begin by deriving an a posteriori error estimator for a linear non-stationary
convection-diffusion problem that is discretised with a backward Euler dG method.
An adaptive algorithm is then proposed to utilise the error estimator. The
effectiveness of both the error estimator and the proposed algorithm is shown
through a series of numerical experiments.
Moving on to nonlinear problems, we investigate the numerical approximation
of blow-up. To begin this study, we first look at the numerical approximation
of blow-up in nonlinear ODEs through standard time stepping schemes. We
then derive an a posteriori error estimator for an implicit-explicit (IMEX) dG
discretisation of a semilinear parabolic PDE with quadratic nonlinearity. An
adaptive algorithm is proposed that uses the error estimator to approach the
blow-up time. The adaptive algorithm is then applied in a series of test cases to
gauge the effectiveness of the error estimator.
Finally, we consider the adaptive numerical approximation of a nonlinear
interface problem that is used to model the mass transfer of solutes through
semi-permiable membranes. An a posteriori error estimator is proposed for the
IMEX dG discretisation of the model and its effectiveness tested through a series
of numerical experiments.
History
Supervisor(s)
Georgoulis, Emmanuil; Cangiani, AndreaDate of award
2015-04-01Author affiliation
Department of MathematicsAwarding institution
University of LeicesterQualification level
- Doctoral
Qualification name
- PhD