University of Leicester
U177590.pdf (3.3 MB)

Categories of containers

Download (3.3 MB)
posted on 2014-12-15, 10:36 authored by Michael Gordon Abbott
This thesis develops a new approach to the theory of datatypes based on separating data and storage resulting in a class of datatype called a container. The extension of a container is a functor which can be regarded as a generalised polynomial functor in type variables. A representation theorem allows every natural transformation between container functors to be represented as a unique pair of morphisms in a category.;Under suitable assumptions on the ambient category container functors are closed under composition, limits, coproducts and the construction of initial algebras and final coalgebras. These closure properties allow containers to provide a functorial semantics for an important class of polymorphic types including the strictly positive types.;Since polymorphic functions between functorial polymorphic types correspond to natural transformations, every polymorphic function can be represented as a container morphism; this simplifies reasoning about such functions and provides a framework for developing concepts of generic programming.;Intuitionistic well-founded trees or W-types are the initial algebras of container functors in one parameter; the construction of the initial algebra of a container in more than one parameter leads to the solution of a problem left incomplete by earlier work of Dybjer.;We also find that containers provide a suitable framework to define the derivative of a functor as a kind of linear exponential. We show that the use of containers is essential for this approach.;The theory is developed in the context of a fairly general category to allow for a wide choice of applications. We use the language of dependent type theory to develop the theory of containers in an arbitrary extensive locally cartesian closed category; much of the development in this thesis can also be generalised to display map categories. We develop the appropriate internal language and its interpretation in a category with families.


Date of award


Author affiliation

Computing Studies

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD



Usage metrics

    University of Leicester Theses


    No categories selected



    Ref. manager