University of Leicester
Browse
- No file added yet -

Change detection of land use and land cover, using landsat-8 and sentinel-2A images

Download (3.49 MB)
thesis
posted on 2021-11-12, 14:12 authored by Mohammed Abdulmohsen Alhedyan
The main theme of this research is the development of a new hybrid method for change detection of land use and land cover (LULC). LULC change detection is one of most widely used applications of remote sensing. This study used data from two different optical sensors, Landsat-8 images and Sentinel-2A images. Given the newly developed capabilities of these remote sensing satellites, it was necessary to devise appropriate techniques to realise the benefits that they offer. Therefore, three effective change detection methods have been tested, comprehensively analysed, and used to inform the design and development of a new hybrid method of change detection. The studied change detection methods were change vector analysis (CVA), multi-index integrated change analysis (MIICA), and the comprehensive change detection method (CCDM). Case studies were conducted in two regions, Bristol (United Kingdom) and Hail (Saudi Arabia), to provide sufficient variety of inputs to enable the response of more LULC varieties to be recorded. Finally, the Coordination of Information on the Environment (Corine) land cover scheme was used to identify land cover types and LULC changes. In the study area of Bristol, the new hybrid change detection method achieved an overall accuracy of 90% and 0.81 kappa, while the results for the study area of Hail were 74% overall accuracy and 0.40 kappa. The change detection results obtained by the new hybrid method constitute a significant improvement over the implementation of the existing CVA, MIICA and CCDM methods at the two study areas while using Landsat-8 and Sentinel-2A images.

History

Supervisor(s)

Kevin Tansey; Nicholas Tate

Date of award

2021-06-24

Author affiliation

School of Geography, Geology, and the Environment

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC