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Abstract 

Contribution of complex genetic variation at the Human leukocyte antigen (HLA) and 

Killer immunoglobulin-like receptor (KIR) regions to Idiopathic pulmonary fibrosis 

(IPF) susceptibility 

Megan Louise Paynton 

 

Idiopathic Pulmonary Fibrosis (IPF) is a rare lung disease characterised by inflammation and 

scarring of the alveoli. Although genetic and environmental factors have been reported in IPF, 

the biological processes underlying IPF development remain unclear. The largest genetic risk 

factor for IPF is a common variant in mucin gene MUC5B. It is believed that IPF develops 

because of microinjury in the lung from for example cigarette smoke or viral infection. The 

Human leukocyte antigen (HLA) and Killer immunoglobulin-like receptor (KIR) molecules play a 

vital role in immune response against infection. HLA allele, HLA-DQB1*06:02 has evidence for 

association with fibrotic idiopathic interstitial pneumonias (fIIP) (including IPF). The HLA and 

KIR regions harbour complex variation and although there are links between IPF and viral 

infection, these regions have not been studied in depth. The aims of this thesis were to 

investigate the contribution of complex genetic variation in these regions to IPF susceptibility. 

The HLA-wide association meta-analysis identified a common novel signal near ZNRD1ASP as 

associated with IPF susceptibility. Bioinformatic investigation highlighted associations with 

immunity and respiratory traits and differential expression of HLA and non-HLA genes. The 

HLA-DQB1*06:02 variant did not replicate in three independent IPF datasets suggesting that 

the originally reported association may have been driven by the inclusion of non-IPF fIIPs. The 

MUC5B*HLA interaction analysis in IPF susceptibility did not present any novel signals but 

identified some suggestively significant signals that warrant further investigation. The KIR-wide 

association meta-analysis did not identify any novel signals and highlighted concerns in the KIR 

imputation.  

Overall, this thesis did not support the previously reported association of HLA-DQB1*06:02 

with IPF susceptibility. Also, there was no evidence the regions exhibit a large genetic effect on 

IPF risk, however the analyses were limited by sample size and the imputation quality in the 

KIR region. 
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Chapter 1: Introduction 
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with limited 

treatment options and poor prognosis. Previous studies have demonstrated that there are 

multiple genetic risk factors associated with IPF susceptibility (1-6). However, the extent to 

which these genetic factors contribute to IPF susceptibility, and how this can progress 

understanding of the underlying biology of IPF and lead to new interventions, is not yet fully 

known.  

The HLA (human leukocyte antigen) and KIR (killer immunoglobulin like cell receptor) genes 

encode molecules involved in the immune response to bacterial and viral infections. Infection 

is hypothesised to be a trigger for development of IPF (7, 8) and is believed to be a cause of 

exacerbation events (9-11). Both the HLA and KIR regions harbour high levels of complex 

variation and genetic associations of HLA alleles with other respiratory diseases have been 

reported (12-14). A link between the HLA and IPF has been reported in one IPF case control 

study (5) whilst the KIR region has not been studied in IPF susceptibility to date. The aim of my 

PhD is to further characterise the contribution of genetic variation of the complex immune 

system genes; in particular, in the Killer-cell immunoglobulin-like receptor (KIR) and the 

Human Leukocyte Antigen (HLA) regions to susceptibility to Idiopathic Pulmonary Fibrosis (IPF) 

to improve our understanding of the disease and help identify and guide new treatment 

options. 

1.1 Introduction to genetic epidemiology: 

1.1.1 Genetic Variation 

Most variation found throughout populations is rare or very rare, with common variation 

(frequency of > 5%) being relatively uncommon. The most common form of variation is the 

Single Nucleotide Polymorphism (SNP). Figure 1.1 denotes a part of a chromosome with a SNP 

indicated in red. The least frequent allele at each SNP is known as the minor allele, the 

frequency of this allele is calculated across a population to give a minor allele frequency 

(MAF).  SNPs are relatively common in the Human Genome (about every 300bp), the SNP Map 

Working Group (15) first identified 1.42 million SNPs in a single genome in 2001, from then the 

1000 Genome Project (16) data showed that each individual can contain around 11 million 

SNPs. More than 400 million single-nucleotide and insertion or deletion variants after 

alignment with the reference genome (17). There are other less common forms of variation in 

the genome such as indels (small insertions and deletions), copy number variation (different 

number of copies of a sequence) and inversions.  
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Figure 1.1: Sections of chromosome with a SNP denoted in red. The yellow chromosome has been 

inherited from the mother and the green chromosome has been inherited from the father. Only the 

positive strand is shown. An allele is the DNA nucleotide found on one chromosome and the genotype is 

both the alleles found across both chromosomes. 

 

SNPs in the coding regions (exons) of genes can be described as synonymous (does not change 

the encoded amino acid) or non-synonymous (changes the encoded amino acid). The effect of 

a non-synonymous variant on protein structure and function can vary according to the specific 

change. For example, ‘missense’ is the term given to variants where the amino acid changes to 

another. If the amino acid change is to one with similar properties (e.g. hydrophobic) then it 

may not affect protein structure or function. However, if the change is to an amino acid with 

an opposite physical property (e.g. hydrophobic to hydrophilic), this may affect the protein 

product. Nonsense variants (stop loss or stop gain) can prematurely truncate the protein or 

produce an abnormally long protein and cause significant changes in protein function and 

structure.  

SNPs may be found in non-coding parts of the genome and affect protein formation and 

expression in other ways. For example, SNPs in regulatory regions (such as promoters and 

enhancers) can affect levels of gene, and ultimately protein expression. Splice sites are regions 

which are cleaved to remove introns to produce mRNA; a variant in a splice site can cause 

exon skipping or read-through into introns, producing an altered protein.  

1.1.2 Linkage DisequilibriumLinkage disequilibrium (LD) describes the non-random correlation 

of two or more SNP alleles across a general population (18) and the degree to which an allele 

of one SNP is associated with an allele of another SNP. Blocks of SNP alleles or haplotype 
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blocks (groups of SNP alleles or genes that are inherited together) are split during 

recombination events that occur during meiosis where portions of the chromatid arms can be 

exchanged (19). The extent of correlation between the two or more alleles is dependent on 

recombination events and population history. SNP alleles are said to be in high LD when they 

have not been subjected to recent recombination events and are therefore often inherited 

together.  

LD varies across the genome but there are known hotspots where there are higher numbers of 

recombination events which results in areas of considerable variation (including SNPs, 

insertions, deletions and translocations). The HLA region exhibits lower rates of recombination 

compared to the rest of the genome, resulting in higher and longer-range linkage 

disequilibrium between alleles (20, 21). 

LD is measured using R2 which is a measure of correlation between the two SNPs. LD should be 

considered in association studies because correlation of SNP alleles means that the strongly 

associated SNP may not be the causal SNP and also it can be utilised for the imputation of 

missing genotypes. 

1.1.3 Genetic Epidemiology 

Genetic epidemiology is the study of the individual and joint contributions of genetic and 

environmental factors to health and disease in populations. In this thesis, the focus will be on 

the application of genetic epidemiology approaches to study to complex traits and diseases 

which are known to be polygenic (i.e. for which there are many tens, hundreds or thousands 

of SNPs either known or hypothesised to be associated with risk).  

Genetic epidemiology studies have already yielded thousands of associations of common 

alleles (single nucleotide polymorphisms) with complex polygenic diseases such as Type 1 and 

Type 2 Diabetes Mellitus and Chronic Obstructive Pulmonary Disease (COPD), and complex 

traits such as height and blood pressure (22, 23). Genetic association signals can implicate 

genes as being important in the disease process to give new biological insight and potentially 

identify new therapeutic targets. Genetic association signals can also be used, individually or 

combined into risk scores, to improve disease prediction (24, 25).  

1.1.4 Genome-wide association study design and statistical analyses: 

Single nucleotide polymorphisms (SNPs) that are associated with risk of disease or other 

phenotypes can be identified using Genome Wide Association Studies (GWAS). Common SNPs 
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that have been shown to be associated with risk of complex polygenic diseases typically have 

individually small effects on disease risk (see Figure 1.2). 

  

 

Figure 1.2: Correlation between effect size and allele frequency in IPF susceptibility. MUC5B sits 

outside the normal correlation with a larger effect size than expected considering its allele frequency. 

 

GWAS test all measured variants across the genomes of a large number of individuals to 

determine if any of these variants are associated with the disease or trait of interest. They are 

considered to be a hypothesis-free approach as they are not limited to specific genomic 

regions. In an association analysis, an additive genetic model, a dominant genetic model or a 

recessive model can be assumed (Figure 1.3). In an association analysis, the outcome tested is 

a disease or trait and the risk of these may be affected by an exposure (such as a SNP allele). 

For a SNP with alleles A and G, (assuming that allele “A” confers an increased risk) the 

dominant model would assume AA and AG genotypes would both have the same increased 

risk of the outcome compared to GG. The recessive model would assume two copies of the 

risk allele are required to increase risk; therefore AA would increase the risk of outcome 

relative to AG and GG. Finally, the additive model would assume a linear effect with no risk 

alleles (GG) having the smallest risk effect, two risk alelles (AA) having the largest risk effect 

and one allele (GA) in between. In association studies, it is common to use additive models 

because there is sufficient power to detect both additive and dominant effects.  
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The most commonly used statistical tests for association in GWAS are logistic and linear 

regression (see below) (19). These methods are computationally efficient and enable inclusion 

of covariates in the association model. Risk of disease, such as IPF, is usually studied using a 

binary case-control analysis with logistic regression. Where quantitative traits, such as lung 

function, are the outcome, linear regression is used (see below).   

The equation for a linear regression is as follows: 

!! = #" + ##%! + #$&'(1! + #%&'(2! +⋯ 

Where Yi is the phenotype for individual i, β0 is the intercept, Gi is the genotype of the SNP 

(coded as 0, 1 or 2 for each copy of the allele of interest for a biallelic SNP under an additive 

genetic model), β1 is the change in the phenotype for each copy of the effect allele and cov are 

covariates for individual i. For quantitative traits, the intercept is reported as effect size. 

 

Case-control analyses are tested using logistic regression. Logit is the log odds of the 

probability of an individual (i) being a case or control (pi). For case-control analyses the log 

odds is reported.  

,'-./(1!) = #" + ##%! + #$&'(1! + #%&'(2! +⋯ 

 

Logistic and linear regression can also be used to examine the effects of statistical interactions 

between different SNPs, and between SNPs and environmental factors, on outcome, by the 

inclusion of an interaction term. See section 1.4 “Chapter 3”.  
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Figure 1.3: Genetic models for association analyses. “Outcome” indicates a degree of increased risk 

(in the case of a binary trait, for example, risk of disease) or increase in value (in the case of a 

quantitative trait, for example, increase of X mmHg for blood pressure) and “exposure” is the SNP. 

The length of the blue arrow is indicative of the risk of the outcome associated with the exposure 

genotype. 

 

Replication of results is important for any scientific experiment to minimise reporting of false 

positives. Replication studies for GWAS should ideally be larger than the original study size to 

account for over estimation of the effect size in discovery (so-called Winner’s curse bias) (19). 

In a study design that includes separate discovery and replication stages (Figure 1.4) signals 

that reach a genome-wide significance threshold of P<5x10-8 in the discovery stage are 

selected for replication in a larger data set where a Bonferroni corrected (for multiple tests) 

significance level is defined based on the number of SNPs for which replication is sought.  
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Figure 1.4: Discovery and replication study design shortlists signals from the discovery phase (at 

P<5x10-8) and tests these signals for replication in an independent data set (replication stage). For 

example, if 10 SNPs are selected at discovery stage, they would be tested at a Bonferroni corrected 

threshold of 0.005 at replication stage. 

 

A widely used alternative study design includes two stages as shown in Figure 1.5.  The first 

stage (stage 1) identifies independent suggestive associations (for example, with P< 5x10-5), 

which are then tested for association in an independent data set (stage 2). Signals that meet 

the genome-wide significant threshold of P < 5x10-8 following meta-analysis of the stage 1 and 

stage 2 results are then reported. This 2-stage design is a helpful strategy when stage 1 is 

statistically underpowered (i.e. smaller than optimal sample size) as it allows for a more 

lenient P value threshold to be applied to identify signals for follow-up but still retains the 

requirement to meet a pre-determined genome-wide significant threshold overall.   
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Figure 1.5: Two stage study design identifies signals at a suggestive threshold in Stage 1 (e.g. P<5x10-

5), and then meta-analyses the stage 1 results with an independent data set (stage 2) to identify 

signals which reach a genome-wide significant threshold of P<5x10-8. 

 

Two assumptions can be made when meta-analysing the results from independent datasets; 

fixed-effects or random-effects. Random-effects meta-analyses assume that the genetic 

variants have different effect sizes in each of the independent datasets. Fixed-effects assume 

that the genetic variants have the same effect sizes in all the datasets and this is the most 

widely used method of meta-analysis in genome-wide association studies. 

The two-stage study design is of benefit when the studies that contribute to stage 2 do not 

have genome-wide data available, this strategy enables identification of a small number of 

SNPs to be followed-up by direct genotyping assays in those studies. Thus increasing the 

overall sample size to enable true positive signals to meet stringent significance thresholds. 

However, as many more studies now have genome-wide data, it is more logical to maximise 

power for all genome-wide variants by combining all available data. In doing this there is a 

balance that must be made between increasing discovery sample size vs ensuring the 

robustness of signals through replication. Replication can be sought externally through 

additional independent datasets or an internal validation approach can be applied to ensure 

the signals are not entirely driven by one contributing study (2). Alternatively, corroborative 

evidence can be sought to support a signal, for example, associations with related phenotypes 

(26). 

1.1.5 Multiple testing problem in genome wide association studies 

In a GWAS, thousands or millions of individual SNP association tests are performed in a single 

analysis which increases the likelihood that there will be a large number of statistically 

significant (P<0.05) results due to chance. For example, using a P-value threshold of P<0.05 in 
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a genetic study of 1,000,000 variants, one would expect 5,000 false positives (if the null 

hypothesis was true). When association testing is conducted across a particular locus, for 

example the human leukocyte antigen (HLA) region, the number of independent tests should 

be calculated to define an appropriate multiple testing threshold. This can be done using 

methods such as Bonferroni correction (27). The Bonferroni correction for multiple testing is 

deduced by dividing alpha (significance level, usually alpha=0.05) by the number of tests being 

performed (27), for example if the number of tests is 1,000,000, only SNPs with P values of < 

5x10-8 will be reported as significantly associated with the trait. A limitation of the Bonferroni 

correction is that it is assuming that all of the individual tests are independent of each other. 

However, not all SNPs are independent of each other as some will be in linkage disequilibrium 

meaning that the Bonferroni correction may be over conservative and could yield a high rate 

of false negatives. P<5x10-8 is a widely used P value threshold in GWAS and can be interpreted 

as being based on an assumption of one million independent tests. As studies are becoming 

larger and whole genome sequencing is becoming more commonly used, correcting for this 

multiple testing is becoming even more vital as it is possible that genome wide significance 

(P<5x10-8) may not be an appropriate correction for the large number of variants being tested. 

As whole genome sequencing studies typically measure more lower frequency (MAF 1-5%) and 

rare (MAF <1%) variants, it is possible that many more than 1 million independent SNPs are 

being tested in a study, therefore a threshold of P<5x10-9 has been recommended based on 

whole genome sequencing experiments in European, Asian or admixed ancestry populations, 

and P<1x10-9 recommended for African samples (28). 

1.1.6 Power in Genetic Association Studies 

The power (ability to identify a true positive association) of a GWAS can be affected by many 

different factors. The number of cases in an analysis (the larger the sample size the better the 

power), the ratio of cases to controls, the minor allele frequency (MAF, the smaller the MAF 

the lower the power), the effect size (the larger the effect size the better the power) and the 

chosen alpha all affect the power of an analysis. Power is important as it improves the ability 

to identify a true association in association studies and it helps to understand that a lack of 

findings in an analysis may be due to low power and not because there is no association. 80% 

power is often used as indicative which means there is an 80% chance a true association will 

be identified in the analysis.  

1.1.7 Genotype Imputation 

Imputation of unmeasured genotypes is now commonly used to increase genome coverage 

(the number of SNPs that can be analysed in a study), increase power by enabling meta-
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analysis of multiple data sets, and correct genotyping errors. Phasing is required to be 

undertaken before imputation and is the process by which alleles of directly genotyped SNP 

alleles are mapped to either the maternal or paternal chromosomes. Imputation is the process 

in which haplotype reference panels (panels of haplotypes derived from large sequencing 

projects) (for example Haplotype Reference Consortium panel (29)) are used to infer alleles for 

known SNPs that have not been directly genotyped (30, 31). Imputation uses LD (which varies 

by population) to infer SNP alleles in an individual’s genome dependent on which genotype 

they possess at correlated loci to create imputed genotypes (30, 31). The quality of imputation 

is dependent on the quality and size of the imputation panel and the number and choice of 

SNPs directly genotyped in the data set being imputed. Increasing ancestry diversity of 

imputation reference panels has been shown to improve imputation quality (29, 32). 

Imputation uncertainty and quality can be captured in the imputation quality measures or 

correlation scores and this uncertainty can be used to either filter out poorly imputed variants 

or can be factored into downstream genetic analyses of the variants. 

1.1.8 Ancestry and Cryptic Relatedness 

Allele frequency correlates with ancestry (or geographical distance), and this is an important 

confounder and needs to be corrected for in association studies, especially when the 

geographical distances are large. In some cases, there are SNPs associated with both disease 

and ancestry which may have resulted through evolutionary selection in those populations (for 

example skin pigmentation) (33). Including these SNPs in an analysis could lead to an increase 

in the false positive rate because, for example, a SNP that has been reported to be associated 

with a disease in an association analysis could actually be associated with the population or 

the population differences of the individuals in the study (confounding). Fine scale population 

structure (for example throughout Europe or even within the UK) can also contribute to allele 

frequency differences which could confound genetic studies. Principal Component Analysis 

(PCA) is used to infer continuous axes of genetic variation (eigenvectors/Principal 

Components) which can describe as much variability between individuals as possible while 

reducing the data to a small number of dimensions. Because PCA can describe the variability 

between groups of individuals it can be used to determine the genetic distances and 

relatedness between populations. Ten principal components are most often used in GWAS but 

the optimum number of principal components can be determined by plotting the cumulative 

proportion of variation explained by the different numbers of principal components (scree 

plot). The curve will flatten at the point at which the best number of principal components 

sits. Recently, methodological approaches have been developed which account for relatedness 
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in association studies, an example approach is SIAGE which allows you to account for sample 

relatedness (34). 

1.2 Idiopathic Pulmonary Fibrosis 

1.2.1 Biological processes and clinical features in Idiopathic Pulmonary Fibrosis 

Idiopathic pulmonary fibrosis (IPF) is a form of chronic, progressive, fibrosing interstitial 

pneumonia characterised by scarring and inflammation around the alveolar wall which stiffens 

the lungs and reduces their capacity and elasticity and impairs gas exchange. The biological 

processes behind the development and progression of IPF are still incompletely understood 

but disease initiation is thought to be caused by an abnormal wound healing response to 

injury (for example, smoking or viral infection) in susceptible individuals (35, 36). There is no 

cure for IPF and treatment options are limited. The treatment associated with the most 

improvement in patients is a lung transplant, but this is not often a viable option since many 

individuals diagnosed with IPF are elderly. Two drugs have been licenced for use in IPF; 

Pirfenidone (37) and Nintedanib (38, 39). These drugs are anti-fibrotic and slow down the rate 

of scarring on the lungs, but they cannot reverse it (37-39) and they are known to have quite 

significant side effects and, as such, are often not well tolerated. NICE guidelines therefore 

suggest that Pirfenidone and Nintedanib should only be prescribed in relatively early stage 

disease (individuals with a Forced Vital Capacity (FVC) of 50-80%) and the medication must be 

stopped if their FVC continues to decline at more than 10% a year (40, 41). IPF is a complex 

disease, and the risk is affected by multiple environmental and genetic factors. The risk of IPF 

increases with age (42) and males are also at higher risk. A history of smoking was found to be 

associated with an increased risk of IPF(43). Another risk factor for IPF is telomere length. 

Short telomere lengths have been found in individuals with familial pulmonary fibrosis caused 

by rare loss-of-function telomerase mutations (44, 45). Telomerase dysfunction is increasingly 

being recognised to be a risk factor in IPF (1-4, 6). 

1.2.2 Epidemiology 

There are significant challenges in the diagnosis of IPF, including misdiagnosis and changing 

diagnostic guidelines meaning that identifying the true incidence rate of IPF is difficult. 

Recently, an incidence rate of between 2.85 (narrow case definition) and 8.65 (broad case 

definition) for every 100,000 patient years has been published for the UK (42). The narrow 

case definition included individuals with hospital data codes incorporating a diagnosis of 

idiopathic fibrosing alveolitis, cryptogenic fibrosing alveolitis, idiopathic fibrosing alveolitis 

NOS, usual interstitial pneumonitis, and idiopathic pulmonary fibrosis and the broad case 



 

Page | 12  
 

definition included three additional diagnoses: diffuse pulmonary fibrosis, Pulmonary fibrosis, 

and Hamman–Rich syndrome (42). This rate varies across the UK and has increased by 78% 

from the year 2000 to 2012 (42). The incidence of IPF increases with age with most individuals 

being diagnosed between the ages of 75 and 90 years old (42). The incidence of IPF is also 

much higher in males (42), although a recent study suggests this may be a diagnostic bias (46). 

Only around 50% of individuals survive past 3 years with survival rates of 34% and 19% for 5 

and 10 years respectively (42).  

1.2.3 Genetic associations 

Pulmonary Fibrosis has been shown to have a genetic component and has been proven to 

segregate through families (Familial Pulmonary Fibrosis [FPF]). 

Early studies identified a genetic component of IPF susceptibility in twins, for example 

Peabody and Hayes in 1950 (47) and Javaheri et all in 1980 who identified a pair of 

monozygotic twins (who had lived apart during their lifetime) had both developed IPF (48). 

More recently, further linkage and genome wide association studies (GWAS) were undertaken 

to identify common variation in IPF risk since it is known that there is a genomic factor to IPF 

but it was not a Mendelian disease. The first genome wide association study (GWAS) on 

susceptibility to IPF was undertaken in 2008 on 159 cases and 934 controls from Japanese 

ancestry with follow-up in a 83 cases and 535 controls from Biobank Japan (6). In this first 

study, a variant was identified in the TERT gene suggesting there may be a role of telomere 

maintenance in the development of IPF (6).  

In 2011, 83 subjects with familial interstitial pneumonia, 492 subjects with IPF and 322 

controls were analysed (49). In this analysis, a common SNP in the promoter region of MUC5B 

was identified at a frequency of 34% of IPF cases and only 9% in controls (49). This was the 

first study to identify the MUC5B SNP and suggest that dysregulated MUC5B expression could 

have a role in IPF pathogenesis. The MUC5B signal is described further below in section 1.2.4. 

In 2013, 542 European IPF cases and 542 European controls from Chicago were analysed with 

replication in 544 cases and 687 controls and then further follow up in 324 cases and 702 

controls (3). Five variants were identified in this GWAS: rs35705950 in MUC5B, three variants 

in TOLLIP and one SNP in SPPL2C (3). rs35705950 was found in the promoter region of MUC5B 

which encodes a mucin protein which is found in the airways and traps foreign bodies to stop 

them entering the lungs (3). 
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Additionally in 2013, 1,616 fibrotic idiopathic interstitial pneumonia (fIIP) cases and 4,683 

controls from Colorado (of European ancestry) were analysed with replication in 876 cases and 

1,890 controls (4). In this analysis, 11 loci were identified as associated with IPF susceptibility, 

these include 3q26, 7q22, 15q14-15, 17q21, DSP, DPP9, FAM13A, OBFC1, ATTP11A, TERT and 

MUC5B (4) which further implicated the role of telomere maintenance in IPF and also 

suggested a role of cell-cell adhesion (DSP, DPP9). This study was repeated in 2016 

incorporating HLA imputation (HIBAG – described below in Section 1.3.1 HLA Imputation 

strategies (50)) which identified a classical HLA allele (HLA-DQB1*06:02) as associated with fIIP 

susceptibility (described further in Chapter 3) (5). 

In 2017, 602 European cases and 3,366 controls from UK Biobank were studied with 

replication in 2,158 IPF cases and 5,195 controls (from the Chicago and Colorado datasets as 

above) (2). In this study, variants in DSP and MUC5B were replicated (in independent datasets, 

i.e. not including the Chicago and Colorado datasets) and a novel signal in AKAP13 was 

identified (2). AKAP13 plays a role in a profibrotic signalling pathway, implicating cell signalling 

in IPF development and pathogenesis (2). 

In total, the five IPF susceptibility association studies identified 17 genome-wide significant 

signals. In 2020, the largest GWAS of IPF susceptibility was undertaken in 2,668 IPF cases and 

8,591 controls with replication in 1,456 IPF cases and 11,874 controls (1). In this study, 11 of 

the 17 previously identified signals (see above) were confirmed and 3 novel signals were 

identified in DEPTOR, MAD1L1 and KIF15 (1) (see table 1.1). DEPTOR is involved in cell 

signalling and MAD1L1 and KIF15 are involved in mitotic spindle assembly (1).  

Missing heritability is the gap between heritability estimates from genetic associations from 

association studies and heritability estimates from twin studies (51). A challenge in missing 

heritability is that GWAS may not be powerful enough to detect the many variants associated 

with a trait with small genetic effects (52). Another challenge is that perhaps genotyping 

arrays are not efficiently capturing the rare genetic variants that may explain some of the 

missing heritability (52). Polygenic risk scores suggest that there are still thousands of 

unreported genetic variants associated with susceptibility to IPF (1). The MUC5B genetic 

variant explains 5.9%-9.4% disease liability and the remaining 13 non-MUC5B SNPs (not 

including HLA-DQB1 and SPDL1 SNPs) (53). In total, the current SNPs are only explaining 

around 12.4% of the disease in the general population (53). 

In 2021, 752 IPF cases (541 PROFILE cases and 272 UK Biobank cases) and 119,055 controls 

(from UK Biobank) were studied with replication in 1,028 IPF cases and 196,986 controls from 
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FinnGen (54). In this study, a novel, rare missense variant in SPDL1 was identified which 

suggests a role for mitotic checkpoint signalling during cell division in IPF (54).  

 

Table 1.1: SNP alleles associated with risk of IPF. 

 

 

1.2.4 MUC5B variant 

The variant with the largest effect size reported in GWAS of IPF susceptibility is a common SNP 

in the promoter region of the gene MUC5B (49, 55). The MUC5B risk allele is at a higher 

Nearest 
Gene 

SNP/risk allele Odds ratio 
(95% Confidence 
interval) 

P-value Reference 

7q22.1 rs6963345/T 1.30 
(1.21-1.38) 

3.10x10-14 (4) 

AKAP13 rs62025270/A 1.27 
(1.18-1.36) 

1.27x10-10 (2) 

ATPIIA rs1278769/G 0.77 
(0.71-0.83) 

1.34x10-10 (4) 

DEPTOR rs28513081/G 0.82 
(0.76-0.87) 

1.20x10-9 (1) 

DPP9 rs12610495/G 1.31 
(1.22-1.42) 

2.92x10-12 (4) 

DSP rs2076295/G 1.46 
(1.37-1.56) 

2.79x10-30 (4) 

FAM13A rs2609255/T 0.78 
(0.74-0.84) 

3.30x10-13 (4) 

KIF15 rs78238620/A 1.58 
(1.37-1.83) 

5.12x10-10 (1) 

HLA-
DQB1 

06:02 1.34  
(1.18, 1.52) 

6.1x10-8 (5) 

IVD rs2034650/G 0.77 
(0.71-0.82) 

7.30x10-16 (4) 

MAD1L1 rs12699415/A 1.28 
(1.19-1.37) 

7.15x10-13 (1) 

MAPT rs1981997/C 0.71 
(0.65-0.87) 

2.83x10-16 (4) 

MUC5B rs35705950/T 4.84 
(4.37-5.36) 

1.18x10-203 (49) 

SPDL1 NM_017785.5:g.169588475 
G > A p.Arg20Gln 

2.87 
(2.03-4.07) 

2.4x10-7 (54) 

TERC rs1881984/G 1.31 
(1.21-1.40) 

7.09x10-13 (4) 

TERT rs2736100/A 0.72 
(0.67-0.77) 

1.54x10-20 (3, 4, 6) 
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frequency in IPF cases compared to controls (present in 30-35% of IPF cases compared to 11% 

in the general population) and is associated with a five-fold increased odds of IPF (1, 56). A 

recent study has shown that the MUC5B SNP explains 5.9-9.4% of risk of IPF susceptibility (54). 

The MUC5B risk allele results in an increased expression of the MUC5B gene which encodes 

for a protein called Mucin 5 subtype B which is a salivary mucin found in the tracheobronchial 

tract (57). MUC5B is a mucous secreting/gel forming mucin found in the tracheobronchial 

tract. Research in mouse models suggests that an increased expression of the MUC5B gene 

acts on IPF pathogenicity because the cells and bacteria (from the inflammatory response) get 

stuck in the excess mucin and are therefore present in the lungs for longer (58), this in turn 

promotes an abnormal healing response. A study in 2013 analysed the association between 

the MUC5B risk allele and interstitial lung abnormalities which found that for each copy of the 

MUC5B risk allele, the odds of interstitial lung abnormalities was increased by 2.8 times (59). 

This study suggests that there is a role for the MUC5B SNP in the wider group of interstitial 

lung diseases.  

Although the MUC5B variant is associated with an unusually large (for a complex polygenic 

disease) increased risk of IPF, there are IPF cases without the MUC5B variant and there are 

healthy controls with the MUC5B variant. In IPF cases without the MUC5B SNP, there may be 

alternative genetic variants which affect their IPF risk. To date, analyses investigating a 

potential interaction with MUC5B have not yet been published. 

1.2.5 Role of Viruses in Idiopathic Pulmonary Fibrosis (IPF) 

Viral infection is hypothesised to be a trigger for IPF; infection of viruses such as herpes viruses 

have previously been linked to IPF development (7, 8, 60-63). In 2003 a study into Herpesvirus 

in IPF lungs found evidence of cytomegalovirus (CMV), Epstien-Barr virus (EBV), human 

herpesvirus 7 (HHP-7) and human herpesvirus 8 (HHP-8) in 32/33 IPF cases (97%) and only in 

9/25 (36%) of controls suggesting herpesvirus could be a driving factor of IPF pathogenicity 

(60). Additionally, a study in 2014 used lung biopsies from 21 IPF cases and 21 age matched 

controls to identify any differences in Herpesvirus Saimiri DNA (64). Herpesvirus Saimiri DNA 

was found in 21/21 IPF cases but was not found in any of the control lung biopsies suggesting 

an association between Herpesvirus Saimiri and IPF (64). Studies in mice with bleomycin 

induced pulmonary fibrosis showed that those who received bleomycin and murine gamma 

herpesvirus (closely related to human herpes virus) had, histologically, higher fibrosis and 

inflammation scores and also more collagen than those who received only bleomycin(65). 

Latent virus in mice was also shown to predispose the lung to develop pulmonary fibrosis upon 

another exposure (in the case of the mice, bleomycin) (65). Similarly murine gamma 
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herpesvirus can also induce exacerbations in mice with existing fibrosis (65). In a recent meta-

analysis of 20 IPF case-control studies (with 1,287 participants) identified that all studied 

viruses (apart from human herpesvirus 6) including Epstein-Barr virus (EBV), cytomegalovirus 

(CMV), human herpesvirus 7 (HHP-7) and human herpesvirus 8 (HHP-8) was associated with a 

significantly increased risk of IPF but was not associated with exacerbation of IPF (66). 

1.3 Immune system genes 

Two regions of the genome that are enriched for genes involved in the immune response to 

viral and bacterial infection are the Major Histocompatibility Complex (MHC) region and the 

Killer-cell immunoglobulin-like receptor (KIR) region. The genes in both of these regions are 

extremely polymorphic resulting in variation that cannot be appropriately captured using 

standard SNP imputation.  

1.3.1 Human Leukocyte Antigen (HLA) region 

In humans the MHC region is known as the Human Leukocyte Antigen (HLA) region. The HLA 

molecules have a significant role in antigen presentation and are required to display peptide 

fragments from pathogens on the surface of a T cell (67). The HLA region is located at 6p21.31 

(chr6:28,477,797-33,448,354 on assembly GRCh37, according to the Genome Reference 

Consortium(68)). The genes within this region are split into three main classes; I, II and III 

(Figure 1.6, table 1.2). The HLA region is one of the most polymorphic regions in the Human 

genome, but it is known to have lower recombination rates compared to the rest of the 

genome (20). This results in large recombination blocks of SNPs in high LD, creating difficulty in 

identifying causal SNPs in association analyses. 

HLA alleles were historically typed and named serologically (microlymphocytoxicity, i.e. by the 

use of anti-HLA antibodies) (69) using a system whereby names contain up to 7 sections 

(Figure 1.7 and table 1.3).The microlymphocytotoxicity assay used anti-HLA antibodies to 

detect mainly class I HLA gene alleles (the assay was not sensitive enough to identify class II 

molecules (70)) and molecular DNA typing was also used to type classical class I and class II 

HLA alleles more sensitively (70). Due to the polymorphic and polygenic nature of the HLA 

region, long-read sequencing (for example Pacific Bioscience’s  [PacBio] single molecule real 

time [SMRT] (71) and Oxford Nanopore sequencing (72)) is currently the gold standard for 

class I and II typing. Long-read sequencing involves the sequencing of 10,000-100,000 base 

pairs which enables improved sequencing of structural variation. SMRT long-ready sequencing 

by PacBio is currently being utilised by Anthony Nolan for transplants after it was identified 

that utilising this sequencing provided better HLA matching, resulting in improved survival 
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(73). Long-read sequencing however remains prohibitively expensive to undertake on a large 

scale; genome-wide genotyping arrays are a cheaper way to measure SNPs across the genome 

and can be used to impute type I and type II HLA gene alleles and amino acid alleles (74). HLA 

molecules can be grouped dependant on their historical serological epitope (e.g. HLA-C1, HLA-

Bw4), these are defined based on differences in amino acid positions 77 and 80 (table 1.4). The 

HLA alleles that belong to each serological epitope can be found in table 1.4.  

 

 

Figure 1.6: Architecture of the HLA classes and genes in the human genome. Adapted from (75). 

 

 

Figure 1.7: Denotes the process in which a HLA allele is named, adapted from (76). The example given 

would be written as HLA-A*01:02:01:02:S. The S suffix denotes that the encoded protein is secreted 

(Table 1.2). 

 

Table 1.2: HLA Class I, II and III genes and their properties (77). 

Gene Name Properties Gene Name Properties 
Class I 

HLA-A Class I α chain HLA-N Pseudogene 
HLA-B Class I α chain HLA-P Pseudogene 
HLA-C Class I α chain HLA-S Pseudogene 
HLA-E Class I α chain paralogue HLA-T Pseudogene 
HLA-F Class I α chain paralogue HLA-U Pseudogene 
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HLA-G Class I α chain paralogue HLA-V Pseudogene 
HLA-H Pseudogene HLA-W Pseudogene 
HLA-J Pseudogene HLA-X Pseudogene 
HLA-K Pseudogene HLA-Y Pseudogene 
HLA-L Pseudogene HLA-Z Pseudogene 

Class II 
HLA-DRA DR α chain HLA-DQA2 DQ α chain-related 

sequence (not expressed) 
HLA-DRB1 DR β1 chain HLA-DQB2 DQ β chain-related 

sequence (not expressed) 
HLA-DRB2 Pseudogene HLA-DQB3 DQ β chain-related 

sequence (not expressed) 
HLA-DRB3 DR β3 chain HLA-DOA DO α chain 
HLA-DRB4 DR β4 chain HLA-DOB DO β chain 
HLA-DRB5 DR β5 chain HLA-DMA DM α chain 
HLA-DRB6 Pseudogene HLA-DMB DM β chain 
HLA-DRB7 Pseudogene HLA-DPA1 DP α chain  
HLA-DRB8 Pseudogene HLA-DPB1 DP β chain 
HLA-DRB9 Pseudogene HLA-DPA2 Pseudogene 
HLA-DQA1 DQ α chain HLA-DPB2 Pseudogene 
HLA-DQB1 DQ β chain HLA-DPA3 Pseudogene 

Class III 
TAP1 ATP Binding Cassette (ABC) 

transporter 
MICAB Class I Chain related gene 

TAP2 ATP Binding Cassette (ABC) 
transporter 

MICC Pseudogene 

PSMB9 Proteasome related 
sequence 

MICD Pseudogene 

PSMB8 Proteasome related 
sequence 

MICE Pseudogene 

MICA Class I Chain related gene AGER Advanced Glycosylation 
End-Product Specific 
Receptor 

 

 

Table 1.3: The suffixes available for HLA nomenclature and their meanings. Information from (76). 

 

 

Suffix Meaning 
A Aberrant – some uncertainty to whether a protein is expressed. 
C Cytoplasm – protein is found here instead of cell surface. 
L Low cell surface expression. 
Q Questionable expression. 
S Soluble - the molecule is secreted but not expressed on the cell 

surface. 
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Table 1.4: Amino acid position differences in serological epitopes and which HLA alleles carry the epitope 

(78). 

Serological 
epitope 

Amino acid 
position 

HLA Alleles 

77 80 B*05, B*51:02, B*51:03, B*13, B*17, B*27, B*37, 
B*38, B*44, B*47, B*49, B*51, B*52, B*53, B*57, 
B*58, B*59, B*63, B*77 

HLA-Bw4 Asn Ile 
Asn Thr 
Asp Thr 
Ser Ile 

HLA-Bw6 Gly Asn B*07, B*07:03, B*08, B*14, B*18, B*22, B*27:08, 
B*35, B*39, B*40, B*41, B*42, B*45, B*46, B*48, 
B*50, B*54, B*55, B*56, B*60, B*61, B*62, B*64, 
B*65, B*67, B*70, B*71, B*72, B*73, B*75, B*76, 
B*78, B*81, B*82 

Ser Asn 

HLA-C1 - Asn C*01:02, C*01:03, C*03:02, C*03:03, C*03:41, 
C*07:01, C*07:02, C*03:04, C*07:05, C*07:06, 
C*08:01, C*08:02, C*08:03, C*12:03, C*12:06, 
C*12:21, C*12:22, C*14:02, C*14:03, C*16:01, 
C*16:03, C*16:41 

HLA-C2 - Lys C*02:21, C*02:22, C*02:23, C*02:24, C*04:01, 
C*05:01, C*06:02, C*07:07, C*12:05, C*12:41, 
C*12:42, C*15:02, C*15:03, C*15:04, C*15:51, 
C*15:52, C*16:02, C*17:01, C*17:02, C*18:01, 
C*18:02 

 

Class I and Class II HLA molecules 

Class I HLA molecules can be found spanning the membrane of almost every cell in an 

organism and are recognised by cytotoxic CD8+ T cells (79). CD8+ T cells are a type of T 

Lymphocyte that express T cell receptors and a CD8 dimeric co-receptor which allows the cells 

to recognise peptides presented by HLA Class I molecules. There are three class I α-chain (also 

known as “classical”) genes in humans; HLA-A, HLA-B and HLA-C (table 1.2) (77). There are also 

additional class I genes which are paralogues of the classical class I genes, they have been 

termed HLA class Ib genes, like classical class I genes, they code for cell surface molecules 

(HLA-E, HLA-F and HLA-G) (table 1.2) (77).  

Class II HLA molecules are restricted to only specific immune system cells such as macrophages 

and lymphocytes and are recognised by CD4+ T cells (79). CD4+ T cells are also known as T 

helper cells and aid immune response through the use of cytokines. There are three main pairs 

of classical HLA Class II α and β chain genes, named HLA-DR, HLA-DP and HLA-DQ (77) (table 

1.2). The HLA-DR cluster also contains extra β-chains which can pair with the HLA-DRα chains 

creating several different HLA-DR genes (77) (table 1.2). Many in the HLA-DR cluster are 

pseudogenes and are not expressed such as HLA-DRB2 and HLA-DRB6 (table 1.2). There are a 
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few other less known HLA class II genes called HLA-DOA/DOB and HLA-DMA/DMB, these are 

not as variable as the class II classical HLA genes (they do not code for as many alleles and 

proteins as classical genes). Class III HLA molecules contain genes which code for a variety of 

different proteins such as MHC Class I Polypeptide-Related Sequence A (MICA, stress induced 

self-antigen), Advanced Glycosylation End-Product Specific Receptor (AGER, cell surface 

receptor) and Transporter 1, ATP Binding Cassette Subfamily B Member (TAP1) and TAP2 

which are involved in the processing for antigen presentation by HLA molecules (80).  

Polymorphism of genes in the HLA region 

Polymorphism in the HLA region means that some HLA class I and class II genes can encode 

more than 2000 alleles (with many alleles at a relatively high frequency in the population, for 

example HLA-A*01:01 is found in around 35% of individuals in European populations) (table 

1.5 and 1.6). This means that each individual can possess a set of HLA molecules which have 

different, extended ranges of peptide binding specificities (81).  

 

Table 1.5: Number of alleles and proteins expressed for HLA Class I genes (accessed 11th July 2021) (81). 

HLA Gene A B C E F G 
Alleles 6,766 7,967 6,621 271 45 82 
Proteins 4,064 4,962 3,831 110 6 22 

 

Table 1.6: Number of alleles and proteins expressed for HLA Class II genes (accessed 11th July 2021) (81). 

HLA Gene DRA DRB DQA1 DQB1 DPA1 DPA2 DPB1 DPB2 
Alleles 29 3,701 306 1,997 258 5 1,749 6 
Proteins 2 2,557 143 1,303 107 0 1,106 0 

 

HLA Imputation strategies 

The HLA region is one of the most complex and polymorphic in the human genome. When the 

HLA region was first mapped in 2004, it was found that around 22% of the expressed HLA 

genes had higher numbers of SNPs than the average number across the rest of the genome 

(82). With the release of 1000 genomes project in 2010, there was further evidence that the 

HLA region had significantly higher variation than the rest of the genome (around 9 SNPs per 

KB compared to around 5 SNPs per KB which was average across the genome (16). Studying 

linkage disequilibrium (LD) in the HLA region has been rare because there are such stark 

differences between individuals, ancestries and gene alleles however, the HLA region appears 

to exhibit long-range LD blocks (83, 84). This makes interpretation of association study findings 
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complex in terms of identification of causal variants. To overcome this there are well 

characterised HLA gene alleles and amino acid changes that can be imputed using SNP data to 

“fine-map” associations to potentially causal gene alleles and their encoded molecules.  

There are reference panels that include HLA alleles and amino acid changes (as well as dense 

coverage of the HLA-region SNPs) which can be used to impute the HLA region from relatively 

sparse SNP array data. There are methods available which utilise these reference panels 

including, SNP2HLA, HLA*IMP and HIBAG, which will be described below.  

SNP2HLA is an imputation method which utilised a reference panel produced from 5,225 

unrelated individuals from the Type one Diabetes Genomics Consortium (T1DGC) (85). In these 

individuals, 7,135 SNPs across the HLA region were genotyped with the Illumina Immunochip 

array and classical HLA genes were typed (HLA-A, -B, -C, -DQA1, -DQB1, -DPA1, -DRB1) at a 

four digit resolution using the Illumina GoldenGate platform (see section 1.3.1: Nomenclature) 

(85). Using the EMBL-EBI immunogenetics database(86), binary markers were defined for 

SNPs, amino acids and 2- and 4-digit classical HLA alleles. For multi-allelic positions (i.e. amino 

acid changes and HLA alleles), the binary markers were defined based on the presence or 

absence of each amino acid/allele (85).  

HLA*IMP (74) is an imputation method which utilised a reference dataset created from 2,420 

samples from the 1958 Birth Cohort (also known as the 1958 National Child Development 

Study) typed using Illumina 1.2M and Affymetrix genome-wide human SNP array 6.0) and 92 

HapMap CEU samples (87). HLA genotypes were inferred using classical typing techniques and 

converted into SNP haplotypes using PHASE (haplotype estimator) (88). The total reference 

data consisted of 5,024 haplotypes containing data on 7,733 SNPs across HLA-A, -B, -C, -DQA1, 

- DQB1 and -DRB1 (74).  

HIBAG (50, 89) is an imputation method utilised samples from HapMap (87), 1958 Birth Cohort 

and HLARES to create a reference panel for HLA imputation. The HapMap dataset was created 

by combining SNPs genotyped using several different methods including Affymetrix, Illumina 

and Perlegen, the HLA data was then derived by combining the genotypes and sequence data 

(53). The HLARES and 1958 birth cohort HLA data was generated using typing methodologies 

(including sequence specific primer methodology) (50). 

SNP2HLA, HLA*IMP and HIBAG were compared in a population of 3,265 individuals from the 

Vanderbilt DNA databank (90). Concordance (with sequenced HLA results) and call rate were 

compared between the datasets for each HLA gene allele imputed (90). SNP2HLA had the 
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highest concordance rate (0.975) and call rate (1.00) and predicted the highest number of 

alleles (210 alleles) in European ancestries, of the three tools (90). This effect was also seen in 

the separate HLA genes where SNP2HLA had the highest call rate across all genes and also the 

highest (or joint highest) concordance rate across all genes apart from HLA-A and HLA-B where 

HIBAG was slightly higher (HLA-A, 0.983 and 0.986 respectively and HLA-B, 0.969 and 0.978 

respectively) (90).  

HLA imputation of the data sets to be used in this thesis using SNP2HLA will be described in 

more detail in Chapter 2. 

Biological importance of HLA 

HLA class I molecules allow T-cells to detect host cells which are infected with a harmful 

microorganism (such as a virus) (91). When a cell is infected, antigen presentation by HLA class 

I molecules is triggered. Abnormal peptides in the cytoplasm of the cell are transported to the 

endoplasmic reticulum by TAP proteins (encoded by class III HLA genes) where they are 

incorporated into HLA class I molecules as they are synthesised (80). Then, they are exported 

to the plasma membrane of the cell within vesicles. The abnormal peptides are then displayed 

by the HLA class I molecules on the cell for T-cell recognition. 

 

HLA class II molecules allow T-cells to detect when specific immune cells, termed antigen 

presenting cells (APCs) have ingested infectious microorganisms (91). When phagocytic APCs 

such as macrophages engulf microorganisms, they will partially digest them to produce 

peptide fragments. After the HLA class II molecules are produced in the endoplasmic 

reticulum, they can bind the peptide fragments (91). The compound is transported to the 

membrane where the T-cell recognises the foreign peptide fragment and binds to it, initiating 

an immune response. Macrophages (or other APCs) are activated to kill the microorganisms 

which they have engulfed and B cells are activated to produce antibodies to remove free 

microorganisms. Other immune cells such as natural killer cells can also be activated to 

destroy infected host cells (see section 1.3.2). In cells that have not been infected by a 

microorganism, HLA molecules present self-peptides on the cell surface to which T-cells would 

not normally react. 

 

The HLA region has been implicated as having a key function in hundreds of different 

phenotypes and diseases (22) (table 1.7 ). The most significant associations have been 

identified in conditions in which autoimmunity and inflammation play a part (22). 

Autoimmunity is the process of an immune response of an organism targeting its own healthy 
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cells and inflammation is part of the body’s immune response to harmful stimuli, characterised 

by the movement of white blood cells to the infected or damaged area followed by tissue-

healing processes. Chronic inflammation can lead to the development of several diseases 

including Rheumatoid Arthritis. Table 1.7 shows the top most significant associations identified 

in the HLA region as reported in GWAS catalog (22) (accessed 29th November 2018). Many are 

autoimmune disorders or phenotypes in which inflammation is known to play a part in 

progression (such as Ankylosing Spondylitis).  

 

Table 1.7: A selection of the most significantly associated traits reported for the three classical HLA class 

I genes and two classical class II genes (P < 5x10-8); identified using GWAS catalog (accessed 29th 

November 2020) (22). 

HLA Gene Reported Traits References  
HLA-A Birdshot Chorioretinopathy 

Nasopharyngeal Carcinoma 
Vitiligo 
Ankylosing Spondylitis 
Autism Spectrum Disorder 

(92) 
(93, 94) 
(95) 
(96) 
(97) 

HLA-B Psoriasis 
Ankylosing Spondylitis 
Psoriatic Arthritis 
Idiopathic Membranous Nephropathy 
Graves’ Disease 

(98-100) 
(96, 101) 
(99) 
(102) 
(103) 

HLA-C Psoriasis 
Ulcerative colitis 
Crohns Disease  
Vitiligo 
Atopic Dermatitis 

(98-100, 104-107) 
(108) 
(109, 110) 
(111) 
(112) 

HLA-DQB1 Rheumatoid Arthritis 
Juvenile idiopathic arthritis 
Ulcerative Colitis 
Sjögren's syndrome 
Systemic Lupus Erythematosus 

(113) 
(114) 
(109) 
(115) 
(116) 

HLA-DRB1 Rheumatoid arthritis 
Multiple Sclerosis 
Type 1 Diabetes 
Ulcerative Colitis 
Sjögren's syndrome 

(113, 117-126) 
(127-132) 
(123, 133, 134) 
(108, 109, 135, 136) 
(115, 137, 138) 

 

 

1.3.2 Killer Immunoglobulin like-receptor (KIR) 

Natural killer (NK) cells are cytotoxic lymphocytes that play a vital part in the innate immune 

response to virally infected host cells (139). NK cells detect the foreign viral proteins presented 
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by human leukocyte antigen (HLA) molecules on the surface of infected cells which triggers 

secretion of cytokines (such as IFNγ and TNFα) to initiate cell death and enhance the immune 

response (Figure 1.8). The activation of NK cells is controlled by a balance between activating 

receptors and inhibitory receptors on their surface (including killer immunoglobulin like cell 

receptors [KIR]) (140-142). The KIRs are encoded by genes in a region on chromosome 19 

between the base pairs of 50,900,000-58,617,616 (19q13.4) on genome build 37. KIRs are a 

family of tautological (genetically diverse and polymorphic) receptors encoded by more than 

1,110 alleles of 17 genes identified to date (78, 143) (table 1.8) along with many haplotypes 

made up of KIR gene CNVs (table 1.7). KIRs bind with HLA class I ligands to either activate or 

inhibit NK cell response, depending on the receptor-ligand combination (table 1.4, table 1.8). 

KIRs preferentially attack cells with cells that have down-regulated (fewer) HLA Class I 

molecules on the cell’s surface (141) (Figure 1.8). 

 

 

Figure 1.8: Image presenting how KIR molecules interact with HLA molecules on body cells. KIR 

molecules preferentially attack body cells with fewer HLA Class I molecules on the cell’s surface. 

 

 

KIR molecules are not only presented on natural killer cells, they are also presented on natural 

killer T (NKT) cells (144). Additionally, KIR molecules are also known to be presented on CD8 

memory T-cells (145). It is believed that activating KIRs on CD8+ T cells may boost T cell 

responses and inhibiting KIRs on CD8+ T cells may affect T-cell receptor signalling and T cell 

responses (146).  
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KIR genes are named based on the structure of the molecule they encode, the first number 

following the KIR acronym corresponds to the number of IG-like domains in the KIR molecule. 

The D denotes “domain” and the letter following corresponds to the molecules properties; L 

denotes “long” cytoplasmic tail, S denotes “short” cytoplasmic tail and P denotes 

“pseudogene” (78, 147). The final number is the gene number encoding the protein. Two 

similar genes can have the same number and are distinguished between by a letter, e.g.  

KIR2DL5A and KIR2DL5B.  

The KIR region genes are present on two types of haplotypes, A and B (Figure 1.9). The A 

haplotype is characterised by stable copy number of the KIR genes (with genes being present 

as one copy only or missing) while the B haplotype has more extensive copy number variation 

of the genes, with each gene varying in copy number from 0 to 2. The A haplotype is 

comprised of seven KIR genes and two pseudogenes (Figure 1.9). Six of the seven KIR genes 

are inhibitory, the final gene (KIR2DS4) has been deactivated by a 22bp frameshift mutation in 

around 75% of A haplotypes (148, 149); when functional it is an activating gene. The B 

haplotype is made up of varying numbers of all known activating and inhibiting KIR genes 

(Figure 1.9). Haplotypes are split into telomeric and centromeric regions of KIR genes which 

exhibit copy number variation (CNVs) (Figure 1.9). A and B haplotypes are named depending 

on the centromeric and telomeric groups (for example, haplotype A will have centromeric 

group A and telomeric group A) (see Figure 1.9). The KIR haplotypes and what CNVs they are 

comprised of can be seen in supplementary table 1.1.  
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Table 1.8: Names and descriptions of each activating or inhibiting KIR gene (and their respective HLA ligand) with the number of alleles and proteins ((78, 150). 

Gene name Description Activating or 
inhibiting? 

No. 
alleles 

N. Proteins N. Nulls HLA Ligand 

KIR2DL1 killer cell immunoglobulin-like receptor, two 
domains, long cytoplasmic tail, 1 

Inhibiting 111 36 2 HLA-C2 

KIR2DL2 killer cell immunoglobulin-like receptor, two 
domains, long cytoplasmic tail, 2 

Inhibiting 34 15 0 HLA-C1, HLA-C2, 
HLA-B*46:01, HLA-
B*73:01 

KIR2DL3 killer cell immunoglobulin-like receptor, two 
domains, long cytoplasmic tail, 3 

Inhibiting 64 35 1 HLA-C1, HLA-C2, 
HLA-B*46:01, HLA-
B*73:01 

KIR2DL4 killer cell immunoglobulin-like receptor, two 
domains, long cytoplasmic tail, 4 

Inhibiting 107 54 0 HLA-G 

KIR2DL5A/B killer cell immunoglobulin-like receptor, two 
domains, long cytoplasmic tail, 5A/5B 

Inhibiting 57 24 0 Unknown 

KIR2DS1 killer cell immunoglobulin-like receptor, two 
domains, short cytoplasmic tail, 1 

Activating 16 8 0 HLA-C2 

KIR2DS2 killer cell immunoglobulin-like receptor, two 
domains, short cytoplasmic tail, 2 

Activating 24 9 0 HLA-C1 

KIR2DS3 killer cell immunoglobulin-like receptor, two 
domains, short cytoplasmic tail, 3 

Activating 16 7 1 Unknown 

KIR2DS4 killer cell immunoglobulin-like receptor, two 
domains, short cytoplasmic tail, 4 

Activating 37 18 0 HLA-C*05:01, HLA-
A*11:02, HLA-
C*16:01 

KIR2DS5 killer cell immunoglobulin-like receptor, two 
domains, short cytoplasmic tail, 5 

Activating 24 17 0 Unknown 

KIR2DP1 killer cell immunoglobulin-like receptor, two 
domains, pseudogene 1 

Pseudogene 40 0 0 N/A 

KIR3DL1 killer cell immunoglobulin-like receptor, three 
domains, long cytoplasmic tail, 1 

Inhibiting 183 92 3 HLA-A, HLA-Bw4 
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KIR3DL2 killer cell immunoglobulin-like receptor, three 
domains, long cytoplasmic tail, 2 

Inhibiting 164 4 1 HLA-A*03, HLA-A*11 

KIR3DL3 killer cell immunoglobulin-like receptor, three 
domains, long cytoplasmic tail, 3  

Inhibiting 165 92 1 Unknown 

KIR3DS1 killer cell immunoglobulin-like receptor, three 
domains, short cytoplasmic tail, 1 

Activating 39 22 1 Unknown 

KIR3DP1 killer cell immunoglobulin-like receptor, three 
domains, pseudogene, 1 

Pseudogene 29 0 0 N/A 
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Figure 1.9:  Diagram of the organisation of KIR genes in A and B haplotypes (adapted from (151)). Each gene is assigned a different colour and haplotypes are made 

up of centromeric and telomeric regions.
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KIR region Imputation strategies 

Complex genetic variation in the KIR region requires bespoke imputation to appropriately 

capture the variation across the region (without directly genotyping or typing using next 

generation sequencing) because SNP panels cannot infer CNVs or haplotypes. This is because 

SNP panels are not dense enough and do not provide enough information to decipher larger 

structural variation. Long-read sequencing is currently the gold standard for typing KIR 

haplotypes as it enables typing of larger structural variation however this is time-consuming 

and expensive, imputation provides a cheaper way to infer KIR variation on large scale. 

KIR*IMP uses a UK reference panel created from 698 individuals from the UK DNA banking 

network (DBN) which contains individuals who were selected for having atopic dermatitis or 

asthma (152). The copy-number variation in the KIR loci had previously been typed using qPCR 

(136). The imputation strategy was validated using a panel from a total of 1,338 unrelated 

German and Norwegian cases and healthy controls from a study of primary sclerosing 

cholangitis where the KIR gene copy numbers had been typed using qPCR (as above). KIR*IMP 

had an accuracy of over 90% for each of the KIR gene copy number variants and 87.1% for the 

KIR haplotypes and performed better than using conventional imputation panels (variants 

highly correlated with a haplotype or gene) and better than other bespoke imputation 

methods designed for the HLA region (HLA*IMP and HIBAG) (152). The imputation of the KIR 

locus in IPF case-control datasets will be described in more detail in Chapter 5.  

KIR variation in disease 

The KIR region, and copy number variation (CNVs) in the KIR region, has not been extensively 

studied in relationship to disease risk and associations are limited in number because the 

complex variation is hard to infer and the CNVs are not well tagged by SNP variation. Some KIR 

variation and KIR:HLA interactions have been associated with some viral infection phenotypes, 

disease susceptibility and progression and response to treatment.  

Activating KIR genes in general have been suggested to affect the outcome of different viral 

infections including human immunodeficiency virus (HIV), cytomegalovirus (CMV) and 

hepatitis C (150, 153-155). HIV-infected individuals who were homozygous for KIR3DS1 (i.e. 

carried two B haplotypes containing at least one copy of the KIR3DS1 gene) progressed more 

slowly to AIDS if they also carried HLA-Bw4 with an isoleucine at position 80 (HLA-Bw480I) 

(155). HLA-Bw480I individuals with increasing copy number variation in KIR3DS1 have been 

shown to have a lower HIV viral set load (156). The activation of natural killer (NK) cells by 

activating KIRs and their respective HLA ligands has been suggested to play a role in controlling 

NK cell response to cancer cells (since NK cells expressing activating KIRs are less responsive in 
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the presence of self-HLA antigens) and therefore inhibit the body’s ability to produce an 

appropriate response to cancer cells (150). Variation of individual KIR genes including KIR2DS1 

have been associated with disease progression (breast cancer, (157)), antibody treatments 

(imatinib in chronic myeloid leukaemia (CML) (158)) and progression free survival (after stem 

cell transplants in CML (159)) in cancer. Some KIR genes have been suggested to be associated 

with inflammatory and autoimmune disorders including systemic lupus erythematosus (SLE) 

(KIR2DS1 (160)), psoriasis vulgaris (KIR2DS1 (161)) and multiple sclerosis (KIR3DS1 (162)).  

Genetic variation of the KIR region has not been studied in lung disease. There have, however, 

been studies into the role of natural killer cells in lung infection and disease (163). Natural 

killer cell function can be impaired by smoking and therefore differences in natural killer cells 

in lung function and disease needs to take this into account. (164-167). There have been 

studies that show that natural killer cell activity in peripheral blood mononuclear cells (PBMCs) 

is enhanced in asthmatics (168, 169) and this has also been seen in an animal model of allergic 

airway sensitisation (170). Additionally, acute exacerbations in asthmatic children was 

associated with an increased frequency of natural killer cells in PBMCs (171). Natural killer cell 

function has also been suggested to be impaired in COPD (172). In COPD and asthma, most 

exacerbations are caused by respiratory infections (173, 174) and therefore the ability of 

natural killer cells to protect against infection may suggest a role of these cells in respiratory 

disorders and offer novel therapeutic targets. In IPF, expression of NKG2D (a receptor on 

natural killer cells which binds to self-antigens) was reduced on natural killer cells in IPF cases 

compared to healthy controls (175-177). Models of bleomycin-induced pulmonary fibrosis 

showed that a lack of natural killer-cell recruitment (and subsequent interferon gamma (IFN- 

γ) release) stopped advanced fibrosis, suggesting that IFN- γ release from NK cells could have a 

role in regulating pulmonary fibrosis (166, 167)). Also, the ability of natural killer cells to 

protect against infection may in turn limit lung inflammation and subsequent fibrosis.  

Additionally, there is a suggestive role of Invariant NKT (iNKT) cells in lung disease including 

chronic obstructive pulmonary disease (COPD) (178, 179). A study in 2014 identified that the 

frequency of activated iNKT cells was increased in COPD patients (179) and a study in 2016 

used mouse models to study the link between increased frequency of iNKT cells and 

pulmonary emphysema, mucus production, and pulmonary fibrosis (178). There has also been 

work into the suggestive role of T-cells in lung disease. In 1995, Finkelstein et al identified that 

T-lymphocytes were the most common cells in the inflammatory response in COPD and 

emphysema patients (180). Further to this, in 1998, Saetta et al noted that the number of 

CD8+ T cells was directly related to the extent of airflow limitation (181). 
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1.4 Outline and aims of thesis 

The aim of this thesis is to assess the contribution of complex genetic variation in immune 

system genes to Idiopathic Pulmonary Fibrosis (IPF) susceptibility. This study may identify 

individual variants, gene alleles or copy number variation that affect an individual’s likelihood 

of developing IPF. In addition to providing new information about how variation in immunity 

contributes to risk of IPF, this study could drive precision medicine approaches to treatment 

through identification of subtypes of disease for which immune response dysregulation might 

be a key driver. This will be the largest study of the role of HLA region variation, and the first 

study of KIR gene region variation, in IPF susceptibility. 

Chapter 2, entitled “The imputation of the Human Leukocyte Antigen (HLA) region in four 

Idiopathic Pulmonary Fibrosis (IPF) datasets” describes the method used to impute the HLA 

region in four IPF case-control datasets. The four datasets, genotype quality control and 

phasing methods which were used in the following chapters are described. The imputed and 

quality-controlled datasets were then analysed for association with IPF risk in chapters 3 and 

4.  

Chapter 3, entitled “HLA-wide association analyses of Idiopathic Pulmonary Fibrosis 

susceptibility in European populations” outlines an association study of HLA variation with IPF 

susceptibility. First, a HLA-wide association of study of 612 IPF cases and 3,366 controls was 

conducted and replication of signals was sought in a further 2,015 IPF cases and 5,193 

controls. Secondly, to maximise the sample size used to discover signals, thereby increasing 

statistical power, a meta-analysis of all available datasets (1,905 IPF cases and 13,876 controls) 

was undertaken. The likely functional mechanism underlying novel associations were 

evaluated using gene expression data and phenome-wide association studies.  

Chapter 4, entitled “SNP-SNP interaction analyses of variants in the HLA region and the MUC5B 

risk allele in IPF susceptibility” tests the hypothesis that the contribution of immune gene 

variation to IPF susceptibility may be dependent on MUC5B risk allele carrier status. 612 IPF 

cases and 3,366 controls were included in a HLA*MUC5B interaction association discovery 

analysis and replication was sought in 2,308 cases and 14,683 controls. Where interaction 

signals were identified, the effects of those signals were then analysed independently for 

association with IPF risk in MUC5B risk allele carriers and individuals without MUC5B risk 

alleles.  

Chapter 5, entitled “The imputation of variation within the Killer Immunoglobulin like Cell 

Receptor (KIR) region in four Idiopathic Pulmonary Fibrosis (IPF) datasets” describes the 
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methods used to impute the KIR region in the four IPF datasets. The imputed and quality-

controlled datasets were then analysed in chapter 6.  

Chapter 6, entitled “KIR-wide association analysis of Idiopathic Pulmonary Fibrosis 

susceptibility in four Idiopathic Pulmonary Fibrosis (IPF) datasets”, describes the association 

analyses of KIR gene copy number variation and haplotypes with IPF susceptibility. The chapter 

describes the association testing and meta-analysis of four IPF case control studies.  

Chapter 7 evaluates the work undertaken in this thesis. The positives and negatives of the 

approaches and methodology that have been used in the thesis are described, and how these 

affect the conclusions drawn from the results. There is discussion around the possible 

implications of this work in the clinical setting and how this will affect future patients. Finally, 

potential future work for this area of research is outlined. 
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Chapter 2: The imputation of the Human Leukocyte Antigen (HLA) 

region in four Idiopathic Pulmonary Fibrosis (IPF) datasets 

2.1 Introduction: 

The human leukocyte antigen (HLA) region plays a major role in the initiation of immune 

responses to bacterial or viral infection. Since viral infection has been suggested to play a part 

in Idiopathic Pulmonary Fibrosis (IPF) development and progression (1-6) genetic variation in 

the HLA region could provide insight into the biological processes that underlie IPF. The 

genetic variation in the HLA region is complex and SNP imputation panels cannot adequately 

capture this variation. Bespoke HLA imputation panels have been developed which enable the 

imputation of classical HLA alleles and amino acid alleles across the HLA region. Using the 

T1DGC panel for HLA-specific imputation (see chapter 1, section 1.4.1) enables measurement 

of HLA alleles and amino acid alleles in HLA-A, HLA-B, HLA-C, HLA-DPA, HLA-DPB, HLA-DQA, 

HLA-DQB, and HLA-DRB (7). However, the coverage of SNPs over the HLA region is limited 

when using directly genotyped variants alone (7). New genome-wide SNP imputation panels 

such as the Haplotype Reference Consortium (HRC) panel enable high confidence imputation 

of additional SNPs within the HLA region. Combining the SNPs imputed using the HRC panel 

with the SNPs, amino acids and gene alleles imputed using the HLA panel will yield a more 

comprehensive coverage of variation across the HLA region for association testing in Chapter 3 

and Chapter 4. 

This chapter describes the imputation strategy and the quality control of the HLA-imputed IPF 

datasets that will be analysed in chapters 3 and 4. 

2.2 Summary of Idiopathic Pulmonary Fibrosis (IPF) datasets: 

Four IPF case-control datasets were imputed to the HLA imputation panel; UK (8), UUS (9), 

Colorado (10) and Chicago (11). All four datasets were comprised of unrelated individuals of 

European ancestry (inferred by principal component analysis (see below) for all datasets 

completed for a previous study (9)) with IPF diagnosed using the American Thoracic Society 

and European Respiratory Society guidelines as described previously (12-14). Individuals 

overlapping between datasets had been identified in previous analyses and removed prior to 

this analysis (15). All studies had appropriate institutional board or ethics approval (8, 10, 11). 

2.2.1 UK IPF dataset: 

The UK IPF dataset was comprised of 612 IPF cases from centres around the UK and 3,366 

controls from UK Biobank (table 2.1) (8). The controls were matched for age, sex and smoking 
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status (ever vs never smokers) to the cases (8). All the cases and 2,135 controls were 

genotyped using UK Biobank Affymetrix Axiom array and 1,231 controls and all the cases were 

genotyped using UK. BiLEVE Affymetrix Axiom array (8).  

Table 2.1: Demographics of the UK IPF dataset. 

Demographic Cases Controls 
Number 612 3,366 
Sex Male (%) 433 (71%) 2356 (70%) 
Age (mean (sd)) 70 (8.4)a 65 (5.5) 
a Calculated on 602 cases. 

 

2.2.2 Colorado dataset: 

The Colorado dataset was comprised of 1,515 fibrotic idiopathic interstitial pneumonia (fIIP) 

cases and 4,683 controls that were matched on a similar identical by state (IBS) estimate (table 

2.2) (10, 16). The controls were selected at random from a large database of anonymous 

genotyped individuals (genotyped at Centre d'Etude du Polymorphism Humain [CEPH]). All 

individuals were of self-reported non-Hispanic white ancestry (later confirmed by genotyping 

in (9)). All samples were genotyped using the Illumina Human 660W Quad BeadChip array. 

77% of cases were classified as IPF with the remaining 23% of cases classified as non-specific 

interstitial pneumonia (NSIP, 6%), cryptogenic organizing pneumonia (COP, <1%), respiratory 

bronchiolitis-associated interstitial lung disease (RB-ILD, <1%), desquamative interstitial 

pneumonia (DIP, <1%) or were unclassified interstitial pneumonias (15%) (10). The disease 

phenotype percentages were provided however the exact disease sub-classification of each 

case sample was not available. 

Table 2.2: Demographics of the Colorado dataset. 

Demographic Cases Controls 
Number 1,515 4,683 
Sex Male (%) 1,118 (69%) 2,261 (48%) 
Age (mean (sd)) 65.5 (9.5) NAa 
a Age of controls was not known. 

 

2.2.3 Chicago IPF dataset: 

The Chicago dataset was comprised of 541 unrelated IPF cases and 542 unrelated controls 

matched by similarities in their first four principal components (11). Sex was not provided for 

73 individuals in this dataset and therefore they were removed from future analyses (because 

sex was to be included as a covariate). In total, 500 cases and 510 controls remained for 
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analyses (table 2.3). All samples were genotyped using the Affymetrix Genome-Wide Human 

SNP 6.0 Array. 

Table 2.3: Demographics of the Chicago IPF dataset. 

Demographic Cases Controls 
Number 500 510 
Sex Male (%) 380 (76%) 241 (47%) 
Age (mean) 68 63a 
a Age was only available for 103 controls. 

 

2.2.4 UK, USA and Spain (UUS) dataset 

The UK, USA and Spain (UUS) dataset was comprised of 793 unrelated IPF cases and 10,000 

unrelated controls (9). The IPF cases were selected from 9 centres from the UK, USA and Spain 

and the controls were selected from UK Biobank and matched for a similar age, sex and 

smoking status distribution (15) (table 2.4). The IPF cases and controls were of European 

ancestry confirmed by principal component analysis(1). The controls and the UK and USA IPF 

cases (754 of the 793 cases) were genotyped using the Affymetrix Axiom UK Biobank array and 

the Spanish IPF cases (39 of the 793 cases) were genotyped using the Axiom Spain Biobank 

array.  

Table 2.4: Demographics of the UUS IPF dataset. 

Demographic Cases Controls 
Number 793 10,000 
Sex Male (%) 584 (73.6%) 7210 (72.1%) 
Age (mean (sd)) 69 (9.1) 58 (7.8) 
 

 

2.3 Methods: Imputation of the HLA region: 

HLA alleles, amino acid alleles and SNPs (variation in the HLA region is described in Chapter 1: 

Introduction section 1.2.1 and an example of the relationship between the variants can be 

seen in figure 2.1) were imputed using the type one diabetes genomics consortium (T1DGC) 

and haplotype reference consortium (HRC) panels on chromosome 6 between the base pairs 

of 28,477,797 and 33,448,354 (on Genome Reference Consortium Human Build 37 (GRCh37) 

from the IPD/HLA database from EBI (17)). A diagram showing the architecture of the HLA 

region with a breakdown of the key genes can be seen in Chapter 1: Introduction, section 

1.2.1. 
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Figure 2.1: Simplified example of the relationship between SNP alleles, amino acid alleles and gene 

alleles in the HLA region. 

 

 

2.3.1 Principal Component Analysis: 

Principal component analysis (PCA) (described in Chapter 1: Introduction, section 1.1.8) was 

undertaken to confirm that all samples in each dataset were of European ancestry and to 

produce principal components (PCs) for use in the model as covariates. The smartpca program 

(from the EIGENSOFT package V7.2.1 (18)) was used to run principal component analysis on 

each of the four datasets using genome-wide genotyped SNPs from the datasets (UK=43,145 

SNPs, Chicago=65,429 SNPs, Colorado=78,806 SNPs and UUS=56,786 SNPs). 

2.3.2 Imputation to the Haplotype Reference Consortium panel: 

Phasing and imputation to the Haplotype Reference Consortium (HRC) 1.1 panel (19) was 

completed on all IPF data sets for another study by Dr Allen (15) using the Michigan 

imputation server (https://imputationserver.sph.umich.edu/) (20). 

2.3.3 Phasing: 

As part of this thesis each of the four datasets were phased separately. Phasing is the process 

of assigning alleles to the maternal and paternal chromosomes and is an essential first step for 

genotype imputation. In these analyses, ShapeIt (v 2.837) was used to phase only SNPs that 

passed pre-imputation quality control steps as follows. SNPs were required to be present on 

(Axiom UK BiLEVE and Axiom UK Biobank, UK dataset only), required to have a call rate of 

more than 95%, a minor allele frequency of more than 1% and a Hardy Weinberg Equilibrium P 

> 1x10-6 to be phased and then imputed. 
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2.3.4 HLA allele and amino acid imputation: 

Following phasing, SNPs, amino acids and HLA gene alleles in the HLA region were imputed 

with the T1DGC panel (7) using IMPUTE2 (V2.3.2) between the base pairs of 28,477,797 and 

33,448,354 (Genome Reference Consortium Human Build 37 (GRCh37). The T1DGC panel 

incorporates the genetic data from 5,255 individuals and provides haplotypes for imputation 

of up to 424 HLA alleles and 1,276 amino acid alleles for HLA-A, HLA-B, HLA-C, HLA-DRB, HLA-

DPA, HLA-DPB, HLA-DQA and HLA-DQB (table 2.5). 

 

Table 2.5: Number of alleles and amino acid alleles in each HLA gene imputed using the HLA specific 

imputation. 

HLA Gene Number of imputed HLA 
alleles 

Number of imputed amino 
acid alleles (across 399 
sites) 

HLA-A 70 213 
HLA-B 129 312 
HLA-C 47 182 
HLA-DRB 64 256 
HLA-DPA 11 27 
HLA-DPB 66 50 
HLA-DQA 14 71 
HLA-DQB 64 165 

 

2.3.5 Merging of HRC panel imputed SNPs and HLA panel imputed SNPs: 

SNPs imputed using the HRC panel and SNPs imputed using the HLA imputation panel were 

first matched by rsid or position and allele and duplicate SNPs were identified and removed 

from the HLA imputed data set (all HLA alleles, amino acid alleles and multi-allelic SNPs were 

retained).  

2.3.6 Evaluating the use of HRC-imputed variants to improve imputation of HLA gene, 

amino acid and SNP alleles 

The HLA imputation (for the HLA gene alleles and amino acid alleles) pipeline included only 

SNPs that were phased and had been directly genotyped. Inclusion of robustly imputed SNPs 

from the HRC imputation as input to the HLA imputation pipeline could improve overall 

imputation quality for the region. To test this, SNPs from the HRC imputation that had an 

imputation quality >0.98 were phased and combined with directly genotyped SNPs. The HLA 

imputation qualities of the SNPs, HLA gene alleles and amino acids with and without HRC-

imputed variants as input were then compared for the UK dataset (using T-test). 
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2.3.7 Post-imputation quality control of HLA and HRC imputed variants: 

Rare variants (minor allele frequency [MAF] < 0.01) and variants with a poor imputation 

quality (imputation quality < 0.4 from either panel) were removed from the datasets. HLA 

gene allele and amino acid frequencies were calculated per allele or amino acid (i.e. the 

number of chromosomes carrying HLA allele/amino acid divided by total number of 

chromosomes).  

2.4 Results: Principal Component Analysis: 

Genome-wide genotyped SNPs from all four datasets were used to calculate principal 

components which were plotted along with HapMap ancestral principal components. 

Individuals with non-European ancestry had already been removed from the datasets (8, 9) 

but this principal component analysis was used to derive the principal components to be used 

in the model and re-confirmed that each dataset was comprised of European individuals 

(supplementary figures 1-4). 

2.5 Results: HLA region imputation pipeline: 

The bespoke HLA imputation enables the imputation of classical HLA gene alleles and amino 

acid alleles across the HLA region. The classical HLA genes and amino acids were imputed with 

a binary code with each allele (gene or amino acid) at a given locus coded separately. An 

example of a HLA-A allele and amino acid position for one individual can be seen in table 2.6. 

This example shows that the individual has 2 copies of HLA-A*01:01 (and no copies of HLA-

A*01:02 and HLA-A*01:03) and 2 copies of an Isoleucine at HLA-A amino acid -22 (and no 

copies of a deletion or Valine at amino acid position 22).  

 

Table 2.6: Example of an imputed HLA-A allele and amino acid position for a single individual from the 

UK IPF dataset, imputed using the T1DGC HLA panel (7) on IMPUTE 2 (v2.3.2) (V=valine, x=deletion, 

I=isoleucine, P = present, A = absent). AlleleA and AlleleB were alternative and reference alleles. HLA-A 

has 78 amino acid positions, this table shows only a single amino acid position to provide an example.   

RSID Position AlleleA AlleleB genotype 
HLA_A_0101 29911991 P A  1/1 
HLA_A_0102 29911991 P A  0/0 
HLA_A_0103 29911991 P A  0/0 
AA_A_-22_V 29910338 P A  1/1 
AA_A_-22_x 29910338 P A  0/0 
AA_A_-22_I 29910338 P A  0/0 
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The T1DGC panel is comprised of 12,306 SNPs (along with the HLA gene alleles and amino acid 

alleles) and the HRC panel (19) enables the imputation of 83,866 SNPs. There were some SNPs 

(411) that were present in both the HRC panel and the bespoke HLA imputation panel.  In this 

case, when the SNPs were merged they were excluded from the bespoke HLA panel (an 

example of how these variants were split between the two reference panels can be seen in 

table 2.7).  

 

Table 2.7: Number and type of variants imputed across the HLA region in the UK IPF dataset, split by 

panel. 

 

 

2.5.1 Evaluating the use of HRC-imputed variants to improve imputation of HLA gene 

alleles, amino acid alleles and SNP alleles 

To test whether inclusion of well-measured HRC-imputed SNPs improved imputation of HLA 

variants, 6,909 directly genotyped and 45,937 well-imputed (imputation quality >0.98) SNPs 

were used to impute HLA SNPs, gene and amino acid alleles in the UK dataset. 

When comparing the use of directly genotyped SNPs only vs additional inclusion of HRC 

imputed SNPs there were some observable differences (87% of variants had imputation 

quality > 0.98 with only directly genotyped SNPs vs 91% when including HRC imputed SNPs) 

(figure 2.2). However, there was no significant difference between the means of the 

imputation qualities (directly genotyped vs imputed=0.995 and 0.996 respectively, P-

value=0.2). Similarly, when comparing the imputation qualities of the HLA alleles and amino 

acid alleles together imputed using directly genotyped vs HRC imputed SNPs, there was no 

significant difference (imputation quality means of directly genotyped vs imputed=0.866 and 

0.867 respectively, P-value=0.93). There was also no significant difference between the 

imputation qualities when looking at only amino acid alleles (imputation quality means of 

directly genotyped vs imputed=0.90 and 0.90 respectively, P=0.37) and only HLA gene alleles 

(imputation quality means of directly genotyped vs imputed=0.77 and 0.799 respectively, 

P=0.2) (figure 2.2). Because there was no significant difference in imputation qualities, the HLA 

Variant Type: HRC Panel T1DGC Panel 
SNPs 77,762 12,306 
HLA alleles 0 424 
Amino acid alleles 0 1,276 
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gene alleles, amino acid changes and SNPs in the HLA region in the four IPF datasets were 

imputed using directly genotyped SNPs only.  

 

Figure 2.2: Comparison of imputation qualities of all variants imputed to the HLA imputation panel 

using either directly genotyped SNPs as the input (geno_info) or well imputed SNPs (imputation 

quality > 0.98) from the HRC imputation panel as the input (imp_info). 
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Figure 2.3: Comparison of imputation qualities of HLA alleles (A) and amino acid alleles (B) imputed to the HLA imputation panel using either directly genotyped SNPs 

as the input (genotyped) or well imputed SNPs (imputation quality > 0.98) from the HRC imputation panel as the input (imputed). 
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2.6 Results: HLA imputation of IPF datasets: 

HLA gene alleles, amino acid alleles and SNPs were imputed in 3,420 cases and 18,559 controls 

of European ancestry across four datasets (supplementary figures 1-4) using directly 

genotyped SNPs. Between 86,000-88,000 variants were imputed in each dataset in total. 

Around 60% of the imputed variants were removed in the quality control step (frequency and 

imputation quality filters) which left between 34,000-37,000 variants for analyses in the four 

datasets. A vast majority (99%) of the variants removed were SNPs and the remaining 1% was 

made up of 596 (UK), 533 (Colorado), 529 (Chicago) and 544 (UUS) rare HLA gene alleles and 

amino acid alleles (table 2.9). The UK and UUS datasets had considerably more SNPs 

genotyped across the HLA region (these were both genotyped using the Affymetrix Axiom UK 

Biobank array) compared to the Chicago and Colorado datasets (genotyped using the 

Affymetrix Genome-Wide Human SNP 6.0 Array and Illumina Human 660W Quad BeadChip, 

respectively) which could explain the higher number of variants removed for poor imputation 

quality (table 2.8) and the differences in imputation quality distributions (figure 2.6). Of the 

variants that passed the quality control filters, there was a mean imputation quality of 0.98 for 

the UK, UUS and Colorado datasets and 0.97 for the Chicago dataset (figure 2.3). The 

distributions of allele frequencies were similar across all four datasets (figure 2.7).  

Table 2.8: Demographics and results of the HLA imputation across the UK, Colorado, Chicago and UUS 

datasets. 

Dataset Directly 
genotyped 
SNPs used 
for 
imputation 

Total 
variants 
imputed 

Variant exclusions Total 
quality-
controlled 
variants 

Mean 
allele 
frequency 

Mean 
imputation 
quality Allele 

frequency 
< 0.01 

Imputation 
quality  
< 0.4 

UK 6,909 87,355 50,224 388 36,743 0.18 0.98 
Colorado 1,495 86,646 49,573 2,168 34,905 0.17 0.98 
Chicago 1,012 86,647 49,376 2,248 35,023 0.17 0.97 
UUS 6,256 87,441 49,925 551 36,965 0.17 0.98 

 

 

Table 2.9: Number of HLA gene alleles, amino acid alleles and SNPs at an allele frequency less than 1% 

(and removed from the quality-controlled datasets). 

Dataset HLA gene alleles Amino acid alleles SNPs 
UK 256 340 49,628 

Colorado 245 288 49,040 

Chicago 243 286 48,847 

UUS 252 292 49,381 
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Across the three types of variants there were different ranges of allele frequencies (can be 

seen in figure 2.4). The mean allele frequency (across the four datasets) was 9% for the HLA 

gene alleles, 26% for the amino acid alleles and 17% for SNPs (figure 2.4). The ranges and 

mean allele frequencies across the variant types were similar across all four datasets. The UK 

and UUS datasets appear to cluster at a higher quality compared to the Colorado and Chicago 

datasets, this could be because the two groups are on different genotyping panels (UK/UUS 

used UK Biobank Affymetrix array, UK BiLEVE Affymetrix array and Axiom Spain Biobank array. 

Chicago used Affymetric Genome-Wide Human SNP 6.0 Array and Colorado used Illumina 

Human 660W quad BeadChip array). A comparison of allele frequencies between the HLA 

imputation panel and the imputed HLA variation showed strong correlation across all four 

datasets (figure 2.5). Association testing in subsequent chapters would include multiple 

independent datasets enabling identification and exclusion of spurious signals driven by 

imputation errors in individual datasets. Therefore, no variant exclusions were made based of 

these comparisons. 
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Figure 2.4: Imputation quality of variants in IPF susceptibility in the UUS IPF dataset, split by variant type 

(AA= HLA amino acid alleles, ALLELES=HLA alleles). 
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Figure 2.5: Boxplot of the allele frequencies of variants in the UUS IPF dataset, split by variant type (AA= 

HLA amino acid alleles, ALLELE= HLA alleles). 

 

  

  

 

  Variant type Variant type 

Variant type 

Im
pu

te
d 

al
le

le
 fr

eq
ue

nc
y 

Im
pu

te
d 

al
le

le
 fr

eq
ue

nc
y 

Im
pu

te
d 

al
le

le
 fr

eq
ue

nc
y 

Im
pu

te
d 

al
le

le
 fr

eq
ue

nc
y 

UK dataset 

Colorado dataset 

Chicago dataset 

UUS dataset 

Variant type 

UUS dataset 



   
 

Page | 47  
 

 

 

 
 Imputed allele frequency 

Imputed allele frequency 

Imputed allele frequency 

Imputed allele frequency 

Imputed allele frequency 

Imputed allele frequency Imputed allele frequency 

Imputed allele frequency T1
DG

C 
pa

ne
l a

lle
le

 fr
eq

ue
nc

y 
T1

DG
C 

pa
ne

l a
lle

le
 fr

eq
ue

nc
y 

T1
DG

C 
pa

ne
l a

lle
le

 fr
eq

ue
nc

y 
T1

DG
C 

pa
ne

l a
lle

le
 fr

eq
ue

nc
y 

UK dataset Colorado dataset 

T1
DG

C 
pa

ne
l a

lle
le

 fr
eq

ue
nc

y 

T1
DG

C 
pa

ne
l a

lle
le

 fr
eq

ue
nc

y 
T1

DG
C 

pa
ne

l a
lle

le
 fr

eq
ue

nc
y 

T1
DG

C 
pa

ne
l a

lle
le

 fr
eq

ue
nc

y 



   
 

Page | 48  
 

 
 

 
 

Figure 2.6: Comparison of the minor allele frequencies of variants in the T1DGC panel (Y axis) and the allele frequencies from the imputed UUS dataset (X axis). 
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Figure 2.7: Density plots of imputation quality for all four datasets across the HLA region (left=all 

qualities, right= qualities >0.9). 

 

 

Figure 2.8: Boxplot of imputed allele frequency of all four datasets across the HLA region.   
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Genes across the HLA region are said to be highly polymorphic, as this may be advantageous 

to the response to bacterial and viral infections. The data from the UK IPF dataset confirms a 

lack of homozygotes, table 2.10 shows that homozygotes were rare across HLA-A*01, *02, *03 

and *11. 
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Table 2.10: Table of genotypes of the imputed HLA-A genes in the UK IPF dataset (P=presence and A=absence of gene allele in the individual). 

 

Genotype 
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A/A 2623 3940 3976 2050 3973 3966 3917 3963 3978 3972 3978 3973 2903 3934 3523 3978 3978 3978 
P/A 1157 0 0 1572 2 0 54 12 0 0 0 2 943 0 441 0 0 0 
P/P 157 0 0 311 0 0 0 0 0 0 0 0 87 0 14 0 0 0 
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2.7 Discussion: 

This chapter outlined the imputation approach that was used to infer SNPs, amino acid alleles 

and classical HLA gene alleles in the IPF datasets to be used in chapters three and four. Directly 

genotyped SNPs were used to impute the HLA region in the UK, UUS, Chicago and Colorado 

datasets with the Haplotype Reference Consortium SNP panel and the T1DGC HLA panel. This 

approach utilised the most up to date SNP panel and a HLA region specific panel, which 

provided a high coverage of SNPs across the HLA region and allowed the incorporation of 

classical HLA alleles and amino acid alleles into these data. This allows the fine mapping of 

genetic associations to a particular HLA isoform as described in the following chapters. This 

chapter described an investigation to determine if the inclusion of HRC-imputed SNPs 

improved the imputation of the HLA gene alleles and amino acid alleles in these four IPF 

datasets. It was found that there was no significant improvement of the mean imputation 

qualities across the HLA gene alleles and amino acid alleles. Therefore, I decided to only use 

directly genotyped SNPs for the bespoke HLA imputation. This could be because the 

genotyped SNPs provided sufficient information to effectively impute the HLA gene alleles and 

amino acid alleles. Also, including the imputed SNPs could be introducing unnecessary noise, 

meaning they are not providing any more useful information for the imputation.  

The main three HLA class I molecules (HLA-A, -B and –C) and the main HLA class II molecules 

(HLA-DRB, -DQA1, -DQB, -DPA1 and –DPB1) were all well represented using this method with 

an average imputation quality of 0.97 for HLA gene alleles and 0.99 for amino acid alleles 

(figure 2.3). These molecules are highly polymorphic (shown in our data, table 2.10) and 

typically include clinically relevant alleles and amino acid alleles for example HLA-B*27 

(ankylosing spondylitis (21)) and HLA-DQA1*05:01 and HLA-DQB1 amino acid 57 (type one 

diabetes (22, 23)). Non-classical HLA genes (HLA-E, -F and G from class I and HLA-DRA, -DQA2, 

DPA2 and DPB2 from class II) were not represented using this imputation method. Non-

classical HLA genes are not thought to be as polymorphic as the classical HLA genes (see 

chapter 1, section 1.3.1) and therefore it has been suggested that any variation found across 

these genes may be appropriately captured using SNP imputation alone (7) however these 

genes have been implicated in autoimmune disorders previously and therefore may be 

relevant to disease processes. Alleles and amino acid polymorphisms that may be of 

importance to future analyses of IPF were well captured, for example the HLA-DQB1*06:02 

allele previously associated with IPF risk (16) and the HLA-DQB1*06:02 amino acid 57 

polymorphism previously associated with lung function (24) have average imputation qualities 

of 0.99.  
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A limitation of the quality control approach is the allele frequency exclusion threshold of 1% 

which removed half the variants in the analysis, although 99% of these were SNPs. It could be 

suggested that using an allele frequency cut off is not appropriate for the HLA gene alleles and 

the amino acid alleles (because they were multi-allelic). Over 240 gene alleles imputed were 

removed due to low frequency (table 2.9, the same gene alleles were removed in both the 

cases and controls), the mean frequency of those excluded was 0.1% (and only 0.008% in the 

IPF cases) therefore there would not be sufficient power to detect associations in these alleles 

in subsequent analyses. The allele frequency cut off was used across all the variant types to 

reduce the chance of spurious results since rare alleles are often not well imputed (182) or 

genotyped and there was not sufficient power to effectively test the associations with the rare 

variants. The allele frequency threshold of 0.01 could be reduced or removed to include more 

variants in the analyses. However, this would increase the type one error rate and there would 

not be sufficient power to detect any associations in these rare variants in the following 

analyses. 

Imputation quality thresholds is used to remove poorly imputed variants that could cause 

spurious findings in the analysis. In this analysis, a threshold of 0.3 was used, thresholds of 0.3 

and 0.5 have been commonly used in analyses of common variation (2, 5, 183) and higher 

thresholds are used for rarer variants. For example, in the 2017 paper by Allen et al (2) in 

which an imputation quality threshold of 0.5 was used for common variants (frequency ≥ 1%) 

and a threshold of 0.8 was used for rare variants (frequency < 1%). The imputation quality 

metric could have been applied differently, for example a higher imputation quality threshold 

for example to 0.5 as would provide higher confidence in the imputed SNP alleles, however 

this would have reduced the number of variants available for analysis.  

This chapter outlined the method for imputing the HLA region across all four IPF datasets. The 

datasets with quality-controlled HLA gene alleles, amino acid alleles and SNPs will be utilised 

for association testing in the following two chapters.  
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Chapter 3: HLA-wide association analyses of Idiopathic Pulmonary 

Fibrosis susceptibility in European populations 

3.1 Introduction: 

During this chapter I will study the role of genetic variation in immune system genes; in 

particular, genes in the Human Leukocyte Antigen (HLA) region in susceptibility to Idiopathic 

Pulmonary Fibrosis (IPF). The HLA genes encode molecules involved in the immune response 

to bacterial and viral infections. Infection is hypothesised to be a trigger for development of 

respiratory disease (7) and is known to be a major cause of exacerbation events (9-11). 

Infection of viruses such as herpes viruses (7, 8, 60-63) have previously been linked to IPF and 

could play a role in its pathogenesis. However, there is conflicting evidence on the matter with 

some studies identifying no difference of viral load between healthy controls and IPF cases 

(184, 185). The HLA region has also been linked to response to herpes infections, for example 

HLA-DRB1 and HLA-DQB1 have been implicated in a GWAS of Epstein-Barr virus infection in 

Hispanic populations (186) and HLA-B has been implicated in susceptibility to Shingles 

infection (187). The HLA region is highly polymorphic, it has been shown to harbour around 

nine SNPs per kilobase compared to around three which is average across the rest of the 

genome (16).The HLA region therefore requires specific imputation techniques to fine map the 

variation to a specific functional HLA allele. Genetic studies have provided evidence of a link 

between the HLA region and respiratory traits (188) and a HLA gene allele has been implicated 

in susceptibility to fibrotic idiopathic interstitial pneumonia (fIIP) (5). fIIP as a group 

encompasses several different interstitial pneumonias including IPF, rheumatoid arthritis 

associated interstitial lung disease (RA-ILD), desquamative interstitial pneumonia, cryptogenic 

organising pneumonia, respiratory bronchiolitis-associated interstitial lung disease. Although 

they all share a fibrotic phenotype, these diseases have radiological and histopathological 

differences in their presentation which could suggest there are some differences in their 

underlying processes.  

Previous analyses for IPF susceptibility have utilised either only standard SNP imputation 

methods (2-4) or specific HLA imputation methods to fine map signals (5). By using both these 

panels I will infer a high coverage of SNPs in the HLA region and also infer HLA alleles and 

amino acid changes to test for association with IPF susceptibility. 
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The aims of this chapter were to; utilise imputation of SNPs, amino acid changes and HLA gene 

alleles to identify new IPF susceptibility signals in the HLA region and replicate the HLA-

DQB1*06:02 signal previously identified in the Colorado dataset (5).  

 

This chapter first describes a HLA-wide discovery association analysis in 612 IPF cases and 

3,366 controls (UK dataset) with replication in 2,015 IPF and fIIP cases and 5,193 controls 

(Colorado and Chicago datasets) (see chapter 2, sections 2.2.1, 2.2.2 and 2.2.3). To maximise 

the power to identify novel signals in these datasets, a 3-way meta-analysis was then 

undertaken in 2,769 IPF and fIIP cases and 8,591 controls (UK, Chicago and Colorado datasets 

– UUS was not available at the time). When evaluating the results of the 3-way meta-analysis, 

there was a notable difference between the Colorado datasets and the other IPF datasets. This 

was perhaps due to subtle phenotype differences (IPF in UK and Chicago datasets and fIIP in 

Colorado datasets). To address this, a 3-way meta-analysis was undertaken in 1,905 IPF cases 

and 13,876 controls (UK, UUS and Chicago datasets). 

 

3.2 Methods: 

3.2.1 Datasets: 

The phasing, imputation and quality control of the UK, Colorado, UUS and Chicago datasets is 

outlined in chapter 2. Briefly, the UK dataset is comprised of 612 IPF cases and 3,366 controls 

and has 36,743 well imputed (allele frequency >1%, imputation quality >0.4) variants for 

analysis. The Colorado dataset is comprised of 1,515 fibrotic idiopathic interstitial pneumonia 

cases and 4,683 controls with 34,905 well imputed (allele frequency >1%, imputation quality 

>0.4) variants for analysis. Finally, the Chicago dataset has 500 IPF cases and 510 controls with 

35,023 well imputed (allele frequency >1%, imputation quality >0.4) variants for analysis. The 

UUS dataset is comprised of 793 IPF cases and 10,000 controls with 35,809 well imputed 

variants for analysis.  

3.2.2 Testing the association between variants in the HLA region and susceptibility to 

IPF: 

A HLA region-wide association analysis of IPF susceptibility was conducted using SNPtest 

(v2.5.2) in the UK, Colorado and Chicago datasets assuming an additive model. The HLA alleles 

and amino acid changes were also modelled assuming an additive model (e.g. present vs 

absent and not as a multi-allelic variant). Ten principal components (to adjust for fine-scale 

population structure) and sex were included as covariates. Manhattan plots were created for 
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each analyses using qqman covering the whole of the HLA region (189) and independent 

variants were visualised on region plots using Locuszoom (190) in Python. 

3.2.3 Defining significance thresholds and statistical significance: 

A Bonferroni corrected significance threshold was determined for the HLA-wide association 

analysis using the number of independent SNPs, amino acid changes and alleles in this region. 

LD Prune from Plink v1.9 was utilised to identify the number of independent signals in the 

region. Windows of 50 variants were analysed and a variant was removed from a pair if the r2 

was greater than 0.2. For the replication of signals, a Bonferroni corrected threshold was 

calculated using the number of independent variants to be replicated (i.e. 0.05/number of 

variants in replication).  

Signals that passed these predefined thresholds were selected as significant. If none passed 

Bonferroni corrected threshold, a threshold of P<5x10-3 was used to identify suggestive 

signals. Those that passed these significance thresholds were identified as independent from 

one another by excluding those with an r2 of more than 0.2 with the lead variant.  

3.2.4 Signal Characterisation: 

To refine the association signals to include only variants that were the most likely to be causal, 

95% credible sets were calculated (i.e. a set in which there is 95% confidence the causal 

variant is in – under the assumption there is one causal variant and it is measured). Posterior 

probabilities were calculated from approximate bayes factors using the Wakefield formula 

(191) (Wakefield prior set at 0.4) for variants within 1Mb and that were in linkage 

disequilibrium with the lead variant (r2 > 0.2). The 95% credible set was produced by adding 

variants to the set until the sum of their posterior probabilities was equal to or greater than 

0.95.  

Lead variants of signals (and those in the credible set) identified in the analysis and variants in 

high LD (r2>0.8) (SNPs or HLA alleles) were investigated in using Phenoscanner (192) to identify 

associations with respiratory, autoimmune, inflammatory or immunity phenotypes. Signals 

identified in the association analyses were said to be associated with a phenotype if it met a 

P<5x10-8 threshold in or Phenoscanner. GTEx consortium (tissue sample sizes from 4-706) was 

used to identify if the signals were associated with the expression of any genes in 49 tissues 

around the body (193). The colocalisation of association and eQTL signals in the lung were 

tested by studying the linkage disequilibrium between the lead SNPs of the two signals.  
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3.2.5 Meta-analysis of IPF susceptibility study design: 

SNPs, HLA alleles and amino acid changes (hereafter to be known as variants) in each dataset 

were tested for association with IPF susceptibility and those that passed quality control were 

included in the meta-analysis of IPF susceptibility. A fixed-effects weighted meta-analysis was 

performed on these data to provide a weighted P-value, beta and standard error for each 

variant. Variants were required to be present in at least two studies to be included in the 

analysis. For significance, variants were also required to be in the same direction of effect and 

have P < 0.05 in all studies.  

3.2.6 HLA amino acid joint regression data and study design: 

As well as the logistic regression analysis (described in 3.2.2, a joint regression analysis was 

undertaken to test the effects of each amino acid at multi-allelic sites (e.g. in HLA amino acid 

alleles). 1,276 amino acid changes at 399 sites were imputed in all four IPF datasets (see 

chapter 2) across all HLA genes (table 3.1). The number of amino acid alleles imputed at one 

position varies from 1-31, a typical amino acid site can be seen in table 3.2.  

Table 3.1: Number of amino acids sites and alleles in each HLA gene. 

Gene Number of amino 
acid alleles 

Number of 
amino acid 
sites 

Number of amino 
acid sites with ≥2 
alleles 

Number of 
amino acid 
sites with ≥3 
alleles 

HLA-A 213 78 70 11 
HLA-B 312 77 61 14 
HLA-C 182 64 41 8 
HLA-DPA 27 15 4 0 
HLA-DPB 50 24 12 9 
HLA-DQA 71 36 20 8 
HLA-DQB 165 54 42 38 
HLA-DRB 256 51 39 28 

 

Joint logistic regression model was used to test for the effect of each amino acid at the 

position simultaneously, for example if there were three amino acids at one position (AA1, 

AA2 and AA3) they would be tested for association with the phenotype (IPF susceptibility) as 

follows: 

!ℎ#$%&'(#	~	++1 + ++2 + ++3 + 0#1 + !23 

 

Only single amino acid alleles were taken across all the sites (for example from table 3.1, F, T, S 

and Y would be used but FT, FS and FY were excluded as this was appropriately captured when 
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the separate amino acid alleles were tested). Rare amino acid alleles (frequency < 1%) were 

removed from each IPF dataset and only sites with two or more alleles (after rare alleles were 

removed) were retained for the joint regression analysis.  

In order to reduce collinearity in the model, two sets of amino acids were tested, all amino 

acids after quality control (set 1) and a smaller set with the most frequent amino acid allele 

removed at each loci (loci with 3 or more alleles) (set 2). The frequency of each amino acid 

was calculated using Plink and the amino acid with the highest frequency at each position was 

removed. The most common amino acid was only removed at positions with three or more 

amino acids. Collinearity is the correlation between variables (that they express a linear 

relationship) in the model, collinearity in the model can cause inaccuracies in the estimates, 

confidence intervals and association testing (194).  

The joint regression analyses (using the above model) was run across both amino acid sets in 

all four IPF datasets using R.  

The Bonferroni corrected significance threshold was calculated using the number of amino 

acid sites in each analysis in each dataset.  The results from the joint regression from each 

individual dataset were combined using a fixed-effects weighted meta-analysis on R. Amino 

acids were required to pass the Bonferroni corrected significance threshold (as described 

above) and be nominally significant (P<0.05) in at least two studies.  

 

3.3 Results: Dataset quality control. 

3.3.1 Defining significance thresholds: 

Of a total 79,485 variants analysed, 17,338 variants were identified as independent using LD 

prune from Plink v1.9. A Bonferroni corrected threshold of P<2.8x10-6 was used in subsequent 

analyses as this has been corrected for the number of independent signals across the region.  

3.4 Results: HLA-wide association analyses of IPF susceptibility: discovery in UK 

IPF dataset and replication in Chicago and Colorado datasets.  

A HLA-wide discovery association analysis of IPF susceptibility was conducted in the UK IPF 

dataset with significant signals analysed in the Colorado and Chicago datasets for replication.  

3.4.1 HLA-wide association of IPF susceptibility: discovery in the UK IPF dataset: 

The UK IPF dataset was comprised of 612 IPF cases and 3,366 controls of European ancestry. 

36,743 well imputed variants across the HLA region (6:28,477,797 – 6:33,448,354) were tested 
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for an association with IPF susceptibility. There was no inflation of the test statistic (figure 3.1, 

λ=1.02). No variants passed the significance threshold of P<2.8x10-6 for association with IPF 

susceptibility (figure 3.2). Twelve independent variants passed the suggestive significance 

threshold of P<5x10-3 (Green variants in Table 3.2 show all variants that passed the suggestive 

significance threshold). Seven signals identified in this analysis were found in HLA Class I and 

the rest reside in Class III. Table 3.3 shows that four variants in this analysis were tagging at 

least one class I classical HLA gene allele (at an r2 of at least 0.2) but the alleles were not 

directly associated with IPF susceptibility in this analysis.  
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Figure 3.1: qq plot of the test statistics of an association analysis of IPF susceptibility across the HLA 

region (6:28,477,797 – 6:33,448,354) in the UK dataset (λ=1.02). 

 

 

Figure 3.2: Manhattan plot of the HLA region for IPF susceptibility in the UK IPF dataset (the green 

variants are all the variants that passed the suggestive significance threshold). Blue line is suggestive 

significance threshold of P<5x10-3). 

29,000,000   30,000,000   31,000,000   32,000,000   33,000,000 
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Table 3.2: Independent signals (P<5x10-3) in a HLA-wide association analyses of IPF susceptibility in the UK IPF dataset. 

rsid Gene Position – 
build 37 
(HLA Class) 

Coded/ 
non-coded 
allele 

Imp qual Coded 
Allele Freq 

OR  
(95% CI) 

P-value 

rs112417354 HCG26 (-10382bp) / 
MICB (+11487bp) 

31450567 
(Class III) 

G/A 1.00 0.11 1.58  
(1.25-1.99) 

1.17x10-4 

rs9267812 PPT2 32128394 
(Class III) 

C/T 1.00 0.13 1.45  
(1.19-1.76) 

1.99x10-4 

rs9260570 HLA-A (-8477bp) / 
HCG4P4 (+849bp) 

29922138 
(Class I) 

G/A 0.58 0.03 2.76  
(1.56-4.89) 

4.74x10-4 

rs3132684 ZNRD1-AS1 29990708 
(Class I) 

A/G 1.00 0.32 1.29  
(1.11-1.50) 

7.97x10-4 

rs190452998 BAG6 31606528 
(Class III) 

G/A 0.50 0.02 3.66  
(1.67– 8.04) 

1.22x10-3 

rs41268902 TNXB 32071008 
(Class III) 

G/A 0.97 0.11 1.44  
(1.15-1.80)  

1.61x10-3 

rs2442752 HLA-S (-1500bp) /  
LOC101929072 
(+10302bp) 

31351764 
(Class III) 

T/C 1.00 0.42 1.28  
(1.09-1.50) 

2.52x10-3 

rs9278834 MUC22 30978884 
(Class I) 

T/A 1.00 0.16 1.32  
(1.09-1.58) 

3.74x10-3 

rs9263726 PSORS1C1/ PSORS1C2 31106499 
(Class I) 

G/A 1.00 0.14 1.34  
(1.10-1.63) 

4.12x10-3 

rs116612059 RPSAP2 28699440 
(Class I) 

C/T 0.95 0.01 2.27  
(1.30-3.93) 

4.17x10-3 

rs709053 HLA-B 31324077 
(Class I) 

C/G 1.00 0.38 1.27  
(1.08-1.50) 

4.38x10-3 

rs17179108 
  

HLA-G 29798642 
(Class I) 

T/C 0.97 0.09 1.39  
(1.11-1.75) 

4.72x10-3 
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Table 3.3: Table of HLA gene alleles correlated with independent variants in the association analyses of 

IPF in the UK IPF dataset. r2 <0.2 = not correlated, r2 = 0.2-0.5 weakly correlated, r2 = 0.5-0.8 = 

correlated, r2 >0.8 = strongly correlated. 

 

3.4.2 HLA-wide association of IPF susceptibility: replication in the Chicago and Colorado 

datasets: 

This analysis utilised the Chicago and the Colorado datasets and the HRC and HLA-specific 

imputation in an attempt to replicate the suggestive signals identified in the discovery 

analyses in the UK IPF dataset (Table 3.2). The two datasets were meta-analysed in order to 

increase power to replicate the suggestive novel findings.  

The twelve independent variants that reached a threshold of P<5x10-3 for association with IPF 

susceptibility in the UK data set were tested for replication for significance in IPF susceptibility 

in 2,015 IPF and fIIP cases and 5,193 controls (Chicago and Colorado datasets). All signals 

passed quality control in both studies this replication analysis apart from rs3132684 (Colorado, 

imputation quality = 0.31, MAF =0.009, Chicago, imputation quality = 0.37, MAF =0.008) (table 

3.2). None of the signals passed the Bonferroni corrected threshold for 12 variants for 

replication in this analysis (P<0.004) (table 3.4). The signals all have similar imputation quality 

and allele frequency across the UK, Colorado and Chicago datasets (Table 3.2 & 3.4). 

rs3132684 and rs9278834 have P<0.05 and similar effect sizes (to the UK dataset) in the 

Chicago dataset but was not significant in the Colorado dataset. Some of the variants in table 

3.4 have different direction of effects in the Chicago and Colorado datasets, the most extreme 

case is rs190452998 which has an odds ratio of 0.65 (0.41-1.00) in the Colorado dataset and 

2.40 (0.84-6.89) in the Chicago dataset. However, this signal has a low minor allele frequency 

and low imputation quality so this may account for the differences

Lead variant rsid  HLA Gene Allele r2 
rs2442752 HLA-B*08:01 0.24 

HLA-B*44 0.29 

rs9260570 HLA-A*29:02 0.50 

HLA-A*32:01 0.44 

rs9263726 HLA-C*05:01 0.29 
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Table 3.4: Replication results from a meta-analysis of the Colorado and Chicago datasets of the novel findings from the HLA-wide association analysis for IPF 

susceptibility in the UK IPF dataset. 

Dataset Rsid Position – 
build 37 
(HLA Class) 

Nearest Gene Coded/ 
non-coded 
allele 

Imputation 
Quality 

Coded 
allele 
frequency 

OR 
(95% CI) 

P-value Meta-analysis 
OR  
(95% CI) 

Meta-
analysis P-
Value 

Colorado rs112417354 31450567 
(Class III) 

HCG26 (-
10382bp) /  
MICB 
(+11487bp) 

G/A 1.00 0.10 0.88 
(0.76-1.01) 

0.07 0.91 
(0.80-1.04) 

0.17 

Chicago 0.99 0.08 1.12 
(0.80-1.56) 

0.51 

Colorado rs9267812 32128394 
(Class III) 

PPT2 C/T 0.99 0.14 0.94 
(0.84-1.06) 

0.33 0.96 
(0.86-1.08) 

0.51 

Chicago 0.92 0.14 1.09 
(0.82-1.44) 

0.55 

Colorado rs3132684 29990708 
(Class I) 

ZNRD1-AS1 A/G 1.00 0.33 1.02 
(0.93-1.06) 

0.73 1.06 
(0.98-1.41) 

0.15 

Chicago 1.00 0.34 1.34 
(1.09-1.63) 

4.7x10-3 

Colorado rs190452998 31606528 
(Class III) 

BAG6 G/A 0.47 0.02 0.65 
(0.41-1.00) 

0.05 0.79 
(0.52-0.97) 

0.25 

Chicago 0.41 0.02 2.40 
(0.84-6.89) 

0.10 

Colorado rs41268902 32071008 
(Class III) 

TNXB G/A 0.88 0.11 0.89 
(0.77-1.02) 

0.10 0.92 
(0.81-1.05) 

0.23 

Chicago 0.87 0.10 1.13 
(0.82-1.55) 

0.46 

Colorado rs2442752 31351764 
(Class III) 

HLA-S (-1500bp) 
/  
LOC101929072 
(+10302bp) 

T/C 1.00 0.40 0.98 
(0.90-1.06) 

0.59 0.98 
(0.91-1.06) 

0.69 

Chicago 0.99 0.39 1.02 
(0.85-1.24) 

0.81 

Colorado rs9278834 MUC22 T/A 1.00 0.16 0.94 0.32 0.99 0.88 
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30978884 
(Class I) 

(0.84-1.06) (0.89-1.10) 
Chicago 0.94 0.15 1.31 

(1.00-1.71) 
0.05 

Colorado rs9263726 31106499 
(Class I) 

PSORS1C1/ 
PSORS1C2 

G/A 1.00 0.13 0.92 
(0.81-1.04) 

0.16 0.93 
(0.83-1.04) 

0.22 

Chicago 0.94 0.13 1.02 
(0.77-1.36) 

0.89 

Colorado rs116612059 28699440 
(Class I) 

RPSAP2 C/T 0.93 0.01 1.00 
(0.66-1.50) 

0.98 0.88 
(0.60-1.28) 

0.50 

Chicago 0.90 0.01 0.45 
(0.17-1.12) 

0.10 

Colorado rs709053 31324077 
(Class I) 

HLA-B C/G 0.99 0.36 0.98 
(0.90-1.07) 

0.64 0.97 
(0.90-1.05) 

0.48 

Chicago 0.99 0.37 0.94 
(0.77-1.14) 

0.51 

Colorado rs17179108 29798642 
(Class I) 

HLA-G T/C 0.96 0.10 1.04 
(0.90-1.20) 

0.57 1.02 
(0.89-1.16) 

0.78 

Chicago 0.96 0.10 0.91 
(0.66-1.25) 

0.55 
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3.4.3 Summary: 

In this analysis I performed a discovery and replication association analysis in the HLA region in 

the UK, Chicago and Colorado datasets for IPF susceptibility. No signals passed the Bonferroni 

corrected threshold of 2.8x10-6 in the discovery dataset but 12 novel signals passed a 

suggestive significance threshold of 5x10-3. None of the novel signals identified in the IPF 

susceptibility discovery analysis in the UK dataset were replicated in a meta-analysis of the 

Chicago and Colorado datasets. Out of the 11 signals that passed quality control in this 

analyses, none passed P<0.004 (table 3.2). Rs3132684 and rs9278834 were nominally 

significant in the Chicago dataset, and this dataset has a stricter case control criteria (along 

with the UK dataset) and therefore these could be of interest. These results were all 

suggestive and must be treated with caution until they can be confirmed. An increased sample 

size for the discovery dataset would improve power and the ability to identify novel signals. 

The next section of this chapter, a HLA-wide association meta-analysis of IPF susceptibility was 

performed using the UK, Colorado and Chicago datasets.  

 

3.5 Results: HLA-wide association meta-analyses of IPF susceptibility in UK, 

Colorado and Chicago datasets: 

In this analysis the HLA-wide association analysis results from the UK, Chicago and Colorado 

datasets were meta-analysed to study the HLA region in the largest HLA-wide association 

analysis to date of the HLA region in IPF susceptibility. This will maximise the power to detect 

novel signals in the region.  

2,769 IPF and fIIP cases and 8,591 controls with 35,043 variants from the UK dataset (figure 

3.2), 33,323 variants from the Chicago dataset (supplementary figure 3.1) and 34,905 variants 

from the Colorado dataset (supplementary figure 3.2) were included in the meta-analysis of 

IPF susceptibility in the HLA region (figure 3.7). 33,979 variants (88%) were found in all three 

studies so when the datasets were merged, 37,212 SNPs 424 HLA alleles and 1,276 amino acid 

changes were included in this meta-analysis. 10,447 variants had an allele frequency of less 

than 5% (figure 3.3). The average imputation quality in this meta-analysis was 0.97 (0.97 for 

SNPs and 0.99 for HLA alleles and amino acids) and 87% of variants had an imputation quality 

of over 0.98 (figure 3.4). There was no inflation of the test statistic in any of the datasets (UK, 

λ=1.02 [figure 3.1], Colorado, λ=1.08 [figure 3.5], Chicago, λ=1.04 [figure 3.6]). 
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Figure 3.3: Histogram of average allele frequencies < 5% of variants in the meta-analysis of the HLA 

region in IPF susceptibility in the UK, Colorado and Chicago datasets. 

 

 

 

Figure 3.4: Histogram of average imputation qualities of variants in the meta-analysis of the HLA 

region in IPF susceptibility in the UK, Colorado and Chicago datasets. 
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Figure 3.5: qq plot of the test statistics of an association analysis of IPF susceptibility across 

chromosome 6 in the Colorado dataset (λ=1.08). 

 

Figure 3.6: qq plot of the test statistics of an association analysis of IPF susceptibility across the HLA 

region (6:28,477,797 – 6:33,448,354) in the Chicago dataset (λ=1.04). 
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Of the variants that were present in all studies (figure 3.5), three independent signals passed 

the Bonferroni corrected threshold of P<2.8x10-6 (table 3.5, supplementary figures 17, 18 and 

19). In order for signals to be deemed as significant in this meta-analysis, the signals were also 

required to pass a threshold of P<0.05 in each dataset and be in the same direction of effect. 

Although these three variants had the same direction of effect in each dataset, they did not 

pass P<0.05 in each dataset independently (table 3.5). The three signals that passed P<2.8x10-6 

(rs7754402, rs3135350 and HLA-DQB1*06:02) were all completely driven by the Colorado 

dataset, which was also the largest of the three (table 3.5).  

When considering all variants that were analysed across the HLA region, there were no 

variants that passed P<0.05 in all three studies (figure 3.8) but there were 18 independent 

variants that passed P<0.05 in two studies and had a meta-P<5x10-3 (table 3.6). rs3132684 

(identified in discovery and replication, section 3.5) was also identified here with a P-value of 

4x10-3 (table 3.6, supplementary figure 38). Two signals identified in the UK and Chicago 

datasets were missense coding sequence variants (rs1042337 in HLA-DMB and rs17207895 in 

TNXB, supplementary figures 31 and 35 respectively) (table 3.6). rs115478552 and rs3132684 

were nominally significant (P<0.05) in the UK and the Chicago datasets (supplementary figures 

37 and 38 respectively).  
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Figure 3.7: Manhattan plot of the meta-analysis in HLA region for IPF susceptibility in the UK, 

Colorado and Chicago IPF datasets (the green variants are all the variants that passed the 

Bonferroni corrected significance threshold). Blue line is Bonferroni corrected significance 

threshold of P<2.8x10-6). 
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Figure 3.8: Number of variants with P<0.05 in each dataset in the meta-analysis of IPF susceptibility in 

the UK, Chicago and Colorado datasets. 
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Table 3.5: Independent signals (P<2.8x10-6) in a HLA-wide meta-analyses of IPF susceptibility in the UK, Colorado and Chicago IPF datasets. 

Dataset Rsid Position – 
build 37 
(HLA 
Class) 

Nearest 
Gene 

Coded/
non-
coded 
allele 

Imputatio
n quality 

Coded allele 
frequency 

OR 
(95% CI) 

P-value Meta-
analysis OR 
(95% CI) 

Meta-
analysis 
P-value 

UK rs7754402 29328834 
(Class I) 

OR5V1 C/T 1.00 0.36 0.90 
(0.78-1.05) 

0.20 0.84 
(0.78-0.90) 

1.10x10-6 

Colorado 1.00 0.33 0.81  
(0.75-0.89) 

5.34x10-6 

Chicago 1.00 0.33 0.85 
(0.69-1.03) 

0.10 

UK rs3135350 32392981 
(Class III) 

Intergenic 
(BTNL2 -
18081, HLA-
DRA 
+14638) 

C/T 1.00 0.15 0.93 
(0.76-1.15) 

0.52 0.79 
(0.71-0.84) 

1.83x10-6 

Colorado 1.00 0.13 0.72 
(0.64-0.81) 

1.89x10-7 

Chicago 1.00 0.14 0.89 
(0.68-1.16) 

0.39 

UK  HLA-
DQB1*06:02 

32634302 
(Class II) 

HLA-DQB1 P/A 0.99 0.15 0.90 
(0.73-1.10) 

0.29 0.79 
(0.75-0.82) 
 

2.15x10-6 

Colorado 0.98 0.13 0.72 
(0.64-0.82) 

4.20x10-7 

Chicago 0.99 0.14 0.92 
(0.70-1.22) 

0.57 
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Table 3.6: Independent signals (P<2.8x10-6) in a HLA-wide meta-analyses of IPF susceptibility in the UK, Colorado and Chicago IPF datasets. 

Dataset Rsid Position – 
build 37 
(HLA 
Class) 

Nearest 
Gene 

Coded/ 
non-coded 
allele 

Imputation 
quality 

Coded 
allele 
frequency 

OR 
(95% CI) 

P-value Meta-
analysis OR 
(95% CI) 

Meta-
analysis 
P-value 

UK rs9265912 
 

31313733 
(Class I) 

WASF5P 
(-56792), 
HLA-B 
(+7916) 

T/C 1.00 0.39 0.98 
(0.83-1.17) 

0.86 0.85 
(0.79-0.92) 

1.81x10-5 

Colorado 0.98 0.35 0.83 
(0.76-0.91) 

3.28x10-5 

Chicago 0.95 0.35 0.80 
(0.67-0.99) 

0.04 

UK rs1233385 29559238 
(Class I) 

OR2H2  T/C 1.00 0.12 1.40 
(1.03-1.89) 

0.03 1.28 
(1.14-1.44) 

4.59x10-5 

Colorado 0.99 0.10 1.30 
(1.13-1.50) 

3.65x10-4 

Chicago 0.99 0.11 1.11 
(0.83-1.49) 

0.49 

UK  rs2071627 32809223 
(Class II) 

PSMB8  C/A 1.00 0.42 0.96 
(0.84-1.10) 

0.60 0.87 
(0.82-0.93) 

8.18x10-5 

Colorado 1.00 0.42 0.86 
(0.79-0.94) 

4.86x10-4 

Chicago 0.99 0.40 0.77 
(0.64-0.93) 

0.01 

UK  rs241436 32797876 
(Class II) 

TAP2 A/G 1.00 0.44 0.87 
(0.76-0.99 

0.04 0.89 
(0.83-0.95) 

4.73x10-4 

Colorado 1.00 0.46 0.90 
(0.82-0.98) 

0.01 

Chicago 0.96 0.49 0.88 
(0.73-1.06) 

0.19 

UK  rs6457256 30661007 
(Class I) 

NRM  T/C 1.00 0.02 0.61 
(0.39-0.94) 

0.02 0.69 
(0.56-0.85) 

5.45x10-4 

Colorado 0.99 0.03 0.75 0.03 
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(0.58-0.97) 
Chicago 0.99 0.03 0.61 

(0.35-1.07) 
0.08 

UK  rs2734945 29855945 
(Class I) 

HLA-H  A/G 1.00 0.32 1.21 
(1.02-1.44) 

0.03 1.14 
(1.06-1.23) 

5.53x10-4 

Colorado 0.94 0.31 1.12 
(1.02-1.23) 

0.01 

Chicago 0.92 0.33 1.14 
(0.93-1.40) 

0.20 

UK  rs9468541 29487535 
(Class I) 

RPS17P1 
(-30065), 
LINC0101
5 (+9648) 

G/A 1.00 0.07 0.72 
(0.56-0.92) 

8.58x10-3 0.81 
(0.72-0.92) 

8.48x10-4 

Colorado 0.99 0.08 0.81 
(0.69-0.95) 

0.01 

Chicago 0.99 0.08 0.99 
(0.72-1.38) 

0.97 

UK  rs504653 31840766 
(Class III) 

SLC44A4  A/G 0.99 0.35 1.04 
(0.90-1.20) 

0.61 0.89 
(0.83-0.95) 

8.76x10-4 

Colorado 0.98 0.39 0.86 
(0.79-0.93) 

4.95x10-4 

Chicago 0.96 0.39 0.81 
(0.67-0.98) 

0.03 

UK  rs2621331 
 

32780470 
(Class II) 

HLA-DOA  C/T 1.00 0.40 0.90 
(0.78-1.03) 

0.12 0.89 
(0.83-0.98) 

1.32x10-3 

Colorado 1.00 0.37 0.91 
(0.84-0.99) 

0.03 

Chicago 1.00 0.35 0.80 
(0.66-0.98) 

0.03 

UK  rs1042337 32904980 
(Class II) 

HLA-DMB  C/T 0.98 0.26 0.92 
(0.80-1.07) 

0.29 0.88 
(0.82-0.95) 

1.48x10-3 

Colorado 0.98 0.24 0.90 
(0.81-0.99) 

0.03 

Chicago 0.92 0.21 0.71 3.93x10-3 
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(0.56-0.90) 
UK  rs75561043 31414959 

(Class III) 
LINC0114
9  

T/G 1.00 0.09 1.03 
(0.82-1.30) 

0.79 0.84 
(0.76-0.94) 

1.61x10-3 

Colorado 1.00 0.11 0.82 
(0.72-0.94) 

3.29x10-3 

Chicago 1.00 0.11 0.70 
(0.52-0.93) 

0.01 

UK  rs28752951 31304674 
(Class I) 

WASF5P 
(-47733), 
HLA-B 
(+16975) 

A/G 0.96 0.05 1.13 
(0.76-1.69) 

0.54 1.42 
(1.14-1.77) 

1.97x10-3 

Colorado 0.95 0.03 1.49 
(1.12-1.98) 

6.40x10-3 

Chicago 0.62 0.03 2.11 
(1.04-4.29) 

0.04 

UK  AA_B_97_3
1432180_R 

31324201 
(Class I) 

HLA-B P/A 0.99 0.47 0.86 
(0.74-1.00) 

0.05 1.11 
(1.04-1.19) 

2.79x10-3 

Colorado 0.99 0.49 1.20 
(1.12-1.31) 

1.51x10-5 

Chicago 0.98 0.48 1.10 
(0.91-1.32) 

0.31 

UK  rs17207895 32020512 
(Class III) 

TNXB  T/C 0.92 0.01 0.90 
(0.51-1.59) 

0.73 0.69 
(0.54-0.88) 

3.32x10-3 

Colorado 0.89 0.02 0.71 
(0.53-0.96) 

0.03 

Chicago 0.87 0.02 0.38 
(0.18-0.76) 

6.85x10-3 

UK  rs2293751 31907837 
(Class III) 

C2 G/A 1.00 0.44 1.16 
(1.00-1.35) 

0.05 0.90 
(0.84-0.97) 

3.91x10-3 

Colorado 1.00 0.49 0.83 
(0.77-0.91) 

2.03x10-5 

Chicago 0.98 0.47 0.92 
(0.77-1.11) 

0.39 

UK  30669762 MDC1 G/A 0.99 0.01 0.56 0.05 0.66 3.94x10-3 
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rs11547855
2 

(Class I) (0.31-1.00) (0.50-0.88) 
Colorado 0.97 0.01 0.76 

(0.53-1.01) 
0.13 

Chicago 0.97 0.02 0.47 
(0.22-0.99) 

0.048 

UK  rs3132684 
 

29990708 
(Class I) 

ZNRD1AS
P  

A/G 1.00 0.32 1.29 
(1.11-1.50) 

7.97x10-4 1.11 
(1.04-1.19) 

4.00x10-3 

Colorado 1.00 0.33 1.02 
(0.93-1.12) 

0.73 

Chicago 1.00 0.34 1.34 
(1.10-1.63) 

4.71x10-3 

UK  rs11244 32780724 
(Class II) 

HLA-DOB  G/A 1.00 0.26 0.92 
(0.79-1.08) 

0.30 0.90 
(0.83-0.97) 

4.25x10-3 

Colorado 1.00 0.27 0.91 
(0.83-1.00) 

0.05 

Chicago 1.00 0.28 0.80 
(0.65-0.98) 

0.04 
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3.5.1 Replication analysis of the HLA-DQB1*06:02 signal in the UK and Chicago datasets 

HLA-DQB1*06:02 (table 3.7, supplementary figure 3.7) was previously found to be associated 

with idiopathic interstitial pneumonia (IIP) susceptibility in an analysis of the Colorado dataset 

in 2016 (5). In the replication analysis, the variant was in the same direction of effect in the UK 

and Chicago datasets (but the confidence intervals were wide and crossed one), however the 

signal did not pass the replication threshold of 0.05 (P=0.23). Power calculations were 

undertaken, and it was determined that there was sufficient power to replicate the HLA-

DQB1*06:02 signal in this replication analysis (100% power for analysis in 1,112 cases, odds 

ratio of 0.72 and allele frequency of 0.15).  

 

Table 3.7: Replication results from a meta-analysis of the UK and Chicago datasets of the HLA-

DQB1*06:02 signal 

Dataset Variant ID Position 
– build 
37 
(HLA 
class) 

Imputation 
quality 

Allele 
frequency 

Odds 
ratio 
(95% 
CI) 

P-
value 

Meta 
Odds 
ratio 
(95% 
CI) 

Meta 
P-
value 

UK HLA-
DQB1*06:02 

32631061 
(Class II) 
 
 

0.99 0.14 0.90 
(0.73-
1.10) 

0.29 0.91 
(0.77-
1.10) 

0.23 

Chicago 0.99 0.15 0.92 
(0.70-
1.22) 

0.57 

 

Summary 

Although three signals passed the Bonferroni corrected threshold in this HLA-wide association 

meta-analysis of IPF susceptibility, none of these signals passed a nominal significance 

threshold in each separate data set (P<0.05). The HLA-DQB1*06:02 signal previously identified 

in the Colorado dataset (5) did not replicate in the UK or the Chicago datasets, suggesting that 

this signal may be specific to the Colorado dataset (table 3.7). There were two signals 

(rs115478552 and rs3132684) which were nominally significant (P<0.05) in both the UK and 

the Chicago datasets, this could be of interest as these datasets had a stricter case inclusion 

criteria (only IPF) whereas the Colorado dataset included a wider range of interstitial 

pneumonias.   
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3.6 HLA-wide association meta-analysis of IPF susceptibility in the UK, Chicago 

and UUS datasets: 

I have been identifying differences when comparing the cases of the Colorado dataset and the 

cases in the UK and Chicago datasets. Because of this I excluded the Colorado dataset from the 

meta-analysis and replace it with a new IPF dataset; the UUS dataset (see Chapter 2, section 

2.1.4). Removing the Colorado dataset and replacing it with the UUS dataset will increase my 

power to detect signals associated with IPF as some of the heterogeneity has been removed.  

1,905 IPF cases and 13,876 controls with 35,043 variants from the UK dataset (figure 3.2), 

33,323 variants from the Chicago dataset (supplementary figure 3.1) and 36,965 variants from 

the UUS dataset (supplementary figure 3.8) were included in the meta-analysis of IPF 

susceptibility in the HLA region (figure 3.8). 88% of variants were shared between studies and 

so 39,570 variants were studied in this meta-analysis. 8,449 variants in this analysis had an 

allele frequency of less than 5% (figure 3.9). The average imputation quality in this analysis 

was 0.99 (0.99 For SNPs, 0.97 for HLA alleles and 0.99 for amino acid changes) and 86% of 

variants had an imputation quality of more than 0.98 (figure 3.10). There was slight inflation of 

the test statistic in the UUS dataset across chromosome 6 (UUS, λ=1.17 [figure 3.11]), this 

could be due to increased power with the increased sample size. There was no inflation of the 

test statistic in any the other datasets (UK, λ=1.02 [figure 3.1] and Chicago, λ=1.04 [figure 

3.6]). 

One signal passed the Bonferroni corrected significance threshold of 2.8x10-6 (Table 3.8, figure 

3.8, supplementary figure 3.9). Rs3132684 was well imputed and had a high coded allele 

frequency (>30%) across all three datasets (Table 3.8). Rs3132684 is found in HLA Class I in an 

intron of the gene ZNRD1ASP (supplementary figure 3.9). This signal was in the same direction 

of effect and had P<0.05 in all three studies. In the analysis of the UK and Chicago datasets, 

the HLA-DQB1*06:02 signal did not replicate in this meta-analysis (P=0.57, Table 3.9). 
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Figure 3.8: Manhattan plot of the meta-analysis in HLA region for IPF susceptibility in the UK, UUS and 

Chicago IPF datasets (the green variants are all the variants that passed the Bonferroni corrected 

significance threshold). Blue line is Bonferroni corrected significance threshold of P<2.8x10-6). 
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Figure 3.9: Histogram of average allele frequencies < 5% of variants in the meta-analysis of the HLA 

region in IPF susceptibility in the UK, UUS and Chicago datasets. 

 

 

 

Figure 3.10: Histogram of average imputation qualities of variants in the meta-analysis of the HLA 

region in IPF susceptibility in the UK, UUS and Chicago datasets. 
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Figure 3.10: qq plot of the test statistics of an association analysis of IPF susceptibility across 

chromosome 6 in the UUS dataset (λ=1.17). 
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Table 3.8: Independent signals (P<2.8x10-6) in a HLA-wide meta-analyses of IPF susceptibility in the UK, UUS and Chicago IPF datasets. 

 

 

Table 3.9: Results of the replication analysis of HLA-DQB1*06:02 in the UK, UUS and Chicago datasets. 

Dataset rsid Position – 
build 37  
(HLA 
class) 

Nearest 
gene 

Coded/non-
coded allele 

Info 
score 

Coded 
allele 
frequency 

P-value OR 
(95% CI) 

Meta-
analysis  
P-value 

Meta-analysis 
OR 
(95% CI) 

UK rs3132684 29990708 
(Class I) 

ZNRD1ASP A/G 1.00 0.32 7.97x10-4 1.29 
(1.11-1.50) 

2.41x10-7 1.24 
(1.14-1.35) 

UUS 1.00 0.32 2.86x10-3 1.19 
(1.02-1.32) 

Chicago 1.00 0.34 4.71x10-3 1.34 
(1.15-1.63) 

Dataset rsid Position – 
build 37  
(HLA 
class) 

Nearest 
gene 

Coded/non-
coded allele 

Info 
score 

Coded 
allele 
frequency 

P-value OR 
(95% CI) 

Meta-
analysis  
P-value 

Meta-analysis 
OR 
(95% CI) 

UK HLA-
DQB1*06:02 

32631061 
(Class II) 

HLA-DQB1 P/A 0.99 0.15 0.29 0.90  
(0.73-1.10) 

0.57 0.97 (0.87-1.08) 

UUS 0.99 0.12 0.75 1.02  
(0.88-1.21) 

Chicago 0.99 0.14 0.57 0.92  
(0.70-1.22) 
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Rs3132684 is a common SNP (frequency of 32-34% in the datasets) and is in an intron of the 

gene ZNRD1ASP in HLA class II (supplementary figure 3.9). Because this signal did not map to a 

particular HLA gene allele or amino acid allele statistical fine mapping was undertaken to 

produce a set of SNPs in which we were 95% confident the causal SNP is located (under the 

assumption that the causal SNP was tested in the data), for rs3132684 the credible set 

contained 190 SNPs. Of those 190 SNPs, rs3132684 was the most likely causal variant (55%) 

and there were four coding sequence variants (two synonymous and two missense [rs2074479 

in RNF39 and rs2301753 in PPP1R11] variants). Rs3132684 and SNPs in the 95% credible set 

were tested for association with respiratory, inflammatory, immunity and autoimmune 

phenotypes using phenoscanner (REF), the SNPs were found to be associated with many of 

these phenotypes including peak expiratory flow, eosinophil counts, IgA deficiency, 

Rheumatoid Arthritis and white blood cell counts (supplementary table 2). There were eQTL 

SNPs (from the credible set) across 24 genes in GTEx (Table 3.10) including eight HLA genes. 

Two eQTL SNPs (rs2256919 [HLA-H] and rs2256919 [HLA-W]) were in low-moderate linkage 

disequilibrium with the lead association SNP which is suggestive of colocalization between the 

signals (the association signal is the same signal affecting the gene expression).  

 

Table 3.10: Table of the linkage disequilibrium (LD) between the lead SNP from the HLA-wide association 

meta-analysis of IPF susceptibility and the eQTL signal in the lung (from GTEx). R2>0.2=minimal LD, 

R2=0.2-0.5=low LD, R2=0.5-0.8= moderate LD, R2>0.8= high LD. 

Lead SNP eQTL SNP Gene R2 

rs3132684 rs28698309 HCG4 0.08 

rs10947050 HCG4B 0.18 

rs1048412 HCGP3 0.24 

rs3823374 HCGP5 0.18 

rs2245952 HCGP7 0.06 

rs10947051 HCG9 0.21 

rs2245952 HLA-A 0.06 

rs28698309 HLA-G 0.08 

rs2256919 HLA-H 0.49 

rs10947050 HLA-J 0.18 

rs1048412 HLA-K 0.24 

rs2735076 HLA-U 0.37 

rs1048412 HLA-V 0.24 

rs2256919 HLA-W 0.49 

rs1048412 IFITM4P 0.24 

rs10947050 MICD 0.18 

rs28698309 MICE 0.08 

rs10947050 RNF39 0.18 
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rs1048412 RPL23AP1 0.24 

rs10947050 TRIM31 0.18 

rs10947050 XXBAC-
BPG170G13.32 

0.18 

rs1048412 ZFP57 0.24 

rs1048412 ZNRD1 0.24 

rs10947051 ZNRD1_AS1 0.21 

 

 

Figure 3.11: Comparison of -log10 p-values from the meta-analysis of IPF susceptibility and the -log10 

p-values from lung tissue in GTEx. 

 

 

3.7 Amino acid joint regression meta-analysis of IPF susceptibility in the UK, UUS 

and Chicago dataset 

An amino acid joint regression meta-analysis was undertaken in the UK, UUS and Chicago 

datasets to identify further associations with IPF susceptibility. Both sets of amino acids were 

tested in order to identify the effect of collinearity on the results (set one was all remaining 

amino acids after quality control and set two was a subset of the quality controlled amino 

acids with the most frequent amino acid allele at each position removed (as described above)). 

The results of the joint regression analyses from the UK, UUS and Chicago datasets were 

merged using a fixed-effects meta-analysis.  
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In total, 604 amino acid alleles across 338 sites were tested for association with IPF 

susceptibility in set one of the 3-way meta-analysis in 1,905 cases and 13,876 controls and 441 

amino acids across 238 sites were tested in set two (Table 3.11). Bonferroni corrected 

significance thresholds for these analyses were 1.5x10-4 and 2.1x10-4 for set one and set two 

respectively. The lambdas of the analysis of the two amino acid sets in the 3-way meta-

analyses were under one indicating no inflation of the test statistics due to low power (figure 

3.15). Amino acid tyrosine (Y) at position 9 in HLA-A (NM_002116:p.[Phe_9_Tyr]) was most 

significantly associated with IPF susceptibility in the 3-way meta-analysis of set one, however it 

was not nominally significant (P<0.05) in the UUS or Chicago datasets (Table 3.12, figure 

3.14a). This amino acid was less significantly associated with IPF susceptibility in the 3-way 

meta-analysis of set two (frequency filtered) (P=0.05). NM_002116:p.[Phe_9_Tyr] had a 

frequency of around 15% and was well imputed across all three datasets (Chicago-17% 

[quality=0.98], UK-15% [quality=0.99], UUS-15% [quality=0.99]). NM_002116:p.[167_Trp]was 

most significantly associated with IPF susceptibility in the 3-way meta-analysis of set two (with 

the most common allele at each loci removed from the quality controlled dataset) (table 3.12, 

figure 3.14b). The p-value of this amino acid was less significant in the analysis of set one 

(P=0.2), this could be suggestive of collinearity at this locus in the analysis. 

NM_002116:p.[Phe_9_Tyr] was found in hundreds of HLA-A alleles including, including HLA-

A*01:43, A*02:05:01, A*02:06, A*03:12, A*11:01-A*11:198, A*25:01 and A*06:01. 

Tryptophan (W) at position 167 in HLA-B is the “wild type” amino acid and is found in most of 

the HLA-B alleles, however the amino acid was in high linkage disequilibrium (LD) with 

AA_B_167_S which was found across HLA-B*44.  

 

Table 3.9: Number of amino acid alleles and sites with more than two or three alleles in set one and set 

two of the meta-analysis. 

HLA 
Gene 

Set one Set two 
Number of 
amino acid 
alleles 

Number of 
amino acid 
sites with > 
2 alleles 

Number 
of amino 
acid sites 
with > 3 
alleles 

Number of 
amino acid 
alleles 

Number 
of amino 
acid sites 
with > 2 
alleles 

Number of 
amino acid 
sites with > 3 
alleles 

A 85 32 14 61 24 9 

B 97 33 18 88 31 15 

C 98 39 15 71 28 7 

DPA1 8 4 0 0 0 0 

DPB1 36 12 12 24 12 0 

DQA1 27 9 8 23 9 4 
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DQB1 131 39 38 92 38 19 

DRB1 122 39 27 82 29 13 
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Figure 3.12: Manhattan plots of both joint regression meta-analyses of amino acids in the UK, UUS and Chicago datasets across the HLA region (set one [all amino 

acids with frequency > 1%] on the left and set two [with both rare amino acids and most common at each loci removed] on the right). Clustering of variZNRDants is 

due to only within gene variation being tested in this analysis.  
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Table 3.10: The top two amino acid results of the analysis of set one (full amino acid set) and set two (frequency filtered set) in the meta-analysis of the UK, UUS and 

Chicago datasets. 

HLA Gene HLA amino acid variant p-value OR 
(95% CI) 

Meta  
p-value 

Meta OR 
(95% CI) 

Chic UK UUS Chic UK UUS 
Set one 

HLA-A NM_002116:p.[Phe_9_Tyr] 0.20 0.0057 0.27 0.85  
(0.65-1.09) 

0.75  
(0.61-0.92) 

0.58  
(0.23-1.51) 

0.0019 0.78  
(0.66-0.91) 

Set two 

HLA-B NM_002116:p.[167_Trp] 0.28 0.0040 NA 1.16 
(0.88-1.53) 

1.33  
(1.10-1.62) 

NA 0.0030 1.23  
(1.09-1.49) 
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Figure 3.13: qq plots of the p-values from the joint regression meta-analysis of IPF susceptibility in the UK, UUS and Chicago datasets (A λ= 0.75, B λ= 0.86). 
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In the two joint regression meta-analyses of IPF susceptibility in the UK, UUS and Chicago 

datasets (set one and set two), the p-values (figure 3.16) and effect sizes (figure 3.17) were 

comparable. There was some spread around the least significant p-values (0-1 -log10 p-values 

in figure 3.16) and there was a suggestion of some attenuation to the null of variants in set 

one and in set two, this could be due to changes in power between the analyses.   

 

 

Figure 3.14: Comparison of the p-values from the HLA amino acid joint regression meta-analysis of IPF 

susceptibility in the UK, UUS and Chicago datasets in set one (X axis) and set two (Y axis). 
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Figure 3.15: Comparison of the betas from the HLA amino acid joint regression meta-analysis of IPF 

susceptibility in the UK, UUS and Chicago datasets in set one (X axis) and set two (Y axis). 

 

When comparing the -log10 p-values of the 3-way single-variant logistic regression meta-

analysis (section 3.6) and the 3-way joint regression meta-analysis there was an attenuation to 

the null in the joint regression of both set one and set two (figure 3.18 A and B). There was a 

similar pattern with the effect sizes (figure 3.19 A and B). This could be due to a reduction in 

power in the joint regression analysis.  
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Figure 3.16: Comparison of p-values from the joint regression of amino acids from the three-way meta-

analysis of IPF susceptibility in set one (full amino acid set) and set two (with both rare amino acids and 

most common at each loci removed) and the logistic regression in the UK, UUS and Chicago datasets. 
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Figure 3.17: Comparison of betas from the joint regression of amino acids from the three-way 

meta-analysis of IPF susceptibility in set one (full amino acid set) and set two (with both rare amino 

acids and most common at each loci removed) and the logistic regression in the UK, UUS and 

Chicago datasets. 
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3.7 Discussion: 

The aim of this chapter was to replicate the previously identified HLA-DQB1*06:02 and to 

identify novel signals in the HLA region in IPF susceptibility. In this chapter the HLA region was 

analysed in the largest IPF study to date. Both HLA specific imputation and the most up to date 

SNP imputation was used to provide a high coverage of SNPs in the region and enabled fine 

mapping of signals to specific HLA gene alleles or amino acid alleles. The previously identified 

HLA-DQB1*06:02 signal did not replicate in an analysis of the UK and Chicago datasets despite 

there being adequate power to detect the previously reported effect size in the UK dataset 

(98% power) and in the meta-analysis of the UK and Chicago datasets (100% power) (see 

section 3.5.1). The signal was replicated by Fingerlin et al 2016 in an independent set of cases 

and controls (5), however this was a similar group of fibrotic idiopathic interstitial 

pneumonias. IPF was diagnosed in all three studies using the American Thoracic Society and 

European Respiratory Society guidelines (195-197) however in the Colorado dataset there 

were also individuals diagnosed with non-specific pneumonia, cryptogenic organising 

pneumonia, respiratory bronchiolitis-associated interstitial lung disease and desquamative 

interstitial pneumonia and also those with unclassified interstitial pneumonia (4). In all, these 

alternative interstitial pneumonias make up 23% of the cases included in this dataset, it is 

possible that one of these groups is responsible for the HLA-DQB1*06:02 signal because this is 

not seen when restricting to IPF. It is possible that the fIIP cases included some lung disease 

related to an auto-immune phenotype for example Rheumatoid Arthritis association 

interstitial lung disease (RA-ILD) in which HLA-DRB1 and HLA-DQB1 haplotypes and alleles 

(including HLA-DQB1*06:02) have previously been associated. (198, 199).  

Given the differences in case definition in the Colorado dataset, compared to the other 

datasets, it was removed from the meta-analysis. In the IPF meta-analysis of the UK, Chicago 

and UUS, one signal in the HLA region passed the Bonferroni corrected threshold of P<2.8x10-

6. rs3132684 was a common variant in an intron of ZNRD1ASP. The variant (and variants in the 

95% credible set) were associated with several respiratory, autoimmune, and inflammatory 

traits in Phenoscanner and it was associated with the differential expression of several HLA 

and non-HLA genes in tissues in GTEx. SNPs in the credible set were associated with the 

differential expression of several HLA and non-HLA genes in the lung, in most cases the eQTL 

SNP was only in weak linkage disequilibrium with the lead SNP from the association meta-

analysis, there was suggestive evidence for colocalization with the eQTL SNPs in HLA-H and 

HLA-W however these are pseudogenes and identifying their role in disease processes would 

be challenging. Utilising the newly available UUS dataset instead of the Colorado dataset led to 
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identification of a new IPF susceptibility signal. More stringent quality control measures 

(higher allele frequency and imputation quality thresholds) could have been applied, however 

there would be limited power to detect rare signals in these analyses. All available datasets 

were including in the meta-analysis (to maximise power) however this meant that there was 

no data available for an independent replication stage. To partly address this, internal 

association P-value thresholds were applied to each dataset to ensure signals were not driven 

by one dataset. 

To test the effect of all amino acids at each position simultaneously, a joint regression model 

was used. No amino acids passed the Bonferroni corrected significance threshold in the 3-way 

meta-analysis of set one or set two. Figure 3.18 A and B showed that the results from 

analysing these data using joint regression (section 3.7) and the logistic regression (section 

3.6) were loosely similar however there appeared to be an attenuation to the null in the joint 

regression, suggesting there was power limitation. In the analysis of set two, the most 

frequent amino acids at each loci (with more than three alleles) were removed, however this 

significantly reduced the number of amino acid alleles that were analysed (441 in the meta-

analysis) and HLA-DPA1 was completely removed. There was an underinflation of the test 

statistic in the 3-way meta-analyses of set one and set two, this suggested that the amino 

acids were less associated with IPF susceptibility than what would be expected, this could be 

due to power since joint regression analyses have lower power than logistic regression 

analyses.  

The aims of this chapter were to replicate the previously identified HLA-DQB1*06:02 signal 

and identify novel signals across the region. In summary, there were two main findings in this 

chapter, the HLA-DQB1*06:02 signal did not replicate in any of the three available datasets, 

suggesting this signal may provide evidence for a role of HLA variation in fIIP but not IPF. 

Secondly, a common signal near ZNRD1ASP was consistently statistically significant across all 

three datasets in the meta-analysis, the credible set of this signal provided possible 

associations with respiratory, inflammatory and autoimmune disorders as well as acting as 

eQTLs in lung tissue. Suggesting that there may be a role for non-HLA genes in the HLA region 

in IPF susceptibility. ZNRD1ASP is a transcribed pseudogene, however little is known about the 

protein’s specific function. Analysing amino acid alleles in the HLA region in IPF using a joint 

regression model provided no further insight into the role of HLA amino acids on IPF 

susceptibility and suggests that they are not associated with IPF susceptibility at an 

appreciable level in the UK, UUS and Chicago cohorts.  
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Chapter 4: SNP-SNP interaction analyses of variants in the HLA 

region and the MUC5B risk allele in IPF susceptibility 

4.1 Introduction: 

The most well characterised SNP association with IPF susceptibility is rs35705950 in the 

promoter region of the mucin gene MUC5B (2-4, 49, 200-202). MUC5B is the largest genetic 

risk factor for IPF with the MUC5B risk allele found in 30-35% of IPF cases and 11% of controls 

and each copy of the risk allele is associated with a 5-fold increase in odds of IPF (56). A recent 

study suggests 5.9-9.4% of IPF risk is explained by the MUC5B risk SNP (203).  Despite the 

effect size of this SNP, not all individuals who carry the risk allele go on to develop IPF and not 

everyone with IPF has the MUC5B risk allele. Research in mouse models suggests that excess 

mucin will retain bacteria and cells in the lungs for an extended period of time, promoting the 

abnormal healing response associated with IPF (58). If carrying one or more MUC5B risk allele 

leads to increased mucin which in turn increases risk of IPF, we may hypothesise that those 

who don’t carry MUC5B risk alleles might have alternative genetic risk factors that increase 

their risk of developing IPF. Alternatively, those who do carry one or more MUC5B risk alleles 

may have additional genetic risk factors contributing to their overall IPF risk. Standard 

association studies may not be able to detect these effects, therefore SNP*MUC5B interaction 

analyses are needed.  

The aim of this chapter was to identify whether the contribution of HLA variation to IPF risk is 

dependent on MUC5B risk allele status. This chapter describes a discovery HLA-wide 

variant*MUC5B interaction analysis in 612 IPF cases and 3,366 controls with replication in 

2,308 fibrotic idiopathic interstitial pneumonia (fIIP) cases and 14,683 controls (discovery and 

replication study design described in section 4.3.2). To maximise power, a 3-way interaction 

meta-analysis was undertaken in 2,920 IPF and fIIP cases and 18,049 controls (meta-analysis 

study design described in section 4.3.3).  

4.1.1 Summary of Idiopathic Pulmonary Fibrosis Datasets: 

The analyses in this chapter were performed using three IPF datasets; UK, Colorado and UUS. 

All three of these studies diagnosed IPF using the American Thoracic Society and European 

Respiratory Society guidelines (195, 197, 204) and were imputed using the HRC Reference 

Panel and HLA reference panel as described in Chapter 2. Briefly, the UK dataset is comprised 

of 612 IPF cases and 3,366 controls and has 36,743 well imputed variants (allele frequency 
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>1%, imputation quality >0.4) for analysis. The Colorado dataset is comprised of 1,515 fibrotic 

interstitial pneumonia cases and 4,683 controls with 34,905 well imputed variants (allele 

frequency >1%, imputation quality >0.4) for analysis. Finally, the UUS dataset has 793 IPF cases 

and 10,000 controls with 36,965 well imputed variants (allele frequency >1%, imputation 

quality >0.4) for analysis. The Chicago dataset was not included in this analysis because the 

MUC5B SNP was not well imputed (imputation quality 0.4). The MUC5B SNP was well imputed 

in all other datasets (imputation quality of 0.92 in UK, 0.77 in Colorado and directly genotyped 

in UUS). Despite being removed from the previous analysis (see chapter 3, section 3.6), 

Colorado was included in the analyses in this chapter to increase sample size because 

interaction analyses require larger sample sizes than marginal effects association analyses.  

4.2 Methods: 

4.2.2 Genome-wide SNP*MUC5B risk allele interaction analysis: 

Interactions between variants in the HLA region and the MUC5B risk SNP were tested using 

Plink V1.9 with sex and 10 principal components as covariates. The MUC5B risk allele was 

analysed using a dominant model; 1 = no MUC5B risk alleles, 2 = at least one MUC5B risk. The 

interaction model was as follows: 

!"#	~	&! + &"( +	&#) +	&$(∗) 

Where β1 was the effect size for a HLA variant G (under an additive model) for those with no 

MUC5B risk allele, β2 was the effect size for the MUC5B SNP M (under a dominant model) and 

β3 was the effect for the interaction between G and M (G*M). Because all HLA gene alleles and 

amino acid alleles are modelled as biallelic variants (i.e. presence or absence), they can be 

modelled in the same way as SNPs. 

4.2.3 Discovery and replication study design: 

Variants in the discovery dataset were tested for an interaction with MUC5B using the model 

described above. Signals that passed a Bonferroni corrected significance threshold (described 

previously in section 3.2.3) in the discovery dataset were tested for association in a replication 

dataset. If no variants passed the Bonferroni corrected threshold, P<5x10-3 was used to 

identify suggestive signals to follow up. Variants were required to pass a Bonferroni corrected 

significance threshold (corrected for the number of variants tested) in order to be described as 

statistically significant. Those that passed these thresholds were identified as independent by 

excluding those with an r2 of more than 0.2 with the lead variant. 
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All variants were plotted on a Manhattan plot using qqman (189) and independent signals 

were visualised in region plots (created using Locuszoom (190) in python) 

4.2.4 Meta-analysis study design: 

Variants that passed quality control filters (allele frequency >1%, imputation quality >0.4) in 

the UK, UUS and Colorado dataset (see Chapter 2) were tested for an interaction with MUC5B 

risk allele status. A fixed effects weighted meta-analysis was performed on these data to 

provide a weighted P-value, beta and standard error for each variant. Variants were required 

to be present in at least two of the three studies to be included in the meta-analysis. Following 

meta-analysis, signals were also required to be in the same direction of effect and pass P<0.05 

in at least two of the studies to be deemed as significant. Those that passed these significance 

thresholds were identified as independent from one another by excluding those with an r2 of 

more than 0.2 with the lead variant. 

All variants were plotted on a Manhattan plot using qqman (189) and independent signals 

were visualised in region plots (created using Locuszoom (190) in python). 

4.2.5: Association effect sizes in individuals with and without MUC5B risk alleles for 

variants identified in interaction analyses 

To estimate the effect of the interaction signals on MUC5B positive and MUC5B negative 

individuals independently, a stratified HLA-wide association meta-analysis was undertaken. 

Individuals were stratified based on if they had no MUC5B risk allele or at least one MUC5B 

risk allele and variants that had been significant in the interaction analyses were tested for 

association with IPF susceptibility in each MUC5B group separately. Each variant was tested 

assuming an additive model with 10 principal components (to adjust for fine-scale population 

structure) and sex included as covariates.  

4.2.6: In silico characterisation of signals 

Lead variants of signals identified in the analysis and variants in high LD (r2>0.8) (SNPs or HLA 

alleles [amino acid alleles cannot be used as a search term]) were investigated using 

Phenoscanner (192) to identify associations with respiratory, autoimmune, inflammatory or 

immunity phenotype. Signals identified in the interaction analyses were said to be associated 

with a phenotype if it met a P<5x10-8 threshold. GTEx consortium (n=15,253) was used to 

identify if the signals were associated with gene expression in one or more tissues or cell-types 

(193) (SNPs only).  
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4.3 Results: SNP-SNP interaction discovery and replication analysis of MUC5B risk 

allele status and the HLA region in IPF susceptibility: 

4.3.1 Introduction: 

A discovery interaction analysis between MUC5B risk allele (rs35705950) status and variants in 

the HLA region was completed using the 612 IPF cases and 3,366 controls from the UK IPF 

dataset. Any novel signals were tested for replication in two independent datasets (Colorado 

and UUS).  

4.3.2 Results: Discovery Analysis 

In the UK IPF dataset 36,743 well imputed variants were analysed for an interaction effect with 

MUC5B risk allele status on IPF susceptibility (figure 4.1).  

No variants passed the Bonferroni significance threshold of P<2.8x10-6, but there were seven 

independent variants that passed the suggestive significance threshold of P<5x10-3 (figure 4.1, 

table 4.1). Three signals identified in this analysis were found in HLA class I and the remaining 

four were in class II. All seven signals were very well imputed (imputation quality between 

0.93 and 1, table 4.1) apart from rs6299441 a coding variant in MUC22 which has a relatively 

low imputation quality of r2=0.52. SNPs rs62399441 and rs62407874 had low coded allele 

frequencies (<5%). SNP rs62399441, a missense coding variant in MUC22, was in weak linkage 

disequilibrium with classical HLA allele HLA-B*50:01 (R2=0.25). HLA-B*50:01 itself was not 

tested in the interaction analysis because it was rare (0.7%).  
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Figure 4.1: Manhattan plot of the HLA-wide variant*MUC5B interaction analyses of IPF susceptibility in 

the UK IPF dataset (the green variants are all the variants that passed the suggestive significance 

threshold). Blue line is suggestive significance threshold of P<5x10-3). 
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Table 4.1: Independent signals (P<5x10-3) in the HLA-wide variant*MUC5B interaction analyses of IPF susceptibility in the UK IPF dataset using two imputation panels. 

RSID Nearest gene Position – build 
37 (HLA class) 

Coded/ 
non-coded 
allele 

Info Coded 
allele freq 

P-value OR 
(95% CI) 

rs418204 ZBED9  28562957 
(Class I) 

A/G 1.00 0.33 1.77x10-3 1.55 
(1.18-2.04) 

rs9277029 HLA DOA (-21417), HLA-DPA1 
(+33540) 

32998806 
(Class II) 

T/C 1.00 0.27 3.10x10-3 0.65 
(0.48-0.86) 

rs62399441 MUC22  30995078 
(Class I) 

A/G 0.52 0.03 3.55x10-3 0.23 
(0.08-0.62) 

rs62407874 MYL8P (-21399), LYPLA2P1 
(+3830) 

33328671 
(Class II) 

T/C 0.93 0.02 3.76x10-3 4.79 
(1.67-13.85) 

rs7767277 PPP1R2P1 (-5191), 
LOC100294145 (+8911) 

32853042 
(Class II) 

A/C 1.00 
  

0.08 
  

4.41x10-3 0.49 
(0.30-0.80)  

rs56043329 GPX5 (-30457) 28,539,407 
SCAND3 (+33222) 

28506185 
(Class I) 

C/A 1.00 
  

0.07 
  

4.41x10-3 2.23 
(1.29-3.85)  

rs13200569 USP8P1 31243615 
(Class I) 

A/G 1.00 
 

0.28 
 

4.43x10-3 0.66 
(0.49-0.88) 
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4.3.3 Results: Replication Analysis 

The seven independent variants that reached a suggestive significance threshold of P<5x10-3 

(table 4.1) for an interaction with MUC5B risk allele status in the UK dataset were tested for 

replication in the Colorado and UUS datasets (2,308 cases and 14,683 controls). All the signals 

identified in the MUC5B interaction in the UK dataset passed quality control measures in the 

replication in the Colorado and UUS datasets (imputation quality>0.4, coded allele 

frequency>0.01) (table 4.2). However, none of these signals passed the Bonferroni corrected 

threshold for this replication analysis (seven variants, P<0.007) (table 4.2). Only one of the 

seven signals in the replication was in the same direction of effect (rs9277029), however all 

the signals had wide confidence intervals in this replication analysis (table 4.2). SNP 

rs62399441 was of low minor allele frequency and was weakly imputed in both the Discovery 

(quality=0.52) and Replication studies (quality=0.45 and 0.47). 
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Table 4.2: Replication results from the Colorado and UUS datasets of the novel findings from the HLA-wide variant*MUC5B interaction analyses of IPF susceptibility in 

the UK IPF dataset. 

Dataset Rsid Position – 
build 37 
(HLA 
class) 

Nearest Gene Coded/ 
Non-coded 
allele  

Info Score Coded allele 
frequency 

P-Value OR 
(95% CI) 

Meta P-
value 

Meta OR 
(95% CI) 

Colorado rs418204 28562957 
(Class I) 

ZBED9  A/G 1.00 0.31 0.42 0.92 
(0.76-1.12) 

0.43 0.93 
(0.77-1.12) 

UUS 1.00 0.34 0.97 0.98 
(0.46-2.1) 

Colorado rs9277029 32998806 
(Class II) 

HLA-DOA (-21417), 
HLA-DPA1 
(+33540) 

T/C 1.00 0.26 0.44 0.92 
(0.75-1.13) 

0.27 0.89 
(0.73-1.09) 

UUS 1.00 0.26 0.16 0.57 
(0.26-1.26) 

Colorado rs62399441 30995078 
(Class I) 

MUC22  A/G 0.45 0.02 0.50 1.40 
(0.52-3.76) 

0.55 1.33 
(0.52-3.39) 

UUS 0.47 0.01 0.88 0.80 
(0.04-16.34) 

Colorado rs62407874 33328671 
(Class II) 

MYL8P (-21399), 
LYPLA2P1 (+3830) 

T/C 0.85 0.03 0.25 0.73 
(0.42-1.23) 

0.33 0.77 
(0.45-1.31) 

UUS 0.92 0.02 0.62 1.64 
(0.23-11.7) 

Colorado rs7767277 32853042 
(Class II) 

PPP1R2P1 (-5191) , 
LOC100294145 
(+8911) 

A/C 1.00 0.09 0.77 1.05 
(0.76-1.44) 

0.77 1.05 
(0.77-1.42) 

UUS 1.00 0.08 0.96 1.03 
(0.29-3.66) 

Colorado rs56043329 28506185 
(Class I) 

GPX5 (-30457) 
28,539,407 
SCAND3 (+33222) 

C/A 1.00 0.07 0.74 0.94 
(0.66-1.35) 

0.83 0.96 
(0.68-1.36) 

UUS 1.00 0.07 0.67 1.38 
(0.31-6.09) 

Colorado rs13200569 31243615 
(Class I) 

USP8P1 A/G 0.99 0.30 0.22 1.13 
(0.93-1.38) 

0.14 1.15 
(0.95-1.40) 

UUS 1.00 0.28 0.29 1.50 
(0.71-3.20) 
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4.4 Results: An interaction meta-analysis of MUC5B risk allele status and SNPs in 

the HLA region in IPF susceptibility in the UK, UUS and Colorado IPF datasets: 

4.4.1 Introduction 

For all three available studies (UK, UUS and Colorado), individual HLA-wide variant*MUC5B 

interaction analyses for IPF susceptibility were undertaken and HLA-wide meta-analysis 

performed. The MUC5B SNP was poorly imputed in the Chicago dataset (imputation quality 

0.4) and so Chicago was not included.  

4.4.2 Results 

A total of 2,920 IPF cases and 18,049 controls with 36,743 variants from the UK dataset (figure 

4.3), 34,905 variants from the Colorado dataset (supplementary figure 4.1) and 36,965 

variants from the UUS dataset (supplementary figure 4.2) were included in the MUC5B 

interaction meta-analysis of IPF susceptibility in the HLA region (figure 4.6). In total 40,376 

variants, 178 HLA alleles and 985 amino acid changes were tested for association with IPF 

susceptibility in this meta-analysis. Twenty-four percent of variants had a coded allele 

frequency of less than 5% (figure 4.2). The average imputation quality in this data set was 0.99 

(0.99 for SNPs, 0.98 for HLA alleles and 0.99 amino acids) and 85% of variants had an 

imputation quality of over 0.98 (figure 4.3). 
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Figure 4.2: Histogram of minor allele frequencies < 5% of variants in the meta-analysis of the HLA-

wide variant*MUC5B interaction analyses of IPF susceptibility from the UK, UUS and Colorado 

datasets. 

 

 

Figure 4.3: Histogram of imputation qualities of variants in the meta-analysis of the HLA-wide 

variant*MUC5B interaction analyses of IPF susceptibility from the UK, UUS and Colorado datasets. 
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No signals passed P<3.4x10-6 in the meta-analysis of all 3 studies. Although 12 independent 

signals passed a suggestive significance threshold of P<5x10-3 (supplementary table 4.1), only 

five of these had P<0.05 and in the same direction of effect in at least two of the three studies 

(table 4.3). The five suggestively significant signals, which were all SNPs, were taken forward 

for characterisation. None of the five SNPs were in linkage disequilibrium with any HLA gene 

alleles or amino acid alleles.  

To identify the effect of the suggestive variants (table 4.3) in MUC5B positive (one or more 

rs35705950 risk alleles, sample size: 5,323) and MUC5B negative (no copies of the rs35705950 

risk allele, sample size: 15,757) individuals, the variants were tested for association with IPF 

susceptibility separately in those with and those without MUC5B risk alleles (supplementary 

table 4.3). When stratifying the MUC5B positive and negative groups, the interaction signal for 

the five suggestive variants appeared to be driven by opposing genetic effects in each group 

(supplementary table 4.3). The opposing genetic effects were statistically significant for 

variants rs145912914, rs9265961 and rs7774158. rs145912914 was significantly associated 

with higher odds of IPF in MUC5B negative individuals and significantly associated with lower 

odds of IPF in MUC5B positive individuals. rs9265961 was significantly associated with lower 

odds of IPF in the MUC5B negative group. rs7774158 was significantly associated with lower 

odds of IPF in the MUC5B positive individuals and was not associated with higher odds of IPF 

in MUC5B negative group. 

The results of the phenoscanner search and eQTL search in GTEx are presented in 

supplementary table 4.2 and supplementary table 4.3. Three of the five signals identified in 

this analysis were found to be eQTLs for class I, class II or class III HLA genes in lung tissue and 

in tissues around the body. rs9265961 was found to be involved in the differential expression 

of several class I and class III HLA genes, for example HLA-C and MICA in the lung 

(supplementary table 4.3, supplementary figure 13).  

Four of the five signals were also found to be associated with respiratory or immunity related 

phenotypes identified in a look-up using phenoscanner (supplementary table 4.3). For 

example, the top signal identified in this analysis (rs145912914, supplementary figure 4.3) was 

associated with self-reported ankylosing spondylitis and rs309115 and rs7774158 were 

associated with rheumatoid arthritis. rs9265961 (supplementary figure 4.6) was associated 

eosinophil counts, forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) 

and several autoimmune disorders or immunity related phenotypes including coeliac disease 

and psoriasis. 
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Figure 4.4: Manhattan plot of the meta-analysis of the HLA-wide variant*MUC5B interaction 

analyses of IPF susceptibility in the UK, UUS and Colorado IPF datasets. 
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Table 4.3: The five independent signals (P<5x10-3) in an interaction meta-analysis of the HLA-wide variant*MUC5B interaction analyses of IPF susceptibility in the UK, 

UUS and Colorado IPF datasets. 

Dataset rsid Position – 
build 37 
(HLA class) 

Nearest Gene Coded/ 
Non-coded 
allele  

Info Score Coded 
allele 
frequency 

P-Value OR 
(95% CI) 

Meta-
Analysis  
P-value 

Meta-
Analysis 
OR 
(95% CI) 

UK rs145912914 
 

32887150 
(Class II) 
 

LOC100294145  
 

G/C 0.99 0.02 7.70x10-3 0.30 
(0.12-0.72) 

1.45x10-4 
 

0.44 
(0.29-0.67) 

Colorado 0.99 0.02 0.036 0.53 
(0.29-0.96) 

UUS 0.99 0.02 0.045 0.43 
(0.19-0.98) 

UK rs7774158 
 

33007752 
(Class II) 
 

HLA-DOA 
 

C/A 1.00 0.35 9.42x10-3 0.70 
(0.53-0.92) 

1.53x10-4 
 

0.78 
(0.69-0.89) 

Colorado 1.00 0.35 0.065 0.84 
(0.69-1.01) 

UUS 1.00 0.34 0.020 0.76 
(0.60-0.96) 

UK rs753712672 
 

31292555 
(Class I) 
 

LOC112267902  
 

A/C 0.56 0.22 7.27x10-3 0.65 
(0.48-0.89) 

6.10x10-4 
 

0.70 
(0.57-
0.863) Colorado NA NA NA NA 

UUS 0.57 0.21 0.028 0.74 
(0.56-0.97) 

UK rs9265961 
 

31315501 
(Class I) 
 

LOC112267902  
 

A/G 1.00 0.34 0.847 0.97 
(0.74-1.28) 

1.13x10-3 
 

0.80 
(0.71-0.92) 

Colorado 0.80 0.29 6.16x10-3 0.76 
(0.63-0.93) 

UUS 1.00 0.33 0.019 0.76 
(0.60-0.96) 

UK rs3909115 30993188 
(Class I) 
 

MUC22 A/C 0.99 0.25 0.578 1.09 
(0.81-1.46) 

4.13x10-3 
 

1.23 
(1.07-1.41) 

Colorado 0.99 0.27 0.038 1.24 
(1.01-1.51) 
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UUS 0.99 0.25 0.031 1.32 
(1.03-1.71) 
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4.4.3 Summary: 

A meta-analysis of HLA-wide variant*MUC5B interaction analyses for IPF susceptibility was 

performed that incorporated all available datasets to perform the most powerful MUC5B 

interaction meta-analysis in the HLA region for IPF susceptibility done to date. No signals 

passed P<3.4x10-6 but five signals had a suggestive meta P-value (P<5x10-3) and were 

nominally significant (P<0.05) in at least two of the three studies (table 4.3). Of these five, 

three of the signals had statistically significant opposing effects on IPF susceptibility in the 

MUC5B positive and MUC5B negative groups (supplementary table 4.3).  

4.5 Discussion: 

The aim of this chapter was to study the interaction between variants in the HLA region and 

the MUC5B risk allele in IPF susceptibility. A discovery analysis in the UK IPF dataset with 

replication in the Colorado and UUS datasets did not yield any signals that met a HLA-wide 

significance threshold in the discovery or Bonferroni corrected threshold in the replication 

study. No signals passed the Bonferroni corrected threshold of P<2.8x10-6 in these analyses, 

however there were five signals that had support from at least two studies which suggests 

these may be true positives but they require larger sample sizes (and increased power) to 

confirm. Interestingly, two of these variants (rs145912914 and rs7774158) appeared to have 

an opposite direction of effect on IPF risk in MUC5B positive and MUC5B negative individuals.  

Alleles associated with a reduced risk of IPF identified in these analyses were associated with 

reduced expression of MICA, HLA-C, XXbac-BPG181B23.7 and LY6G5B. MICA is a stress-

induced self-antigen, associated with human cytomegalovirus infection and Spondylitis and 

Psoriatic Arthritis risk and is known to be involved in natural killer cell binding. This appears to 

correspond with a previous study of IPF lungs which identified significantly increased 

expression of MICA in IPF lungs (177). LY6G5B is involved in signal transduction and XXbac-

BPG181B23.7 is a long non-coding RNA. Interestingly, the rs9265961 IPF risk allele was 

associated with reduced expression of HLA-C (despite no HLA-C gene alleles in correlation with 

the signal). An increased expression of HLA-C could increase the production of immune-

stimulatory cytokines and boost the immune response to infections, this could relate to what 

is known about the development of IPF.   

Along with this, alleles associated with reduced risk of IPF were found to be associated with 

decreased eosinophil counts, increased forced vital capacity (FVC) and increased forced 

expiratory volume in one second (FEV1) which is consistent with IPF pathogenicity (IPF causes a 
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reduction in lung function and eosinophil counts have been associated with exacerbations for 

example in chronic obstructive pulmonary disorder (COPD) patients (205)).  

This study was limited by power, with only small sample sizes available and one dataset being 

removed due to the poor measurement of the MUC5B SNP. This study was also limited 

because the MUC5B SNP was only analysed at two levels (one copy vs at least one copy). To 

develop the analysis the SNP could be analysed assuming an additive model (no copies, one 

copy, two copies) or using dosages to determine if this strategy would increase the power to 

detect interactions or provide novel interaction signals. Since interaction analyses are lower 

powered than conventional association analyses, signals would not be expected to pass a 

stringent Bonferroni corrected threshold with the sample sizes available. This meta-analysis 

had only 17% power to detect interactions (at a coded allele frequency of 10%, interaction 

effect size of 1.1, alpha of 0.05). For 80% power to detect these interactions, a sample size of 

23,124 cases would be required. This analysis could suggest that there is no interaction 

between the MUC5B SNP and variants in the HLA region on IPF susceptibility, however there 

were five suggestive signals (P<3x10-3, P<0.05 in at least two datasets) that could be 

investigated further when larger sample sizes become available.  

This chapter presented the largest HLA-wide variant*MUC5B interaction analysis for IPF risk 

undertaken to date which identified some suggestive signals that were reported in more than 

one independent study (but which did not reach HLA-wide significance).  
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Chapter 5: The imputation of variation within the Killer 

Immunoglobulin like Cell Receptor (KIR) region in four Idiopathic 

Pulmonary Fibrosis (IPF) datasets 

Introduction: 

Genes within the KIR region encode proteins found on the surface natural killer cells that 

detect foreign bodies presented on the surface of virally infected cells to initiate the immune 

response to bacterial and viral infection. They are also known to physically interact with HLA 

proteins (see Chapter 1 section 1.3.2). Since viral infection is thought to be a cause of micro-

injury to the lung that triggers a fibrotic response in some individuals (7, 8, 60-63), the KIR 

region may provide further insight into the biological processes that underlie susceptibility to 

IPF. The KIR region harbours a considerable amount copy number variation which cannot be 

adequately measured using SNP genotypes (see Chapter 1: Introduction section 1.3.2). 

Analogous to the approach described in previous chapters for HLA region variation (Chapter 

2), bespoke KIR imputation enables us to infer KIR gene copy number variation and KIR 

haplotypes which can be tested for association with IPF susceptibility.  

The aim of this chapter was to impute KIR gene haplotypes and copy number variation using 

SNP data. Imputation usually uses directly genotyped variants to impute new variants, but this 

depends on the tag SNPs in the imputation panel being reliably genotyped in the input data 

set. Alternatively, the KIR imputation tag SNPs could be imputed to a high quality using 

standard SNP imputation and then the imputed KIR imputation tag SNPs can be used as input 

to the KIR imputation. This chapter describes an evaluation of the use of directly genotyped vs 

haplotype reference consortium (HRC) imputed SNPs to improve the accuracy of the KIR 

imputation in 612 IPF cases and 3,366 controls. The evaluated method was then applied to the 

final imputation approach for the other three IPF datasets to provide a set of KIR-imputed IPF 

datasets for association testing in chapter 6. 

Methods: 

IPF datasets: 

The four IPF datasets are described in Chapter 2 section 2.2. Briefly, the UK IPF dataset was 

comprised of 612 IPF cases and 3,366 controls of European ancestry. The UUS dataset was 

comprised of 793 IPF cases and 10,000 controls. The Colorado dataset was comprised of 1,515 

fibrotic idiopathic interstitial pneumonia (fIIP) cases and 4,683 controls. Finally, the Chicago 

dataset was comprised of 500 IPF cases and 510 controls. 
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SNP Imputation using the Haplotype Reference Consortium (HRC) panel: 

Phasing and genome-wide SNP imputation using the Haplotype Reference Consortium (HRC) 

1.1 panel (29) was previously completed on all IPF data sets for another study using the 

Michigan imputation server (206). This imputed data was then used in the KIR*IMP 

imputation. 

KIR imputation panel: 

KIR*IMP was the method previously developed for imputing KIR gene copy number variation 

and KIR haplotypes (152). This method used 301 SNPs from a UK reference panel comprising 

698 individuals of European ancestry from the UK DNA banking network (DBN) which 

contained individuals who were selected for having atopic dermatitis or asthma (152). Copy 

number variation in genes KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, KIR2DL5, KIR2DP1, KIR2DS1, 

KIR2DS2, KIR2DS3, KIR2DS4DEL, KIR2DS4TOTAL, KIR2DS4WT, KIR2DS5, KIR3DL1ex4, 

KIR3DL1ex9, KIR3DP1 and KIR3DS1 and KIR haplotypes 1-69 were imputed using the 

imputation panel. KIR3DL1ex4 and KIR3DL1ex9 were copy number variants in exons 4 or 9 in 

the gene KIR3DL1. KIR2DS4 was split into KIR2DS4DEL and KIR2DS4WT, which corresponds to a 

22-bp frameshift deletion and wild type allele. KIR2DS4TOTAL was the number of DS4 genes 

counting both deleted and wild-type alleles. A/B haplotype denotes stable copy number 

variation (A haplotype) vs extensive copy number variation (B haplotype).  

KIR haplotypes are made up of varying numbers of the KIR genes named above, an example of 

how the gene copy number variations and haplotypes are related can be seen in table 5.1. 
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Table 5.1: Relationship between KIR haplotypes. KIR Haplotype was the haplotype classification defined by (148), A/B corresponds to the broad A/B haplotype classification, 

all the other gene columns show the copy number of each individuals KIR gene. Each KIR Haplotype was defined by the copy number values across each of the 17 KIR genes, 

table from (152), 0’s are in red, 1’s are in black and 2’s are in blue. 
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KI
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1 A 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 
2 A 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 1 
3 B 1 0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 1 
4 B 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 
5 B 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 1 
6 B 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 
7 B 1 1 1 0 1 1 1 1 0 0 1 2 1 1 1 0 0 0 1 
8 B 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 
9 B 1 1 1 0 1 1 1 1 0 0 1 2 2 0 1 0 0 0 1 
10 B 1 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 
11 B 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 1 
12 B 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 
13 B 1 1 1 0 1 1 2 2 1 1 1 1 1 0 0 1 1 0 1 
14 B 1 0 0 1 2 2 2 2 0 0 2 2 1 1 1 0 0 0 1 
15 B 1 1 0 0 1 1 1 1 0 0 1 1 0 1 1 0 0 0 1 
16 B 1 0 0 1 1 1 2 2 1 1 1 0 0 0 0 1 0 1 1 
17 B 1 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 
18 B 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 
19 B 1 1 2 0 0 0 2 2 0 0 2 2 0 2 1 0 0 0 1 
20 B 1 0 0 1 1 1 2 2 1 1 1 0 0 0 0 1 1 0 1 
21 B 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 
22 B 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
23 B 1 0 0 1 2 2 2 2 1 1 1 1 1 0 0 1 0 1 1 
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24 B 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 
25 B 1 1 1 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 
27 A 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 
28 B 1 0 0 1 1 1 2 2 0 0 2 1 0 1 1 0 0 0 1 
29 B 1 1 1 0 1 1 2 2 1 1 1 1 1 0 0 1 0 1 1 
30 B 1 1 1 0 0 0 2 2 1 1 1 0 0 0 0 1 0 1 1 
31 B 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 
33 B 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
34 A 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 
36 B 1 1 1 0 2 2 2 2 0 0 2 1 2 0 1 0 0 0 1 
38 B 1 0 0 1 2 2 2 2 0 0 2 1 0 1 1 0 0 0 1 
40 B 1 1 1 0 2 2 1 1 0 0 1 2 1 1 0 0 0 0 1 
41 B 1 1 1 0 1 2 1 1 0 0 1 2 2 0 1 0 0 0 1 
42 B 1 1 2 0 0 0 2 2 1 1 1 1 0 1 0 1 0 1 1 
44 B 1 1 1 0 1 1 1 1 0 0 1 2 0 1 1 0 0 0 1 
42 B 1 1 1 0 1 1 1 1 0 0 1 2 1 1 0 0 0 0 1 
46 B 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 
48 A 1 0 0 1 1 1 1 1 1 2 0 0 0 0 0 2 2 0 1 
50 B 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 
52 B 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 
53 B 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 
55 A 1 0 0 0 1 2 1 1 1 1 0 0 0 0 0 1 1 0 1 
56 B 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 
57 A 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 1 
58 A 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 
59 A 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 
68 B 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 
69 B 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 
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Measures of imputation quality 

There were two measures of imputation quality available in the data, average estimated 

imputation quality and posterior probability. Average estimated imputation accuracy is 

provided for each gene (covering all the CNVs in the gene) and for KIR haplotype (covering all 

the haplotypes) across all individuals. This measure provides a global view of the imputation 

quality across the dataset for each gene and haplotype, this enables the identification of 

trends in imputation quality.  

Posterior probability is the likelihood that the assigned allele was the correct assignment. 

Therefore, the higher the posterior probability, the more confidence there is that the allele 

imputed is accurate. Because this measure is available for all assigned alleles, this measure can 

be used as a quality control measure to remove the low confidence alleles. 

Imputation of the KIR region using KIR*IMP: 

The alleles and minor allele frequencies of the 301 reference panel SNPs in KIR*IMP were 

compared to the alleles and minor allele frequencies of the same SNP that were directly 

genotyped or imputed in the imputation input dataset (HRC-imputed data). SNPs that were 

strand mismatches or SNPs from the imputation input dataset that had a minor allele 

frequency (MAF) that was +/- 10% from the MAF in the KIR*IMP panel were removed. 

For each IPF dataset, SNPs that passed the pre-imputation quality control described above 

were uploaded to the KIR*IMP server (V1.2.0, available at 

http://imp.science.unimelb.edu.au/kir) for imputation.  

An imputation strategy evaluation was undertaken in the UK IPF dataset in the first instance in 

which directly genotyped SNPs and HRC-imputed SNPs were evaluated as input to KIR*IMP in 

order to identify which would give the best estimated imputation accuracies across the KIR 

genes and haplotypes. Firstly, directly genotyped SNPs in the UK IPF dataset were checked 

against the 301 SNPs in the imputation panel, specifically the tag SNPs (SNPs significantly 

correlated with specific KIR genes) as these have been shown to significantly increase the 

imputation accuracy of the genes they tag (152). The imputation quality of the KIR genes and 

haplotypes imputed using directly genotyped SNPs was compared with the published expected 

imputation qualities when using the Axiom UK Biobank SNPs (152). To determine if there 

would be more SNPs available for imputation (out of the 301 in the imputation panel), SNPs 

imputed in the imputation input dataset (from the HRC panel) across several different 

imputation quality thresholds (info score of 0.3, 0.5, 0.7, 0.8, 0.9, 0.95 and no threshold) were 

also matched to the 301 SNPs in the imputation panel. SNPs in the imputation input dataset 
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that passed the pre-imputation quality control (described above) were then used to impute 

the KIR genes and haplotypes. The imputation accuracy of the KIR genes and haplotypes, and 

the posterior probability of the most likely allele were compared between the results from the 

different sets of SNPs used for the imputation input dataset. 

KIR variants with an imputation posterior probability of less than 0.5 were removed from the 

datasets. 

Results: Imputation of the KIR haplotypes and gene copy number variants using 

KIR*IMP 

Imputation of the UK IPF dataset with KIR*IMP using directly genotyped SNPs: 

A total of 3,172 directly genotyped variants across the KIR region (50,900,000-58,617,616 

[19q13.4] on genome build 37) from the UK IPF dataset were phased using Shapeit (v2.837). 

Only 57/301 SNPs from the KIR imputation panel were directly genotyped in the UK IPF 

dataset and these were uploaded to the KIR*IMP imputation server. The allele frequency of 

the 57 SNPs that were used in the imputation were similar in the IPF dataset and the reference 

panel (figure 5.1). The imputed KIR genes and haplotypes had estimated imputation accuracies 

above 75% apart from “KIR haplotype” which was 67.6% (figure 5.2). An example of imputed 

haplotype and copy number variation (CNV) for a single IPF case can be seen in table 5.2, each 

individual has zero, one or two copies of each gene on each chromosome (maximum copy 

number of 4 across both chromosomes) and this defines the haplotype for each chromosome. 

The individual in table 5.2 for example has one copy of KIR haplotype 1 (which is an A 

haplotype) which is made up of a range of zero and one copies of the KIR genes and one copy 

of KIR haplotype 9 (which is a B haplotype) which is made up of zero, one and two copies of 

the KIR genes.  

The imputed accuracies from the UK IPF dataset were comparable (and often better) to those 

calculated for the Axiom UK Biobank array (152) (figure 5.2). The Axiom UK Biobank array had 

34/301 SNPs that overlapped with the SNPs used for imputation (152), the UK IPF dataset had 

57 SNPs; this could explain the increased accuracy of the KIR imputation in the UK IPF dataset 

(figure 5.2).  
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Table 5.2: An example of results for each chromosome for a single IPF case. For the KIR haplotype locus, 

the “imputed type” column corresponds to the KIR haplotype number. For the A/B locus, the “imputed 

type” column corresponds to haplotype A or B. For the remaining KIR genes, the “imputed type” column 

corresponds to the copy number variation. 

Locus Chromosome 1 Chromosome 2 

Imputed 

Type 

Posterior 

Probability 

Imputed 

Type 

Posterior 

Probability  

KIRhaplotype 1 0.633 9 0.446 
A/B A 0.626 B 0.983 
KIR2DS2 0 0.613 0 0.656 
KIR2DL2 0 0.662 0 0.654 
KIR2DL3 1 0.626 1 0.636 
KIR2DP1 1 0.616 1 0.954 
KIR2DL1 1 0.594 1 0.96 
KIR3DP1 1 0.975 1 0.985 
KIR2DL4 1 0.977 1 0.982 
KIR3DL1ex4 1 0.996 0 0.995 
KIR3DL1ex9 1 0.999 0 0.993 
KIR3DS1 0 1 1 0.941 
KIR2DL5 0 0.939 1 0.556 
KIR2DS3 0 0.933 2 0.477 
KIR2DS5 0 0.997 0 0.661 
KIR2DS1 0 0.992 1 0.999 
KIR2DS4TOTAL 1 0.997 0 0.993 
KIR2DS4WT 0 0.999 0 0.999 
KIR2DS4DEL 1 0.994 0 0.99 
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Figure 5.1: Comparison of the frequencies of the SNPs used in the imputation in the input dataset (UK 

IPF dataset) and the KIR*IMP reference dataset. 
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Figure 5.2: Comparison of imputation accuracy of KIR variation (with KIR*IMP) using genotyped SNPs 

from UK IPF dataset and the Axiom UK biobank array estimates from KIR*IMP. 

 

Defining imputation quality thresholds for HRC-imputed SNPs as input to KIR imputation 

Of the 301 SNPs used by KIR*IMP for the KIR imputation, only 57 were directly genotyped in 

the UK IPF dataset. To improve on the number of SNPs used for the imputation, HRC-imputed 

SNPs were additionally included as input to the imputation. A range of SNP HRC imputation 

quality thresholds were assessed (info scores threshold of greater than 0.3, 0.5, 0.7, 0.8, 0.9 

and 0.95, and no threshold) to determine if including more HRC-imputed SNPs improved the 

KIR imputation output and to define the HRC imputation quality threshold that maximises the 

quality of the KIR imputation. The number of SNPs available for inclusion in the KIR imputation 

(out of the 301 SNPs used by KIR*IMP) increased as the SNP HRC imputation quality threshold 

was reduced (table 5.3). The minimum imputation quality of the 301 SNPs in the HRC 

imputation was 0.40.  

Imputation accuracy 
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Of the 301 SNPs used for KIR*IMP imputation, there were six tag SNPs which were known to 

significantly improve the accuracy of the imputation of the KIR genes/haplotypes they tag. The 

known tag SNPs (reported in (152)) included in KIR*IMP are presented in table 5.4 – five of the 

six are represented in the HRC-imputed data. All of these five tag SNPs are common in the UK 

IPF dataset (MAF >9%) and all have a high imputation quality (info>0.84) apart from rs587560 

(which has an info score of 0.52) (table 5.4). 

 

Table 5.3: Number of SNPs used for the imputation of the KIR genes and haplotypes with each 

imputation quality threshold of the SNPs in the imputation input dataset (number of SNPs out of 301). 

HRC imputation threshold Number of KIR*IMP imputation panel SNPs 

represented amongst the directly 

genotyped and HRC-imputed SNPs in the 

UK IPF dataset (/301) 

Genotyped 57 
No threshold 239 
0.3 239 
0.5 237 
0.7 235 
0.8 230 
0.9 213 
0.95 189 

 

 

Table 5.4: Minor allele frequency and imputation quality of the tag SNPs in the UK IPF dataset 

(*rs592645 was not imputed in the UK IPF dataset as it is not in the HRC imputation panel). 

RSID KIR 

gene/haplotype 

Position REF/ALT 

alleles 

MAF (in UK 

dataset) 

Imputation 

quality (in UK 

dataset, info 

score) 

rs587560 A/B, KIR2DS2, 
KIR2DL2, KIR2DL3, 
KIR2DP1, KIR2DL1 

55245738 C/T 0.14 0.52 

rs1010355 KIR3DP1, KIR2DL4, 
KIR2DS3 

55102179 T/C 0.09 0.85 

rs592645* KIR3DL1ex4/ex9, 
KIR2DS5, KIR2DS1, 
KIR2DS4TOTAL 

55320927 NA NA NA 

seq-t1d-19-
60034052-C-T 

KIR2DL5 55342240 C/T 0.23 0.90 

rs4806585 KIR2DS4WT 55346424 C/A 0.24 0.84 

rs581623 KIR2DS4DEL 55326739 T/C 0.32 0.84 
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For each imputation quality threshold used for the input SNPs, the estimated KIR*IMP 

imputation accuracy was plotted for each KIR gene and haplotype (figure 5.3, supplementary 

table 5.1). In most cases, using only genotyped SNPs had the lowest accuracy and the accuracy 

improved as the input SNP imputation quality threshold decreased suggesting incorporating 

more variants in the imputation input dataset is improving the KIR imputation despite the 

lower quality of the input SNPs. For some KIR gene variants, the KIR*IMP imputation accuracy 

is high for all input SNP imputation thresholds (e.g. KIR2DS1, figure 5.3). The tag SNP rs587560 

was HRC-imputed in the UK IPF dataset at a quality of 0.52 and was therefore excluded from 

input HRC imputation quality thresholds 0.7 and above. A corresponding decrease in accuracy 

(most significantly KIR2DS2, KIR2DL2 and KIR2DL3) (figure 5.3) can clearly be seen between the 

HRC imputation quality thresholds of 0.5 and 0.7 (and above). There is also a notable 

difference in the “KIRhaplotype” imputation accuracy between the 0.5 and 0.7 thresholds. 

There was not a significant difference between the 0.5 and 0.3 thresholds for most of the KIR 

gene/haplotype accuracies however 0.3 slightly improved the accuracy of the KIR haplotypes 

(figure 5.3), however there were 2 additional SNPs included across the datasets when lowering 

the threshold from 0.5 to 0.3 (supplementary table 5.2).  

Each KIR gene copy number variation and KIR haplotype had an associated posterior 

probability which correlates to the most likely copy number variation/haplotype for that 

individual. Imputation accuracy (average across the whole dataset for each haplotype/gene) 

and mean posterior probability (for all alleles for each gene/haplotype imputed in each 

individual) followed a similar pattern (figure 5.4), with the lower input SNP imputation quality 

thresholds providing the best (highest) posterior probabilities and accuracies (Figure 5.5). For 

KIRhaplotype, A/B, KIR2DS2, KIR2DL1 KIR2DL2 and KIR2DL3, the 0.5 and 0.3 input SNP HRC 

imputation thresholds provided significantly higher mean posterior probabilities in the KIR 

imputation (figure 5.5). There were however, some instances where the imputation quality 

thresholds of 0.3 and 0.5 provided the lowest mean posterior probabilities (KIR2DS4WT and 

KIR2DS4DEL) (figure 5.5). 

The HRC imputation quality threshold of info >0.3 was used for the remaining three datasets 

as, overall, the inclusion of the tag SNPs and additional panel SNPs improved the KIR 

imputation quality across the haplotypes and the genes, irrespective of the imputation quality 

of the input HRC-imputed SNPs. In the UK dataset, the lowest imputation quality for the input 

SNPs was 0.4 and therefore all available SNPs were included.  
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Figure 5.3:  KIR gene/haplotype imputation accuracy comparison when using directly genotyped 

SNPs and a range of imputation qualities for HRC SNPs. 
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Figure 5.4: KIR gene/haplotype imputation accuracy and mean posterior probabilities (across all 

samples) for each HRC imputation quality threshold:  A=0.3, B=0.5, C=0.7, D=0.8, E=0.9 and F=0.95), 

each point corresponds to a different locus. 
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Figure 5.5: KIR gene/haplotype imputation mean posterior probabilities comparison of a range of 

imputation qualities for HRC SNPs 

 

 

Imputation of the UK, UUS, Chicago and Colorado datasets IPF dataset using KIR*IMP: 

Using HRC-imputed SNPs with a minimum imputation quality of 0.3 as the KIR imputation 

input dataset, there were three strand mismatches (rs8101660, rs10423751 and rs775900) 

and between 59 and 141 MAF mismatches (MAF in the IPF dataset was +/-10% compared to 

the reference dataset in KIR*IMP) in the four IPF datasets with between 157 and 239 SNPs 

remaining for analysis (table 5.5). Colorado had the highest number of strand and MAF 

mismatches and also had the lowest imputation qualities (table 5.5). Overall, the imputation 

accuracies of the haplotypes and the gene CNV imputation accuracy ranges were similar 

across the UK, UUS and Chicago datasets but lower in the Colorado dataset. (table 5.5). The 

similar can be said for the A vs B haplotypes (table 5.5). In the Colorado dataset, two of the six 

KIR*IMP mean posterior probability 
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tag SNPs were removed because they had a MAF more than 10% lower than the KIR*IMP 

reference panel (table 5.6). This mismatch could be partly explained by low HRC imputation 

quality scores in the Colorado dataset (supplementary table 5.2: score of 0.49 for seq-t1d-19-

60034052 and 0.32 for rs587560).  

 

Table 5.5: Haplotype and gene CNV imputation accuracies across the four IPF dataset from imputation 

of the KIR region using KIR*IMP (152). 

Dataset MAF 

mismatches 

SNPs 

remaining 

(/301) 

Haplotype 

imputation 

accuracy (%) 

A vs B 

haplotype 

imputation 

accuracy (%) 

Gene CNV 

imputation 

accuracy range 

(%) 

UK 59 239 87.1 98.1 90.4-99.6 
UUS 131 167 87.5 98.1 91.4-99.6 
Chicago 127 171 87.9 97.5 91.7-98.9 
Colorado 141 157 74.1 83.9 78.1.8-99.4 

 

 

Table 5.6: Minor allele frequencies of two tag SNPs in the Colorado dataset (imputed) and the KIR*IMP 

dataset. 

SNP ID position allele0 allele1 Colorado MAF KIR*IMP reference 

MAF 

seq-t1d-19-
60034052-C-T 

55342240 C T 0.069 0.23 

rs587560 55245738 C T 0.026 0.25 
 

The UK, UUS and Chicago datasets had similar estimated accuracies across all KIR genes and 

haplotypes (figure 5.6). In most cases, Colorado had significantly lower imputation accuracies 

than the rest of the datasets (KIR haplotype, KIR2DS3, KIR2DS2, KIR2DP1, KIR2DL5, KIR2DL3, 

KIR2DL2, KIR2DL1 and A/B) (figure 5.6). This reduction in accuracy in the Colorado dataset was 

mirrored in the posterior probabilities, where a reduction was seen across almost all of the 

genes (KIR2DS4WT/DEL and KIR2DL4 were the exceptions) (figure 5.7).  

 



   
 

Page | 126  
 

 

 

Figure 5.6: KIR gene/haplotype imputation accuracy comparison for the imputation of KIR genes and 

haplotypes across the four IPF datasets. 
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Figure 5.7: KIR gene/haplotype imputation mean posterior probabilities comparison across all four IPF 

datasets. 

 

Each individual had the following imputed for each chromosome: 

i) One of two possible haplotype groups (A or B),  

ii) One of 56 possible haplotype numbers  

iii) One of three possible copy numbers for each gene. 

The number of these haplotypes and gene copy number variations for each IPF dataset can be 

seen in table 5.7. KIR haplotype 1 was the most common across all the datasets (between 

48%-69% of the haplotypes in the datasets) and A haplotype was more common than B (table 

5.7). KIR haplotypes 12, 13, 18, 19 and 56 were rare across all datasets (<0.5% in each dataset, 

table 5.7) and haplotypes 15, 16, 17, 20-55 and 57-69 were not imputed in these datasets 

KIR*IMP mean posterior probability 
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which was most likely due to rarity (the panel does provide the ability to impute these 

haplotypes if they are present), since only the first 11 haplotypes are thought to be found in 

>1% of European populations (148). In some cases, the KIR haplotypes were at a similar 

frequency across all datasets however there were some exceptions, for example haplotypes 1, 

2 and 3 are very different across the four datasets (Haplotype 1 made up 65.4, 68.6%, 47.7% 

and 57.8% of the haplotypes in the UK, UUS, Chicago and Colorado datasets respectively). Rare 

KIR haplotypes in general (table 5.7) tended to have lower posterior probability than common 

haplotypes (figure 5.8). For example, in the UUS dataset, KIR haplotype 1 had a mean posterior 

probability of 0.89 and KIR haplotype 18 had a mean posterior probability of 0.11 (figure 5.8). 

Having two copies on either chromosome was rare across most genes in all datasets (KIR2DL5 

and KIR2DS3 were the exceptions to this) (table 5.7). For KIR2DL2 copy number variation 0 was 

most common (table 5.7). Although the datasets are not identical, they are all of European 

ancestry and so it would be expected that the frequencies of the haplotypes and CNVs would 

be similar. In many examples, the frequencies were vastly different, such as Haplotype 1, 

KIR3DS1, KIR3DL1ex4 and KIR3DL1ex9. In order to reduce these differences, a posterior 

probability threshold was applied to reduce the number of low confidence variants.  

Variants with a posterior probability < 0.5 were removed from each dataset resulting in 

exclusion of between 0.5% and 1% of calls (haplotype or gene copy number (table 5.8). The 

number and respective percentages of some haplotypes still varied across datasets (tables 5.7 

and 5.9). In several cases the percentages of the CNVs remained different in the Colorado 

dataset compared to the other three datasets, for example KIR3DL1ex4, KIR3DL1ex9 and 

KIR3DS1, this could be because the haplotype posterior probabilities are much lower in the 

Colorado dataset – therefore more may be removed at PP < 0.5, see figure 5.6. Additionally, 

there is still variation in the proportions of the CNVs for some of the other genes in the 

Colorado dataset including KIR2DL5, KIR2DS1, KIR2DS4TOTAL, KIR3DL1ex4, KIR3DL1ex9, and 

KIR2DS4WT KIR3DS1 (table 5.8). 
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Table 5.7: Number of KIR haplotypes and copy number variation for each gene for each chromosome in 

each IPF dataset. 

KIR 
gene/Haplotype 

Haplotype
/CNV 
number 

Number of haplotype/CNV (% of total haplotypes/% of CNVs 
per gene) 
UK 
 

UUS 
 

Chicago 
 

Colorado 
 

A vs B A 5,958 (74.9) 17,231 (76.1) 1,489 (68.7) 10282 (81.6) 
 B 1,998 (25.1) 5,399 (23.9) 679 (31.3) 2316 (18.4) 
KIR Haplotype 1 5,206 (65.4) 15,516 (68.6) 1043 (47.7) 7280 (57.8) 
 2 745 (9.4) 1,672 (7.4) 458 (21.0) 3322 (26.4) 
 3 998 (12.5) 2,699 (11.9) 283 (13.0) 684 (5.4) 
 4 106 (1.3) 322 (1.5) 38 (1.7) 50 (0.4) 
 5 130 (1.6) 253 (1.1) 175 (8.0) 674 (5.4) 
 6 37 (0.5) 93 (0.4) 6 (0.3) 76 (0.6) 
 7 179 (2.3) 413 (1.8) 23 (1.1) 15 (0.1) 
 8 132 (1.7) 375 (1.7) 45 (2.1) 61 (0.5) 
 9 291 (3.7) 859 (3.8) 61 (2.8) 184 (1.5) 
 10 13 (0.2) 16 (0.07) 8 (0.4) 109 (0.9) 
 11 74 (0.9) 240 (1.1) 21 (1.0) 161 (1.0) 
 12 2 (0.03) 7 (0.03) 0 (0) 0 (0) 
 13 2 (0.03) 9 (0.04) 1 (0.05) 0 (0) 
 14 31 (0.4) 114 (0.5) 4 (0.2) 10 (0.08) 
 18 0 (0) 1 (0.004) 0 (0) 0 (0) 
 19 10 (0.1) 17 (0.08) 0 (0) 2 (0.02) 
 56 0 (0) 14 (0.06) 2 (0.09) 0 (0) 
KIR2DL1 0 356 (4.5) 968 (4.3) 225 (10.4) 544 (4.3) 
 1 7590 (95.4) 21628 (95.6) 1940 (89.5) 12053 (95.7) 
 2 10 (0.1) 34  (0.2) 3 (0.1) 1 (0.01) 
KIR2DL2 0 7050 (88.6) 20223(89.4) 1809 (83.4) 11238 (89.2) 
 1 906 (11.4) 2402 (10.6) 359 (16.6) 1360 (10.8) 
 2 0 (0) 5 (0.02) 0 (0) 0 (0) 
KIR2DL3 0 906 (11.4) 2409 (10.6) 359 (16.6) 1449 (11.5) 
 1 7050 (88.6) 20221 (89.4) 1809 (83.4) 11149 (88.5) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR2DL4 0 0 (0) 0 (0) 0 (0) 0 (0) 
 1 7944 (99.8) 22573 (99.7) 2164 (99.8) 12595 (100) 
 2 12 (0.2) 57 (0.3) 4 (0.2) 3 (0.02) 
KIR2DL5 0 6203 (78.0) 17827 (78.8)  1700 (78.4) 11163 (88.6) 
 1 1389 (17.5) 3781 (16.7) 415 (19.1) 1274 (10.1) 
 2 364 (4.5) 1022 (4.5) 53 (2.4) 161 (1.3) 
KIR2DP1 0 356 (4.5) 949 (4.2) 225 (10.4) 555 (4.4) 
 1 7590 (95.4) 21638 (95.6) 1941 (89.5) 12042 (95.6) 
 2 10 (0.1) 43 (0.2) 2 (0.1) 1 (0.01) 
KIR2DS1 0 6249 (78.5) 17937 (79.3) 1739 (80.2) 11554 (91.7) 
 1 1707 (21.5)  4693 (20.7) 419 (19.3) 1044 (8.3) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR2DS2 0 7048 (88.6) 20225 (89.4) 1809 (83.4) 11189 (88.8) 
 1 908 (11.4) 2405 (10.6) 359 (16.6) 1409 (11.2) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR2DS3 0 7491 (94.2) 21263 (94.0) 2067 (95.3) 12075 (95.8) 
 1 306 (3.8) 882 (3.9) 59 (2.7) 339 (2.7) 
 2 159 (2.0) 485 (2.1)  42 (1.9) 184 (1.5) 
KIR2DS4DEL 0 2595 (32.6) 6670 (29.5) 1080 (49.8) 5193 (41.2) 
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 1 5361 (67.4) 15960 (70.5) 1088 (50.2) 7405 (58.8) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR2DS4TOTAL 0 1709 (21.5) 4691 (20.7) 429 (19.8) 1042 (8.3) 
 1 6247 (78.5) 17939 (79.3) 1739 (80.2) 11556 (91.7)  
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR2DS4WT 0 6393 (80.4) 18067 79.8) 1539 (71.0) 8432 (66.9) 
 1 1563 (19.6) 4563 (20.2) 629 (29.0) 4166 (33.1) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR2DS5 0 6639 (83.4) 19055 (84.2) 1821 (84.0) 11012 (87.4) 
 1 1316 (16.5) 3569 (15.8) 347 (16.0) 1583 (12.6) 
 2 1  (0.01) 6 (0.03) 0 (0) 3 (0.02) 
KIR3DL1ex4 0 1705 (21.4) 4697 (20.8) 429 (19.8) 1040 (8.3) 
 1 6251  (78.6) 17933 (79.2) 1739 (80.2) 11558 (91.7) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR3DL1ex9 0 1708 (21.5) 4691 (20.7) 430 (19.8) 1040 (8.3) 
 1 6248 (78.5) 17939 (79.3) 1738 (80.2) 11558 (91.7) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR3DP1 0 0 (0) 1 (0.004) 0 (0) 0 (0) 
 1 7942 (99.8) 22577 (99.8) 2164 (99.8) 12596 (100) 
 2 14  (0.2) 52 (0.2) 4 (0.2) 2 (0.02) 
KIR3DS1 0 6265 (78.7) 17961 (79.4) 1735 (80.0) 11565 (91.8)  
 1 1667 (21.0) 4587 (20.3) 428 (19.7) 1022 (8.1) 
 2 24 (0.3) 82 (0.4) 5 (0.2) 11 (0.1) 

 

 

Table 5.8: Number of variants before and after quality control (posterior probability <0.5). 

Dataset Full number variants QC number of 

variants 

Difference 

Chicago 41,192 40,995 197 (0.5%) 
Colorado 239,363 236,075 3,288 (1.3%) 
UK 151,165 150,264 901 (0.6%) 
UUS 429,971 427,495 2,476 (0.6%) 

 

 

Table 5.9: Quality controlled (posterior probability > 0.5) set of haplotypes in each dataset (N.B 

haplotypes 13, 18 and 19 are now not present because posterior probability was < 0.5 in all individuals). 

KIR 
gene/Haplotype 

Haplotype 
(A or 
B)/CNV 
number 

Number of haplotype (%) 
UK  UUS Chicago Colorado 

A vs B A 5,958 (74.9) 17,231 (76.1) 1,489 (68.7) 10282 (81.6) 
 B 1,998 (25.1) 5,399 (23.9) 679 (31.3) 2316 (18.4) 
KIR Haplotype 1 (A) 5,203 (70.5) 15,448 (73.3) 1042 (51.2) 7041 (69.4) 
 2 (A) 743 (10.0) 1,662 (7.9) 439 (21.7) 1909 (18.8) 
 3 (B) 946 (12.8) 2,562 (12.2) 272 (13.4) 467 (4.6) 
 4 (B) 76 (1.0) 237 (1.1) 32 (1.6) 28 (0.3) 
 5 (B) 101 (1.4) 198 (0.9) 150 (7.4) 482 (4.7) 
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 6 (B) 4 (0.05) 29 (0.1) 4 (0.2) 51 (0.5) 
 7 (B) 33 (0.4) 94 (0.4) 4 (0.2) 0 (0) 
 8 (B) 44 (0.6) 133 (0.6) 22 (1.1) 7 (0.07) 
 9 (B) 164 (2.2) 459 (2.2) 42 (2.1) 87 (0.9) 
 10 (B) 12 (0.2) 9 (0.04) 1 (0.05) 26 (0.3) 
 11 (B) 36 (0.5) 169 (0.8) 12 (0.6) 48 (0.5) 
 12 (B) 0 (0) 1 (0.005) 0 (0) 0 (0) 
 14 (B) 13 (0.2) 68 (0.3) 4 (0.2) 4 (0.04) 
 56 (B) 0 (0) 1 (0.005) 0 (0) 0 (0) 
KIR2DL1 0 356 (4.5) 967 (4.3) 225 (10.4) 540 (4.3) 
 1 7590 (95.4) 21625 (95.6) 1940 (89.5) 12046 (95.7) 
 2 10 (0.1) 34 (0.2) 3 (0.1) 1 (0.01) 
KIR2DL2 0 7050 (88.6) 20223 (89.4) 1809 (83.4) 11213 (89.3) 
 1 906 (11.4) 2400 (10.6) 359 (16.6) 1342 (10.7) 
 2 0 (0) 3 (0.01) 0 (0) 0 (0) 
KIR2DL3 0 906 (11.4) 2409 (10.6) 259 (12.5) 1449 (11.5) 
 1 7050 (88.6) 20221 (89.4) 1809 (87.5) 11149 (88.5) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR2DL4 0 0 (0) 0 (0) 0 (0) 0 (0) 
 1 7943 (99.8) 22571 (99.8)  2164 (99.8)  12595 (100.0)  
 2 12 (0.2) 53 (0.2) 4 (0.2) 2 (0.02) 
KIR2DL5 0 6196 (78.3) 17807 (79.0) 1699 (78.7) 10923 (89.4) 
 1 1362 (17.2) 3741 (16.6) 409 (18.9) 1160 (9.5) 
 2 351 (4.4) 1002 (4.4) 52 (2.4) 141 (1.2) 
KIR2DP1 0 356 (4.5) 948 (4.2) 225 (10.4) 554 (4.4) 
 1 7590 (95.4) 21637 (95.6) 1941 (89.5) 12035 (95.6) 
 2 10 (0.1) 43 (0.2) 2 (0.1) 1 (0.01) 
KIR2DS1 0 6249 (78.5)  17937 (79.3) 1739 (80.2) 11554 (91.7) 
 1 1707 (21.5) 4693 (20.7) 429 (19.8) 1044 (8.3) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR2DS2 0 7048 (88.6) 20225 (89.4) 1809 (83.4) 11189 (88.8) 
 1 908 (11.4) 2405 (10.6) 359 (16.6) 1409 (11.2) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR2DS3 0 7402 (95.8) 21023 (95.9) 2051 (96.5) 11919 (97.4) 
 1 214 (2.8) 578 (2.6) 50 (2.4) 207 (1.7) 
 2 112 (1.4) 327 (1.5) 25 (1.2) 110 (0.9) 
KIR2DS4DEL 0 2595 (32.6) 6670 (29.5) 1080 (49.8) 5193 (41.2) 
 1 5361 (67.4) 15960 (70.5) 1088 (50.2) 7405 (58.8) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR2DS4TOTAL 0 1709 (21.5) 4689 (20.4) 429 (19.8) 1042 (8.3) 
 1 6247 (78.5) 17936 (79.3) 1739 (80.2) 11556 (91.7) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR2DS4WT 0 6391 (80.4) 18067 (79.9) 1539 (71.0) 8429 (66.9)  
 1 1562 (19.6) 4559 (20.1) 629 (29.0) 4166 (33.1) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR2DS5 0 6623 (83.5) 19036 (84.3) 1820 (84.0) 11001 (87.5) 
 1 1310 (16.5) 3549 (15.7) 347 (16.0) 1576 (12.5) 
 2 0 (0) 1 (0.004) 0 (0) 0 (0) 
KIR3DL1ex4 0 1705 (21.4) 4697 (20.7) 429 (19.8) 1040 (8.3) 
 1 6251 (78.6) 17993 (79.3) 1739 (80.2) 11558 (91.7) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
KIR3DL1ex9 0 1708 (21.5) 4691 (20.7) 430 (19.8) 1040 (8.3) 
 1 6247 (78.5) 17938 (79.3) 1738 (80.2) 11558 (91.7) 
 2 0 (0) 0 (0) 0 (0) 0 (0) 
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KIR3DP1 0 0 (0) 1 (0.004) 0 (0) 0 (0) 
 1 7941 (99.8) 22571 (99.8) 2164 (99.8) 12595 (100.0) 
 2 14 (0.2) 49 (0.2) 4 (0.2) 1 (0.02) 
KIR3DS1 0 6260 (78.8) 17947 (79.5) 1735 (80.1) 11561 (91.9) 
 1 1661 (20.9) 4558 (20.2) 425 (19.6) 1015 (8.1) 
 2 19 (0.2) 72 (0.3) 5 (0.2) 7 (0.1) 

 

Having a total CNV count of 4 (i.e. 2 on each chromosome) was very rare across all the genes 

and was most commonly found in KIR2DL5 (table 5.10, figure 5.8. The distribution of the 

percentages of the CNVs in KIR2DL5 is considerably different in the Colorado dataset (table 

5.10, figure 5.8. Additionally, the CNVs in several genes including KIR2DL1 and KIR2DL2 have 

remarkably different distributions in the Chicago dataset. There are visible copy number 

distribution differences for several genes (including KIR2DL5, KIR2DS1, KIR2DS4WT/TOTAL and 

KIR3DL1ex4/ex9) between the Colorado dataset and the other datasets (table 5.10).
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Table 5.10: Percentages of total CNVs for each gene in each dataset. Percentage is calculated individually for each gene. 

Gene UK CNVs (%) UUS CNVs (%) Chicago CNVs (%) Colorado CNVs (%) 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 

KIR2DL1 0.2 8.5 91.0 0.3 0.0 0.1 8.3 91.3 0.3 0.0 1.2 18.3 80.4 0.2 0.0 0.2 8.4 91.4 0.0 0.0 

KIR2DL2 78.4 20.4 1.2 0.0 0.0 79.8 19.2 1.0 0.0 0.0 70.1 26.7 3.2 0.0 0.0 80.0 18.8 1.3 0.0 0.0 

KIR2DL3 1.2 20.4 78.4 0.0 0.0 1.0 19.3 79.7 0.0 0.0 3.2 26.7 70.1 0.0 0.0 1.4 20.0 78.7 0.0 0.0 

KIR2DL4 0.0 0.0 99.7 0.3 0.0 0.0 0.1 99.5 0.5 0.0 0.0 0.0 99.6 0.4 0.0 0.0 0.0 100.0 0.0 0.0 

KIR2DL5 61.8 26.5 9.9 1.7 0.2 62.6 25.8 10.1 1.3 0.2 63.0 27.8 8.2 0.9 0.1 80.3 16.7 2.8 0.1 0.0 

KIR2DP1 0.2 8.6 91.0 0.3 0.0 0.1 8.1 91.4 0.4 0.0 1.2 18.3 80.4 0.1 0.0 0.2 8.6 91.2 0.0 0.0 

KIR2DS1 61.9 33.3 4.8 0.0 0.0 62.9 32.7 4.4 0.0 0.0 65.0 30.4 4.6 0.0 0.0 84.1 15.2 0.7 0.0 0.0 

KIR2DS2 78.4 20.4 1.2 0.0 0.0 79.8 19.2 1.0 0.0 0.0 70.1 26.7 3.2 0.0 0.0 79.1 19.5 1.4 0.0 0.0 

KIR2DS3 91.9 5.3 2.7 0.1 0.0 92.1 4.9 2.9 0.0 0.0 93.2 4.5 2.2 0.1 0.0 95.0 3.2 1.7 0.1 0.0 

KIR2DS4DEL 10.6 44.1 45.4 0.0 0.0 8.6 41.8 49.6 0.0 0.0 24.5 50.6 24.9 0.0 0.0 16.4 49.6 34.0 0.0 0.0 

KIR2DS4TOTAL 4.8 33.4 61.8 0.0 0.0 4.4 32.7 62.9 0.0 0.0 4.6 30.4 65.0 0.0 0.0 0.7 15.2 84.1 0.0 0.0 

KIR2DS4WT 64.9 31.0 4.1 0.0 0.0 64.0 31.8 4.3 0.0 0.0 50.5 41.1 8.5 0.0 0.0 44.5 44.8 10.7 0.0 0.0 

KIR2DS5 70.0 27.1 2.9 0.0 0.0 71.4 25.8 2.8 0.0 0.0 70.8 26.5 2.8 0.0 0.0 76.7 21.6 1.7 0.0 0.0 

KIR3DL1ex4 4.8 33.3 61.9 0.0 0.0 4.4 32.7 62.9 0.0 0.0 4.6 30.4 65.0 0.0 0.0 0.7 15.2 84.2 0.0 0.0 

KIR3DL1ex9 4.8 33.4 61.8 0.0 0.0 4.4 32.7 62.9 0.0 0.0 4.6 30.4 64.9 0.0 0.0 0.7 15.2 84.2 0.0 0.0 

KIR3DP1 0.0 0.0 99.6 0.4 0.0 0.0 0.1 99.5 0.4 0.0 0.0 0.0 99.6 0.4 0.0 0.0 0.0 100.0 0.0 0.0 

KIR3DS1 62.4 32.5 5.0 0.1 0.0 63.4 31.8 4.7 0.1 0.0 64.9 30.1 4.9 0.1 0.0 84.5 14.8 0.8 0.0 0.0 
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Figure 5.8: Distributions of total CNV number for all KIR genes across the four datasets.
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Discussion: 

The KIR region harbours extensive copy number variation which cannot be accurately 

genotyped and are omitted by standard SNP-focused GWAS. The aim of this chapter was to 

use genotyped and imputed SNPs to impute KIR CNVs and haplotypes in four IPF datasets. 

KIR*IMP (152) enabled the imputation of copy number variation in 14 genes and 18 

haplotypes. In order to produce the highest quality imputation, different numbers of SNPs 

(from different imputation quality thresholds of HRC-imputed SNPs) were used as the 

imputation input dataset (HRC-imputed data) to identify which number provides the highest 

accuracy and posterior probabilities. It was important that the selected threshold resulted in 

the highest possible accuracies and posterior probabilities across the genes and haplotypes 

and so an imputation quality threshold of 0.3 was chosen. An input SNP imputation quality 

threshold of 0.3 included all of the six tag SNPs (apart from rs592645 which was not included 

in the HRC imputation panel) in the KIR imputation input datasets across the UK, UUS and 

Chicago datasets (supplementary table 5.2). Rs592645 was not imputed in any of the four 

datasets. Although rs592645 was a tag SNP for KIR3DL1ex4/ex9, KIR2DS5, KIR2DS1 and 

KIR2DS4TOTAL, these were imputed at an accuracy of 97.7%, 97.5%, 97.5%, 96.7% and 97.7% 

respectively using the other KIR imputation panel SNPs. This suggests this tag SNP may not 

have a strong positive effect on imputation of these genes. There were two tag SNP 

mismatches in the Colorado dataset (table 5.6), it is not clear why this occurred, they were 

imputed so the imputation may have been negatively affected by nearby poorly genotyped 

SNPs. These mismatches may have been the reason for lower overall accuracy of imputation 

for A/B, KIR2DS2, KIR2DL2, KIR2DL3, KIR2DP1, KIR2DL1 and KIR2DL5 in this dataset. The 

rs587560 T allele had a frequency of 0.026 in the Colorado dataset and 0.25 in the KIR*IMP 

reference dataset, the KIR*IMP reference dataset appeared to be closer to what is expected in 

European datasets, (dbSNP (207) presents a frequency of 0.30 in HapMap)). 

KIR*IMP reference SNPs are from the Illumina Immunochip array which may explain the low 

SNP matches with the Axiom Affymetrix UK Biobank genotyping array (used in the UK IPF 

dataset) and although the reference dataset (for KIR*IMP) was a European dataset, there was 

a large quantity of MAF mismatches (between 20 and 48%, table 5.5) and three strand 

mismatches. It would be expected that HRC imputation would resolve the strand mismatches 

however, the three strand mismatches are multi-allelic which could have caused the problems.  

There were significant differences between the frequencies and distributions of some 

haplotypes and CNVs between the datasets. The datasets are all of European ancestry and 

therefore it would be expected that the distributions would be similar. A posterior probability 
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filter of 0.5 was incorporated to remove the variant calls with low confidence imputation but 

there was still significant differences between the datasets, especially between the Chicago 

and Colorado datasets versus the UK and the UUS datasets. This could be due to the tag SNPs 

seq-t1d-19-60034052-C-T and rs587560 as these were missing in the Colorado dataset and had 

a significantly lower imputation quality in the Chicago dataset (compared to the UK and UUS 

datasets). Seq-t1d-19-60034052-C-T tags KIR2DL5 which could explain the different 

distribution in the Colorado dataset. rs587560 tags A/B which is considerably different in the 

Chicago and Colorado datasets and KIR2DS2, KIR2DL2, KIR2DL3, KIR2DP1 and KIR2DL1 (the 

genes whose copy numbers determine the A type haplotype) are all different in the Chicago 

dataset. 

This chapter described the methods for imputing KIR haplotypes and gene copy number across 

the four IPF datasets that will be used for association testing in Chapter 6. Using the HRC-

imputed SNPs as input for the KIR imputation meant that these datasets had better KIR 

imputation accuracies than if only directly genotyped SNPs had been included. The gene copy 

number variations were imputed at an accuracy of over 90% and the haplotypes at an 

accuracy of over 87%, however there was considerable differences in the haplotype and CNV 

frequencies and distributions between the datasets which could cause spurious results. Some 

of the differences between the datasets will be accounted for in the subsequent analyses 

which include an internal validation step where the variant is required to be significantly 

associated with IPF (at nominal significance) in at least two of the datasets. This, together with 

evaluation of individual dataset level results, will ensure that spurious signals due to poor 

quality variant calls are excluded but without a loss of power due to exclusion of an entire 

dataset. 
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Chapter 6: KIR-wide association analysis of IPF susceptibility in 

four Idiopathic Pulmonary Fibrosis (IPF) datasets 

6.1 Introduction 

Natural killer (NK) cells play a vital role in the innate immune systems response to virus 

infection (139). NK cells are activated by a balance between activating and inhibitory receptors 

on their surface (including killer immunoglobulin-like receptors [KIRs]) (140-142). Activated NK 

cells detect virally infected cells by interacting with the HLA molecules to initiate cell death 

(139). KIR molecules are encoded by polygenic genes found on chromosome 19. The KIR 

region harbours significant copy number variation which requires bespoke imputation to 

adequately measure the variation (see chapter 1, section 1.3.2). Micro-injuries such as viral 

infection are believed to be triggers that lead to fibrosis in the lungs (7, 8, 60-63). It is 

therefore of interest to define the contribution of KIR haplotypes and copy number variation 

(CNV) of KIR genes to IPF susceptibility. KIR genes have not been analysed in IPF in this way 

previously and therefore this analysis could provide further insight into the biological 

processes underlying IPF development and pathogenesis.  

This chapter tests the hypothesis that variation at the KIR gene locus contributes to genetic 

susceptibility to IPF. The methods and results of a KIR-wide association meta-analysis and a 

joint-regression meta-analysis of four IPF datasets, utilising the KIR imputation described in 

chapter 5, are described here.  

6.2 Methods 

KIR imputed IPF datasets: 

The IPF datasets used in this chapter, and their phasing and KIR*IMP imputation, were 

described in Chapter 5.  

The variation across the KIR region compromises copy number variation (CNV) of genes and 

haplotypes. Twelve KIR region haplotypes and copy number of 17 KIR genes were imputed 

across the four IPF datasets and individuals were assigned A and B haplotype classifications 

accordingly (see Chapter 5).  

 

KIR-wide association analysis: 

Across all four datasets, imputed KIR gene copy number variations (CNVs) (see chapter 5, table 

10) and haplotypes (see chapter 5, table 9) were tested for association with IPF susceptibility 
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using R version 3.6.1 assuming an additive genetic model. Ten principal components (to adjust 

for fine scale population structure) and sex were included as covariates. A count threshold of 

equal to or less than three within each dataset was used to remove rare haplotypes and CNVs. 

There was no posterior probability filtering. The variants were analysed using the formula 

below, where β0 is the intercept, Gi is the genotype (either presence vs absence [0,1] for the 

KIR haplotypes, as a genotype [AA, AB, BB] for AvsB and as a continuous variable for CNVs [0, 

1, 2, 3 and 4]). 

!ℎ#$%&'(#	(log %../)	~	2! + 2"4# + 5#6 + 	!7/	 

 

KIR-wide association meta-analysis 

The results of the KIR-wide association analyses from each IPF dataset were combined using a 

fixed-effects inverse weighted meta-analysis. A Bonferroni corrected significance threshold for 

the KIR-wide association analysis was calculated for each separate analysis based on the 

number of haplotypes or the number of genes tested across the region. Haplotypes and CNVs 

were required to pass the Bonferroni corrected significance threshold and be nominally 

significant (P<0.05) in at least two of the four studies.  

 

6.3 Results 

KIR-wide association meta-analysis of IPF susceptibility in the UK, UUS, Chicago and 

Colorado datasets 

Four haplotypes in total were removed for low count (count <3), and these were haplotypes 

12 and 56 in all four datasets, haplotype 10 in the Chicago dataset and haplotype 7 in the 

Colorado dataset. Twelve type A or B haplotypes, as well as haplotype types A and B 

themselves, were tested for association with IPF susceptibility in each of the UK 

(supplementary figure 6.1), UUS (supplementary figure 6.2), Chicago (supplementary figure 

6.3) and Colorado datasets (supplementary figure 6.4). A Bonferroni corrected significance 

threshold of P<0.004 was applied based on the number of haplotypes tested (12, not including 

A and B). The mean posterior probabilities of the haplotypes across the four datasets was 0.85 

and on average 51% of haplotypes had a posterior probability more than 0.9 (52% in the 

Chicago dataset, 18.7% in the Colorado dataset, 67% in the UK dataset, 66% in the UUS 

dataset) (figure 6.2). 12 haplotypes were tested across all four datasets and two haplotypes 

were tested across three datasets (there were no haplotypes tested in any less than three 
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datasets) (supplementary table 6.1). The P-values were mostly very similar across the four 

datasets (supplementary table 6.1, figure 6.2), but there was one outlier in the results which 

was haplotype 9 in the UK dataset (P=6.11x10-60). No haplotypes passed the threshold of 

P<0.004 in any of the four datasets (supplementary table 6.1). The most significant haplotypes 

in each independent dataset were haplotype 2 (Chicago dataset, P=0.30 and UUS dataset, 

P=0.02), haplotype 8 (Colorado dataset, P=0.02) and haplotype 4 (UK dataset, P=0.13). 

Following meta-analysis of results across four datasets, only one B-type haplotype passed the 

Bonferroni-corrected significance threshold (P<0.004); Haplotype 9 (P=1.98x10-17) (table 6.1). 

However, the association with Haplotype 9 was only nominally significant (P<0.05) in the UK 

datasets and therefore did not pass the required significance thresholds (haplotype 9 was 

therefore excluded from figure 6.1). Haplotype 9 had an overall frequency of 2.2% and was 

well imputed in the UK dataset (average posterior probability of 0.7). The presence of this 

haplotype was associated with a significantly decreased risk of IPF in the UK dataset but with a 

non-significantly increased risk of IPF in the other three datasets. The mean posterior 

probabilities of haplotype 9 across all four datasets was 0.68, the values were similar across 

the four datasets (UK = 0.70, UUS = 0.69, Chicago = 0.68, Colorado = 0.65).  

Haplotype 8 was the next most significantly associated haplotype in the meta-analysis 

(P=0.008). Haplotype 8 was tested in all four IPF datasets and although it did not reach 

nominal significance in at least two datasets, it had P=0.03 in the Colorado dataset and P=0.06 

in the UUS dataset. The frequency of haplotype 8 is similar in the UK, UUS and Chicago 

datasets (0.6%, 0.6% and 1.1% respectively), however the frequency of haplotype 8 was much 

lower in the Colorado dataset (0.07%). The mean posterior probabilities of haplotype 8 across 

all four datasets was 0.605, and the values were consistent across the four datasets (UK=0.59, 

UUS=0.60, Chicago=0.60 and Colorado=0.63) (table 6.1). 
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Figure 6.1: -log10 p-values of the association meta-analysis of association of KIR haplotypes with IPF susceptibility 

in the UK, UUS, Chicago and Colorado datasets. Blue line denotes the Bonferroni corrected significance threshold of 

0.004. 

  

The gene CNVs in the four datasets are described in chapter 5, table 10. 17 KIR genes were 

tested for association with IPF susceptibility. The Bonferroni corrected significance threshold 

(P<0.003) was calculated based on the 17 genes tested in this analysis. The mean posterior 

probability of the CNVs across the four datasets was 0.95 and an average of 84% of CNV had a 

posterior probability of more than 0.9 (89% in the Chicago dataset, 63% in the Colorado 

dataset, 91% in the UK dataset, 91% in the UUS dataset) (figure 6.2). No CNVs passed the 

Bonferroni corrected significance threshold in any of the four IPF datasets. The most 

significant CNVs across the four datasets were KIR3DP1 (Chicago, P=0.69 and UK, P=0.58), 

KIR2DS3 (Colorado, P=0.15) and KIR2DS4WT (UUS, P=0.03). 

In the meta-analysis of the four IPF datasets, all 17 genes were tested for association with IPF 

susceptibility and genes passed the Bonferroni corrected threshold. The most significant CNV 

was in KIR3DP1 (P=0.12) and the individual dataset P-values were not nominally significant 
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(P<0.05) (although it was close to the nominal significance threshold in the UUS dataset 

[P=0.06]) (table 6.1).  

 

 

 

 

Figure 6.2: -log10 p-values of the association meta-analysis of KIR genes in IPF susceptibility in the UK, UUS, 

Chicago and Colorado datasets. Blue line denotes the Bonferroni corrected significance threshold of 0.003. 
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Table 6.1: Top signals from the association meta-analysis of CNVs and haplotypes in IPF susceptibility in the UK, UUS, Chicago and Colorado datasets. 

  

 

 

 

 

  

Haplotype/ 
Gene CNV 

Posterior Probability  Mean 
frequency 
(%) 

Odds ratio  
(95% CI) 

P-value Meta 
Odds 
ratio 
(95% 
CI) 

Meta p-
value 

Chicago Colorado UK UUS Chicago Colorado UK UUS Chicago Colorado UK UUS 

Haplotype 
9 

0.68 0.65 0.70 0.69 1.9 1.38  
(0.55-
3.47) 

1.34  
(0.75-
2.40) 

0.29  
(0.25-
0.34) 

1.12  
(0.99-
1.26) 

0.49 0.33 6.11x10-

60 
0.073 0.67  

(0.61-
0.73) 

1.98x10-

17 

Haplotype 
8 

0.60 0.62 0.59 0.60 2.0 1.90  
(0.51-
7.05) 

11.08  
(1.23-
100.00) 

1.81  
(0.72-
4.61) 

2.10  
(0.97-
4.38) 

0.34 0.03 0.21 0.06 2.15  
(1.22-
3.79) 

 

0.008 

KIR3DP1 0.98 0.97 0.97 0.97 5.9 
 
 

2.41  
(0.20-
29.23) 

1.56  
(0.10-
23.94) 

0.61  
(0.11-
3.46) 

2.14  
(0.96-
4.73) 

0.49 0.75 0.58 0.06 1.75 
(0.71-
2.87) 

0.12 
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6.4 Discussion 

The aim of this chapter was to test the hypothesis that KIR gene region variation contributes 

to IPF susceptibility. Although SNPs in the KIR region have been included in GWAS, no 

significant signals of association with risk were identified for this region in previous IPF studies 

Furthermore, the complex haplotype structure and gene copy number variation of the KIR 

region has not previously been explored. Utilising the bespoke KIR imputation of haplotypes 

this study, which included up to 3,420 IPF cases and 18,559 controls, did not identify any 

signals of association with IPF susceptibility.  

Weak signals of association were observed for haplotype 9, haplotype 8 and copy number of 

KIR3DP1. However, none of these met the specified criteria for significance which required 

signals to meet an overall Bonferroni-corrected threshold in the meta-analysis and be 

supported across at least two of the tested datasets at nominal significance. Haplotype 8 was 

close to Bonferroni-corrected significance in the meta-analysis and close to nominal 

significance in two studies, but this signal would require additional studies to confirm it. 

In previous analyses (HLA association analysis in chapter 3) there appeared to be 

heterogeneity between the cases in the Colorado dataset compared to the UK, UUS and 

Chicago datasets in terms of HLA association signals. This does not appear to be the case for 

associations in the KIR region; the Colorado dataset had similar odds ratios, frequencies, 

posterior probabilities, and P-values (figures 4 and 5) to the results from the other IPF 

datasets. In the haplotype meta-analysis, the Colorado dataset had a lower frequency of 

haplotype 8, this could be due to the loss of two of the six tag SNPs in the imputation for 

Colorado (see chapter 5). SNP seq-t1d-19-60034052-C-T was removed from the input SNPs for 

the imputation of the Colorado dataset because there was a frequency mismatch; this SNP 

was a tag SNP for KIR2DL5 which was found in several B haplotypes including haplotype 8 

(208).  

Measurement error may have had an impact on the analyses undertaken, as discussed in 

Chapter 5. There was concern associated with the quality of the imputation because there 

were frequency differences (for the haplotypes and CNVs) between the four IPF datasets. 

There was also a possibility that individuals were being misclassified by copy number because 

poorly imputed CNVs were removed in the previous chapter (Chapter 5 – KIR Imputation), for 

example, if an individual has one well-imputed copy of KIR2DL1 on one chromosome and two 

copies of KIR2DL1 on the second chromosome, but this was poorly imputed and excluded 
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during the quality control steps, they would have been classified as having only one copy of 

KIR2DL1 when this may not be the case.    

This first study of the contribution of KIR region haplotype and gene copy number variation to 

IPF susceptibility did not identify any significant associations, however haplotype 8 was close 

to meeting the significance thresholds. This could suggest that the KIR region has no role in IPF 

susceptibility, that the study sample size was underpowered to detect any true small effects, 

or because the accuracy and quality of the imputation was not high. In order to further 

improve the analyses undertaken, better measurement of KIR variation should be sought.   
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Chapter 7: Discussion 

Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease characterised by 

scarring and inflammation of the alveolar wall, resulting in decreased lung function and poor 

quality of life. Risk factors for IPF include age, smoking, infection, and genetics. IPF has poor 

prognosis, very limited treatment options and little is known about the development and 

progression of the disease. The HLA region codes for molecules that play a vital role in the 

immune response against bacterial and viral infection along with the KIR region which codes 

for receptors which are associated with the activation and inhibition of natural killer cells. 

Micro-injuries such as viral infection are believed to be triggers that lead to fibrosis in the 

lungs (7, 8, 60-63), therefore studying these regions could provide an insight into the 

development of IPF and could help to identify drug targets or diagnostic markers. Drug targets 

with genetic support are two-times more likely to be successful in clinical development (209) 

which further motivates genetic studies such as those undertaken in this thesis.  

This final chapter presents a summary of the previous IPF susceptibility studies, a description 

of the main findings of this thesis and the clinical impact of these, the strengths and 

weaknesses of the analyses undertaken and recommendations for potential future work.  

7.1 Summary of previous IPF susceptibility studies and HLA-DQB1*06:02 findings 

Between the years of 2008 and 2017, 17 genome-wide significant signals were identified in 

GWAS of IPF susceptibility (2-6) (see Chapter 1, section 1.2.3, table 1.1), this included one 

signal in the HLA region, HLA-DQB1*06:02 (odds ratio 1.34 (confidence interval = 1.18-1.52, allele 

frequency of 15% in cases and 12% in controls) (5). The effect size of this variant is comparable 

to the IPF risk genetic signals (see Chapter 1, table 1.1) but was typically smaller than HLA 

signals for other common diseases (for example, HLA-B27 in Ankylosing Spondylitis OR=1.71-

2.01 (96, 210) and HLA-DRB1 in Type 1 Diabetes OR = 0.28-0.29 (133)). The HLA-DQB1*06:02 

signal was identified in 1,616 fibrotic idiopathic interstitial pneumonia (fIIP) cases and 4,683 

controls from Colorado (of European ancestry) and replicated in 878 cases and 2,017 controls 

(identified in the same way as the discovery dataset).  

The strongest association with IPF susceptibility was found in the promoter region of a mucin 

gene MUC5B which is associated with a four-fold increased risk and studies in mouse models 

suggest that the excess mucin makes the lining sticky increasing the quantity of cells and 

bacteria, initiating an abnormal response (58). In 2020, the largest genome wide association 

meta-analysis for IPF susceptibility confirmed 11 of the previously reported signals (not 

including HLA-DQB1*06:02) and reported 3 novel genome-wide signals, the signals implicated 
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telomere length, cell-cell adhesion and lung defence in IPF susceptibility (1) (see Chapter 1, 

section 1.2.3).  

The 15 reported IPF susceptibility genetic association signals only explain around 12.4% of the 

disease in the general population (53). The imputation of complex variation that is not well-

measured using standard SNP arrays and imputation could therefore explain more disease 

risk. Prior to this thesis, only the Colorado study had analysed the specific role of complex 

genetic variation across HLA genes (5) and complex variation in the KIR region has never been 

studied in IPF. This thesis aimed to address that gap in knowledge and utilised computational 

imputation techniques to enable an in-depth analysis of complex genetic variation across two 

groups of immune system genes and their role in IPF susceptibility.  

7.2 Summary of work undertaken in this thesis 

Chapter two describes the imputation of HLA gene alleles, amino acid alleles and SNPs across 

the HLA region in four IPF case-control datasets using the most up to date SNP panel (available 

at the time – haplotype reference consortium [HRC] (29)) and a bespoke HLA panel (T1DGC). 

Of the quality-controlled variants, there was a high mean imputation quality of 0.98 in the UK, 

UUS and Colorado datasets and 0.97 in the Chicago dataset and there appeared to be good 

concordance between the datasets when looking at the imputation quality and allele 

frequency. In total, 34,905-36,905 SNPs, HLA gene alleles and amino acid alleles across HLA-A, 

HLA-B, HLA-C, HLA-DPA, HLA-DPB, HLA-DQA, HLA-DQB and HLA-DRB passed the quality control 

measures across the four IPF datasets. Chapter three describes the largest HLA-wide 

association analyses of IPF susceptibility across European IPF datasets using two study designs 

(discovery-replication and meta-analysis). A discovery HLA-wide association analysis was 

undertaken using 612 IPF cases and 3,366 controls in which no signals passed the Bonferroni-

corrected significance threshold (corrected for number of variants tested) and 12 suggestively 

significant signals did not replicate in 2,015 IPF and fibrotic idiopathic interstitial pneumonia 

(fIIP) cases and 5,193 controls. In the meta-analysis of the three available datasets (UK, 

Chicago and Colorado datasets, 2,769 IPF and fIIP cases and 8,591 controls), three 

independent signals passed the Bonferroni corrected significance threshold (corrected for 

number of variants tested) however they were only statistically significant in the Colorado 

dataset, one of these being the previously identified HLA-DQB1*06:02 signal. The HLA-

DQB1*06:02 signal did not replicate in the meta-analysis of the UK and Chicago datasets 

suggesting that this signal was specific to the Colorado case population which included 

broader fIIP phenotypes. Due to these differences in the Colorado dataset, it was omitted in 

the following meta-analysis and replaced by the UUS dataset (which was not available 



   
 

Page | 147  
 

previously). In the meta-analysis of the UK, UUS and Chicago datasets, one signal passed the 

Bonferroni corrected significance threshold (rs3132684). The signal was in an intron, the 

nearest gene was ZNRD1ASP, and it was a common variant (frequency = 32-34%). rs3132684 

and SNPs in the credible set were associated with several lung and immunity phenotypes 

including peak expiratory flow, eosinophil counts and Rheumatoid Arthritis suggesting the 

signal could be involved in relevant disease pathways. In the joint regression analysis (for the 

HLA amino acid changes), no amino acids were associated with IPF susceptibility.  

Chapter four describes the first HLA-wide variant*MUC5B interaction analyses of IPF 

susceptibility. The aim of this analysis was to identify if there were any differences between 

the MUC5B positive (individuals with at least one MUC5B risk allele) and negative groups 

(individuals with no MUC5B risk alleles) which could be attributed to signals in the HLA region. 

Chicago was excluded from these analyses because the MUC5B SNP was poorly imputed 

(imputation quality = 0.6). In the discovery interaction analysis of 612 IPF cases and 3,366 

controls, no signals passed the Bonferroni corrected significance threshold (corrected for 

number of interactions tested) and seven suggestive signals (P<5x10-3) did not replicate in 

2,308 cases and 14,683 controls. In the meta-analysis of all three datasets (UK, UUS and 

Colorado) no signals passed the Bonferroni corrected significance threshold but five 

independent signals passed the suggestive significance threshold. Four of the five signals were 

associated with respiratory, and immunity related phenotypes including forced vital capacity 

and psoriasis and were significantly associated with differing risk of IPF in the two MUC5B 

groups (positive and negative). One signal was associated with reduced expression of several 

genes including HLA-C and MICA and was significantly associated with reduced risk of IPF in 

the MUC5B negative group.  

Chapter five describes the imputation of KIR haplotypes and copy number variations (CNVs) 

across four IPF datasets using KIR*IMP (152). The KIR variation imputed in this chapter was 

copy number variation of the KIR genes and haplotypes (which are made up of various gene 

CNVs). The KIR imputation was dependent on a key set of tag SNPs and not all of these were 

directly genotyped in the input datasets. To address this, the inclusion of imputed (using HRC) 

SNPs was evaluated to identify if these SNPs could act as tags for the KIR imputation. SNPs that 

had a HRC imputation quality of more than 0.3 were included in the input for the KIR*IMP 

imputation. The haplotype and CNV frequencies were considerably different between the 

datasets which caused concern, since all four datasets were of European ancestry, it would be 

expected that the frequencies would be similar. No further exclusions were made in the four 

datasets because the study design required signals be significant in three of the four datasets 
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which mitigated the likelihood of false positive associations. Chapter six describes the first KIR 

association meta-analysis of IPF susceptibility across four IPF datasets. A four-way meta-

analysis was undertaken on KIR haplotypes and gene copy number variations (CNVs). No 

haplotypes passed a Bonferroni corrected significance threshold (corrected for number of 

haplotypes tested). Haplotype 8 was the most statistically significant which was a B haplotype 

and made up on average 2% of the haplotypes in the individuals of the four IPF datasets. 

Haplotype 8 did not pass suggestive significance thresholds in two of the four datasets 

(P<0.05), however it did pass the threshold in the Colorado dataset and was close in the UUS 

dataset (P=0.06) suggesting this haplotype could be of interest. No CNVs passed the 

Bonferroni corrected significance threshold (corrected for the number of CNVs tested) but the 

most significant signal was copy number variation in KIR3DP1.   

7.3 Clinical implications of the work undertaken in this thesis 

Overall, the work in this thesis was not able to detect any associations int these regions which 

suggests that there are no large-effect associations with HLA and KIR variation and IPF 

susceptibility, although the suggestive findings may represent variants which make small 

contributions to genetic risk. Most notably, a novel signal was identified in the HLA region for 

IPF susceptibility (rs3132684 near ZNRD1ASP). There was high confidence in this signal for 

several reasons: the signal was extremely well imputed across the three datasets analysed 

(imputed at an info score of 1.00), it was not rare (coded allele frequency ranged between 

0.32-0.34 across studies) and the p-values and effect sizes were similar across the three 

datasets. In order to gain further confidence, this signal should be replicated in additional 

independent IPF datasets. One concern with this variant is why the SNP had not been detected 

in the previous GWAS of IPF susceptibility (1-5). In the IPF meta-analysis in 2020 (1), the 

variant was tested across the four IPF datasets, the variant was in the same direction of affect 

across the four datasets, however the P-value was not statistically significant (P=0.017) which 

could be due to the inclusion of all four datasets (including the Colorado dataset which 

included different phenotypes) or the different covariates used (1). The variant was associated 

with respiratory, autoimmune, and inflammatory traits and with the expression of several HLA 

and non-HLA genes, therefore suggests this variant is of interest for the underlying biological 

processes behind IPF development. Further characterisation of this signal to identify the 

pathways the variant is involved in and associations of this variant with gene expression in 

relevant cells and tissues could help identify new processes and pathways involved in the 

development of IPF and suggest new drug targets. Specifically targeting HLA class I, II or III HLA 

genes could reduce the downstream immune and inflammatory response initiated by Class I or 
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II genes as a response to for example a viral infection in the lung. In order to improve our 

understanding of the novel signal further, the analysis should be updated as new samples 

become available, they could either be incorporated into the meta-analysis or they could be 

used as replication datasets. Additionally, the credible set for the novel signal was very large 

(190 SNPs), it would therefore be useful to improve the fine mapping in these analyses to 

reduce the size of the credible sets in SNP signals that don’t tag a specific HLA gene allele or 

amino acid. Fine mapping can be improved through increased sample sizes, use of denser 

panels, inclusion of multiple ancestries, incorporation of functional annotation and better 

methodologies. Utilising the HLA imputation method described in Chapter 2 potentially acts as 

a fine-mapping technique as you can map a SNP to a specific HLA gene allele or amino acid 

change however the signal identified in the HLA-wide meta-analysis was not associated with 

any specific HLA gene allele or amino acid change. 

The previously reported HLA signal (HLA*DQB1*06:02) did not replicate in the three 

independent IPF datasets in this study (UK, UUS, Chicago). Although the signal was reported 

and replicated in independent populations by Fingerlin et al (5), it is notable that those 

populations included other fibrotic idiopathic interstitial pneumonias (fIIPs) (such as non-

specific interstitial pneumonia, cryptogenic organizing pneumonia (COP), respiratory 

bronchiolitis-associated interstitial lung disease (RB-ILD) or desquamative interstitial 

pneumonia (DIP)). COP (211), RB-ILD (212) and DIP (213) all have an inflammatory component 

but they only make up ~1% of the cases in the Colorado dataset (5). 21% of the Colorado 

dataset consisted of non-specific pneumonia cases and unclassified interstitial pneumonias 

(not including COP, DIP or RB-ILD), it is possible that some of these cases have an ILD with a 

significant immune component such as Rheumatoid Arthritis ILD (RA-ILD) in which HLA-DRB1 

and HLA-DQB1 alleles (including HLA-DRB1*15:01 and HLA-DQB1*06-02) have already been 

identified as significantly associated (HLA-DRB1*15 with an effect size of 1.75 and HLA-

DQB1*06 with an effect size of 0.57) (198, 199). The findings in this thesis suggests that the 

HLA-DQB1*06-02 signal may reflect inclusion of non-IPF ILD in the Colorado dataset for which 

HLA variation is important.  

Although this thesis did not confirm the presence of MUC5B interaction signals across the HLA 

region in IPF susceptibility, the analysis provided some interesting findings which could help 

identify different biological pathways in MUC5B positive and MUC5B negative groups. Five 

suggestively significant signals were identified including rs9265961 (intronic variant located 

near LOC112267902 an RNA gene in the ncRNA class) where the minor allele was associated 

with reduced risk of IPF and was also found to be associated with reduced expression of 
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several genes including HLA-C and MICA. This finding appears to fit with a previous study that 

saw increased levels of MICA in IPF lungs (177). Since this variant was associated with a 

suggestively significantly reduced risk of IPF only in people who carried no copies of the 

MUC5B IPF risk allele, this could provide important insight when considering precision 

medicine approaches to treatment.  

Since the work began on this thesis a new study has since emerged to suggest that viral load in 

IPF lungs is minimal (185), it was found that there was no statistical difference of the 

expression of many viruses including EBV and herpesvirus between healthy control lungs and 

IPF case lungs (185). However, another recent study found reduced activity of natural killer 

cells in IPF lungs compared to healthy control lungs (214). Also, if there is no difference in viral 

load between people who had IPF and people who don’t, this does not rule out viral infection 

as a potential triggering factor before someone develops IPF. Further work could help 

decipher if infection prior to IPF diagnosis plays a role and also if viral infection has a role in 

the progression of IPF. Additional work could be undertaken to study viral infection genetic 

risk signals in IPF susceptibility to identify if there is any genetic overlap (for example a study in 

2017 utilised HLA imputation tool HIBAG (89) to fine-map signals from a GWAS of common 

infections (215)). If a signal in the HLA or KIR regions were identified to be associated with IPF 

in the analyses in this thesis, further wet laboratory analyses would be required such as 

quantifying the amount of protein in the lungs and identifying the affect of the variant in IPF 

lungs vs healthy lungs. These analyses would enable further characterisation of the variant and 

identify possible clinical application such as drug targeting or diagnostic methods.  

7.4 Strengths and limitations 

The biggest strength of this thesis is that it represents the largest HLA-wide association and 

KIR-wide association analyses for IPF susceptibility undertaken to date. The analyses utilised 

imputation that enabled analysis beyond simple SNP and indel variation across two complex 

loci (HLA and KIR). In the HLA association analysis this thesis, a total of 1,905 IPF cases and 

13,876 controls were analysed, and the cases included only clinician diagnosed IPF. The HLA 

imputation strategy is also novel, merging the SNP imputation panel and the bespoke HLA 

panel to incorporate a large quantity of SNPs as well as the HLA gene alleles and amino acid 

alleles has not been done in IPF before. Although SNPs in the KIR region have been included in 

previous GWAS, the structural complexity of the region means that the variation in the region 

cannot be appropriately capture by the analysis of only SNPs. This was the first IPF 

susceptibility study which incorporated KIR structural variation at the haplotype and gene copy 

number level.  
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The research involved in this thesis has some limitations. Most significantly the analyses across 

chapters 3, 4 and 6 were underpowered to detect association signals with small effects, 

particularly for low frequency and rare variants. Because IPF is a relatively rare lung disease, 

sample sizes were modest across all the analyses, despite multiple individual datasets from the 

UK, US and Europe being combined. To maximise power, meta-analyses were undertaken with 

all the datasets available at the time. This resulted in the largest HLA-wide association analysis 

and HLA-MUC5B interaction analysis undertaken to date. However, as all datasets were then 

included in the discovery endeavour, there were no further independent datasets available to 

replicate the findings. This limitation was mitigated by requiring signals to reach nominal 

significance in more than one contributing study, thereby reducing the likelihood of reporting 

false positive signals arising from one dataset. Even with incorporating all the datasets 

available, power was limited and this was reflected in power calculations especially in the 

interaction meta-analyses (which are classically less powered than logistic regression analyses) 

which suggested there was only a 17% power to detect associations (at a coded allele 

frequency of 10%, interaction effect size of 1.1, alpha of 0.05).  

A limitation of the HLA analyses in this thesis is that the HLA imputation imputed only classical 

HLA genes, however, since the analyses in this thesis were undertaken, a new HLA imputation 

method was released (216). MHC*IMP also enables the imputation of non-classical HLA genes 

(including HLA-E, HLA-F and HLA-G) which have been shown to be important in KIR recognition 

(HLA-E (217)) and autoimmune disorders (HLA-E and psoriasis (218) and HLA-G and Crohn's 

disease(219)) and polymorphic non-HLA genes including TAP1/TAP2 (involved in the HLA’s 

recognition of foreign bodies) and MICA/MICB (encode ligands for natural killer cell receptors) 

(216). Studies have shown that there is significantly increased expression of MICA alleles in IPF 

lungs (177), therefore incorporating the data from this imputation will allow an even more in-

depth analysis of polygenic classical HLA genes, non-classical HLA genes and non-HLA genes 

across the region and their role in IPF.  

Another limitation of the work undertaken in this thesis was the quality of the KIR imputation. 

There were frequency differences for many of the KIR haplotypes and CNVs between the IPF 

datasets which would not be expected since all cases and controls were of European descent. 

The poor imputation may have obscured true positive signals if they were not imputed 

correctly or efficiently throughout the datasets. KIR association analyses were undertaken with 

the caveat that a positive finding would need replication and validation through laboratory 

testing or typing by whole genome sequencing typing.  
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7.5 Future work 

Sample size, power, and genomic coverage 

Definitive studies about the role of HLA and KIR genetic variation in IPF susceptibility require 

larger sample sizes of well-phenotyped IPF cases and controls. to improve power. Improved 

SNP coverage in the HLA and KIR regions may also further improve the ability to impute gene 

alleles, amino acid changes, haplotypes and copy number variation. Since the analysis for this 

thesis was undertaken, an updated SNP imputation panel (TOPMed) has been released for use 

which contains 308,107,085 genetic variants across the autosomes and X chromosome (17). 

The analyses in this thesis only considered common variation (frequency > 1%) and therefore 

to further develop this work, rare variation could be tested to identify if rare variation in the 

HLA or KIR region are associated with IPF susceptibility. This could be done by utilising 

sequencing techniques including exome sequencing or long read sequencing to identify KIR 

CNVs, KIR haplotypes and HLA gene alleles. In addition to this, this thesis only studied the role 

of HLA and KIR variation but additional immune system genes such as the interleukin (IL) 

family of genes are also associated with immune response to viral infection that could 

contribute to IPF risk. Finally, whole genome sequencing would enable the analysis of rare 

variants and direct inference of HLA gene alleles, amino acid alleles and KIR haplotypes and 

CNVs more effectively. Long read sequencing is typically considered the gold standard 

approach for HLA and KIR typing however this approach is costly and is not currently possible 

in such large sample sizes in IPF.  

The role of HLA and KIR in IPF progression and survival: 

This thesis covered only the role of immune system genes in susceptibility to IPF however viral 

infection is well known to also be a major cause of exacerbation events, therefore these genes 

may have a role in IPF disease progression and survival time. Treatment options for IPF are 

currently limited and ineffective, therefore identifying genetic determinants of progression 

and survival is important because it may discover genes or proteins that could be targeted for 

personalised treatment options. This knowledge is currently limited because sample sizes are 

limited.  

7.5 Conclusion 

This thesis explored the role of complex genetic variation in the HLA and KIR regions in IPF 

susceptibility. Bespoke HLA and KIR imputation methods were utilised to test the association 

of variants across these regions. These analyses suggested that the previously reported HLA 

association (HLA-DQB1*06:02) was likely driven by other forms of fIIP that were included in 
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the original study and was likely not an important risk factor for IPF itself. Additionally, a novel 

signal in the HLA region was identified which was found to be associated with respiratory and 

autoimmune traits as well as differential expression of several HLA and non-HLA genes in lung 

tissue. However, this signal should be replicated in an additional independent dataset and 

validated to confirm its potential importance.  

Only suggestively significant signals were identified in the MUC5B interaction analysis. 

However, this study was underpowered, and these signals may pass significance thresholds 

when there is more data available. The findings in the interaction analyses seem to suggest a 

protective role of MICA in MUC5B negative IPF cases which could help to stratify IPF cases and 

to identify different biological pathways in the two case groups (MUC5B positive and MUC5B 

negative). No KIR CNVs or haplotypes passed statistical significance thresholds however 

measurement error in the imputation may have reduced power to detect true positive 

associations. As new datasets become available and power increases, the novel signal in the 

HLA-wide meta-analysis may be confirmed and the suggestive signals in the interaction meta-

analysis could pass significance thresholds. Although the analyses presented here have not 

provided definitive evidence for a role of HLA or KIR variation in IPF susceptibility, the findings 

suggest that larger studies with more accurate and comprehensive imputation may identify 

new genetic variants that contribute to genetic risk, albeit with small effect sizes. 
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Supplementary Data 

Chapter one supplementary data: 
 

Supplementary table 1.1: Relationship between KIR types. KIR Haplotype was the haplotype classification defined 

by (148), AvsB corresponds to the broad A/B haplotype classification, all the other gene columns show the copy 

number of each individuals KIR gene. Each KIR Haplotype was defined by the copy number values across each of 

the 17 KIR genes, table from (152). 
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18 B 1 1 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 
19 B 1 1 2 0 0 0 2 2 0 0 2 2 0 2 1 0 0 0 1 
20 B 1 0 0 1 1 1 2 2 1 1 1 0 0 0 0 1 1 0 1 
21 B 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 
22 B 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
23 B 1 0 0 1 2 2 2 2 1 1 1 1 1 0 0 1 0 1 1 
24 B 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 
25 B 1 1 1 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 1 
27 A 1 0 0 1 1 0 1 1 1 1 0 0 0 0 0 1 0 1 1 
28 B 1 0 0 1 1 1 2 2 0 0 2 1 0 1 1 0 0 0 1 
29 B 1 1 1 0 1 1 2 2 1 1 1 1 1 0 0 1 0 1 1 
30 B 1 1 1 0 0 0 2 2 1 1 1 0 0 0 0 1 0 1 1 
31 B 1 0 1 0 1 1 1 1 1 1 0 1 0 1 0 1 1 0 1 
33 B 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 
34 A 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 
36 B 1 1 1 0 2 2 2 2 0 0 2 1 2 0 1 0 0 0 1 
38 B 1 0 0 1 2 2 2 2 0 0 2 1 0 1 1 0 0 0 1 
40 B 1 1 1 0 2 2 1 1 0 0 1 2 1 1 0 0 0 0 1 
41 B 1 1 1 0 1 2 1 1 0 0 1 2 2 0 1 0 0 0 1 
42 B 1 1 2 0 0 0 2 2 1 1 1 1 0 1 0 1 0 1 1 
44 B 1 1 1 0 1 1 1 1 0 0 1 2 0 1 1 0 0 0 1 
42 B 1 1 1 0 1 1 1 1 0 0 1 2 1 1 0 0 0 0 1 
46 B 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 
48 A 1 0 0 1 1 1 1 1 1 2 0 0 0 0 0 2 2 0 1 
50 B 1 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 1 0 1 
52 B 1 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 
53 B 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 
55 A 1 0 0 0 1 2 1 1 1 1 0 0 0 0 0 1 1 0 1 
56 B 1 1 1 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 
57 A 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 1 0 1 1 
58 A 1 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 1 
59 A 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 
68 B 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 1 1 
69 B 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 
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Chapter two supplementary data: 

Principal Component Analysis: 

 
Supplementary figure 2.1: Plot of principal component one and principal component two in 

the UK IPF dataset. Cases and controls from the UK dataset (named ‘sample’ [pink]) overlay 

European ancestry samples from HapMap.  
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Supplementary figure 2.2: Plot of principal component one and principal component two in 

the Colorado IIP dataset. Cases and controls from the Colorado dataset (named ‘sample’ 

[pink]) overlay European ancestry samples from HapMap.  
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Supplementary figure 2.3: Plot of principal component one and principal component two in 

the Chicago IPF dataset. Cases and controls from the Chicago dataset (named ‘sample’ 

[purple]) overlay European ancestry samples from HapMap.  

 

 

 

 
Supplementary figure 2.4: Plot of principal component one and principal component two in 

the UUS IPF dataset. Cases and controls from the UUS dataset (named ‘sample’ [pink]) 

overlay European ancestry samples from HapMap. 
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Chapter three supplementary data: 

Meta-analyses of the HLA region of IPF susceptibility in UK, Colorado and Chicago 

datasets: 

 

Supplementary figure 3.1: Manhattan plot of the analysis of the HLA region for IPF 

susceptibility in the Chicago IPF cohort (the green variants are all the variants that passed 

the suggestive significance threshold). Blue line is suggestive significance threshold of 

P<5x10-3). 
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Supplementary figure 3.2: Manhattan plot of the analysis of the HLA region for IPF 

susceptibility in the Colorado IPF cohort (the green variants are all the variants that passed 

the suggestive significance threshold). Blue line is Bonferroni significance threshold of 

P<2.8x10-6). 
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Supplementary figure 3.3; Region plot of HLA-DQB1*06:02 over the whole HLA region 

(28477797-33448354 bp) for the replication of this signal in the UK IPF dataset. Green line is 

suggestive significance threshold of P<5x10-3). 

 

 

Supplementary figure 3.4; Region plot of HLA-DQB1*06:02 over the whole HLA region 

(28477797-33448354 bp) for the replication of this signal in the Chicago IPF dataset. Green 

line is suggestive significance threshold of P<5x10-3). 
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Supplementary figure 3.5: Region plot of rs7754402 over the whole HLA region (28477797-

33448354 bp) in a meta-analysis for IPF susceptibility using the UK, Colorado and Chicago 

IPF datasets. Green line is suggestive significance threshold of P<5x10-3). 

 

 

 

Supplementary figure 3.6: Region plot of rs3135350 over the whole HLA region (28477797-

33448354 bp) in a meta-analysis for IPF susceptibility using the UK, Colorado and Chicago 

IPF datasets. Green line is suggestive significance threshold of P<5x10-3). 
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Supplementary figure 3.7: Region plot of HLA-DQB1*06:02 over the whole HLA region 

(28477797-33448354 bp) in a meta-analysis for IPF susceptibility using the UK, Colorado and 

Chicago IPF datasets. Green line is suggestive significance threshold of P<5x10-3). 

 

HLA-wide association meta-analysis of IPF susceptibility in the UK, Chicago and UUS 

datasets: 
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Supplementary figure 3.8: Manhattan plot of the analysis of the HLA region for IPF 

susceptibility in the UUS IPF cohort (the green variants are all the variants that passed the 

suggestive significance threshold). Blue line is suggestive significance threshold of P<5x10-5). 

 

 

 

 

 

Supplementary figure 3.9: Region plot of rs3132684 over the whole HLA region (28477797-

33448354 bp) in a meta-analysis for IPF susceptibility using the UK, UUS and Chicago IPF 

datasets. Green line is Bonferroni significance threshold of P<2.8x10-6 and red line is genome-

wide significance of P<5x10-8). 

 

Supplementary table 3.1: Table of Phenoscanner results for the lead SNP and SNPs in the 

credible set. Showing results for the most significant SNP for each trait.  

SNP Position Alleles Trait Reference P-value 

rs2735076 29943490 G/A Allergic disease (220) 2.35x10-9 

rs4713279 29944896 A/T Eosinophil count (221) 4.91x10-42 
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rs4713279 29944896 A/T Eosinophil percentage of 

granulocytes 

(221) 2.11x10-25 

rs4713279 29944896 A/T Eosinophil percentage of 

white cells 

(221) 1.45x10-29 

rs2517917 29781020 T/C Granulocyte count (221) 4.62x10-14 

rs2735076 29943490 G/A Hayfever, allergic rhinitis or 

eczema 

UKBB 5.56x10-15 

rs3823377 29944253 A/C IgA deficiency (222) 3.49x10-12 

rs28698309 29758393 A/C Lymphocyte count (221) 2.06x10-20 

rs28698309 29758393 A/C Monocyte count (221) 1.31x10-15 

rs2517917 29781020 T/C Myeloid white cell count (221) 4.62x10-14 

rs2517917 29781020 T/C Neutrophil count (221) 4.27x10-15 

rs4713279 29944896 A/T Neutrophil percentage of 

granulocytes 

(221) 1.83x10-21 

rs3823377 29944253 A/C Peak expiratory flow UKBB 3.34x10-11 

rs2517917 29781020 T/C Primary sclerosing 

cholangitis 

(223) 1.80x10-74 

rs4713279 29944896 A/T Rheumatoid arthritis (119) 5.90x10-35 

rs3823377 29944253 A/C Self-reported ankylosing 

spondylitis 

UKBB 1.20x10-8 

rs9295829 30028800 A/G Self-reported 

malabsorption or coeliac 

disease 

UKBB 2.76x10-28 

rs9295829 30028800 A/G Self-reported multiple 

sclerosis 

UKBB 2.63x10-14 

rs380924 29939885 G/A Self-reported psoriasis UKBB 9.18x10-23 

rs2523957 29940260 G/A Self-reported psoriatic 

arthropathy 

UKBB 2.89x10-8 

rs4713279 29944896 A/T Sum eosinophil basophil 

counts 

(221) 3.41x10-38 

rs2517917 29781020 T/C Sum neutrophil eosinophil 

counts 

(221) 3.18x10-14 

rs3823375 29944158 C/T Ulcerative colitis (109) 2.26x10-14 

rs9261306 30045731 C/T White blood cell count (221) 8.18x10-17 
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Supplementary table 3.2: Results from a GTEx search for the rs3132684 SNP that pass 

Bonferroni corrected threshold of 0.001 (corrected for number of tissues). 

Lead SNP Gene 

Symbol 

P-Value Tissue 

rs3132684 HCP5B 6.60X10-52 Adipose - Subcutaneous 

HCG4P3 1.50X10-27 Adipose - Subcutaneous 

HLA-H 7.70X10-10 Adipose - Subcutaneous 

HCG4P7 3.50X10-6 Adipose - Subcutaneous 

HLA-J 1.20X10-5 Adipose - Subcutaneous 

ZFP57 1.40X10-5 Adipose - Subcutaneous 

MICE 2.00X10-5 Adipose - Subcutaneous 

RPL23AP1 1.80X10-4 Adipose - Subcutaneous 

HCP5B 7.90X10-30 Adipose - Visceral (Omentum) 

HCG4P3 2.10X10-22 Adipose - Visceral (Omentum) 

HLA-J 7.70X10-13 Adipose - Visceral (Omentum) 

HCG4P7 2.30X10-7 Adipose - Visceral (Omentum) 

HLA-H 3.40X10-7 Adipose - Visceral (Omentum) 

ZFP57 2.60X10-6 Adipose - Visceral (Omentum) 

RPL23AP1 1.60X10-4 Adipose - Visceral (Omentum) 

HCP5B 1.80X10-27 Adrenal Gland 

HCG4P3 1.20X10-14 Adrenal Gland 

HLA-K 1.20X10-6 Adrenal Gland 

HCG4P7 2.00X10-5 Adrenal Gland 

ZNRD1ASP 1.20X10-4 Adrenal Gland 

HCP5B 3.40X10-24 Artery - Aorta 

HCG4P3 3.80X10-6 Artery - Aorta 

HLA-K 1.10X10-9 Artery - Aorta 

HLA-J 2.10X10-8 Artery - Aorta 

ZNRD1ASP 4.60X10-6 Artery - Aorta 

ZFP57 6.30X10-5 Artery - Aorta 

RNF39 1.10X10-4 Artery - Aorta 

HCG4 1.30X10-4 Artery - Aorta 
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HCG4B 3.10X10-4 Artery - Aorta 

HCP5B 7.80X10-12 Artery - Coronary 

HCG4P3 8.90X10-9 Artery - Coronary 

HCP5B 6.20X10-39 Artery - Tibial 

HCG4P3 2.20X10-24 Artery - Tibial 

HLA-J 1.30X10-11 Artery - Tibial 

ZNRD1ASP 2.00X10-8 Artery - Tibial 

ZFP57 1.60X10-7 Artery - Tibial 

RNF39 1.60X10-7 Artery - Tibial 

HLA-H 3.60X10-5 Artery - Tibial 

HCP5B 3.10X10-9 Brain - Amygdala 

HLA-K 6.30X10-8 Brain - Amygdala 

HCG4P3 1.20X10-5 Brain - Amygdala 

HCP5B 3.70X10-16 Brain - Anterior cingulate cortex (BA24) 

HCG4P3 2.20X10-5 Brain - Anterior cingulate cortex (BA24) 

HLA-K 4.00X10-5 Brain - Anterior cingulate cortex (BA24) 

HCP5B 2.50X10-20 Brain - Caudate (basal ganglia) 

HCG4P3 1.20X10-11 Brain - Caudate (basal ganglia) 

HLA-K 5.60X10-11 Brain - Caudate (basal ganglia) 

RNF39 4.10X10-8 Brain - Caudate (basal ganglia) 

HLA-H 4.30X10-6 Brain - Caudate (basal ganglia) 

HCP5B 1.10X10-18 Brain - Cerebellar Hemisphere 

HLA-H 2.80X10-12 Brain - Cerebellar Hemisphere 

HCG4P3 5.60X10-11 Brain - Cerebellar Hemisphere 

HCG4 6.10X10-7 Brain - Cerebellar Hemisphere 

RNF39 8.40X10-7 Brain - Cerebellar Hemisphere 

HLA-F 9.70X10-7 Brain - Cerebellar Hemisphere 

HLA-V 1.60X10-6 Brain - Cerebellar Hemisphere 

HLA-W 3.30X10-5 Brain - Cerebellar Hemisphere 

ZNRD1ASP 5.60X10-5 Brain - Cerebellar Hemisphere 

HCP5B 5.00X10-18 Brain - Cerebellum 

HCG4P3 2.10X10-15 Brain - Cerebellum 

HLA-H 1.60X10-12 Brain - Cerebellum 
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HLA-F 2.30X10-8 Brain - Cerebellum 

HCG4 5.20X10-8 Brain - Cerebellum 

RNF39 5.30X10-8 Brain - Cerebellum 

HLA-W 3.10X10-7 Brain - Cerebellum 

HLA-V 3.80X10-7 Brain - Cerebellum 

ZNRD1ASP 2.90X10-6 Brain - Cerebellum 

HCG4P7 4.80X10-5 Brain - Cerebellum 

HCP5B 3.00X10-19 Brain - Cortex 

HLA-K 3.20X10-13 Brain - Cortex 

HCG4P3 2.50X10-10 Brain - Cortex 

RNF39 5.10X10-6 Brain - Cortex 

HLA-H 2.60X10-5 Brain - Cortex 

HLA-J 8.80X10-5 Brain - Cortex 

HCP5B 1.90X10-11 Brain - Frontal Cortex (BA9) 

HCG4P3 4.40X10-9 Brain - Frontal Cortex (BA9) 

HLA-K 6.10X10-8 Brain - Frontal Cortex (BA9) 

HCP5B 2.40X10-11 Brain - Hippocampus 

HCG4P3 2.30X10-6 Brain - Hippocampus 

HLA-H 9.10X10-6 Brain - Hippocampus 

HLA-K 7.50X10-5 Brain - Hippocampus 

HCP5B 3.10X10-23 Brain - Hypothalamus 

HLA-K 3.80X10-10 Brain - Hypothalamus 

HCG4P3 1.00X10-9 Brain - Hypothalamus 

HCG4 6.30X10-6 Brain - Hypothalamus 

HLA-H 6.20X10-5 Brain - Hypothalamus 

RNF39 7.60X10-5 Brain - Hypothalamus 

HCP5B 2.90X10-20 Brain - Nucleus accumbens (basal 

ganglia) 

HLA-K 2.70X10-11 Brain - Nucleus accumbens (basal 

ganglia) 

HCG4P3 4.60X10-10 Brain - Nucleus accumbens (basal 

ganglia) 
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RNF39 1.70X10-6 Brain - Nucleus accumbens (basal 

ganglia) 

HCP5B 3.30X10-17 Brain - Putamen (basal ganglia) 

RNF39 2.30X10-10 Brain - Putamen (basal ganglia) 

HLA-K 4.10X10-10 Brain - Putamen (basal ganglia) 

HCG4P3 1.20X10-7 Brain - Putamen (basal ganglia) 

HCP5B 5.20X10-8 Brain - Spinal cord (cervical c-1) 

HLA-K 6.50X10-8 Brain - Spinal cord (cervical c-1) 

HCG4P3 5.80X10-5 Brain - Spinal cord (cervical c-1) 

RNF39 9.60X10-6 Brain - Substantia nigra 

HLA-K 1.60X10-5 Brain - Substantia nigra 

HCP5B 4.20X10-5 Brain - Substantia nigra 

HCP5B 2.30X10-30 Breast - Mammary Tissue 

HCG4P3 2.10X10-12 Breast - Mammary Tissue 

HLA-H 3.40X10-6 Breast - Mammary Tissue 

HLA-K 4.20X10-6 Breast - Mammary Tissue 

ZFP57 5.50X10-5 Breast - Mammary Tissue 

HCG4P5 1.60X10-4 Breast - Mammary Tissue 

MICE 2.30X10-4 Breast - Mammary Tissue 

HCG4P3 1.60X10-14 Cells - Cultured fibroblasts 

HLA-J 5.70X10-10 Cells - Cultured fibroblasts 

HCG4 1.90X10-8 Cells - Cultured fibroblasts 

HLA-H 3.50X10-8 Cells - Cultured fibroblasts 

HLA-A 1.50X10-5 Cells - Cultured fibroblasts 

ZFP57 1.50X10-5 Cells - Cultured fibroblasts 

HCG18 9.80X10-5 Cells - Cultured fibroblasts 

HLA-F 1.80X10-4 Cells - Cultured fibroblasts 

HLA-U 2.40X10-4 Cells - Cultured fibroblasts 

HCG4P7 4.30X10-4 Cells - Cultured fibroblasts 

HCP5B 1.70X10-9 Cells - EBV-transformed lymphocytes 

HLA-F 6.90X10-5 Cells - EBV-transformed lymphocytes 

HCP5B 1.10X10-20 Colon - Sigmoid 

HCG4P3 6.30X10-20 Colon - Sigmoid 
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HLA-K 1.10X10-11 Colon - Sigmoid 

ZFP57 2.80X10-5 Colon - Sigmoid 

HLA-J 8.10X10-5 Colon - Sigmoid 

HCP5B 3.80X10-31 Colon - Transverse 

HCG4P3 4.40X10-22 Colon - Transverse 

HLA-K 2.60X10-8 Colon - Transverse 

HCG4P5 1.20X10-6 Colon - Transverse 

ZFP57 2.50X10-6 Colon - Transverse 

HLA-H 8.20X10-5 Colon - Transverse 

HLA-J 1.10X10-4 Colon - Transverse 

HCP5B 5.00X10-23 Esophagus - Gastroesophageal Junction 

HCG4P3 7.60X10-15 Esophagus - Gastroesophageal Junction 

HLA-J 4.10X10-9 Esophagus - Gastroesophageal Junction 

HLA-K 2.30X10-7 Esophagus - Gastroesophageal Junction 

HLA-A 6.10X10-6 Esophagus - Gastroesophageal Junction 

HCP5B 1.80X10-26 Esophagus - Mucosa 

HLA-K 4.00X10-22 Esophagus - Mucosa 

HCG4P3 9.90X10-18 Esophagus - Mucosa 

HLA-J 2.10X10-9 Esophagus - Mucosa 

HLA-H 7.00X10-8 Esophagus - Mucosa 

ZFP57 1.30X10-6 Esophagus - Mucosa 

HCG4B 2.90X10-6 Esophagus - Mucosa 

SFTA2 2.80X10-5 Esophagus - Mucosa 

ZNRD1 9.00X10-5 Esophagus - Mucosa 

HCG4 1.70X10-4 Esophagus - Mucosa 

HCP5B 7.50X10-44 Esophagus - Muscularis 

HCG4P3 2.80X10-32 Esophagus - Muscularis 

HLA-J 1.40X10-11 Esophagus - Muscularis 

HLA-K 2.60X10-9 Esophagus - Muscularis 

HLA-A 4.70X10-7 Esophagus - Muscularis 

HCG9 4.50X10-6 Esophagus - Muscularis 

ZFP57 2.80X10-4 Esophagus - Muscularis 

RPL23AP1 3.70X10-4 Esophagus - Muscularis 
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HCP5B 6.60X10-18 Heart - Atrial Appendage 

HCG4P3 1.40X10-17 Heart - Atrial Appendage 

HCG9 3.00X10-8 Heart - Atrial Appendage 

HLA-K 1.60X10-6 Heart - Atrial Appendage 

ZFP57 5.40X10-5 Heart - Atrial Appendage 

HLA-A 1.30X10-4 Heart - Atrial Appendage 

HCG4P3 1.10X10-23 Heart - Left Ventricle 

HCP5B 7.70X10-20 Heart - Left Ventricle 

HCG9 2.20X10-7 Heart - Left Ventricle 

HLA-H 2.50X10-6 Heart - Left Ventricle 

HLA-V 7.60X10-6 Heart - Left Ventricle 

HLA-K 1.70X10-5 Heart - Left Ventricle 

ZNRD1 1.20X10-4 Heart - Left Ventricle 

HCP5B 4.80X10-7 Kidney - Cortex 

HCP5B 1.30X10-10 Liver 

HLA-K 3.60X10-8 Liver 

HLA-F 5.40X10-5 Liver 

HCP5B 1.80X10-39 Lung 

HCG4P3 1.00X10-25 Lung 

HLA-H 3.00X10-9 Lung 

HLA-V 2.60X10-7 Lung 

HCG4P7 1.60X10-6 Lung 

HCP5B 1.10X10-7 Minor Salivary Gland 

HLA-K 3.70X10-6 Minor Salivary Gland 

HCG4P3 1.60X10-5 Minor Salivary Gland 

HCP5B 3.20X10-30 Muscle - Skeletal 

HLA-H 1.20X10-14 Muscle - Skeletal 

HCG4P3 1.40X10-10 Muscle - Skeletal 

HLA-J 9.30X10-9 Muscle - Skeletal 

ZNRD1ASP 1.80X10-5 Muscle - Skeletal 

TRIM26 2.80X10-4 Muscle - Skeletal 

HCP5B 8.10X10-45 Nerve - Tibial 

HCG4P3 3.20X10-27 Nerve - Tibial 
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HLA-J 2.20X10-15 Nerve - Tibial 

HLA-H 1.80X10-10 Nerve - Tibial 

RNF39 5.00X10-6 Nerve - Tibial 

ZNRD1 2.20X10-5 Nerve - Tibial 

MICD 3.60X10-5 Nerve - Tibial 

ZFP57 5.20X10-5 Nerve - Tibial 

MICE 1.80X10-4 Nerve - Tibial 

HCP5B 9.30X10-16 Ovary 

HCG4P3 2.40X10-13 Ovary 

HLA-J 3.50X10-9 Ovary 

HCP5B 7.40X10-23 Pancreas 

HLA-J 2.80X10-5 Pancreas 

HCG4P3 9.20X10-5 Pancreas 

HCP5B 1.80X10-27 Pituitary 

HCG4P3 4.20X10-12 Pituitary 

HLA-V 6.30X10-5 Pituitary 

HCP5B 5.20X10-17 Prostate 

HCG4P3 6.20X10-11 Prostate 

HCP5B 1.20X10-28 Skin - Not Sun Exposed (Suprapubic) 

HCG4P3 3.00X10-15 Skin - Not Sun Exposed (Suprapubic) 

HLA-K 4.60X10-13 Skin - Not Sun Exposed (Suprapubic) 

HLA-V 1.40X10-11 Skin - Not Sun Exposed (Suprapubic) 

HLA-A 1.10X10-4 Skin - Not Sun Exposed (Suprapubic) 

HLA-H 2.40X10-4 Skin - Not Sun Exposed (Suprapubic) 

HCP5B 1.90X10-46 Skin - Sun Exposed (Lower leg) 

HCG4P3 1.50X10-20 Skin - Sun Exposed (Lower leg) 

HLA-K 1.50X10-13 Skin - Sun Exposed (Lower leg) 

ZFP57 6.10X10-9 Skin - Sun Exposed (Lower leg) 

HLA-V 1.50X10-7 Skin - Sun Exposed (Lower leg) 

HLA-F 2.40X10-7 Skin - Sun Exposed (Lower leg) 

HLA-H 1.20X10-5 Skin - Sun Exposed (Lower leg) 

MICE 4.40X10-5 Skin - Sun Exposed (Lower leg) 

ZNRD1ASP 2.30X10-4 Skin - Sun Exposed (Lower leg) 
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HCP5B 1.30X10-14 Small Intestine - Terminal Ileum 

HCG4P3 8.20X10-12 Small Intestine - Terminal Ileum 

HLA-K 5.10X10-7 Small Intestine - Terminal Ileum 

HLA-J 5.80X10-5 Small Intestine - Terminal Ileum 

HCG4P3 2.20X10-19 Spleen 

HCP5B 7.60X10-17 Spleen 

HLA-J 2.40X10-7 Spleen 

HLA-H 2.70X10-6 Spleen 

HCP5B 4.70X10-29 Stomach 

HCG4P3 7.10X10-19 Stomach 

HLA-K 1.10X10-10 Stomach 

HLA-J 6.40X10-8 Stomach 

MICE 7.50X10-5 Stomach 

HCG4P3 7.30X10-22 Testis 

HCP5B 7.50X10-20 Testis 

HLA-J 2.00X10-14 Testis 

HLA-K 2.40X10-9 Testis 

HLA-H 1.00X10-6 Testis 

ZDHHC20P

1 

3.80X10-6 Testis 

HLA-A 3.80X10-6 Testis 

HCG4B 4.70X10-5 Testis 

HLA-G 1.20X10-4 Testis 

HCP5B 5.30X10-60 Thyroid 

HCG4P3 2.40X10-39 Thyroid 

HLA-J 1.20X10-18 Thyroid 

HLA-A 2.40X10-14 Thyroid 

ZFP57 1.00X10-9 Thyroid 

RNF39 8.10X10-8 Thyroid 

ZNRD1ASP 9.70X10-6 Thyroid 

FLOT1 1.40X10-5 Thyroid 

HLA-V 2.00X10-5 Thyroid 

HLA-H 2.10X10-5 Thyroid 
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MICE 9.20X10-5 Thyroid 

HCG4 9.30X10-5 Thyroid 

HLA-F-AS1 4.70X10-4 Thyroid 

HCG4P3 8.30X10-10 Uterus 

HCP5B 1.20X10-9 Uterus 

HCP5B 6.10X10-13 Vagina 

HCG4P3 4.70X10-7 Vagina 

HLA-K 4.60X10-5 Vagina 

HCP5B 6.30X10-25 Whole Blood 

HCG4P3 2.10X10-22 Whole Blood 

HLA-H 2.40X10-10 Whole Blood 

HCG9 1.70X10-8 Whole Blood 

HLA-F-AS1 2.00X10-8 Whole Blood 

DDX39BP2 2.20X10-8 Whole Blood 

ZFP57 4.30X10-7 Whole Blood 

ZNRD1 1.90X10-6 Whole Blood 

HCG4P7 5.30X10-6 Whole Blood 

IFITM4P 1.60X10-5 Whole Blood 

HLA-J 4.20X10-5 Whole Blood 

MICD 3.20X10-4 Whole Blood 
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Chapter four supplementary data: 

A meta-analysis of results from interaction analyses of MUC5B risk allele status and 

SNPs in the HLA region in IPF susceptibility in the UK and Colorado IPF datasets 

 

 

Supplementary figure 4.1: Manhattan plot of the HLA region for the MUC5B interaction 

analysis of IPF susceptibility in the Colorado IPF dataset (the green variants are all the 

variants that passed the suggestive significance threshold). Blue line is suggestive 

significance threshold of P<5x10-3). 
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Supplementary figure 4.2: Manhattan plot of the HLA region for the MUC5B interaction 

analysis of IPF susceptibility in the UUS IPF dataset (the green variants are all the variants 

that passed the suggestive significance threshold). Blue line is suggestive significance 

threshold of P<5x10-3). 
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Supplementary figure 4.3: Region plot of rs145912914 over the whole HLA region 

(28477797-33448354 bp) for a SNP-SNP interaction meta-analysis with MUC5B in IPF 

susceptibility. Green line is suggestive significance threshold of P<5x10-3). 

 

 

 

Supplementary figure 4.4: Region plot of rs7774158 over the whole HLA region (28477797-

33448354 bp) for a SNP-SNP interaction meta-analysis with MUC5B in IPF susceptibility. 

Green line is suggestive significance threshold of P<5x10-3). 
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Supplementary figure 4.5: Region plot of rs753712672 over the whole HLA region 

(28477797-33448354 bp) for a SNP-SNP interaction meta-analysis with MUC5B in IPF 

susceptibility. Green line is suggestive significance threshold of P<5x10-3). 

 

 

Supplementary figure 4.6: Region plot of rs9265961 over the whole HLA region (28477797-

33448354 bp) for a SNP-SNP interaction meta-analysis with MUC5B in IPF susceptibility. 

Green line is suggestive significance threshold of P<5x10-3). 
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Supplementary figure 4.7: Region plot of rs3909115 over the whole HLA region (28477797-

33448354 bp) for a SNP-SNP interaction meta-analysis with MUC5B in IPF susceptibility. 

Green line is suggestive significance threshold of P<5x10-3). 
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Supplementary table 4.1: Independent signals (P<5x10-3) in an interaction meta-analyses of MUC5B risk allele status and the HLA region analyses of IPF 
susceptibility in the UK, UUS and Colorado IPF datasets. Variants with an asterisk are in the same direction of effect in all datasets and has p-values of < 0.05 in at 
least two datasets. 
Dataset rsid BP 

Position 
Nearest Gene Coded/ 

Non-coded 
allele  

Info Score Coded 
allele 
frequency 

P-Value OR 
(95% CI) 

Meta-
Analysis  
P-value 

Meta-
Analysis 
OR 
(95% CI) 

UK rs145912914* 
 

32887150 
 

LOC100294145  
 

G/C 0.99 0.02 7.70x10-3 0.30 
(0.12-0.72) 

1.45x10-4 
 

0.44 
(0.29-0.67) 

Colorado 0.99 0.02 0.036 0.53 
(0.29-0.96) 

UUS 0.99 0.02 0.045 0.43 
(0.19-0.98) 

UK rs7774158* 
 

33007752 
 

HLA-DOA 
 

C/A 1.00 0.35 9.42x10-3 0.70 
(0.53-0.92) 

1.53x10-4 
 

0.78 
(0.69-0.89) 

Colorado 1.00 0.35 0.065 0.84 
(0.69-1.01) 

UUS 1.00 0.34 0.020 0.76 
(0.60-0.96) 

UK rs114334832 
 

32118085 
 

PRRT-1 A/G 0.65 0.01 0.056 0.35 
(0.12-1.03) 

4.46x10-4 
 

0.38 
(0.22-0.65) 

Colorado 0.65 0.01 0.051 0.42 
(0.18-1.00) 

UUS 0.63 0.01 0.026 0.36 
(0.15-0.89) 

UK rs753712672* 
 

31292555 
 

LOC112267902  
 

A/G 0.56 0.22 7.27x10-3 0.65 
(0.48-0.89) 

6.10x10-4 
 

0.70 
(0.57-
0.863) Colorado NA NA NA NA 

UUS 0.57 0.21 0.028 0.74 
(0.56-0.97) 

UK rs9265961* 
 

31315501 
 

LOC112267902  
 

A/G 1.00 0.34 0.847 0.97 
(0.74-1.28) 

1.13x10-3 
 

0.80 
(0.71-0.92) 

Colorado 0.8 0.29 6.16x10-3 0.76 
(0.63-0.93) 
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UUS 1.300 0.33 0.019 0.76 
(0.60-0.96) 

UK rs200777418 
 

30996959 
 

MUC22 
(missense 
coding) 

G/A 0.62 0.04 0.062 0.54 
(0.28-1.03) 

2.88x10-3 
 

0.62 
(0.45-0.85) 

Colorado 0.60 0.05 0.097 0.66 
(0.40-1.08) 

UUS 0.64 0.05 0.089 0.63 
(0.37-1.07) 

UK rs9275206 
 

32657565 
 

HLA-DQB1  
 

G/A 1.00 0.10 0.150 0.73 
(0.47-1.12) 

2.95x10-3 
 

0.72 
(0.57-0.89) 

Colorado 1.00 0.10 0.148 0.80 
(0.58-1.08) 

UUS 1.00 0.10 0.013 0.56 
(0.36-0.88) 

UK rs241447 
 

32796750 
 

TAP2 (missense 
coding) 

G/A 1.00 0.25 0.480 1.12 
(0.82-1.51) 

3.35x10-3 
 

1.24 
(1.07-1.44) 

Colorado 1.00 0.26 0.104 1.19 
(0.97-1.46) 

UUS 1.00 0.24 6.01x10-3 1.46 
(1.12-1.92) 

UK rs3869094 
 

30979558 
 

MUC22 T/C 1.00 0.41 0.566 1.08 
(0.83-1.40) 

3.66x10-3 
 

1.20 
(1.06-1.36) 

Colorado 1.00 0.43 0.093 1.17 
(0.97-1.40) 

UUS 1.00 0.41 7.35x10-3 1.36 
(1.09-1.70) 

UK rs3909115* 
 

30993188 
 

MUC22 A/C 0.99 0.25 0.578 1.09 
(0.81-1.46) 

4.13x10-3 
 

1.23 
(1.07-1.41) 

Colorado 0.99 0.27 0.038 1.24 
(1.01-1.51) 

UUS 0.99 0.25 0.031 1.32 
(1.03-1.71) 

UK rs139105056 
 

30565628 
 

ABCF1  
 

G/A 0.91 0.01 0.859 0.90 
(0.27-3.00) 

4.55x10-3 
 

2.07 
(1.24-3.41) 

Colorado 0.89 0.02 7.94x10-4 3.52 
(1.01-7.34) 
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UUS 0.85 0.02 0.301 1.55 
(0.68-3.56) 

UK rs714289 
 

32905811 
 

HLA-DMB A/G 1.00 0.06 0.062 0.58 
(0.33-1.03) 

4.91x10-3 
 

0.69 
(0.54-0.89) 

Colorado 1.00 0.06 0.303 0.82 
(0.56-1.20) 

UUS 1.00 0.06 0.030 0.62 
(0.40-0.96) 



   
 

Page | 195  
 

 

 

 

 

Supplementary table 4.3: Summary of results from a GTEx search of the five lead SNPs 

identified in the MUC5B interaction meta-analysis of IPF susceptibility. 

SNP SNP position Gene P-value Expression 

effect size 

Tissue 

rs9265961 31315501 PSORS1C1 1.46x10-10 0.44 Lung 

rs9265961 31315501 PSORS1C2 3.30x10-9 0.45 Lung 

rs9265961 31315501 HCG27 2.24x10-11 0.29 Lung 

rs9265961 31315501 HLA-C 7.77x10-15 -0.41 Lung 

rs9265961 31315501 XXbac-

BPG248L24.12 

5.50x10-8 0.39 Lung 

rs9265961 31315501 HLA-S 3.00x10-13 0.53 Lung 

rs9265961 31315501 XXbac-

BPG181B23.7 

5.26x10-11 -0.48 Lung 

rs9265961 31315501 MICA 2.97x10-8 -0.26 Lung 

rs9265961 31315501 ATP6V1G2 7.13x10-5 0.20 Lung 

rs9265961 31315501 LY6G5B 7.69x10-6 -0.11 Lung 

rs3909115 30993188 PSORS1C1 4.68x10-5 0.29 Lung 

 

Supplementary table 4.2: Effects of the signals from the HLA-wide variant*MUC5B 
interaction analyses in MUC5B positive and MUC5B negative individuals.  
rsid MUC5B positive results MUC5B negative results 

Meta-Analysis  
P-value 

Meta-Analysis OR 
(95% CI) 

Meta-Analysis  
P-value 

Meta-
Analysis OR 
(95% CI) 

rs145912914 0.0028 0.63  
(0.46-0.85) 

0.018 1.41  
(1.06-1.89) 

rs7774158 0.0088 0.88  
(0.80-0.97) 

0.13 1.07  
(0.98-1.17) 

rs753712672 0.026 0.80  
(0.66-0.97) 

0.79 1.03  
(0.82-1.29) 

rs9265961 0.76 1.02  
(0.92-1.13) 

5.16x10-4 0.84 
 (0.76-0.93) 

rs3909115 0.091 1.09  
(0.99-1.21) 

0.24 0.94  
(0.86-1.04) 
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Supplementary table 4.4: Summary of results from a phenoscanner search of the five suggestively significant lead SNPs (and SNPs in high LD 

[r2>0.8]) from the MUC5B interaction meta-analysis of IPF susceptibility. 

SNP Allele

s 

Trait P-value Beta Number in study Reference 

rs145912914 C/G Self-reported ankylosing spondylitis 3.59x10-8 0.002359 337159 UKBB 

rs145912914 Self-reported type 1 diabetes 3.67x10-9 0.001375 337159 UKBB 

rs3909115 C/A Primary sclerosing cholangitis 1.38x10-13 -0.2882 14890 (223) 

rs3909115 Rheumatoid arthritis 2.60x10-18 -0.157 58284 (119) 

rs7774158 A/C Intestinal malabsoption 8.05x10-13 -0.00079 337199 UKBB 

rs7774158 Self-reported malabsorption or coeliac 

disease 

3.65x10-29 -0.00188 337159 UKBB 

rs7774158 Rheumatoid arthritis 6.90x10-11 0.1044 58284 (119) 

rs9265961 G/A Basophil count 2.65x10-16 -0.03046 173480 (221) 

rs9265961 Eosinophil count 3.07x10-33 -0.04555 173480 

rs9265961 Eosinophil percentage of granulocytes 5.28x10-9 -0.02221 173480 

rs9265961 Eosinophil percentage of wbc 3.00x10-9 -0.02247 173480 

rs9265961 Granulocyte count 3.60x10-44 -0.05322 173480 

rs9265961 Granulocyte percentage of myeloid white 

cells 

1.27x10-9 -0.02306 173480 

rs9265961 Lymphocyte count 4.22x10-74 -0.06971 173480 

rs9265961 Monocyte count 5.40x10-11 -0.02491 173480 
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rs9265961 Monocyte percentage of white cells 1.14x10-15 0.03034 173480 

rs9265961 Myeloid white cell count 1.47x10-44 -0.05359 173480 

rs9265961 Neutrophil count 1.93x10-38 -0.04938 173480 

rs9265961 Neutrophil percentage of granulocytes 1.45x10-8 0.02156 173480 

rs9265961 Sum basophil neutrophil counts 1.01x10-38 -0.04964 173480 

rs9265961 Sum eosinophil basophil counts 1.60x10-38 -0.04927 173480 

rs9265961 Sum neutrophil eosinophil counts 1.30x10-43 -0.05279 173480 

rs9265961 White blood cell count 2.54x10-78 -0.07141 173480 

rs9265961 IgA deficiency 2.37x10-12 0.3433 6487 (222) 

rs9265961 Primary sclerosing cholangitis 4.83x10-93 0.6946 14890 (223) 

rs9265961 Doctor diagnosed sarcoidosis 1.24x10-11 0.002266 83529 UKBB 

rs9265961 FEV1 5.87x10-9 0.0168 110423 

rs9265961 FVC 1.68x10-12 0.01477 307638 

rs9265961 FVC best measure 7.73x10-11 0.01492 255492 

rs9265961 Height 1.02x10-59 0.02985 336474 

rs9265961 Intestinal malabsorption 2.64x10-46 0.001588 337199 

rs9265961 Self-reported adrenocortisol insufficient or 

Addison’s disease 

1.38x10-8 0.0003 337159 

rs9265961 Self-reported ankylosing spondylitis 4.33x10-13 -0.001 337159 

rs9265961 Self-reported malabsorption or coeliac 

disease 

4.72x10-124 0.004011 337159 
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rs9265961 Self-reported multiple sclerosis 6.42x10-11 0.001018 337159 

rs9265961 Self-reported psoriasis 3.59x10-48 -0.00402 337159 

rs9265961 Self-reported sarcoidosis 2.46x10-14 0.000865 337159 

rs9265961 Sitting height 9.90x10-64 0.03358 336172 

rs9265961 IgG galactosylation 1.11x10-8 NA 1960 (224) 
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Chapter five supplementary data: 

 

Supplementary table 5.1: Table of KIR haplotype/gene imputation accuracies from KIR*IMP 
for each input SNP imputation threshold.  
KIR gene/haplotype Input SNPs imputation 

threshold 
Imputation accuracy (%) 

KIRhaplotype Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

67.64  
87.47  
86.85  
75.37  
74.74  
74.53  
73.49 

A/B Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

81.63  
98.75  
98.75  
87.47  
85.8  
84.97  
84.76 

KIR2DS2 Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

75.78  
98.96  
98.96  
82.46  
78.5  
78.5  
78.71 

KIR2DL2 Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

75.37  
98.33  
98.33  
82.67  
78.71  
79.12  
77.66 

KIR2DL3 Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

75.57  
98.75  
98.75  
82.05  
78.29  
77.24 
76.83 

KIR2DP1 Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

85.59  
92.07 
91.44  
87.06  
86.43  
86.43  
86.22 
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KIR2DL1 Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

85.18  
91.44  
91.23  
86.64  
86.01  
85.8  
85.39 

KIR3DP1 Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

96.87  
96.87  
96.87  
96.66  
96.87  
96.87  
96.66 

KIR2DL4 Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

97.08  
97.08  
97.08  
97.08  
97.08  
97.08  
97.08 

KIR3DL1ex4 Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

97.91  
98.54  
98.33  
98.54  
98.33  
98.33  
98.33 

KIR3DL1ex9 Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

97.49  
98.12  
98.12  
98.12  
98.12  
98.12  
98.12 

KIR3DS1 Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

97.70  
97.49 
97.49  
97.49  
97.49  
97.49  
97.29 

KIR2DL5 Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

87.47  
92.69  
92.28  
90.81  
89.77  
89.56  
88.73 

KIR2DS3 Genotyped 87.47  
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0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

91.02  
92.48  
90.19  
88.94  
89.56  
89.77 

KIR2DS5 Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

95.41  
95.62  
96.24  
95.82  
95.82  
96.24  
95.41 

KIR2DS1 Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

97.70 
98.33  
98.54  
98.33  
98.33  
98.33  
98.33 

KIR2DS4TOTAL Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

97.91  
98.12  
98.33  
98.12  
98.12  
98.12  
98.12 

KIR2DS4WT Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

94.57  
99.37  
99.58  
99.37  
99.58  
99.37  
99.16 

KIR2DS4DEL Genotyped 
0.3 
0.5 
0.7 
0.8 
0.9 
0.95 

93.74  
98.75  
98.75  
98.75  
98.75  
98.54  
98.54 
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Supplementary table 5.2: Imputation quality of each tag SNP across all four IPF datasets 
Tag SNP Imputation quality   

UK UUS Colorado Chicago 
rs587560 0.52 0.53 0.32 0.42 
rs1010355 0.85 0.82 0.81 0.60 
rs592645 NA NA NA NA 
seq-t1d-19-60034052-
C-T 

0.90 0.91 0.49 0.53 

rs4806585 0.84 0.84 0.72 0.32 
rs581623 0.84 0.82 Genotyped 0.59 

 

Chapter six supplementary data: 

KIR-wide association meta-analysis of IPF susceptibility in the UK, UUS, Chicago and 

Colorado datasets 

 

 
 

Supplementary figure 6.1: -log10 p-values of the association analysis of KIR haplotypes in 

IPF susceptibility in the UK dataset (haplotype 9 has been removed). Blue line denotes 

the Bonferroni corrected significance threshold of 0.004. 
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Supplementary figure 6.2: -log10 p-values of the association analysis of KIR haplotypes in 

IPF susceptibility in the UUS dataset. Blue line denotes the Bonferroni corrected 

significance threshold of 0.004. 
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Supplementary figure 6.3: -log10 p-values of the association analysis of KIR haplotypes 

in IPF susceptibility in the Chicago dataset (haplotype 10 was removed for low count). 

Blue line denotes the Bonferroni corrected significance threshold of 0.004. 
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Supplementary figure 6.4: -log10 p-values of the association analysis of KIR 

haplotypes in IPF susceptibility in the Colorado dataset (haplotype 7 was removed for 

low count). Blue line denotes the Bonferroni corrected significance threshold of 

0.004. 
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Supplementary table 6.1: Results for the KIR haplotype association analysis in IPF susceptibility for each of the four IPF datasets. 
Locus Chicago 

P-Value 
Chicago odds ratio 
(95% CI) Colorado 

P-Value 

Colorado odds ratio 
(95% CI) 

UK P-Value 

UK odds ratio 
(95% CI) 

UUS P-Value 

UUS Odds 
ratio 
(95% CI) 

1 0.61 
1.06  
(0.85-1.32) 0.68 

1.02  
(0.93-1.12) 0.61 

1.04  
(0.91-1.18) 0.55 

1.03  
(0.93-1.16) 

2 0.30 
0.85  
(0.63-1.15) 0.19 

0.90  
(0.76-1.05) 0.80 

0.96  
(0.72-1.29) 0.02 

0.68  
(0.49-0.94) 

3 0.45 
0.87  
(0.60-1.26) 0.44 

0.87  
(0.62-1.23) 0.32 

0.87  
(0.66-1.15) 0.88 

1.02  
(0.81-1.27) 

4 0.81 
0.87  
(0.29-2.64) 0.94 

1.05  
(0.33-3.34) 0.13 

1.77  
(0.85-3.71) 0.55 

1.23  
(0.63-2.40) 

5 0.47 
1.20  
(0.73-1.99) 0.06 

1.32  
(0.99-1.76) 0.90 

1.05  
(0.48-2.32) 0.35 

0.62  
(0.22-1.69) 

6 0.97 

829632.67  
(1.50x10-295-4.59x10+306) 

0.33 

1.56  
(0.63-3.86) 

0.97 

5.37E-05  
(2.66x10-200-
1.09x10+191) 0.85 

0.82  
(0.10-6.52) 

7 0.97 
1.50E-06  
(1.19x10-290-1.88x10+278) NA 

 
NA 0.75 

0.78  
(0.17-3.60) 0.38 

0.52  
(0.12-2.23) 

8 0.34 
1.90  
(0.51-7.05) 0.03 

11.08  
(1.23-100.00) 0.21 

1.81  
(0.72-4.61) 0.06 

2.06  
(0.97-4.38) 

9 0.49 
1.38  
(0.55-3.47) 0.33 

1.34  
(0.75-2.40) 2.17x10-60 

0.29  
(0.25-0.34) 0.07 

1.12  
(0.99-1.26) 

10 NA 
 
NA 0.87 

1.10  
(0.35-3.48) 0.13 

3.05  
(0.71-13.05) 0.64 

1.85  
(0.14-24.40) 

11 0.55 
1.73  
(0.29-10.16) 0.29 

0.56  
(0.19-1.66) 1.00 

1.00  
(0.21-4.81) 0.45 

1.33  
(0.63-2.80) 

14 0.97 

441404.81  
(1.65x10-271-1.18x10+282) 

0.94 

2.93E-05  
(2.26x10-123-
3.78x10+113) 0.97 

5.52x10-05  
(2.16x10-200-
1.41x10+191) 0.92 

0.93  
(0.22-3.95) 

A 0.65 
0.96  
(0.78-1.16) 0.36 

1.04  
(0.95-1.14) 0.51 

0.96  
(0.84-1.09) 0.60 

0.97  
(0.87-1.08) 
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B 0.61 
1.07  
(0.83-1.38) 0.05 

0.86  
(0.74-1.00) 0.57 

1.06  
(0.88-1.28) 0.29 

1.09  
(0.93-1.27) 
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Supplementary figure 6.5: -log10 p-values of the association analysis of KIR CNVs in IPF 

susceptibility in the UK dataset. Blue line denotes the Bonferroni corrected significance 

threshold of 0.003. 
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Supplementary figure 6.6: -log10 p-values of the association analysis of KIR CNVs in IPF 

susceptibility in the UUS dataset. Blue line denotes the Bonferroni corrected significance 

threshold of 0.003. 
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Supplementary figure 6.7: -log10 p-values of the association analysis of KIR CNVs in IPF 

susceptibility in the Chicago dataset. Blue line denotes the Bonferroni corrected significance 

threshold of 0.003. 
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Supplementary figure 6.8: -log10 p-values of the association analysis of KIR CNVs in IPF 

susceptibility in the Colorado dataset. Blue line denotes the Bonferroni corrected 

significance threshold of 0.003. 
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Supplementary table 6.2: Results for the KIR CNV association analysis in IPF susceptibility for each of the four IPF datasets. 
Locus Chicago 

P-Value 
Chicago odds ratio 
(95% CI) 

Colorado 
P-Value 

Colorado odds ratio 
(95% CI) 

UK P-
Value 

UK odds ratio 
(95% CI) 

UUS P-
Value 

UUS Odds ratio 
(95% CI) 

KIR2DS2 0.80 1.03  
(0.81-1.31) 

0.59 1.04  
(0.91-1.18) 

0.95 1.01  
(0.83-1.23) 

0.43 1.07  
(0.90-1.27) 

KIR2DL2 0.77 1.04  
(0.81-1.32) 

0.41 1.06  
(0.93-1.21) 

0.93 1.01  
(0.83-1.23) 

0.37 1.08  
(0.91-1.28) 

KIR2DL3 0.77 0.97  
(0.76- 1.23) 

0.78 0.98  
(0.86-1.12) 

0.93 0.99  
(0.81-1.21) 

0.44 0.94  
(0.79-1.11) 

KIR2DP1 0.87 0.97  
(0.72-1.31) 

0.39 0.92  
(0.75-1.12) 

0.83 0.97  
(0.72-1.30) 

0.86 1.02  
(0.79-1.32) 

KIR2DL1 0.91 0.98  
(0.73-1.32) 

0.18 0.87  
(0.72-1.07) 

0.61 0.93  
(0.69-1.24) 

0.79 0.97  
(0.75-1.24) 

KIR3DP1 0.49 2.41  
(0.20-29.23) 

0.75 1.56  
(0.10-23.94) 

0.58 0.61  
(0.11-3.46) 

0.06 2.14  
(0.96-4.73) 

KIR2DL4 0.49 2.41  
(0.20-29.23) 

0.88 0.81  
(0.06-11.97) 

0.75 0.75  
(0.13-4.41) 

0.14 1.84  
(0.81-4.15) 

KIR3DL1ex4 0.95 1.01  
(0.80-1.26) 

0.33 1.08  
(0.93-1.26) 

0.95 1.00  
(0.86-1.16) 

0.32 0.94  
(0.83-1.06) 

KIR3DL1ex9 0.99 1.00  
(0.80-1.26) 

0.33 1.08  
(0.93-1.26) 

0.98 1.00  
(0.86-1.16) 

0.31 0.94  
(0.83-1.06) 

KIR3DS1 0.72 1.04  
(0.83-1.30) 

0.31 0.92  
(0.79-1.08) 

0.90 0.99  
(0.85-1.15) 

0.25 1.07  
(0.95-1.22) 

KIR2DL5 0.99 1.00  
(0.83-1.21) 

0.41 0.95  
(0.84-1.07) 

0.98 1.00  
(0.89-1.12) 

0.26 1.06  
(0.96-1.17) 

KIR2DS3 0.92 1.02  
(0.70-1.48) 

0.15 1.14  
(0.95-1.36) 

0.78 1.03  
(0.83-1.28) 

0.71 1.04  
(0.86-1.24) 

KIR2DS5 0.75 0.96  
(0.75-1.23) 

0.34 0.94  
(0.83-1.07) 

0.82 0.98  
(0.83-1.16) 

0.93 1.01  
(0.87-1.16) 

KIR2DS1 0.95 0.99  
(0.79-1.25) 

0.28 0.92  
(0.79-1.07) 

0.91 1.01  
(0.87-1.17) 

0.31 1.07  
(0.94-1.21) 
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KIR2DS4TOTAL 0.95 1.01  
(0.80-1.26) 

0.31 1.08  
(0.93-1.26) 

0.99 1.00  
(0.86-1.16) 

0.33 0.94  
(0.83-1.07) 

KIR2DS4WT 0.95 1.01  
(0.82-1.23) 

0.93 1.00  
(0.92-1.10) 

0.96 1.00  
(0.87-1.17) 

0.03 0.86  
(0.75-0.98) 

KIR2DS4DEL 0.79 1.03  
(0.85-1.23) 

0.66 1.02  
(0.94-1.11) 

0.89 0.99  
(0.87-1.13) 

0.69 1.02  
(0.91-1.15) 

 

 

 


