University of Leicester
Browse

Development of a high performance detector readout for astrophysical and planetary instrumentation

Download (7.62 MB)
thesis
posted on 2016-11-14, 10:58 authored by Steven Anthony Leach
There are opportunities in space science for UV imaging instruments with photon counting sensitivity that can accommodate scenes with large dynamic range whilst maintaining the ability for very high spatial resolution imaging when desired. Current UV imaging space instruments have limitations that reduce the performance in meeting this challenge. The microchannel plate detector has an established heritage in UV astronomy and provides low noise single photon counting imaging with high spatial resolution, high dynamic range, solar-blind capability and radiation hardness. To fully complement this performance requires a new detector readout system with great flexibility in processing individual photon events, achieving high spatial resolution and with high count rate capability. An image readout system has been developed that utilises a new, low-noise capacitive division readout and has the potential to meet these high performance requirements. Unlike traditional centroiding image readout schemes that use a fixed pulse shaping time, this system has the capability to adapt to the luminosity conditions and the flexibility to optimise the image spatial resolution against the photon event rate. The design employs a low-noise front-end electronics system that uses a pulse digitisation approach to transfer the signal filtering capability into the digital signal processing domain, enabling the flexibility to select the optimum shaping scheme for the required resolution and count rate. The development progress of the instrument and imaging software is described for both a fixed shaping time readout design and an adaptable shaping solution and new performance results for the capacitive division readout are presented.

History

Supervisor(s)

Lapington, Jon; Bannister, Nigel

Date of award

2016-11-07

Author affiliation

Department of Physics and Astronomy

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC