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Abstract 

Investigating the role of Lysine Specific Demethylase 1 (LSD1) in embryonic 

development using a gastruloid model system 

 

Megan J. Broderick 

 

Lysine specific demethylase 1 (LSD1) is a chromatin modifying protein which specifically 

demethylates the permissive histone marks H3K4me1/2 and thereby acts as a 

transcriptional repressor. It performs this activity as part of the CoREST (co-repressor of 

Repressor Element1 Silencing Transcription Factor) complex, which also encompasses 

histone deacetylase 1/2 (HDAC1/2) activity and is required for stability of the complex. 

LSD1 is essential in embryonic development, with loss of LSD1 resulting in embryonic 

lethality at ~E6.5, a developmental stage which correlates with the onset of 

gastrulation. To further investigate the role of LSD1 in embryonic development, we 

employed a model system, gastruloids, which closely mimic early embryogenesis and 

aspects of gastrulation. We generated gastruloids from both induced and control Lsd1 

conditional knockout (KO) mouse embryonic stem cells (ESCs) and utilised RNA-

sequencing (RNA-seq) analysis to identify differentially expressed genes at timepoints 

representative of ESCs, early gastrulation and late gastrulation. We identified 

dysregulated expression of genes associated with mesodermal lineages, epithelial-to-

mesenchymal transition (EMT) and the bone morphogenic protein (BMP) pathway. To 

investigate whether gene expression changes were a result of the loss of direct LSD1 

demethylase activity or of broader CoREST complex activity, we performed similar RNA-

seq analysis on gastruloids generated from cells with wildtype (WT) or catalytically 

inactive LSD1 rescue constructs. We identified genes whose expression was not 

rescued, suggesting dependence on LSD1 demethylase activity, and genes whose 

expression was fully or partially rescued, including genes associated with EMT and the 

BMP pathway. The work in this thesis has enabled us to gain further insight into the role 

of LSD1 during embryonic development. 
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1 Introduction 

1.1 Chromatin structure 

For DNA to be packaged into the nuclei of cells, it requires a large level of compaction. 

To achieve this, DNA is wrapped around histone proteins to form chromatin, with 146bp 

of DNA circling each histone octamer to produce a nucleosome (Kornberg, 1997, Luger 

et al., 1997). The histone octamer comprises a tetramer formed of two units each of 

histone 3 (H3) and histone 4 (H4), as well as two dimers formed of histone 2A (H2A) and 

histone 2B (H2B) (Eickbush and Moudrianakis, 1978). The classical view of the 

organisation of chromatin suggested nucleosomes along DNA created a 10 nm diameter 

fibre resembling ‘beads on a string’, with the linker histone H1 binding to DNA between 

nucleosomes and promoting further condensation into the 30nm chromatin fibre 

(Figure 1.1A)  (Paranjape et al., 1994). However, it is now largely accepted that these 

regular chromatin structures observed in vitro are not representative of the 

conformation of chromatin in vivo, with this instead presenting a highly random 

organisation in which chromatin fibres intertwine (Figure 1.1B) (Moraru and Schalch, 

2019). The presence of positively charged residues on the histone octamer surface 

enables binding of DNA around the proteins (Arents and Moudrianakis, 1993). These 

electrostatic interactions between DNA and the histone octamer inhibit transcription of 

the associated DNA (Wasylyk and Chambon, 1979). 
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Figure 1.1 Classical versus modern model of chromatin. (A) Diagram of the classically accepted hierarchical model 
of chromatin. (B) Diagram of the more recently established fractal/melt model of chromatin folding. Taken from 
(Moraru and Schalch, 2019) 

 

Not only does the compaction of DNA into chromatin allow effective packaging into 

cells, but it also regulates the accessibility of the underlying DNA. Condensation of 

chromatin into heterochromatin restricts access to the DNA, resulting in inaccessibility 

and repression of associated genes. In contrast, euchromatin is less condensed regions 

of chromatin which allow access of transcription machinery to underlying genes and is 

permissive for gene expression (Dillon and Festenstein, 2002). Due to the requirement 

for dynamic gene expression depending on different spatial and temporal contexts, it is 

necessary for the compaction and decompaction of chromatin to be an equally dynamic 

process. This allows for differential accessibility of gene promoters and enhancers to 

transcription factors and the transcriptional machinery. This is achieved in a number of 

ways, including DNA methylation, modifications to histone tails (Section 1.2) and 

chromatin remodelling. 

 

Chromatin remodelling involves the action of adenosine triphosphatase (ATPase) 

dependent complexes, which translocate DNA and break contacts between histones 

and DNA. These complexes can be separated into four subfamilies: imitation switch 
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(ISWI), chromodomain helicase DNA-binding (CHD), switch/sucrose non-fermentable 

(SWI/SNF) and INO80 (Clapier et al., 2017). These remodelling complexes mediate 

nucleosomal spacing, exchanging of histone variants, and movement or ejection of 

nucleosomes to enable binding of transcription factors. The nucleosome remodelling 

and deacetylase (NuRD) complex combines nucleosome remodelling activities with 

histone deacetylase activities, through its association with CHD3/4 and HDAC1/2, 

respectively (Millard et al., 2016). The NuRD complex is therefore an example of a 

complex possessing concerted chromatin modifying activities.  

 

DNA methylation at the C-5 position of cytosine (5mC) is associated with transcriptional 

repression. De novo DNA methylation is catalysed by DNMT3A and DNMT3B (Okano et 

al., 1999), with DNMT3L stimulating this activity specifically in the germline (Greenberg 

and Bourc’his, 2019). The maintenance of DNA methylation following DNA replication 

is performed by DNMT1 in concert with UHRF1 (Bostick et al., 2007). The majority of 

mammalian gene promoters are GC rich, and some promoters contain CpG rich regions 

termed CpG islands (CGIs), which are rarely methylated. There are, however, three 

circumstances in which DNA methylation-based silencing at CGIs are important: in X-

chromosome inactivation, genomic imprinting and germline-specific genes (Greenberg 

and Bourc’his, 2019). DNA methylation is excluded from the promoters of actively 

transcribed genes through the presence of H3K4 methylation. This occurs through 

disruption of the autoinhibition of the catalytic domain (CD) of DNMT3A by its ATRX–

DNMT3–DNMT3L (ADD) domain by unmethylated H3K4, but not by H3K4me3 (Guo et 

al., 2015). In most cases, methylation of DNA leads to loss of or weakened binding of 

associated transcription factors, causing gene repression. However, some 

transcriptional factors show binding preference for methylated DNA, so in some cases 

DNA methylation can promote gene activation (Yin et al., 2017). DNA methylation has 

also been shown to influence transcriptional silencing through recruitment of both 

histone modifying and chromatin remodelling complexes. For example, MECP2 (methyl-

CpG-binding protein) has been shown to recruit the NCoR/SMRT histone deacetylase 

complex to methylated DNA (Lyst et al., 2013). Additionally, the NuRD complex is 

directed to methylated DNA through interaction with MBD2 (methyl-CpG-binding 

domain protein 2), resulting in chromatin remodelling (Zhang et al., 1999).  
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1.2 Histone modifications 

Histone structure consists of a core globular domain with N-terminal tail protrusions 

which contain the sites of post-translational modifications (Luger et al, 1997). The 

primary histone modifications include acetylation, methylation, phosphorylation, 

ubiquitination and sumoylation (Kouzarides, 2007). The modifications are typically 

representative of either an active or repressive chromatin state to a point which their 

presence can be predictive of these states (Heintzman et al., 2007). For example, 

H3K4me3, H4K16ac and H3K27ac are transcriptionally permissive gene marks, whereas 

H3K27me3 and H3K9me3 are repressive (Schubeler et al., 2004, Wang et al., 2008). The 

presence of histone modifications affects epigenetic regulation in two main ways: firstly, 

through alteration of higher-order chromatin structure and secondly, through 

recruitment of regulatory proteins which bind via specific domains (Kouzarides, 2007). 

For example, acetylation is recognised by bromodomains and tandem PHD fingers, 

methylation is recognised by the Royal family domains (Tudor, PWWP, MBT and 

chromodomains) as well as PHD fingers, and 14-3-3 proteins recognise phosphorylation 

(Yap and Zhou, 2011). The binding of proteins containing these domains cause direct or 

indirect changes, often through tethering of proteins with enzymatic activity to 

chromatin (Kouzarides, 2007). Modifications are limited to specific residues, for 

example, with acetylation occurring on particular lysines, methylation restricted to 

certain lysines and arginines, and phosphorylation on serine/threonine residues  

(Figure 1.2) (Kouzarides, 2007). A number of these residues can harbour multiple 

different modifications, for example H3K9 can be acetylated or methylated, with the 

mutually exclusive nature of these modifications resulting in antagonism (Rea et al., 

2000). Adjacent modifications can also influence the binding of enzymes, via disrupted 

or increased binding, or with a requirement for the presence of an adjacent modification 

for the placement of secondary modifications. For example, phosphorylation of H3S10 

inhibits methylation of the adjacent lysine 9 and additionally prevents recruitment of 

heterochromatin protein 1 (HP1) to H3K9me3 (Rea et al., 2000, Fischle et al., 2005). The 

PHD finger of RAG2 shows increased binding to H3K4me3 and symmetrically 

dimethylated H3R2 than to H3K4me3 alone (Ramón-Maiques et al., 2007).  
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In yeast, ubiquitination of H2B is required prior to methylation of H3K4 and H3K79 

(Chandrasekharan et al., 2010). The ability of particular residues to exhibit multiple 

levels of modification, for example, unmodified, mono-, di- or trimethylated H3K4, adds 

another level of complexity (Bannister and Kouzarides, 2005). 

 

 
Figure 1.2 Known histone modification sites on the core histone proteins. The known sites of histone methylations, 
acetylations, phosphorylations and ubiquitinations are shown. Adapted from (Huang et al., 2014) 

1.2.1 Acetylation 

A major player in the level of compaction of chromatin structure is histone acetylation. 

Generally associated with euchromatin, acetylation of histones acts to neutralise the 

positive charges of lysines, thereby ‘unfolding’ chromatin and increasing accessibility of 

genes to transcriptional machinery (Hong et al., 1993). In contrast, deacetylation of 

histones promotes condensed chromatin and contributes to a repressed state of 

neighbouring genes. Addition of acetyl groups to lysine residues occurs through the 

enzymatic action of histone acetyltransferases (HATs) and deacetylation is performed 

by histone deacetylases (HDACs) (Kouzarides, 2007). 

HATs can be classified into Type A, nuclear HATs and Type B, cytoplasmic HATs. Type A 

HATs can further be classified into GCN5/PCAF, MYST and p300/CBP families, based on 

sequence similarity (Hodawadekar and Marmorstein, 2007). HATs are recruited into 

multi-protein complexes, which contributes to histone substrate specificity and thereby 

directs acetyltransferase activity (Sterner and Berger, 2000). For example, in yeast, 

GCN5 can be recruited into either SAGA or ADA complexes, which confers specificity for 

H3K-9, -14, -18, and -23 or H3K-14 and -18, respectively (Grant and Berger, 1999). 

H4H3

H2A H2B
N-SGRGKQGGKARAKAKTSRSSRAG 

1         3          5                      9.       11       13       15 
SEKRSRKRKKGDKKQAKTVAKKSGKKPAPASKAPEP-N
36     34      32                                        24  23            20  19          16 15 14       12 11              6   5

A K H...G T K A V T K Y T S A K -C
108                       115  116               119  120                               125 

N-ARTKQTARKSTGGKAPRKQLATKAARKSAPATGGVKKPHRYRPGTV....QKST 
2   3   4         6        8   9 10 11              14            17 18                22 23            26 27 28             36 37             40 41 42            45                      56 57 

INDRLVKRHRKAGGKGLGKGGKGRGS-N
23          20 19 18  17 16                   12                   8                5         3         1K

79

C-KGKAKHHSET  K K…TVKGLLK
129     127    125           122   120   119  118     101     99                95

Methylation
Acetylation
Phosphorylation
Ubiquitination
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HDACs belong to either the zinc-dependent classical family, split into 4 classes (class I, 

IIa, IIb and IV), or the NAD+ dependent deacetylases, sirtuins (class III).  Class I HDACs 

which include HDAC1, HDAC2, HDAC3, and HDAC8 are localised primarily in the nucleus. 

Of the Class I HDACs, HDAC1, HDAC2, and HDAC3 form complexes, showing reduced 

activity when not in these complexes (Kelly and Cowley, 2013), whereas HDAC8 

deacetylates its substrates in isolation (Hu et al., 2000). Class II HDACs are divided into 

class IIa, which contains HDAC4, HDAC5, HDAC7 and HDAC9, and class IIb, which 

contains HDAC6 and HDAC10. HDAC11 is the sole member of class IV (Delcuve et al., 

2012). 

 

Mapping of individual histone acetylation sites has revealed functional significance, with 

H3K9ac, H3K18ac, H3K27ac located primarily around transcription start sites (TSSs) and 

with H3K4, H4K5, H4K8, H4K12 and H4K16 acetylations prominent at promoters and 

transcribed regions of active genes (Wang et al., 2008). H3K27ac is enriched at active 

enhancers, which are distal regulatory regions that enhance transcription (Creyghton et 

al., 2010). Acetylation of H4K16 specifically impedes the compaction of chromatin into 

the 30nm fibre (Shogren-Knaak et al., 2006). 

 

Acetylated lysines are recognised and bound by bromodomains. The presence of 

bromodomains within chromatin-related and transcription-related protein complexes 

allows direction of these complexes to acetylated residues. For example, HATs such as 

PCAF, GCN5, and p300/CBP possess bromodomains, directing additional acetylation to 

previously acetylated areas  (Smith and Zhou, 2016). The multi-protein complex TFIID, 

which initiates the assembly of the transcription machinery, comprises two tandem 

bromodomains in its subunit TAFII250  (Jacobson et al., 2000). More recently, the YEATS 

and tandem PHD finger domains have also been identified as domains that recognise 

acetylated lysines (Zeng et al., 2010, Zhao et al., 2017). 
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1.2.2 Methylation 

Histone methylation occurs on arginine and lysine residues (Bannister and Kouzarides, 

2005). Unlike acetylation, the addition of methyl groups to these residues does not 

neutralise their charge and therefore doesn’t directly alter the conformation of 

chromatin. Also, in contrast to acetylation, methylation can occur in multiple states, 

with lysine residues being mono-, di- or tri-methylated and arginine residues being 

mono- or (symmetrically/asymmetrically) di-methylated (Figure 1.3) (Bannister and 

Kouzarides, 2005). Interestingly, lysine methylation can be associated with both 

permissive and repressive chromatin states. Typically, methylation of H3K4 and H3K79 

mark transcriptionally permissive chromatin regions, whereas H3K9 and H3K27 mark 

silenced regions of chromatin (Hyun et al., 2017). 

1.2.2.1 Lysine Methylation 

The sites for lysine methylation include H1K26, H4K20 and six residues on H3: K4, K9, 

K26, K27, K36 and K79  (Musselman et al., 2012). These sites are recognised by a number 

of different protein domains, including chromodomains, PHD finger domains, PWWP 

domains, MBT domains and Tudor domains (Musselman et al., 2012). The recognition 

of these sites occurs primarily through a conserved mechanism, in which aromatic cages 

within the domains form around the methylated lysine residues (Musselman et al., 

2014). The composition and size of the aromatic cages confers substrate specificity, with 

smaller cages excluding higher methylation states due to steric hindrance and the 

presence of negatively charged residues contributing preference to mono- and di-

methylated over tri-methylated lysines. For example, the PHD finger of BHC80, which 

constitutes part of the CoREST complex, binds unmethylated H3K4 and this binding is 

negated by methylation of this residue (Lan et al., 2007). In contrast, the PHD finger 

domains of tumour suppressor ING2 (inhibitor of growth 2) and of BPTF (bromodomain 

and PHD transcription factor), a subunit of NURF (nucleosome remodelling factor), bind 

H3K4me3 preferentially (Pena et al., 2006, Li et al., 2006). Employing these different 
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domains within multiprotein complexes allows for downstream functional effects for 

gene transcription which are dependent on the marks present. 

 

 
Figure 1.3 Structures of methylated lysines in histone tails. Chemical structures of lysine and its methylated forms 
are shown. Actions of HMTs and KDMs are indicated by arrows. Adapted from (Bannister et al., 2002) 

 

H3K4 methylations are generally associated with permissive chromatin, with different 

levels associated with different regions (Bernstein et al., 2005, Barski et al., 2007). All 

three methylation states are associated with the transcription start sites (TSSs) of known 

genes, with H3K4me3 correlating with gene expression. Mono-methylation of H3K4 

marks enhancers and is enriched across gene bodies. H3K4me2 similarly correlates with 

gene bodies of actively transcribed genes and has shown to be present at enhancers 

(Barski et al., 2007, Heintzman et al., 2007). H3K4me3 also colocalises with H3K27me3, 

a mark associated with gene silencing, on regions termed “bivalent domains”, which 

poises developmental genes in embryonic stem cells for activation (Bernstein et al., 

2006). H3K36me3 is present in the transcribed regions of active genes and peaks at the 

3’ end of the genes (Bernstein et al., 2005, Barski et al., 2007). 

 

Methylation of H3K9 and H3K27 is associated with gene silencing, in part because these 

marks are antagonistic to acetylation at these sites. H3K9 di- and tri-methylation is 

recognised by heterochromatin protein 1 (HP1), leading to silencing of genes and 

heterochromatin assembly (Bannister et al., 2001). H3K9 methylation and HP1 binding 

is essential for the correct formation of heterochromatin at the inactive X chromosome 

and pericentric heterochromatin (Peters et al., 2001, Boggs et al., 2002). H3K9me2 and 

H3K9me3 are enriched at the TSSs of silenced genes and, in contrast, H3K9me can be 

associated with active promotors (Barski et al., 2007). H3K27me3 is enriched at silenced 

KDMKDMKDM
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promoters and reduced at active promoters, with H3K27me2 showing similar patterns 

(Barski et al., 2007). Tri-methylation of H3K27 is associated with PRC2 (polycomb 

repressive complex 2) mediated repression of developmental genes (Boyer et al., 2006). 

1.2.2.3 Histone Methyltransferases 

Histone lysine methyl transferases (KMTs) are responsible for laying down methyl 

groups at competent sites. All but one of the numerous KMTs that have been identified 

possess a SET (Su(var)3–9, Enhancer of Zeste, and Trithorax) domain (Dillon et al., 2005). 

The exception to this is the DOT1 protein and its homologs, which specifically methylate 

H3K79 and do not contain SET domains (Feng et al., 2002). KMTs are highly specific to 

particular residues and methylation states and can be grouped accordingly (Figure 1.4). 

In mammals, H3K4 methylations are predominantly carried out by six homologs of the 

yeast SET1 protein: MLL1-4 (KMT2A-D), SET1A (KMT2F) and SET1B (KMT2G) (Hyun et 

al., 2017). These KMTs form multi-subunit protein complexes, of which RBBP5, ASH2L 

and WDR5 are common core components (Dou et al., 2006). In addition to methylation 

by these SET1 homologs, H3K4 mono-, di- and tri-methylation has also been shown to 

be catalysed by PRDM9 (Wu et al., 2013). Mono-methylation of H3K4 can be catalysed 

by SET7 (Keating and El-Osta, 2013) and by SMYD2, which usually catalyses H3K36 

methylation (Abu-Farha et al., 2008). 

 

 
Figure 1.4 Sites specific to individual methyltransferases. Diagram showing the sites of lysine methylation on 
histones H3 and H4 and their corresponding methyltransferases. Methylation state specificities for each 
methyltransferase are indicated by dots: single dot, me; double dot, me2; and triple dot, me3.  Adapted from (Hyun 
et al., 2017) 
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1.2.2.4 Histone Demethylases 

Until the discovery of the first histone demethylase, LSD1, histone methylation was 

thought to be a stable modification (Shi et al., 2004). Histone lysine demethylases 

(KDMs) can be split into two main classes. Firstly, the monoamine oxidase-like KDMs, 

LSD1 and LSD2, and secondly the KDMs which contain a Jumonji-C (JmjC) domain (Black 

et al., 2012). These demethylases show high specificity for both site and degree of 

methylation (Figure 1.5). 

 

 
Figure 1.5 Sites specific to individual demethylases. Diagram showing the sites of lysine methylation on histones H3 
and H4 and their corresponding demethylases. Methylation state specificities for each demethylase are indicated by 
dots: single dot, me; double dot, me2; and triple dot, me3.  Adapted from (Hyun et al., 2017) 

 

KDMs which contain a JmjC domain catalyse the removal of methyl groups via a Fe(II) 

and a-ketoglutarate dependent oxidative reaction (Tsukada et al., 2006). The JmjC 

family contains 30 members, which can be split into sub-families based on homology 

and the domains present (Franci et al., 2014). The JmjC KDMs are highly specific for 

individual sites and methylation levels and, due to their mode of catalysis, are able to 

demethylate tri-methylated residues (Tsukada et al., 2006, Klose et al., 2006). 

 

LSD1 specifically demethylates H3K4me1/H3K4me2, which are marks associated with 

active transcription (Shi et al., 2004). This, combined with the fact it has been found to 

be associated with a corepressor complex, implicates it in transcriptional repression (Shi 

et al., 2005). LSD1 demethylase activity is dependent on its cofactor, flavin adenine 

dinucleotide (FAD). The first step in the demethylation reaction catalysed by LSD1 is 

flavin-mediated oxidation, which produces an imine intermediate that is subsequently 
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hydrolysed to form an amine and an aldehyde (Forneris et al., 2005b, Shi et al., 2004). 

The reduced cofactor, FADH2, is then deoxidised, forming H2O2 and allowing for 

subsequent reactions (Figure 1.6). The activity of LSD1 is limited to mono- and di-

methylated H3K4, due to the requirement of a protonated nitrogen in substrates of 

flavin-dependent oxidases (Shi et al., 2004).  Binding of LSD1 to the H3 histone tail is 

greatly influenced by the modification state of the neighbouring residues. For example, 

Ser10 is involved in interactions which stabilise the conformation of the peptide within 

the enzyme pocket, hence the disruption that phosphorylation of this residue causes 

(Forneris et al., 2007). Arginine methylation at R2 and R8 also greatly reduce binding 

affinity of LSD1, as these residues are involved in forming intramolecular hydrogen 

bonds (Forneris et al., 2007). In contrast, substrate binding of LSD1 was greatly 

increased by the presence of H3K9 acetylation (Forneris et al., 2005a). Substrate 

recognition by LSD1 requires, at a minimum, 20 amino acids of the H3 tail, suggesting 

significant levels of specificity (Forneris et al., 2005a). The first seven residues of the H3 

tail fit into the active site cavity and the number of residues on the N-terminal side of 

the methyllysine is limited to three, due to the size and conformation of this cavity (Yang 

et al., 2007).  LSD1 has been implicated in the activation of androgen-receptor (AR) 

target genes, through demethylation of H3K9 when in association with AR (Metzger et 

al., 2005). However, the specificity of binding within the catalytic pocket of LSD1 

outlined above brings into question this secondary AR related activity, and this 

suggested activity has yet to be structurally solved. 

 

 
Figure 1.6 Schematic of the demethylation reaction catalysed by LSD1. Taken from (Forneris et al., 2005b) 
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Homology analysis led to the discovery of a second flavin-dependent histone 

demethylase, LSD2 (Karytinos et al., 2009). Demethylation by LSD2 is, similarly to LSD1, 

specific for H3K4 mono- and di-methylation and occurs using the same catalytic 

reaction. However, LSD2 lacks a tower domain and so does not have the same 

association with CoREST as LSD1 (Karytinos et al., 2009). Instead, it possesses a zinc 

finger domain within its N-terminal, which consists of a C4H2C2-type zinc finger and a 

CW-type zinc finger, and this domain is required for LSD2 activity (Zhang et al., 2013a). 

Genome-wide mapping of LSD2 shows that it occupies gene bodies of active genes and, 

along with its complex constituents, appears to contribute to gene activation (Fang et 

al., 2010). LSD2 has also recently been shown to possess E3 ubiquitin ligase activity, 

presenting both autoubiquitination activity and ubiquitination of O-GlcNAc transferase 

(OGT), promoting degradation (Yang et al., 2015). 

1.2.3 Phosphorylation 

Phosphorylation of serine, threonine and tyrosine residues operates similarly to lysine 

acetylation, in that it involves addition of a negatively charged modification which 

affects the electrostatic properties and therefore conformation of chromatin 

(Musselman et al., 2012). One of the key roles of phosphorylation is in the DNA damage 

response, where phosphorylation of S139 on the H2AX variant histone, also referred to 

as γH2AX, is recognised by DNA damage repair factors (Rossetto et al., 2012). 

Phosphorylation of H3S10, T11 and S28 residues have been implicated in transcriptional 

activation, as they have been shown to be linked with acetylation of H3 (Rossetto et al., 

2012). H3S10 phosphorylation has also been implicated in chromatin condensation 

during mitosis, which conflicts with its role in transcriptional activation (Nowak and 

Corces, 2004). 
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1.2.4 Ubiquitination and Sumoylation 

In contrast to other histone modifications, ubiquitination involves the addition of a 

much larger 76 amino acid peptide to histones through the successive action of E1, E2 

and E3 enzymes (Bannister and Kouzarides, 2011). The most common histone 

ubiquitinations are mono-ubiquitinations of H2AK119, which is associated with gene 

silencing, and H2BK120, which plays a role in transcriptional activation and elongation 

(Cao and Yan, 2012). H2AK119 is ubiquitinated by RING1B, an E3 ubiquitin ligase, as part 

of the polycomb repressive complex 1 (PRC1) thereby linking this modification with 

polycomb-related gene silencing (Wang et al., 2004). H2BK120ub enhances H3K4 and 

H3K79 methylation, influencing transcriptional activation, and is involved in the 

stabilisation-destabilisation cycle of nucleosomes required for RNA polymerase II 

elongation (Chandrasekharan et al., 2010). As H2BK120ub stabilises nucleosomes, 

deubiquitination of this residue during transcription allows RNA polymerase II 

progression. 

 

The addition of small ubiquitin-related modifier protein (SUMO) to residues, termed 

sumoylation, is involved with transcriptional repression through recruitment of histone 

deacetylase complexes (Shiio and Eisenman, 2003). Recognition of sumoylated H4 by a 

SUMO interaction motif in CoREST increases occupancy of the LSD1-CoREST complex 

and mediates the demethylation of H3K4 (Dhall et al., 2017). 

1.3 HDAC1/2 complexes 

Class I HDACs, with the exception of HDAC8, are recruited into multi-subunit complexes 

which impart chromatin binding activity (Yang and Seto, 2008). The CoREST, SIN3, NuRD 

and MiDAC complexes associate with both HDAC1 and HDAC2, whereas the SMRT/NCoR 

complex contains HDAC3 (Figure 1.7) (Wang et al., 2020). HDAC1 and HDAC2 are highly 

related, sharing around 80% sequence similarity, and exhibit partial redundancy, 

compensating for each other when the other is lost.  The deacetylase activity of each 

complex is site specific, for example, H3K14ac is resistant to the deacetylase activity of 
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CoREST but not of other HDAC complexes, suggesting that each complex has unique 

cellular functions (Wang et al., 2020). These complexes often possess a cohort of 

chromatin modifying activity, for example, the NuRD complex possesses both histone 

deacetylase and chromatin remodeling activity, and the CoREST complex has both lysine 

deacetylase and demethylase subunits (Hayakawa and Nakayama, 2011). Apart from 

the SIN3 complex, the complexes interact with HDAC1/2 via a ELM2-SANT domain 

within one of their constituent components (Millard et al., 2017). 

 

 
Figure 1.7 Structure of HDAC1/2 containing complexes. Schematics of each HDAC1/2 containing complex, and their 
constituent components are shown. Adapted from (Millard et al., 2017) 

1.3.1 SIN3 

Mammals have two SIN3 homologues, SIN3A and SIN3B. The core SIN3 complex consists 

of SIN3A/B, HDAC1, and HDAC2, the retinoblastoma-binding proteins RBBP4 and RBBP7, 

SAP30, SAP18, and SDS3 (Grzenda et al., 2009). In addition to the core complex, SIN3 

also interacts with additional subunits that can target the complex to specific areas of 
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DNA. For example, the ING2 subunit interacts with H3K4me3 via its PHD domain, 

targeting the repressive activity of the SIN3 complex to gene promoters (Shi et al., 

2006). SIN3A interacts with HDAC1 and HDAC2 via its HID (HDAC interaction domain) 

(Laherty et al., 1997), and with other protein interactors through its paired amphipathic 

helix (PAH) domains (Le Guezennec et al., 2006). Despite exhibiting 57% shared identity, 

SIN3B and SIN3B have been shown to have individual, non-redundant roles, as knock 

out of the SIN3A isoform results in embryonic lethality (Cowley et al., 2005). In ESCs, 

SIN3A and Nanog co-occupy pluripotency genes and induce their transcription 

(Saunders et al., 2017).  

1.3.2 NuRD 

The NuRD complex consists of CHD3/4, HDAC1/2, MBD2/3, RBBP7/4, MTA1/2/3 and 

p66α/β (Allen et al., 2013). CHD3/4 ATPase confers ATP-dependent nucleosomal sliding 

and repositioning activities to the complex. The metastasis associated proteins, MTA1, 

MTA2 and MTA3, act as scaffolding proteins, with their ELM2-SANT domains interacting 

with HDAC1 (Millard et al., 2013) and a C-terminal motif interacting with RBBP7/4 

(Alqarni et al., 2014). The complex is formed from a HDAC1:MTA1 dimer which in turn 

recruits four RBBP4/7 subunits (Millard et al., 2016). The WD40 repeat found within the 

RBBP7 and RBBP4 subunits interacts with histones H3 and H4, potentially recruiting the 

complex to chromatin (Murzina et al., 2008, Zhang et al., 2013b). MBD2 and MBD3 are 

present interchangeably in the NuRD complex and are required for its stabilisation. 

While MBD2 binds and directs the complex to methylated DNA, MBD3 lacks this activity 

(Allen et al., 2013). p66α/β interact with MBD2 and enhance its transcriptional 

repression (Brackertz et al., 2006). These proteins have also shown direct binding 

activities to all histone tails, though their binding is affected by post-translational 

modifications.  

 

Existence of an LSD1/NuRD complex has previously been suggested, as LSD1 was shown 

to coimmunoprecipitate with components of the NuRD complex, and this association has 

been implicated in enhancer decommissioning (Wang et al., 2009b, Whyte et al., 2012). 
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However, more recently, biotin identification (BioID) analysis of LSD1 proximal proteins 

only detected the CHD3/4 and MTA1 components of the NuRD complex, and association 

with the other components was absent (Barnes et al., 2022). 

1.3.3 MiDAC 

In 2011, a novel HDAC containing complex, termed the mitotic deacetylase complex 

(MiDAC), due to its increased activity in mitotic cells, was discovered via proteomic 

screening (Bantscheff et al., 2011). The MiDAC complex consists of a mitotic 

deacetylase-associated SANT domain protein (MIDEAS), HDAC1/2 and DNTTIP1. 

MIDEAS contains an ELM2-SANT domain which facilitates its association with HDAC1/2 

(Itoh et al., 2015). DNTTIP1 contains an N-terminal domain which confers association 

with the complex and a C-terminal domain, structurally related to the SKI/SNO/DAC 

domain, which has both DNA and nucleosomal binding activity. The complex is 

tetrameric, containing four copies of each of its constituent proteins (Itoh et al., 2015). 

1.3.5 LSD1-CoREST 

The core CoREST complex consists of a single copy of LSD1, CoREST1/2/3, and HDAC1/2 

(Song et al., 2020). CoREST contains two 50 amino acid SANT domains and associates 

with HDAC1/2 via the N-terminal SANT domain (You et al., 2001). The C-terminal region 

of CoREST contains the second SANT domain, which was previously thought to facilitate 

binding to chromatin, as deletions of this SANT domain leads to loss of the ability of 

LSD1 to demethylate nucleosomal substrates (Shi et al., 2005). However, structural 

studies of the complex when both LSD1 and HDAC1 are bound have revealed that this 

is unlikely to be the case, as the SANT2 domain is positioned in close proximity to HDAC1 

(Song et al., 2020). CoREST binds LSD1 through its linker-SANT2 region, via the Tower 

domain of LSD1 (Figure 1.8) (Yang et al., 2006). Differences in the particular CoREST 

paralogue associated with the complex can serve to alter its activity. In contrast to 

CoREST1 and CoREST2, association of CoREST3 with the complex inhibits demethylation 

of nucleosomes by LSD1 (Upadhyay et al., 2014). CoREST2 has a proposed reduced 
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interaction with HDAC1/2, compared to CoREST1 and CoREST3, due to a singular residue 

difference in the first SANT domain, and it has therefore been suggested that HDAC1/2 

is found in the LSD1-CoREST2 complex less often (Barrios et al., 2014). However, BioID 

experiments investigating HDAC1 proximal proteins have determined CoREST1, 

CoREST2, and CoREST3 all to be in close proximity to HDAC1 (Barnes et al., 2022). LSD1 

is required for the stability of the CoREST complex, therefore loss of LSD1 not only leads 

to loss of demethylase activity but some deacetylase activity, with observed increases 

in H3K9ac and H3K56ac upon loss of LSD1 (Foster et al., 2010).  

 
Figure 1.8 Domains of CoREST complex components. Schematic showing the domains of LSD1, CoREST1 and HDAC1. 
Dashed lines indiate domain interactions. Taken from (Song et al., 2020). 

1.3.5.1 The diverse functions of LSD1-CoREST are dependent on its interactors 

The CoREST complex serves as a tool which can be recruited by a number of proteins 

and complexes to chromatin to mediate a repressive effect on target genes. The 

complex was initially identified as a cofactor of the REST/NRSF (RE1 silencing 

transcription factor/neural-restrictive silencing factor), which plays a key role in 

repressing neuronal genes in non-neuronal cells (Andrés et al., 1999). The core CoREST 

complex can be recruited as a module of the CtBP corepressor complex (Hayakawa and 

Nakayama, 2011, Shi et al., 2003). ZNF516 then recruits the CtBP complex to EGFR, 

which plays a role in cell proliferation and epithelial-to-mesenchymal transition (EMT), 

to mediate repression of this gene (Li et al., 2017). Another zinc finger protein, ZNF217, 

can bind at promoters, for example at the promoter of BRCA1, and recruit repressive 

proteins, including the CoREST complex (Banck et al., 2009). SNAI1, a key player in EMT, 

directs the repressive activity of the CoREST complex to the E-cadherin promoter. SNAI1 
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interacts with the amine oxidase-like domain (AOD) of LSD1 via its SNAG domain, which 

mimics the structure of histone H3 tail (Lin et al., 2010b). The CoREST complex is also 

recruited by the SNAG domains of the zinc finger proteins GFI1 and GFI1B to their target 

genes (Saleque et al., 2007). This process is critical for repressing genes in the 

haemogenic endothelium during the endothelial-to-haemopoietic transition (EHT), 

which is required for the generation of haemopoietic stem cells (Thambyrajah et al., 

2016). For example, GFI1B recruits the repressive activity of CoREST to meis1 in 

erythroid cell lineages and loss of the complex, or of GFI1B, leads to upregulation of 

meis1 (Chowdhury et al., 2013). Treatment of AML (acute myeloid leukemia) cells with 

an LSD1 inhibitor showed that the resultant facilitation of differentiation was not due 

to the loss of catalytic activity of the enzyme, but rather the disruption of the interaction 

of LSD1/CoREST with GFI1 (Maiques-Diaz et al., 2018). This was reflected in the lack of 

accumulation of H3K4me1/2 marks at LSD1 bound promoters and enhancers, the ability 

to rescue the effects of LSD1 depletion with a catalytically dead mutant, K661A, as well 

as the prevention of the inhibitor activity with a LSD1-GFI1 fusion protein. Another 

SNAG domain containing transcription factor is INSM1, which recruits the CoREST 

complex to repress specific genes in the pituitary, which allows differentiation of 

endocrine cells (Welcker et al., 2013). BHC80, a PHD finger containing protein, in 

complex with CoREST preferentially binds unmethylated H3K4 and the demethylation 

of H3K4me2 by LSD1 is required for this interaction (Lan et al., 2007). BHC80 is required 

for gene repression by LSD1, through sustaining its presence at target genes and 

preventing re-methylation of H3K4. RACK7 is present at superenhancers and associates 

with LSD1 and KDM5C, preventing overactivation of enhancers through both H3K4me3 

and H3K4me1/2 demethylase activity (Shen et al., 2016). 

1.3.5.2 Substrates of LSD1-CoREST  

Hypoacetylated histones are the preferred substrate for LSD1, suggesting the 

deacetylase activity by the HDAC component of the complex precedes the demethylase 

activity of LSD1 (Shi et al., 2005). This is supported by the increased demethylase activity 

of the LSD1-CoREST complex when also complexed with HDAC1, and the counteraction 
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of this increase by the addition of HDAC inhibitors (Lee et al., 2006). Specifically, CoREST 

mediated demethylation of H3K4me2 on substrates acetylated at H3K9, H3K14 or 

H3K18 was markedly reduced by inhibition of HDAC1, particularly H3K14ac (Wu et al., 

2018). Interestingly, acetylation of H3K14 is also the slowest of these marks to be 

deacetylated by CoREST, suggesting that histone tails with this mark present are 

resistant to CoREST modifying activities. Though this data suggests that HDAC activity 

likely precedes LSD1 activity, the full picture may be more complicated. The activities of 

LSD1 and HDAC1 within CoREST are closely linked, with K4 methylation affecting 

deacetylase activity and K9 acetylation affecting demethylase activity, though binding 

of substrate by HDAC1 or LSD1 is mutually exclusive (Song et al., 2020). 

1.4 LSD1 

1.4.1 LSD1 structure 

LSD1 (BHC110/KIAA0601/p110b/AOF2/KDM1) is a 110 kDa protein which consists of an 

N-Terminal unstructured region, a SWIRM domain and a C-terminal amine oxidase-like 

domain (AOD), which itself contains a Tower domain, an antiparallel coiled-coil which 

extends out from the main body of the protein (Figure 1.9) (Chen et al., 2006). The 

SWIRM and AOL domains interact with each other to form a globular structure, which 

the Tower domain protrudes from. Mutations that weaken the interaction between 

these two domains reduce the catalytic activity of LSD1 (Stavropoulos et al., 2006). This 

is potentially due to interruption of a cleft formed between these domains which may 

provide further interactions with the H3 peptide (Chen et al., 2006, Stavropoulos et al., 

2006, Tochio et al., 2006). The conformation of the complex changes upon substrate 

binding, with the AOD rotating in respect to the Tower domain in a clamping motion 

(Baron and Vellore, 2012). Despite SWIRM domains present in other histone-modifying 

complexes possessing DNA binding activity, the LSD1 SWIRM domain lacks the positively 

charged region which confers this activity, suggesting it is not directly involved in DNA 

binding (Stavropoulos et al., 2006).  
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Figure 1.9 Structure of LSD1within the CoREST ternary complex. (A) Schematic of LSD1 domains. (B) CoREST ternary 
structure fitted using crystal structures of MTA1:HDAC1 and LSD1:RCOR1 complexes, taken from (Song et al., 2020). 

 

The AOD is split into two subdomains: the FAD-binding subdomain and the substrate 

binding subdomain, and the active site is present in the large cavity formed between 

these subdomains (Chen et al., 2006, Stavropoulos et al., 2006). The AOD shows 

structural similarity to the polyamine oxidase domain, though they differ in the size and 

shape of the catalytic cavity, reflecting the bulkier methylated histone substrate of LSD1 

(Chen et al., 2006). The residues present on the surface of the catalytic cavity are 

important for activity, as these are conserved across species and multiple individual 

point mutations affect activity (Chen et al., 2006, Stavropoulos et al., 2006). In 

particular, a point mutation of K661A was previously shown to completely abolish LSD1 

demethylase activity, as it plays an essential role in flavin reduction, and LSD1 with this 

mutation has been widely employed as a catalytically inactive version (Lee et al., 2005, 

Chen et al., 2006, Lee et al., 2006, Huang et al., 2007, Adamo et al., 2011, Maiques-Diaz 

et al., 2018, Sehrawat et al., 2018). Interactions between the active site residues and 

the H3 substrate are extensive, with the H3 tail adopting a compressed conformation 
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within the site (Yang et al., 2007). The AOD interacts with extranucleosomal DNA 

positioned 100Å away from the nucleosome (Kim et al., 2020). 

1.4.2 Role of LSD1 in embryonic development 

LSD1 has been shown to have an important role in development. Knockout of LSD1 has 

been shown to be embryonic lethal at approximately embryonic day (E) 6.5, showing it 

to be essential during development of the early embryo (Wang et al., 2007, Wang et al., 

2009a, Foster et al., 2010). Knockout of LSD1 in embryonic stem cells (ESCs) in one study 

has revealed that these cells are stable in a proliferative state, however, upon 

differentiation, elevated levels of cell death are observed (Foster et al., 2010). This is 

demonstrated by the reduced number and size of embryoid bodies (EBs) lacking LSD1 

compared to controls and increased cell death following retinoic acid stimulated 

differentiation (Foster et al., 2010). In contrast to this, another study found that 

knockout of LSD1 in ESCs led to cell death and defects in cell cycle progression when in 

a proliferative state (Wang et al., 2009a), however, both studies observed clear defects 

in differentiation.  

 

LSD1 occupies enhancers of active genes in ESCs, together with master pluripotency 

transcription factors, OCT4, SOX2 and NANOG. Differentiation of ESCs in the absence of 

LSD1 activity showed that genes neighbouring LSD1 occupied enhancers failed to be 

repressed (Whyte et al., 2012). Loss of LSD1 upregulates a number of enhancers in ESCs, 

reflected in an increase in H3K4 methylation, H3K27 acetylation and enhancer RNA 

transcription (Agarwal et al., 2021). The interaction of OCT4 with LSD1 inhibits LSD1 

activity at these enhancers, and overexpression of OCT4 has been shown to lead to 

retention of H3K4 methylation (AlAbdi et al., 2020) 

 

Circumventing the embryonic lethality of LSD1 loss using conditional knockouts has 

revealed a number of roles of LSD1 throughout development. Conditional knockout of 

LSD1 in the developing pituitary gland showed that, although LSD1 was not required for 

its early morphology and cell fate determination, it was required for late and terminal 
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cell-lineage differentiation (Wang et al., 2007). Conditional deletion in spermatogonia 

showed LSD1 to be essential for spermatogenesis, evidenced by a complete loss of germ 

cells in adult males (Lambrot et al., 2015). Similarly, conditional knockouts of LSD1 in 

adult mice revealed an ongoing requirement for LSD1 in adult spermatogenesis (Myrick 

et al., 2017). Conditional knockouts in blood lineage specific cells revealed that LSD1 is 

required for both immature hematopoietic stem cell and mature hematopoietic cell 

differentiation (Kerenyi et al., 2013). 

 

LSD1 has been implicated in haematopoiesis through association with hematopoietic 

transcriptional regulators including TAL1, GFI1/GFI1B, SALL4 (Saleque et al., 2007, Hu et 

al., 2009, Liu et al., 2013). LSD1 is recruited by GFI1/GFI1B to its target genes, resulting 

in transcriptional repression. Inhibition of LSD1 leads to derepression of these genes 

and disrupts differentiation of several hematopoietic lineages (Saleque et al., 2007). 

LSD1 associates with TAL1 at genes involved with erythroid differentiation, repressing 

this differentiation programme (Hu et al., 2009). SALL4 recruits LSD1 to genes in 

hematopoietic precursor cells, resulting in their repression, and knockdown of LSD1 

results in altered expression of SALL4 target genes (Liu et al., 2013) 

 

Differentiation of mesodermal lineages such as adipogenesis, myogenesis and 

osteogenesis appears to be intimately linked with LSD1 activity (Musri et al., 2010, Choi 

et al., 2010, Ge et al., 2014). LSD1 interacts with MYOD and MEF2 transcription factors 

on myogenic promoters and has been suggested to activate these genes by removing 

methylation of H3K9 (Choi et al., 2010). In muscle stem cells, LSD1 promotes 

differentiation into myocytes during muscle regeneration and loss of LSD1 not only 

slows this process but also redirects cell fate to brown adipogenesis (Tosic et al., 2018). 

LSD1 is required for adipogenesis, demethylating H3K9 at the promoter of the 

adipogenic transcription factor cebpa, resulting in its activation (Musri et al., 2010). 

LSD1 also promotes brown adipogenesis by demethylating H3K4 at Wnt pathway genes, 

leading to repression (Chen et al., 2016). LSD1 represses the osteogenic differentiation 

programme and inhibition of LSD1 in adipose-derived stem cells leads to promotion of 

osteogenic cell fate (Ge et al., 2014). 
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The LSD1-CoREST complex interacts with the transcriptional repressor REST to repress 

neuronal genes in non-neuronal cells (Hakimi et al., 2002). Proteosomal degradation of 

REST is required for the transition of ESCs to neural progenitors. However, throughout 

differentiation into cortical neurons the CoREST complex persists at RE1 sites, resulting 

in low levels of expression of related genes (Ballas et al., 2005). It has been shown that, 

in addition to genes targeted by both REST and CoREST, there are a selection of genes 

targeted solely by CoREST in neuronal subtypes, suggesting a role for CoREST in 

neurogenesis independent of REST activity (Abrajano et al., 2009). In neuronal stem 

cells, LSD1 is recruited to target genes by TLX where it represses the expression of cell 

proliferation regulators. Inhibition of LSD1 thereby leads to reduced proliferation of 

neural stem cells (Sun et al., 2010). During cerebral cortex development, LSD1-CoREST 

negatively regulates the Notch pathway, allowing expression of proneural genes and 

differentiation of neurons from neuronal stem cells (Lopez et al., 2016). 

1.4 Mouse embryonic stem cells 

Stem cells are defined by their ability to self-renew indefinitely, as well as their 

pluripotency, and they exhibit the ability to differentiate into cells from any of the three 

germ layers: endoderm, mesoderm, and ectoderm. Mouse ESCs are derived from the 

inner cell mass (ICM) of preimplantation blastocysts (Evans and Kaufman, 1981, Martin, 

1981). These cells possess the ability to differentiate in vitro and to form 

teratocarcinomas when injected into mice. ESCs isolated in this way were shown to form 

chimeras when reintroduced into embryos, with the resulting embryos able to continue 

development and later produce offspring (Bradley and Robertson, 1986). The 

contribution of ESCs to chimeric germ cells allows introduction of genetic modifications 

into subsequent offspring, which can be exploited to produce mutants, including 

knockouts (Robertson et al., 1986, Thompson et al., 1989). 
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1.4.1 Maintenance of ESCs in culture 

The original culture of ESCs relied on co-culture with mouse embryonic fibroblast (MEF) 

feeder cells in media supplemented with serum (Evans and Kaufman, 1981, Martin, 

1981). Identification of a secreted protein responsible for the suppression of 

differentiation by feeder cells, Leukemia Inhibitory Factor (LIF), enabled culture of ESCs 

independently from feeder cells (Williams et al., 1988, Smith et al., 1988). The effects of 

LIF are mediated through the heterodimerisation of LIF receptor (LIF-R) and GP130, 

which leads to phosphorylation and activation of Janus-associated Kinases (JAKs). This 

results in activation of signal transducer and activator of transcription 3 (STAT3), which 

is an essential factor in LIF signal transduction, as inhibition of STAT3 blocks cell self-

renewal and promotes differentiation (Niwa et al., 1998). In serum free cultures, LIF is 

not sufficient to maintain pluripotency alone, due to the absence of bone 

morphogenetic proteins (BMPs). BMPs act through activation of SMAD transcription 

factors, resulting in induction of Id genes, and the combination of BMP4 and LIF 

enhances self-renewal in the absence of serum (Ying et al., 2003). Ideally, culture of ESCs 

would give rise to a homogenous cell population, however, ESCs cultured in serum and 

LIF have been shown to be heterogenous, with subpopulations resembling epiblast and 

primitive ectoderm in marker expression (Toyooka et al., 2008, Hayashi et al., 2008). 

 

More recently, culture of ESCs with chemical suppression of the MEK/ERK pathway and 

inhibition of glycogen synthase kinase 3 (GSK3) in combination with LIF, referred to as 

2i+LIF, has presented a serum free technique (Ying et al., 2008). FGF4 activates 

MAPK/ERK kinase (MEK) which subsequently activates mitogen-activated protein 

kinases ERK1/2. Deletion or inhibition of components of this pathway restricts exit from 

pluripotency (Kunath et al., 2007). Wnt signalling promotes accumulation of b-catenin 

in the nucleus, where it acts as a transcription factor, activating transcription of 

downstream genes. GSK3 phosphorylates b-catenin, promoting its degradation and 

thereby negatively regulating Wnt signalling. Inhibition of GSK3 prevents this 

phosphorylation, allowing nuclear accumulation of b-catenin, which then interacts with 

TCF3 and relieves TCF3-mediated repression (Wray et al., 2011). 2i+LIF therefore 
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presents a more defined culture method that produces a homogenous population of 

self-renewing cells.  

 

 
Figure 1.10 Signalling pathways regulating ESC pluripotency. Diagram of four key signalling pathways involved in 
the regulation of pluripotency in ESCs: LIF, Wnt, BMP and FGF, through promotion of self-renewal and inhibition of 
differentiation.The two inhibitors used in 2i+Lif media (CHIR99021 and PD0325901) are also shown. Arrows indicate 
activation and lines depict inhibition.  Adapted from (Hassani et al., 2019, Weinberger et al., 2016). 

1.4.2 Pluripotency transcriptional network 

ESCs are maintained in a pluripotent state by a network of transcription factors, at the 

core of which are OCT4, SOX2 and NANOG (Morey et al., 2015). OCT4, SOX2 and NANOG 

co-occupy a number of promoters of developmentally important genes, as well as their 

own promoters, resulting in autoregulatory loops (Boyer et al., 2005). The core factors 

regulate many of the same genes, activating transcription of pluripotency associated 

factors and repressing transcription of lineage-specific factors (Figure 1.11)  



 26 

(Loh and Lim, 2011). A precise balance of OCT4 is required for pluripotency, as removal 

of OCT4 leads to loss of pluripotency and dedifferentiation into trophectoderm, while 

overexpression promotes differentiation into primitive endoderm and mesoderm (Niwa 

et al., 2000). Similar dedifferentiation into trophectoderm is seen upon deletion of 

SOX2, but this effect can be rescued by overexpression of OCT4 (Masui et al., 2007). This 

is in part because SOX2 maintains expression of OCT4 through regulating multiple 

transcription factors. ESCs deficient in NANOG lose pluripotency and differentiate into 

extraembryonic endoderm and exogenous expression of NANOG drives self-renewal of 

ESCs (Mitsui et al., 2003, Chambers et al., 2003). However, it has been shown that 

NANOG is not essential for the pluripotent state but instead helps to stabilise it, as ESCs 

are able to self-renew in the absence of NANOG, albeit with an impaired capacity and a 

predisposition for differentiation (Chambers et al., 2007). Aside from the core 

pluripotency factors, a number of other factors important for ESC pluripotency have 

been described, including KLF2/4/5 (Bourillot and Savatier, 2010), ESRRB (Festuccia et 

al., 2012), TFCP2l1 (Martello et al., 2013), TBX3 and DPPA4 (Ivanova et al., 2006).  

 

 
Figure 1.11 Regulation of ESC state by key pluripotency factors. Pluripotency factors OCT4, SOX2 and NANOG 
positively regulate their own expression and expression of other pluripotency genes, whilst inhibiting expression of 
differentiation genes. Taken from (Loh et al., 2011). 
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1.5 Differentiation of mouse embryonic stem cells 

1.5.1 Mouse embryogenesis 

Mouse embryogenesis follows a highly coordinated series of events progressing from 

the single cell zygote (Figure 1.12). The single cell undergoes several divisions to form 

the preimplantation blastocyst, which consists of three cell types: the trophectoderm 

(TE), epiblast and primitive endoderm (PrE). Following implantation, extraembryonic 

and post-implantation epiblast tissues are formed from the epiblast while the primitive 

endoderm forms the visceral and parietal endoderm (Loebel et al., 2003). Gastrulation 

then proceeds with the formation of the primitive streak, where epiblast cells undergo 

epithelial-to-mesenchymal transition (EMT) and ingress to form mesoderm and 

definitive endoderm (Tam and Behringer, 1997). The posterior-to-anterior positioning 

of the primitive streak determines the mesodermal and endodermal lineages, with the 

posterior giving rise to the lateral plate mesoderm and subsequently the intermediate 

mesoderm, anterior paraxial mesoderm, axial mesoderm and then definitive endoderm 

forming from the anterior primitive streak (Bardot and Hadjantonakis, 2020). Cells that 

do not move through the primitive streak form the definitive ectoderm (Tam and 

Behringer, 1997).  

 

 
Figure 1.12 Stages of early mouse embryogenesis. Following fertilisation and cell division, the preimplantation 
blastocyst is formed at E3.5, consisting of the trophoectoderm (TE) and inner cell mass (ICM). Subsequently the ICM 
develops into the epiblast and primitive endoderm. Following implantation, the epiblast differentiates into multiple 
lineages before the primitive streak is formed at E6.5. Taken from (Davidson et al., 2015) 
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1.5.2 Directed differentiation of ESCs 

The pluripotent state of ESCs can be utilised in culture to model cell differentiation 

processes. ESCs are able to spontaneously form embryoid bodies (EBs) in culture in non-

adherent conditions without the addition of extrinsic factors. Extended culture of EBs 

shows them to recapitulate some aspects of the developing embryo, with 

differentiation towards all three germ layers (Doetschman et al., 1985). More defined 

methods which include the addition of signalling factors enable directed differentiation 

of ESCs into different lineages. 

 

Among these methods is the generation of epiblast-like stem cells (EpiLSCs) from ESCs 

cultured with a combination of Activin A and FGF2 (Hayashi et al., 2011, Buecker et al., 

2014). Stem cells derived from the post implantation epiblast, termed epiblast stem 

cells (EpiSCs), can be isolated and maintained in culture. These EpiSCs represent a 

primed pluripotent state, expressing Oct4 and Nanog alongside downregulation of 

Rex1, a marker present in ESCs, and upregulation of Fgf5 and Nodal, which are 

expressed in late epiblast following implantation (Brons et al., 2007, Tesar et al., 2007).  

EpiSCs show a narrower capacity for pluripotency than ESCs, as chimera formation was 

impaired compared to ESCs upon injection into blastocysts (Brons et al., 2007). 

 

More recently, gastruloids, which closely mimic the multiple germ layer organisation 

and morphology of gastrulating embryos, have been generated. This technique involves 

aggregation of ~300 ESCs in non-adherent conditions with a pulse of a GSK3 inhibitor, 

CHIR99021, between 48 hours and 72 hours post plating (Beccari et al., 2018b). The 

gastruloids establish the three major body axes and express Hox genes along the 

anterior-posterior axis. Gene expression analysis of gastruloids show expression of 

gastrulation associated genes at 48 hours and lineage specific markers associated with 

mesendoderm and neuroectoderm at 72 hours, reproducing spatial and temporal gene 

expression of the developing embryo (Beccari et al., 2018b). It is worth noting that 

despite abundant similarities between gastruloids and the developing embryo, 
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gastruloids do not express genes associated with extraembryonic structures and 

anterior neural plate lineages (Beccari et al., 2018b). 

1.6 Project aims 

LSD1 plays a role in numerous developmental pathways, including myogenesis, 

adipogenesis, osteogenesis, haematopoiesis, and spermatogenesis, which indicates its 

importance during development (Saleque et al., 2007, Musri et al., 2010, Choi et al., 

2010, Ge et al., 2014, Lambrot et al., 2015). The embryonic lethality of LSD1 KO mice at 

~E6.5 and the correspondence of this embryonic stage with the onset of early 

gastrulation indicates a role for LSD1 in this key developmental process (Wang et al., 

2007, Wang et al., 2009a, Foster et al., 2010, Bardot and Hadjantonakis, 2020). 

Gastrulation is a highly coordinated and dynamic period which incorporates multiple 

processes, including EMT and axis formation, and the embryonic lethality of LSD1 KO 

during this period suggests disruption of one or more of these processes.  This project 

aimed to elucidate the role of LSD1 during this developmental period by utilising 

gastruloids as a model system. We employed previously characterised Lsd1lox/∆3 ESCs 

(Foster et al., 2010), with a tamoxifen inducible Lsd1 conditional knockout, to generate 

gastruloids and assess differential gene expression.  

 

The requirement of LSD1 for the stability of the CoREST complex and loss of HDAC1/2 

deacetylase activity upon loss of LSD1 (Foster et al., 2010), prompted us to distinguish 

between differential gene expression as a direct result of LSD1 demethylase activity and 

as an indirect result of loss of more generalised CoREST complex activity. To achieve 

this, we employed a catalytic inactive mutant of LSD1, K661A, which abrogates LSD1 

demethylase activity whilst retaining CoREST complex stability (Lee et al., 2005, Chen et 

al., 2006, Lee et al., 2006, Huang et al., 2007, Adamo et al., 2011, Maiques-Diaz et al., 

2018, Sehrawat et al., 2018), and produced gastruloids to assess differential gene 

expression.  
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2 Methods 

2.1 Cell culture 

Previously characterised Lsd1lox/∆3 ESCs (Foster et al., 2010), with a tamoxifen inducible 

LSD1 conditional knockout, were used for all experiments. These cells were generated 

using E14 ESCs expressing a Cre/estrogen receptor fusion protein expressed from the 

ROSA26 locus. A full schematic of the generation of these cells is given in Figure 2.1.  

 
Figure 2.1 Generation of conditional KO Lsd1lox/∆3 ESCs. A “Lsd1cKO-Hyg” gene targeting vector was used to flank 
Exon 3 of the Lsd1 gene with LoxP sites to produce Lsd1 +/Lox-Hyg∆TK cells. These were then treated with tamoxifen for 
6h to induce LoxP recombination, generating Lsd1 +/∆3 cells. Subsequently, the second allele of Lsd1 +/∆3 cells was 
targeted with the Lsd1cKO-Hyg vector to produce Lsd1 Lox-Hyg∆TK/∆3 cells and the selection cassette was removed using 
transient transfection with FLPe recombinase, generating the final Lsd1lox/∆3 cells. Black triangles – LoxP positions, 
White triangles – FRT sites. Taken from (Foster et al., 2010). 

 

Previously generated Lsd1lox/∆3 ESCs with piggyBac WT-Lsd1 and Lsd1-K661A inserts 

were used for experiments in Results Chapter 5 (Barnes, 2018). Generation and 

screening of these cells for similar protein expression of inserts and endogenous LSD1 

is outlined in Figure 2.2.  
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Figure 2.2 Generation and characterisation of rescue construct cell lines. A) Schematic of WT-Lsd1 and Lsd1-K661A 
inserts. B) Diagram of transposase insertion. DNA regions flanked by inverted repeats (IR) are excised by piggyBac 
transposase and then inserted into genomic DNA at any TTAA site. C) Screening of rescued Lsd1lox/∆3 cells protein 
expression levels. Western blots for FLAG-tagged mutant and WT LSD1 inserts in the clones used in this thesis using 
LSD1 and FLAG specific antibodies. a-tubulin was used as a loading control. 

Cells were either cultured in M15 + LIF or in 2i media, on 0.1% gelatin-coated 6-well/6cm 

plates. When switching cells from M15 + LIF to 2i media, or vice versa, cells were 

acclimatised to the new media for 2 weeks before being used in experiments.  

2.1.1 Cell culture media and reagents 

M15 +LIF media 

500mL Knockout DMEM (GIBCO; 10829-018) 

90mL Fetal Bovine Serum (LSP; S-001A-BR) 

6mL Penicillin/Streptomycin/Glutamine-100x (GIBCO; 10378-016)  

600µL 50mM b-mercaptoethanol (Fisher Scientific; 125472500) 

25µL Leukaemia inhibitory factor (made in house) 

2i Stock 

500mL Knockout DMEM (GIBCO; 10829-018) 

6mL Penicillin/Streptomycin/Glutamine-100x (GIBCO; 10378-016) 

600µL 50mM b-mercaptoethanol (Fisher Scientific; 125472500) 

25µL Leukaemia inhibitory factor (made in house) 

A

B

C
Lsd1lox/∆-WT Lsd1lox/∆-K661A

FLAG(LSD1)

LSD1

!-tubulin

Lsd1lox/∆3
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2i media 

50mL 2i Stock  

1mL B27 (GIBCO; 17504044) 

500µL N2 (GIBCO; 17502048) 

6µL (3µM) CHIR99021- GSKi (Merck-Millipore; 25917-06-9) 

5µL (1µM) PD032591- MEKi (Sigma; A3734) 

0.1% gelatin 

475mL Dulbecco’s Phosphate Buffered Saline (GIBCO,14190144)  

25mL 2% Gelatin from Porcine Skin (Sigma, G1890) 

TrypLE Express (GIBCO; 12604021)  

Dulbeccoʹs Phosphate Buffered Saline (PBS) (Sigma; D8662-500ML)  

Freezing media 

4mL KO DMEM (GIBCO; 10829-018) 

5mL Foetal Bovine Serum (LSP; S-001A-BR) 

1mL DMSO (Sigma; D2650-100ML)  

Gastruloid Differentiation Medium (N2B27): 

25mL Neurobasal (Thermo Fisher Scientific, 21103-049) 

25mL DMEM-F12 (Sigma-Aldrich, D6421) 

250µL N2 (GIBCO; 17502048) 

250µL B27 (GIBCO; 17504044) 

500µL glutamine (GIBCO; 25030081) 

50µL B-mercaptoethanol (Fisher Scientific; 125472500) 

2.1.2 Thawing ESCs 

10cm plates (Corning; 403167) were gelatinised with PBS containing 0.1% gelatin. 

Cryovials (Corning) containing cells were thawed rapidly and added to 9mL of 

prewarmed ESC media (M15+LIF/2i media). Cells were centrifuged at 1100rpm for 3 
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minutes and resuspended in ESC media (M15+LIF/2i media) before plating onto 

gelatinised plates. Plates were incubated in a 5% CO2 incubator at 37°C. 

2.1.3 Passaging ESCs 

After plating, cells were passaged onto new plates every 2-3 days, once 75-90% 

confluency was reached. Passaging included aspirating media and washing cells in 1xPBS 

before dissociation from the plate using TrypLE. TrypLE was then neutralised using M15 

+ LIF media before centrifugation at 1100rpm for 3 minutes. The supernatant was 

aspirated from the resulting pellet, which was resuspended in fresh, prewarmed media 

before being split onto pre-gelatinised plates. Plates were maintained in a 5% CO2 

incubator at 37°C. 

2.1.4 Freezing ESCs 

ESCs were washed with PBS and disassociated from the plate using TrypLE, as described 

in 2.1.2. After centrifugation, cells were resuspended in 1mL freezing media and 

transferred to a cryovial. Cryovials were placed in freezing containers and placed in an 

-80°C freezer. After 24-48 hours, cryovials were transferred to liquid nitrogen. 

2.1.5 Generation of Gastruloids 

Gastruloids were generated following the protocol previously established by Beccari et 

al. (2018a). Lsd1lox/∆3 ESCs previously cultured in M15 + LIF media, and treated with OHT 

6 days previous, were plated down onto ultra-low attachment 96 well plates (Corning 

7007) in N2B27 media at a concentration of 7.5 ESCs/µL, alongside non-treated controls. 

At this stage, approximately 1.67 x 106 cells from both conditions were taken for the 0-

hour timepoint. Following incubation for 48 hours, 150µL of secondary media (N2B27 

with 3µM CHIR99021) was added to each well. Following this, media was removed from 

each well and 150µL fresh media was added at 24h intervals until 120h. Images were 

taken at 48h, 72h, 96h and 120h timepoints.  



 34 

For each replicate, there were a total of four plates of gastruloids each for Lsd1 KO and 

controls. From these, two full plates and the outer perimeter of the remaining two 

plates were harvested at 72h, for a total of 216 gastruloids. This was due to the 

increased likelihood for gastruloids in the outer wells of the plates to become “ragged” 

after 72h. For the 120h timepoint 90 gastruloids, which were determined by eye to have 

elongated, were harvested from both Lsd1 KO and control conditions.  

For the rescue experiments in Results Chapter 5, Lsd1lox/∆3-WT and Lsd1lox/∆3-K661A ESCs 

were previously cultured in M15 + LIF media, and treated with OHT 6 days previous, to 

knock out endogenous expression of Lsd1. Gastruloids generated from WT-Lsd1 and 

Lsd1-K661A rescue construct cell lines were produced as outlined for Lsd1 KO and 

control gastruloids, with the same number of plates, number of gastruloids harvested, 

and following the same protocol.  

2.1.5.1 Optimisation and troubleshooting 

Optimisation of media quality, initial cell number, and initial culture conditions was 

performed. Solutions to common issues are given in Table 2.1. 

 

 

 

Issue Possible cause Solution 
Aggregates fail to form. 
OR 
Aggregates form but later 
begin to disaggregate. 

Cell number is too low. 300 cells per well is 
optimum. Check cell 
counting calculations and 
that cell pellet is properly 
resuspended before 
plating. 

Quality of media/pH of 
media. 

Ensure N2B27 media is 
fresh, warm, and well-
mixed. 
Ensure the pH of media is 
appropriate. Overly 
pink/orange media could 
indicate incorrect 
incubator CO2 
concentration. 
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Quality of initial cell 
culture. 

Ensure cell culture is not 
overgrown and has 
undergone as few 
passages as possible. Try 
thawing another cell 
aliquot and see if this 
improves it.  

Increased evaporation in 
outer wells. 

When culturing gastruloids 
past 72h, avoid using wells 
in the outer perimeter of 
the plates, as cumulative 
evaporation can affect 
their growth. 

Aggregates are irregularly 
shaped. 
OR 
Multiple aggregates form. 

Cell number is too high. 300 cells per well is 
optimum. Check cell 
counting calculations and 
that cell pellet is properly 
resuspended before 
plating. 

Brand of plate is not 
appropriate. 

Ensure Corning 7007 ultra-
low attachment plates are 
used, as other brands led 
to formation of multiple 
aggregates. 

Aggregates fail to 
elongate. 

Quality of media/pH of 
media. 

Ensure N2B27 media is 
fresh, warm, and well-
mixed. 
Ensure the pH of media is 
appropriate. Overly 
pink/orange media could 
indicate incorrect 
incubator CO2 
concentration. 

Quality of initial cell 
culture. 

Ensure cell culture is not 
overgrown and has 
undergone as few 
passages as possible. Try 
thawing another cell 
aliquot and see if this 
improves it.  

Table 2.1 Solutions to common gastruloid issues 
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2.1.6 Image acquisition 

For both Lsd1 KO versus controls and WT-Lsd1 versus Lsd1-K661A experiments, five 

wells from each of the four plates for both conditions were randomly selected and 

images were taken with 20x magnification at 48h and 72h. Following harvesting at 

72h, the same five wells in the remaining two plates imaged previously and five 

additional randomly selected wells for each plate were imaged at 10x magnification at 

96h and 120h. Pixel measurements were taken using the measuring tool of GNU Image 

Manipulation Program (GIMP, version 2.10.34) and converted to µm using a scaling 

factor of 430 for 20x magnification and 215 for 10x magnification, calculated using 

images of a 1mm scale bar. For 48h, 72h, and 96h images, measurements were taken 

of the perpendicular x- and y-diameters of gastruloids, and area was calculated using p 

´ x/2 ´ y/2. For 120h images, measurements were taken of the longest gastruloid axis. 

2.2 RNA analysis 

2.2.1 RNA extraction 

For each replicate, from each condition, approximately 1.67 x 106 cells, 216 gastruloids, 

and 90 gastruloids were taken for the 0-, 72-, and 120-hour timepoints, respectively. 

Gastruloids were harvested, pelleted and kept frozen at -80°C until simultaneous RNA 

extraction of samples from each timepoint, separately for each replicate. RNA 

extraction was performed using a Direct-zol RNA mini prep kit (ZYMO RESEARCH; 

R2053). When extracting RNA from >96-hour gastruloids, samples were first centrifuged 

after addition of TRI reagent for 2 mins in QIAshredder columns (QIAGEN; Cat No./ID: 

79654). RNA was eluted in 20µL DNA/RNAse free water. RNA was stored at -80°C. 
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2.2.2 cDNA 

cDNA was generated using 500ng of RNA in a 20µL reaction with 4µL q-Script (Qantabio; 

95048) and using the below conditions. cDNA was diluted 5-fold with RNase/DNase free 

water and stored at -20°C. 

Reaction conditions: 

Lid temperature - 105°C 

Step 1- 25°C 5 mins 

Step 2- 42°C 30 mins 

Step 3- 85°C 5 mins 

Step 4- 12°C Infinite hold 

2.2.3 RT-qPCR 

RT-qPCR was performed in triplicate for each cDNA sample and primer combination. RT-

qPCR reactions were set up in 96-well plates with 10µL volume consisting of: 0.5µL of 

20mM primers, 5µL of SensiFAST SYBR, 2.5µL of DNA/RNAse free water and 2µL of 

cDNA. RT-qPCR was performed on a BioRad CFx Connect qPCR machine using the 

programme below. 

qPCR programme: 

95°C 15 mins 

95°C 10 secs 

55°C/60°C 30 secs  x 40 cycles 

72°C 1 min 

Plate read 

65°C-95°C in 1°C increments (melt curve)  
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Target gene Primer Sequence Tm (°C) 

β-actin 
β-actin F GGC TCC TAG CAC CAT GAA GA  

60 
β-actin R AGC TCA GTA ACA GTC CGC CT  

Nanog  
Nanog F  AGG GTC TGC TAC TGA GAT GCT CTG  

60  
Nanog R  CAA CCA CTG CTT TTT CTG CCA CCG  

Sox2  
Sox2 F  TAG AGC TAG ACT CCG GGC GAT GA  

60  
Sox2 R  TTG CCT TAA ACA AGA CCA CGA AA  

Pou5f1 (Oct4) 
Oct4 F AGT ATG AGG CTA CAG GGA CA  

60 
Oct4 R CAGT ATG AGG CTA CAG GGA CA 

Brachyury 
Bra F GCT TCA AGG AGC TAA CTA ACG AG  

55 
Bra R CCA GCA AGA AAG AGT ACA TGG C  

Foxa2 
Foxa2 F CCC TAC GCC AAC ATG AAC TCG 

55 
Foxa2 R GTT CTG CCG GTA G(g)AA AGG GA  

Gsc 
Gsc F CAG ATG CTG CCC TAC ATG AAC 

60 
Gsc R TCT GGG TAC TTC TGG 

Gata6 
Gata6 F TTG CTC CGG TAA CAG CAG TG  

60 
Gata6 R GTG GTC GCT TGT GTA GAA GGA  

Zscan4a 
Zscan4a F ACA GAT GCC AGT AGA CAC C 

60 
Zscan4a R ACA AAC AAC ATT CCC CTC TTC 

Zscan4c 
Zscan4c F CAG TAG ACA CCA CAC AAG ATA G 

60 
Zscan4c R ACA AAC AAC ATT CCC CTC TTC 

Zscan4d 
Zscan4d F AAA GAG GTG AGG TGG AGG AG 

60 
Zscan4d R GTG GTG ACA ATG GTG TGA AAG 

Mixl1 
Mixl1 F ACG CAG TGC TTT CCA AAC C 

60 
Mixl1 R CCC GCA AGT GGA TGT CTG G 

Nkx1-2 
Nkx1-2 F CGC TCT GCC CTA TCA GAC TTT 

60 
Nkx1-2 R GGC CCA AGG AAT GGA GTG A 

Table 2.2 RT-qPCR primers 

2.2.4 RNA-seq sample preparation 

Quality of extracted RNA was checked using an Agilent RNA 6000 Nano Chip (Agilent; 

5067-1511) on a 2100 Bioanalyzer (Agilent) to ensure that samples met the 

requirements for Novogene’s sequencing service. 

2.2.5 RNA-seq library preparation and sequencing 

RNA samples were sent to Novogene for library preparation and sequencing. Libraries 

were prepared using the NEB Next Ultra RNA Library Prep kit (NEB; 37530). The Illumina 

NovaSeq 6000 sequencing system was used to perform 150bp paired-end sequencing 
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to a 20 million read depth per sample. 4 biological replicates for each condition were 

sequenced. Data was quality control checked before being released for analysis. 

2.2.6 RNA-seq data analysis 

The University of Leicester’s SPECTRE High Performance Computing Facility was used 

to perform the initial data analysis. FastQC was used to check the quality of the FASTQ 

files and MultiQC was used to compile FastQC reports (Ewels et al., 2016). HISAT2 

(version 2.1.0) was used to map reads to the mm10 genome, using default parameters 

(Kim et al., 2019a). Resultant SAM files were sorted and converted to BAM files using 

SAMtools (version 1.9) with default parameters, and SAMtools was subsequently used 

to index the BAM files (Li et al., 2009). BAM files were converted to bigWig files using 

deeptools bamCoverage and the resulting bigWig files were merged using the python 

package bigwigmerge. LiBiNorm (version 2.4) was used to generate read counts in 

htseq-count compatible mode using the Mus-musculusGRCm38.92 reference genome 

from Ensembl (Dyer et al., 2019). Count versions were loaded into RStudio running R 

version 4.2.2. DESeq2 was used for modelling and normalisation of the data, using 

‘normal’ for LFC shrinkage (Love et al., 2014). Principal component analysis plots were 

used to ensure clustering between replicates within conditions and variance between 

conditions. Cook’s distance plots, which use the distance of individual data points from 

the line of best fit to identify outliers, were then used to ensure that there were no 

outlying samples. Differential gene expression analysis was performed to compare 

samples and differentially expressed genes were determined using adjusted p-value 

(padj) of <0.01 and a Log2 fold change of > +1/< -1 as parameters.  

 
Analysis and plot generation in R involved the following packages: DESeq2, basicPlotteR, 

ggplot2, RColorBrewer, ggrepel, ggpubr, PCAtools, dplyr, VennDiagram, topGO and 

tidyverse. The Bioconductor package topGO was used to perform Gene Ontology (GO) 

analysis on lists of differentially expressed genes (Alexa and Rahnenfuhrer, 2022). 

Fisher’s exact test was used to determine significance (Fisher’s <0.01) 
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3 Generation of gastruloids 

3.1 Chapter Aims 

The work in this chapter involves the generation of gastruloids and determination of 

their effectiveness as a model system to study the effects of Lsd1 knockout in early 

development. The aim was to establish a model system which closely mirrors the 

developmental timepoint at which loss of LSD1 leads to embryonic lethality, ~E6.5, 

which correlates with early gastrulation (Wang et al., 2007, Wang et al., 2009a, Foster 

et al., 2010, Bardot and Hadjantonakis, 2020). To do this we produced gastruloids from 

previously characterised conditional knock out Lsd1lox/Δ3 mouse ESCs (Foster et al, 2010) 

and analysed the levels of gene expression at timepoints over the course of 5 days 

(Figure 3.1A). We assessed gene expression in the control condition to confirm the 

functional relevance of the system. The timepoints chosen; 0 hours, 72 hours, and 120 

hours, reflect ESC, early gastrulation, and late gastrulation stages, respectively, as has 

been previously demonstrated in gastruloids (Beccari et al., 2018b). Although it could 

be expected that differential gene expression which results in the embryonic lethality 

of Lsd1 KO would be observed at the 72 hour timepoint, 120 hours was chosen as the 

endpoint to enable elucidation of any downstream gene expression changes in affected 

developmental pathways. 

3.2 Optimisation of gastruloid generation 

Following the previously established protocol for the generation of gastruloids by 

Beccari et al. (2018a), we were able to robustly and reliably produce gastruloids from 

the cell lines used. However, initial attempts to produce gastruloids highlighted a 

number of issues which required optimisation before this was achieved (Figure 3.1). 

Firstly, on multiple occasions, aggregates were either not forming or were 

disaggregating after the 72h timepoint, resulting in small, ragged aggregates as seen in 

Figure 3.1A. This issue occurred in multiple circumstances, including when cells had 
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undergone many passages (>20), when the number of cells plated was too low, or when 

media quality was impaired. The use of freshly thawed cells which allowed for fewer 

passages (<10) before plating and ensuring cell counts were accurate to allow for plating 

of approximately 300 cells per well rectified this issue in most cases. On one occasion, 

there was a sustained period of time for which aggregates were failing to form or later 

disaggregating whenever cells were plated, despite employing the countermeasures 

which had previously remedied this issue. Discolouration of the media indicated 

unsuitable pH levels, which were found to be caused by inaccurate CO2 levels in the 

incubator. This was corrected by using an alternative incubator which accurately 

maintained CO2 levels at 5%. 

 

As indicated in Figure 3.1B, another issue in the generation of gastruloids which had to 

be overcome was the incidence of irregularly shaped, “amorphous” gastruloids. The 

formation of these gastruloids tended to occur when the plated cell number was too 

high. This was remedied by counting cells with a haemocytometer, as opposed to the 

previously used automated cell counter (Bio-Rad TC20), to ensure accuracy, and by 

ensuring cell pellets were sufficiently resuspended before plating. Occasionally, the 

plating of too many cells also resulted in the formation of multiple aggregates, as 

demonstrated in Figure 3.1C, and could be rectified by similar methods. In addition to 

this, multiple aggregates also formed when using a particular brand of low attachment 

96 well plate (Greiner 650979) and this issue could be avoided by using a brand of plate 

which didn’t exhibit this issue (Corning 7007). 
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Figure 3.1 Issues encountered during gastruloid generation. Representative images at 96h of common issues. A) 
Small aggregates formed when the quality of initial cell culture or media was poor, or when too few cells were plated. 
B) Amorphous aggregates formed when too many cells were plated. C) Multiple aggregates formed when too many 
cells were plated, or a certain brand of plate was used. 

3.3 Gastruloid morphology mimics embryo elongation 

Previous descriptions of gastruloid morphology showed that cells aggregate into 

spherical structures at early stages and then extend from 72 hours onwards to form 

elongated gastruloids at 120 hours (Beccari et al., 2018b) (Figure 3.2C). At 120 hours, 

the gastruloids display a cell dense rostral region and an extended caudal region. The 

results from our experiments exhibit similar morphology, though where elongation 

begins at 72 hours in previous experiments (Beccari et al., 2018b), the beginning of this 

process seemed to be delayed until 96 hours (Figure 3.2B).  
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Amorphous aggregates
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Figure 3.2 Morphology of gastruloids mimics embryo elongation (A) Diagram showing the timeline of gastruloid 
generation and harvest for RNA sequencing. (B) Representative images of gastruloids at 48-, 72-, 96- and 120-hour 
timepoints. (C) Diagram showing how gastruloid timepoints align with embryonic day stages in the embryo (Adapted 
from Beccari et al., 2018b) 
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The delayed elongation prompted investigation into whether this corresponded with 

delayed induction of gastrulation associated markers.  Using RT-qPCR analysis, it was 

determined that gastrulation markers were induced at 72 hours, as seen in previous 

studies (Figure 3.3) (Beccari et al., 2018b). Specifically, expression levels of the early 

differentiation marker Brachyury and gastrulation associated genes, Mixl1, Gsc, and 

Nkx1-2 increased dramatically from 48 to 72 hours. This showed 72 hours was 

representative of early gastrulation and informed the choice of intervals used for RNA-

seq. Despite the observed delay in elongation, these results indicate that gastruloids 

could be reliably produced using the previously established method. 

 

 
Figure 3.3 Gastrulation associated genes were induced in gastruloids at 72 hours. RT-qPCR data showing the fold-
change in expression levels of Brachyury, Mixl1, Gsc, and Nkx1-2. Expression levels were normalised to the control 
gene b-actin (n=3 +/-SD). 
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3.4 Gastruloids exit pluripotency and express markers of 

gastrulation 

Gastruloids were harvested at 0, 72, and 120 hour timepoints for RNA-seq. Principal 

component analysis (PCA) was used to assess the variance of samples and samples 

clustered well by timepoint (Figure 3.4A). A plot of Cook’s distance showed there were 

no outliers among the samples (Figure 3.4B). 

 

 
Figure 3.4 Gastruloid samples were suitable for RNA-seq analysis. (A) Plot of principal component analysis (PCA) 
showing the variance of control samples (B) Plot of Cook’s distance showing there were no outliers among the 
samples. 
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Using parameters of a fold change cut off of ≥2 and an adjusted p-value (padj) of ≤0.01, 

numerous differentially expressed genes (DEGs) were identified between timepoints, 

with 5554 differentially expressed genes identified between 0 hours and 72 hours, and 

3668 genes between 72 hours and 120 hours (Figure 3.5). This is consistent with an 

alteration of gene expression as cells exit pluripotency and begin to differentiate. 
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Figure 3.5 Differential gene expression showed differentiation between timepoints. MA plots showing genes that 
are differentially expressed between timepoints, using an adjusted p-value of <0.01 and a log2 fold change of >1. 
Upregulated genes are highlighted in red and downregulated genes in blue. Black dashed lines indicate the cut offs 
for log2 fold change. 
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Gastruloids showed a reduction in pluripotency markers: Nanog, Oct4 (Pou5f1), Sox2, 

Rex1 (Zfp42), and Dppa3, from 0 hours to 72 hours and these remained low at 120 hours 

(Figure 3.5). Reduction in the levels of the core pluripotency factors Nanog, Oct4 and 

Sox2 are required for the exit from pluripotency (Loh and Lim, 2011). Rex1 expression is 

high in ESCs and reduces when cells are induced to differentiate (Rogers et al., 1991). 

Dppa3 expression is associated with pluripotency, as cells expressing Dppa3 resemble 

ICM, whereas Dppa3 negative cells resemble epiblast (Hayashi et al., 2008). Dppa3 

shares a superenhancer with Nanog, which regulates the expression of both genes 

(Blinka et al., 2016). 

 

Overall, a reduction in expression of genes associated with pluripotency and an increase 

in expression of genes associated with early differentiation was seen as gastruloids 

progress from 0 hours to 72 hours and 120 hours, as shown in Figure 3.6B. As 

pluripotency factors decrease in expression, levels of key early differentiation genes, T, 

Foxa2, and Fgf5 increase, with a peak at 72 hours, representing a state primed for 

differentiation (Figure 3.6A). 
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Figure 3.6 Analysis of pluripotency markers shows an exit from pluripotency in control gastruloids (A) Line graphs 
showing expression of genes associated with pluripotency and a state primed for differentiation at different 
timepoints. Points represent values for individual replicates for each gene, lines show mean values of replicates.  (B) 
Heatmap showing log2 fold change values between 0 hours and 72 hours and between 0 hours and 120 hours for 
genes associated with pluripotency and a state primed for differentiation.  
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Genes associated with gastrulation, Brachyury (T), Foxa2, Lhx1, Gsc (Goosecoid), Eomes 

(Eomesodermin), and Lefty1, show a peak in upregulation at 72 hours (Figure 3.5). 

Brachyury and Foxa2 are expressed in the posterior and anterior primitive streak, 

respectively, and their expression domains partially overlap (Bardot and Hadjantonakis, 

2020). Cells expressing Brachyury form posterior mesoderm and Foxa2 expressing cells 

form endoderm, while populations coexpressing these genes form axial mesoderm 

(Burtscher and Lickert, 2009). Brachyury expression in the primitive streak partially 

overlaps with expression of Eomes, and there is a requirement for either or both of 

these two factors for the determination of all mesoderm and definitive endodermal 

lineages. Cells deficient in both factors fail to form mesoderm and definitive endoderm, 

instead retaining primed pluripotency markers (Tosic et al., 2019). Lhx1, alongside 

Mixl1, has an important role in the movement of mesoderm and endoderm during 

gastrulation (Tam and Loebel, 2007). Lefty1 is expressed in ESCs, with KLF4 cooperating 

with OCT4 and SOX2 at its promoter to activate its expression (Nakatake et al., 2006). 

However, it is also expressed in the epiblast, where its antagonism of Nodal, alongside 

Cer1, is essential for the correct positioning of the primitive streak (Tam and Loebel, 

2007). Goosecoid is expressed at E6.5 in the developing primitive streak and localises 

towards its anterior end before contributing to an area of mesoderm which forms the 

head process. Goosecoid expression peaks over a very short window in embryos, with 

expression starting at 6 days, 9 hours and ending by 6 days, 21 hours, which corresponds 

with the expression peak seen in gastruloids at 72 hours (Figure 3.7A) (Blum et al., 1992). 

 

This peak of expression in gastrulation markers at 72 hours is further reflected in Figure 

3.7A, which highlights the sharp increase between 0 and 72 hours followed by a 

decrease between 72 and 120 hours of markers Eomes, Fgf8, Gsc, Mixl1 and Nkx1-2. 

BMP and Wnt signalling are essential for the initiation of the primitive streak through 

activation of genes, including Nkx1-2 (Sharma et al., 2017, Tamashiro et al., 2012). Nkx1-

2 is a transcriptional repressor and is essential for expression of Brachyury in the 

primitive streak, through repression of targets such as Tcf3 (Tamashiro et al., 2012). Fgf8 

is expressed in the primitive streak, where it upregulates expression of Fgf4. Lack of Fgf8 

and/or Fgf4 causes a failure of cells to migrate from the primitive streak and leads to 

complete loss of mesodermal and endodermal lineages (Sun et al., 1999). Upregulation 
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of Fgf8 is partly mediated by Brachyury, as this upregulation is reduced upon 

knockdown of Brachyury (Tamashiro et al., 2012). 

 

The expression of epiblast markers, Nodal, Lefty1, Otx2 and Fgf5, in gastruloids aligns 

with their pre-gastrulation roles in the embryo (Figure 3.7A). Nodal is expressed in the 

epiblast pre-gastrulation and is required for the formation of the anterior visceral 

endoderm (AVE), one of the first steps in defining the anterior-posterior axis in the 

embryo. The AVE expresses the NODAL antagonists LEFTY1 and CER1, which restrict 

NODAL signalling to the proximal and posterior side of the embryo. This results in 

localisation of NODAL at the onset of gastrulation to the site which gives rise to the 

primitive streak, and this is essential for its formation (Whitman, 2001, Bardot and 

Hadjantonakis, 2020). OTX2 is required for the transition from the ES cell state to EpiSCs 

and prevents epiblast cells from regaining pluripotency by directly repressing Oct4 and 

Nanog (Acampora et al., 2013, Di Giovannantonio et al., 2021). OTX2 is required for the 

anterior migration of the visceral endoderm to form the AVE and is essential for the 

downstream expression of LEFTY1 (Perea-Gomez et al., 2001). The expression of Nodal, 

Lefty1 and Otx2 seen at 0 and 72 hour correlates with their function in the pre- 

gastrulation epiblast (Figure 3.7A). The minimal expression of these epiblast related 

factors at 120 hours reflects an exit from a state representative of epiblast at the onset 

of gastrulation and entry into lineage specification. 
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Figure 3.7 Analysis of gastrulation associated genes shows induction of gastrulation in control gastruloids (A) Line 
graphs showing expression of genes associated with gastrulation, epiblast and cadherins at different timepoints. 
Points represent values for individual replicates for each gene, lines show mean values of replicates.  (B) Heatmap 
showing log2 fold change values between 0 hours and 72 hours and between 0 hours and 120 hours for genes 
associated with gastrulation. 

0

2000

4000

0h 72h 120h
Timepoint

D
ES

EQ
2 

N
or

m
al

is
ed

 C
ou

nt
s

Replicate
1
2
3
4

Gene
Eomes
Fgf8
Gsc
Mixl1
Nkx1−2

Gastrulation

72h vs 0h 120h vs 0h

Log2 Fold Change

  

Otx2

Cdh1

Lefty1

Nodal

Bmp4

Fgf4

Osr1

Twist1

Inhba

Dab2

Tgfbr2

Eomes

Gsc

Bmpr2

Ctnnb1

Bmpr1a

Alk2

Nckap1

Foxh1

Fgfr1

Fn1

Tgfb1

Mesp1

T

Lhx1

Nkx1.2

Mixl1

Wnt3a

Dkk1

Snai1

Tbx6

Fgf8

Foxa2

Wnt5a

Pcdh8

Cdh2

−10 −5 0 5 10
Value

Color Key

0

1000

2000

3000

4000

5000

0h 72h 120h
Timepoint

D
ES

EQ
2 

N
or

m
al

is
ed

 C
ou

nt
s

Gene
Cdh1
Cdh2

Replicate
1
2
3
4

Cadherins

0

500

1000

0h 72h 120h
Timepoint

D
ES

EQ
2 

N
or

m
al

is
ed

 C
ou

nt
s

Fgf5
Lefty1
Nodal
Otx2

Replicate
1
2
3
4

Epiblast

A B

  

Otx2
Cdh1
Lefty1
Nodal
Bmp4
Fgf4
Mesp1
T
Lhx1
Nkx1.2
Osr1
Twist1
Dab2
Tgfbr2
Eomes
Gsc
Foxh1
Alk2
Bmpr1a
Fgfr1
Fn1
Tgfb1
Mixl1
Wnt3a
Dkk1
Snai1
Tbx6
Fgf8
Foxa2
Wnt5a
Pcdh8
Cdh2

−10 −5 0 5 10
Value

Color Key



 53 

The epithelial-to-mesenchymal transition that occurs at the primitive streak is essential 

for the migration of cells that contribute to mesodermal and endodermal lineages (Tam 

and Loebel, 2007). E-cadherin (Cdh1) confers an epithelial state to cells through 

maintenance of cell-cell adhesions and its downregulation, through Snai1 mediated 

repression, is essential for EMT (Cano et al., 2000). As cells undergo EMT, they 

encounter a switch from E-cadherin to N-cadherin (Cdh2) expression, and initial N-

cadherin expression occurs at E7.5 in mesoderm emerging from the primitive streak 

(Radice et al., 1997). Corresponding with this, we observed downregulation of E-

cadherin from 0 hours through to 120 hours and an upregulation of N-cadherin at 72 

hours which is maintained at 120 hours (Figure 3.7A). This is consistent with EMT that 

occurs at the primitive streak in early gastrulation in the embryo. 

3.5 Lineage specification in late stage gastruloids 

Gastruloids have previously been shown to express lineage specific genes representing 

all three germ layers in spatial domains from 72 hours, though this gene expression does 

not lead to formation of defined structures such as the notochord, as seen in the embryo 

(Beccari et al., 2018b). This is consistent with results shown in Figure 3.8A, as induction 

of endodermal and early mesodermal markers can be seen at 72 hours. Expression of 

the endodermal determinant Foxa2, which acts upstream of multiple endodermal 

markers, peaks at 72 hours. Expression of endodermal markers, Gata4, Mmp14 and 

Sox17, increases through 72 hours and 120 hours. Gata4 is a direct target of Foxa2 and 

plays a role in the specification of early endoderm (Rojas et al., 2010). The 

metalloproteinase gene Mmp14, involved in basement membrane remodelling, is 

expressed in Foxa2 positive definitive endoderm (Scheibner et al., 2021). Sox17 is a 

determinant of definitive endoderm and its depletion leads to loss of gut endoderm 

(Kanai-Azuma et al., 2002).  
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Upregulation of genes involved in the determination of early mesoderm, Fgf8, Wnt3a, 

Tbx6, Brachyury (T) and Msgn1, is observed at 72 hours in gastruloids (Figure 3.8A). 

Wnt3a, Tbx6 and Msgn1 are specifically expressed in the primitive streak where they 

are critical for the formation of paraxial mesoderm (Nowotschin et al., 2012b). 

Brachyury is a direct target of Wnt3a and acts upstream of Tbx6 and so is essential in 

this pathway (Yamaguchi et al., 1999, Hofmann et al., 2004). Fgf8 establishes the 

position of the somite determination front in presomitic mesoderm, where 

segmentation will occur (Dubrulle et al., 2001). Expression of these genes peak at 72 

hours, reflecting their role in establishment of early mesoderm, and reduce at 120 

hours, suggesting further differentiation into more specific lineages, including somites. 

 

Genes related to somite formation are upregulated at 120 hours, suggesting formation 

of later, more defined mesodermal linages (Figure 3.8A). Meox1 is expressed in 

presomitic mesoderm and in differentiating somites (Candia et al., 1992), which is 

reflected in its expression at 72 hours which is then upregulated at 120 hours. Tcf15 

(paraxis) is first expressed in paraxial mesoderm and then at higher levels in newly 

formed somites (Burgess et al., 1995), aligning with results in gastruloids. Tcf15 is also 

expressed in a subpopulation of ESCs, priming them for differentiation (Davies et al., 

2013), which may explain its additional expression at 0 hours. Pax3 is expressed in newly 

formed somites and its expression is later restricted to the dermomyotome (Goulding 

et al., 1994). Foxc1 is essential for the formation of somites, as loss of Foxc1, and the 

closely related Foxc2, leads to complete lack of somite formation (Kume et al., 2001).  

 

Ectodermal gene expression is also established at 120 hours, but expression levels are 

not as high as mesodermal and endodermal genes (Figure 3.8A). This observed reduced 

induction of neuroectodermal markers coincides with the specification of 

neuroectoderm during late gastrulation (Bardot and Hadjantonakis, 2020). Sox1 and 

Pax6 are markers of neuroectoderm and their overexpression can induce neuronal 

lineages in embryoid bodies (Suter et al., 2009).  Pax6 expression was previously shown 

to be lower at 120 hours in gastruloids than at the equivalent stage in embryos, and 

genes associated with anterior neural plate were poorly expressed, suggesting 

ectoderm lineages are underrepresented in gastruloids (Beccari et al., 2018b). 
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Figure 3.8 Analysis of lineage specific genes indicates differentiation into all three germ layers in control gastruloids 
(A) Line graphs showing expression of genes associated with endodermal, ectodermal, presomitic mesoderm and 
somites at different timepoints. Points represent values for individual replicates for each gene, lines show mean values 
of replicates.  (B) Heatmap showing log2 fold change values between 0 hours and 72 hours and between 0 hours and 
120 hours for genes associated with each germ layer. 
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Transcription of Hox gene clusters were previously observed in gastruloids from 72 

hours (Beccari et al., 2018b). Homeobox-containing Hox genes play a key role in 

establishing anterior-posterior patterning during embryogenesis. Hox genes consist of 

four paralogue groups which exist in chromosomal clusters: Hoxa, Hoxb, Hoxc and Hoxd, 

and genes are expressed in a spatio-temporal order according to their 3’ to 5’ 

positioning within these clusters (Figure 3.9A) (Deschamps and van Nes, 2005). For 

example, 3’ Hox2 genes are expressed earlier in the posterior primitive streak, whereas 

Hox4 and Hox9 genes, positioned more towards the 5’ end of the cluster, are expressed 

later (Figure 3.9A). This sequential activation of Hox transcripts was previously observed 

in gastruloids. Specifically, expression of Hoxa1 and Hoxa3 was seen at 72 hours, 

followed by transcription of Hoxa5/7/9 at 96 and 120 hours (Beccari et al., 2018b). 

Similarly, we see induction of 3’ located Hox gene transcription at 72 hours, which are 

then upregulated further at 120 hours, followed by induction of more 5’ positioned 

genes at 120 hours (Figure 3.8B). In previous studies, expression of Hoxa10 and Hoxa11 

did not occur until 144 hours, when a downregulation of Hoxa1/2/3 was also seen 

(Beccari et al., 2018b). Expression of these transcripts were minimal at 120 hours in the 

current work, and downregulation of early Hox genes was not observed (Figure 3.8B), 

owing to the fact gastruloids were not cultured to the 144 hour timepoint. These results 

are indicative of progressive transcription of Hox gene clusters in an order 

corresponding to the 3’ to 5’ positioning of the genes. 

  



 57 

 

 
Figure 3.9 Analysis of Hox genes reflects their progressive temporal expression in control gastruloids (A) Schematic 
showing the arrangement of the four Hox gene clusters (a to d) on DNA and the temporal expression patterns of three 
paralog groups; 2, 4 and 9 at the late streak (LS), neural plate (NP) and head fold (HF) stages of mouse embryos 
(Adapted from Deschamps and van Nes, 2005) (B) Heatmap showing log2 fold change values between 0 hours and 
72 hours and between 0 hours and 120 hours for Hox genes, separated into each Hox gene cluster.  

3.6 Summary 

The results in this chapter have shown the successful generation of gastruloids that 

closely resembled gastruloids from previous studies and that recapitulated aspects of 

early embryogenesis. Gastruloids showed a decrease in pluripotency markers and an 

increase in genes associated with gastrulation, indicating differentiation over the 

timepoints. The expression of gastrulation associated genes and the subsequent 

expression of markers of all three germ layers suggests this model system emulates 

embryonic gastrulation processes, including EMT, as evidenced by the switch in 

cadherin expression. Overall, these results highlight the appropriateness of gastruloids 

as a model system to investigate the effects of Lsd1 KO during gastrulation. 
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4 Investigating the effects of Lsd1 knockout in gastruloids 

4.1 Chapter Aims 

Following the establishment of gastruloids as an appropriate model for recapitulation 

of the embryonic stage at which Lsd1 KO is embryonic lethal in Chapter 3, the work in 

this chapter aimed to investigate the effect of Lsd1 knockout on the differentiation of 

ESCs into gastruloids. This involved comparison of gastruloids lacking Lsd1 to control 

gastruloids at 0 hour, 72 hour and 120 hour timepoints, including analysis of 

morphology and differential gene expression. LSD1 has been shown to act as a 

transcriptional repressor through its demethylation of H3K4me1/2, marks which are 

permissive for gene expression (Hyun et al., 2017, Heintzman et al., 2007). The aim of 

this work was therefore to investigate dysregulated genes in gastruloids following 

depletion of Lsd1 and to determine how these changes might functionally contribute to 

the lethality of Lsd1 KO in the gastrulating embryo.  

4.2 Gastruloid growth and morphology is impaired in Lsd1 KOs 

Assessment of Lsd1 KO gastruloids compared to controls revealed reduced size and 

changes in morphology (Figure 4.1A). These gastruloids exhibited slightly reduced 

sphericity and rougher edges at 72 hours compared to controls. At 96 hours, elongation 

was less apparent than in controls, though this appeared to be compensated for at 120 

hours. This was also evidenced by the proportion of gastruloids that had elongated at 

96 and 120 hours (Figure 4.1B), as there were 15-60% non-elongated Lsd1 KO 

gastruloids at 96 hours, depending on the replicate, compared to 0-4% non-elongated 

control gastruloids at this timepoint. At 120 hours, the number of non-elongated 

gastruloids in Lsd1 KO and control gastruloids converged, with 0-6% and 0-3% non-

elongated, respectively. Where control gastruloids display a darker, cell-dense rostral 

region, gastruloids with Lsd1 depletion appear to lack this definition and exhibit reduced 

delamination of cells at the gastruloid border.  
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Figure 4.1 Morphology of Lsd1 KO gastruloids differs from controls (A) Representative images of Lsd1 KO versus 
control gastruloids at 48-, 72-, 96-, and 120-hour timepoints. (B) Bar graphs showing the proportion of gastruloids 
that exhibited elongation in Lsd1 KO and control gastruloids at 96- and 120-hour timepoints. (C) Boxplots showing 
measurements of area  (μm2) of 20 per replicate Lsd1 KO versus control gastruloids at 48-, 72- and 96-hours, and 
length (μm) of 10 per replicate Lsd1 KO versus control gastruloids at 120 hours. Unpaired  T-tests were used to test 
for significant differences and a p-value of <0.00001 is represented by *. 
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Measurements of gastruloids over the timepoints illustrate the reduced size of Lsd1 KO 

gastruloids versus controls (Figure 4.1C). Gastruloids without Lsd1 were significantly 

smaller than controls in all replicates from 72 hours onwards, as assessed by unpaired 

t-tests. The similarity in size of gastruloids in both conditions at 48 hours suggests this 

was due to reduced proliferation at later stages rather than increased cell death at 

earlier stages. 

4.3 Gastruloids lacking Lsd1 exhibit differential expression of 

gastrulation associated genes 

RNA-seq was performed on Lsd1 KO and control gastruloids concurrently for samples 

harvested at 0, 72 and 120 hours. The variance of samples was assessed using a PCA 

plot, which showed clustering of samples by timepoint, as well as by treatment 

condition (Figure 4.2A). This indicates differences between samples at different 

timepoints and between control and Lsd1 KO gastruloids. Analysis of Cook’s distance 

revealed no outliers among the samples (Figure 4.2B) 
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Figure 4.2 Gastruloid samples were suitable for RNA-seq analysis. (A) Plot of principal component analysis (PCA) 
showing the variance of control and Lsd1 KO samples (B) Plot of Cook’s distance showing there were no outliers among 
the samples. 
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Numerous differentially expressed genes (DEGs) were identified between control and 

Lsd1 KO gastruloids at each timepoint, using parameters of a fold change of >+2/<-2 and 

an adjusted p-value (padj) of <0.01 (Figure 4.3). Specifically, totals of 881, 1251 and 1220 

differentially expressed genes were identified in the 0 hour, 72 hour and 120 hour 

timepoints, respectively (Figure 4.3B). The role of LSD1 in decommissioning active genes 

through its transcriptional repressor activity is particularly important during 

differentiation, where previously active genes must be repressed and vice versa. This is 

highlighted by the higher number of differentially expressed genes in 72 and 120 hour 

gastruloids compared to ESCs, as cells undergo differentiation during these timepoints. 

It would be expected, due to the transcriptionally repressive nature of LSD1, that the 

majority of differentially expressed genes in gastruloids lacking Lsd1 would be 

upregulated. This appears to be the case, with 705, 1084 and 777 of differentially 

expressed genes being upregulated in the 0 hours, 72 hours and 120 hours, respectively. 

However, interestingly, there is also a proportion of downregulated genes in each 

timepoint, with 176, 167 and 443 downregulated genes at 0 hours, 72 hours, and 120 

hours, respectively. The higher proportion of downregulated genes at 120 hours could 

reflect the dysregulation of differentiation processes, potentially as upregulation of 

transcriptional repressors would lead to downregulation of downstream genes.  

 

Interestingly, there is little overlap in the number of genes differentially expressed at 

each timepoint (Figure 4.3A) The highest overlap is between 72 hour and 120 hour 

timepoints and the majority of these are upregulated genes (Figure 4.3A). As is to be 

expected, Lsd1 (Kdm1a) is among the 7 genes downregulated in all timepoints, as is 

further evidenced in Figure 4.4. 
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Figure 4.3 Genes were differentially expressed between Lsd1 KO and control gastruloids at each timepoint. (A) Venn 
diagrams showing the overlapping differentially expressed, upregulated, and downregulated genes between each 
timepoint. (B) MA plots showing genes that are differentially expressed between Lsd1 KO and control gastruloids at 
each timepoint, using an adjusted p-value of <0.01 and a log2 fold change of >1/<1. Upregulated genes are 
highlighted in red and downregulated genes in blue. Black dashed lines indicate the cut offs for log2 fold change. 

A B
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Figure 4.4 Expression levels of Lsd1 in control and knockout gastruloid samples. Line graphs showing expression of 
Lsd1 at different timepoints. Points represent values for individual replicates, lines show mean values of replicates.   

 
Similarity in expression of pluripotency associated genes was seen between control and 

Lsd1 KO gastruloids in the ESC state, with only Dppa3 showing differential expression 

(Figure 4.3B). This upregulation of Dppa3, alongside slight upregulation of Sox2 and 

Zfp42, continued at 72 hours. Despite these differences, pluripotency markers Oct4 and 

Nanog were not significantly differentially expressed in 0 hour and 72 hour gastruloids 

lacking Lsd1. At 120 hours, Dppa3, Zfp42 and Oct4 are overexpressed in following Lsd1 

depletion whereas Nanog and Sox2 are not. 

 

Overall, expression of pluripotency factors in Lsd1 KO is similar to controls at 0 hours, 
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LSD1 in enhancer decommissioning would suggest that pluripotency factors may fail to 
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super enhancer positioned 45 kb upstream of Nanog which regulates both genes (Blinka 

et al., 2016). Consequently, it might be expected that Dppa3 and Nanog would show 

similar expression levels, however, Dppa3 is upregulated at all timepoints in gastruloids 

lacking Lsd1, whereas Nanog is not. Expression levels of early differentiation markers T, 

Foxa2 and Fgf5 are similar in Lsd1 KO and control gastruloids (Figure 4.5A). Overall, 

these results suggest that the exit from pluripotency and induction of early 

differentiation are not impaired in gastruloids following Lsd1 depletion. 

 

 
Figure 4.5 Analysis of pluripotency markers shows exit from pluripotency is unaffected in Lsd1 KO gastruloids 
compared to controls. (A) Boxplots showing expression of genes assocciated with pluripotency and early 
differentiation in Lsd1 KO and control gastruloids at different timepoints.  (B) Heatmap showing log2 fold change 
values of Lsd1 KO versus control gastruloids at 0-, 72-, and 120-hours for genes associated with pluripotency and early 
differentiation.  
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As is the case with pluripotency markers, genes associated with gastrulation, Brachyury 

(T), Foxa2, Lhx1, Gsc, Eomes, and Lefty1 are expressed at similar levels in Lsd1 KO and 

control ESCs and at 72 hours, with the exception of a downregulation of Lhx1 in 

knockouts at 72 hours (Figure 4.3B). However, a number of gastrulation associated 

genes appear to be upregulated at 120 hours in gastruloids lacking Lsd1 (Figure 4.6B). 

In particular, Gsc, Eomes, Fgf8, Foxh1 and Mixl1 are significantly upregulated at 120 

hours, despite being expressed at similar levels as in controls when expression peaks at 

72 hours (Figure 4.6A). This indicates that loss of Lsd1 does not prevent these genes 

switching on, but perhaps might impair the switching off of these genes, which 

correlates with the transcriptional repressive role of the CoREST complex.  
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Figure 4.6 Analysis of gastrulation associated genes shows differential expression in Lsd1 KO versus control 
gastruloids at 120 hours. (A) Boxplots showing expression of genes assocciated with gastrulation in Lsd1 KO and 
control gastruloids at different timepoints. Adjusted p-values (padj) for Lsd1 KO versus control gastruloids are 
displayed. (B) Heatmap showing log2 fold change values of Lsd1 KO versus control gastruloids at 0-, 72-, and 120-
hours for genes associated with gastrulation.  

A similar effect is seen in the expression of epiblast markers, Nodal and Lefty1, with 

significant upregulation of these genes at 120 hours in Lsd1 KOs (Figure 4.7). Nodal is 

also significantly upregulated at 72 hours. This could also be reflective of reduced ability 

to switch these genes off from an active state, as in control gastruloids expression of 

the transcripts decreases from 72 hours onwards. 
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Figure 4.7 Expression of epiblast markers are differentially expressed in Lsd1 KO versus control gastruloids. Boxplots 
showing expression of epiblast markers in Lsd1 KO and control gastruloids at different timepoints. Adjusted p-values 
(padj) for Lsd1 KO versus control gastruloids are displayed. 

4.4 Markers of mesodermal lineages are differentially 
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Analysis of lineage specific markers revealed that, while expression of endodermal and 
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dysregulated in gastruloids lacking Lsd1 (Figure 4.8A). In particular, Wnt3, Hand1 and 

Mesp1, along with the endodermal marker Dkk1, were significantly upregulated at 120 

hours (Figure 4.8B). Hand1 is expressed in lateral mesoderm, the developing heart and 

a subset of neural crest cells, from around E7.0 (Firulli, 2003). Expression of Wnt3 is 
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establishment of the anterior-posterior axis (Barrow et al., 2007). Mesp1 determines 

multiple mesodermal lineages, including cardiac, haemopoietic or skeletal myogenic 

lineages (Chan et al., 2013). Eomes directly activates Mesp1 expression (Costello et al., 

2011), so it would follow that overexpression of Eomes at 120 hours (Figure 4.6A) would 

lead to overexpression of Mesp1. Inhibition of Wnt signalling leads to failure to induce 

many downstream mesodermal genes, including Brachyury, Mixl1 and Mesp1, as well 

as genes associated with EMT, Snai1, Fn1 and Cdh2 (Lindsley et al., 2006), and so 

overexpression of Wnt3 may lead to dysregulated expression of these genes. Dkk1 

(Dickkopf) is a secreted inhibitor of Wnt signalling which is expressed in the anterior 

visceral endoderm (AVE) and is required for head induction (Hoshino et al., 2015, 

Mukhopadhyay et al., 2001). Interestingly, as well as Mesp1 activation occurring 

downstream of Wnt signalling,  Dickkopf is also a direct target of Mesp1, indicating that 

the upregulation of Wnt3, Mesp1 and Dickkopf at 120 hours may be due to 

dysregulation of this gene regulatory cascade (David et al., 2008).  
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Figure 4.8 Analysis of lineage specific genes shows differential expression of mesodermal genes in Lsd1 KO versus 
control gastruloids. (A) Boxplots showing expression of genes most upregulated in Lsd1 KO versus control gastruloids 
at 120 hours at different timepoints. Adjusted p-values (padj) for Lsd1 KO versus control gastruloids are displayed. (B) 
Heatmap showing log2 fold change values of Lsd1 KO versus control gastruloids at 0-, 72-, and 120-hours for genes 
associated with endoderm, ectoderm and mesoderm. 

 

Markers of presomitic mesoderm show similar levels of expression in both conditions 
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upregulation of Fgf8 at 120 hours in Lsd1 KO gastruloids. Genes associated with somite 

formation, Tcf15 and Foxc1 are significantly downregulated at 120 hours in gastruloids 

lacking Lsd1, suggesting the gene transcription programme for somite formation is 

impaired without LSD1.  

 
Figure 4.9 Genes associated with formation of somites are dysregulated in Lsd1 KO versus control gastruloids. 
Boxplots showing expression of genes associated with presomitic mesoderm and somites in Lsd1 KO versus control 
gastruloids at different timepoints. Adjusted p-values (padj) for Lsd1 KO versus control gastruloids are displayed. 
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Expression of the 3’ positioned Hoxd1 gene was significantly upregulated in Lsd1 KO 

gastruloids at all timepoints, reflecting an early and sustained overexpression of this 

gene (Figure 4.10). At 72 hours, Hoxc4 was significantly downregulated, followed by 

downregulation of Hoxc5 and Hoxc6 at 120 hours, suggesting incorrect temporal 

expression of this cluster in gastruloids lacking Lsd1. 

 

 
Figure 4.10 Analysis of Hox genes shows differential expression of select genes in Lsd1 KO versus control 
gastruloids. Boxplots showing expression of a subset of Hox genes in Lsd1 KO versus control gastruloids at different 
timepoints. Adjusted p-values (padj) for Lsd1 KO versus control gastruloids are displayed. 
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4.5 Gene ontology analysis shows alteration of multiple 

pathways in Lsd1 KO gastruloids 

Gene ontology (GO) analysis of biological processes was performed to identify gene 

ontology terms associated with differentially expressed genes in each of the timepoints 

(Figure 4.11). The GO term with the most related differentially expressed genes at both 

72 and 120 hours was cell adhesion, closely followed at 72 hours by the term regulation 

of cell migration. Because these biological processes are linked with EMT, an essential 

process during gastrulation, this prompted investigation into whether this process is 

dysregulated in gastruloids following depletion of Lsd1.  

 

GO analysis of the 120 hour timepoint also revealed that a number of differentially 

expressed genes were associated with GO terms relating to the BMP pathway, including 

cellular response to BMP stimulus and pathway-restricted SMAD protein 

phosphorylation. Therefore, expression of genes associated with the BMP pathway was 

further investigated. 

 

Also of note were GO terms associated with primordial germ cells, including male 

meiotic nuclear division, DNA methylation involved in gamete generation and piRNA 

metabolic process, as well as with development of the circulatory system, including 

vascular process in circulatory system, blood vessel morphogenesis and cardiac septum 

morphogenesis. 
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Figure 4.11 Processes affected by Lsd1 KO were analysed through Biological Process Gene Ontology. The top 10 
biological process GO terms, that are enriched in Lsd1 KO gastruloids relative to controls for each timepoint are shown. 
GO terms were determined through TopGO analysis (Alexa and Rahnenfuhrer, 2022).  
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4.5.1 Genes associated with EMT are differentially expressed in 

gastruloids lacking Lsd1 

Further investigation into the genes found in the GO term cell adhesion show that both 

upregulation and downregulation of genes contribute to this term (Figure 4.12). Within 

this term, the top three upregulated genes in Lsd1 KO gastruloids were Rtn4rl1 (NgR2), 

L1cam and Miat at 120 hours, and Miat, Myo1f and Lama3 at 72 hours (Figure 4.13). 

The top three downregulated genes were Cdh5, Cldn5 and Pcdh8 at 120 hours and 

Foxc2, Kdr and Pdgfra at 72 hours (Figure 4.13). 
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Figure 4.12 Genes in the GO term cell adhesion were differentially expressed In Lsd1 KO gastruloids. Heatmap 
showing log2 fold change values of LSD1 KO versus control gastruloids at 0-, 72-, and 120-hours for genes associated 
with the GO term cell adhesion. 
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Rtn4rl2 (NgR2) is primarily expressed in the brain where it acts as a receptor for myelin 

inhibitory proteins which inhibit axonal growth (Venkatesh et al., 2005). L1cam encodes 

a cell-adhesion protein expressed in the nervous system which plays a role in neurite 

outgrowth and, notably, is regulated by REST (Samatov et al., 2016, Kallunki et al., 1997). 

Cdh5 (VE-cadherin) is the main component in endothelial adherens junctions and plays 

a role in organisation of the vascular system during development (Giannotta et al., 

2013). Cdh5 upregulates the tight junction gene Cldn5 (Claudin5) (Taddei et al., 2008), 

which may explain its parallel downregulation in 120 hour Lsd1 KO gastruloids. 

 

A number of the top up-/downregulated genes at 72 and 120 hours play a role in the 

process of EMT. The long non-coding RNA MIAT (myocardial infarction associated 

transcript), which is upregulated at both 72 and 120 hours in Lsd1 KO gastruloids, 

induces EMT through suppressing E-cadherin and stimulating N-cadherin, vimentin and 

Snai1 via the Wnt signalling pathway (Zhong et al., 2019). VEGF has an inhibitory effect 

on EMT, which is mediated by its receptor KDR (Yang et al., 2008), so downregulation of 

Kdr at 72 hours may reduce inhibition of EMT. Conversely, Foxc2 is important for 

maintenance of mesenchymal cell identity following EMT, and loss of Foxc2 leads to 

reduced expression of N-cadherin, fibronectin and vimentin (Hollier et al., 2013), 

meaning downregulation of Foxc2 at 72 hours might impede EMT. Pdgfra promotes 

EMT and decreases expression of epithelial integrity genes, including TFF3 (Lopez-

Campistrous et al., 2021), which suggests that downregulation of Pdgfra would also 

impair EMT. These results together suggest the process of EMT may be dysregulated in 

Lsd1 KO gastruloids.  
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Figure 4.13 Top up- and downregulated genes In the GO term cell adhesion. Boxplots showing expression of the top 
three up- and downregulated genes associated with the GO term cell adhesion at 72- and 120-hours in Lsd1 KO versus 
control gastruloids at different timepoints. Adjusted p-values (padj) for Lsd1 KO versus control gastruloids are 
displayed. 
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To further investigate whether EMT is dysregulated in gastruloids following Lsd1 

depletion, the expression levels of key genes that mediate EMT were investigated 

(Figure 4.14). Despite no differential expression of E-cadherin and N-cadherin, which 

might be expected if EMT is dysregulated, apart from a slight upregulation of N-cadherin 

at 0 hours, differential expression of fibronectin and vimentin is observed. Fibronectin is 

significantly downregulated at 72 hours, whereas vimentin is upregulated at all 

timepoints in Lsd1 KO gastruloids. Fibronectin and vimentin are mesenchymal markers 

expressed in migrating mesodermal cells during gastrulation (Klinowska et al., 1994, 

Mendez et al., 2010), the upregulation of vimentin and downregulation of fibronectin is 

therefore unusual, as both genes contribute to mesenchymal cell identity. FGFR1 

maintains expression of Snai1 in the primitive streak to induce EMT (Ciruna and Rossant, 

2001). Although Fgfr1 is significantly downregulated at 72 hours in gastruloids lacking 

Lsd1, Snai1 is not downregulated, but rather upregulated. Snai1 (Snail) and Snai2 (Slug) 

regulate EMT through repression of epithelial genes, such as E-cadherin, and activation 

of mesenchymal genes, such as N-cadherin. Snai1 is upregulated at 120 hours and Snai2 

is upregulated at 72 and 120 hours in Lsd1 KO gastruloids. The sustained overexpression 

of the genes at 120 hours could suggest increased EMT at this timepoint. Eomes also 

regulates EMT, and lack of Eomes leads to failure of mesoderm to delaminate and 

migrate from the primitive streak (Arnold et al., 2008). The upregulation of Eomes at 

120 hours in gastruloids lacking Lsd1 could similarly represent increased mesenchymal 

identity later than in controls. Together these results indicate dysregulation of EMT in 

gastruloids following Lsd1 depletion.  
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Figure 4.14 Genes associated with the epithelial-to-mesenhymal transition are dysregulated in Lsd1 KO versus 
control gastruloids. Boxplots showing expression of genes associated with EMT in Lsd1 KO versus control gastruloids 
at different timepoints. Adjusted p-values (padj) for Lsd1 KO versus control gastruloids are displayed. 

4.5.2 Genes involved in the BMP pathway are dysregulated in Lsd1 KO 

gastruloids 

Investigation into genes related to the GO terms cellular response to BMP stimulus and 

pathway-restricted SMAD protein phosphorylation revealed a number of these genes 

were upregulated at 120 hours in gastruloids following Lsd1 depletion (Figure 4.15). 

These included initiators of the BMP pathway, Bmp4 and Bmp7, which were significantly 

upregulated at 72 and 120 hours, and at 120 hours, respectively. 
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Figure 4.15 Analysis of lineage specific genes shows differential expression of mesodermal genes in Lsd1 KO versus 
control gastruloids. (A) Boxplots showing expression of genes associated with the GO terms cellular response to BMP 
stimulus and pathway-restricted SMAD protein phosphorylation in Lsd1 KO versus control gastruloids at different 
timepoints. Adjusted p-values (padj) for Lsd1 KO versus control gastruloids are displayed. (B) Heatmap showing log2 
fold change values of Lsd1 KO versus control gastruloids at 0-, 72-, and 120-hours for genes associated with the GO 
terms cellular response to BMP stimulus and pathway-restricted SMAD protein phosphorylation. 
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SMAD1, SMAD5 and SMAD8 are receptor-regulated SMADs (R-SMADs) which are 

activated by BMP type I receptors (BMPRI) through phosphorylation and go on to 

complex with SMAD4 in order to regulate transcription of downstream genes. R-SMADs 

possess both MH1 (Mad homology 1) and MH2 domains, which confer DNA binding 

activity and association with type I receptors and SMAD4, respectively. In contrast, 

SMAD6 and SMAD7 lack the DNA binding domain but retain the MH2 domain, allowing 

them to associate with type I receptors in a way that inhibits R-SMAD activity (Nishimura 

et al., 2003). As can be seen in Figure 4.15, expression of these inhibitory SMADs is 

significantly increased at 120 hours in Lsd1 KO gastruloids, suggesting there may be 

reduced phosphorylation and activation of R-SMADs, including SMAD1 and SMAD5. In 

addition to this, expression levels of Smad5 are significantly reduced at 72 and 120 

hours. Therefore, not only are gene levels of BMP ligands aberrantly expressed at 120 

hours, but also downstream effectors of the BMP pathway are differentially expressed 

in gastruloids lacking Lsd1. 

 

BMP signalling has previously been associated with dorsal-ventral patterning through a 

gradient interpreted by downstream genes. Specifically, high expression of BMP 

ventrally and low expression dorsally leads to expression of Sfrp1 ventrally and Bambi 

dorsally, which is mediated by pSMAD5 (Greenfeld et al., 2021). Changes in this 

expression is reflected in Figure 4.16, where, although Bmp4 and Bmp7 are 

overexpressed, reduced Smad5 expression at 120 hours may lead to the increased 

expression of Bambi and reduced expression of Sfrp1. This could indicate that the 

gradient of BMP signalling responsible for dorsoventral patterning is not appropriately 

established in gastruloids following depletion of Lsd1, despite evidence of a 

dorsoventral axis in previous gastruloid studies (Beccari et al., 2018b). Bambi is a BMP 

inhibitor and has also been shown to share a spatio-temporal expression pattern with 

Bmp4, which induces its expression, so increased Bmp4 could also directly lead to 

increased Bambi expression (Grotewold et al., 2001). 
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Figure 4.16 BMP signalling affects dorsoventral patterning. (A) Schematic showing the gradient of BMP signalling 
and its downstream effectors. (B) Boxplots showing expression of genes downstream of BMP dorsoventral patterning 
in Lsd1 KO versus control gastruloids at different timepoints. Adjusted p-values (padj) for Lsd1 KO versus control 
gastruloids are displayed. 

4.6 Summary 

The results in this chapter revealed numerous differentially expressed genes at each 

timepoint in Lsd1 KO gastruloids versus controls. Although gastruloids lacking Lsd1 

demonstrated exit from pluripotency, they also exhibited overexpression of a number 

of gastrulation associated genes at 120 hours, reflecting incorrect timing of this process. 

In particular, expression of mesodermal markers was affected in gastruloids following 

depletion of Lsd1, suggesting incorrect establishment of this lineage. Gene ontology 

analysis revealed several biological processes affected in Lsd1 KO gastruloids, including 

genes in GO terms associated with cell adhesion and the BMP pathway. Further analysis 

suggested a dysregulation of EMT and BMP signalling in gastruloids lacking Lsd1, which 

may explain in part the lethal phenotype seen upon loss of Lsd1 in embryos at E6.5.  

BMP/pSmad5

Ventral Dorsal

BambiSfrp1

padj = 
0.974345454

padj = 
0.560510273

padj = 
0.002221602

250

500

750

1000

1250

0h
 C

on
tro

l

0h
 L

SD
1 

KO

72
h 

C
on

tro
l

72
h 

LS
D

1 
KO

12
0h

 C
on

tro
l

12
0h

 L
SD

1 
KOD
ES

EQ
2 

no
rm

al
is

ed
 c

ou
nt

s

Cell Type
Control
LSD1 KO

Bambi
padj = 

0.369277281

padj = 
0.778243966

padj = 
3.59e−07

0

1000

2000

3000

4000

0h
 C

on
tro

l

0h
 L

SD
1 

KO

72
h 

C
on

tro
l

72
h 

LS
D

1 
KO

12
0h

 C
on

tro
l

12
0h

 L
SD

1 
KOD
ES

EQ
2 

no
rm

al
is

ed
 c

ou
nt

s
Cell Type

Control
LSD1 KO

Sfrp1
padj = 

0.904698242

padj = 
0.005271517

padj = 
0.008734221

400

800

1200

1600

0h
 C

on
tro

l

0h
 L

SD
1 

KO

72
h 

C
on

tro
l

72
h 

LS
D

1 
KO

12
0h

 C
on

tro
l

12
0h

 L
SD

1 
KOD
ES

EQ
2 

no
rm

al
is

ed
 c

ou
nt

s

Cell Type
Control
LSD1 KO

Smad5

A

B



 84 

5 Investigation into the requirement of LSD1 demethylase 

activity in gastruloids 

5.1 Chapter Aims 

The stability of the CoREST complex is dependent on LSD1 and therefore loss of LSD1 

would be predicted to disrupt both demethylase activity and HDAC deacetylase activity 

(Foster et al., 2010). The work in this chapter sought to discriminate between 

differential gene expression resulting from depleted LSD1 demethylase activity 

specifically and that resulting from loss of the broader CoREST complex activity. To this 

end, we utilised previously generated Lsd1lox/∆3 ESCs with piggyBac wildtype Lsd1 and 

Lsd1 mutant K661A inserts to rescue the effects of Lsd1 knockout. Lsd1 K661A is a 

catalytically inactive mutant which has been employed extensively in previous studies 

(Lee et al., 2005, Chen et al., 2006, Lee et al., 2006, Huang et al., 2007, Adamo et al., 

2011, Maiques-Diaz et al., 2018, Sehrawat et al., 2018). Gastruloids were generated 

using ESCs with wildtype and K661A mutant rescue constructs, hereafter referred to as 

WT-Lsd1 and Lsd1-K661A, respectively, and RNA-seq was performed at 0, 72, and 120 

hours to assess differentially expressed genes (DEGs) between these conditions. 

5.2 Morphology of WT-Lsd1 and Lsd1-K661A gastruloids 

WT-Lsd1 and Lsd1-K661A gastruloids were similar in their morphology, despite size 

differences between the two conditions (Figure 5.1A). Comparing the morphology to 

control and Lsd1 KO gastruloids in Chapter 4, morphology of WT-Lsd1 and Lsd1-K661A 

resemble Lsd1 KO more than the control condition, as they exhibit lighter rostral regions 

with less cell delamination. Size differences between the two conditions varied between 

replicates, with replicate 1 and 2 Lsd1-K661A gastruloids starting out smaller than WT-

Lsd1 gastruloids at earlier timepoints before increasing to a similar size, and in replicate 

3 and 4 Lsd1-K661A gastruloids were larger at all timepoints (Figure 5.1C).  
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Figure 5.1 Morphology of Lsd1-K661A and WT-Lsd1 gastruloids exhibit some differences (A) Representative images 
of Lsd1-K661A versus WT-Lsd1 gastruloids at 48-, 72-, 96-, and 120-hours. (B) Bar graphs showing the proportion of 
gastruloids elongated in Lsd1-K661A and WT-Lsd1 gastruloids at 96- and 120-hour timepoints. (C) Boxplots showing 
measurements of area (μm2) of 20 per replicate Lsd1-K661A versus WT-Lsd1 gastruloids at 48-, 72- and 96-hours, and 
length (μm)of 10 per replicate Lsd1-K661A versus WT-Lsd1 gastruloids at 120 hours. Unpaired T-tests were used to 
test for significant differences and p-values of <0.01, <0.001 and <0.0001 are represented by *, ** and ***, 
respectively. 
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Replicate 1 appeared to be outlying in its elongation data in both conditions compared 

to other replicates, with 28% and 37% non-elongated WT-Lsd1 gastruloids at 96 and 120 

hours, respectively, and with 52% and 41% non-elongated Lsd1-K661A gastruloids at 96 

and 120 hours, respectively (Figure 5.1B). In all other replicates, elongation appeared to 

be less prevalent in WT-Lsd1 gastruloids than in Lsd1-K661A gastruloids at 96 hours, 

with 11-23% non-elongated and 0-3% non-elongated, respectively. This was also the 

case at 120 hours, despite an increase in elongated gastruloids at this timepoint, with 

5-13% non-elongated WT-Lsd1 gastruloids and no non-elongated Lsd1-K661A 

gastruloids. 

5.3 Differentially expressed genes between gastruloids with 

wildtype and mutant Lsd1 rescue constructs 

Samples of 0, 72 and 120 hour WT-Lsd1 and Lsd1-K661A gastruloids were used for RNA-

sequencing. Variance between samples was assessed using a PCA plot, which showed 

that samples clustered well by timepoint, but that there was less distinct clustering 

between conditions (Figure 5.2A). Cook’s distance analysis showed no outliers among 

the samples (Figure 5.2B). 
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Figure 5.2 Gastruloid samples were suitable for RNA-seq analysis. (A) Plot of principal component analysis (PCA) 
showing the variance of WT-Lsd1 and Lsd1-K661A samples (B) Plot of Cook’s distance showing there were no outliers 
among the samples. 
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Differentially expressed genes (DEGs) were identified using parameters of a fold change 

greater or less than 2/-2 and an adjusted p-value (padj) of <0.01 (Figure 5.3). Overall, 

totals of 1135, 313, and 1032 DEGs were identified between WT-Lsd1 and Lsd1-K661A 

gastruloids in the 0 hour, 72 hour and 120 hour timepoints, respectively. The 

comparatively small number of DEGs identified at 72 hours is indicative of more similar 

gene expression between the conditions at this time, which could reflect similar 

progression of differentiation. The higher proportion of upregulated genes at all 

timepoints in gastruloids with the Lsd1 mutant is consistent with the transcriptional 

repressor activity of LSD1. Specifically, 867, 253 and 686 DEGs were upregulated at the 

0 hour, 72 hour and 120 hour timepoints, respectively. 

 
Expression of pluripotency and gastrulation markers between the conditions at 0 hours 

shows upregulation of Brachyury, Foxa2 and Eomes, and downregulation of Gsc and 

Zfp42 in Lsd1-K661A gastruloids (Figure 5.3). This might suggest a slightly altered ESC 

state in this condition. At 72 hours, all gastrulation markers and Dppa3 are upregulated, 

while expression of pluripotency markers Nanog, Oct4 and Sox2 is similar in both 

conditions, perhaps reflecting increased differentiation in mutant LSD1 gastruloids. 

Upregulation of these genes, aside from Lhx1, was retained at 120 hours. 
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Figure 5.3 Genes were differentially expressed between Lsd1-K661A and WT-Lsd1 gastruloids at each timepoint. 
MA plots showing genes that are differentially expressed between Lsd1-K661A and WT-Lsd1 gastruloids at each 
timepoint, using an adjusted p-value of <0.01 and a log2 fold change of >1/<1. Upregulated genes are highlighted in 
red and downregulated genes in blue. Black dashed lines indicate the cut offs for log2 fold change. 
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Gene ontology analysis was used to determine the terms associated with differentially 

expressed genes at each timepoint (Figure 5.4). Terms associated with the 0 hour 

timepoint appeared to primarily represent aspects of cell adhesion and migration, with 

the top term being cell adhesion, followed by actin cytoskeleton organisation and 

positive regulation of locomotion. Also enriched were terms: regulation of cell-substrate 

adhesion, cell-matrix adhesion, and tight junction organisation. Overall, these terms 

suggest that cells in one of the conditions are more adherent and less migratory than in 

the other condition, possibly representing a more epithelial cell identity.  

 

At 72 hours, multiple terms relate to development of the circulatory system, including 

angiogenesis, branching morphogenesis of an epithelial tube, and vascular process in 

circulatory system. This may suggest this process is impaired or promoted in Lsd1-K661A 

gastruloids. This developmental process was also highlighted in terms at 120 hours, 

including blood vessel development, morphogenesis of a branching structure, and 

cardiac chamber development. As well as this, at 120 hours, terms associated with cell 

adhesion and migration resurfaced, including positive regulation of cell motility, cell-

substrate adhesion, extracellular matrix organisation, and regulation of epithelial cell 

migration. 



 91 

 
Figure 5.4 Processes affected by the Lsd1 K661A mutant were analysed through Biological Process Gene Ontology. 
The top 10 biological process GO terms, that are enriched in Lsd1-K661A relative to WT-Lsd1 gastruloids for each 
timepoint are shown. GO terms were determined through TopGO analysis (Alexa and Rahnenfuhrer, 2022). 
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5.4 WT-Lsd1 gastruloids display impaired differentiation 

potential 

During the analysis, it became apparent that the WT-Lsd1 gastruloids failed to induce 

genes associated with early differentiation and gastrulation at the 72 hour timepoint. 

Despite this, pluripotency markers Nanog, Oct4 and Sox2 were correctly switched off in 

a similar fashion to control gastruloids from the first dataset analysed in Chapter 4, 

suggesting that exit from pluripotency was not impaired. Interestingly, Sox2 was re-

expressed at high levels at 120 hours. Sox2 is not only expressed in ESCs, but also in 

multipotent cell populations of endodermal, mesodermal, and ectodermal lineages, 

where it regulates stem cell characteristics, such as proliferation (Sarkar and 

Hochedlinger, 2013, Hagey et al., 2018). Therefore, whilst expression of Sox2 at this 

timepoint is not unusual in a developmental context, its overexpression in these 

gastruloids may indicate increased proliferative potential of cells. Early differentiation 

markers T, Foxa2 and Fgf5 were expressed at much lower levels at 72h than in any other 

gastruloid condition (Figure 5.5). The reduced induction of Brachyury is particularly 

interesting, as it has previously been shown that LSD1 negatively regulates Brachyury 

expression (Foster et al., 2010). It is therefore possible that reduced expression of 

Brachyury could be due to overexpression of Lsd1. However, expression levels of Lsd1 

were similar at 0 and 72 hour timepoints in WT-Lsd1 gastruloids when compared to 

control gastruloids from the first analysed dataset (Figure 5.6).  
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Figure 5.5 Analysis of pluripotency and early differentiation markers shows limited differentiation potential of WT-
Lsd1 gastruloids. Line graphs showing expression of genes associated with pluripotency and early differentiation at 
different timepoints. Points represent values for individual replicates for each gene, lines show mean values of 
replicates.   
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Figure 5.6 Expression levels of Lsd1 in all gastruloid samples. Line graphs showing expression of LSD1 at different 
timepoints. Points represent values for individual replicates, lines show mean values of replicates.   
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contrast, expression of Nkx1-2 is dramatically upregulated at this timepoint. Expression 

of Foxh1 is lower than in control gastruloids but around the same levels as in gastruloids 
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Figure 5.7 Expression of gastrulation associated genes is impaired in WT-Lsd1 gastruloids. Line graphs showing 
expression of genes associated with gastrulation at different timepoints. Points represent values for individual 
replicates for each gene, lines show mean values of replicates.   
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5.4 Identification of genes whose repression is either 

dependent on or independent of LSD1 demethylase activity 

We compared RNA-seq datasets from control versus Lsd1 KO (Chapter 4) and our rescue 

experiments but found there was little overlap of DEGs between the datasets (Figure 

5.8). Specifically, only 148, 102 and 254 DEGs were shared between the datasets at 0, 

72 and 120 hours, respectively. Since early differentiation markers and markers of 

gastrulation were similarly expressed in both control and Lsd1 KO gastruloids at 72 

hours, the DEGs that result from WT-Lsd1 impaired differentiation would not show up 

in the intersect of DEG lists of each dataset. Therefore, analysis was focused on these 

intersecting lists in order to identify genes which were dysregulated in both datasets. 

 
Figure 5.8 Differentially Expressed Genes show little overlap between the two datasets. Venn diagrams showing 
the overlapping differentially expressed genes between each timepoint between dataset 1 (Lsd1 KO versus Control 
gastruloids) and 2 (Lsd1-K661A versus WT-Lsd1 gastruloids).  
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Investigating gene lists of the shared DEGs from each dataset allowed identification of 

genes in three categories: genes which are similarly downregulated/upregulated in both 

Lsd1 KO and mutant gastruloids; genes which are upregulated in Lsd1 mutant 

gastruloids compared to Lsd1 KO; genes which are upregulated in gastruloids lacking 

Lsd1 but are expressed at control or near control levels in gastruloids with mutant Lsd1.  

 

Within the first category, Klhl13 is upregulated in both Lsd1 KO and Lsd1-K661A 

gastruloids at 0 hours, suggesting that LSD1 demethylase activity is required for its 

repression (Figure 5.9A). Klhl13 encodes an adaptor protein which forms a complex with 

an Cul3-based E3 ligase to coordinate mitotic progression and cytokinesis (Sumara et 

al., 2007) and its upregulation may reflect dysregulation of this process.  Genes which 

were downregulated in both knockout and mutant conditions at 0 hours included 

Atp1a3, Atp2a3 and Inhbb (Figure 5.9B). Atp1a3 encodes a subunit of the Na+,K+-ATPase 

transport pump, which uses ATP to maintain gradients of these ions across the plasma 

membrane, and expression of this particular isoform is restricted to neurons (Bøttger et 

al., 2011). Atp2a3 similarly encodes an ATP ion pump, namely SERCA3, a member of the 

Sarcoendoplasmic Reticulum Calcium ATPase (SERCA) family which is expressed in non-

muscle cells, such as neuron and epithelial cells (Xu and Van Remmen, 2021). 

Interestingly, multiple cancer cell lines exhibit decreased Atp2a3 expression and 

treatment with HDAC inhibitors upregulates Atp2a3 expression (Contreras-Leal et al., 

2016). At 72 hours, Fn1 and Mesp1, which were previously highlighted in Chapter 4, are 

upregulated in control gastruloids but not in gastruloids with the mutant or knockout of 

LSD1 (Figure 5.9B). This indicates that the failure to derepress these genes without LSD1 

is not rescued by reintroducing CoREST complex activity, and therefore it is likely that 

this derepression relies on LSD1 demethylase activity. This is also the case for Robo2, a 

neural cell adhesion molecule that stimulates neurite outgrowth (Hivert et al., 2002), 

which is upregulated at 120 hours in controls. 
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Figure 5.9 Genes which are similarly downregulated/upregulated in both Lsd1 KO and Lsd1-K661A gastruloids. 
Boxplots showing expression levels of selected genes in control, Lsd1 KO, WT-Lsd1 and Lsd1-K661A gastruloids, for 0-
, 72- and 120-hour timepoints. 

 

Genes which are upregulated in gastruloids with the Lsd1 mutant but not in gastruloids 

lacking Lsd1 included Foxd1, Foxd2 and Tcf15, which are all upregulated at 120 hours 

(Figure 5.10). Expression of Tcf15, as previously mentioned in Chapter 4, is 

downregulated in Lsd1 KO gastruloids compared to controls, but upregulated in Lsd1-

K661A gastruloids compared to both controls and knockouts. Foxd1 and Foxd2 show 

similar expression patterns. 
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Figure 5.10 Genes which are upregulated in Lsd1-K661A gastruloids compared to Lsd1 KO. Boxplots showing 
expression levels of selected genes in control, Lsd1 KO, WT-Lsd1 and Lsd1-K661A gastruloids, for 0-, 72- and 120-hour 
timepoints. 

 

A number of genes are upregulated in gastruloids with mutant LSD1 but are expressed 

near to or below control levels in gastruloids lacking LSD1, suggesting that 

reintroduction of an intact CoREST complex was able to rescue some effects of Lsd1 

knockout (Figure 5.11). Previously identified genes involved with the BMP pathway and 

EMT, Bmp4, Bmp7, Snai1, and Snai2, were among these genes, suggesting LSD1 

demethylase activity is not required for their repression. Meioc and Usp26 were also 

upregulated at all timepoints following knockout of LSD1 but was expressed at the same 

or near to same levels as controls in gastruloids with mutant LSD1. Interestingly, 

expression of Usp26 in Lsd1-K661A gastruloids sat somewhere between control and 

knockout levels at all timepoints, suggesting that while reinstatement of the CoREST 

complex was sufficient to partially rescue this effect, LSD1 demethylase activity is 

required for full repression of this gene.  
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Figure 5.11 Genes which are upregulated in Lsd1-KO compared to Lsd1-K661A gastruloids. Boxplots showing 
expression levels of selected genes in control, Lsd1 KO, WT-Lsd1 and Lsd1-K661A gastruloids, for 0-, 72- and 120-hour 
timepoints 
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Members of the Zscan4 gene cluster, including Zscan4a, Zscan4c, and Zsan4d, also 

followed this pattern of expression at 0 hours (Figure 5.12A). Zscan4 is expressed 

exclusively in late 2-cell embryos and in ESCs (Falco et al., 2007), which corresponds with 

the expression seen at 0 hours in controls, and this expression is highly upregulated 

following Lsd1 knockout. In ESCs, ZSCAN4 is transiently expressed in short bursts, 

termed Z4 events, which are associated with telomere extension and contribute to 

genomic stability (Zalzman et al., 2010). Z4 events are accompanied by rapid and 

transient derepression of constitutive heterochromatin and select regions of facultative 

heterochromatin (Akiyama et al., 2015). Active histone marks, especially H3K27ac, are 

enriched at the derepressed heterochromatin during these events and ZSCAN4 forms 

complexes with chromatin remodellers, including LSD1. The overexpression of Zscan4 

as a result of Lsd1 KO could therefore result in upregulation of a number of genes which 

are usually not expressed. ESCs expressing mutant Lsd1 showed upregulation of Zscan4, 

but not to the same levels as in knockouts, showing that LSD1 demethylase activity 

contributes to full repression of these genes. 

 

The transient expression of Zscan4 is important, as some gene expression resulting from 

extended derepression of heterochromatin can be harmful to cells. The slight 

upregulation of Zscan4 in Lsd1 KO gastruloids seen at 72 hours suggested that 

repression of the genes is delayed without LSD1. To further investigate this, RT-qPCR 

was performed at 0, 24, 48 and 72 hour timepoints, which revealed a gradual reduction 

in gene expression over time, suggesting that correct timing of repression is delayed 

(Figure 5.12B). Interestingly, this delayed repression was also seen in gastruloids with 

mutant Lsd1, though not to the same extent, with expression seen at 24 hours but not 

at 48 hours. This further indicates that, although restoration of CoREST complex activity 

can rescue some repression of these genes, LSD1 demethylase activity is required for 

return to control levels.  
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Figure 5.12 Expression of Zscan4 is upregulated in Lsd1 knockout and mutant gastruloids. (A) Boxplots showing 
expression levels of Zscan4 in control, Lsd1 KO, WT-Lsd1 and Lsd1-K661A gastruloids, for 0-, 72- and 120-hour 
timepoints. (B) RT-qPCR data showing the fold-change in expression levels of Zscan4. Expression levels were 
normalised to the control gene b-actin (n=3 +/-SD). 
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5.5 Summary 

The results in this chapter have highlighted the effects of the Lsd1-K661A mutation on 

gene expression and allowed some distinction between the requirement of CoREST 

complex activity versus LSD1 demethylase activity. WT-Lsd1 cells were found to exhibit 

compromised differentiation, showing reduced induction of early differentiation and 

gastrulation associated genes at 72 hours, limiting downstream analysis. Despite the 

impaired differentiative potential of WT-Lsd1 cells, a number of genes were shown to 

either require LSD1 demethylase activity for their correct expression or be rescued, 

either completely or partially, by reintroduction of the CoREST complex.  
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6 Discussion 

6.1 Characterisation of the gastruloid model system 

The stage at which Lsd1 loss is lethal in embryos (~E6.5) aligns with the onset of 

gastrulation, a critical developmental process which involves concerted execution of key 

processes, including embryo patterning and formation of definitive germ layers. 

Therefore, we sought to determine the role of Lsd1 KO in the dysregulation of the highly 

coordinated process of gastrulation. The in utero development of mouse embryos, and 

particularly the increased difficulty of recovering embryos post-implantation, makes the 

study of gastrulating embryos in mice challenging. The establishment of a model system 

which circumvents these limitations and yet closely mimics gastrulation was therefore 

highly desirable for this project. 

 

The results in Chapter 3 have demonstrated the successful generation of gastruloids 

from Lsd1lox/Δ3 control ESCs, following troubleshooting of issues encountered when 

following the protocol. The gastruloids were shown to morphologically replicate 

gastruloids produced previously in other laboratories  (Beccari et al., 2018b), aside from 

an initiation of elongation at 96 hours rather than the 72 hours previously seen (Figure 

3.1). Despite this delay to elongation, it was determined that gastrulation markers were 

induced at 72 hours, as seen in previous studies (Beccari et al., 2018b) (Figure 3.2). 

Analysis of RNA-seq data showed that gastruloids exit from pluripotency and express 

early differentiation markers (Figure 3.5) as well as induce gastrulation markers at 72 

hours (Figure 3.6), increasing confidence in the robustness of the model system. The 

epithelial-to-mesenchymal transition (EMT) that occurs as cells migrate through the 

primitive streak is essential for the determination of mesendodermal lineages during 

gastrulation (Tam and Loebel, 2007). An observed decrease in E-cadherin and increase 

in N-cadherin as gastruloids progressed suggests that this model recapitulates the EMT 

seen in the gastrulating embryo (Figure 3.6). Gastruloids were shown to express markers 

of all three germ layers, although with underrepresentation of ectodermal markers, as 



 105 

suggested in previous studies (Beccari et al., 2018b) (Figure 3.7). Hox genes were 

expressed in a temporally progressive manner corresponding to their placement in the 

Hox gene cluster, further confirming that gastruloids share similar patterning with 

embryos (Figure 3.8). Overall, these results suggest that gastruloids were an appropriate 

model system for investigating the effects of Lsd1 knockout during gastrulation. 

 

The gastruloid model system is not without its limitations. Gastruloids do not mimic the 

embryo exactly, they lack extraembryonic tissues which provide signalling to the 

epiblast in the embryo. For example, expression of BMP4 from the extraembryonic 

ectoderm restricts the formation of the DVE (distal visceral endoderm) to the distal 

region of the embryo, a key process for the establishment of the antero-posterior axis 

(Yamamoto et al., 2009). Despite this, gastruloids display axial patterning similar to the 

embryo (Beccari et al., 2018b), suggesting there may be some compensatory 

mechanism for the lack of signalling from extraembryonic tissues. Additionally, Lsd1 

expression has been shown to be restricted to the embryonic portion of the embryo 

(Foster et al., 2010), therefore the lack of extraembryonic tissue in gastruloids should 

not impede investigation into Lsd1 function. 

 

It is also important to consider the maternal contribution of mRNA during embryonic 

development.  It is probable that maternal contribution of Lsd1 expression compensates 

for loss of endogenous Lsd1 in embryos, as depletion of maternal Lsd1 leads to 

embryonic arrest at the 1-2 cell stage (Wasson et al., 2016). The half-life of LSD1 protein 

is relatively long and has been shown to remain in the cell for around 3 to 4 days post 

knockout (Foster et al., 2010) so it is possible that maternal LSD1 persists until the 

developmental stage at which loss of LSD1 is lethal. It is therefore likely that maternal 

contribution of Lsd1 conceals defects that may occur earlier in embryos and these 

defects may become apparent in a model system without maternal mRNA. 

Consequently, investigating Lsd1 knockout in gastruloids does not exactly mimic the 

situation in embryos, however, it allows for uncovering of the mechanisms that may 

contribute to the earlier lethality observed when maternally provided Lsd1 is absent. 

For example, the observed increased and sustained expression of Zscan4 upon Lsd1 

knockout, as evidenced in Figure 5.12, could contribute to this earlier lethality. 
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Expression of Zscan4 has been shown to be required for the correct transition from the 

2 cell to the 4 cell stage in embryos (Falco et al., 2007). Zscan4 expression is also 

associated with derepression of heterochromatin (Akiyama et al., 2015) and, while this 

process appears to be essential for normal development, compromised 

heterochromatin organisation generally leads to genomic instability and often appears 

in cancer (Carone and Lawrence, 2013). Therefore, the prolonged upregulation of 

Zscan4 in Lsd1 knockouts could be a contributing factor to the early embryonic arrest of 

embryos lacking maternal Lsd1 (Wasson et al., 2016). 

 

Recent advances in next generation sequencing have generated new methods such as 

single cell RNA sequencing (scRNA-seq) which enables examination of the transcriptome 

of single cells (Tang et al., 2009). This technique has been used to investigate the effects 

of individual gene deletion on gastrulating embryos (Pijuan-Sala et al., 2019). The more 

sensitive nature of this technique makes it suitable for smaller amounts of input 

material. While the work in this thesis has employed RNA-seq on pooled gastruloids, 

interrogating the transcriptome of individual cells would provide both spatial and 

temporal information.  

6.2 Lsd1 knockout gastruloids exhibit dysregulation of 

developmental processes 

The embryonic lethality of Lsd1 knockout occurs at around E6.5 (Wang et al., 2009a, 

Wang et al., 2007, Foster et al., 2010), which corresponds approximately with the 72 

hour timepoint in gastruloids. It may then be expected that gastruloids without Lsd1 

would not develop past this timepoint, however, this was not the case, as gastruloids 

continued to develop past this point, albeit with some differences in morphology (Figure 

4.1). The abundance of differentially expressed genes at each timepoint, specifically 

881, 1251 and 1220 genes at 0 hours, 72 hours, and 120 hours, respectively (Figure 4.3), 

suggests that the effects of Lsd1 deletion are widespread, affecting multiple pathways 

and processes. The majority of these genes were upregulated, consistent with the role 

of Lsd1 as a transcriptional repressor. A role of LSD1 in transcriptional activation has 
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been proposed, through its suggested H3K9 demethylase activity when in association 

with androgen receptor (AR) (Metzger et al., 2005). Though this activity has yet to be 

structurally verified, if LSD1 does behave in this way, it could explain the proportion of 

genes which are downregulated upon Lsd1 KO. Alternatively, it is possible that LSD1 

represses genes which encode other transcriptional repressors, resulting in reduced 

repression of selected genes in the absence of LSD1. Additionally, Zscan?? 

 

Gastruloids lacking Lsd1 exhibited normal exit from pluripotency and induction of early 

differentiation markers (Figure 4.4) and gastrulation associated genes at 72 hours 

(Figure 4.5). However, the downregulation of gastrulation genes at 120 hours was 

impaired, suggesting a reduced ability to switch these genes off. Although Lsd1 

knockout gastruloids did not fail to develop in a way that might be reminiscent of the 

lethality in embryos, we identified a number of dysregulated processes which may 

cumulatively contribute to this phenotype. 

6.2.1 Differential expression of mesodermal genes 

Analysis of lineage specific markers in gastruloids lacking Lsd1 showed that, although 

endodermal and ectodermal markers were generally expressed at similar levels as in 

controls, mesodermal markers were differentially expressed (Figure 4.7). In particular, 

genes associated with the formation of somites appeared to be downregulated at 120 

hours. Somites, which are the originators of skeletal muscle, are formed from paraxial 

mesoderm in an anterior to posterior fashion (Chal and Pourquie, 2017). Presomitic 

mesoderm is a transient tissue which is specified though Wnt and FGF signalling 

pathways, and which can be divided into two regions: the nascent posterior region and 

the more committed anterior region, from which somites emerge. The presomitic 

mesoderm expresses Wnt/FGF targets, including Wnt3a, T, Tbx6, and Msgn1, each of 

which is essential for the formation of paraxial mesoderm (Chal and Pourquie, 2017, 

Nowotschin et al., 2012a). Embryos with Wnt3a−/−, Tbx6−/− and Msgn1−/− mutants 

showed loss of posterior somites and, in the case of Tbx6−/−, aberrant formation of 

anterior somites (Nowotschin et al., 2012a). Therefore, reduced expression of Tbx6 at 
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72 hours could result in reduced induction of somite associated genes, Foxc1 and Tcf15, 

at 120 hours (Figure 4.8). The reduced expression of somite related genes and therefore 

anticipated dysregulation of somite formation is unlikely to be the cause of Lsd1 

knockout embryonic lethality. This is partly because somitogenesis occurs after the 

point of lethality in embryos lacking Lsd1 and because embryos with defective somite 

formation, in particular as a result of reduced levels of Tbx6, do not present a lethal 

phenotype until E12.5 (White et al., 2003). 

 6.2.2 Dysregulation of the epithelial-to-mesenchymal transition 

Following gene ontology analysis of genes differentially expressed in gastruloids lacking 

Lsd1, the prevalence of terms associated with cell adhesion prompted investigation into 

this pathway (Figure 4.11). Genes associated with EMT were among the most 

upregulated and downregulated genes within this term at 72 and 120 hours (Figure 

4.12). This encouraged investigation into expression levels of key EMT associated genes, 

many of which were dysregulated (Figure 4.13). The upregulation of Snail, Slug, 

Vimentin, MIAT, and Eomesodermin, all of which are factors that stimulate EMT, would 

suggest increased transition towards mesenchymal cell identity. Conversely, the 

downregulation of Fgfr1, Fibronectin, Foxc2 and Pdgfra, which all similarly stimulate 

EMT, would suggest the opposite. It is therefore difficult to dissect whether Lsd1 

knockout leads to an overall promotion or suppression of the transition to mesenchymal 

cell identity, but it is clear that it contributes to dysregulation of the process. The switch 

from expression of E-cadherin to expression of N-cadherin is a hallmark of EMT (Loh et 

al., 2019). It has also been previously shown that chemical inhibition of LSD1 in colon 

cancer cells leads to upregulation of E-cadherin and downregulation of N-cadherin, and 

that the upregulation is a result of LSD1 demethylase activity at the promoter of E-

cadherin (Ding et al., 2013). Consequently, it is unusual that there were no observed 

changes in the expression levels of E-cadherin and N-cadherin following Lsd1 depletion 

despite changes in factors which regulate the cadherin switch, such as Snai1. 
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The process of EMT during gastrulation is essential for the ingression of cells through 

the primitive streak to form mesodermal and endodermal lineages. As well as this, EMT 

can also occur in the adult, either in tissue regeneration and organ fibrosis processes, 

or in cancer invasion and metastasis (Kalluri and Weinberg, 2009). Though each of these 

types of EMT occur in distinct biological contexts, they share underlying genetic 

mechanisms. Lsd1 has previously been implicated in regulating the process of EMT, both 

through epigenetic modulation of EMT related genes and through association with EMT 

regulators within the CoREST complex (Ambrosio et al., 2017).  

 

Lsd1 overexpression is present in cancer cells, and this contributes to increased 

proliferation, cell motility and EMT (Hino et al., 2016, Hayami et al., 2011, Lv et al., 

2012). Inhibition of Lsd1 has been shown to suppress proliferation, migration and 

invasion in prostate, lung, and colon cancer cells (Wang et al., 2015, Lv et al., 2012, Ding 

et al., 2013). H3K4me3 levels increase and H3K9me2 decrease during TGF-β stimulated 

EMT in AML12 hepatocytes and these chromatin modifications were blocked upon Lsd1 

knockdown, suggesting LSD1 plays an important role in chromatin reprogramming 

during EMT (McDonald et al., 2011). Interestingly, in this study, the normal decrease in 

E-cadherin was observed following siRNA knockdown of Lsd1, similar to the results 

presented here. 

 

LSD1 physically interacts with mediators of EMT, such as UTX, Snail, and Slug (Choi et 

al., 2015, Lin et al., 2010a, Ferrari-Amorotti et al., 2013). The association of the CoREST 

complex with UTX has been shown to repress EMT-inducing genes, Snai1, Zeb1 and Zeb2 

in breast cancer stem cells (Choi et al., 2015). The upregulation of Snai1 in our results 

could be due to loss of this activity. In contrast, the association of LSD1 with Snail 

recruits its repressive activity to epithelial related genes, including E-cadherin (Lin et al., 

2010a). Consequently, loss of transcriptional repressive activity of the CoREST complex 

at epithelial related genes results in increased epithelial cell identity and reduced EMT. 

While some of our results are in agreement with this, for example the downregulation 

of genes which stimulate EMT (Fgfr1, Fibronectin, Foxc2 and Pdgfra), the upregulation 

of mesenchymal markers and inducers of EMT (Snail, Slug, Vimentin, MIAT, and 

Eomesodermin) is in stark contrast to this, perhaps relating to loss of UTX mediated gene 
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repression. This presents a more complicated situation of the role of LSD1 in EMT 

regulation. ChIP-seq analysis to interrogate the levels of H3K4 methylation levels at EMT 

related genes upon Lsd1 knockout could aid in deciphering the role of LSD1 in this 

process, but this was beyond the scope of the work in this thesis. 

6.2.3 Differential expression of BMP pathway related genes 

Gene ontology analysis showed a number of differentially expressed genes were 

associated with terms relating to the BMP pathway, including cellular response to BMP 

stimulus and pathway-restricted SMAD protein phosphorylation (Figure 4.11). 

Investigation into genes related to these terms revealed dysregulation of a number of 

genes relating to the BMP pathway (Figure 4.14). Although upregulation of Bmp4 and 

Bmp7 may suggest increased BMP pathway activity, the downregulation of downstream 

effector Smad5 and upregulation of inhibitory SMADs, Smad6 and Smad7, suggests the 

opposite. This is apparent in the reduced expression of Sfrp1, which is usually expressed 

in regions with high BMP activity, and increased expression of Bambi, which is usually 

expressed in regions with low BMP expression. The expression of these genes, 

important in the specification of the dorsal-ventral axis, is mediated by pSMAD5 

(Greenfeld et al., 2021), and reduced expression of Smad5, as well as increased 

expression of inhibitive SMADs which may prevent its phosphorylation, could be the 

cause of their differential expression.  

 

The first established role of the BMP proteins was in bone and cartilage formation, and 

were hence given the nomenclature bone morphogenic proteins (BMPs) (Zhao, 2003). 

Aside from this developmental role, the BMP pathway regulates many processes in 

embryonic development, including cavitation of the ICM, axis formation and 

organogenesis (Mishina, 2003). Firstly, in the determination of the antero-posterior 

axis, expression of BMP4 from the extraembryonic ectoderm inhibits the formation of 

the DVE, restricting it to the distal pole of the embryo (Yamamoto et al., 2009). Although 

gastruloids do not include extraembryonic tissues, they do possess an antero-posterior 

axis (Beccari et al., 2018b), and therefore overexpression of Bmp4 in Lsd1 knockout 
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gastruloids could result in perturbation of the specification of this axis. Bmp4 expression 

from the extraembryonic ectoderm is also required for the generation of primordial 

germ cells (PGCs) in the embryo (Lawson et al., 1999). Again, while extraembryonic 

tissues are not present in gastruloids, the upregulation of Bmp4 could account for the 

differentially expressed genes associated with GO terms relating to germ cells, including 

male meiotic nuclear division, DNA methylation involved in gamete generation and 

piRNA metabolic process (Figure 4.11). During embryogenesis, BMP7 forms 

heterodimers with BMP2 and BMP4, the presence of which are required for the correct 

formation of the heart (Kim et al., 2019b). The upregulation of Bmp7 and Bmp4 

following Lsd1 depletion could therefore contribute to the differentially expressed 

genes in the identified GO terms relating to cardiovascular development, including 

vascular process in circulatory system, blood vessel morphogenesis and cardiac septum 

morphogenesis. 

 

Due to the involvement of the BMP pathway in the establishment of the dorsoventral 

and antero-posterior axes in embryos, it would be useful to gain spatial expression 

information of genes including Bmp4 during gastruloid development. This could be 

achieved through scRNA-seq or alternatively through direct visualisation methods, such 

as hybridisation chain reaction (HCR) experiments. HCR involves hybridisation of an 

mRNA of choice with multiple RNA probes which present an initiator sequence that can 

then be targeted by fluorescent DNA hairpins (Tsuneoka and Funato, 2020). 

Interrogation of spatial expression of, for example Bmp4, would give insight into 

whether the upregulation of Bmp4 in Lsd1 KO gastruloids is due to overexpression in 

cells which already express the gene in controls. Alternatively, the increased expression 

may be in cells which do not normally express Bmp4 in control gastruloids, thereby 

potentially affecting gradients of the gene that enable establishment of axes.  
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6.3 LSD1 demethylase activity is required for differential 

expression of some identified genes, but dispensable for 

others 

CoREST complex stability is dependent on LSD1 and knockout of Lsd1 therefore results 

in loss of CoREST complex activity as well as LSD1 demethylase activity. Consequently, 

the DEGs identified in Chapter 4 could be a result of loss of either direct or indirect 

functionalities. To discriminate between these possibilities, gastruloids were generated 

from cells with the catalytically inactive mutant Lsd1-K661A and cells with WT-Lsd1 as a 

control. Morphologically, these gastruloids were similar and resembled Lsd1 KO 

gastruloids from Chapter 4, despite reduced elongation potential presented by WT-Lsd1 

gastruloids (Figure 5.1). This was likely due to the reduced differentiation capacity of 

these cells, as evidenced in Chapter 5.4. Totals of 1135, 313, and 1032 DEGs were 

identified between gastruloid conditions at 0 hours, 72 hours and 120 hours, 

respectively, with the majority of genes at each timepoint being upregulated, which 

aligns with the repressive nature of LSD1 demethylase activity (Figure 5.3). 

 

The impaired capability of WT-Lsd1 cells to differentiate was demonstrated through 

reduced induction of early differentiation (Figure 5.5) and gastrulation (Figure 5.7) 

associated genes. Examination of Lsd1 expression levels suggested that overexpression 

of Lsd1 was not the cause of this (Figure 5.6). The piggyBac transposon system, which 

was used to originally generate these cells, can carry and integrate genes into the 

genome via a ‘cut and paste’ mechanism (Ding et al., 2005). piggyBac mediated 

integration is biased towards transcriptional units and there is potential for insertional 

mutagenesis of genes using this system. It is therefore possible that insertional 

mutagenesis is responsible for the impaired differentiation capability of this cell line, 

and determination of integration sites by PCR could be used to ascertain this. 

 

The overlap between DEGs in Lsd1 KO versus control gastruloids and WT-Lsd1 versus 

Lsd1-K661A gastruloid datasets was relatively small (Figure 5.8). The number of genes 

differentially expressed in the dataset with the mutant variant of Lsd1 is surprising, as 
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the restoration of the CoREST complex would be expected to rescue expression of some 

DEGs from the first dataset, and not to dysregulate unrelated genes. This result could 

be due in part to the decreased differentiation phenotype of WT-Lsd1 cells, or perhaps 

due to insertional mutagenesis of genes in Lsd1-K661A cells. Genes were also identified 

which were upregulated in gastruloids with mutant Lsd1 but not with Lsd1 KO (Figure 

5.10), suggesting that genes with this expression pattern may also contribute to this 

subset of differentially expressed genes. Despite the reduced differentiation defect seen 

in gastruloids with exogenous WT Lsd1, a selection of genes which require, or conversely 

do not require, LSD1 demethylase activity for their repression or expression were 

identified by examining genes which were dysregulated in both datasets. 

Reintroduction of CoREST complex functionality was unable to rescue the 

overexpression of Klhl13 and the reduced expression of Atp1a3, Atp2a3, Inhbb, Fn1, 

Mesp1, and Robo2 (Figure 5.9). LSD1 demethylase activity therefore appears to be 

required for repression of Klhl13 and for the activation of the other genes. The 

requirement for LSD1 for this activation is presumably because of an indirect effect, 

potentially due to LSD1 mediated transcriptional repression of transcription factors or 

chromatin modifiers which would otherwise act to repress expression of these genes. 

There are likely more genes which have a direct requirement for LSD1 demethylase 

activity, which we have been unable to identify here due to limitations presented by the 

unanticipated WT-Lsd1 cell phenotype. 

A number of genes were identified whose expression was rescued or partially rescued 

in gastruloids with CoREST complex activity but not LSD1 demethylase activity (Figure 

5.11, Figure 5.12). Among the genes whose expression levels were rescued were genes 

associated with the BMP pathway, Bmp4 and Bmp7, as well as with EMT, Snai1 and 

Snai2, suggesting regulation of these genes rely on CoREST complex repressive activity 

but not on LSD1 demethylase activity. This is not unexpected in the case of Snai1 and 

Snai2, whose SNAG domains interact directly with the active domain of LSD1 (Lin et al., 

2010b). The partial restoration of expression levels of Usp26 and Zscan4 genes showed 

that LSD1 activity is required for full repression of these genes to control levels. The 

dispensability of LSD1 catalysis for the repression of these genes could be due to a 

number of reasons. Firstly, and perhaps most simply, the histone modification state of 
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these genes when active may include histone acetylations specifically facilitated by the 

CoREST complex but not H3K4me1/2, making LSD1 activity redundant for their 

repression. Alternatively, there are a number of lysine demethylases that are able to 

demethylate H3K4me2, including LSD2, KDM5A, KDM5B, KDM5C, and KDM5D (Hyun et 

al., 2017), which may be able to compensate for the loss of LSD1 demethylase activity. 

Another reason may be explained by the results of a recent study which demonstrated 

that the observed catalytically inactive status of the K661A mutation in in vitro 

conditions may not reflect its status in vivo (Kim et al., 2020). Assessment of the 

demethylase activity of the K661A mutant on nucleosomal substrates including 

extranucleosomal DNA revealed that the mutant retains around 20% of the activity of 

WT Lsd1. This would explain the observed partial rescue of selected genes in gastruloids 

with the K661A mutant, as the retained 20% of WT activity may enable full repression 

of some genes but only partial repression of others. 

The downstream analysis was severely limited by the unexpected phenotype of WT-

Lsd1 gastruloids and the potential retained demethylase activity in the Lsd1-K661A 

gastruloids. Repeating these experiments with another WT-Lsd1 cell line and with the 

double LSD1 mutation A539E/K661A, which has undetectable demethylase activity on 

nucleosomal substrates (Kim et al., 2020), would circumvent these limitations. 

6.4 Summary 

The work in this thesis has characterised the role of LSD1 during gastrulation by 

employing gastruloids to model this developmental stage. Loss of LSD1 was shown to 

dysregulate expression of genes associated with mesodermal lineages, EMT and the 

BMP pathway; the cumulative effects of which may contribute to the embryonic lethal 

phenotype of Lsd1 knockout. The increased and sustained expression of Zscan4 

observed upon loss of Lsd1, partially rescued by the reintroduction of the CoREST 

complex, could be particularly deleterious during embryonic development. Despite 

limitations in our analysis, we identified a number of genes whose repression appeared 

to be dependent on or independent of LSD1 demethylase activity which warrant further 

investigation.  
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