University of Leicester
Browse

Molecular characterization of the 3-phosphoglycerate kinase gene from Aspergillus nidulans.

Download (23.42 MB)
thesis
posted on 2015-11-19, 08:53 authored by John Martin. Clements
The Aspergillus nidulans 3-phosphoglycerate kinase (PGK) gene has been isolated from a phage ? genomic library using the equivalent yeast gene as a hybridization probe and the location of the PGK gene physically mapped within the cloned DNA. The nucleotide sequence of the entire PGK gene and its 5' and 3' flanking regions has been determined. The gene was found to contain two 57 base pair introns which have splicing signals similar to those in other filamentous fungi, and codes for a 421 amino acid protein with considerable homology to the Saccharomyces cerevisiae (68%) and mammalian (64%) proteins. Almost total conservation is found in Aspergillus of residues thought to be important for the structure and function of the yeast enzyme. The codon usage shows a similar bias to that found in other filamentous fungi. The PGK gene has been shown to be constitutively expressed at a relatively high level. The transcription start site and polyadenylation sites have been determined. The PGK promoter has both the CAAT and TATA homologies generally found in more complex eukaryotes. Additionally two pyrimidine rich regions of the promoter sequence share similarities to other highly expressed genes in fungi. PGK mRNA exhibts 3' heterogeneity and the major polyadenylation site is positioned 16 bp beyond the eukaryotic consensus polyadenylation signal AAUAAA. Potential hairpin structures are also found in the 3' non-translated region of the PGK mRNA which may be important in transcription termination and polyadenylation. In parallel studies the pyruvate carboxylase protein has been identified by immunoprecipitation from the products of in vitro translations of A. nidulans mRNA as the first step of a strategy to clone a cDNA copy of the PYC mRNA. An attempt to clone the pyruvate carboxylase (PYC) gene from Aspergillus nidulans, by an immunological screen of an Aspergillus genomic library constructed in phage ?, was unproductive.

History

Date of award

1986-01-01

Author affiliation

Genetics

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC