University of Leicester
Browse

On a construction of young modules

Download (2.59 MB)
thesis
posted on 2014-12-15, 10:40 authored by Marie Vernon
Let n be a natural number and E an n-dimensional vector space over a field K. The symmetric group acts by place permutation on the tensor space E ⊗r. The Sigmar-module E⊗r can be decomposed into a direct sum of permutation modules Mlambda where lambda is a composition of r into at most n parts.;Each permutation module labelled by such a composition is isomorphic to one labelled be a partition of r into at most n parts, and therefore we assume that lambda is such a partition. The indecomposable direct summands of the permutation module M lambda are called Young modules, and they are labelled by partitions of r into at most n parts.;Throughout this thesis we consider the case where E has dimension two. For lambda a two-part partition of r, we explicitly decompose the module M lambda into a direct sum of Young modules by providing spanning sets for the Young modules.;Moreover, we consider the problem of finding a basis or an algorithm for a basis for the Young modules in this case and, although we have not been able to solve this in general, we give some conjectures and examples showing in which cases we can find a basis.

History

Date of award

2005-01-01

Author affiliation

Mathematics

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC