posted on 2014-06-16, 15:26authored byJames Jonathan Walton
This thesis establishes a generalised setting with which to unify the study of
finite local complexity (FLC) patterns. The abstract notion of a pattern is introduced,
which may be seen as an analogue of the space group of isometries preserving
a tiling but where, instead, one considers partial isometries preserving
portions of it. These inverse semigroups of partial transformations are the suitable
analogue of the space group for patterns with FLC but few global symmetries.
In a similar vein we introduce the notion of a collage, a system of equivalence
relations on the ambient space of a pattern, which we show is capable of generalising
many constructions applicable to the study of FLC tilings and Delone sets,
such as the expression of the tiling space as an inverse limit of approximants.
An invariant is constructed for our abstract patterns, the so called patternequivariant
(PE) homology. These homology groups are defined using infinite singular
chains on the ambient space of the pattern, although we show that one may
define cellular versions which are isomorphic under suitable conditions. For FLC
tilings these cellular PE chains are analogous to the PE cellular cochains [47]. The
PE homology and cohomology groups are shown to be related through Poincare
duality.
An efficient and highly geometric method for the computation of the PE homology
groups for hierarchical tilings is presented. The rotationally invariant
PE homology groups are shown not to be a topological invariant for the associated
tiling space and seem to retain extra information about global symmetries
of tilings in the tiling space. We show how the PE homology groups may be incorporated
into a spectral sequence converging to the Cech cohomology of the
rigid hull of a tiling. These methods allow for a simple computation of the Cech
cohomology of the rigid hull of the Penrose tilings.