University of Leicester
Browse

The modelling of hydrogen in amorphous and glassy semiconductors

Download (8.31 MB)
thesis
posted on 2014-12-15, 10:40 authored by Michael. Kay
The behaviour of hydrogen in crystalline and amorphous semiconductors has been simulated using the positive muon as a microscopic probe. Measurements have been made on a wide range of materials: polycrystalline and amorphous silicon, both doped and intrinsic; polycrystalline and amorphous germanium; crystalline CaAs and GaP; and selenium-based glassy chalcogenides. Using the techniques of SR (Muon Spin Resonance/Rotation/Relaxation/Repolarisation), the evolution of the spin polarisation of the muon is monitored. In semiconductors and insulators, the muon is bonded to an electron to form muonium (Mu=+e-) and it is this species that behaves as an analogue of isolated atomic hydrogen. The muon spin polarisation is greatly influenced by the local environment, and its study has yielded information on the sites occupied by the muon/muonium, via determinations of diamagnetic fractions and hyperfine parameters. The technique of muon spin repolarisation has been used for the first time in conjunction with recently derived theoretical expressions to extract this information. Preliminary measurements using the technique of muon spin resonance on a newly developed facility at the Rutherford Appleton Laboratories has also been made.

History

Date of award

1998-01-01

Author affiliation

Physics

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC