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ABSTRACT 

Un-explored regions of the human genome and predisposition to coronary artery 
disease - Paraskevi Christofidou 

 
Coronary artery disease (CAD) is a leading cause of morbidity and mortality 
worldwide. Previous genome-wide association (GWA) studies have identified several 
common variants underlying the risk of CAD. However, the collective contribution of 
these variants to CAD risk is modest and explains only a small proportion (~10%) of its 
overall heritability. There are largely un-explored regions/variants of human genome 
that may harbor alleles/genes/loci/pathways associated with susceptibility to CAD and 
account for a portion of its missing heritability. Runs of homozygosity (ROHs), rare 
alleles and pseudoautosomal regions (PARs) are amongst most overlooked 
regions/variants by GWA studies. 
Genome-wide homozygosity analysis in CARDIoGRAM Consortium revealed 
statistically significant differences in the overall homozygosity levels between 10,548 
CAD patients and 10,273 CAD-free controls. The distribution of consensus regions of 
overlapping ROHs showed over-representation amongst patients with CAD, suggesting 
that accumulation of recessive alleles may increase the risk of CAD.  
The aggregate association analysis of low-frequency and rare variants represented on 
the HumanCVD 50K array in >13,000 CAD patients and >14,000 controls from the IBC 
50K CAD Consortium validated previously reported association between LPA and CAD 
in populations of European ancestry. This analysis also revealed new associations 
between F10, F7 and TRAF2 genes and CAD in South Asians. 
Common intergenic variant in PAR1 was associated with CAD risk in 9,536 women in 
the meta-analysis of CARDIoGRAM Consortium. New generation RNA-sequencing 
analysis provided first glimpse into PARs transcriptome in human monocytes and 
macrophages and uncovered expression of a lincRNA in close proximity to the PAR1 
association signal. Sex-stratified comparative gene expression analysis in human 
monocytes and macrophages revealed statistically significant differences in PAR1 gene 
expression levels between men and women. 
These data revealed novel associations between CAD and ROHs as well as PAR1 and 
showed that in-depth exploration of regions commonly neglected by previous GWA 
studies has a potential to provide new insights into genetic architecture of common 
complex diseases.  
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1. INTRODUCTION 

Cardiovascular disease (CVD), the collective term for all diseases affecting the 

circulatory system (heart and blood vessels) (http://www.bhf.org.uk/publications/view-

publication.aspx?ps=1002097) is the leading cause of morbidity and mortality 

worldwide (http://www.who.int/en/).  

CVD claims more than 2,150 lives each day in the USA, averaging one death every 40 

seconds (Go et al. 2013). It is the main mortality cause in the UK – in 2010 it accounted 

for approximately 180,000 deaths (http://www.bhf.org.uk/publications/view-

publication.aspx?ps=1002097). According to World Health Organization (WHO) 17.3 

million people around the globe died of CVD in 2008 (30% of deaths worldwide) 

(http://www.who.int/mediacentre/factsheets/fs317/en/index.html). Of these, 7.3 million 

deaths were due to coronary artery disease (CAD), the most common terminal clinical 

manifestation of CVD.  

CAD is one of the most important diseases from the public health point of view 

incurring enormous costs in financial terms. Of all CAD deaths in 2009, 73% occurred 

before reaching hospital (Go et al. 2013). According to National Center Health 

Statistics mortality data, 281,000 CAD deaths occur out of the hospital or in hospital 

emergency departments annually (Go et al. 2013). The estimated cost of CAD burden in 

2009 was $195.2 billion (Go et al. 2013). By 2030, 40.5% of the USA population is 

expected to suffer from some form of CAD disease, with an estimated direct medical 

cost of $818 billion and an increase of 61% of indirect costs, due to lost productivity 

resulting from morbidity and premature mortality (Heidenreich et al. 2011). 
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1.1. Biology of CAD - Atherosclerosis 

CAD occurs when the walls of the coronary arteries become narrowed by a gradual 

buildup of atherosclerotic lesions. Atherosclerosis is a silent, chronic, multistep 

inflammatory process that involves expansion of the arterial intima (normally small area 

between the endothelium and the underlying smooth muscle cells of the media), with 

the progressive accumulation of lipids, a variety of cells and extracellular matrix 

(Moore and Tabas, 2011). This process is asymptomatic for many years. Eventually, 

some of atherosclerotic lesions may undergo necrotic breakdown and luminal 

thrombosis, leading to blood vessel occlusion and acute manifestations such as 

myocardial infarction (Virmani et al. 2002). 

The key initiating step in atherogenesis is the sub-endothelial accumulation of 

apolipoprotein B-containing lipoproteins (apoB-LPs) (Williams and Tabas, 1995). 

ApoB-LPs are composed of a core of neutral lipids, surrounded by a monolayer of 

phospholipids and proteins (apolipoprotein B). Hepatic apoB-LPs are secreted as very 

low density lipoproteins (VLDLs) and are converted to low density lipoprotein (LDL) 

in circulation. Intestinal apoB-LPs are secreted as chylomicrons and are converted by 

lipolysis into pro-atherogenic particles called remnant lipoproteins (Moore and Tabas, 

2011).  

The early inflammatory response to apoB-LPs retention triggers activation of overlying 

endothelial cells, leading to recruitment of circulating monocytes (Figure 1.1) (Glass 

and Witztum, 2001; Mestas and Ley, 2008). This directional migration process is 

facilitated by chemokines secreted from activated endothelial cells interacting with 

related chemokine receptors on monocytes.  
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Figure 1.1: The process of foam cell formation. Endothelial dysfunction is characterised by 
increasing stickness of the endothelial cells to circulating monocytes. Recruited monocytes are 
able to effect passage through the single cell layer of endothelium, between the endothelial cells 
and into the coronary vessel intima where they differentiate into macrophages. Endothelial 
dysfunction is also characterised by elevated permeability to lipoproteins. The combination of 
macrophages and oxidized lipoproteins activate molecular scavenger receptors that recognize 
and rapidly accumulate oxidized lipoproteins. Macrophages that have taken up great quantities 
of lipids are called foam cells [Taken from Moore and Tapas, 2011]. 
 

 

 

Following chemokinesis, monocytes become tethered and roll on endothelial cells 

overlying retained apoB-LPs through the interaction of monocyte P-selectin 

glycoprotein ligand-1 (PSGL-1) with endothelial selectins (Mestas and Ley, 2008). 

Monocytes stick firmly to lesional endothelial cells through interaction of monocyte 

integrins [VLA-4 (very late antigen4) and LFA-1 (lymphocyte function-associated 

antigen1)] with endothelial cell ligands [VCAM-1 (vascular cell adhesion molecule1) 

and ICAM-1 (intracellular adhesion molecule-1)] (Moore and Tabas, 2011). Finally, 

firm adhesion of monocytes is followed by their entry into the sub-endothelial space 

(diapedesis) (Kamei and Carman, 2010). There, intralesional monocytes are influenced 

by macrophage colony stimulating factor (M-CSF) and other factors and differentiate 
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into macrophages or dendritic-like cells (Johnson and Newby, 2009; Paulson et al. 

2010).  

At very initial stages of atherogenesis, phagocytes ingest and process apoB-LPs in 

macrophages and dendritic-like cells and lead to the formation of foam cells - 

membrane bound lipid droplets (Moore and Tabas, 2011). These form the bulk of fatty-

streaks. 

The next stage in the development of atherosclerosis is the formation of intermediate 

lesions, which are more complex in composition (Figure 1.2). Ongoing inflammation 

stimulates smooth muscle cells to migrate to the area of injury. Contractile smooth 

muscle cells undergo phenotypic changes, becoming non-contractile and then fibrous. 

Neither the fatty-streaks nor the intermediate lesions are immediately harmful. 

However, this constant and chronic process becomes a maladaptive, nonresolving 

inflammatory response that expands the sub-endothelial layer and generates 

atherosclerotic lesions.  

The following stage of atherogenesis is the formation of arterial plaques (Figure 1.2). 

These are well-defined lesions containing a necrotic lipid core, collagen, elastic fibres 

and proteoglycans and covered with cap of fibrous tissue, composed of smooth muscle 

cells and connective tissue. As the plaque grows, the fibrous cap gets thinner and the 

artery lumen narrower. A thinning fibrous cap decreases lesion stability making these 

plaques susceptible to rupture and the formation of a thrombus. This ultimately results 

in the manifestation of acute thrombotic vascular disease, including MI.  
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Figure 1.2: The stages of atherosclerosis – The pathologic process of lesion formation from 
early fatty streaks, plaque formation, rupture and thrombosis. Early fatty streak, 
characterized by the accumulation of apoB-LPs in the matrix beneath the endothelial cell layer 
of blood vessels, stimulates the recruitment of macrophage foam cells and dendritic like cells. 
Atherosclerotic lesion drives the atheromatous process from initial endothelial injury to final 
plaque disruption [Taken from: Moore and Tabas, 2011]. 
 

 

 

1.2. Epidemiology of CAD 

Data from the Framingham Heart Study (FHS) have shown that more than 50% of all 

cardiovascular events in men and women <75 years of age are due to CAD (Go et al. 

2013). The lifetime risk of developing CAD after 40 years of age is 50% for men and 

33% for women (Lloyd-Jones et al. 1999) as the incidence rate of developing coronary 

events in females lags behind men by 10 years and by 20 years for MI and sudden death 

(Go et al. 2013).  

Shockingly, about every 34 seconds, an American will experience a coronary event and 

about every minute a patient will die from one, (Lloyd-Jones et al. 2009, Go et al. 

2013). In 2009, 1 in every 6 deaths was caused by CAD with a mortality rate rising up 

to 386,324 (Table 1.1) (Go et al. 2013). From 1999 to 2009, the annual death number 

due to CAD declined 27.1%; however, CAD remains the major killer of American 

males and females (http://www.cdc.gov/nchs/fastats/heart.htm; Go et al. 2013).  
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The latest update from the American Heart Association Statistics Committee, reports 

that in the United States, the total CAD prevalence is 15,400,000 (6.4%) and the overall 

prevalence for MI is 7,600,000 (2.9%) in adults ≥20 years of age (Go et al. 2013) (Table 

1.1). Projections show that by 2030 an additional ~8,675,000 people could have CAD, 

an 18% increase in prevalence from 2013 (Heidenreich et al. 2011; Go et al. 2013). A 

total number of around 635,000 Americans were estimated having a new coronary event 

and about 280,000 having a recurrent attack this year (Go et al. 2013).  

Table 1.1: Epidemiology of CAD and MI in United States among individuals ≥20 years of age - 
data from National Health and Nutrition Examination Survey (NHANEs) 2007-2010. 

Population 
Group 

Prevalence of 
CAD (n) 

Prevalence of 
MI (n) 

Mortality of 
CAD 

Mortality of 
MI 

Both sexes 
 
 

Males 
 
 

Females 

 
15 400 000 

(6.4%) 
 

8 800 000 
(7.9%) 

 
6 600 000 

(5.1%) 

 
7 600 000 

(2.9%) 
 

5 000 000  
(4.2%) 

 
2 600 000 

(1.7%) 

 
386 324 

 
 

210 069 
(54.4%) 

 
176 255 
(45.6%) 

 
125 464 

 
 

68 814 
(54.8%) 

 
56 650 
(45.2%) 

Mortality estimates are based on data from Centres for Disease and Prevention/National Center 
for Health Statistics 2009, Data adopted from Heart disease and Stroke statistics - 2013 update. 
 

An MI is diagnosed every 44 seconds in the US (Go et al. 2013). It has been estimated 

that around 126,000 deaths a year in the US are caused by MI (Table 1.1). The 

estimated annual incidence of MI is 715,000 (525,000 new and 190,000 recurrent 

attacks) of which 150,000 (~21%) occur silently (Boland et al. 2002; Go et al. 2013). 

The average age at first MI is 64.7 years for men and 72.2 years for women (Lloyd-

Jones et al. 2009). The estimated average number of years of life lost because of an MI 

is 16.6 (Go et al. 2013). Depending on their sex and clinical outcome, individuals 

surviving the acute stage of an MI have a chance of illness and death 1.5 to 15 times 

greater than that of the general population (Go et al. 2013). 
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In the UK, about half (45%) of all deaths from CVD are from CAD 

(http://www.bhf.org.uk/publications/view-publication.aspx?ps=1002097). In 2010, 

around 1 in 5 male deaths and 1 in 10 female deaths were from CAD, a total of around 

80,000 deaths (http://www.bhf.org.uk/publications/view-publication.aspx?ps=1002097). 

Data from the 2006 National Health Survey for England estimate the prevalence of 

CAD in England as 6.5% in men and 4.0% in women (Smolina et al. 2012) (Table 1.2).  

Table 1.2: Epidemiology of CAD and MI in United Kingdom among individuals of all ages 
Population 

Group 
Prevalence of 

CAD (n) 
Prevalence of 

MI (n) 
CAD  

mortality  
MI  

Mortality 

Both sexes 
 

Males 
 

Females 

N/A 
 

6.5% 
 

4.0% 

N/A 
 

4.1% 
 

1.7% 

80 568 
 

46 591 
 

33 977 

N/A 
 

N/A 
 

N/A 

N/A – no estimates are available. Prevalence estimates are based on the Health Survey for 
England 2006: Cardiovascular disease and risk factors, CAD mortality estimates are based on 
England and Wales, Office for National Statistics (2010). 
 

Overall, there are just over 1.1 million men and around 850,000 women (≥35 years) 

with a history of angina, and around 970,000 men and 439,000 women with a history of 

MI in the UK (http://www.bhf.org.uk/publications/view-publication.aspx?ps=1002097).  

CAD is the leading death cause in many other countries as well. There are significant 

differences in CAD disease rates between countries. The highest death rates from CAD 

are found in Eastern and Northern Europe, the former Soviet Union, USA, Australia and 

New Zealand. Low CAD mortality rates are observed in Japan and the Mediterranean 

countries of Europe (Menotti et al. 1993). Although there is a paucity of data from most 

developing countries, CAD accounted for at least one third of CVD deaths in India and 

more than 50% of deaths in urban areas of China (Okrainec et al. 2004; Reddy and 

Yusuf, 1998).  
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CAD mortality has declined across most of Europe, with the exception of some Eastern 

European countries (Figure 1.3) (Grimes, 2012). Overall, Russia and Ukraine 

experienced an increase in CAD mortality. The CAD death rate in UK has been falling 

at one of the fastest rates in Europe and decreased by 45% between 1998 and 2008. 

However, despite this decline, rates are still relatively high compared to other European 

countries.  

Figure 1.3: Percentage change in CAD mortality rates, by sex, in selected countries 
between 1998 and 2008.   
 

 
Data are shown as rates per 100,000 individuals. [Taken from Coronary heart disease statistics – 
A compendium of health statistics 2012 edition - BHF website] 
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1.3. Risk determination – overview of risk factors 

Early identification, monitoring and treatment of high risk individuals are the most 

critical steps towards reducing CAD burden. 

Less than 10% of the population is at high risk for CVD, but the low to intermediate 

risk group is so large that the majority of cardiovascular events will actually arise from 

these groups of individuals  (Hingorani and Psaty, 2009; Lloyds-Jones et al. 2009). As a 

result, 90% or more of cardiovascular events will occur in individuals with one or more 

risk factors, just under half of the population (Berger et al. 2010). To reduce the greater 

number of events, lowering risk in the entire population is the most promising strategy. 

A pharmacological reduction in risk factors within the population accounted for 47-65% 

of the lowering in death rates during the past 40 years (Bjorck et al. 2009; Capewell et 

al. 2009). Unfortunately, the current obesity and diabetes epidemics have reversed these 

trends (Kones, 2011). 

Cardiovascular risk is the product of the effect of several risk factors and as a result a 

single all-embracing solution is highly improbable. Individual risk factors can cluster 

and tend to have a multiplicative effect on an individual’s total cardiovascular risk 

(Anderson et al. 1991). The goal of primary prevention is to stop the development of 

disease in an asymptomatic individual via the early identification and treatment of risk 

factors. 

There are numerous risk factors associated with the development of CAD; each of 

which makes from significant through moderate to small contribution to the ultimate 

risk of the disease phenotype. Some of these factors such as sex and familiar history are 

not amenable to change. Others, such as smoking and diet are examples of 

environmental exposures. Some, such as blood pressure, body weight, diabetes mellitus 
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and serum cholesterol (Ding and Kullo, 2009), are modifiable and are seen as 

intermediate processes in the development of CAD originated from a complicated 

interplay between genetic factors and environmental factors.  

A large study of men and women in three prospective cohorts emphasized that ~90% of 

CAD patients have one of the main risk factors including high blood pressure, high 

blood cholesterol levels, cigarette smoking and diabetes mellitus (Greenland et al. 

2003). Similarly, data from the National Health and Nutrition Examination Survey 

(NHANEs) noted that 45%, or 81 million American adults, have at least one of three 

conventional risk factors: hypertension, dyslipidemia or diabetes mellitus (Fryar et al. 

2010).  

The INTERHEART study assessed the importance of risk factors for CAD worldwide 

(52 countries) (Yusuf et al. 2004). It showed that optimization of nine main modifiable 

risk factors (cigarette use, blood lipid disturbances, hypertension, diabetes, obesity, a 

lack of exercise, low daily fruit and vegetable consumption, alcohol consumption and 

psychosocial index) could result in a 90% reduction in the risk of an initial MI. The 

effect of these risk factors follows the same pattern in men and women from different 

geographic backgrounds and ethnicities. 

The prevalence of traditional risk factors is almost as high in those without the disease 

as in affected individuals (Freedman et al. 2002; Khot et al. 2003).  As a consequence, 

the predictive models for risk assessment have a lower than desired accuracy in 

predicting CAD as in any individual patient (Conroy, 2003; Grundy et al. 1999). The 

pathophysiology of CAD stems from development of atherosclerotic lesion. The 

proliferation of research related to vascular biology in recent years has led to the 

discovery of a plethora of circulating biomarkers (molecular, heamostatic and 
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inflammatory) that are implicated in the pathology of atherosclerosis, the common 

phenotype for all these risk factors (Hackam and Anand, 2003).  

1.3.1. Sex 

Incidence and prevalence of CAD shows a strong sexual dimorphism. It is well 

documented that CAD is a male predominated disease with a 2:1 ratio of men to women 

(Barrett-Connor et al. 1997). Indeed, men develop CAD approximately 9 years earlier 

than women (Yusuf et al. 2004). Rates of death attributed to CAD in men are 

consistently 3 to 4 times higher than those in women across countries with differing 

background levels of disease. The “male disadvantage” is most obvious when compared 

pre-menopausal women and age-matched men. This gender gap progressively decreases 

with aging, in particular after menopause. 

1.3.2. Age 

Cardiovascular risk increases with age. Age is the strongest indicator for CAD 

incidence and mortality. Compared to men aged 40 years, 50-year, 60-year and 70-year 

old men have 5- 15-  and more than 40-fold increase in the risk of death from CAD. A 

similar steep gradient with age is seen for women. 

1.3.3. Hypertension 

Hypertension is usually defined as systolic blood pressure (SBP) ≥140 mm Hg and/or 

diastolic blood pressure (DBP) ≥90 mm Hg on repeated office measurements, or use of 

antihypertensive medications (Chobanian et al. 2003). Hypertension is the most 

common cardiovascular diagnosis in the USA with an estimated 78 million Americans 

being hypertensive (Go et al. 2013). In the 2010 Health Survey for England, 31% of 

men and 29% of women had hypertension or were taking antihypertensive treatment 
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(http://www.bhf.org.uk/publications/view-publication.aspx?ps=1002097). An estimated 

2 million individuals are diagnosed with hypertension every year (Fields et al. 2004) 

and overall 1 billion people are hypertensive worldwide. 

Prevalence of hypertension increases with age, from 7% in individuals aged 18 to 39, to 

65% in individuals over age of 59 years (Hajjar and Kotchen, 2003). In the Framingham 

Heart Study, more than 50% of individuals aged 55 years developed hypertension 

within the following 10 years (Vasan et al. 2002).  

Large scale epidemiological studies have established a continuous, consistent, linear 

relationship between blood pressure and CVD that is independent of other cardiac risk 

factors (Vasan et al. 2002). Hypertension is a major cardiovascular risk factor that 

directly contributes to CAD (Levy et al. 1996). The World Health Report 2002 

estimated that over 50% of CAD in developed countries is due to SBP levels > than 115 

mm Hg (http://www.who.int/en/). In the INTERHEART study, hypertension accounted 

for 18% of the population attributable risk of first MI (Yusuf et al. 2004). Meta-analysis 

of prospective data from > 1 million individuals revealed that an increase of 20 mm Hg 

in SBP or 10 mm Hg in DBP doubled the CAD risk for adults aged 40 to 69 years 

(Lewington et al. 2002).  

Randomised clinical trials demonstrate that a blood pressure decrease is beneficial in 

reducing CAD morbidity and mortality (Staessen et al. 2001). Antihypertensive 

treatment resulted in reduction of MI prevalence from 20% to 25% (Neal et al. 2000). A 

meta-analysis of blood lowering treatment trials of 47,000 subjects with mild to 

moderate hypertension showed that DBP decrease of 5 to 6 mm Hg reduced MI 

prevalence by 14% and total CVD by 42% (Collins et al. 1990). 
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1.3.4. Hypercholesterolaemia 

Hypercholesterolaemia is considered as a primary atherogenic factor and has a 

prevalence of 13.8% in the USA (Go et al. 2013). There is a continuous, graded and 

strong relationship between serum cholesterol and CAD death rate (Stamler et al. 1986). 

More than 60% of CAD prevalence in developed countries is attributable to increased 

levels of cholesterol (>3.8mmol/L) (http://www.who.int/en/). The INTERHEART study 

demonstrated that 45% of MI in Western Europe and 35% of MI in Central and Eastern 

Europe are due to abnormal blood lipid profiles, and that individuals with abnormal 

lipid levels have >3-fold increase in risk of a coronary event compared to individuals 

with normal lipid levels (Yusuf et al. 2004).  In the ARIC study, LDL-cholesterol levels 

greater than 118 mg/dL were associated with an age-adjusted increase in CAD of 42% 

and 37% in men and women, respectively (Sharrett et al. 2001).   

The West of Scotland Coronary Prevention Study (WOSCOPS), a large-scale 

prevention study showed that lipid-lowering treatment reduces CAD events in primary 

prevention in men with hypercholesteroleamia (Shepherd et al. 1995). On average, 1% 

reduction in LDL cholesterol is associated with 1% reduction in CAD mortality 

(Grundy et al. 2004). 

1.3.5. Overweight and obesity 

Overweight is defined as BMI of 25 to 29.9 kg/m2 and obesity as BMI≥ 30 kg/m². 

Obesity constitutes a major public health challenge for developed and developing 

countries (Finucane et al. 2011). The change towards a more affluent Western lifestyle 

that has taken place during the last 50 years has started a worldwide epidemic increase 

in the prevalence of obesity. In 2010, 154.7 million (68.2%) of US adults (≥20 years of 

age) were overweight or obese (Go et al. 2013). 12.7 million children aged 2 to 19 years 
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are obese (Go et al. 2013). Over the past 3 decades, the prevalence of obesity in 

children aged 6 to 11 years has increased from ~4% to >20% (Go et al. 2013). 

Individuals with a BMI>30 kg/m2 have a 40-fold increased risk of developing diabetes 

and a 2 to 3 fold increased risk of CAD (Hamm et al. 1989) compared to individuals 

with a normal BMI ≤25 kg/m2 (Abbott et al. 1994). The World Health Report 2002 

estimated that > a third of CAD in developed countries is due to overweight 

(http://www.who.int/en/). The adverse consequences of obesity on CAD risk are 

possibly mediated through other cardiovascular risk factors such as higher blood 

pressure, abnormal lipid profile and diabetes (Pearson et al. 2002). Reducing weight is 

accompanied by reduction in the risk of CAD. 

1.3.6. Diabetes mellitus 

Diabetes mellitus is a common complex disorder with dramatically increasing 

prevalence worldwide. Over the past two decades, there has been an explosive increase 

in the number of patients diagnosed with diabetes worldwide. The latest alarming data 

from the United States, estimate that 19.7 million (8.3%) of the adult population were 

diabetic, additional 8.2 million (3.5%) had undiagnosed diabetes and 87.3 million 

(38.2%) were pre-diabetic (Go et al. 2013). These numbers are expected to increase 

epidemically as a consequence of population aging and changes in lifestyle; primarily - 

obesity. The World Health Organization estimated that the number of diabetic patients 

will reach 300 million in 2025 (Zimmet et al. 2001). 

Diabetes is a powerful and independent risk factor for CAD (Beckman et al. 2002). 

Diabetic patients have from 2 to 4 fold increase in CAD risk, independent of other 

cardiovascular risk factors (Greenland et al. 2003; Almdal et al. 2004). Some experts 

even consider diabetes as equivalent to CAD diagnosis (Fadini et al. 2009).  
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1.3.7. Smoking 

Tobacco smoke is a major threat to public health; by 2020 smoking is expected to kill 

10 million people per year (Go et al. 2013). Among Americans aged > 18 years, 34.8 

million (21.3% of men and 16.7% of women) were active cigarette smokers (Go et al. 

2013). The ARIC study demonstrated that smoking is associated with approximately 

50% increase in the progression of atherosclerosis based on measurements of carotid 

intima-media thickness (Howard et al. 1998). The relative risk of CAD in these who 

smoke one pack of cigarettes per day is six-fold higher for men and three-fold higher for 

women compared with non-smokers (Prescott et al. 1998). The INTERHEART study 

reported that smoking accounted for 36% of population attributable risk for first MI 

(Yusuf et al. 2004). Passive cigarette exposure also increases the CAD risk by about 

30% (Barnoya and Glantz, 2005). There is a dose-response relationship between passive 

cigarette exposure and CAD (Kawachi et al. 1997; Coggins, 1998). Quitting smoking is 

associated with 36% reduced risk of total mortality (Critchley and Capewell, 2003).  

1.3.8. Physical inactivity 

Physical inactivity is a risk factor for the development of CAD and is associated with a 

higher all-cause mortality rate (Blair et al. 1989). The proportion of youth who report 

engaging in no regular physical activity is high, and this proportion increases with age 

(Go et al. 2013). Conversely, physical activity is associated with cardiovascular benefits 

- it increases HDL-cholesterol, lowers LDL-cholesterol, triglycerides, low grade 

inflammation and blood pressure, improves fasting and postprandial glucose-insulin 

homeostasis, endothelial function, triggers and maintains weight loss and facilitates 

smoking cessation (Thompson et al. 2003; Bassuk and Manson, 2005; Taylor et al. 

2007). In patients with established cardiovascular disease, physical activity reduces 
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angina symptoms, benefits heart failure and lowers mortality after MI (Thompson et al. 

2003). 

1.3.9. Poor diet 

Dietary habits are recognized associates of cardiovascular risk. Prospective studies 

indicate consistent and substantial reduction in cardiovascular risk related to lower 

unsaturated fat consumption (Mozaffarian et al. 2006), consumption of whole grains, 

legumes and cereal fiber and consumption of fruits and vegetables (Dauchet et al. 

2006). In one of secondary prevention trials, advice to consume a Mediterranean type 

diet reduced risk of MI or cardiac death by up to 72% over a 4-year follow-up (De 

Lorgeril et al. 1999). 

1.3.10. Fibrinogen 

Fibrinogen has been identified as a major independent risk factor for CVD (Kannel et 

al. 1987). This glycoprotein regulates cell adhesion, chemotaxis and proliferation, 

influences platelet aggregation and blood viscosity, interacts with plasminogen binding 

and in combination with thrombin, mediates the final step of coagulation and the 

response to vascular injury (Rabbani and Loscalzo, 1994; Smith et al. 1990). There is 

also evidence suggesting an association among fibrinogen and CAD (Andreotti et al. 

1999). The ARIC study showed that in over 14,000 middle-aged adults, elevated levels 

of fibrinogen were associated with 1.5 fold increased risk of developing MI or coronary 

death over 5 years of follow-up (Folsom et al. 1997). 

1.3.11. Lipoprotein(a) 

Lipoprotein(a) is a recognised proatherogenic factor and contributor to CAD. 

Asymptomatic individuals with Lp(a) levels in the top tertile of the distribution had 1.7-
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fold higher risk of CAD compared to those with Lp(a) in the lower tertile (Danesh et al. 

2000). 

1.3.12. Homocysteine 

Homocysteine is a sulfur-containing amino-acid formed as a by-product of the 

metabolism of the essential amino acid methionine (Mangoni and Jackson, 2002). 

Epidemiological studies suggested that elevated homocysteine levels were associated 

with a moderately increased risk of CAD (Boushey et al. 1995). 

1.3.13. Apolipoproteins 

ApoB and ApoA1 are recognized surrogates of non-HDL cholesterol (LDL-C, VLDL-

C, IDL-C) and HDL-cholesterol, respectively. Data from INTERHEART project 

suggest that the ratio of APO-B/APOA-I is in fact the strongest determinant of MI risk 

in population (55% of MI risk is explained by this ratio), followed by blood pressure 

and smoking (Yusuf et al. 2004). 
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1.4. Familial history of CAD 

Familial history has been characterised as a “free well-proven personalized genomic 

tool that captures many of the genes and environmental interactions and can serve as the 

cornerstone for individualized disease prevention” (Guttmacher et al. 2004). It has been 

used as a surrogate of genetic factors both in clinic and research projects. 

Familial clustering of CAD has been noted for more than 100 years. For example, in 

1910 a family in which three generations were affected with angina was described 

(Evans et al. 2003). In 1966 the incidence risk of first-degree relatives of 121 male and 

96 female cases with premature CAD was estimated. Male relatives of male cases had a 

5-fold increased incidence, whereas male relatives of female cases had a 7-fold 

increased incidence of risk (Slack and Evans, 1966). Extensive studies in Finland in the 

1970s revealed 3.5 fold-increased risk of CAD in brothers of male CAD cases and a 2-

fold increased risk in sisters (Rissanen and Nikkila, 1977; Rissanen, 1979). A study in 

the early 1980s assessing 19 risk factors associated with premature CAD had shown that 

the most significant risk contributor was familial history (Nora et al. 1980). Since then, 

consistent evidence from various epidemiological studies indicates that familial history 

is an important independent cardiovascular risk factor (Kullo and Ding, 2007; Scheuner, 

2003). A positive familial history of premature CAD is usually defined as any male first 

degree relative with proven CAD younger than 55 years or female younger than 65 

years (British Cardiac Society et al. 2005). 

Adoptee studies have also suggested that disease risk can not only explained by shared 

environmental influences. The landmark Danish study of 960 families with adopted 

children revealed that the death of a biologic parent before the age of 50 years from a 

cardiovascular cause was associated with a 4.5-fold increase in mortality for the 
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offspring, whereas the death of an adoptive parent did not significantly increase the risk 

(Sorensen et al. 1988).  

In the Framingham Offspring study, a familial history of CAD was associated with a 2.4 

and 2.2 fold increase in risk of CAD in men and women respectively (Genest et al. 

1992). In the InterHeart study, a familial history of CAD was associated with 1.5 and 

1.45 fold increase in risk of CAD after correction of other risk factors in men and 

women, respectively (Yusuf et al. 2004). A family history of MI in the Prospective 

Cardiovascular Munster (PROCAM) study indicated it was an independent risk factor 

for CAD (Cooper et al. 2005). Relatives and descendants of a patient with premature 

MI carry a 50-80% increase in relative risk to develop a heart attack as well (Myers et 

al. 1990). Several other epidemiological studies have consistently shown a 2 to 3-fold 

increase in risk for CAD in first degree relatives when compared to the general 

population (Arnett et al. 2007; Kullo and Ding, 2007; Mayer et al. 2007).  

Such predictive power of a positive familial history is the hallmark of a genetic 

component in the etiology of CAD.  

 

1.5. Heritability estimates of CAD 

Heritability of a trait refers to the proportion of observed phenotypic differences within 

a population that is due to genetic differences among the individuals in that population 

(Vissher et al. 2008). More precisely narrow-sense heritability refers to differences 

among the additive genetic values and the broad-sense heritability refers to genetic 

differences as differences between genotypic values (Tenesa and Haley, 2013). The 

narrow-sense heritability reflects the degree to which the genes transmitted from the 
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parents determine the phenotype of their children and is most useful in predicting 

disease risk from parental family history (Tenesa and Haley, 2013). 

Twin studies represent a useful recourse for estimating the extent to which genetic and 

environmental variations determine the phenotypic variation of a trait (Boomsma et al. 

2002). Twins share intrauterine environment and age: monozygotic (MZ) twins share 

100% of their genes and dizygotic (DZ) twins share on average, 50% of their 

segregating genes.  

Seminal data from more than 21,000 Swedish twins have revealed that among males, 

the relative hazard of death from CAD was 8.1 for MZ and 3.8 for DZ when one’s twin 

died of CAD before the age of 55 years. Among females the relative hazard of death 

was calculated at 15.0 for MZ and 2.6 for DZ twins when one’s suffered a fatal 

coronary event before the age of 65 years (Marenberg et al. 1994). These findings 

clearly highlighted the presence of a genetic component in CAD.  

The authors validated their findings in a 36 years follow-up of the same cohort, showing 

that CAD mortality is also heritable, with values ranging from 38% in females to 57% 

in males (Zdravkovic et al. 2002). A subsequent study of 15,910 Danish twins estimated 

CAD heritability at 53% both in males and females (Wienkr et al. 2001).  

Twin studies have yielded evidence for the heritability of many CAD risk factors (Table 

1.3). The estimated heritability of these cardiovascular risk factors varies from ~45% to 

~90% depending on the phenotype and study characteristics. For example, plasma lipid 

concentrations appear to have a particularly strong genetic component (Kathiresan et al. 

2007). Type 2 diabetes (Barroso, 2005) and blood pressure (Havlik et al. 1979; Levy et 

al. 2000) also have substantial heritable component.  
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Table 1.3: Narrow-sense heritability estimates of CAD risk factors 
Risk factor Heritability Estimates Reference 

HDL-cholesterol 69 % Snieder et al. 1997 
LDL-cholesterol 69-77 % Snieder et al. 1997 

Triglycerides 51-69 % Snieder et al. 1997 
Total cholesterol 66-77 % Snieder et al. 1997 

Apolipoprotein AI 46/55 % Snieder et al. 1997 
Apolipoprotein B 65/59 % Snieder et al. 1997 

Lipoprotein(a) 89/89 % Snieder et al. 1997 
SBP 53 % Evans et al. 2003 
DBP 48 % Evans et al. 2003 

Body mass index 83/74 % Lajunen et al. 2009 
Smoking (cigarettes/day) 86% Koopmans et al. 1999 

Homocysteine 57% Siva et al. 2007 
Diabetes 75% Kaprio et al. 1992 

 

Heritability estimates differ among populations due to differences in both genetic and 

environmental factors. 

 

1.6. Examples of Mendelian disorders associated with CAD  

Several examples of monogenic forms of cardiovascular and metabolic disorders 

associated with increased susceptibility to premature CAD are listed in Table 1.4. These 

diseases are caused by single rare, highly penetrant mutant alleles with large effect on 

the phenotype. A majority of these mutations map to genes within pathways of lipid 

metabolism. Genetically, these are usually non-synonymous, non-sense, frameshift or 

splice variant mutations that lead to defects of structure and or function of the encoded 

protein.  

The classical example of monogenic form leading to premature CAD is familial 

hypercholesterolemia (FH), an autosomal dominant disorder caused by mutations in the 

LDL receptor gene (LDLR) (Brown and Goldstein, 1986), proprotein convertase 
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subtilisin/kexin type 9 gene (PCSK9) (Abifadel et al. 2003) or apolipoprotein B gene 

(ApoB) (Soria et al. 1989). FH manifests as very high plasma concentrations of LDL-C, 

clustering with familial history of CAD, premature onset of CAD and commonly - 

cutaneous stigmata of skin lipid deposition (xanthomata and xanthelasmata 

palpebrarum) (Marks et al. 2003).  

The most common type of FH is caused by mutations in LDLR. Its heterozygotic type 

affects roughly 1 in 500 individuals globally (Roy et al. 2009). More than 1,000 LDLR 

mutations from FH patients have been identified so far and these mutations have been 

identified in all exons of LDLR and lead to defects in functional domains of the encoded 

protein (Leigh et al. 2008). The molecular nature of the genetic defect implicates 

severity of cardiovascular involvement in FH. Receptor-negative mutations (inability to 

produce mature LDL-receptors) are associated with an earlier onset and more severe 

disease phenotype than when mature but abnormal receptors are produced (receptor-

defective mutations) (Naoumova et al. 2004). FH heterozygotes, with one mutant copy 

of the LDLR gene, typically have plasma cholesterol levels ranging from 300 to 550 

mg/dL, whereas FH homozygotes, with both copies mutant, typically have cholesterol 

levels ranging from 550 to greater than 1000 mg/dL (Jansen et al. 2004).  

ApoB constitutes a key glycoprotein playing a role in the lipoprotein metabolism. 

Mutations in ApoB gene account for 5% of cases with autosomal dominant monogenic 

hypercholesterolaemia (Burnett and Hooper, 2008). Several ApoB mutations causing 

familial defective apoB100 (FDB) have been identified (Roy et al. 2009). The most 

common mutation in ApoB substitutes glutamine for argirine at amino acid 3500 

(Arg3500Gln), impairing the ability of LDL-C particles to bind to the LDL receptor 

(Tarugi et al. 2007). Normally, the LDLR-binding region of apoB (site B) is available to 



44 

 

interact with LDLR; the interaction between arginine R3500 and tryptophan W3469 

being particularly important. In FDB, mutations alter the confirmation on the C-terminal 

region of apoB, leading to occlusion of site B (Tarugi et al. 2007). ApoB mutations lead 

to defect in binding of LDL-C particles to an LDL receptor resulting in impaired plasma 

clearance and subsequent elevation of circulating concentrations of LDL-C (Burnett and 

Hooper, 2008). 

Mutations in PCSK9 account for 2% of cases with autosomal dominant monogenic 

hypercholesteroleamia (Burnett and Hooper, 2008; Soutar and Naoumovaa, 2007). 

PCSK9 encodes a serine protease that destroys LDLR receptors in liver and thereby 

controls the level of LDL in plasma (Abifadel et al. 2003). “Gain of function” mutations 

increase the intra-cellular degradation of the LDLR leading to a reduced number of 

LDLRs on the surface of hepatocytes (Tarugi et al. 2007). This, results in decreased 

LDL-C internalization and subsequently, increased LDL-C plasma levels. 

Autosomal recessive hypercholesterolaemia is caused by homozygous mutations of low 

density lipoprotein receptor adaptor protein 1 gene (LDLRAP1) (Table 1.4) (Garcia et 

al. 2001). Sitosteroleamia is another example of very rare disorder in which plant sterols 

and cholesterol levels are dramatically increased secondary to mutations in either of the 

sterol transporters encoded by ATP-Binding Cassette Sub-Family G Member 5 

(ABCG5) or ATP-Binding Cassette Sub-Family G Member 8 (ABCG8) genes (Berge et 

al. 2001). Both lead to premature CAD.  

Although rare deleterious mutations such as those discussed above increase enormously 

the individual risk of developing CAD in mutation carriers, their population effect is 

low from an epidemiological perspective, (Cambien and Tiret, 2007). However, the 

unraveling of the genetic component of these single-gene diseases was critical to 
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understanding of the mechanisms underlying hypercholesterolaemia and its role in CAD 

(Antonarakis and Beckmann, 2006). 
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Table 1.4: Examples of monogenic disorders associated with premature CAD  

Lipid Disease Gene Mode of 
inheritance 

Heterozygous mutant 
frequency 

Homozygous mutant 
frequency Molecular etiology 

Familial 
Hypercholesterolaemia  

type 3 

 

PCSK9 

1p32 

Autosomal 
dominant 

<1:2500 - 
Increased LDL-C due to 

heightened degradation of 
LDLR in the liver 

Familial ligand defective 

APOB-100 

 

APOB 

2p23-24 

Autosomal 
dominant 

1:1000 1x4x10-6 
Increased LDL-C due to 

decreased affinity of APOB 
to LDLR 

Autosomal recessive 
hypercholesterolaemia 

 

LDLRAP1 

1p36 

Autosomal 
recessive 

- <1x5x10-6 
Increased LDL levels due 
to a defect of intracellular 

processing of LDL-R 

Sitosterolaemia 
ABCG5 or 
ABCG8 

Autosomal 
recessive 

- 

ABCG5 – very rare  

ABCG8 - 1:50 000 

 

Increase in phytosterols 
(sitosterol, campesterol, 

stigmasterol, avenosterol) 

 

LDLR – low density lipoprotein receptor, PCSK9 – proprotein convertase subtilisin/kexin type 9 gene, APOB – apolipoprotein B100, LDLRAP1  – low 
density lipoprotein receptor adaptor protein 1, ABCG5 - ATP-Binding Cassette Sub-Family G Member 5, ABCG8 - ATP-Binding Cassette Sub-Family G 
Member 8 
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Common complex human diseases such as CAD tend to cluster in families, but they do 

not exhibit the characteristic Mendelian segregation of monogenic disorders. Unlike 

familial hypercholesterolaemia and other monogenic disorders, CAD is a product of 

interaction between many single alleles mapping to different regulatory pathways 

together interacting with each other as well as environmental factors (such as smoking, 

diet, physical activity, etc). As a result, many questions about their genetic architecture 

have been raised including the number of genetic variants acting synergistically, their 

location in the human genome, their nature, function, characteristics (frequencies, effect 

sizes) and the model of interactions between them and environmental factors.  

 

1.7. Genetic approaches to studying CAD 

Several main genetic strategies have been developed to address some of the questions 

and investigate the genetic architecture of complex diseases over the last decade. 

1.7.1. Candidate gene studies 

Initial efforts to elucidate the genetic component of CAD were based on selection of 

gene(s) that mapped to pathways known to play a role in the disease process. To this 

end, many family and population-based studies examined candidate genes encoding 

proteins known to participate in the pathogenesis of atherosclerosis (such as lipoprotein 

metabolism) to find variants underlying the increased risk of CAD (Kullo and Cooper, 

2010; Mayer et al. 2007).  

More than 5,000 candidate gene-based studies on CAD have been published so far. 

Only few of them have successfully identified and replicated associations between a 

candidate gene and CAD (Schunkert et al. 2010). These studies implicated PCSK9 and 
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Apo E (Kathiresan et al. 2008a), LDLR (Linsel-Nitschke et al. 2008), Apo B (Willer et 

al. 2008) and LPA (Clarke et al. 2009) genes.  

However, a majority of candidate studies failed to identify/replicate the association 

between a candidate gene(s) and CAD. This was related to inherent limitations of the 

selected strategy. Many of these studies failed primarily due to insufficient power 

(Charchar et al. 2008; Hardy and Singleton, 2009).  

One explanation for the lack of success of this strategy to dissect the genetic 

background of CAD may be related to an incorrect a priori assumption that 

predisposition to CAD is driven by genes that have an obvious physiological 

relationship to the common CAD (Charchar et al. 2008). This unproductive effort 

highlighted our insufficient understanding of biology of CAD.  

In addition, candidate gene studies usually focus on the exons, introns and immediate 

flanking regions of the genes of interest. However, these loci represent only a small 

fraction of the genome, whereas the intergenic regions contain many DNA elements that 

regulate gene expression.  

Also, most of candidate gene studies were undertaken before the era of HapMap and 

tagging approaches and as a result reflected insufficient coverage for genetic variants in 

a gene. 

1.7.2. Linkage studies 

An intensive exploration of the molecular mechanisms behind the inherited 

predisposition of CAD was also carried out with genome-wide linkage scans, defined as 

searches for chromosomal regions linked to a phenotype of interest (QTL - Quantitative 

trait loci). Linkage studies require enrollment of families with individuals affected by 
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the disease or phenotype of interest over generations (Cambien and Tiret, 2007; Laird 

and Lange, 2006; Seo and Goldschmidt-Clermont, 2008) and are based on investigation 

of the co-segregation of genetic markers, panels of microsatellites or large set of SNPs 

regularly spaced throughout the genome. This strategy examines if specific alleles are 

co-transmitted with the disease at a higher frequency than expected by chance (Cambien 

and Tiret, 2007). The evidence of linkage is usually expressed as a “log of the odds” or 

“LOD” score. This is the 10logarithm of the odds ratio for the probability of the results 

of linkage divided by the probability of the data in the absence of linkage. An odds ratio 

of 1,000 equivalent to a LOD score of 3 is considered strong evidence for linkage a 

chromosomal region to a trait of interest. 

Several genome-wide linkage analyses reported a number of signals suggestive of 

linkage to CAD/MI in the human genome (Table 1.5).  

The largest study, the British Heart Foundation Family Heart Study (BHF-FHS, 

included 4,175 CAD subjects from 1,933 families recruited throughout the UK (Samani 

et al. 2005). In the genome-wide analysis, not a single linkage peak exceeded LOD 

score>3 for any of the cardiovascular end points examined. For CAD, the highest LOD 

score was recorded at 2.70 on chromosome 2. The genome-wide linkage analysis 

conducted in BHF-FHS illustrates in general a majority of outcomes of this strategy in 

search of QTLs for CAD. Indeed, few strong signals of linkage to CAD were identified 

by microsatellite-based genome-wide analysis and very few of them exceeded the 

conservative threshold of significance suggested (LOD>4.1). In addition, consistency in 

location of identified QTLs was very poor across different studies (Table 1.5). The 

identified QTLs usually span millions of base pairs and contain from few to hundreds of 

candidate genes, making further dissection of their role in CAD very difficult. In fact, 
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many attempts to identify the drivers of the identified linkage signals were unsuccessful. 

In general, linkage analysis was extremely useful to identify loci underlying monogenic 

forms of cardiovascular disease (Wang et al. 2003).  

For example, a linkage study in a pedigree with clustering of CAD over three 

generations narrowed a linkage signal to chromosome 15q26 (Wang et al. 2003). Of 93 

genes within this chromosomal region, MEF2A gene was selected as a promising 

candidate gene based on its profile of expression in embryonic coronary vasculature. A 

21-bp deletion in MEF2A resulting in the removal of 7 amino acids from the protein 

product was detected in the affected individuals compared to the unaffected ones (Wang 

et al. 2003). However, a large follow-up study to confirm deleterious mutations in 

MEF2A in sporadic cases of MI did not find any conclusive mutations (Wang et al. 

2004).  

Genome-wide linkage scans had turned out to be more difficult and partly unsuccessful 

in identifying CAD pathophysiology.  
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Table 1.5: Linkage studies of CAD and MI 

Chromosomal locus Population (individual/families) Max LOD 
score Phenotype Candidate genes Reference 

1p34-p36 American (-/428) 11.7 MI GJA4 (Wang et al. 2004) 

2p12-q23.3 British (4175/1933) 2.7 CAD/MI IL1A, IL1B, PROC (Samani et al. 2005) 

2q21.1-q22 Finnish (526/156) 3.2 CAD -  (Pajukanta et al. 2000) 

3q13 International (1168/438) 3.5 CAD - (Hauser et al. 2004) 

3q27 Indo-Mauritians (535/99) 2.4 CAD/MI - (Francke et al. 2001) 

10q23 Indo-Mauritians (535/99) 2.1 CAD - (Francke et al. 2001) 

13q12 Icelandic (741/296) 2.5 MI ALOX5AP (Helgadottir et al. 2004) 

14q German (1406/513) 3.9 MI - (Broeckel et al. 2002) 

15q26 European-Americans (21/1) 4.2 CAD/MI MEF2A (Wang et al. 2003) 

16p13-pter Indo-Mauritian (535/99) 3.1 CAD SOCS1, ACSM3 (Francke et al. 2001) 

17p11.2-q21 Europeans(-/739) 2.9 MI - (Farrall et al. 2006) 

Xq23-q26 Finnish (526/156) 3.5 CAD AGTR2 (Pajukanta et al. 2000) 

CAD – coronary artery disease, MI – myocardial infarction, LOD – logarithm of odds of linkage, GJA4 – gap junction protein alpha 4, IL1A  – interleukin 1 
alpha, IL1B  – interleukin 1 beta, PROC – protein C, ALOX5AP  – arachidonate 5-lipoxygenase-activating protein, MEF2A  – MADS box transcription 
enhancer factor 2 polypeptide A, SOCS1- suppressor of cytokine signaling 1, ACSM3 – acyl-Coa synthetase medium-chain family member 3, AGTR2 – 
angiotensin II receptor type 2 
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1.8. The road to genome-wide association studies 

The substantial progress in genetic studies of complex diseases has been driven through 

the Human Genome Project with the sequencing and cataloguing of the 3 billion base 

pairs and ~21,000 genes of the human genome (Lander et al. 2001; McPherson et al. 

2001; International Human Genome Sequencing Consortium, 2004). Further 

characterisation of the natural genetic variation in human genome in individuals from 

four different ethnicity backgrounds and precise mapping of their linkage 

disequilibrium (LD) structure patterns through the International HapMap project (Frazer 

et al. 2007) was another important step forward to progress in this area of research. 

Knowledge of LD patterns across human chromosomes permitted to estimate the 

minimum number of SNPs needed in genotyping to capture most of the variation across 

the selected locus (“tagging strategy”). This strategy reduced dramatically the logistics 

and most importantly – the costs of genotyping and was probably a major breakthrough 

in the genetic revolution of complex disorders (Frazer et al. 2007; Hinds et al. 2005). 

The advent of high throughput genotyping technology – parallel typing of several 

hundred thousand to over a million SNPs located on arrays (“chips”) provided scientists 

with massive amount of information and had paved the way for proliferation of large-

scale genome-wide association studies (GWA studies) (McCarthy and Hirschhorn, 

2008; Hardy and Singleton, 2009). 

In contrast to linkage studies that rely on biologically related subjects, GWA studies use 

usually cases and disease-free controls to compare allele frequencies of SNPs across the 

entire genome (Wellcome Trust Case Control Consortium, 2007). Their design makes 

them suitable mainly for the discovery of common variants conferring low/moderate 

risks, in the context of the common disease-common variant hypothesis (Reich and 
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Lander, 2001). According to the hypothesis common polymorphisms (MAF>5%) have 

modest to moderate magnitude-effects and it is their collective contribution that is 

responsible for the ultimate genetic predisposition to common-chronic disease (Manolio 

et al. 2008).  

Based on this interrogation of genetic variation on a genome-wide basis, GWA studies 

are an example of “hypothesis free” approach (Altshuler and Daly, 2007). This agnostic 

basis of GWA studies offered the opportunity to overcome difficulties and obstacles 

imposed by the incomplete understanding of disease pathophysiology and gave 

scientists the opportunity to localise disease-related regions more precisely at an 

unparalleled scale.  

 

1.9. Successes of GWA studies 

Much of the excitement that GWA studies brought to the scientific community was 

based on the expectation that because these studies are hypothesis-free, and thus 

independent of the pre-existing bias of traditional biology, a comprehensive description 

of the genetic causes of complex disease would become feasible. 

In the past few years, GWA studies have offered valuable knowledge about the 

biological pathways underlying complex diseases (Frazer et al. 2009) and have 

provided valuable insights into the complexities of their genetic architecture (Hindorff 

et al. 2009). According to the NIHR GWA studies Catalog, there are ~11,500 genetic 

variants associated with >300 human phenotypes from most common diseases such as 

CAD to the most unusual such as restless leg syndrome (www.genome.gov/gwastudies). 

Many previously “unsuspected” genes and pathways were uncovered (Hirschhorn, 
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2009). Good examples of such pathways are the autophagy and interleukin-23-related 

pathways in Crohn’s disease (Lettre and Rioux, 2008) and the encoding chromatin 

proteins and hedgehog signaling pathway in human height (Weedon and Frayling, 

2008). 

One of the most valuable insights (challenge to be solved) provided by GWA studies is 

that not all of the common complex diseases are same in their genetic architecture. It 

appears that heritability of some complex disorders/phenotypes is much more driven by 

common variants than the others. For instance, common variants have been reported to 

explain approximately 40% of genetic variation in serum-transferrin levels (Benyamin 

et al. 2009), whereas approximately 50 fairly common loci account for only 6% of 

human height variation (Visscher, 2008). 

Several surprising (and the same time challenging) associations uncovered by GWA 

studies (such as 9p21.3 locus and CAD) posed unprecedented questions regarding the 

mechanistic role of genetic variation. Variants in such gene-reduced areas would have 

never been uncovered by the candidate-gene approach. The vast majority (>80%) of 

associated variants were present outside coding regions, emphasizing the importance of 

non-coding regions in the human genome (Hindorff et al. 2009). 

 

1.10. Challenges of GWA studies 

The major generic feature of a majority of discoveries made by these experiments is the 

small effect size of the individual identified variants that are of little predictive value. 

Only 3% of the examined putative risk loci showed odds ratios greater than 3 (Pawitan 

et al. 2009). The usual per-allele odds ratios of 80% of the reported associations were 
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≤1.5 (Pawitan et al. 2009) meaning that the current discoveries explain only a small 

fraction of the genetic contribution to the disease.  

Furthermore, discovered variants usually represent markers, rather than causative 

alleles. A majority of these statistically associated SNPs are just pointers of promising 

regions (a LD block), rather than the culprit functional defects (Frazer et al. 2009; 

Visscher and Montgomery, 2009). Thus, a challenge that immediately follows the 

discovery of association between a SNP and a disease is the search for the affected gene 

and the causal variant(s) at the chromosomal locus. 

Clearly, GWA studies are a starting point of a long journey aiming to elucidate and 

understand the genetic basis of complex diseases and finally translate this information 

into clinically useful insights.  

 

1.11. GWA studies and CAD 

The search for genes that affect the risk of CAD has been fruitless for many decades 

until the recent advent of GWA studies. The discovery of common risk alleles in CAD 

from GWAs studies has been a challenge, but that endeavour has yielded some 

intriguing new findings.  

In a landmark study in 2007, the Wellcome Trust Case Control Consortium (WTCCC) 

genotyped 17,000 samples for 500,000 SNPs, using a set of 3000 common controls and 

2000 case subjects from each of 7 complex diseases, including CAD (Wellcome Trust 

Case Control Consortium, 2007). Along with two additional independent scientific 

groups which undertook GWA study for CAD, they successfully reported, in parallel, 

association between common SNPs on the chromosome arm 9p.21.3 and CAD 

(Helgadottir et al. 2007; McPherson et al. 2007; Samani et al. 2007). Despite the fact 
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that each study identified a different SNP in the same 30kb region, the reported variants 

are highly correlated in European populations (r²=0.85-1.0) indicating that the same 

underlying genetic risk factor was identified (Arking and Chakravarti, 2009).  Since 

then, the association with this major locus was confirmed by additional studies 

(Schunkert et al. 2008). This finding constitutes the strongest common genetic effect on 

the CAD risk known today – the risk allele has a frequency of ~46% in individuals of 

white European ethnicity.  

No prior genetic studies had implicated this region as associated with CAD. The CAD 

associated SNPs in this region were not linked to any other traditional cardiovascular 

risk factors (such as smoking or lipids), indicating that the biological mechanism 

underlying this association signal is operating through a novel pathway. 

The excitement that this discovery brought was overshadowed by the complexity of 

connecting some of the identified genetic associations with a pathological mechanism. 

No genes are located in close proximity to the GWA studies SNPs as defined by LD, 

which is around 58kb in Europeans (Musunuru and Kathiresan, 2010). However, three 

genes called cyclin dependent kinase inhibitor 2A (CDKN2A) encoding INK4 protein 

p161NK4a, cyclin dependent kinase inhibitor 2B (CDKN2B) encoding p151NK4b, and 

ANRIL were found more than 100kb away from the SNPs associated with the risk of 

CAD/MI and they are under investigation.  

CDKN2A-2B encode for INK4 proteins which belong to a family of cell cycle 

suppressors (Samani et al. 2007). Alterations in the gene expression of these genes 

could be postulated to lead to senescence and apoptosis, both of which are processes 

involved in plaque progression and rupture.  
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ANRIL is a large antisense non-coding RNA gene. It is expressed in atheromatous 

human blood vessels (vascular endothelial cells, monocyte-derived macrophages, and 

coronary smooth muscle cells) (Broadbent et al. 2008) but its biological functions have 

not been elucidated yet. 

In the PROCARDIS (Precocious Coronary Artery Disease) study, susceptibility to CAD 

was encoded by two common haplotypes than span the 53kb region that overlaps with 

ANRIL (Broadbent et al. 2008). A recent paper using a mouse model has presented data 

suggesting that ANRIL expression is not the most likely mechanism and identified a cis-

acting element that influenced expression of CDKN2A-2B and thus cell apoptosis (Visel 

et al. 2010). 

The 9p21 chromosomal locus is clearly a disease “hot-spot”, as it has been also shown 

to be associated with risk of heart failure (Yamagishi et al. 2009), type-2 diabetes 

mellitus (Saxena et al. 2007), abdominal aortic aneurysms (Helgadottir et al. 2008), and 

stroke (Yamagishi et al. 2009). 

Since then, additional similar studies employed this genome-wide approach and 

successfully expanded the list with promising genes by confirming associations at 

various novel loci (Table 1.6). 

The first wave of several GWA studies on CAD (Helgadottir et al. 2007; McPherson et 

al. 2007; Samani et al. 2007; Erdmann et al. 2009; Tregouet et al. 2009; Kathiresan et 

al. 2009) identified overall 12 risk loci (Table 1.6). In order to achieve higher resolution 

and an unbiased view on the entire genome, sample sizes of thousands of individuals 

were studied by international consortia and shared information for subsequent meta-

analyses (Preuss et al. 2010; Coronary artery disease C4D Genetics consortium, 2011; 

Schunkert et al. 2011, Deloukas et al. 2013). Such cooperative effort ultimately led in 
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successful validation of previously reported loci and identification of additional, novel 

genetic variants with an increased susceptibility to CAD.  

The examples of successful collaborations were the CARDIoGRAM Study (Schunkert 

et al. 2011), the Coronary Artery Disease (C4D) Genetics Consortium (Coronary artery 

disease C4D Genetics consortium, 2011) the IBC 50K CAD Consortium (The IBC 50K 

CAD Consortium, 2011) and the Myocardial Infarction Genetics (MIGen) Consortium 

(Kathiresan et al. 2009). These consortia have performed meta-analyses combining the 

association signals from multiple GWA studies, thus maximizing the power. 

The recently published CARDIoGRAMplusC4D study (Deloukas et al. 2013) is the 

largest GWA study assessing the impact of common variants on CAD risk to date. The 

analysis examined 63,746 CAD cases and 130,681 controls and brought the total 

number of confirmed CAD susceptibility loci in Europeans and South Asians to 47. 

Additional study in a Chinese population mapped a novel genetic variant at 6p21 that 

increases their risk of CAD but has no effect in the Caucasian population (Wang et al. 

2011). 

In a short span of 7 years, 47 loci were linked to susceptibility to CAD indicating the 

importance of genetic predisposition for CAD. 
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Table 1.6: Loci associated with CAD and MI – discoveries of GWA studies  
 

Chromosome Published lead SNP 
or proxy 

Risk allele 
frequency OR P-value Candidate genes References 

1 
rs602633 

(tagging rs599839) 
0.77 1.12 1.47x10-25 SORT1 

Samani et al. 2007 
Schunkert et al. 2011 

1 rs11206510 0.84 1.06 1.79x10-5 PCSK9 Kathiresan et al. 2009 

1 rs17114036 0.91 1.11 5.80x10-12 PPAP2B Schunkert et al. 2011 

1 rs17464857 0.87 1.05 6.06x10-5 MIA3 
Samani et al. 2007 

Schunkert et al. 2011 

1 rs4845625 0.47 1.04 3.64x10-10 IL6R Deloukas et al. 2013 

2 rs6725887 0.11 1.12 1.16x10-15 WDR12 
Schunkert et al. 2011 
Kathiresan et al. 2009 

2 rs515135 0.83 1.08 2.56x10-10 APOB Deloukas et al. 2013 

2 rs2252641 0.46 1.04 5.30x10-8 ZEB2-ACO74093.1 Deloukas et al. 2013 

2 rs1561198 0.45 1.05 1.22x10-10 VAMP5-VAMP8-
GGCX 

Deloukas et al. 2013 

2 rs6544713 0.30 1.06 2.12x10-9 ABCG5-ABCG8 
IBC 50K CAD, 2011 
Deloukas et al. 2013 

3 rs9818870 0.14 1.07 2.62x10-9 MRAS 
Erdmann et al. 2009 
Schunkert et al. 2011 

4 rs7692387 0.81 1.06 2.65x10-11 GUCY1A3 Deloukas et al. 2013 

4 rs1878406 0.15 1.06 2.54x10-8 EDNRA Deloukas et al. 2013 

5 rs273909 0.14 1.09 9.62x10-10 SLC22A4-SLC22A5 Deloukas et al. 2013 
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Chromosome Published lead SNP 
or proxy 

Risk allele 
frequency OR P-value Candidate genes References 

6 rs12190287 0.59 1.07 4.94x10-13 TCF21 Schunkert et al. 2011 

6 rs2048327 0.35 1.06 6.86x10-11 SLC22A3-LPAL2-LPA 
Tregouet et al. 2009 
Schunkert et al. 2011 

6 
rs12205331 

(tagging rs17609940) 
0.81 1.04 4.18x10-5 ANKS1A Schunkert et al. 2011 

6 
rs9369640 

(tagging rs12526453) 
0.65 1.09 7.53x10-22 PHACTR1 

Kathiresan et al. 2009 
Schunkert et al. 2011 

6 rs10947789 0.76 1.06 9.81x10-9 KCNK5 Deloukas et al. 2013 

6 rs4252120 0.73 1.06 4.88x10-10 PLG Deloukas et al. 2013 

7 rs11556924 0.65 1.09 6.74x10-17 ZC3HC1 Schunkert et al. 2011 

7 rs12539895 0.19 1.08 5.33x10-4 7q22 Deloukas et al. 2013 

7 rs2023938 0.10 1.07 4.94x10-8 HDAC9 Deloukas et al. 2013 

8 rs264 0.86 1.05 2.88x10-9 LPL Deloukas et al. 2013 

8 rs2954029 0.55 1.04 4.75x10-9 TRIB1 
IBC 50K CAD, 2011 
Deloukas et al. 2013 

9 rs1333049 0.47 1.23 1.39x10-52 CDKN2BAS1 
Samani et al. 2007 

McPherson et al. 2007 
Schunkert et al. 2011 

9 rs579459 0.21 1.07 2.66x10-8 ABO 
Reilly et al. 2011 

Schunkert et al. 2011 

10 rs124134009 0.89 1.10 6.26x10-8 CYP17A1-CNNM2-
NT5C2 

Schunkert et al. 2011 

10 rs2505083 0.42 1.06 1.35x10-11 KIAA1462 
Erdmann et al. 2009 

C4D Consortium, 2011 
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Chromosome Published lead SNP 
or proxy 

Risk allele 
frequency OR P-value Candidate genes References 

10 rs501120 0.83 1.07 1.79x10-9 CXCL12 
Samani et al. 2007 

Schunkert et al. 2011 

10 
rs2246833 

(tagging rs1412444) 
0.38 1.06 9.49x10-6 LIPA C4D Consortium, 2011 

11 rs974819 0.290 1.07 3.55x10-11 PDGFD McPherson et al. 2007 

11 rs9326246 0.10 1.09 1.51x10-7 ZNF259-APOA5-
APOA1 

Schunkert et al. 2011 

12 rs3184504 0.40 1.07 5.44x10-11 SH2B3 
Gudbjartsson et al. 2009 

Schunkert et al. 2011 

13 rs4773144 0.42 1.07 1.43x10-11 COL4A1-COL4A2 Schunkert et al. 2011 

13 rs9319428 0.32 1.05 7.32x10-11 FLT1 Deloukas et al. 2013 

14 rs2895811 0.43 1.06 4.08x10-10 HHIPL1 Schunkert et al. 2011 

15 rs7173743 0.58 1.07 6.74x10-13 ADAMTS7 
Reilly et al. 2011 

C4D Consortium, 2011 
Schunkert et al. 2011 

15 rs17514846 0.44 1.05 9.33x10-11 FURIN-FES Deloukas et al. 2013 

17 rs12936587 0.59 1.06 1.24x10-9 RAI1-PEMT-RASD1 Schunkert et al. 2011 

17 
rs15563 

(tagging rs46522) 
0.52 1.04 9.37x10-6 UBE2Z Schunkert et al. 2011 

17 
rs2281727 

(tagging rs216172) 
0.36 1.05 7.38x10-9 SMG6 Schunkert et al. 2011 

19 rs1122608 0.76 1.10 6.33x10-14 LDLR 
Kathiresan et al. 2009 
Schunkert et al. 2011 

19 rs2075650 0.14 1.11 5.86x10-11 ApoE-ApoC1 IBC 50K CAD, 2011 
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SNP – single nucleotide polymorphism, OR – odds ratio, P-value – level of statistical significance, SORT1 – sortilin 1, PCSK9 – proprotein convertase 
subtilisin/kexin type 9, PPAP2B – phosphatidic acid phosphatase type 2B, MIA3  – melanoma inhibitory activity family member 3, IL6R  – interleukin 6 
receptor, WDR12 – WD repeat domain 12, APOB – apolipoprotein B, ZEB2 – zinc finger E-box binding homeobox 2, VAMP5  – vesicle-associated 
membrane protein 5, VAMP8  – vesicle-associated membrane protein 8, GGCX – gamma-glutamyl carboxylase, ABCG5 – ATP-binding cassette, sub-family 
G member 5, ABCG8 – ATP-binding cassette, sub-family G member 8, MRAS – muscle RAS oncogene homolog, GUCY1A3 –  guanylate cyclase 1 soluble 
alpha 3, EDNRA – endothelin receptor type A, SLC22A4 – solute carrier family 22 (organic cation/ergothioneine transporter) member 4, SLC22A5 – solute 
carrier family 22 (organic cation/carnitine transporter) member 5, TCF21 – transcription factor 21, SLC22A3 – solute carrier family 22 (extraneuronal 
monoamine transporter) member 3, LPAL2  – lipoprotein Lp(a)-like 2 pseudogene, LPA  – lipoprotein Lp(a), ANKS1A – ankyrin repeat and sterile alpha 
motif domain containing 1A, PHACTR1 – phosphatase and actin regulator 1, KCNK5  – potassium channel subfamily K member 5, PLG – plasminogen, 
ZC3HC1 – zinc finger C3HC-type containing 1, HDAC9 – histone deacetylase 9, LPL  – lipoprotein lipase, TRIB1  – tribbles homolog 1, CDKN2BAS1 – 
cyclin-dependent kinase inhibitor 2A antisense RNA1, ABO – ABO blood group, CYP17A1 – cytochrome P450 family 17 subfamily A polypeptide 1, 
CNNM2 – cyclin M2, NT5C2 – 5' nucleotidase cytosolic II, CXCL12 – chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1), LIPA  – lipase A 
lysosomal acid cholesterol esterase, PDGFD – platelet derived growth factor D, ZNF259 – zinc finger protein 259, APOA5 – apolipoprotein A-V, APOA1 – 
apolipoprotein A-I, SH2B3 – SH2B adaptor protein 3, COL4A1 – collagen type IV alpha 1, COL4A2 – collagen type IV alpha 2, FLT1  – fms-related 
tyrosine kinase 1, HHIPL1  – HHIPL1 like1, ADAMTS7  – ADAM metallopeptidase with thrombospondin type 1 motif7, FURIN  – furin (paired basic amino 
acid cleaving enzyme), FES – feline sarcoma oncogene, RAI1  – retinoic acid induced 1, PEMT  – phosphatidylethanolamine N-methyltransferase, RASD1 – 
RAS dexamethasone-induced 1, UBE2Z – ubiquitin-conjugating enzyme E2Z, SMG6 – smg-6 homolog, nonsense mediated mRNA decay factor, LDLR  – 
low density lipoprotein receptor, ApoE – apolipoprotein E, ApoC1 – apolipoprotein C-I, KCNE2 – potassium voltage-gated channel Isk-related family 
member. 2 

Chromosome Published lead SNP 
or proxy 

Risk allele 
frequency OR P-value Candidate genes References 

21 rs9982601 0.13 1.13 7.67x10-17 Gene desert (KCNE2) Kathiresan et al. 2009 
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1.11. Characteristics of identified SNPs and genes in CAD 

The findings from GWA studies revealed that genetic variants associated with CAD 

were not limited to a small number of genomic loci, but instead map to many different 

regions throughout the genome. Nearly all currently identified risk alleles for CAD are 

common (MAF>5%). For instance, an individual of European descent has ~50% 

probability of carrying one risk allele and ~20% probability of carrying both risk alleles 

of rs4977574 on the chromosome 9p21.3 locus (Roberts, 2008; Schunkert et al. 2008). 

As a result, only ~30% of Europeans are free of this genetic risk factor for MI. Taking 

into consideration the large number and high frequency of so far identified risk alleles, 

it is believed that every subject in the population carries multiple genetic variants that 

increase susceptibility to CAD. 

The effect sizes for most of the identified SNPs are modest as each risk allele increases 

the probability of CAD by only 10-20%. One known exception from this rule is a fairly 

low frequency variant (approximately 3% in population of white European ethnicity) in 

LPA gene on chromosome 6q25 - it increases CAD risk by 51% (Clarke et al. 2009).  

The SNPs associated with CAD in GWA studies are not necessarily the causal ones. 

They rather mark a region on a chromosome where the driving variant(s) is/are located. 

The studies aiming to identify the causal, biologically active SNPs were primarily based 

on gene expression studies (through e-QTL like analysis) (Coronary artery disease C4D 

Genetics consortium, 2011; Wild et al. 2011). Several studies using mRNA profiling in 

tissues /cells of relevance to cardiovascular regulation identified associations between 

DNA variants within the regions implicated by GWA studies and expression of closely 

located genes in a quantitative fashion (cis-acting variants) (Kessler et al. 2013). For 

example, one study showed that sortilin 1 (SORT1), cadherin, EGF LAG seven-pass G-
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type receptor 2 (CELSR2) and proline/serine-rich coiled-coil 1 (PSRC1) genes at 1p13 

displayed decreased expression in carriers of the risk allele due to a disruption of a 

transcription factor binding site (Musunuru et al. 2010). The gene affected most in its 

expression was SORT1 encoding for sortilin. The connection of sortilin and LDL 

metabolism was proved by the finding that liver-specific overexpression of the gene in 

mice lowered LDL serum levels (Musunuru et al. 2010).  

Several SNPs associated with CAD in GWA studies are located in regions without 

known protein-coding genes. The majority of genes underneath the CAD association 

signals have not been previously implicated in the pathogenesis of CAD. 

Only few of the CAD associated genetic variants are related to one of the traditional 

cardiovascular risk factors. For 17 (36%) of the 47 reported SNPs, the adjacent gene(s) 

have been implicated in dyslipidemia (PCSK9, SORT1, ABCG5/8, LPA, TRIB1, ABO, 

APOA1-C3-A4-A5, LDLR, APOE, APOB, ANKS1A, LPL) (Kathiresan et al. 2008; 

Teslovich et al. 2010, Clarke et al. 2009; Deloukas et al. 2013) or hypertension 

(CYP17A1/ CNNM2/NT5C2, SH2B3, GUCY1A3, FURIN-FES, ZCEHC1) (Deloukas et 

al. 2013; Newton-Cheh et al. 2009; Levy et al. 2009; Ehret et al. 2011), suggesting a 

mechanistic pathway for the detected associations with CAD (Kessler et al. 2013). For 

the majority of remaining 30 SNPs the underlying biological mechanisms remain 

elusive.  

Finally, some of the chromosomal SNPs/loci associated with CAD risk are linked to 

other more distant/unrelated diseases/phenotypes. For example, rs4977574 was 

associated with hematological parameters (Soranzo et al. 2009), and abdominal and 

intracranial aneurysms (Helgadottir et al. 2008). The underlying mechanisms of this 

phenomenon, known as pleiotropy, are not clear.  
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Cumulatively, the associated risk variants explain approximately 10.6% of the additive 

genetic variance of CAD (Coronary artery disease C4D Genetics consortium, 2011; 

Deloukas et al. 2013).  

The clinical implications of this research are less apparent and the pathophysiological 

mechanisms of these discoveries may need further dissection for appropriate counseling 

of CAD/MI patients and their relatives (Kessler et al. 2013). 

 

1.12. Missing heritability of complex diseases  

With rare exceptions, the variance explained even by the replicated SNPs is small 

(usually <1% for each allele) leaving unexplained more than 90% of the heritable 

component of a disease/phenotype. This raises the question about the nature of the 

remaining genetic factors contributing to disease or what has been termed the “missing 

heritability” (Eichler et al. 2010; Maher, 2008; Manolio et al. 2009). 

A number of explanations have been proposed to account for this phenomenon 

including: (1) additional common variants of small effect, (2) low-frequency/rare 

variants, (3) structural variation such as copy number variants, (3) gene-gene and gene-

environment interactions, (4) epigenetic modifications such as methylation (Maher, 

2008; Manolio et al. 2009, Prins et al. 2012). Other parameters also influence the 

genetic component of a complex disease such as its phenotypic complexity and genetic 

heterogeneity (Kullo and Ding, 2007). 

1.12.1. Common variants 

It is believed that part of the missing heritability is likely to encompass many additional 

common variants of small to very small genetic effect - early GWA studies were 

underpowered to detect them (Yang et al. 2010). Increasing the sample size of the 
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studies is an important first step to reduce false negatives. This idea is also supported by 

the observation that meta-analyses of published GWA studies are discovering a 

substantial number of new susceptibility loci (Newton-Cheh et al. 2009; Sotoodehnia et 

al. 2010; Teslovich et al. 2010). Indeed, an extension of a GWA study for plasma lipids 

from ~20,000 to >100,000 individuals led to the identification of 95 loci (of which 59 

were novel) that, in aggregate, explain 10-12% of the total variance (representing 25-

30% of the genetic variance) of lipids (Teslovich et al. 2010). Despite that the 

associated SNPs had small effect sizes, some of the new loci contained genes of 

biological and clinical importance. 

However, the number of risk alleles increases at an exponential rate with decreasing 

relative risk (Prins et al. 2012). It is believed that these larger studies will suffer at some 

point from a plateau phenomenon in which either no additional common variants will be 

found or any common variants that will be identified will have too small effect to be of 

biological interest.   

1.13.2. Rare variants  

Evidence supports the contribution of both common and rare variants to disease risk. It 

is becoming increasingly clear that low-frequency/rare independent variants, with MAF 

less than 5%, could probably account for a large fraction of the heritability unexplained 

by common polymorphisms (Pritchard, 2001; Iyengar and Elston, 2007). This section is 

extensively explained in Chapter 3. 

1.13.3. Structural variation  

Analysis of GWA data has been mainly focused on SNPs, but there are other types of 

genetic variation widespread throughout the human genome. Structural variation, 
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including copy number variants (CNVs) (such as insertions and deletions) (Sebat et al. 

2004) and copy neutral variation (such as inversions and translocations) may explain 

some of the missing heritability of complex diseases (Manolio et al. 2009). Variation 

due to CNVs arises from a combination of rare and common alleles. CNVs may 

contribute to risk of common diseases i.e. obesity (Bochukova et al. 2010). Earlier 

studies have linked CAD risk with low kringle IV type 2 copy number repeats at the 

SLC2A-LPAL2-LPA locus (Kraft et al. 1996) and high number of CA repeats at the 

NOS3 locus (Stangl et al. 2000). However, GWA studies have been unsuccessful in 

detecting CNV effects on CAD. Despite the good coverage of CNVs on commercial 

genotyping platforms, efforts that had been undertaken with aim to examine their effects 

on CAD and MI showed no significant association (Kathiresan et al. 2009; Craddock et 

al. 2010). As a result, CNVs seem unlikely to account for a substantial proportion of 

CAD missing heritability (Craddock et al. 2010). 

1.13.4. Gene-gene and genotype-genotype and gene-environment interactions  

Many of genes identified by GWA studies cluster together in pathways, co-expression 

networks and protein-protein interaction networks (Lage et al. 2007). Formal 

examination of gene-gene interactions or genotype-genotype interactions (epistasis) 

could potentially explain some of missing heritability (Cordell, 2009; Zuk et al. 2012).  

Up to date the total heritability estimate, is based on the assumption that there are no 

interactions among the alleles and the effects are additive. Initial efforts to examine 

gene-gene interactions have been completed with limited success. The detection of 

epistatic effects statistically remains challenging as it is seriously disadvantaged by 

statistical corrections due to the large number of multiple tests. For example, to fully 
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investigate pairwise interactions in a GWA study of 500,000 SNPs over 100 billion tests 

would have to be performed (Hosking et al. 2011).  

1.13.5. Epigenetics 

Epigenetic effects refer to all heritable gene expression alterations and may be caused 

through methylation of CpG islands or through methylation, acetylation, 

phosphorylation, or other modifications of histone proteins (Baccarelli et al. 2010; Prins 

et al. 2012). Epigenetic mechanisms are essential and reversible regulators of gene 

transcription in complex organisms and a driving force of development, evolutionary 

adaptation and complex diseases (Feinberg et al. 2010). 

Differential global DNA methylation levels have been shown in global leukocytes in 

CAD patients when compared to controls. However, there are some inconsistencies 

regarding the direction of the effect due to the limited resolution of the global 

methylation measures (Baccarelli et al. 2010; Castro et al. 2003; Sharma et al. 2008). 

It is possible that epigenetic modifications contribute to inter-individual variability in 

expression of complex phenotypes and in part account for the missing heritability 

(Furrow et al. 2011). 

1.12.6. Un-explored regions of the human genome 

There are several regions across the human genome that have been neglected in GWA 

studies. Examples of these un-explored regions are the X and Y chromosomes, the 

pseudoautosomal regions (PARs) located at the tips of XY chromosomes, and runs of 

homozygosity (ROHs) that are abundant in autosomes. All of these offer additional 

avenues to discover genetic risk loci and explaining a portion of the missing heritability 

for complex phenotypes such as CAD.  
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Due to the sexual dimorphism of CAD and most of its risk factors (Charhar et al. 2003) 

some attention has been already given on the role of Y chromosome with blood pressure 

(Charchar et al. 2002) and cholesterol levels (Charchar et al. 2004). An exploration of 

the role of the Y chromosome in CAD that was completed by our research group 

reported a 50% increase in CAD risk in a subgroup of men carrying haplogroup I 

compared to all the others (Charchar et al. 2012; Bloomer et al. 2013). The contribution 

of X chromosome and PARs has not been unraveled yet.  

The role of ROHs has been examined in several complex phenotypes, and analysis of 

genome-wide homozygosity showed a promise towards dissecting the recessive allelic 

architecture of complex phenotype (Lencz et al. 2007; Nalls et al. 2009; Keller et al. 

2012). 

 

1.13. Hypothesis 

Un-explored portions/variants of human genome may harbor alleles/genes/loci 

associated with susceptibility to CAD. 
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CHAPTER 2 
RUNS OF HOMOZYGOSITY AND 

PREDISPOSITION TO  
CORONARY ARTERY DISEASE 
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2.1. Introduction 

2.1.1. Historical perspective on recessive inheritance  

In 1902, Archibald Garrod reported that certain rare human phenotypes/disorders, such 

as albinism and alkaptonuria, were more frequent among offspring of consanguineous 

unions (Garrod, 2002). He attributed that to the fact that relatives have increased 

probability of possessing two copies of an ancestral allele that is mutated and thus may 

unmask its pathogenic effect recessively (Khoury et al. 1987).  

Generally, inbred individuals tend to have higher rates of congenital disorders and lower 

survival rates and fertility. This phenomenon is called “inbreeding depression” 

(Charlesworth and Willis, 2009; Keller et al. 2011). The magnitude of this effect is 

linked to the strength of directional selection on the trait (DeRose and Roff, 1999). 

Fitness traits such as survival, reproduction and disease resistance are more affected by 

inbreeding than traits under weaker directional selection (DeRose and Roff, 1999).  

Several studies also suggested inbreeding effects on human complex traits such as 

cancer (Lebel and Gallagher, 1989), hypertension (Rudan et al. 2003b) and osteoporosis 

(Rudan et al. 2004). 

Two main theories have been put forward to explain inbreeding depression 

(Charlesworth and Charlesworth, 1999; Charlesworth and Willis, 2009): 

The “partial-dominance” hypothesis concentrates on the role of homozygosity of rare 

recessive/partially recessive deleterious mutations (Charlesworth and Willis, 2009). A 

number of deleterious mutations constantly increase in inbred populations and purifying 

selection rapidly eliminates a majority of additive and dominant ones. However, a 

segregating pool of deleterious recessive and partially recessive mutations, called 



72 

 

“mutational load” is retained because selection against recessive mutations is inefficient 

as they have not reached high enough frequencies to start appearing in homozygotes.  

The “overdominance” hypothesis postulates that inbreeding depression is caused by a 

reduction in heterozygosity of common alleles maintained at equilibrium at genomic 

regions under a heterozygote advantage, so called “segregation load” (Charlesworth and 

Willis, 2009). 

Inbreeding depression is a manifestation of increased levels of homozygosity. However, 

the role of homozygosity is a subject of interest not only for Mendelian genetics but also 

complex genetics and structural and functional genomics. Regions of homozygosity in 

the human genome represent “re-union” of human pieces from common ancestors in 

their descendants and create a unique opportunity to better understand the consequences 

of recessive inheritance. This may be particularly relevant to complex polygenic traits 

as the variants segregating under additive mode of inheritance failed to explain the 

major component of heritability in the recent GWA studies (Manolio et al. 2009). 

Indeed, one possible explanation for the remainder of missing heritability in complex 

diseases are highly penetrant recessive alleles missed in GWA studies. Homozygosity 

mapping is a strategy with the potential to uncover such rare variants hidden within long 

stretches of homozygous SNPs (McQuillan et al. 2008, Ku et al. 2010). 
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2.1.2. What is homozygosity and what it represents? 

Homozygosity (autozygosity) arises from identical alleles present on both homologous 

chromosomes. Runs of homozygosity (ROHs) define long segments of uninterrupted 

sequences of homozygous SNPs on both homologous chromosomes.  

Two identical segments of DNA can reflect a common origin and be identical by 

descent (IBD) (McQuillan et al. 2008; Browning and Browning, 2012) or can be 

introduced to the genetic pool of a population independently and therefore be identical 

by state (IBS). The distinction between IBD and IBS is important; IBS ROHs are less 

likely to contain rare, recessive deleterious mutations in their homozygous form. 

To date, a range of different terminologies have been used to describe ROHs, such as 

“extended tracts of homozygosity” (Gibson et al. 2006), “long contiguous stretches of 

homozygosity” (Li et al. 2006), “runs of homozygosity” (Nothnagel et al. 2010; 

McQuillan et al. 2008), and “autozygosity regions” (Nalls et al. 2009b). 

 

2.1.3. Mechanisms that generate long homozygous segments 

There are three recognised mechanisms leading to ROHs in the human genome: 

A. Parental consanguinity 

Consanguinity is estimated to be practised by 10% of the world’s population (Bittles 

and Black, 2010). The most common form of consanguineous unions involves 3rd 

degree relatives (first cousins), which is common in the Middle East, North and Sub-

Saharan Africa, Indian Subcontinent and Brazil (Khlat and Khoury, 1991). 
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This is the most common and well-established mechanism leading to very long ROHs 

(usually several Mb) - the offspring inherit chromosomal segments that are IBD from 

each parent (Figure 2.1.1) (McQuillan et al. 2008; Pemberton et al. 2012). Published 

data have shown that the number of ROHs of several Mb increases markedly in the 

offspring of consanguineous marriages (Li et al. 2006; Woods et al. 2006) with up to 

6% of homozygosity anticipated in the genome of first cousin marriages (Broman and 

Weber, 1999). The number and size of ROHs in offspring of consanguineous unions 

depends on the degree of parental relatedness (Sund et al. 2013). 

Figure 2.1.1: Schematic presentation of homozygosity by descent. Filled black symbol 
defines an individual with an autosomal recessive disease whose parents are consanguineous. A 
mutation has segregated to the child from both the father’s and mother’s line, rendering it 
homozygous for the mutation. [Taken from: Hildebrandt et al. 2009] 
 

 

 

B. Cytogenetic abnormalities 

Uniparental isodisomy can also result in homozygosity. The offspring inherit two 

identical copies of a homologous chromosomal segment from only one parent and as a 

result no heterozygosity would be observed in that particular homologous chromosomal 

segment (Ting et al. 2007). However, the likelihood that a considerable fraction of 
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ROHs will be accounted for by uniparental isodisomies is low. Indeed, these are rare 

genetic abnormalities leading to rare genomic disorders (Liehr, 2010). The most 

common examples of these disorders are Prader-Willi syndrome (maternally inherited 

genetic defect in 25% of patients – maps to chromosome 15) (Gurrieri and Accadia, 

2009), Angelman syndrome (paternally inherited genetic defect in 2-3% of patients - 

maps to chromosome 15) (Van Buggenhout and Fryns, 2009), Silver-Russell syndrome 

(5% of patients inherit a genetic defect on chromosome 7 from their mothers) (Abu-

Amero et al. 2008). Typically, the type of uniparental disomies in these syndromes is 

either whole chromosome or segmental isodisomy or a combination of segmental 

heterodisomy and isodisomy caused by meiotic recombination events. The segments are 

typically very large, exceeding well over 10Mb (Bruce et al. 2005; Altug-Teber et al. 

2005).  

C. Long haplotypes shared on both chromosomes of an individual 

The presence of common extended haplotypes that happened to be shared on both 

homologous chromosomes is a recognised mechanism of ROHs in the genomes of 

outbred populations (Ku et al. 2011). Data demonstrating the presence of ROHs in 

regions with extensive LD and low recombination rates also support this hypothesis 

(Gibson et al. 2006; Curtis et al. 2008). Numerous long and frequent ROHs were found 

to be indicative of positive selection pressure (Enciso-Mora et al. 2010; Hosking et al. 

2010).  
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Figure 2.1.2: Long haplotypes and ROHs. An ancient chromosome (in red) carries a mutated 
allele A. The red chromosome pairs with the blue chromosome and over the course of many 
generations and recombination events this leads to various haplotypes. There are individuals 
carrying the same haplotypes. Two individuals marked with a yellow circle carry a segment of 
the red chromosome carrying the haplotype with the risk allele A. As a result, their offspring 
may inherit this haplotype on both parental chromosomes (with the mutated allele A). The 
chromosomal regions surrounding the homozygous mutation will not have been broken by 
crossing overs and thus SNP markers present in these segments will also be homozygous by 
descent. These runs may potentially harbour functional relatively rare variants that could exert 
their pathological effects in the homozygous recessive state. [Taken from: 
http://hapmap.ncbi.nlm.nih.gov/originhaplotype.html.en ]  
 

 

 

2.1.4. Human population structure and genome homozygosity 

Population history and cultural factors can affect levels of homozygosity in individual 

genomes. There are populations in which a historical bottleneck (small population size) 

or geographic isolation (island) resulted in elevated levels of background relatedness (Li 

et al. 2006; Jakkula et al. 2008; McQuillan et al. 2008; Gross et al. 2011; Humphreys et 

al. 2011). For example, in the Republic of Croatia, there are 15 Adriatic Sea islands 

with just >1,000 inhabitants. Some of the villages on these islands have been genetically 

isolated for centuries from other villages and the outside world and as a result they show 

increased levels of homozygosity (Rudan et al. 2006). 

Familial traditions that promote consanguineous marriage or endogamy can lead in high 

inbreeding levels and therefore increased levels of homozygosity in human genome, 
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even when the overall size is large (Li et al. 2006; Woods et al. 2006; Hunter-Zinck et 

al. 2010). Close-kin marriage continues to be preferential in many major populations 

such as sub-Saharan Africa, and in populous Asian countries including Saudi Arabia 

Pakistan and India (Bittles, 2002; Bittles, 2008; Bittles and Black, 2010). Even today 

10.4% of the 6.7 billion global population are related as second cousins or closer 

(Bittles and Black, 2010).  

In those populations evidence has been reported for several effects, including an 

increased risk of monogenic disorders (Bittles, 2003; Khlat and Khoury, 1991; Modell 

and Darr, 2002), an increased risk of complex diseases and disease traits such as blood 

pressure (Rudan et al. 2003; Campbell et al. 2007) and LDL-cholesterol (Campbell et 

al. 2007).  

Prior to the 19th century, most of the human populations lived and reproduced in small 

societies with limited mate choice. Over the last 200 years, dramatic changes occurred 

in the demographic structure of the world’s population. Some of the processes involved, 

on both regional and global level, were increase in the population size, outbreeding, 

gene flow and admixture (Rudan et al. 2006). 

The world’s total population size expanded from 1 to 6.2 billion, and the percentage of 

the global population living in cities has increased from 2% to ~50% (Bittles, 2008; 

Campbell et al. 2009). This unprecedented increase in the population size happened as a 

result of several measures (vaccination, antibiotics, treatment of infections, improved 

nutrition) to reduce childhood mortality. These actions led to reduced selection in 

childhood and kept the human population reasonably constant for centuries. Mutations 

have also increased genetic diversity through the generation and preservation of large 

numbers of new rare genetic variants (Wright et al. 2003; Reich and Lander, 2001). 
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Therefore, the population size increase is characterised as a possible cause of increased 

genetic diversity of contemporary human populations in comparison with those that 

lived two centuries ago, and the effect is expected to be largely due to rare and recently 

introduced genetic variation.  

The composition of gene pools is also different nowadays due to migration. People from 

small, usually isolated and genetically uniform communities have moved to larger cities 

and this has led to increased levels of marriage among individuals from different 

geographical, ethnic, religious and social backgrounds (Bittles, 2008; Darvasi and 

Shifman, 2005).  

This process of “isolate break-up” has led to the admixture of many genetically 

differentiated populations and in conjunction with migration and rapid urbanization, 

have all contributed to gene flow and generated more genetically diverse breeding 

pools. Collectively, the changes have led to a decrease in the level of population 

substructure and LD in European populations (Helgason et al. 2005; Vitart et al. 2005).   

The key role of homozygosity in many human diseases has fuelled a continued interest 

in studying the causes and patterns of homozygosity (Pemberton et al. 2012). 

 

2.1.5. Genome-wide mapping of ROHs in the human genome 

Studies that have investigated inbreeding effects on complex disease using pedigree 

data suggest that inbreeding is a risk factor (Rudan et al. 2003, Campbell et al. 2007). 

However, close inbreeding cannot be a major contributor to late-onset disease risk in 

modern populations given its rarity. Nevertheless, inbreeding is a matter of degree, 

when distant relatives are considered; and to some extent “all humans are related” 
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(Alkuraya, 2010) and are inbred to some degree as there is a limited number of founders 

to whom contemporary human populations trace their ancestry. It is likely that the 

parents of the vast majority of people alive today share a common ancestor within ~15 

generations (Keller et al. 2011). On the other hand, the limited migration until recently, 

and the creation of many bottlenecks by famines, warfare and epidemics, have reduced 

the mating pool, such that a more recent common ancestry can be expected for many of 

current human populations (Weber, 2006). The Finnish population is a prime example 

of a bottleneck where the population of around 5 million can trace their ancestry to a 

small number of founders in the not too distant past (Norio, 2003). 

Although such distant inbreeding would be very difficult to detect from pedigrees, it can 

leave signals/traces in the genome that are detectable using genome-wide microsatellite 

or SNP data. Indeed, this prediction was confirmed first in the Centre d’Etude du 

Polymorphisme Human panel by microsatellites, and since the advent of SNP chip-

based genotyping, a number of other studies clearly demonstrated the presence of 

relatively frequent ROHs in outbred populations where consanguinity is outlawed 

(Broman and Weber, 1999; Li et al. 2006; McQuillan et al. 2008). Observational studies 

have revealed that ROHs longer than 1Mb are more common in outbred individuals 

than previously thought (Broman and Weber, 1999; Lencz et al. 2007a; Simon-Sanchez 

et al. 2007; Gibson et al. 2006; Curtis et al. 2008; Li et al. 2006).  

It was not previously expected that the genomes of outbred populations contain ROHs 

as long as several megabases until the first few reports in 2006 (Gibson et al. 2006). 

These ROHs are unlikely to be explained on the basis of uniparental isodisomy or 

deletions (Curtis, 2007; Simon-Sanchez et al. 2007). 
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2.1.6. Characteristics of ROHs 

I. ROHs size classification 

The ROHs size classification is determined by LD patterns, population history and 

consanguinity levels.  

A. Short ROHs measuring tens of kb probably reflect homozygosity for ancient 

haplotypes that contribute local LD patterns (from ~100 generations back). 

B. Intermediate length ROHs measuring hundreds of kb to several Mb might result 

from background relatedness owing to limited population size. 

C. Long ROHs measuring tens of Mb are the signature of recent parental 

relatedness (from less than 10 generations back). 

Previous studies showed that short ROHs are common covering up to 1/3 of the human 

genome (Frazer et al. 2007).  

At the other end of the spectrum, very long ROHs reflect a different and more recent 

phenomenon. They have been observed in as many as 28-90% of individuals from 

populations with higher levels of background relatedness; (Li et al. 2006; Jakkula et al. 

2008; McQuillan et al. 2008; Gross et al. 2011, Broman and Weber, 1999; Kirin et al. 

2010; Roy-Gagnon et al. 2011) surprisingly, they have also been observed in 2-26% of 

individuals in apparently outbred populations (Li et al. 2006; McQuillan et al. 2008; 

Gross et al. 2011; Frazer et al. 2007; Gibson et al. 2006; Lencz et al. 2007a; Curtis et 

al. 2008; Kirin et al. 2010; Nothnagel et al. 2010; O’Dushlaine et al. 2010; Roy-

Gagnon et al. 2011; Teo et al. 2011; Teo et al. 2012; Simon-Sanchez et al. 2007; Auton 

et al. 2009). Long genomic segments containing ROH are common in many populations 

including Han Chinese, indigenous Taiwanese, Caucasians and African Americans 

(Broman and Weber, 1999; Gibson et al. 2006; Li et al. 2006; Simon-Sanchez et al. 
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2007, Curtis et al. 2008). It is worth noting that some of these ROHs potentially result 

from lack of recombination that allows unusually long ancestral segments to be 

maintained in the general population (Pemberton et al. 2012). 

In between, ROHs of intermediate sizes, also occur frequently (Jakkula et al. 2008; 

McQuillan et al. 2008; Gross et al. 2011; Gibson et al. 2006; Lencz et al. 2007a; Curtis 

et al. 2008; Nalls et al. 2009; Kirin et al. 2010; Nothnagel et al. 2010; O’Dushlaine et 

al. 2010; Roy-Gagnon et al. 2011; Teo et al. 2011; Teo et al. 2012), probably as a result 

of recent (but unknown kinship among the parents of sampled individuals) parental 

relatedness. Also, they might be autozygous segments of much older pedigrees that 

have occurred by chance inheritance through both parents of extended haplotypes that 

are at a high frequency in the general population, possibly because they convey some 

selective advantage (Lencz et al. 2007a).  

The Phase II HapMap study estimates that ROHs measuring in excess of around 100kb 

constitute 13-14% of the genome in Europeans (Frazer et al. 2007). 

II.  Classification of ROHs based on location 

Across the genome there are regions where ROHs are very frequent (ROHs hotspots) or 

infrequent (ROHs coldspots) (Pemberton et al. 2012). ROHs hotspots have reduced 

genetic diversity and thus increased homozygosity compared to the rest of the genome, 

whereas ROHs coldspots show the opposite. The existence of ROH hotspots and ROH 

coldspots can be explained partly by the frequency of recombination events across the 

genome or variation across the genome in the effects of demographic processes 

influencing genetic diversity. However, ROHs hotspots could also represent regions that 

harbour targets for positive selection and have reduced genetic diversity and an increase 

in homozygosity around selected loci (Pemberton et al. 2012). 
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Figure 2.1.3: Size-based classification of ROHs. (A) An example of Gaussian kernel density 
estimation of the ROH size distribution, the boundary between A and B classes is marked by the 
vertical dashed line and the boundary between B and C classes by the vertical dotted line. (B) 
ROHs are divided into three classes; Only ROHs less than 2.5Mb in length are shown (C) 
Gaussian kernel density estimates of the ROH size distribution in each of 64 populations; each 
line represents a different population. The boundaries between A and B classes and between B 
and C classes are shown by the shaded boxes. [Taken from: Pemberton et al. 2012] 
 

 

The non-uniform distribution of ROH across the human genome could reflect local 

genomic properties to maintain homozygosity around certain regions (Pemberton et al. 

2012). Because recombination events reduce LD and the probability of having two 

copies of the same haplotype, local recombination rate is expected to be negatively 

correlated with ROH frequency (Pemberton et al. 2012). As recombination acts over 

many generations, its effect might be expected to be greater on class A and B ROHs 

than on class C ROHs. Indeed, classes A and B of ROHs probably result from 

population-level LD patterns on longer time scales, whereas class C ROH probably 

result from recent inbreeding and thus might have had fewer opportunities for 

recombination events to systematically occur in high recombination regions. 

Conversely, as recombination disrupts longer haplotypes more frequently than shorter 



83 

 

haplotypes, one might instead expect the influence of recombination rate to be greater 

on classes of B and C of ROHs than on class A of ROHs.  

Several studies have suggested that ROHs cluster in regions of the genome where 

recombination rates are low (Simon-Sachez et al. 2007; Gibson et al. 2006; Curtis et al. 

2008; Li et al. 2006; McQuillan et al. 2008).  

 

2.1.7. Homozygosity mapping  

Homozygosity mapping, also called autozygosity mapping has served as the most 

successful disease gene discovery strategy in the recent history of human genetics 

(Altshuler et al. 2008). This method was first proposed by Smith (Smith, 1953) and later 

developed by Lander and Botstein (Lander and Botstein, 1987). Its principle is the 

detection of recessive mutations through mapping them to homozygous regions in 

patients born from consanguineous matings. The greater the number of affected family 

members who have a shared homozygous region and the longer the length of the region, 

the more likely it is to harbour the causal disease mutation (Woods et al. 2006). Mueller 

and Bishop, suggested that use of a single multi-affected pedigree is the most efficient 

autozygosity-based strategy to map a disease region as it reduces the genetic and 

phenotypic heterogeneity (Mueller and Bishop, 1993).   

2.1.7.1. Drawbacks of homozygosity mapping 

Historically, the method has faced several major challenges: finding a consanguineous 

family with the disease in question, observing enough recombination events within the 

family to narrow down the autozygous region surrounding the mutation, and prioritising 

candidate genes within that region for further sequencing (Alkuraya, 2010).  
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Firstly, it is possible for an extended consanguineous family to harbour mutations in 

two or more different genes giving rise to the same phenotype, particularly when the 

phenotype is heterogeneous (Benayoun et al. 2009; Lezirovitz et al. 2008; Frishberg et 

al. 2007; Ducroq et al. 2006; Laurier et al. 2006; Miano et al. 2000; Pannain et al. 

1999). Secondly, apparently shared autozygous blocks may in fact be IBS. This is 

particularly difficult when dealing with smaller intervals because the probability of 

sharing two haplotypes by chance only, is inversely correlated to their lengths 

(Alkuraya, 2010). Furthermore, the number of shared autozygous blocks between the 

different members of a given family is a function of the random crossing over events 

and their frequency. Although their randomness may not be predicted, the number of 

crossing over events correlates with the number of meiotic events separating the 

proband from the shared parental ancestor (Genim et al. 1998). 

On the other hand, higher degrees of autozygosity that would be expected based simply 

on the level of parental relatedness is frequently observed because extensive 

background inbreeding is often not reflected in small pedigrees. As a consequence, 

more blocks of autozygosity will be shared between the affected members by chance 

only without being truly linked to the disease locus. This may complicate the analysis 

and reduces the significance of the mapping signal (Carr et al. 2006; Leutenegger et al. 

2006; Woods et al. 2006). 

2.1.7.2. Genetic markers used to detect homozygosity 

Homozygosity mapping became practical with the discovery of highly polymorphic 

microsatellite repeat markers spread throughout the genome (Alkuraya, 2010). 

However, it was the advent of SNP chips that enabled high throughput genotyping and 

successful completion based on autozygosity mapping. Typically, provided the 
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appropriate family pedigree is available; such projects can now be finished in several 

weeks (Alkuraya, 2010). Although homozygosity mapping has been focused primarily 

on inbred populations, recent advances provided a basis for homozygosity mapping in 

affected individuals who are not inbred (Gibbs and Singleton, 2006; Hildebrandt et al. 

2009; Collin et al. 2011; Hagiwara et al. 2011; Schuurs-Hoeijmakers et al. 2011). 

Deleterious recessive variants in such individuals might reside in smaller ROHs than in 

inbred populations (Pemberton et al. 2012). 

Whilst each SNP has far less power to detect a homozygous chromosomal segment than 

a microsatellite marker, it is both their number and their ability to detect a heterozygous 

region, and hence exclude linkage, that suggested their potential use in autozygosity 

mapping (Carr et al. 2009).  

For example, a locus with only one variant that has a heterozygosity score of just 0.5 

has a 50% chance of being homozygous by chance. On the other hand, two variants of 

which each has a heterozygosity score of 0.25 can be expected to be both homozygous 

by chance with a comparable probability of (1-0.25)x(1-0.25)=56%. Thus, even markers 

with low heterozygosity scores can be informative when present in high density 

(Alkuraya et al. 2010). It is this simple concept that gives SNPs, despite their low 

individual heterozygosity (when compared to microsatellites) but high frequency in the 

human genome, higher overall power as markers in homozygosity mapping (Polasek et 

al. 2010; Carr et al. 2006; Evans and Cardon, 2004).  

With the increasing availability of data from high-density SNP-based genome scans, it 

has become feasible to identify and map ROHs in the human DNA at a large scale 

(McQuillan et al. 2008). One of the examples of their use in autozygosity mapping is to 

monitor the impact of outbreeding on individual and community levels. In the USA 
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population, ROHs size and frequency dropped over the 20th century (Nalls et al. 2009). 

Indeed, 14% decrease in ROHs frequency, a 24% decrease in the genome length 

covered by ROHs and a 30% reduction in the inbreeding coefficient (F) was detected 

through analysis of SNP-based data from genome-wide association scan (Nalls et al. 

2009).  

 

2.1.8. Homozygosity mapping and monogenic human disorders 

The homozygosity mapping approach has successfully been used to map genes 

associated with recessive Mendelian diseases in hundreds of studies (Botstein and 

Risch, 2003). Nearly 200 studies published between 1995 and 2003 used homozygosity 

mapping in consanguineous families (typically first line cousins) to identify rare 

recessive mutations underlying rare disorders. For example, the Fanconi anaemias are 

caused by loss of any of 5 genes; 3 of which were mapped by homozygosity analysis 

(Gschwend et al. 1996; Saar et al. 1998; Waisfisz et al. 1999). However, recessive 

variants appear also in offspring of parents whose genetic ancestry is more distant or 

even in those with no evidence of common parental ancestry (Nalls et al. 2009). 

 

2.1.9. Regions of homozygosity and their impact on complex diseases 

Although the role of ROHs in unmasking recessively acting mutations is well 

established in Mendelian genetics, much less is known about their contribution to more 

complex disorders such as cardiovascular disease. Identification of ROHs at a genome-

wide scale provides a measure of autozygosity extent and may ultimately expose 

regions harbouring recessively acting mutations. 
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Several studies in consanguineous or small isolated populations with above than 

average levels of parental relatedness have found evidence for a genome-wide effect of 

homozygosity on CAD (Shami et al. 1991; Puzyrev et al. 1992), cancer (Shami et al. 

1991), blood pressure (Rudan et al. 2003; Campbell et al. 2007) and LDL-cholesterol 

(Campbell et al. 2007). These findings may suggest that the variants associated with 

increased risk of common complex disease are more likely to be rare than common in 

populations (Freimer et al. 2004), distributed abundantly rather than sparsely across the 

genome (Wright et al. 2003), and being recessive than dominant (Reich and Lander, 

2001). 

It is believed that homozygosity is linked to both the common disease/common variant 

(CD/CV) and common disease/rare variant (CD/RV) hypotheses (Schork et al. 2009). 

With the additive model of inheritance, many risk SNPs identified by GWAs have been 

shown to exert their pathologic effects more strongly when present in two copies. Based 

on this it is sensible to investigate if weak recessive alleles can increase the 

predisposition to complex diseases in the homozygous state (Bittles and Black, 2010; 

Schork et al. 2009).  

The relationship between homozygosity and complex diseases has not been extensively 

examined, and it is only recently that it started being tested. The first study applying the 

homozygosity association approach at the genome-wide scale for complex diseases only 

appeared in 2007 (Lencz et al. 2007a). A genome-wide homozygosity analysis was 

applied in 178 schizophrenic cases and 144 healthy controls and ROHs were found 

significantly more frequent in cases compared to controls. Nine of those ROHs were 

over-represented in cases. Four of these risk ROHs overlapped or neighboured genes 

associated with schizophrenia (Lencz et al. 2007a). Another very recent study used 
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ROHs to estimate the proportion of the autosomal genome that is covered in 

homozygous tracts in >9,000 schizophrenic cases and >12,000 controls (Keller et al. 

2012). Interestingly stated that for every 1% increase in genome-wide homozygosity 

there is a ~17% increase in schizophrenia risk (Keller et al. 2012). 

The success of ROHs approach has been demonstrated in several studies. An 

association study involving 837 Alzheimer’s disease cases and 550 controls identified 

one ROH on chromosome 8 containing three biologically relevant candidate genes 

(Nalls et al. 2009). A homozygosity study on height, a complex quantitative and highly 

heritable trait, revealed a ROH on chromosome 12 that had a strong association with 

adult height variation in both discovery and replication stages (Yang et al. 2010). 

Individuals with this ROH were 3.5cm taller than individuals without it (Yang et al. 

2010). Moreover, a genome-wide homozygosity analysis in ~1,500 early onset 

Parkinson disease cases and ~7,000 controls showed an increased homozygosity level in 

Parkinson’s disease (Simon-Sanchez et al. 2012). The biggest difference was observed 

in ROHs of 9Mb and above (4.4% cases vs 1.4% controls). A locus was identified on 

chromosome 19p13.3 as over-represented in cases compared to controls but sequencing 

analysis within the locus failed to identify a novel mutation. 

Other examples include genome-wide homozygosity analysis of lymphoblastic 

leukemia (Hosking et al. 2010), bipolar disorder (Vine et al. 2009), rheumatoid arthritis 

(Yang et al. 2012a), colorectal cancer (Bacolod et al. 2008), breast and prostate cancer 

(Enciso-Mora et al. 2010). CAD has never been examined in ROH-based analyses. 
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2.1.10. Hypothesis 

CAD patients and controls will show different patterns of homozygosity in their 

genome. 

 

2.1.11. Objectives 

- to perform genome-wide homozygosity analysis of the overall genetic 

architecture of ROHs in the general population 

- to perform comprehensive analysis of association between homozygosity 

measures and CAD in individuals of white European ancestry 

- to identify individual consensus regions of overlapping ROHs in relation to 

CAD 
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2.2. Materials and Methods 

 
2.2.1. Characteristics of study cohorts 

A total of 20,821 individuals recruited from 9 populations of white European ancestry 

included in the CARDIoGRAM consortium was used in this project (Schunkert et al. 

2011). Full details for each cohort used are given below. 

• Wellcome Trust Case-Control Consortium Study (WTCCC) 

WTCCC cases: This British population includes 1,988 patients with a validated history 

of either myocardial infarction (MI) or coronary revascularization (coronary artery 

bypass surgery or percutaneous coronary angioplasty) before the age of 66 years. 

Recruitment was carried out on a national basis and lasted 5 years (April 1998 – 

November 2003). A major proportion of biologically unrelated patients with CAD in 

this study come from families with two or more affected siblings conducted in UK - 

British Heart Foundation Family Heart Study (BHF-FHS) (Samani et al. 2005). Some 

individuals in this resource come from GRACE Study (Alfakih K et al. 2007) that 

recruited patients with CAD and familial history of premature CAD (in parents or 

sibling) but in whom an affected sibling was not available for recruitment.  

In the WTCCC study, subjects from both BHF-FHS and GRACE cohorts were used 

together totaling 2,000 unrelated cases affected by premature CAD. 1,518 of those 

subjects were derived from BHF-FHS (Samani et al. 2005) and 470 subjects were from 

families included in GRACE study (Alfakih K et al. 2007). 

WTCCC controls: A population of 3,004 control subjects derived from two independent 

publicly accessible sources: the British 1958 Birth Cohort (58BC) and a sample of 

blood donors from UK Blood Service (UKBS).  
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The 58BC, also known as the National Child Development Study (Power and Elliott, 

2006), includes all births in England, Wales and Scotland during one week in 1958. 

From an original sample of over 17,000 births, survivors were followed up at ages 7, 11, 

16, 23, 33 and 42 years. In a biomedical examination at 44-45 years, 9,377 cohort 

members were visited at home providing 7,692 blood samples. DNA samples extracted 

from 1,500 cell lines of subjects with self-reported white ethnicity and representative of 

gender and each geographical region were selected for use as controls.  

The UKBS provided 1,500 controls from a sample of healthy blood donors recruited as 

a part of the WTCCC project (Samani et al. 2007). WTCCC in collaboration with 

UKBS set up a UK national repository of anonymised samples of DNA and viable 

mononuclear cells form 3,622 consenting blood donors (age range: 18-69 years, 

majority of them between 40-59 years). A set of 1,564 samples was selected from the 

total number of samples based on sex and geographical region to reproduce the 

distribution of the samples of the 1958 Birth Cohort for use as common controls in the 

WTCCC study. The subjects were about equally divided into males and females and 

both control groups were geographically widely distributed across the UK. Except from 

gender information and 10 year age-band, additional phenotypic information was not 

available on the control cohorts.  

• German Myocardial Infarction Family Study I (GerMIFSI) 

GerMIFSI cases: This population consists of 875 patients with a validated history of MI 

before the age of 60 years. The recruitment was carried out after screening >200,000 

patients charts in 17 cardiac in-hospital rehabilitation centres. The majority (>70%) of 

patients were recruited in the surrounding area of Augsburg and the Southern part of 

Germany between 1997 and 2002. All patients were of white German origin. If at least 
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one additional first-degree family member (preferentially a sibling) had suffered from 

MI or had severe coronary artery disease (percutaneous transluminal coronary 

angioplasty [PTCA] or coronary artery bypass grafting surgery [CABG]), the family 

(index patient, available parents and all siblings) was approached and asked to join the 

study (Broeckel et al. 2002; Fischer et al .2005). All events in index patients and family 

members were validated through inspection of hospital charts.  

GerMIFSI controls: All 1,644 CAD-free controls had German descent and were 

collected for the MONICA/KORA Augsburg population study in the years 1994/1995 

and a follow up of this project in the years 2004/2005 that was undertaken as part of the 

German National Genome Research Network (NGFN) (Wichmann et al. 2005). This 

population represents a gender- and age- stratified random sample of all German 

residents of the Augsburg area and consists of individuals 25 to 74 years of age, with 

about 300 subjects for each 10-year age band. These individuals were studied by 

physical examination, blood testing, and a standardized interview including medical 

history, physical activity, medication and personal habits. 

• German Myocardial Infarction Family Study II (GerMIFSII) 

GerMIFSII cases: This population consists of 1,222 patients with a validated history of 

MI before the age of 60 years for both men and women (Erdmann et al. 2009). A 

positive family history for CAD was documented in 726 (59.4%) of patients. Patients 

were identified following their admission for acute treatment of MI or in cardiac 

rehabilitation clinics.  

GerMIFSII controls: A total of 820 CAD-free controls were derived from the 

MONICA/KORA Augsburg survey S4 (Holle et al. 2005). A sample of 478 controls 

was taken from PopGen blood donor sample 2 (PopGen-DSP) (Krawczak et al. 2006).  
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• German Myocardial Infarction Family Study III (GerMIFSIII - KORA) 

GerMIFSIII cases: A total of 1,157 subjects with available DNA were derived from 

patients with non-fatal MI in the KORA registry (Erdmann et al. 2011). Hospitalised 

survivors of MI aged 26-74 years are routinely entered into this registry (Lowel et al. 

2005). The diagnosis of MI was made with the use of algorithm of the World Health 

Organization’s Multinational Monitoring of Trends and Determinants in Cardiovascular 

Disease (MONICA) project (Peters et al. 2004).  

GerMIFSIII controls: A total of 996 and 752 CAD-free controls were derived from the 

population-based Augsburg KORA S4/F4 study (Kolz et al. 2009) and PopGen 

respectively (Krawczak et al. 2006). 

• Ottawa Heart Genomics Study (OHGS)  

The OHGS is a hospital-based study of CAD conducted at the Ottawa Heart Institute in 

Ottawa, Canada. All patients who undergo CABG, coronary artery angiography, or 

receive treatment for MI are invited to participate in the study (McPherson et al. 2007; 

Davies et al. 2010). Three independent samples (OHGS-A, OHGS-B and OHGS-C) 

were ascertained consecutively for this study.  

OHGS cases: Patients with documented CAD (stenosis in a major epicardial vessel of at 

least 50%; PCI; CABG or MI before the age of 55 years in men and 65 years in women) 

were recruited for OHGS. Patients with history of diabetes mellitus of severe 

dyslipidemia were excluded. 

OHGS controls: Healthy elderly controls (men aged >65 years and women aged >70 

years) were recruited via an extensive newspaper and television advertising campaign in 

the Ottawa community. Controls were carefully interviewed by a physician or nurse to 

ascertain that they were free of symptoms of possible ischemic arterial disease and had 
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no past history of cardiovascular symptoms, a positive stress test, coronary angiography 

demonstrating stenosis (>50%) in any artery or clinical cardiovascular events. 

Individuals with the same ethnic background as the cases were included in this study. 

The mean age of CAD-free control was 74 years. Controls for all three samples were 

collected consecutively as described for cases.  

• Cleveland Clinic Gene Bank (CCGB) 

All cases in CCGB study were recruited using the same criteria as in OHGS (Davies et 

al. 2010). Patients were included if they had at least one of the following before the age 

of 55 years (men) or 65 years (women): angiographically documented stenosis in a 

major epicardial artery of at least 50%; history of MI, a percutaneous intervention 

(PCI),  or CABG. Diabetes was an exclusion criterion.  

• The Duke Cathgen Study (DUKE) 

Subjects were recruited from the cardiac catherisation laboratory at Duke, Canada. 

Cases had at least one epicardial coronary vessel with ≥50% stenosis documented 

before age of 55 years (men) or 65 years (women). Controls (≥50 years of age) were 

recruited from amongst patients who underwent coronary angiography and had no more 

than 30% stenosis in maximally one epicardial coronary artery. Any subject with 

diabetes mellitus, severe pulmonary hypertension or congenital heart disease was 

excluded from DUKE Study. These data have not been published yet. 

• PennCATH 

PennCATH is a university of Pennsylvania Medical Center based coronary 

angiographic study. Briefly, between July 1998 and March 2003, PennCATH recruited 

a consecutive cohort of patients undergoing cardiac catheterization and coronary 

angiography (Grant et al. 2006; Kathiresan et al. 2009). Cases were required to have at 
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least one stenosis of ≥50% in at least one of major epicardial arteries before the age of 

60 for males and 65 for women. 

In contrast, CAD-free controls (aged >40 years /men/ and 45 years /women/) had no 

stenosis exceeding 10% in any major epicardial artery.  

All participants gave written consent for participation in genetic studies, and the 

protocol of each study was approved by the corresponding local research ethics 

committee or institutional review board. 

 

2.2.2. Genotyping and imputation 

All cohorts had available genome-wide genotype information from previously 

conducted GWA studies (Samani et al. 2007; Schunkert et al. 2011). Apart from 

directly genotyped SNPs (from ~250,000 to ~900,000 dependent on the population and 

the genotyping platform used), imputed genotypes (based on HapMapII CEU build 36 

as a reference) were available in each population (Table 2.2.1).  

The genome-wide analysis was based on approximately 2.5 million SNPs. Imputation 

was performed using specialized imputation algorithms (either IMPUTE (Howie et al. 

2009) or MACH (Li et al. 2010)), separately in each cohort. The imputation software 

predicts untyped genotypes at the genome-wide level based on a set of known 

haplotypes. The accuracy of the imputation depends on SNP density and the similarity 

among the LD patterns between the study sample and the reference HapMap population 

(Marcini et al. 2007). Only genotypes with a posterior probability of ≥90% were 

included in this analysis.  
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2.2.3. Quality control filters 

Prior to the association analysis, both the SNP and population sample data were 

subjected to stringent quality control and cleaning procedures. SNPs were removed 

from further analysis if their MAF<1% and/or their genotype distribution deviated from 

Hardy-Weinberg equilibrium (HWE) (p<0.001 on the HWE test) and/or the genotype 

missingness rate was ≥5%. 

Individual samples were excluded from further analysis if they failed any of the 

following quality control filters: (SNP genotype missingness rate >5%, low 

heterozygosity, external discordance, non-European ancestry, duplicate, cryptic 

relatedness) were excluded from the analysis. All quality control filters were applied 

individually at the cohort level.  
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Table 2.2.1: Genotyping and imputation information for each study 
Study acronym CCGB DUKE GerMIFSI GerMIFSII GerMIFSI II OHGS-A OHGS-C PennCATH WTCCC 

Genotyping 

Platform 
Affymetrix 

6.0 

Affymetrix 

Axiom 

Affymetrix 

NSP and STY 

Affymetrix 

6.0 

Affymetrix 
Genome-

Wide 
Human SNP 

Array 6.0 

Affymetrix 
Mapping 

500K 
 

Affymetrix 
Axiom 

Affymetrix 
6.0 

 

Affymetrix 
Mapping 
500K  
Array Set  

 
Calling 

algorithm 
Birdseed AxiomGT1 Birdseed BRLMM Birdseed BRLMM  AxiomGT1 Birdseed CHIAMO 

Genotyped  

SNPs 
NA NA 

262,338(NSP)/ 
238,378(STY) 909,622 

503,590(5.0)/  
904,954(6.0)  

325,040 NA 869,223 477,459 

Imputed 

SNPs 
- - 2,543,887 2,543,887 2,536,369 2,469,454 - 2,749,197 2,614,446 
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2.2.4. ROHs idenfitification 

A number of ROHs definitions and methods of their detection have been proposed 

(Auton et al. 2009, Curtis et al. 2008, Gibson et al. 2006, MacLeod et al. 2009). In this 

project ROHs were identified via the “Runs of Homozygosity” program implemented in 

PLINK version 1.07 (Purcell et al. 2007).  

The PLINK ROH tool moves a sliding window of a defined number of SNPs and size 

across the entire human genome to detect runs of homozygous genotypes. Based on set 

thresholds, it is determined at each position whether the window meets the required 

level of homozygosity. For each SNP, the proportion of homozygous windows that 

overlaps the SNP position is calculated and used to determine whether ROH meets the 

minimum criteria (numbers of SNPs or size) (Purcell et al. 2007). Sliding window size, 

number of SNPs and the region length were taken into consideration to define what 

constitutes a ROH. 

A sliding window of 50 SNPs in 5,000 kb length region was used to scan the genome 

(Purcell et al. 2007). To prevent underestimating the number and size of ROHs, 1 

heterozygote and 2 missing calls in each window were permitted (Nalls et al. 2009; 

Hosking et al. 2010). These precautions were taken to allow for a possible minor 

genotyping error within a stretch of truly homozygous SNPs or other sources of 

artificial heterozygosity, such as paralogous sequences. A SNP was counted as a part of 

a ROH if >5% windows spanning it were homozygous. These parameters were selected 

to minimise the probability of a window being called homozygous by chance, while 

ensuring that SNPs on the edge of a true ROH will be counted as a part of that ROH 

(Purcell et al. 2007). 
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A threshold was set as the minimum length (kb) needed for a tract to qualify as 

homozygous. The existence of LD blocks in DNA means that relatively short ROHs 

(those spanning from tens to hundreds of kb) are very prevalent across the genome 

(Abecasis et al. 2005; Wall and Pritchard, 2003; Abecasis et al. 2001; Reich et al. 

2001). In order to exclude these very common short tracts of homozygous SNPs, the 

minimum length for a ROH was set at 1Mb. The selection of this threshold was used by 

several other studies (Lencz et al. 2007a; Nalls et al. 2009). Studies have identified only 

very few long stretches of LD, measuring up to several hundred kb in length could 

result in longer ROHs in outbred populations.  

The longer the homozygous region is (~1Mb), the lower the probability that the SNPs 

tagging that region are homozygous by simply chance. This probability is the function 

of both the numbers of SNPs located on the segment and their degree of 

informativeness, which is expressed in terms of heterozygosity level in the population 

(Carr et al. 2009). To ensure that the analysis captures only regions that are entirely 

homozygous between the first and the last SNP a threshold for the minimum number of 

SNPs constituting a ROH was selected. In line with the previous studies on 

homozygosity of complex disorders, the minimum number of homozygous SNPs to 

qualify as a ROH in this project was set at 100 (Lencz et al. 2007a).  

This robust size and SNP density thresholds for inclusion into ROHs allows for the 

algorithmic exclusion of copy number variants, centromeric and SNP-poor regions 

(Nalls et al. 2009).   

Two additional parameters were added to ensure that estimates were not artificially 

inflated by apparently homozygous tracts in sparsely covered genomic regions. First, 

required minimum SNP density was defined to 50 so that 1 SNP had to be present per at 
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least 50kb of DNA and the maximum gap between two consecutive homozygous SNPs 

was set at 100kb. These thresholds were also used before in other studies (Nalls et al. 

2009; Hosking et al. 2010; Vine et al. 2009; Yang et al. 2010). 

In summary, the following parameters were used in identification of ROHs in all 

cohorts (Figure 2.2.1): 

- Sliding window of 5000kb with 50 SNPs 

- Minimum length of ROHs  - 1Mb 

- Minimum SNP number – 100 

- Maximum gap between two consecutive homozygous SNPs – 100kb 

- Minimum SNP density – 50kb  

- Allowance for 1 heterozygote and 2 missing calls 

Identification of ROHs based on this set of criteria was conducted in each population 

separately. 
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Figure 2.2.1: Identification of ROHs in PLINK software. A snapshot of the sliding window 
approach moving across the chromosome to identify ROHs in consecutive SNP genotype data 
(horizontally) of individuals (in vertical order) is shown. In grey are ROHs across different 
individuals. The big green double arrow indicates a at least 1Mb ROH in length, the small green 
double arrow refers to the maximum gap between two consecutive SNPs and the red window 
represents the consensus overlapping region across individuals.  

 

 

2.2.5. Definition of overlapping chromosomal regions with homozygous SNPs 

The genomic region spanned by all the ROHs in a certain pool (in at least 5 individuals) 

was used to define an overlapping ROH. Overlapping ROHs were separated into groups 

and the number of cases and controls carrying them were identified using the homozyg-

group option in PLINK. 

Figure 2.2.2: Schematic diagram illustrating an overlapping region. Blue lines represent 
several individual ROHs ≥1Mb and the red rectangle illustrates the overlapping region across all 
the individual ROHs in the group [Taken from Ku et al. 2011] 
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2.2.6. Calculation of homozygosity measures 

The following measures of homozygosity were calculated in each study (a) the average 

(range) number of ROHs, (b) the total and average length of ROHs  (Nalls et al. 2009) 

(c) proportion of autosomal genome in ROHs above a specific length threshold (FROH) 

(McQuillan et al. 2012). Subjects without any ROHs on a chromosome were also 

counted. 

The total number of ROHs was defined as the sum of all ROHs per individual. The 

average ROH number was calculated by dividing the total number of runs by the total 

number of subjects. The average total ROH length is the sum of the length of each 

individual ROH per participant and was calculated by dividing the total ROH length by 

the number of individuals having ROHs [for example chr1: 4864 (total number of 

individuals in WTCCC study) minus 73 (subjects without any ROHs) = 4791; 22765.10 

(sum of length of each individual ROH per subject on chr1) (22765.10/4791=4751.64kb 

is the average total ROH length per individual on chr1)]. The average run length was 

calculated by dividing the total genomic length of the ROHs by the total number of 

ROHs per participant [for example chr1: 22765.10 (sum of length of each individual 

ROH per participant); 17,110 (total number of ROHs on chr1) 

(22765.10/17,110=1.3Mb)].  

FROH was defined as the percentage of the typed autosomal genome in ROHs greater 

than or equal to 1Mb in length. FROH is optimal for inferring the degree of genome-

wide autozygosity and for detecting inbreeding effects (McQuillan et al. 2012). 

However, given the small variation in genome-wide FROH in unrelated individuals, 

large sample sizes are necessary to detect inbreeding depression for likely effect sizes in 

outbred samples (Keller et al. 2011).  
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To calculate the proportion of the autosomal genome covered in ROHs, percentage of 

homozygosity was calculated by summing ROHs>1Mb across the covered autosomal 

genome and dividing by the total autosomal base pairs represented on the microarray 

platform. As a result the summed length of identified ROHs was then divided by a factor 

of 2772.7 and subsequently converted to a percent by multiplying the dividend by 100. 

A factor of 2772.7 is the number of megabases covered by SNPs included in the array 

used in the genome-wide dataset. This estimate was calculated by summing the distance 

between the first and the last available SNP of each chromosomal arm for each of the 22 

autosomes. 

A genome-wide meta-analysis of homozygosity measures in all 9 populations from 

CARDIoGRAM Consortium was conducted. Differences in the homozygosity measures 

across populations were examined with ANOVA test. The distributions of 

homozygosity measures were examined using Kernel density estimates. Correlation 

between total ROH length and ROH number was examined using Pearson’s coefficient 

(r). All the statistical analysis was undertaken in STATA v12. 

Association between measures of homozygosity and CAD was conducted using linear 

regression adjusted for cohort differences. The beta coefficient/odds ratio and the p-

values reflect the magnitude of the effect and statistical significance for the subjects 

from all cohorts.  
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2.2.7. Quality controls before the association analysis between overlapping 

consensus regions and CAD 

QQ plots were drawn to compare the distribution of observed chi2-values to the 

expected distribution under the null hypothesis of no association to ensure the good 

quality of the data (Figure 2.2.3). Genomic inflation lambda (λ) value was also 

estimated for each study. In GERMIFS -I and -III studies λ were slightly inflated in 

contrast to OHGS –A and –C slightly deflated.  

 

Figure 2.2.3: Quantile-quantile plots of chi2-values for all 15,441 identified overlapping 
consensus regions in at least two studies from CARDIoGRAM Consortium  
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2.2.8. Association analysis between overlapping consensus regions and CAD 

Meta-analysis of all individual study ROH associations was conducted using 

inverse variance weighting in STATA v12. No covariates were taken into account. 

Heterogeneity was calculated using I2 statistics. Bonferroni correction was used to 

correct for multiple testing. 

Binomial test was used to examine if there was a deviation from the expected 

distribution (50%/50%) between the CAD protective (OR<1) and CAD detrimental 

(OR>1) consensus regions of overlapping ROHs in CARDIoGRAM Consortium. OR>1 

reflected a consensus region of overlapping ROHs that was over-represented in CAD 

cases and a OR<1 reflected a consensus region of overlapping ROHs that was over-

represented in controls. 

A Cochran Armitage trend test was used to check the direction of the observed 

difference across CAD detrimental and CAD protective consensus regions of 

overlapping ROHs. 

 

 

 

 

 

 

 



106 

 

2.3. Results 

 

2.3.1. Characteristics of study cohorts 

A total of 20,821 individuals of European ancestry from 9 populations of 

CARDIoGRAM Consortium were included. The key characteristics of the cohorts used 

in the homozygosity analysis are summarized in Table 2.3.1. There was a fair numerical 

balance between patients with CAD and CAD-free controls included in the analysis. 

Consistent with the recognised sexual dimorphism in CAD prevalence, a majority of 

patients with CAD were male. In populations recruited in Canada, controls were older 

than patients with CAD, in an effort to ensure that controls were old enough without 

developing CAD. 

 
Table 2.3.1: Characteristics of CARDIoGRAM populations 

Study 
Number 

of 
subjects 

Cases/Controls %MI  %female 
(cases/controls)  

Cases  
age 

(years) 

Controls 
age 

(years) 
CCGB 1996 1628/368 60.3 24.4/46.2 48.6±7.3 73.82±5.2 
DUKE 1848 1200/648 48.1 30.6/58.0 56.6±9.7 63.3±8.7 

GERMIFSI 2488 884/1604 100 49.4/50.8 50.2±7.8 62.6±10.0 
GERMIFSII 2509 1222/1287 100 33.1/48.3 51.4±7.5 51.2±11.9 
GERMIFSIII 2905 1157/1748 100 20.1/48.9 58.6±8.7 55.9±10.7 

OHGS-A 1955 947/1008 64.3 21.9/45.5 48.1±7.0 74.9±4.9 
OHGS-C 1161 843/318 44.3 5.9/64.8 56.1±6.9 76.0±6.3 

PennCATH 1084 732/352   NA  NA NA  NA  
WTCCC 4864 1926/2938 71.5 20.7/50.0 49.8±7.7 -* 

In total 20,821 10,548/10,273 - - - -  
Data are counts and percentages or means and standard deviations, MI - myocardial infarction; 
n - sample size. *WTCCC controls included an equal number of subjects from the 1958 Birth 
Cohort and from the National Blood Service donors. The latter were recruited in equal 10 years 
age bands from 11 to 70 years of age.  
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2.3.2. Analysis of the overall genetic architecture of ROHs 

A meta-analysis of all 20,821 subjects from CARDIoGRAM was first undertaken to 

explore the global genetic architecture of ROHs in human DNA. The summary of 

homozygosity measures from this analysis is shown in Table 2.3.2.  

 
Table 2.3.2: Genome-wide measures of homozygosity in CARDIoGRAM Consortium 

No Homozygosity measure Values per genome 

1 Average number of ROHs 32.14±8.72 
2 Number of ROHs – range 2-260 
3 Average total length of ROHs (Mb) 44.05±14.99 
4 FROH (%) 1.59±0.54 
5 Average ROH length (kb) 1370.68±488.98 
6 Length of ROHs – range (Mb) 1.00-29.40 

ROHs – runs of homozygosity, FROH – proportion of autosomal genome in ROHs, Data are 
means and standard deviations or absolute values 
 

 

This analysis revealed that each individual of white European ancestry has on average 

32.14±8.72 ROHs in their DNA. These stretches of homozygous SNPs have an average 

length of 1370.68±488.98 kb and they cover on average a total length of 44.05±14.99 

Mb (1.59% of the human genome). The number and length of ROHs per individual 

ranged from 2-260 and 1-29.40 Mb, (respectively) in the overall sample. 

Homozygosity measures were also examined in each population, separately (Table 

2.3.3). A total of 669,313 ROHs ranging in size from 1Mb to 29.40 Mb and containing 

>100 consecutive homozygous SNPs, were identified across 20,821 genomes from 9 

studies (Figure 2.3.1).  

The WTCCC has the largest proportion of the genome covered by ROHs (FROH 

=1.85%) and PennCATH the smallest (FROH=1.23%). The longest identified ROH was 

identified in PennCATH (29.40Mb).  
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Table 2.3.3: Summary of homozygosity measures in 9 populations from CARDIoGRAM Consortium. 

Study Number 
of subjects  

Average run 
number (n) 

ROHs 
range 

Average total run 
length (kb) 

Average run length 
(kb) 

Longest 
run length (Mb) 

% of 
genome in 

ROHs 
(FROH) 

CCGB 1996 29.50±6.35 2-83 40199.32±10616.25 1362.62±445.57 10.91 1.45±0.38 
DUKE 1869 25.51±10.13 8-260 35335.86±19390.20 1385.15±490.67 10.00 1.27±0.70 

GERMIFSI 2486 36.35±7.40 11-145 49924.54±15203.16 1373.59±509.82 18.39 1.80±0.55 
GERMIFSII 2506 28.48±6.09 12-81 39399.01±11876.63 1383.16±535.41 15.33 1.42±0.43 
GERMIFSIII 2900 31.79±8.12 4-180 43538.19±14700.81 1369.58±485.01 13.61 1.57±0.53 

OHGS-A 1955 35.43±8.99 6-158 48904.37±17289.22 1380.22±480.23 11.23 1.76±0.62 
OHGS-C 1161 25.22±6.35 9-72 34430.34±11169.43 1365.41±465.48 10.17 1.24±0.40 

PennCATH 1084 24.32±5.74 7-47 34093.18±10505.12 1401.59±693.27 29.40 1.23±0.38 
WTCCC 4864 37.78±6.09 19-88 51250.29±10376.44 1356.58±443.29 24.14 1.85±0.37 

Data are means and standard deviations or absolute values and percentages. 
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Figure 2.3.1: Genome-wide distribution of ROHs. Each row represents a population. 
Populations are ordered from top to bottom by alphabetical order (CCGB, DUKE, GERMIFSI, 
GERMIFSI, GERMIFSII, GERMIFSIII, OHGS-A, OHGS-C, PennCATH, WTCCC). The bars 
represent ROHs. 

 

0 50 100 150 200 250
Chr1-Position(Mb)

0 50 100 150 200 250
Chr2-Position(Mb)

0 50 100 150 200
Chr3-Position(Mb)

0 50 100 150 200
Chr4-Position(Mb)

0 50 100 150 200
Chr5-Position(Mb)

0 50 100 150 200
Chr6-Position(Mb)

0 50 100 150
Chr7-Position(Mb)

0 50 100 150
Chr8-Position(Mb)

0 50 100 150
Chr9-Position(Mb)

0 50 100 150
Chr10-Position(Mb)

0 50 100 150
Chr11-Position(Mb)

0 50 100 150
Chr12-Position(Mb)

20 40 60 80 100 120
Chr13-Position(Mb)

20 40 60 80 100
Chr14-Position(Mb)

20 40 60 80 100
Chr15-Position(Mb)

0 20 40 60 80
Chr16-Position(Mb)

0 20 40 60 80
Chr17-Position(Mb)

0 20 40 60 80
Chr18-Position(Mb)

0 20 40 60
Chr19-Position(Mb)

0 20 40 60
Chr20-Position(Mb)

10 20 30 40 50
Chr21-Position(Mb)

20 25 30 35 40 45
Chr22-Position(Mb)



110 

 

The average number of ROHs in the autosomal genome is shown in Figure 2.3.2. 

Overall, there are significant differences in average number of ROHs amongst nine 

populations (P<1x10-300). Individuals from WTCCC cohort have the largest average 

ROH number (37.78) and those from PennCATH the smallest (24.32) (Table 2.3.3). 

Approximatley, 80% (16,620) of individuals have 21-40 ROHs in their autosomal 

genome. Of these, a majority (43.8% - 9,120) belong to 31-40 ROHs category. A 

fraction of individuals (36.0% - 7500) have on average 21-30 ROHs. Less common are 

individuals with 41-50 ROHs (12% - 2489). Only 1.5% of subjects have more than 50 

ROHs and just 0.06% (13) of analysed individuals have more than 100 ROHs in their 

genome. One individual from DUKE study has 260 ROHs in the DNA. 

The average ROH length per participant in each study is shown in Figure 2.3.2. A 

similar general pattern of distribution is observed across all populations (P=2.5x10-27). 

The average ROH length varies between 1362.62kb in CCGB and 1401.59kb in 

PennCATH.  

The average total ROH length per participant in each study is presented in Figure 2.3.2. 

There are statistically significant differences between the populations (P<1x10-300). The 

total ROH length varied between 34.09Mb in PennCATH and 51.25Mb in WTCCC.  

Outliers for all measures of homozygosity exist almost in every population. They appear 

on both sides of homozygosity measures distribution. For example, an individual in 

CCGB had only 2 ROHs covering just 2.31Mb of the autosomal genome whilst in a 

different individual from DUKE 260 ROHs covering 476.57Mb were identified (Figure 

2.3.2).  
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To visualise the shape and range of homozygosity in each population in the context of 

data collected from other cohorts, the distribution of each homozygosity measure was 

plotted using Kernell density (Figure 2.3.3). The distribution of each homozygosity 

measure is fairly symmetrical in each cohort with only one peak observed. There is trend 

to a positive skewness but the sample size is large enough to assume normality. 
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Figure 2.3.2: Measures of homozygosity in each cohort from CARDIoGRAM Consortium.  
A - average number of ROHs, B - average length of ROHs, C - average total length of ROHs in 
the autosomal genome. The boxes are median values, the upper edge of the box - the 75th 
percentile, the lower edge - the 25th percentile of ROH distribution. Outliers are represented by 
black dots.  
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Figure 2.3.3: Kernel density estimates of the homozygosity measures distributions in each 
population. A - average number of ROHs, B - average length of ROHs, C - average total length 
of ROHs in the autosomal genome. Each coloured line represents the data distribution from a 
different population; CCGB - black, DUKE - red, GERMIFSI - brown, GERMIFSII - yellow, 
GERMIFSIII - green, OHGS-A - blue, OHGS-C - pink, PennCATH - purple, WTCCC - orange. 
In Panel A only individuals with less than 100 ROHs are shown. 
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The results of chromosome-specific homozygosity measures analysis are shown in 

Table 2.3.4. 

Table 2.3.4: Chromosome-specific measures of homozygosity in CARDIoGRAM Consortium  

Chr 
Average 

number of 
ROHs 

Number 
of 

ROHs – 
range 

Average total 
length of ROHs 

(kb) 

Average ROH 
length (kb) 

Subjects 
without any 
ROHs (%) 

1 2.90±1.70 0-30 3878.97±2661.08 1337.22±415.04 956 (4.6) 
2 3.05±1.78 0-21 4095.44±2730.44 1342.90±457.26 911 (4.4) 
3 2.85±1.75 0-33 3948.04±2815.81 1384.03±513.12 1243 (6.0) 
4 2.33±1.52 0-27 3159.04±2502.63 1354.29±471.64 1558 (7.5) 
5 2.45±1.61 0-27 3424.43±2683.98 1396.06±536.78 1688 (8.1) 
6 1.89±1.48 0-30 2646.13±2525.11 1401.99±596.57 3223 (15.5) 
7 1.70±1.33 0-19 2308.23±2119.13 1357.09±491.95 3677 (17.7) 
8 2.95±1.72 0-28 3990.22±2560.16 1353.39±408.10 1074 (5.2) 
9 0.60±0.88 0-19 770.97±1387.99 1283.40±463.77 11648 (55.9) 
10 1.64±1.20 0-19 2284.78±1936.97 1392.04±456.28 3138 (15.1) 
11 1.48±1.30 0-29 2308.14±2345.26 1563.76±740.05 4939 (23.7) 
12 1.85±1.43 0-28 2531.41±2335.44 1370.04±459.67 3247 (15.6) 
13 0.68±0.93 0-23 899.17±1667.21 1327.29±568.45 10702 (51.4) 
14 1.19±0.97 0-18 1585.64±1541.10 1332.95±378.61 4621 (22.2) 
15 1.13±0.97 0-15 1591.92±1540.12 1413.86±471.86 5733 (27.5) 
16 1.00±0.86 0-14 1449.76±1370.11 1446.96±401.04 5907 (28.4) 
17 0.71±0.84 0-10 896.37±1187.85 1267.56±379.13 10074 (48.4) 
18 0.32±0.66 0-20 416.36±1106.69 1309.32±508.11 15320 (73.6) 
19 0.41±0.65 0-12 539.77±952.68 1306.80±381.88 13677 (65.7) 
20 0.57±0.73 0-12 750.85±1102.83 1324.52±450.12 11373 (54.6) 
21 0.11±0.35 0-8 136.38±526.78 1293.52±478.79 18788 (90.2) 
22 0.34±0.58 0-11 440.04±832.68 1284.85±361.73 14600 (70.1) 

Data are means and standard deviations or counts and percentages, Chr - chromosome 
 

ROHs are widely distributed across the entire genome and are present on each human 

autosome. The number of ROHs is a function of chromosomal length. Indeed, larger 

chromosomes tend to have on average more ROHs. Average number of ROHs and 

average total length of ROHs depend on chromosome size. For example each individual 

has on average 3.05 ROHs covering ~4.1Mb of DNA on chromosome 2 (the largest 

chromosome) compared to just 0.11 ROHs covering only 0.1Mb of DNA on 

chromosome 21 (the shortest chromosome). There are individuals that do not have any 
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ROHs in some of their chromosomes. Again, the number of these individuals was 

related to the size of the chromosome. For example, only 4.4% subjects do not contain 

any ROHs on chromosome 2 compared to 90.2% who have no ROHs on chromosome 

21. 

In contrast, average ROH length does not depend on chromosomal length. The average 

length of ROHs on chromosome 11, chromosome 15 and chromosome 16 (shorter 

chromosomes) is greater than that on chromosome 1 (the second longest chromosome). 

The shortest average ROH length (1267.56kb) was observed on chromosome 17 and the 

longest (1563.76kb) on chromosome 11.  

The analysis of association between ROH number and total ROH length showed that 

they were in strong linear correlation in each population analysed separately (r=0.86 

PennCATH to r=0.98 DUKE) and in the combined analysis (r=0.94) (Figure 2.3.4). 

Indeed, the higher number of ROHs in the autosomal genome, the longer area of DNA 

is covered by segments of homozygous SNPs. Only few individuals have many long 

ROHs and cover several hundred of Mb in their autosomal genome. 
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Figure 2.3.4: Correlation between total ROH length and ROH number in CARDIoGRAM 
Consortium. A - The number of ROHs at least 1Mb or longer in length plotted against the total 
length of ROHs, per individual, for each population separately, B - Combined linear correlation 
of population specific data from panel A. 
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2.3.3. Analysis of association between CAD and homozygosity measures 

The characteristics of global architecture of homozygosity were followed by 

comparative analysis of average ROH number, average ROH length and average total 

ROH length between 10,548 CAD cases and 10,273 healthy controls. 

The mean values for average ROH number, average ROH length and average total ROH 

length for cases and controls in each examined population are shown in Figure 2.3.5 and 

Table 2.3.5. As a general trend, the mean values (together with 95% confidence 

intervals) were comparable between cases and controls from the same populations. Of 3 

measures of homozygosity, average ROH length showed least variation between 

populations. As expected from the previous data on global genetic architecture of 

homozygosity, both average ROH number, and average total ROH length showed 

significant differences between populations within both cases and controls stratum. 

After adjustment for study origin, there were significant differences in overall 

homozygosity between patients with CAD and CAD-free controls (Table 2.3.6). On 

average, patients had 0.5 ROH more than controls (β=0.5, 95% CI: 0.30-0.71, 

P=2.06x10-6). The logistic regression revealed that each ROH in the autosomal genome 

increased CAD risk by approximately 1% (OR=1.01, 95% CI: 1.006-1.014, 

P=2.57x106). The average total length of ROHs in autosomal genome of patients with 

CAD was approximately 816 kb longer compared to controls (P=3.6x10-5) (Table 

2.3.6). 
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Figure 2.3.5: Comparison of homozygosity measures in CAD cases and controls. A - 
average number of ROHs, B - average length of ROHs, C - average total length of ROHs in the 
autosomal genome. Data are means with 95% confidence intervals.  
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Table 2.3.5: Differences in homozygosity measures between CAD cases and CAD-free controls in 9 populations from CARDIoGRAM Consortium 

Study 
A. Average number of ROHs B. Average length of ROHs C. Average total length of ROHs 

Controls Cases P-value Controls Cases P-value Controls Cases P-value 
CCGB 30.08±6.92 29.37±6.21 0.05 1367.71±95.69 1354.05±91.57 0.01 41420.13±12101.32 39923.37±10234.78 0.01 

DUKE 25.02±6.68 25.78±11.56 0.12 1357.74±110.10 1366.00±115.95 0.14 34290.94±12130.53 35896.99±22320.03 0.09 

GERMIFSI 35.81±7.12 37.31±7.79 1.24x10-6 1359.89±107.31 1366.68±121.20 0.15 49051.46±14271.41 51512.31±16657.01 1.0x10-4 

GERMIFSII 28.26±5.76 28.72±6.41 0.06 1362.52±108.88 1382.54±4.22 1.0x10-4 38689.01±10157.20 40145.04±13412.38 2.1x10-3 

GERMIFSIII 31.08±9.25 32.87±5.83 5.03x10-9 1358.58±112.68 1359.86±96.13 0.75 42678.64±17058.93 44842.44±9990.16 1.0x10-4 

OHGS-A 35.72±8.92 35.13±9.06 0.15 1368.89±103.11 1366.43±104.26 0.60 49309.82±16917.36 48472.79±17675.18 0.28 

OHGS-C 25.27±6.49 25.20±6.30 0.87 1360.20±111.96 1353.93±109.88 0.39 34671.03±11550.06 34339.55±11028.07 0.65 

PennCATH 23.87±6.11 24.54±5.54 0.07 1394.42±207.10 1392.76±194.21 0.90 33463.15±10822.82 34396.15±10342.72 0.17 

WTCCC 37.77±6.15 37.80±5.99 0.86 1353.73±83.42 1354.92±86.51 0.63 51222.46±10502.53 51292.75±10183.65 0.82 

Data are means and standard deviations, ROHs – runs of  homozygosity,  P-value – level of statistical significance for a difference between cases and controls
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Table 2.3.6: Differences in homozygosity measures between CAD cases and controls from 
CARDIoGRAM Consortium 

Measure β-coefficient/OR LCI UCI P-value 

Average ROH number  0.50 0.30 0.71 2.06x10-6 

Average ROH length (kb) 3.17 -0.01 6.36 0.05 

Average total length of ROHs (kb) 816.49 429.04 1203.95 3.6x10-5 

FROH* 1.20 1.09 1.32 1.15x10-4 

Data are either β-coefficients or odds ratios (OR) with respective confidence intervals and level 
of statistical significance from regressing homozygosity measures on case-control status after 
adjustment for cohort. 95% LCI – lower confidence interval, 95% UCI – upper confidence 
interval, FROH – proportion of autosomal genome in ROHs, * – analysis was conducted in 
20,503 individuals (318 excluded because of FROH>3%). 
 

Examination of FROH distribution revealed that it was highly right-skewed with 

maximal value of 17.19%. Therefore, 318 individuals with FROH>3% were excluded to 

facilitate regression analysis. Logistic regression analysis revealed that each 1% 

increase in FROH translated into 20% increase in odds of CAD risk (OR=1.20, 95% CI: 

1.09-1.32, P=1.15x10-4). The sensitivity analysis conducted with inclusion of these 318 

showed no effect on the case-control difference.  

Due to large age differences across CAD cases and controls in the examined 

populations (Table 2.3.1) and a possible age effect, the comparative analysis of 

homozygosity measures was repeated with adjustement of age as a covariate. Of, the 

20,821 individuals 99 didn’t have age data and were excluded from the analysis. After 

adjustment for age, there were even stronger significant differences in all homozygosity 

measures across CAD patients and CAD-free controls (Table 2.3.7). 
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Table 2.3.7: Differences in homozygosity measures between CAD cases and controls from 
CARDIoGRAM Consortium - age adjustment 

Measure β-coefficient/OR LCI UCI P-value 

Average ROH number  0.72 0.50 0.93 9.32x10-11 

Average ROH length (kb) 5.16 1.84 8.47 0.002 

Average total length of ROHs (kb) 1162.04 758.39 1565.68 1.70x10-8 

FROH* 1.30 1.18 1.43 8.38x10-8 

Data are either β-coefficients or odds ratios (OR) with respective confidence intervals and level 
of statistical significance from regressing homozygosity measures on case-control status after 
adjustment for age and cohort. 95% LCI – lower confidence interval, 95% UCI – upper 
confidence interval, FROH – proportion of autosomal genome in ROHs, * – analysis was 
conducted in 20,347 individuals (375 excluded because of FROH>3%). 
 
 

The analysis of relationship between ROH number and total ROH length conducted 

separately in cases and controls showed the same linear correlation in both groups 

(r=0.94) (Figure 2.3.6). 

Figure 2.3.6: Association between ROH number and the total length of ROHs in CAD 
cases and CAD-free controls from CARDIoGRAM Consortium.  
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2.3.4. Analysis of association between CAD and overlapping chromosomal regions 

with homozygous SNPs 

Analysis of overlapping chromosomal homozygous regions was undertaken in order to 

identify the ones that were not “private” (exclusive to one population) but present across 

the CARDIoGRAM cohorts. Identification of CAD-related regions of consecutive 

homozygous SNPs shared between populations was supposed to also narrow down the 

number of potential candidate genes and SNPs for further studies including in-depth 

sequencing.  

The analysis screened the autosomal genome for ROHs that overlapped in at least two 

of the examined populations. A total of 15,441 consensus regions of consecutive 

homozygous SNPs shared by at least 2 populations were identified in 22 autosomes. An 

example of such a homozygous region identified through analysis of overlapping ROHs 

on chromosome 1 is illustrated on Figure 2.3.7. 
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Figure 2.3.7: An example of consensus sequence of consecutive homozygous SNPs on 
chromosome 1 shared by 9 populations in analysis of overlapping ROHs. A - ROHs  on 
chromosome 1, B - overlapping ROH mapping to approximately 102-104 MB on chromosome 
1; double vertical lines indicate the window of consensus sequence of consecutive homozygous 
SNPs shared by 9 populations  C – consensus region of consecutive homozygous SNPs marked 
by 2 vertical lines in the context of 5Mb sequence on chromosome 1. X axis - physical distance 
of the chromosome, Y axis lists each of 9 populations studied.  
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To further characterise these segments of consecutive homozygous SNPs, they were 

classified into 4 groups (based on their SNP enrichment) and into 3 groups (based on 

their overall frequency in the meta-analysed sample) (Table 2.3.8). Approximately 2/3 

(64.04%) of consensus regions were present in only 2-3 of the examined cohorts and 

only 8.27% mapped to overlapping ROHs in 6-9 cohorts. A majority (64.45%) of 

consensus regions were short – they contained 2-9 homozygous SNPs. A small 

percentage of the identified consensus regions (2.8%) contained more than 100 

homozygous SNPs. Table 2.3.8 lists the total number of identified chromosomal regions 

with homozygous SNPs across 22 autosomes and indicates in how many populations 

they exist. 

Table 2.3.8: Characteristics of consensus regions of consecutive homozygous SNPs identified 
through analysis of overlapping ROHs in CARDIoGRAM Consortium 

No of 
SNPs in a 

region 

No of studies where consensus regions were identified 
Total 

2-3 4-5 6-9 

2-9 6403 (64.34%) 2821 (28.35%) 748 (7.32%) 9952 (64.45%) 
10-49 2687 (63.85%) 1128 (26.81%) 393 (9.34%) 4208 (27.25%) 
50-99 515 (60.73%) 232 (27.36%) 101 (11.91%) 848 (5.49%) 

100+ 284 (65.59%) 94 (21.71%) 55 (12.70%) 433 (2.8%) 

Total 9,889 (64.04%) 4,275 (27.69%) 1,277 (8.27%) 15,441 
Data are counts and percentages; percentages in column 2 and 3 are counted horizontally and 
vertically, respectively. SNP – single nucleotide polymorphism 
 

Only 41 (0.27%) of consensus regions were shared across all 9 studies [in comparison 

with 5624 (36.42%) shared just 2 populations]. The shortest consensus region on 

chromosome 2 was just 2bp in length, contained 2 SNPs and was identified through 

overlapping ROHs from 4 studies. The longest consensus region on chromosome 7 was 

920,570bp in length, had 118 consecutive homozygous SNPs and was shared by 4 

populations. The region spanning the largest number (753) of SNPs was mapped to 

chromosome 6 in 4 studies. 
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Table 2.3.9: Chromosome-stratified list of regions with consecutive homozygous SNPs 
identified through analysis of overlapping ROHs in CARDIoGRAM Consortium.  

Chromosome No of overlapping regions (%) 
No of populations sharing consensus 

region 
2-3 4-5 6-9 

1 1094 (7.09) 725   278  91 
2 1571 (10.17)  1038  433  100 
3 1384 (8.96)  869  407  108 
4 1406 (9.11)  938  366  102 
5 1551 (10.04)  860  501  190 
6 1402 (9.08)  854  412  136 
7 818 (5.30)  513  226  79 
8 983 (6.37)  643  267  73 
9 422 (2.73)  288  102  32 
10 572 (3.70)  373  148  51 
11 793 (5.14)  506  236  51 
12 887 (5.74)  583  235  69 
13 635 (4.11)  410  176  49 
14 501 (3.24)  320  143  38 
15 306 (1.98)  208  72  26 
16 165 (1.07)  121  33  11 
17 178 (1.15)  113  58  7 
18 329 (2.13)  220  86  23 
19 167 (1.08)  120  40  7 
20 145 (0.94)  100  27  18 
21 44 (0.28)  31  5  8 

22 88 (0.57)  56  24  8 

Total 15,441 9,889 4,275 1,277 
Data are counts and percentages; percentages in column 1 are counted horizontally 
 

 

None of 15,441 consensus homozygous regions was associated with CAD after 

correction for multiple testing (Figure 2.3.8). Indeed, the corrected P-value (based on 

Bonferroni correction) was calculated at 3.2x10-6 and the most significant signal in this 

genome-wide analysis was calculated at 2.9x10-4. 
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Figure 2.3.8: Association between CAD and consensus chromosomal regions of 
consecutive SNPs – genome-wide signal-intensity plot. The Y axis shows the logarithmic 
level of statistical significance for association of each individual region with CAD, X axis - 22 
chromosomes in numerical order. 
 

 

 

The top 20 most significant regions from this analysis are listed in Table 2.3.9. Their 
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Table 2.3.10: Top 20 consensus regions of consecutive homozygous SNPs from analysis of association with CAD in CARDIoGRAM Consortium  

Reg  Chr BP1 BP2  Length  
(kb) Studies SNPs Cases Controls OR  (95% CI) PValue Genes 

1 7 122,852,984 122,863,568 10.58 3 8 36 (1.00%) 45 (2.25%) 0.42 (0.25, 0.86) 2.9x10-4 IQUB 

2 2 197,194,416 197,195,872 1.45 3 2 150 (5.21%) 136 (3.71%) 1.57 (1.22, 2.01) 3.0x10-4 HECW2 

3 2 147,560,112 147,586,272 26.17 2 23 112 (3.64%) 107 (1.90%) 1.62 (1.23, 2.12) 4.2x10-4 - 

4 2 201,345,488 201,352,912 7.40 2 9 13 (0.53%) 13 (1.90%) 0.28 (0.13, 0.60) 4.6x10-4 BC047410, 
AOX2, BZW1 

5 4 58,734,992 58,766,208 31.21 3 11 34 (0.95%) 12 (0.33%) 3.39 (1.63, 7.04) 5.0x10-4 - 

6 3 34,972,504 34,990,024 17.52 6 8 52 (0.99%) 24 (0.43%) 2.21 (1.39, 3.51) 5.5x10-4 - 

7 4 98,416,504 98,417,128 6.20 2 3 174 (8.55%) 204 (6.09%) 1.44 (1.17, 1.78) 5.9x10-4 - 

8 7 86,648,720 86,661,552 12.84 4 9 132 (3.49%) 99 (2.33%) 1.60 (1.22, 2.10) 6.1x10-4 
DMFT1, 
C7orf23 

9 2 25,035,624 25,047,502 11.88 2 6 27 (1.29%) 75 (3.32%) 0.47 (0.30, 0.73) 6.3x10-4 
ADCY3, 

DNAJC27 

10 12 110,131,840 110,133,560 1.73 5 3 1062 (19.98%) 1027 (18.32%) 1.19 (1.08, 1.31) 6.4x10-4 CUX2 

11 12 109,640,328 109,642,544 22.14 3 3 362 (11.25%) 306 (9.13%) 1.32 (1.12, 1.55) 8.9x10-4 
TCTN1, 
HVCN1, 
PPP1CC 

12 9 34,495,480 34,501,456 59.74 3 7 85 (2.74%) 53 (1.57%) 1.80 (1.27, 2.57) 9.1x10-4 
DNAI1,ENHO, 

CNTFR 

13 12 110,772,472 110,785,160 12.69 8 4 3219 (34.26%) 2673 (31.35%) 1.12 (1.05, 1.20) 9.3x10-4 
ALDH2, 
PNAS1, 

MAPKAPK5 

14 4 103,494,864 103,502,480 76.20 2 2 64 (3.15%) 59 (1.76%) 1.83 (1.27, 2.63) 9.7 x10-4 SLC39A8 

15 12 110,744,448 110,767,928 23.48 8 6 3219 (34.26%) 2672 (31.34%) 1.12 (1.05, 1.19) 1.0 x10-3 
ALDH2, 
PNAS1, 

MAPKAPK5 

16 14 73,352,952 73,355,664 27.05 2 2 12 (0.42%) 46 (1.17%) 0.36 (0.19, 0.68) 1.1 x10-3 
PGR2, ZADH1, 

PZADH2, 
C14orf43 

17 10 75,318,256 75,318,296 0.04 5 2 2055 (28.77%) 1877 (26.85%) 1.14 (1.05, 1.23) 1.2 x10-3 
CAMK2G, 

PLAU, C10orf55 

18 12 87,174,992 87,188,312 13.32 7 9 1373 (20.96%) 1541 (16.66%) 1.14 (1.05, 1.24) 1.3 x10-3 TMTC3 

19 12 109,729,664 109,731,024 13.60 2 2 270 (11.37%) 266 (8.77%) 1.34 (1.12, 1.60) 1.4 x10-3 
PPP1CC, 
CCD63 
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Reg  Chr BP1 BP2  Length  
(kb) Studies SNPs Cases Controls OR  (95% CI) PValue Genes 

20 2 147,676,864 147,731,328 54.46 4 14 216 (3.82%) 172 (2.84%) 1.40 (1.14, 1.72) 1.4 x10-3 - 

Chr – chromosome, nSNPs – number of SNPs in overlapping region, OR – odds ratio. P-value – level of statistical significance for difference in frequency 
between cases and controls. IQUB  – IQ motif and ubiquitin domain containing, HECW2 – HECT, C2 and WW domain containing E3 ubiquitin protein ligase 
2, AOX2 – aldehyde oxidase 2 pseudogene, BZW1 – basic leucine zipper and W2 domains 1, ADCY3 – adenylate cyclase 3, DNAJC27 – DnaJ (Hsp40) 
homolog subfamily C member 27, CUX2 – cut-like homeobox 2, TCTN1 – tectonic family member 1, HVCN1 – hydrogen voltage-gated channel 1, 
PPP1CC – protein phosphatase 1 catalytic subunit gamma isozyme, DNAI1  – dynein axonemal intermediate chain 1, ENHO – energy homeostasis 
associated, CNTFR – ciliary neurotrophic factor receptor, ALDH2  – aldehyde dehydrogenase 2 family (mitochondrial), MAPKAPK5  – mitogen-activated 
protein kinase-activated protein kinase 5, SLC39A8 – solute carrier family 39 (zinc transporter), member 8, PGR2 – G protein-coupled receptor 142, ZADH1  
– zinc binding alcohol dehydrogenase domain containing 1, CAMK2G  –  calcium/calmodulin-dependent protein kinase II gamma, PLAU  – plasminogen 
activator, urokinase, TMTC3 – transmembrane and tetratricopeptide repeat containing 3. 
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To see if there is a global enrichment for CAD-related consensus regions of consecutive 

homozygous SNPS in the human genome,  all 15,441 regions identified through analysis 

of overlapping ROHs were classified into either potentially CAD protective or 

potentially detrimental based on their crude OR from analysis of association with CAD 

(OR>1: detrimental, OR<1: protective). Under a null hypothesis of no association 

between consensus regions with CAD, the frequency of each category should be close 

to 50%/50%. There was a clear deviation from the expected distribution of the 

consensus regions of consecutive homozygous SNPs in the CARDIoGRAM 

Consortium (Table 2.3.10). Indeed, there was an overall enrichment in potentially CAD-

detrimental consensus regions in the CARDIoGRAM Consortium – approximately 10% 

excess of regions favouring increased risk of CAD was noted over those that tend to 

protect against CAD (P=1.34x10-36) (Table 2.3.10). These data confirmed that 

consensus regions of consecutive homozygous SNPs on ROHs overlapping between 

populations are generally more common in patients with CAD than in CAD-free 

controls. The same enrichment for regions potentially detrimental to CAD was apparent 

in each category after stratification based on number of SNPs in each consensus 

segment – the excess of regions with OR>1.0 for CAD was close to 10% (Table 2.3.10). 

The consensus regions of consecutive homozygous SNPs were then binned in 5 

categories based on their nominal level of statistical significance for association with 

CAD (Table 2.3.11). This analysis revealed an enrichment for CAD-detrimental regions 

within the bin of the most significant results and a linear trend for a decrease of these 

regions towards the least significant bin (P=8.25x10-20). 
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Table 2.3.11: Frequency of CAD protective and detrimental consensus regions of consecutive 
homozygous SNPs in CARDIoGRAM Consortium – analysis stratified on number of SNPs 

Overall 

Regions Expected Observed P-value 

CAD detrimental  50% - 7720 55% - 8502 
1.34x10-36 

CAD protective  50% - 7720 45% - 6939 

Group 0     

2-9 SNPs CAD detrimental  50% - 4976 55% - 5462 
1.01x10-22 

 
CAD protective  50% - 4976 45% - 4490 

Group 1     

10-49 SNPs CAD detrimental  50% - 2104 55% - 2307 
2.08x10-10 

 
CAD protective  50% - 2104 45% - 1901 

Group 2     

50-99 SNPs CAD detrimental  50% - 424 56% - 479 
8.9x10-5 

 
CAD protective  50% - 424 44% - 369 

Group 3     

100+ SNPs CAD detrimental  50% - 216 59% - 254 
1.8x10-4 

  CAD protective  50% - 216 41% - 179  
Regions were classified as detrimental and protective if their odds ratio (OR) for CAD was >1.0 
and <1.0 (respectively). Data are counts and percentages, P-value – level of statistical 
significance from a test of binomial test 
 

 

Table 2.3.12: Frequency of CAD protective and detrimental consensus regions of consecutive 
homozygous SNPs in CARDIoGRAM Consortium – analysis stratified on bins of nominal 
statistical significance for association with CAD     

P-value bin CAD detrimental 
regions 

CAD protective 
regions  P-value* 

0.8-1.0 1509 (17%) 1483 (21%) 

8.25x10-20 
0.6-0.8 1581 (19%) 1442 (21%) 
0.4-0.6 1710 (20%) 1368 (20%) 
0.2.0.4 1665 (20%) 1406 (20%) 
0.0-0.2 2037 (24%) 1240 (18%) 
15,441 8,502 6,939 - 

Regions were classified as detrimental and protective if their odds ratio (OR) for CAD was >1.0 
and <1.0 (respectively). P-value bin – category based on the level of statistical significance, P-
value* - level of statistical significance from test for trend 
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2.4. Discussion 

 

 Homozygosity mapping is a strategy with the potential to uncover such recessive 

variants hidden within long stretches of homozygous SNPs (Keller et al. 2012). This 

analysis has been useful in the identification of disease susceptibility genes in both 

monogenic and complex diseases (Miyazawa et al. 2007; Jiang et al. 2009). The effects 

of inbreeding and recessive variants on the risk of complex diseases have been 

previously well established (Rudan et al. 2003a, Rudan et al. 2003b, Rudan et al. 2006; 

Campbell et al. 2007).  

Indeed, a strong linear relationship between the inbreeding coefficient and blood 

pressure was found and several hundred recessive loci were predicted as contributing to 

blood pressure variation. Recessive or partially recessive variants account for 10-15% 

of the total variation in blood pressure (Rudan et al. 2003a). Inbreeding was a 

significant predictor for a number of late-onset complex diseases such as CAD, stroke, 

cancer and asthma (Rudan et al. 2003b). These studies have strongly supported the 

hypothesis that the genetics of complex phenotypes include a component of recessively 

acting variants.   

Nowadays, high-density genome-wide SNP arrays represent a powerful tool for 

discovering regions of extended homozygosity in the human genome (Lencz et al. 

2007a; McQuillan et al. 2008).  

ROH analyses conducted to date have primarily focused on questions relevant to both 

basic population genetics theory and disease risk. Population genetics studies have 

analysed the distribution, prevalence and location of ROHs across various sub-

populations to infer population substructure, history and natural selection (Gibson et al. 
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2006; Kirin et al. 2010; Li et al. 2006; McQuillan et al. 2008; Nothnagel et al. 2010; 

Sabeti et al. 2007; Voight et al. 2006). Phenotypic studies have used both family-based 

and population-based samples to identify specific associated risk ROHs as well as 

differences in overall ROH burden (Lencz et al. 2007a; Keller et al. 2012; Howrigan et 

al. 2011).   

As the offspring of inbred populations may have lower mean health and fitness because 

of the homozygous expression of detrimental recessive alleles (Rudan et al. 2003a, 

Rudan et al. 2003b, Rudan et al. 2006), similar effects could operate with the more 

numerous partially recessive variants influencing complex diseases in outbred 

populations. 

The importance of ROHs on CAD or any other cardiovascular phenotype is completely 

unexplored. The data collected here come from the first genome-wide homozygosity 

analysis for CAD. The study made use of both directly genotyped SNPs and imputed 

genotypes in the homozygosity analysis to increase the coverage for the genome and 

extract the maximum information. The extremely dense SNP typing in the populations 

of CARDIoGRAM Consortium provided a unique opportunity to examine the 

distribution, number, size, and location of these homozygous tracts. Homozygosity 

measures such as ROH number and ROH length were used to investigate the genetic 

architecture of ROHs. 

ROH number and ROH length constitute two important descriptive characteristics of 

homozygosity. ROH number is used to count ROHs and ROH length to size ROHs 

across the genome. They are two complimentary measures and provide a description of 

the overall genetic architecture of ROHs. 
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This study revealed that on average every individual has ~32 ROHs in their autosomal 

genome, similar to what was previously published (Simon-Sanchez et al. 2012). 

Comparative case-control analysis showed that CAD patients have ~ an excess of 0.5 

ROH when compared to controls. When it comes to the extreme ends of the distribution 

curve it becomes obvious that only very few CAD patients carry <10 ROHs covering 

<10Mb or >100 ROHs covering >50Mb.  

FROH is a measure of inbreeding effects and correlates most highly with the 

homozygous mutational load, the putative causal mechanism underlying inbreeding 

depression (McQuillan et al. 2012). This homozygosity measure is important because it 

has low prediction error variance, especially when SNP density is high (Keller et al. 

2012). However, given the small variation in genome-wide FROH across unrelated 

individuals, large sample sizes are necessary to detect inbreeding depression for likely 

effect sizes (Keller et al. 2012).  

Previous studies investigating the effects of FROH on human complex traits have 

sample sizes<3,000 and have failed to find significant inbreeding effects (Nalls et al. 

2009; Spain et al. 2009; Vine et al. 2009; Enciso-Mora et al. 2010; Hosking et al. 2010) 

most likely because they were underpowered. Furthermore, small studies (<1,000) that 

did find significant inbreeding depression effects using FROH (Lencz et al. 2007a) may 

greatly overestimated the size of the effects.  

The sample study of this study (~21,000), the largest examined one so far, provided a 

well-powered tool for finding signatures of autozygosity on CAD risk. A 20% increase 

in CAD risk for every 1% increase in the proportion of autosomal autozygosity 

suggesting the collective role of multiple recessive variants on disease risk. 
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This study showed a good agreement with previous studies regarding all homozygosity 

measures (Simon-Sanchez et al. 2012). However, one should keep in mind that the rate 

of detected ROHs in homozygosity mapping tends to vary along the genome due to 

differences in informativeness and differences in haplotype genealogies. The relative 

performance of homozygosity mapping depends on population demographic history and 

the strength of selection against causal variants (Browning and Thompson, 2012). 

Comparison between different studies may be also challenging because ROH 

identification criteria vary, especially the minimum length consisting a ROH (Ku et al. 

2011).  

Previous research showed the existence of a trend for decreasing autozygosity with 

younger chronological age in the North American population of European ancestry 

(Nalls et al. 2009). CAD cases in the analysis were generally younger than controls. As 

a result, someone would expect controls to present longer, more frequent ROHs. 

However, CAD patients showed excess homozygosity when compared to controls.   

Potential confounding factors such as age and sex were not adjusted in the analysis. 

However, the sensitivity analysis conducted in WTCCC showed no differences in 

homozygosity measures between males and females and across different age categories.  

Analysis of individual consensus regions of overlapping ROHs showed no statistically 

significant association with CAD risk. A region with high frequency in affected 

individuals and very low frequency in unaffected individuals could provide strong 

evidence for the presence of disease-associated gene/genes. None of the identified 

consensus regions were exclusive to CAD cases. Several of these regions mapped to 

gene deserts contain only a single or very few genes. None consensus region has been 

implicated in previous CAD GWA studies. This is not surprising given that GWA 
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studies have analysed data under additive model of inheritance whilst ROH analysis 

operated under recessive mode of inheritance. 

Most of the top consensus regions are uncommon (<5%) or indeed very rare (<1%). A 

few consensus homozygous sequences (i.e. present on chromosome 12) have high 

population frequencies (>25%) and appear to coincide with previously identified ROH 

islands. ROH islands show high frequency of ROH in European populations (Nothnagel 

et al. 2010). These regions are unlikely to be disease specific as they just reflect the 

natural architecture of our DNA.  

Although there was no evidence for association between individual consensus regions 

and CAD (possibly due to their low frequency and hence the power issues), further 

analysis was undertaken to examine if collectively they may associated with CAD.   

Evaluation of the distribution of these consensus regions of homozygous SNPs showed 

a 10% excess of the consensus regions favouring increased risk of CAD over those that 

tend to protect against it, a result inconsistent with chance. This supported the 

hypothesis and suggested that patients with CAD may have accumulated more recessive 

alleles than controls. To some extent, this enrichment of consensus regions of 

homozygous SNPs may be the potential driver for the excess homozygosity observed in 

CAD cases compared to controls in the analysis of genetic architecture of homozygosity 

measures. This finding is important because it provides evidence for an excess of ROHs 

as a potential contributor to CAD and therefore supports a theory on the role of 

recessive component in the genetic architecture of CAD. Additional work in needed to 

unravel the exact synergistic role of multiple recessive variants, homozygosity levels 

and their association to CAD. DNA-sequencing studies will offer in-depth coverage for 

these regions and will advantage genome-wide homozygosity analysis. 
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Strengths and limitations of genome-wide homozygosity analysis 

1. Optimum-length threshold  

A central limitation to current studies analysing ROHs is the lack of consensus on 

criteria for ROHs identification (Ku et al. 2011). In outbred population, ROHs reflect 

distant consanguinity and originate from common ancestors (Charlesworth and Willis, 

2009); however the length of ROHs decreases on average over time due to 

recombination. The expected length of a ROH follows an exponential distribution with 

mean equal 1/2g Morgans, where g is the number of generations since the common 

ancestor (Howrigan et al. 2011). As a result, the expected length of a ROH caused by 

sib-sib inbreeding (g=2) is calculated at 1/4 Morgan or 25cM, while the expected length 

of a ROH originating from a common ancestor 50 generations in the past is 1/100 or 

1cM (Houwen et al. 1994). Because the shortening of ROHs across generations is 

gradual, any choice of length threshold to define ROHs is ultimately arbitrary. 

Consequently, the discrepancy between definitions of ROHs across studies makes their 

comparisons difficult (Howrigan et al. 2011). Unfortunately, to date there has been no 

systematic investigation of ROHs detection across different statistical methods and 

power. 

This project detected ROHs using a genotype-counting approach that relies on a fixed 

size, allowing for occasional missing or heterozygous genotypes to account for possible 

genotyping errors. In contrast, an approach incorporating population-specific allele 

frequency estimates to determine autozygosity status of a window could enable more 

rigorous assessments of the possibility of genotyping errors (more sensitive detection of 

ROHs). 
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2. Overlapping deletions 

 Hemizygous deletions may affect the estimates of ROHs (Nothnagel et al. 2010). This 

study was not able to check if ROHs overlap with regions of hemizygous deletions. 

Previous studies showed that ROHs are true homozygous tracts and not deletions or 

other chromosomal abnormalities (Brown and Weber, 1999; Frazer et al. 2007; Simon-

Sanchez et al. 2007; Li et al. 2006). 

3. LD-pruned dataset 

LD can act as a potential confounder in comparative ROH analyses of different 

populations because the local level of LD determines the effective number of SNPs used 

for ROH definition (Nalls et al. 2009). However, it is unclear how much specificity and 

sensitivity this brings to the homozygosity analysis. 



138 

 

Summary of findings 

 Genome-wide homozygosity analysis in CARDIoGRAM Consortium revealed 

statistically significant differences in the overall homozygosity levels between CAD 

patients and CAD-free controls. Also, a 20% increase in CAD risk was suggested for 

every 1% increase in the proportion of autosomal homozygosity. The distribution of 

consensus regions of overlapping ROHs showed over-representation amongst patients 

with CAD, suggesting that accumulation of recessive alleles may increase the risk of 

CAD.  

 

 

 

 

 

 

 

 

 

 

 

 



139 

 

 

 

 

 

CHAPTER 3  
LOW -FREQUENCY/RARE VARIANTS 

AND PREDISPOSITION TO 
CORONARY ARTERY DISEASE  
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3.1. Introduction 

GWA analysis is a powerful method of genomic screening for common variants 

underlying complex diseases (Manolio et al. 2008). Several hundred such variants have 

been identified so far through GWA studies (http://www.genome.gov/gwastudies/). 

However, the collective contribution of these variants to overall heritability of complex 

disorders is very modest and explains only its small proportion (Frazer et al. 2009). One 

potential contributor to the remainder of “missing heritability” is the effect of multiple 

low-frequency/rare alleles (Kryukov et al. 2007; Bodmer and Bonilla, 2008; Manolio et 

al. 2009; Schork et al. 2009; Eichler et al. 2010). Such variants are likely to contribute 

to phenotypic expression in conjunction with, or over and above, common variants 

(Bansal et al. 2010). The extent to which these variants may actually contribute to 

disease predisposition is of great interest and represents one of the major unanswered 

questions in complex disease genetics.   

 

3.1.1. Low-frequency/rare variants  

Low-frequency alleles are usually defined as those with frequency between 1% and 5% 

whilst rare variants have frequency <1%. The MAF distribution of SNPs from the 

International Hap-Map project shows that >40% of SNPs have MAF<5% (Gorlov et al. 

2008). 

 

 

 



141 

 

3.1.2. Rare variants and susceptibility to complex diseases 

3.1.2.1. Rare familial disorders and rare variants 

The role of both low-frequency and rare alleles as the sole genetic determinants of 

Mendelian forms of disorders is well-known (Gibson, 2012). Heterozygous familial 

hypercholesteroleamia and monogenic forms of hypertension are the excellent 

illustrations of how a single mutant allele travelling from one generation to another may 

account for almost entire phenotypic spectrum in the clinical manifestation of rare or 

very rare disease (rare variant – rare disease) (Goldstein and Brown, 1979). Other 

examples include, the breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) 

susceptibility mutations (Easton et al. 2007), and variants that are responsible for 

maturity onset diabetes of the young (MODY) (Weedon and Frayling, 2007). The 

growing body of evidence appears to suggest that rare variants may also play a role in 

special cases of complex diseases that have familial analogues.  

3.1.2.2. Evolutionary theory and the rare allele model  

The strongest argument for the rare allele model derives from evolutionary theory 

which favours the existence of numerous rare polymorphisms rather than common 

variants in the development of common late-onset diseases (Pritchard, 2001; Gorlov et 

al. 2008; Gibson, 2012). It is believed that disease-promoting variants deleterious to 

fitness should be rare since they are under negative selection (Barton and Turelli, 1989; 

Pritchard and Cox, 2002). Rare disease-related variants reflect the balance between 

mutation process generating them and purifying selection process manipulating their 

occurrence and preventing them from drifting to a higher frequency in the population 

(Reich and Lander, 2001). Mutation rates are sufficiently large to promote new disease 

variants but on the other hand purifying selection cannot eliminate all deleterious 
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variants especially the ones that affect late-onset diseases. As a result they have the 

opportunity to rise to allele frequencies of 1% or even more, particularly if their effect is 

recessive (Gibson, 2012).  

3.1.2.3. Empirical population genetic data and rare variants 

It has been shown that the distribution of MAFs is strongly skewed towards an excess of 

low-frequency/rare variants. Whole-exome sequence data indicated that non-

synonymous substitutions are significantly over-represented towards low-frequencies 

suggesting the operation of purifying selection (Cargill et al. 1999; Kryukov et al. 2007; 

Zhu et al. 2011). 

3.1.2.4. Synthetic associations 

It has also been argued that some of the identified common variant association signals 

may actually reflect rare variants (Dickson et al. 2010). The term “synthetic 

association” is used to describe disease association of a common variant that is actually 

driven to its LD relationship with several disease-promoting rare variants located on the 

same haplotype block (Dickson et al. 2010; Gibson, 2012). It is believed that a common 

variant may highlight the presence of two-three rare variants that each substantially 

increases disease risk in just 1-2% of the cases (Gibson, 2012). 

 

3.1.3. Strategies to identify rare variants  

Rare susceptibility variants are a considerable analytical challenge, because established 

disease association methods are tailored to common susceptibility variants and are 

unlikely to be powerful enough for rare variants (Zeggini et al. 2005).  
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The statistical power to detect susceptibility alleles is positively correlated with their 

frequency and penetrance. Detection of rare alleles with high penetrance is possible 

through GWA studies as the detection of common alleles with modest penetrance but 

the problem is how well these low-frequency variants are captured with the GWA 

arrays that are designed to tag common SNPs or how well are called (Bodmer and 

Bonilla, 2008; McCarthy and Hirschhorn, 2008).  

Current approaches to investigate the effect of rare variants on complex phenotypes 

tend to use direct whole-genome re-sequencing (Metzker, 2010). Sequencing of 

candidate genes, the whole exome or the entire human genome is the optimal way to 

identify rare variants (Li and Leal, 2009). The most commonly used whole genome 

sequencing available platforms generate millions of short sequence reads that are then 

aligned to a reference genome through read mapping. Variant calling algorithms are 

subsequently employed to identify candidate sites at which one or more samples differ 

from the reference sequence and to call genotypes across samples (Panoutsopoulou et 

al. 2013).  

In addition, the development of the 1000 Genomes project, a large international effort, 

which sequenced 1000 genomes of individuals from 10 different ethnic backgrounds 

(Siva, 2008; The 1000 Genomes Consortium et al. 2010), brought to light new 

information on human variation. A detailed catalogue of variants enabled rapid progress 

in association studies (Li and Leal, 2008). As a result now it is also possible to use 

GWA studies as a template to impute low-frequency and rare variants based on 

sequenced reference panel such as the 1000 Genomes project. A recent GWA analysis 

of imputed rare variants across seven common complex diseases, identified genome-

wide significant evidence of rare variant association in PR domain containing 10 gene 
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(PRDM10) with CAD and multiple genes in the major histocompatibility complex 

(MHC) with type 1 diabetes (Magi et al. 2012). 

 

3.1.4. Rare variant association analysis 

Association mapping of rare variants has focused on the aggregation of the effects of all 

rare variants within a genomic region because it is neither powerful nor numerically 

stable to analyse each variant individually (Magi et al. 2012).  

A plethora of such novel locus-specific experimental strategies and statistical models 

have been developed to detect binary or quantitative trait associations. These strategies 

are classified into a few main groups (Panotsopoulou et al. 2013): 

• Collapsing approaches based on summary statistics such as the Cohort Allelic 

Sum Test (CAST) (Morgenthaler and Thilly, 2007), Combined Multivariate and 

collapsing test (CMC) (Li and Leal, 2008), Weighted Sum Statistic test (WSS) 

(Madsen and Browning, 2009) and Variable-Threshold approach (VT) (Price et 

al. 2010). 

• Methods based on similarities among individual sequences such as Kernel Based 

Association Test (KBAT) (Mukhopadhyay et al. 2010) and Sequence Kernel 

Association Test (SKAT) (Wu et al. 2011). 

• Regression models that use collapsed sets of variants and other factors as 

predictors such as collapsing test using proportion of rare variants (GRANVIL) 

(Morris and Zeggini, 2010), Adaptive Sum test (Han and Pan, 2010), LASSO 

and Ridge regression (Zhou et al. 2010; Asimit and Zeggini, 2010). 
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Collapsing approaches aggregate information across multiple variants within a genomic 

locus into a single unit, which is then examined for trait association with an 

accumulation of rare minor alleles. Alternative approaches such as KBAT 

(Mukhopadhyay et al. 2010) and SKAT are (Wu et al. 2011) multivariate tests 

combining single-variant test statistics. Given that the allelic architecture of complex 

traits is largely unknown; these tests make no assumptions about the probability or 

direction of each variant effect and are therefore more flexible (Panoutsopoulou et al. 

2013).  

 

3.1.5. Examples of rare variants contributing to complex traits  

The early evidence for the role of rare variants in human disease comes from in-depth 

sequencing and re-sequencing studies in the area of oncology (Schork et al. 2009). One 

of the first examples were variants in BRCA1 and BRCA2 genes underlying 

susceptibility to breast and ovarian cancer (Stratton and Radman, 2008). These disease 

causing variants confer a 10- to 20- fold relative breast cancer risk. This translates into a 

30 to 60% increase in risk in carriers of a mutant variant by the age of 60, compared to 

just 3% in the general population (Stratton and Radman, 2008). Approximately 1 in 

1,000 individuals (MAF<0.01%) are heterozygous mutation carriers of each gene, and 

there are numerous different mutations each of which is very rare (Stratton and 

Radman, 2008). 

Analysis of cardiovascular quantitative traits and in particular circulating lipid levels 

also revealed rare variants acting collectively on the phenotype. Screening for variants 

in genes implicated in Mendelian forms of low HDL-cholesterol levels revealed an 

aggregation of rare alleles in individuals with low HDL-cholesterol compared to those 
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with high HDL-cholesterol levels (Cohen et al. 2004). Re-sequencing of angiopoietin-

like 4 gene (ANGPTL4) uncovered both rare and common variants that reduce 

triglycerides and increase HDL-cholesterol (Romeo et al. 2007).  

A ground-breaking study by Lifton’s group revealed associations between rare 

independent mutations in genes responsible for renal salt handling and blood pressure 

and risk of hypertension (Ji et al. 2008). Screening of individuals of the FHS offspring 

cohort for variation in three genes known for their role in rare Mendelian forms of 

hypertension/hypotension [solute carrier family 12 (sodium/chloride Transporter) 

member3 (SLC12A3), solute carrier family 12 (sodium/potassium/chloride Transporter) 

member1 (SLC12A1) and potassium inwardly-rectifying channel, subfamily J, member1 

(KCNJ1)] identified rare heterozygous mutations. These mutations lead to significant 

decrease in blood pressure and protection from development of hypertension. The mean 

long-term SBP among mutation carriers was 6.3mm Hg lower than the mean of the 

cohort and showed a 59% reduction of developing hypertension by age 60 compared to 

non-carriers.  

A large-scale, gene-centric study conducted by our group on the genetic architecture of 

ambulatory blood pressure in the general population revealed a significant over-

representation of low-frequency/rare variants (MAF<0.05) among variants showing at 

least nominal association with mean 24-hour blood pressure (Figure 3.1.1) 

(Tomaszewski et al. 2010). This difference became even more striking when applying a 

lower threshold for definition of low-frequency variants (MAF<2%) - SNPs with 

MAF<2% were almost two times more common among variants associated with mean 

24-hour blood pressure than variants of higher frequency. This observation supported 
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the hypothesis that low-frequency/rare alleles may play a role in genetic predisposition 

to blood pressure elevation (Ji et al. 2008; Tomaszewski et al. 2010). 

 
Figure 3.1.1: Distribution of SNPs associated nominally (P<0.05) with mean 24-hour BP 
according to their characteristic and frequency. [Taken from Tomaszewski et al. 2010] 

 

Re-sequencing of four triglyceride-modulating candidate genes – apolipoprotein A-V 

(APOA5), glucokinase (hexokinase 4) regulator (GCKR), lipoprotein lipase (LPL) and 

apolipoprotein B (APOB) revealed a significant burden of 154 rare missense or 

nonsense variants in 438 individuals with hypertriglyceridemia, compared to 53 variants 

in 327 controls corresponding to a carrier frequency of 28.1% of affected individuals 

and 15.3% of controls (Johansen et al. 2010). This study showed accumulation of rare 

variants in genes identified through GWA and that these contribute to the heritability of 

complex traits among individuals at the extreme of a lipid phenotype. 

More recently, re-sequencing in a region previously implicated in GWA studies 

uncovered four rare new variants (each MAF of approximately 1%) within interferon 

induced with helicase C domain 1 gene (IFIH1) associated with type 1 diabetes 
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independently of each other (Nejentsev et al. 2009). Each of these rare variants showed 

a protective effect on the risk of type 1 diabetes (OR = 0.51-0.74).  

Sequencing of melatonin receptors 1B gene (MTNR1B) associated with type 2 diabetes 

identified several rare variants (MAF<1%) that through impairing receptor function 

contribute to risk of type 2 diabetes (Bonnefold et al. 2012).  

Rare and low-frequency variants with individual large effect sizes have also been 

reported in other complex diseases. Five rare (MAF <1%) variants in nucleotide-

binding oligomerization domain containing 2 gene (NOD2) were associated with 

Crohn’s disease; they appear to act independently from each other as well as from the 

previously implicated low frequency causal variants (Hugot et al. 2001; Ogura et al. 

2001; Rivas et al. 2011). For example, a rare missense variant in myosin, heavy chain 6, 

cardiac muscle, alpha gene (MYH6) was associated with ~12-fold increase in risk of 

sick sinus syndrome (Holm et al. 2011). Whole genome sequencing efforts of affected 

trios has led to the identification of several de novo mutations implicated in the 

aetiology of autism (O’Roak et al. 2011; Sanders et al. 2012; Neale et al. 2012; O’Roak 

et al. 2012), schizophrenia (Girard et al. 2011; Xu et al. 2011) and intellectual disability 

(Vissers et al. 2010).  

 

3.1.6. Low-frequency/rare variants and CAD 

Several low-frequency/rare variants have been associated with CAD so far. The most 

well-known example is rs3798220 (MAF~2% - OR=1.92) at the SLC2A-LPAL2-LPA 

locus that was first came to light by haplotype association analysis (Tregouet et al. 

2009) and subsequently was replicated by a custom-made 50K gene array (Clarke et al. 
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2009; The IBC 50K CAD Consortium, 2011). Moreover, application of haplotype 

association analysis to the WTCCC GWA data identified rare variants at a known locus 

cyclin-dependent kinase inhibitor 2B (CDKN2B) and three new genes for CAD – 

eukaryotic translation initiation factor 4H (EIF4H), hemochromatosis type 2 (HFE2) 

and zinc finger and BTB domain containing 43  (ZBTB43) (Zhu et al. 2010) (Table 

3.1.1). 

Table 3.1.1: Risk haplotypes and their corresponding frequencies in cases and controls for 
WTCCC CAD data 

Gene Chromosome Start SNP End SNP Freq in 
cases 

Freq in 
controls P-value 

CDKN2B 9 rs3217986 rs10965245 

0.0119  0.0060 1.27×10-3 

0.0156  0.0077 1.55×10-4 
0.0457  0.0373 2.40×10-2 
0.0114  0.0075 2.45×10-2 

EIF4H 7 rs150880  rs17146094 0.0119  0.0005 1.13×10-15 
HFE2 1 rs12091564  rs10218795 0.0065  0.0005 6.54×10-8 

ZBTB43 9 rs10987465  rs7038622 
0.0068  0.0009 5.15×10-7 
0.0039  0.0005 1.86×10-4 
0.0039  0.0003 4.90×10-5 

SNP – single nucleotide polymorphism, Freq- frequency, P-value – level of statistical 
significance on Fisher’s exact test 
 
 

Despite these initial findings, our knowledge of the impact of low-frequency/rare 

variants on CAD remains limited and further investigation and elucidation of their role 

and susceptibility/protective properties is needed in order to offer a better individual 

prediction of CAD disease risk. 
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3.1.7. Hypothesis 

Patients with CAD show over-representation of low-frequency/rare alleles at some loci 

compared to CAD-free controls. 

 

3.1.8. Objectives 

- To evaluate the burden of low-frequency/rare variants in individuals with CAD 

compared with controls using data from the IBC 50K CAD chip. 

- To identify biologically strong CAD candidate genes for further examination in 

relation to low-frequency/rare variants 
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  3.2. Materials and Methods 

3.2.1. Characteristics of study cohorts 

The primary analysis was performed in >18,000 individuals from four European 

populations, all members of the IBC 50K CAD Consortium (The IBC 50K CAD 

Consortium, 2011) known as BLOODOMICS (Bezzina et al. 2010; Winkelmann et al. 

2001), the British Heart Foundation Family Heart Study (BHF-FHS) (Samani et al. 

2005; Wellcome Trust Case Control Consortium, 2007), the PennCATH study (Lehrke 

et al. 2007; Kathiresan et al. 2009) and the Precorious Coronary Artery Disease 

(PROCARDIS) study (Clarke et al. 2009).  

• BLOODOMICS 

The Dutch component of the BLOODOMICS collaboration includes patients with CAD 

drawn from the Academic Medical Centre Amsterdam Premature Atherosclerosis Study 

(AMC-PAS) and the AGNES study (Bezzina et al. 2010). The CAD-free controls were 

recruited from the Sanquin Common Controls (SANQUIN-CC) study. 

AMC-PAS/Sanquin: Patients with symptomatic CAD (defined as MI, coronary 

revascularization, or evidence of at least 70% stenosis in a major epicardial artery) 

before the age of 51 years were recruited as part of a prospective cohort study (AMC-

PAS) (Bezzina et al. 2010). Blood donors from the north-west region of the Netherlands 

were established as controls for this study. Participating donors were recruited at routine 

Sanquin Blood Bank donation sessions (SANQUIN-CC). More than 95% of the 

controls are from the same region as the cases of the AMC-PAS cohort (Bezzina et al. 

2010). 

AGNES: The AGNES case-control set consisted of individuals with a first acute ST-

elevation myocardial infarction (Bezzina et al. 2010), hence the whole set was 
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considered as cases in this project. AGNES cases had ECG-registered ventricular 

fibrillation occurring before reperfusion therapy for an acute and first ST-elevation 

myocardial infarction. AGNES controls were individuals with a first acute ST-elevation 

myocardial infarction but without ventricular fibrillation. All individuals were recruited 

at seven heart centres in the Netherlands between 2001–2008 (Bezzina et al. 2010). 

Individuals with an actual non-ST-elevation MI, prior MI, congenital heart defects, 

known structural heart disease, severe comorbidity, electrolyte disturbances, trauma at 

presentation, recent surgery, previous coronary artery bypass graft or use of class I and 

III antiarrhythmic drugs were excluded (Bezzina et al. 2010). Individuals who 

developed ventricular fibrillation during or after percutaneous coronary intervention 

were not eligible. Furthermore, because early reperfusion limits the opportunity of 

developing ventricular fibrillation, potential control subjects undergoing percutaneous 

coronary intervention within 2h after onset of myocardial ischemia symptoms were not 

included (Bezzina et al. 2010). This time interval was based on the observation that 

>90% of cases developed ventricular fibrillation within 2h after onset of symptoms 

(Bezzina et al. 2010). 

The German component of the BLOODOMICS collaboration provided cases and 

controls from the LUdwigshafen RIsk and Cardiovascular Health (LURIC) study, 

supplemented by additional controls from the Mannheim study (Bugert et al. 2003). 

LURIC: LURIC is a prospective study of cardiovascular death in individuals of German 

ancestry resident in southwest Germany. Each subject who underwent elective coronary 

angiography and left ventriculography between June 1997 and January 2000 

(Winkelmann et al. 2001) was included in the study. CAD in this project was defined by 

troponin-confirmed MI or presence of visible luminal narrowing of ≥50% in at least one 
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coronary vessel. Individuals with ≥20% but <50% stenosis were excluded from the 

analyses. Individuals with stenosis <20% were regarded as controls (Winkelmann et al. 

2001).  

Mannheim study: Additional controls consisted of 1,187 healthy, unrelated blood 

donors 18–68 years of age (Bugert et al. 2003). They were recruited in 2004 and 2005 

by the Institute of Transfusion Medicine and Immunology (Mannheim, Germany) and 

share the ethnic background with the LURIC patients. According to the German 

guidelines for blood donation, all blood donors were examined by standard 

questionnaires. All blood donors consented to the use of their samples for research 

studies. 

• British Heart Foundation Family Heart Study (BHF-FHS) 

Individuals of European ancestry with validated history of either MI or coronary 

revascularisation (coronary artery bypass surgery or percutaneous coronary angioplasty) 

before their 66th birthday (Samani et al. 2005) were included in this study. Recruitment 

was carried out on a national basis in the UK through (a) responses to a continued UK-

wide media campaign (b) responses to posters placed within hospitals and GP surgeries 

through the UK and (c) in a pilot-phase contacting patients listed on computer based 

CAD databases in the two lead centres (Leeds and Leicester) (Samani et al. 2005). The 

recruitment phase lasted five years (April 1998 to November 2003).  

Controls were European Caucasian healthy blood donors between 30-70 years of age 

recruited all over the UK through the UK National Blood Service as part of the 

Wellcome Trust Case Control Consortium study (Wellcome Trust Case Control 

Consortium, 2007). Apart from age and sex, limited information was available on the 

controls. 
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• PennCATH 

The PennCATH cohort is a University of Pennsylvania Medical Centre based coronary 

angiographic study (Lehrke et al. 2007; Kathiresan et al. 2009). Information on this 

cohort is extensively provided in Chapter 2. 

• Precocious Coronary Artery Disease (PROCARDIS) 

Ascertainment criteria for PROCARDIS probands were MI or symptomatic acute 

coronary syndrome (ACS), before the age of 66 years (Clarke et al. 2009). Diagnosis of 

MI required documentation of two or more of: (a) typical ischaemic chest pain, 

pulmonary oedema, syncope or shock; (b) development of pathological Q-waves and/or 

appearance or disappearance of localised ST-elevation followed by T-wave inversion in 

two or more standard electrocardiograph leads; (c) increase in concentration of serum 

enzymes consistent with MI (eg creatine kinase more than twice the upper limit of 

normal) (Clarke et al. 2009). Diagnosis of ACS required documentation of 

hospitalisation for one of the following indications: (a) unstable angina diagnosed by 

typical ischemic chest pain at rest associated with reversible ST-depression in two or 

more standard electrocardiograph leads; (b) thrombolysis for suspected MI (as indicated 

by localised ST-elevation in two or more standard electrocardiograph leads) even 

without later development of T-wave inversion, Q-waves, or a significant enzyme rise; 

or (c) emergency revascularisation (i.e. during same admission) following presentation 

with typical ischemic chest pain at rest (Clarke et al. 2009). Parents and up to four 

unaffected siblings per family were recruited wherever possible to augment the recovery 

of linkage phase information. This is a multicentre study and subjects were recruited in 

four countries: Sweden, UK, Germany and Italy. 99.5% of the study participants 

reported white European ancestry. 
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• The London Life Sciences Prospective Population Cohort (LOLIPOP) 

LOLIPOP is an ongoing population based cohort study that recruited  30,000 Indian 

Asian and European white men and women, aged 35-75 years, from the lists of 58 GP 

surgeries in West London, United Kingdom (Chambers et al. 2008, The IBC 50K CAD 

Consortium, 2011). Response rates averaged 62%; there are no major differences 

between responders and non-responders with respect to age, sex, co-morbidity and 

available risk factors (Chambers et al. 2008). DNA was available for ≈5000 Indian 

Asian participants. Indian Asians were selected if all four grandparents originated from 

the Indian subcontinent.  

• Pakistan Risk of Myocardial Infarction Study (PROMIS) 

PROMIS is an ongoing case-control study of MI in six centres in urban Pakistan 

(Saleheen et al. 2009; The IBC 50K CAD Consortium, 2011). Participants in the recent 

study were recruited between 2005 and 2008. MI cases had symptoms within 24 hours 

of hospital presentation, typical electrocardiographic changes, and a positive troponin-I 

test.  

Controls were individuals without a history of cardiovascular disease. They were 

frequency-matched to cases by sex and age (in 5 years bands) and concurrently 

identified in the same hospitals as index cases because they were either: (a) visitors of 

patients attending the outpatient department; (b) patients attending the outpatient 

department for routine non-cardiac complaints, or (c) non-blood related visitors of index 

MI cases. People with recent illnesses or infections were not eligible. Information was 

recorded on personal and paternal ethnicity, spoken language dietary intake, lifestyle 

factors and other characteristics. 
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3.2.2. Illumina HumanCVD BeadChip 

HumanCVD BeadChip array (Illumina), also known as the “ITMAT-Broad-CARe” 

(IBC) 50K array, harbours ~50,000 SNPs to efficiently capture genetic diversity across 

~2,100 candidate genes and pathways related to cardiovascular, inflammatory and 

metabolic phenotypes such as CAD, type 2 diabetes, lipids and hypertension (Keating et 

al. 2008). Variants in genes associated with sleep, lung and blood diseases were also 

included. Genetic variation within the majority of these regions is captured in a density 

equal to or greater than that afforded by GWAs (Keating et al. 2008). The IBC array has 

content derived from the International HapMap Consortium and re-sequencing data 

from the SeattleSNPs and National Institute of Environmental Health Sciences (NIEHS) 

SNPs consortia, with a focus upon inclusion of lower-frequency variants and variants 

with a higher likelihood of functionality (Lanktree et al. 2011).  

Genes were prioritised; “high-priority genes” were densely tagged (all SNPs with 

MAF>2% tagged at r²>0.8), “intermediate priority genes” were moderately well 

covered (all SNPs with MAF>5% tagged at r²>0.5) and “low-priority genes” had only 

non-synonymous SNPs and known functional variants with MAF>1% (Keating et al. 

2008). 

A “cosmopolitan tagging” approach was used to select SNPs providing high coverage 

of selected genes in 4 HapMap populations (CEPH Caucasians, Han Chinese, Japanese, 

Yorubans). Approximately 17,000 SNPs included on the IBC array have a MAF<5% in 

individuals of European ancestry. For the majority of regions, SNPs were designed to be 

inclusive of the intronic, exonic, and flanking un-translated regions (UTRs), as well as 

to provide coverage of the proximal promoter regions designed for the higher-priority 
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loci. Of SNPs included on the IBC array, ~65% are intronic, 9.9% are exonic and 7.7% 

are non-synonymous (Lanktree et al. 2011).  

 

3.2.3. Quality controls 

Quality controls were performed in each cohort independently prior to association 

analysis. Samples were excluded where individual call rates were<90%. SNPs were 

removed for call rates of <90% or for the Hardy-Weinberg equilibrium cut-off 

P≤0.0001. 

 

3.2.4. Rare variant analysis 

The single-point analysis of rare variants is usually largely under-powered, because rare 

alleles are observed in very few subjects. In order to maximize the statistical power over 

single marker analysis, all low-frequency/rare alleles (MAF<3%) within defined regions 

(genes) were combined into a single “super locus”. Contingency tables of the absence or 

presence (at least 1) of low frequency SNP variants in cases and controls for each region 

were constructed. Differences in the proportion of cases and controls carrying rare 

“super loci” were tested in a logistic regression model, adjusted for the effects of age 

and sex covariates in STATA v12. Genes were defined based on the co-ordinates of 

known genes and included 5,000 base pairs flanking either side of each gene’s 

transcriptional start and stop site to include SNPs affecting regulatory elements.  
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3.2.5. Statistical methods 

The association analysis consisted of two main stages: 

The primary analysis was conducted separately in each participating study. Within each 

cohort “super loci” associations with CAD were analysed by logistic regression model 

with adjustment for age and sex and any other study-specific covariates where 

appropriate. The β coefficient reflects the magnitude of the accumulation of low-

frequency/rare variants for the subjects in each cohort. Sensitivity analyses were 

undertaken (MAF 1-5%) in an effort to investigate whether MAF definition had an 

impact on the observed associations.  

Meta-analysis of all individual study associations was conducted using Fisher’s method 

(based on P-values) separately in each ethnic group (Europeans and South Asians) using 

STATA v12. Bonferroni correction was used to correct for multiple testing. Cross-

ethnicity replication of the statistically significant findings was then undertaken. 

Single-variant analyses (logistic regression tests in PLINK) were also conducted for the 

LPA locus low-frequency/rare variants in each European study.  

Conditional analysis was undertaken for LPA locus in order to investigate if the 

association signal resulted from the collective contribution of all low-frequency/rare 

variants in the locus or it was just driven by one leading SNP. 
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3.2.6. Power calculation 

Using a Bonferroni adjusted alpha value (0.05/number of tests) to achieve a power of 

≥80%, the detectable change in proportion of subjects with at least one rare allele 

(MAF≤3%) in the case group is listed in the Table 3.2.1 for a given proportion of 

subjects with at least one rare allele in the control group. For example in Europeans 

where 3% of controls have at least one rare allele, a significant difference with 80% 

power will be detected, if ≥4.36% (3%+1.36%) of the case group had at least one rare 

allele. 

Table 3.2.1: Statistical power calculations for a fixed proportion of individuals in the control 
group in Europeans and South Asians 

 Control% 
Detectable Delta 1 2 3 4 5 

Europeans 0.85% 1.14% 1.36% 1.53% 1.69% 
South Asians 1.38% 1.80% 2.11% 2.37% 2.60% 

Detectable delta – Difference between CAD cases and controls that need to be observed for 
≥80% power 
 
 

Figure 3.2.1: Power curve estimates in Europeans and South Asians. The control proportion 
is fixed whereas the detectable case proportion with 80% power is indicated by the red line; 
Europeans – blue, South Asians – green  

 

The power calculations were conducted in STATA v12. 
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3.3. Results 

3.3.1. Characteristics of study cohorts 

Following quality control procedures, meta-analyses of four European studies of 9,139 

cases and 9,974 controls, and two South Asian studies of 4,448 cases and 4,313 

controls, all part of the IBC 50K CAD Consortium (The IBC 50K CAD Consortium 

2011), were performed. The characteristics of the European and South Asian individuals 

included in the analysis are shown in Table 3.3.1 and Table 3.3.2 respectively.  

 
Table 3.3.1: Characteristics of European populations from IBC 50K CAD Consortium included 
in the analysis.  

Study Number of 
subjects Cases/Controls %male Cases - age 

(years) 

BHF-FHS 4621 2158/2463 63.3 40.8±7.7 
BLOODOMICS 

Dutch 
2684 1462/1222 72.6 48.8±12.0 

BLOODOMICS 
German 

3842 1910/1932 63.3 59.2±10.9 

PennCATH 1516 489/1027 66.0 54.2±8.8 
PROCARDIS 6450 3120/3330 59.2 61.0±8.7 

In total 19,113 9,139/9,974 - - 
Data are counts and percentages or means and standard deviations 

Table 3.3.2: Characteristics of South Asian populations from IBC 50K CAD Consortium 
included in the analysis.  

Study Number of 
subjects Cases/Controls %male Cases - age 

(years) 

LOLIPOP 5000 2592/2408 83.7 NA 
PROMIS 3761 1856/1905 82.5 53.3±10.7 

In total 8,761 4,448/4,313 - - 
Data are counts and percentages or means and standard deviations 

There was a good numerical balance between patients with CAD and CAD-free controls 

included in the analysis. As expected, a majority of CAD patients were males, this was 

particularly apparent in the two South Asian populations. 
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After exclusion of common variants (here defined as those MAF>3%), the number of 

SNPs taken forward for low-frequency/rare variant focused analysis in each study 

ranged from 11,688-12,910. Application of the collapsing statistical method yielded a 

total of 1,908 regions (genes/super loci), of which 1,362 contained at least two low-

frequency/rare variants. On average, 5 low-frequency/rare variants were within each 

locus in each study. 

Of 1,362 identified loci with low-frequency/rare variants, 94 (4.9%) showed nominal 

association with CAD (P<0.05) in the meta-analysis of individuals of white European 

ancestry. The magnitude of identified associations between the loci and CAD was not 

dependent on the total number of low-frequency/rare variants in the locus. For example 

in European studies, nuclear receptor subfamily 4, group A, member 1 (NR4A1) gene 

with just 4 low-frequency/rare variants was associated with CAD at P=0.0006, 

compared to methionine sulfoxide reductase A (MSRA) gene that contained 24 to 28 

low-frequency/rare variants and showed a P=0.0011 (Table 3.3.3). 

 

3.3.2. Analysis of association between low-frequency/rare variants and CAD in 

European populations from IBC 50K CAD Consortium  

Lipoprotein(a) (LPA) gene on chromosome 6 showed the most significant association 

with CAD in the meta-analysis of individuals of white European ancestry 

(P=1.26x10̄⁹). It was the only gene that retained its statistical association after 

Bonferroni correction for multiple testing (calculated at P<2.62x10̄5) (Table 3.3.3).  
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Table 3.3.3: Analysis of association between low-frequency/rare SNPs and CAD in Europeans – top association signals from the meta-analysis  

Candidate 
Gene 

BHF-FHS 
P-value 

No of SNPs 
in locus 

BLOODOMICS  
P-value 

No of SNPs 
in locus 

PennCATH 
P-value 

No of SNPs 
in locus 

PROCARDIS 
P-value 

No of SNPs 
in locus 

Meta-
analysis  
P-value 

LPA 0.0004 6 0.0005 6 0.0060 5 5.22x10̄⁶ 5 1.26x10̄⁹ 
NR4A1 0.6815 4 0.0008 4 0.5946 4 0.0115 4 0.0006 

TNFRSF11A 0.5504 5 1.05x10̄5 3 0.9668 3 0.9763 4 0.0010 
MSRA 0.9131 25 0.0140 26 0.0061 28 0.1989 24 0.0011 
RARB 0.9363 17 0.0008 9 0.0171 13 0.6076 12 0.0012 

VEGFC 0.9354 9 6.73x10̄5 9 0.3570 10 0.8967 9 0.0015 
PPARGC1B 0.0030 12 0.0448 12 0.0048 14 0.8451 11 0.0019 

LCT 0.3950 5 8.98x10̄6 3 0.2648 5 0.5962 3 0.0021 
TAP1 0.0072 4 0.4862 4 0.0100 3 0.9631 5 0.0021 

TNFRSF10A 0.2495 5 0.0051 4 0.1094 5 0.2688 3 0.0021 
LPA – lipoprotein(a) gene, NR4A1 – nuclear receptor subfamily 4 group A member 1 gene, TNFRSF11A – tumor necrosis factor receptor superfamily 
member 11a NFKB activator gene, MSRA – methionine sulfoxide reductase A gene, RARB – retinoic acid receptor beta gene, VEGFC – vascular endothelial 
growth factor C gene, PPARGC1B – peroxisome proliferator-activated receptor gamma co-activator 1 beta gene, LCT – lactase gene, TAP1 – transporter 1 
ATP-binding cassette sub-family B (MDR/TAP) gene, TNFRSF10A – tumor necrosis factor receptor superfamily member 10a gene, P-value – level of 
statistical significance  
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In three studies (BHF-FHS, BLOODOMICS and PROCARDIS) there was a consistent 

over-representation of rare alleles of LPA in CAD cases compared to controls (Table 

3.3.4). In PennCATH, the association was in the opposite direction. Overall, carriers of 

LPA low-frequency/rare alleles were more common in individuals with CAD than 

amongst CAD-free controls (5.9% versus 3.7%, respectively). The power calculation 

showed that there is reasonable power to detect differences between the two groups. 

Table 3.3.4: Association between LPA gene and CAD in Europeans – analysis based on low 
frequency/rare variants 

Study 
population B±SE 95% 

LCI 
95% 
UCI P-value 

Cases 
+/- 
(%) 

Controls 
+/- 
(%) 

BHF-FHS 0.50±0.34 0.2208 0.7783 0.0004 
154/1965 
(7.3%) 

102/2338 
(4.2%) 

BLOODOMICS 0.58±0.17 0.2562 0.9058 0.0005 
127/2896 
(4.2%) 

59/2445 
(2.4%) 

PennCATH -0.93±0.34 -1.6014 -0.2673 0.0060 
11/478 
(2.2%) 

58/969 
(5.6%) 

PROCARDIS 0.62±0.14 0.3514 0.8821 5.22x10̄⁶ 
197/2930 
(6.3%) 

116/3214 
(3.5%) 

Overall - - - 1.29x10-9 
489/8269 
(5.9%) 

335/8966 
(3.7%) 

P value – level of statistical significance, B – beta coefficient, SE – standard error, LCI – lower 
confidence interval, UCI – upper confidence interval, “+” – number (%) of carriers of low 
frequency/rare variants, “-” – individuals with no low frequency/rare variants. 
 

Of six LPA variants in the locus, five were intronic and very rare (MAF<0.001) and one 

exonic and low frequency variant (MAF=0.026) (Table 3.3.5).  

Table 3.3.5: Low frequency/rare SNPs in LPA gene in BHF-FHS 

SNP Position Major/minor 
allele MAF Functional class 

rs6922557 160878574 C/G 0.0004 Intronic 
rs3798220 160881127 C/T 0.0264 Exonic (non-synonymous) 
rs9347412 160886103 G/A 0.0001 Intronic 
rs6922216 160929111 G/A 0.0007 Intronic 
rs7755463 160932260 T/C 0.0014 Intronic 
rs6455697 160988674 C/A 0.0008 Intronic 

SNP – single nucleotide polymorphism 
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Cross-analysis of this locus in South Asians did not show evidence for its association 

with CAD (P=0.67) (Table 3.3.6). 

Table 3.3.6: Association between LPA gene and CAD is South Asians – analysis based on low 
frequency/rare variants 

Study 
population B±SE 95% 

LCI 
95% 
UCI P-value 

Cases 
+/- 
(%) 

Controls 
+/- 
(%) 

LOLIPOP 0.06±0.12 -0.1674 0.2845 0.6116 
178/2375 
(7.0%) 

151/2206 
(6.4%) 

PROMIS -0.16±0.16 -0.4709 0.1415 0.2918 
79/1777 
(4.3%) 

99/1806 
(5.2%) 

Overall - - - 0.67 
257/4152 
(6.2%) 

250/4012 
(6.2%) 

P value – level of statistical significance, B – beta coefficient, SE – standard error, LCI – lower 
confidence interval, UCI – upper confidence interval, “+” – number (%) of carriers of low 
frequency/rare variants, “-” – individuals with no low frequency/rare variants. 
 

Further analysis of each single rare variant in LPA confirmed that only rs3798220 was 

associated with CAD, individually. No other single rare variant in the region was 

statistically significantly associated with CAD (Table 3.3.7).  

Table 3.3.7: LPA individual SNP-based analysis of association with CAD 

SNP – single nucleotide polymorphism, P-value – level of statistical significance 
 

The conditional analysis indicated that the association signal identified between LPA 

and CAD was mainly driven by rs3798220. 

 
 

SNP BHF-FHS 
P-value 

BLOODMICS 
Dutch P-value 

BLOODOMICS  
German  
P-value 

PennCATH 
P-value 

PROCARDIS 
P-value 

rs6922557 0.3521 NA NA 0.9993 NA 
rs3798220 1.31x10-7 0.0868 0.0015 0.0502 1.07x10̄6 

rs9347412 0.3521 0.3605 0.1596 NA NA 
rs6922216 0.5202 0.6719 0.5706 0.9985 0.2453 
rs7755463 0.2578 0.8038 0.5150 0.0879 0.4062 
rs6455697 0.3438 NA NA 0.2341 0.9786 
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3.3.3. Analysis of association between low-frequency/rare variants and CAD in 

South Asian populations from IBC 50K CAD Consortium  

A meta-analysis of two South Asian populations with a total of 4,448 CAD cases and 

4,313 CAD-free controls was also undertaken. A total of 1,880 genes/loci; each with at 

least 2 low-frequency/rare variants were identified in this analysis. Of those, 86 (4.6%) 

showed at least nominal association with CAD (P<0.05). Coagulation factor VII – 

serum prothrombin conversion accelerator (F7) and coagulation factor X (F10) genes 

on chromosome 13 and TNF receptor-associated factor 2 (TRAF2) gene on chromosome 

9 retained their statistical significance of association with CAD in the meta-analysis 

after multiple testing correction (Table 3.3.8). The identified associations were driven 

by signals from LOLIPOP Study; there were no significant differences in the collective 

accumulation of rare variants among cases and controls in PROMIS study (Table 3.3.9, 

Table 3.3.10, and Table 3.3.11).  

Table 3.3.8: Analysis of association between low-frequency/rare SNPs and CAD in South 
Asians – top association signals from the meta-analysis 

Candidate 
Gene 

LOLIPOP 
P-value 

No of  
SNPs in 

locus 

PROMIS 
P-value 

No of  
SNPs in 

locus 

Meta-analysis  
P-value 

F10 7.88x10̄12 13 0.1287 15 1.52x10̄11 

F7 6.57x10̄12 15 0.5808 14 5.47x10̄11 

TRAF2 1.09X10̄8 24 0.9618 25 1.09x10̄7 

MYBPC2 0.6140 9 9.29x10̄5 9 0.0003 
IL8RA 0.0261 2 0.0160 5 0.0021 
APOE 0.0490 12 0.0086 12 0.0021 

XRCC1 0.6888 5 0.0013 4 0.0043 
DRD2 0.2047 5 0.0049 5 0.0047 

ADRBK1 0.0074 6 0.1611 7 0.0054 
LIPA 0.1426 3 0.0007 4 0.0058 

F10 – coagulation factor X gene, F7 – coagulation factor VII (serum prothrombin conversion 
accelerator) gene, TRAF2 – TNF receptor-associated factor 2 gene, MYBPC2 – myosin binding 
protein C fast type gene, IL8RA – interleukin 8 receptor A gene, APOE – apolipoprotein E gene, 
XRCC1 – Xray repair complementing defective repair in Chinese hamster cells 1 gene, DRD2 – 
dopamine receptor D2 gene, ADRBK1 – adrenergic, beta, receptor kinase 1 gene, LIPA – lipase 
A lysosomal acid cholesterol esterase gene, P-value – level of statistical significance. 
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Table 3.3.9: Association between F10 gene and CAD in South Asians – analysis based on low-
frequency/rare variants 

Study 
population B±SE 95% 

LCI 
95% 
UCI P-value 

Cases 
+/- 
(%) 

Controls 
+/- 
(%) 

LOLIPOP 0.78±0.11 0.55 1.00 7.88x10̄12 
271/2552 

(10.6) 
122/2357 

(5.2) 

PROMIS 0.19±0.13 -0.06 0.44 0.1287 
144/1856 

(7.8) 
129/1905 

(6.8) 

Overall - - - 1.52x10̄11 
415/4408 

(9.4) 
251/4262 

(5.9) 
P value – level of statistical significance, B – beta coefficient, SE – standard error, LCI – lower 
confidence interval, UCI – upper confidence interval, “+” – number (%) of carriers of low-
frequency/rare variants, “-” – individuals with no low-frequency/rare variants. 
 

 

Table 3.3.10: Association between F7 gene and CAD in South Asians – analysis based on low-
frequency/rare variants 

Study 
population B±SE 95% 

LCI 
95% 
UCI P-value 

Cases 
+/- 
(%) 

Controls 
+/- 
(%) 

LOLIPOP 0.75±0.11 0.54 0.97 6.57x10-12 
286/2553 

(11.2) 
133/2357 

(5.6) 

PROMIS 0.07±0.13 -0.18 0.32 0.5808 
139/1856 
(7.5%) 

140/1905 
(7.3%) 

Overall - - - 5.47x10̄11 
425/4409 

(9.6) 
273/4262 

(6.4) 
P value – level of statistical significance, B – beta coefficient, SE – standard error, LCI – lower 
confidence interval, UCI – upper confidence interval, “+” – number (%) of carriers of low-
frequency/rare variants, “-” – individuals with no low-frequency/rare variants. 
 
 
 
Table 3.3.11: Association between TRAF2 gene and CAD in South Asians – analysis based on 
low-frequency/rare variants 

Study 
population B±SE 95% 

LCI 
95% 
UCI P-value 

Cases 
+/- 
(%) 

Controls 
+/- 
(%) 

LOLIPOP 0.48±0.83 0.31 0.64 1.09x10-8 
446/2553 

(17.5) 
275/2357 

(11.7) 

PROMIS 0.01±0.11 -0.22 0.23 0.96 
167/1856 

(9.0) 
177.1905 

(9.3) 

Overall - - - 1.09x10̄7 
613/4409 

(13.9) 
452/4262 

(10.6) 
P value – level of statistical significance, B – beta coefficient, SE – standard error, LCI – lower 
confidence interval, UCI – upper confidence interval, “+” – number (%) of carriers of low-
frequency/rare variants, “-” – individuals with no low-frequency/rare variants. 
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Cross-replication of these genes in the European population did not provide evidence 

for association (F10: P=0.18, F7: P=0.11, and TRAF2: P=0.5) (Tables 3.12, Table 3.13 

and Table 3.14). 

 
Table 3.3.12: Association between F10 gene and CAD in Europeans – analysis based on low-
frequency/rare variants 

Study 
population B±SE 95% 

LCI 
95% 
UCI P-value 

Cases 
+/- 
(%) 

Controls 
 +/- 
(%) 

BHF-FHS -0.22±0.23 -0.68 0.23 0.33 
40/2120 

(1.9) 
53/2440 

(2.2) 

BLOODOMICS 0.09±0.20 -0.29 0.48 0.64 
66/3023 

(2.2) 
52/2503 

(2.1) 

PennCATH 0.21±0.34 -0.45 0.88 0.53 
14/489 
(2.9) 

28/1027 
(2.7) 

PROCARDIS 0.43±0.20 0.04 0.82 0.30 
76/3127 

(2.4) 
58/3331 

(1.7) 

Overall - - - 0.18 
196/8759 

(2.2) 
191/9301 

(2.1) 
P value – level of statistical significance, B – beta coefficient, SE – standard error, LCI – lower 
confidence interval, UCI – upper confidence interval, “+” – number (%) of carriers of low-
frequency/rare variants, “-” – individuals with no low-frequency/rare variants. 
 

 
 
Table 3.3.13: Association between F7 gene and CAD in Europeans – analysis based on low-
frequency/rare variants 

Study 
population B±SE 95% 

LCI 
95% 
UCI P-value 

Cases 
+/- 
(%) 

Controls 
+/-  
(%) 

BHF-FHS 0.14±0.16 -0.18 0.46 0.39 
100/2120 

(4.7) 
95/2439 

(3.9) 

BLOODOMICS 0.72±0.13 -0.18 0.32 0.57 
160/3022 

(5.3) 
129/2503 

(5.2) 

PennCATH 0.30±0.28 -0.26 0.85 0.30 
22/489 
(4.5) 

36/1027 
(3.5) 

PROCARDIS 0.24±0.15 -0.06 0.53 0.12 
135/3127 

(4.3) 
120/3331 

(3.6) 

Overall - - - 0.11 
417/8758 

(4.8) 
380/9300 

(4.1) 
P value – level of statistical significance, B – beta coefficient, SE – standard error, LCI – lower 
confidence interval, UCI – upper confidence interval, “+” – number (%) of carriers of low-
frequency/rare variants, “-” – individuals with no low-frequency/rare variants. 
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Table 3.3.14: Association between TRAF2 gene and CAD in Europeans – analysis based on 
low-frequency/rare variants 

Study 
population B±SE 95% 

LCI 
95% 
UCI P-value 

Cases 
+/- 
(%) 

Controls 
+/- 
(%) 

BHF-FHS -0.01±0.08 -0.17 0.15 0.92 
440/2120 

(20.8) 
507/2440 

(20.8) 

BLOODOMICS 0.01±0.07 -0.13 0.16 0.87 
528/3023 

(17.5) 
426/2504 

(17.0) 

PennCATH -0.06±0.14 -0.34 0.22 0.69 
94/489 
(19.2) 

214/1027 
(20.8) 

PROCARDIS -0.11±0.07 -0.25 0.04 0.14 
569/3127 

(18.2) 
652/3331 

(19.6) 

Overall - - - 0.52 
1631/8759 

(18.6) 
1799/9302 

(19.3) 
P value – level of statistical significance, B – beta coefficient, SE – standard error, LCI – lower 
confidence interval, UCI – upper confidence interval, “+” – number (%) of carriers of low-
frequency/rare variants, “-” – individuals with no low-frequency/rare variants. 
 

 

Further sensitivity analyses using different minor allele frequency thresholds were 

undertaken to examine whether selected low frequency variant definition had an impact 

on the observed associations. Using a low threshold in the analysis (MAF<1%) led to 

elimination of all four significant loci associations reported above (Table 3.3.15, Table 

3.3.16, Table 3.3.17, Table 3.3.18). 
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Table 3.3.15: Sensitivity analysis between LPA gene and different minor allele frequency thresholds in Europeans  

Study 

MAF-1% MAF-2% MAF-3% MAF-4% MAF-5% 

P-value 
No of 

SNPs in 
locus 

P-value 
No of  

SNPs in 
locus 

P-value 
No of  

SNPs in 
locus 

P-value 
No of  

SNPs in 
locus 

P-value Rare SNPs 

BHF-FHS 0.1354 5 0.1354 5 0.0004 6 0.0122 7 0.0122 7 
BLOODOMICS 0.6662 5 0.0004 6 0.0005 6 0.1730 7 0.1730 7 

PennCATH 0.1374 4 0.0060 5 0.0060 5 0.1435 6 0.1435 6 
PROCARDIS 0.4421 4 0.4421 4 5.22x10̄⁶ 5 0.0233 6 0.0233 6 
Meta-analysis 

P-value 
0.2979 - 0.0508 - 1.26x10̄⁹ - 0.0043 - 0.0043 - 

MAF – minor allele frequency, P-value – level of statistical significance 

 

Table 3.3.16: Sensitivity analysis between F10 gene and different minor allele frequency thresholds in South Asians 

Study 

MAF-1% MAF-2% MAF-3% MAF-4% MAF-5% 

P-value 
No of  

SNPs in 
locus 

P-value 
No of 

SNPs in 
locus 

P-value 
No of  

SNPs in 
locus 

P-value 
No of  

SNPs in 
locus 

P-value 
No of 

SNPs in 
locus 

LOLIPOP 0.3213 12 0.3213 12 7.88x10̄12 13 2.89x10̄12 14 2.89x10̄12 14 
PROMIS 0.2164 14 0.2164 14 0.1287 15 0.0307 16 0.0307 16 

Meta-analysis 
P-value 

0.6173 - 0.6173 - 1.52x10̄11 - 7.24x10̄6 - 7.24x10̄6 - 

MAF – minor allele frequency, P-value – level of statistical significance 
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Table 3.3.17: Sensitivity analysis between F7 gene and different minor allele frequency thresholds in South Asians 

Study 

MAF-1% MAF-2% MAF-3% MAF-4% MAF-5% 

P-value 
No of 

SNPs in 
locus 

P-value 
No of 

SNPs in 
locus 

P-value 
No of 

SNPs in 
locus 

P-value 
No of  

SNPs in 
locus 

P-value 
No of 

SNPs in 
locus 

LOLIPOP 0.6095 14 0.6095 14 6.57x10-12 15 1.43x10-5 16 1.43x10-5 16 
PROMIS 0.8117 13 0.8117 13 0.5808 14 0.7640 15 0.7640 15 

Meta-analysis 
P-value 

0.7643 - 0.7643 - 5.47x10-11 - 7.53x10-5 - 7.53x10-5 - 

MAF – minor allele frequency, P-value – level of statistical significance 

 

 

Table 3.3.18: Sensitivity analysis between TRAF2 gene and different minor allele frequency thresholds in South Asians 

Study 

MAF-1% MAF-2% MAF-3% MAF-4% MAF-5% 

P-value 
No of 

SNPs in 
locus 

P-value 
No of 

SNPs in 
locus 

P-value 
No of 

SNPs in 
locus 

P-value 
No of  

SNPs in 
locus 

P-value 
No of 

SNPs in 
locus 

LOLIPOP 0.0543 20 0.1996 23 1.09x10-8 24 6.26x10-5 25 6.26x10-5 25 
PROMIS 0.6692 22 0.9618 25 0.9618 25 0.7433 26 0.7433 26 

Meta-analysis 
P-value 

0.1812 - 0.4110 - 1.09x10-7 - 0.0005 - 0.0005 - 

MAF – minor allele frequency, P-value – level of statistical significance 

 

 



171 

 

3.4. DISCUSSION 

Analysis of associations between low-frequency/rare variants and complex disease is a 

challenging task. GWA studies concentrated on the investigation of common variation 

therefore discarding a significant proportion of data collected - a common quality 

control criterion was the exclusion of SNPs with low MAF (Barrett and Cardon, 2006). 

Because of the small number of observations for any given rare allele the power to 

detect its association with a phenotype is a major limiting factor in genetic analysis. 

However, the investigation of this previously discarded information may illuminate the 

potential of low-frequency/rare variants as a complementary approach to the primary 

GWA studies of common variants.  

Analysis of low-frequency/rare variants using conventional genome-wide SNP arrays is 

limited by a number of factors. Firstly, such arrays contain only a small proportion of 

rare variants that actually exist; this is due to the array design being motivated by the 

emphasis of common susceptibility variants (Evans et al. 2008). Secondly, the genotype 

quality of rare variants typed on GWA platforms tends to be low, mainly driven by poor 

automated clustering and genotype calling.  

The gold standard strategy for investigating low-frequency/rare variants is the use of 

sequencing data that capture a much higher proportion of “rare” genetic variation 

(Morris and Zeggini, 2010). However, despite the increasing availability of high-

throughput sequencing technologies nowadays, these approaches were limited when this 

project was conducted. The best alternative was the utilisation of existing data that were 

generally excluded in GWA studies.  

Though not providing genome-wide coverage, the HumanCVD BeadChip targets many 

low-frequency/rare SNPs (Keating et al. 2008) and as a result had an advantage over 
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standard GWA platforms to detect association with low-frequency/rare alleles 

(MAF<5%). This array was one of the first disease-specific custom arrays with highly 

focused rare variant content for CAD to be used on a large scale. An exploratory 

analysis of SNPs represented on the IBC 50K array showed that low-frequency/rare 

variants make up a large proportion of all polymorphisms and this was what motivated 

this analysis. However, it should be noted that the primary purpose of this analysis was 

signal detection rather than accurate effect estimation.  

Previously, the IBC 50K CAD Consortium examined the association between low 

frequency variants (MAF=1-5%) and CAD. Although previously reported associations 

of lower frequency variants in LPA and PCSK9 with CAD risk were confirmed, no 

other strongly associated variants in the 1-5% range or enrichment of low frequency 

variants amongst SNPs that showed nominal association with CAD were identified (The 

IBC 50K CAD consortium, 2011).  

To overcome the power issues associated with testing rare variants individually, sets of 

low-frequency/rare variants were collapsed into a single group and tested collectively as 

“aggregate genotype” for frequency differences between cases and controls. It was 

hypothesised that patients with CAD may exhibit over-representation of low 

frequency/rare alleles compared to controls. The collapsing method examined ~1,900 

genes and yielded some interesting findings.  

In the meta-analysis of European populations, one locus – LPA – showed over-

accumulation of low-frequency/rare variants in CAD cases compared to controls, a 

previously established CAD gene. Lipoprotein(a) [Lp(a)], is a lipoprotein particle that 

consists of an apolipoprotein(a) [apo(a)] molecule covalently linked by a disulfide bond 

to the apolipoprotein B-100 (apoB-100) component of LDL-like particle (Li et al. 
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2011). The LPA gene, which encodes apo(a), has evolved from a duplication of 

plasminogen (PLG) gene (McLean et al. 1987). The apo(a) has a protease-like domain 

and multiple kringle domains. Lipoprotein(a) levels in human plasma undoubtedly have 

the strictest genetic control of all lipoproteins; more than 90% of the variance of Lp(a) 

concentrations is explained by genetics (Snieder et al. 1997; Snieder et al. 1999). The 

major genetic determinant of Lp(a) levels resides in the LPA gene itself. Elevated levels 

of serum Lp(a) lead to premature CAD (Rhoads et al. 1986; Li et al. 2011). So far, 

multiple SNPs in the LPA gene on the long arm of chromosome 6 were associated with 

Lp(a) levels (Ober et al. 2009). Amongst them, low-frequency SNP in the LPA region - 

rs3798220 (MAF~3%) was associated with CAD in Caucasian in multiple studies 

(Chasman et al. 2009; Clarke et al. 2009; Luke et al. 2007; Schunkert et al. 2011; 

Shiffman et al. 2008; Shiffman et al. 2010). This polymorphism results in an amino acid 

residue substitution (an isoleucine to methionine) at position 4399 of apo(a) (Li et al. 

2011). The effect of this variant on the risk of CAD is correlated with the effects on the 

Lp(a) lipoprotein level (Clarke et al. 2009). This linear dose-response relationship of 

rs3798220 and both the Lp(a) lipoprotein level and the risk of CAD supports a causal 

role of an elevated plasma level of Lp(a) lipoprotein in the risk of CAD (Clarke et al. 

2009).  

In the analysis conducted in European studies, the association signal in LPA was mainly 

driven by the rs3798220 mainly due to its low-frequency (MAF~2%) compared to other 

variants with very rare (MAF<0.001) ones. The LPA did not show association in South 

Asians; this may be due to its low MAF in this population (MAF<0.01). It is true that 

interesting and informative variants often segregate in a population-specific manner. For 

example, a nonsense variant in PCSK9 that significantly affects LDL-cholesterol levels 
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reducing CAD risk has frequency of 0.8% in African-ancestry individuals but is almost 

absent in European-ancestry samples (Cohen et al. 2006a).    

Similar pattern of association was observed in the Dallas Heart Study data where an 

association between hepatic fibrinogen/angiopoietin-related protein gene (ANGPTL4) 

and triglycerides was mainly driven by a low-frequency variant within the European 

population (MAF~3%) (Liu and Leal, 2012). 

In the meta-analysis of South Asian studies, 3 genomic loci - F10, F7 and TRAF2 - 

showed over-accumulation of low-frequency/rare variants in CAD cases compared to 

CAD-free controls. The protein encoded by TRAF2 gene is a member of the TNF 

receptor associated factor TRAF protein family (Rothe et al. 1994). TRAF proteins bind 

to, and mediate the signal transduction from members of the TNF receptor superfamily. 

This protein directly interacts with TNF receptors, and forms a heterodimeric complex 

with its partner – encoded by its sister gene – TRAF1 (Rothe et al. 1994). The TRAF2 

protein is needed for TNF-alpha-mediated activation of MAPK8/JNK and NF-kappaB 

pathways (Blackwell et al. 2009). The protein complex formed by TRAF2 and TRAF1 

interacts with the inhibitor-of-apoptosis proteins (IAPs), and functions as a mediator of 

the anti-apoptotic signals from TNF receptors (Vince et al. 2009). The detected 

association signal is a novel finding; there is no prior published data on the role of 

TRAF2 in genetic predisposition of CAD.  

F10 gene encodes the vitamin K-dependent coagulation factor X of the blood 

coagulation cascade. Factor X undergoes multiple processing before its preproprotein is 

converted to a mature two-chain form activated by factor IXa, or by factor VIIa (Davie 

et al. 1991). The activated Xa acts as a converter of prothrombin to thrombin in the 
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presence of factor Va, Ca+2, and phospholipid during blood clotting (Kamata et al. 

1998).   

F7 gene encodes coagulation factor VII which is a vitamin K-dependent factor essential 

for hemostasis (Mackman et al. 2007). This factor circulates in the blood in a zymogen 

form, and is converted to an active form by factor IXa, factor Xa, factor XIIa, or 

thrombin by minor proteolysis (Chen, 2013). In the presence of factor III and calcium 

ions, the activated VII then further activates the coagulation cascade by converting 

factor IX to factor IXa and/or factor X to factor Xa.  

Coagulation activation plays a key role in thrombus formation and variation and its 

factors have been associated with the risk of CAD (Mo et al. 2011). For example, 

activation of the extrinsic coagulation pathway plays a key role in hemostasis, and as a 

result factor VII contributes to the occurrence of thrombotic events. High factor VII 

levels might disproportionately enhance the coagulation cascade at the time of plaque 

rupture, which could explain the apparently differential association with fatal and 

nonfatal coronary events (Mo et al. 2011). A number of reports suggested that increased 

coagulation factor VII activity is a risk factor for CAD (Meade et al. 1986; Noto et al. 

2002; Cai et al. 2000).   

Several studies have examined the association between polymorphisms in the F7 and 

the risk of CAD but they have been inconclusive. Some studies concluded a protective 

role for SNP variants and the risk of MI among patients with CAD (Di Castelnuovo et 

al. 2000; Iacoviello et al. 1998; Girelli et al. 2000) and other failed to confirm such 

associations (Wang et al. 1997; Tamaki et al. 1999; Ardissimo et al. 1999; Feng et al. 

2000). As a result the exact biological role of these polymorphisms remains to be 
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determined. The association between F7 polymorphisms and CAD has been shown to 

vary in different ethnicities (Mo et al. 2011).  

In this analysis conducted in Asian populations, the uncovered association signal in the 

meta-analysis was driven clearly by one of the studies. Indeed, the identified 

associations were driven by signals from LOLIPOP study. One may argue that these 

differences in association of low frequency/rare variants with CAD between LOLIPOP 

and PROMIS could be due, at least in part, by differences in ascertainment/origin of 

both populations. Whereas, LOLIPOP study was of Indian origin and recruited in the 

UK, PROMIS study was of Pakistani origin and collected in Pakistan. It should be also 

noted that LOLIPOP is a larger study and as a result has more power to detect low 

frequency/rare variants. The differences in genetic architecture of rare variants between 

both populations cannot be excluded. Indeed, rare alleles have typically arisen recently 

and tend to have higher variation in different geographic distributions than more 

common variants that are typically evolutionarily older (Nelson et al. 2012). Therefore, 

further studies in CAD should minimise the potential confounding effects by 

minimising the sources of genetic heterogeneity. 

The statistical method relies on a pre-specified threshold for inclusion of alleles into a 

set of variants considered as “rare” (Morris and Zegini, 2010). Thus, it is perhaps not 

surprising that using different arbitrary thresholds influence the association results. 

Unfortunately, there is little guidance in this area and allele frequency thresholds of 1% 

or 5% are commonly chosen (Manolio et al. 2009). These cut-offs are subjective and 

dependent on the spectrum of the variant frequency within a locus. For example, if the 

allele frequencies of the variants are relatively rare, the 1% MAF cut-off threshold may 

be used. On the other hand, if different allele frequencies are observed, it would be 
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better to use several MAF cut-off thresholds to classify the variants into multiple 

groups.  

In each of the top signals, association do not seem to be driven by the collective 

contribution of very rare SNPs. For example, the strong signal is largely due to MAF=2-

3% and the inclusion of only rarer SNPs or low frequency SNPs reduces the power and 

increases the noise.  

In addition, different genes may have very different relationships between allele 

frequency and functional effects. Some genes may harbour functional alleles at higher 

frequencies, whereas other genes may have only private functional variants. As a result 

the value of the optimal allele-frequency threshold often varies considerably (Price et al. 

2010). This analysis showed how important the MAF minimum and maximum limits 

are and that a variety of frequency cut-offs should be considered when analysing low-

frequency and rare variants. 

Another limitation of the strategy used here, is that the individual effects of each rare 

variant collapsed into aggregate genotype on phenotype may differ not only in terms of 

the magnitude but also – direction (neutral, protective or detrimental for a given disease 

trait) and as a result, the estimates of the average genetic effects will be affected (Liu et 

al. 2012). On the other hand, the average genetic effect variance that is explained in the 

aggregate analysis is always no greater than the true locus-specific genetic variance (Liu 

and Leal, 2012). 

One should also acknowledge that the method used here does not calculate exactly how 

many low-frequency/rare variants each individual has in a gene. It would be interesting 

to find out if subjects with several rare variants were over-represented among 

individuals with CAD compared to controls. Any given rare variant in affected 

individuals is not necessarily sufficient to cause disease but rare variants contribute to 
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the heterogeneity observed among affected individuals. Studies using high-throughput 

next generation sequencing are required to determine whether these associations extend 

to additional CAD-associated genes.  

Another limitation is that collapsing method can be seriously impaired by 

misclassification of collapsing regions (Do et al. 2012). Collapsing methods can focus 

on gene-centric bins, known conserved non-coding regions or functional pathways as 

the functional unit for analysis. As a result it depends on how many low-frequency/rare 

variants are found in these regions. Finally, it is likely that the nature of the relationship 

between rare variants and a phenotype varies from gene to gene, even in different parts 

of a gene. 

Recently several factors combined together made the direct investigation of rare 

variants possible. First, the size of GWA studies and meta-samples has increased, 

approaching cohort sizes of 100,000 through large-scale international collaborations, 

strengthens the power. Second, the ascertainment of many rare variants through the 

1000 Genomes Project (The 1000 Genomes Project Consortium et al. 2010) has enabled 

imputation of millions of rare and low-frequency variants and led to the development of 

a new generation of low-cost genotyping platforms that interrogate rare variants 

directly. Third, the decline in the cost of sequencing technologies has enabled large-

scale sequencing studies to be performed, which, in principle, allow the detection of all 

variants in a sample. The emerging wealth of re-sequencing data yet to be generated for 

CAD will shed light on the true contribution of rare variants to CAD disease risk. 

Finally, the recent development and improvement of statistical tests for association 

studies for rare variants (Ionita-Laza et al. 2011; Li and Leal, 2008; Madsen and 

Browning, 2009; Morris and Zeggini, 2010; Mukhopadhyay et al. 2010; Neale et al. 
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2012) provides power to detect genes or pathways harbouring multiple rare variants for 

which individually there would be low power to detect association.
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4.1. Introduction 

 

4.1.1. The X and Y chromosomes 

The human X and Y sex chromosomes are morphologically and genetically different 

(Flaquer et al. 2009). The X chromosome is large, generally more euchromatic (six-

times longer) and has many more genes than the Y chromosome (Ross et al. 2005). 

Both sex chromosomes originate from an ancestral pair of autosomes (Charlesworth et 

al. 2005), which during mammalian evolution lost homology further to acquiring of the 

sex determining locus by the Y chromosome (Charlesworth, 1991). Unlike autosomal 

pairs of chromosome, X and Y do not exchange the genetic information during male 

meiosis along the majority of their length; the only parts where the recombination 

occurs are the terminal portions of both chromosomes called pseudoautosomal regions 

(PARs) (Graves et al. 1998).  

 

4.1.2. The human pseudoautosomal regions (PARs) 

PARs are located on the tips of both the short (p) and long (q) arms of the X and Y 

chromosomes (Cooke et al. 1985; Rappold, 1993). PARs show X-Y sequence 

homology, act like autosomes during meiosis and are inherited in an autosomal rather 

than sex-linked manner. In humans, PARs represent about 2% of the X and ~5% of the 

Y chromosomal sequence length (Blaschke and Rappold, 2006). PARs are two 

remarkable regions in the mammalian genome that have evolved more recently than 

autosomes (Graves et al. 1998; Blaschke and Rappold, 2006). 
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4.1.2.1. Pseudoautosomal region 1 (PAR1) 

Mapping to the short-arm region of sex chromosomes, PAR1 has a physical length of 

~2.7Mb (Ross et al. 2005). It originated from a part of autosomal region transferred to 

the mammalian X and Y chromosomes 100-150 million years ago (Graves et al. 1998). 

It shows sequence homology to PARs of several species, including great apes and Old 

World monkeys (Ciccodicola et al. 2000; Charchar et al. 2003). Compared to the X 

chromosome, PAR1 exhibits significantly higher GC content and has a higher 

proportion of minisatellite repeats and other duplicated structures (Ried et al. 1998). It 

also has 4-5 times elevated Alu repeat content when compared to the rest of the X 

chromosome (Blaschke and Rappold, 2006). 

In humans, pairing and cross-over between the X and Y is limited to the PAR1 region 

(Cooke et al. 1985; Simmler et al. 1985). Family data are consistent with a single 

obligatory cross over during each male meiosis in PAR1 (Rouyer et al. 1986; Lien et al. 

2000). However, there is a gradient of sex linkage along PAR1 length. Alleles in close 

proximity to MSY undergo recombination less frequently and show stronger linkage to 

the Y chromosome than those mapping to the telomeric portion of PAR1 (Blaschke and 

Rappold, 2006). Deletion of PAR1 results in failure of X-Y pairing and male sterility 

(Mohandas et al. 1992). 

4.1.2.2. Pseudoautosomal region 2 (PAR2) 

A second pseudoautosomal region, Xq/Yq PAR, was discovered only in the mid-90s as 

a part of the project on X-chromosome mapping (Freije and Schlessinger, 1992). 

Located within the distal portion of the long arm region of both sex chromosomes, 

PAR2 is short – only ~0.33Mb in length (Ross et al. 2005). PAR2 has a much shorter 

evolutionary history than PAR1 and is human specific (Blaschke and Rappold, 2006). 
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This peculiar part of the human genome originated from an L1-mediated ectopic 

recombination event that transferred the subtelomeric region of the X onto Y 

chromosome after the divergence of human and chimpanzee lineages about 6 million 

years ago (Kvaløy et al. 1994; Ciccodicola et al. 2000; Charchar et al. 2003). As a 

result, PAR2 contains sequences that had been earlier recovered from both the X and Y 

and shows recombination over its entire extent (Freije et al. 1992). It should be noted 

that PAR2 in many aspects is different from PAR1. PAR2 is neither necessary nor 

sufficient for sex-chromosome segregation in male meiosis (Li and Hamer, 1995). 

However; the region still exhibits a six-fold higher recombination frequency when 

compared with the average rate of the remaining of the X chromosome (Li and Hamer, 

1995). 

 

4.1.3. Recombination rates across PARs in males and females 

The most extreme example of gender differences in recombination rates across the 

human genome is on the sex chromosomes. In the male germline, recombination 

between X and Y is almost entirely restricted to PAR1 and a lesser extent - PAR2, 

whereas in the female germline the two X chromosomes can recombine anywhere along 

their entire length. A high recombination rate in female meiosis is seen only at the Xp 

telomere within the first 100kb (Flaquer et al. 2009). Within this telomeric region no 

sex-specific recombination rates are observed, resulting in similar genetic distances in 

both males and females (Flaquer et al. 2009). After 100kb, genetic distances are 

becoming increasingly sex-specific as they approach the pseudoautosomal boundary. 

This results in marked sex-specific differences in PAR1 genetic map length, which is 

50cM in males and around one tenth of this in females (Rouyer et al. 1986; Page et al. 
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1987). PAR1 is thus a male-specific recombination hot domain with a mean crossover 

frequency 20 times higher than the genome average (Rappold, 1993). 

 

4.1.4. Genes within the PARs  

Currently there are 50 genes mapping to PARs. Apart from protein coding genes, PARs 

contain pseudogenes and non-coding RNA genes (miRNAs and lincRNAs). The 

characteristics of PAR1 and PAR2 gene are listed in Table 4.1.1 and Table 4.1.2, 

respectively.  

PAR1 contains 16 protein-coding genes. Together with the 3 annotated protein coding 

genes in PAR2, 19 protein-coding genes lie entirely within these recombining regions of 

the sex chromosomes. Several genes, including PLCXD1, P2RY8 and DHRSX have 

been identified only recently. Many novel transcripts were recently mapped to the 

PAR1 region (Ross et al. 2005). The biological function and the role in susceptibility to 

disease is not well described for a majority of these genes.  

Genes in close proximity to the pseudoautomal boundary have unique features 

compared to the remaining of PAR1 genes. An example is a group of genes in XG blood 

regions, close to the pseudoautosomal boundary (Ellis et al. 1994a; Ellis et al 1994b). 

The first four exons are located within PAR1 and are subjected to high recombination 

rate, whereas the nine downstream exons lie on the X-specific portion of the 

chromosome. 
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Table 4.1.1: Genes within human PAR1 – general characteristics 

 Gene Symbol Gene name Start (bp) End (bp) Length 
(bp) Gene biotype Function N of 

transcripts 
1 NCRNA00108 - 170410 172712 2302 Pseudogene Unkown 1 

2 PLCXD1 
phosphatidylinositol-specific 

phospholipase C, X domain containing 
1 

192989 220023 27034 Protein coding 
Lipid 

metabolism 
Inflammation 

11 

3 GTPBP6 GTP binding protein 6 (putative) 220025 230886 10861 Protein coding Unknown 3 

4 LINC00685 
long intergenic non-protein coding 

RNA 685 
281725 282586 861 RNA gene Unknown 1 

5 PPP2R3B 
protein phosphatase 2, regulatory 

subunit B 
294698 347690 52992 Protein coding 

DNA 
replication 

10 

6 AL732314.1 - 425316 425416 100 Novel miRNA - 1 

7 FABP5P13 
fatty acid binding protein 5 

pseudogene 13 
484510 484837 327 Pseudogene Unknown 1 

8 KRT18P53 - 505971 506087 116 Pseudogene 
- 

Unknown 
1 

9 SHOX short stature homeobox 585079 620146 35067 Protein coding Transcription 7 

10 
RP11-

309M23.1 
- 950956 955100 4144 lincRNA - 1 

11 RPL14P5 - 969238 970836 1598 Pseudogene - 1 
12 CRLF2 cytokine receptor-like factor 2 1314890 1331616 16726 Protein coding Immunity 4 

13 CSF2RA 
colony stimulating factor 2 receptor, 

alpha (granulocyte-macrophage) 
1387693 1429274 41581 Protein coding Immunity 21 

14 BX649553.4 - 1410987 1411060 73 Novel miRNA - 1 
15 BX649553.2 - 1412508 1412582 74 Novel miRNA - 1 
16 MIR3690 - 1412811 1412885 74 Known miRNA - 1 
17 BX649553.1 - 1413025 1413099 74 Novel miRNA - 1 
18 RNA5SP498 - 1419149 1419268 119 Known rRNA -  
19 RN7SL355P - 1437739 1438052 313 Known miscRNA - 1 
20 IL3RA interleukin 3 receptor, alpha 1455509 1501578 46069 Protein coding Immunity 3 

21 SLC25A6 
solute carrier family 25 (mitochondrial 

carrier; adenine nucleotide 
1505045 1511617 6572 Protein coding Immunity 3 
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translocator), member 6 

 Gene Symbol Gene name Start (bp) End (bp) Length 
(bp) Gene biotype Function N of 

transcripts 

22 LINC00106 
long intergenic non-protein coding 

RNA 106 
1515320 1518295 2975 RNA gene Unknown 2 

23 ASMTL-AS1 ASMTL antisense RNA 1 1520662 1532921 12259 RNA gene Unknown 5 

24 ASMTL 
acetylserotonin O-methyltransferase-

like 
1522032 1572655 50623 Protein coding Unknown 7 

25 P2RY8  
purinergic receptor P2Y, G-protein 

coupled, 8 
 

1581465 1656000 74535 Protein coding Unknown 2 

26 AKAP17A A kinase (PRKA) anchor protein 17A 1710486 1721407 10921 Protein coding 
mRNA 

processing 
3 

27 ASMT  acetylserotonin O-methyltransferase
 

1733894 1761974 28080 Protein coding 

Serotonine 
metabolism, 
melatonin 
synthesis 

4 

28 RP13-297E16.3 - 1746639 1755356 8717 Processed transcript - 1 
29 RP13-297E16.4 - 1851477 1874878 23401 Novel lincRNA - 2 
30 RP13-297E16.5 - 1886240 1887669 1429 Novel lincRNA - 1 

31 DHRSX 
dehydrogenase/reductase (SDR family) 

X-linked 
2137557 2420846 283289 Protein coding Unknown 7 

32 DHRSX-IT1 
DHRSXintronic transcript 1 (non-

protein coding) 
2252336 2254451 2115 RNA gene Unknown 1 

33 ZBED1 zinc finger, BED-type containing 1 2404455 2419008 14553 Protein coding Transcription 4 
34 RP11-325D5.3 - 2405023 2407012 1989 Processed transcript - 1 
35 CD99P1 CD99 molecule pseudogene 1 2527389 2575270 47881 Pseudogene Unknown 5 

36 LINC00102 
long intergenic non-protein coding 

RNA 102 
2531029 2533388 2359 RNA gene Unknown 1 

37 CD99 CD99 molecule 2609220 2659350 50130 Protein coding Immunity 9 
38 XG Xg blood group 2670091 2734539 64448 Protein coding Immunity 6 
miRNA – miCRNA precursors, lincRNA  - long intergenic non-coding RNAs, miscRNA- miscellaneous other RNA; Start and end positions are based on 
build 37. Information on number of gene transcripts and their lengths were found in Ensembl Genome Browser. 
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Table 4.1.2Genes within human PAR2 – general characteristics 

 Gene Symbol Gene name Start (bp) End (bp) Length 
(bp) Gene biotype Function N of 

transcripts 
1 SPRY3 Sprouty homolog 3 (drosophila) 154997474 155012121 14647 Protein coding Unknown 1 

2 AMDP1 
adenosylmethionine decarboxylase 

pseudogene 1 
155058248 155059239 991 Pseudogene Unknown 1 

3 DPH3P2 
DPH3, KTI11 homolog (S. cerevisiae) 

pseudogene 2 
155105299 155105548 249 Pseudogene Unknown 1 

4 VAMP7 vesicle-associated membrane protein 7 155110956 155173433 62477 Protein coding Transportation 6 

5 TCEB1P24 
transcription elongation factor B 

(SIII), polypeptide 1 pseudogene 24 
155208657 155208990 333 Pseudogene Unknown 1 

6 TRPC6P 
transient receptor potential cation 
channel, subfamily C, member 6 

pseudogene 
155215035 155215914 879 Pseudogene Unknown 1 

7 IL9R interleukin 9 receptor 155227246 155240482 13236 Protein coding Immunity 6 
8 AJ271736.10 -    Processed transcript - 1 
9 WASIR1 WASH and IL9R antisense RNA 1 155244288 155246502 2214 RNA gene - 1 

10 WASH6P 
WAS protein family homolog 6 

pseudogene 
155250491 155255375 4884 Pseudogene Unknown 16 

11 DDX11L16 
DEAD/H (Asp-Glu-Ala-Asp/His) box 

helicase 11 like 16 
155255323 155257848 2525 Pseudogene Unknown 2 

Start and end positions are based on build 37. Information on number of gene transcripts and their lengths were found in Ensembl Genome Browser. 



188 

 

4.1.5. PARs and human disease 

Except of the short stature homeobox gene (SHOX), there are no known phenotypic 

traits firmly attributed to variations in PAR1genes. SHOX encodes a transcription factor 

of the homeodomain class and is located in PAR1 (Braschke and Rappold, 2006). 

Mutations of this gene are associated with various growth deficit disorders, including 

isolated short stature (Binder, 2011), Leri-Weill syndrome (Evers et al. 2011) and 

Langer syndrome (Belin et al. 1998). Patients with some loss-of-function mutations 

(including deletions, missense and nonsense SNPs) of the SHOX gene have short stature 

(without any other apparent abnormalities). Leri-Weill dyschondrosteosis (affected 

individuals have shortening and deformities of the bones of the forearm) results from 

mutations in a single copy of the SHOX gene (Belin et al. 1998; Shears et al. 1998). 

Langer disorder known as Langer mesomelic dwarfism is also caused by SHOX 

mutations (Belin et al 1998). SHOX mutations account for ~2 to 7% of isolated short 

stature patients and 50 to 90% of Leri-Weill syndrome patients (Rappold et al. 2002; 

Schiller et al. 2000; Binder et al. 2003; Blaschke and Rappold, 2006). 

Two of PAR2 genes have been hypothesised to play a role in susceptibility to complex 

human diseases. Vesicle-associated membrane protein 7 gene (VAMP7) is located in 

PAR2 but differs from most other PAR genes in that sense that it undergoes both X and 

Y inactivation (Helena Mangs and Morris, 2007). Evolutionarily, VAMP7 is highly 

conserved. Its protein product is a member of the synaptobrevins – molecules 

implicated in cellular exocytosis (Filipinni et al. 2001). A role of VAMP7 gene in 

bipolar affective disorder has been suggested (Saito et al. 2000). Another PAR2 gene, 

interleukin receptor 9 (IL9R) belongs to the hematopoietin receptor subfamily and is 

expressed in both membrane-bound and soluble forms (Renauld et al. 1992). A role for 
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IL9R gene has been suggested in the development of asthma (Holroyd et al. 1998; 

Kauppi et al. 2000). 

Very recently, two additional studies revealed associations of PARs and susceptibility 

to psychiatric disorders. A GWA study uncovered an association between schizophrenia 

and a common SNP near colony stimulating factor 2 receptor, alpha gene (CSF2RA) in 

the PAR1 region (Lencz et al. 2007b). A linkage study mapped a new susceptibility 

locus for bipolar affective disorder to XP22.3/Yp11.3 near acetylserotonin O-

methyltransferase-like gene (ASMTL) and acetylserotonin O-methyltransferase gene 

(ASMT) in PAR1 (Flaquer et al. 2010). Further evidence is needed to support these 

observations. 

 

4.1.6. PARs and cardiovascular disease  

In the past few years, genetic studies of families with congenital heart malformations 

(including bicuspid aortic valve, aortic coarctation (CoA) and left heart hypoplasia) 

have shown clustering of mechanistically related left ventricular outflow tract (LVOT) 

defects (McBride et al. 2005; Loffredo et al. 2004; Wessels et al. 2005; Lewin et al. 

2004; McBride et al. 2008). There is a sexual dimorphism of LVOT defects with a 2:1 

male to female ratio. Women with a single X chromosome (Turner syndrome) 

demonstrate a unique profile of LVOT abnormalities (Bondy, 2012). Female patients 

with Turner syndrome show cardiovascular phenotypes only when they lack PAR1 

region (Sachdev et al. 2008). This observation led to the hypothesis that 2 copies of yet 

unknown genes in PAR1 region are important for normal cardiovascular development 

(Bondy, 2008) and that haploinsufficiency for genes in the region causes the LVOT 
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defects characteristic of Turner Syndrome. However, further studies are needed to 

identify PAR1 genes related to premature CoA and CAD. 

A very recent study revealed a different gene expression pattern of five PAR genes 

(CSF2RA, DHRSX, PLCXD1, VAMP7, SPRY3) in males with ischeamic stroke 

compared to apparently healthy controls. This is so far the most direct evidence for 

association between PAR genes and human cardiovascular disease (Tian et al. 2012). 

 

4.1.7. Hypothesis 

 Genes of pseudoautosomal regions are transcriptionally active in human 

monocytes/macrophages and may play a role in CAD. 

 

4.1.8. Objectives 

- to perform comprehensive analysis of association between common SNPs within 

PARs and CAD in individuals of white European ancestry. 

- to fully characterise PAR1 and PAR2 transcriptome in human monocytes and 

macrophages through new generation RNA-sequencing 

- to examine if expression of PAR genes in human monocytes and macrophages exhibits 

sexual dimorphism in available microarray-based resources 

.
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4.2. Materials and Methods 

 

4.2.1. Characteristics of study cohorts 

A total of 23,975 individuals recruited from 12 populations of white European ancestry 

included in the CARDIoGRAM Consortium was used in this project. Full details of 

CCGB, DUKE, GerMIFSI, GerMIFSII, OHGS-A, OHGS-B, OHGS-C, PennCATH and 

WTCCC studies are extensively described in chapter 2. Characteristics of other cohorts 

used are given below. 

• German Myocardial Infarction Family Study IV (GerMIFSIV) 

GerMIFSIV cases: This population consists of 2,746 patients with angiographically 

proven CAD. The recruitment was carried out at the University Hospital Schleswing-

Holstein Campus Lubeck between 2005 and 2008 (“Lubeck angiographic registry of 

patients with structural heart disease”). Patients were not selected for particular risk 

factors or phenotypes. Information on this population has not been published yet. 

GerMIFSIV controls: All controls were considered CAD-free and derived from the 

“Berlin aging study II” - BASE-II study (Bertram et al. 2013). 

• The Ludwigshafen Risk and Cardiovascular Health study (LURIC) 

LURIC study recruited patients referred for coronary angiography. The project was 

designed to investigate environmental and genetic risk factors for CVD (Winkelmann et 

al. 2001) including CAD, MI, dyslipidaemia, hypertension, metabolic syndrome and 

diabetes mellitus. The baseline examination was performed between July 1997 and 

January 2000 at a single tertiary care centre in southwest Germany (Herzzentrum 

Ludwigshafen) and included 3,316 study participants. Inclusion criteria for LURIC 
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were: the availability of a coronary angiogram suggestive of CAD and German ancestry 

(to reduce genetic heterogeneity). Patients with a history of malignancy within the past 

five years, any acute illness other than acute coronary syndrome, and any predominant 

non-cardiac disease were excluded from the study. Angiographic CAD was defined as 

at least one 50% luminal stenosis within at least one of 15 coronary segments. 

• MedStar Study 

The MedStar study, conducted by the Cardiovascular Research institute of the MedStar 

Health Research institute, is a Washington Hospital Center based angiographic study on 

coronary atherosclerosis (Grant et al. 2006; Kathiresan et al. 2009). MedStar recruited 

patients undergoing cardiac catheterization at Washington Hospital between August 

2004 and March 2007. The main enrolment criterion was clinical indication for cardiac 

catheterisation. A total of 447 controls with no evidence of CAD and 875 CAD cases 

with one or more coronary vessels with ≥50% stenosis were included in the study. 

Controls were aged >45 years. Cases were diagnosed of CAD<55 years (males) and <60 

years (females). 

• The Cardiogenics Transcriptomic Study 

The Cardiogenics Transcriptomic Study - a European collaboration on genetics of CAD 

(Heinig et al. 2010; Rotival et al. 2011, Schunkert et al. 2011) - provided a unique 

resource to examine gene expression in human monocytes and macrophages. This 

initiative recruited 918 participants (459 patients with MI and 459 normal controls) in 

five centres within the Cardiogenics consortium: Cambridge (UK), Leicester (UK), 

Lübeck (Germany), Regensburg (Germany), and Paris (France). Healthy individuals 

were recruited in Cambridge. All participants were of white European origin. 
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After data quality control, 1,533 RNA samples (849 from monocytes and 684 from 

macrophages) were available for statistical analysis. Gene expression profiling was 

performed using the Illumina Human Ref-8 v3 beadchip array containing 24,516 probes 

corresponding to 18,311 distinct genes and 21,793 Ref Seq annotated transcripts.  

All participants in each study included gave written informed consent in accordance 

with guidelines of local ethical committees. Study protocols and procedure were 

reviewed and approved by the appropriate regulatory authorities in each country for 

each study. 

 

4.2.2. DNA analysis - genotyping and imputation  

Affymetrix gene arrays offer only a very poor coverage of the PARs. For example, 

genome-wide human SNP array 5.0 contains 155 SNPs in PAR1 and no SNPs in PAR2, 

the genome-wide human SNP array 6.0 has 391 PAR1 SNPs and 32 SNPs in PAR2 and 

the mapping 500K array has just 262 PAR1 SNPs and no PAR2 SNPs.   

All cohorts included in this project used one of the above Affymetrix genotyping 

platforms in previous GWA analysis. As a result, the array-based genotyping provided 

genotype information for PAR1 in all studies. Between 133 and 404 genotyped PAR1 

SNPs (NCBI build 36) were available in each study after extraction of information from 

array-based databases (Table 4.2.1). However, four studies only had available 

genotyped PAR2 information (Table 4.2.2). Between 12 and 69 genotyped PAR2 SNPs 

were available for further investigation. In order to increase the power and resolution of 

the genetic analysis of PARs, imputation of the untyped PAR1 and PAR2 SNPs was 
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conducted. Detailed information about individual genotyping platforms, the imputation 

method and software used in each study is provided in Table 4.2.3.  

Imputation is a method used to predict unobserved genotypes in SNP association studies 

based on observed data (Marchini et al. 2007). In other words, it fills in missing 

genotypes by extrapolating LD patterns from a reference panel (i.e. HapMap project, 

1000 Genomes project) to individuals included in the study (Howie et al. 2009).  

4.2.2.1 Pre-imputation filtering 

Study genotypes and individuals 

Before imputation was executed, filtering of the genotyped data was completed to 

remove variants and individuals with low quality of genotyping; these could decrease 

the accuracy of the association analysis. SNPs were excluded if they violated one of the 

following criteria: missingness rate >5%, HWE p≤0.0001, MAF<1%, poor cluster plots 

on visual inspection. The quality control filters related to samples varied between 

cohorts. In general, individuals were excluded if they had a poor genotype call rate, 

non-European ancestry (based on principal component or multi-dimensional scaling 

plots used before), high heterozygosity levels or any other cohort-specific reason. These 

filters were used in previous studies of these populations (Samani et al. 2007; 

Kathiresan et al. 2009; Schunkert et al. 2011). 

SNP positions 

The reference panel used for imputation was the 1000 Genomes Project Phase I 

Integrated release version 3 (March 2012) (The 1000 Genomes Project Consortium, 

2010). This panel contains ~39 million SNPs, insertion – deletions and structural 

variants and is considered as a powerful tool for genotype imputation studies.  
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The imputation software determined which variants were shared across the reference 

panel and study data and in order to obtain high-quality imputation SNP positions in the 

examined datasets were mapped to the same coordinate system (assembly) as the 

reference panel. The 1000G reference panel uses NCBI build 37 and consequently the 

positions of SNPs in this analysis were converted to NCBI build 37 using the liftover 

programme from UCSC Genome browser (http://genome.ucsc.edu/cgi-

bin/hgLiftOver?hgsid=341413863).  

Strand alignment 

Study genotypes were aligned to the same strand orientation as the reference panel 

(default ‘+’ stramd).  

4.2.2.2 Post-imputation quality checks  

To ensure that appropriate quality controls were applied, QQ plots were produced for 

each study across males and females and verified visually. Poorly imputed SNPs were 

removed based on the imputation quality score prior to meta-analysis. Imputation 

quality score takes values between 0 and 1, where values near 1 indicate that a SNP has 

been imputed with high certainty. There is no universal cut-off value for post-

imputation SNP filtering. In this project we used previously suggested cut-off 

thresholds of 0.3 (if imputation was completed using MACH) and 0.4 (if it was done 

using IMPUTE2) (http://mathgen.stats.ox.ac.uk/impute/impute_v2.html). 
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Table 4.2.1: Genotyped and imputed SNPs used in analysis of association between PAR1 and 
CAD in CARDIoGRAM Consortium  

Study Genotyped SNPs after 
QCs 

Genotyped and imputed SNPs that passed 
post imputation QCs 

Females Males 

CCGB 239 4054 4104 
DUKE 357 5067 5012 

GerMIFSI 133 2355 2516 
GerMIFSII 262 3824 3814 
GerMIFSIV 264 3884 3896 

LURIC 340 9421 9452 
MedSTAR 277 3515 2412 
OHGS-A 139 2327 2329 
OHGS-B 234 4173 4025 
OHGS-C 404 5361 5397 

PennCATH 267 3487 2306 
WTCCC 164 2718 2726 

Meta-analysis 133-404 3083 3442 
SNP - single nucleotide polymorphism, QC – quality control filters 

 

Table 4.2.2: Genotyped and imputed SNPs used in analysis of association between PAR2 and 
CAD in CARDIoGRAM Consortium  

Study Genotyped SNPs after 
QCs 

Genotyped and imputed SNPs that passed 
post imputation QCs 

Females Males 

CCGB 12 140 141 
DUKE 68 763 738 

OHGS-B 11 321 311 
OHGS-C 69 723 707 

Meta-analysis 12-69 281 317 
SNP - single nucleotide polymorphism, QC – quality control filters 

 

QQ plots were drawn to compare the distribution of observed p-values to the expected 

distribution under the null hypothesis of no association to ensure the good quality of the 

data (Figure 4.2.1). Observations above the theoretical line indicated that more P-values 

were significant whereas observations below the theoretical line indicated that fewer P-

values were significant than expected by chance. Males in GerMIFSI study were 

excluded from the meta-analysis since the QQ plot was flat. 
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Table 4.2.3: Genotyping, imputation and analysis criteria for each study 
Study acronym CCGB DUKE GerMIFSI GerMIFSII GerMIFSI V LURIC 

Genotyping 

Platform Affymetrix 6.0 
Affymetrix 

Axiom 

Affymetrix NSP 

and STY 
Affymetrix 6.0 Affymetrix 6.0 Affymetrix 6.0 

Calling 

algorithm 
Birdseed AxiomGT1 Birdseed BRLMM BRLMM Birdseed 

Imputation 

NCBI 

build 
37 37 37 37 37 37 

Software IMPUTE2 IMPUTE2 IMPUTE2 IMPUTE2 IMPUTE2 IMPUTE2 

 

Study acronym MedStar OHGS-A OHGS-B OHGS-C PennCATH WTCCC 

Genotyping 

Platform Affymetric 6.0 
Affymetrix 

500K 
Affymetrix 6.0 

Affymetrix 

Axiom 
Affymetrix 6.0 

Affymetrix 

500K Array set 

Calling 

algorithm 
Birdseed BRLMM Birdseed Axiom GT1 Birdseed CHIAMO 

Imputation 

NCBI 

build 
37 37 37 37 37 37 

Software MACH IMPUTE2 IMPUTE2 IMPUTE2 MACH IMPUTE2 
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Figure 4.2.1: Quantile-quantile plots of P-values for all SNPs that passed quality control 
filters and were used in the meta-analysis - (A) Females and (B) Males 
 
A. 

 
 
B. 
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4.2.3. Statistical methods 

The association analysis consisted of two stages: 

Primary sex-stratified analyses were performed in each study separately. Within each 

cohort SNP associations with CAD were analysed by logistic regression assuming 

additive model of inheritance with adjustment for study-specific covariates where 

appropriate. Results from each study were included in the meta-analysis only if the SNP 

imputation quality score was>0.4 and if the MAF was>1%. Only SNPs that were 

available in>50% of the total sample size over all studies were analysed, resulting in a 

total number of 3,083 SNPs in the female meta-analysis and 3,442 SNPs in the male 

meta-analysis.  

Meta-analysis of all individual study associations was conducted using a fixed-effects 

inverse variance weighting model in STATA v12. Studies were weighted inversely 

proportional to the variance of the effect size. As a measure for between studies 

heterogeneity, I2 was calculated (Higgins et al. 2003).  

When there was no indication for heterogeneity for a SNP (I2<40%), the fixed-effect 

model was maintained. When heterogeneity was present (I2>40%), random-effects 

model was adopted and reported which incorporated between-study variation in the 

weighting.  

To correct for multiple testing, false discovery rate (FDR) (q-values) was calculated 

based on all association tests conducted in sex-stratified meta-analyses using the R-

based tool Q-value (Storey and Tibshirani, 2003). The FDR estimated the expected 

number of false-positives among all positive results.  
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Each of the loci containing significantly associated SNPs was visualised using regional 

association plots generated by LocusZoom (Pruim et al. 2010). 

 

4.2.4. PARs – RNA-based analyses 

Information on PAR1 and PAR2 genes expression in monocytes and macrophages was 

extracted in silico from microarray-based experiment conducted in Cardiogenics Study 

reported previously (Schunkert et al. 2011). In brief, monocytes were isolated from 

whole blood by positive selection with CD14 magnetic beads using an AutoMACS 

system (Miltenyi Biotech, BergischGladbach, Germany) (Heinig et al. 2010; Charchar 

et al. 2012). Flow cytometry was used to confirm cell purity and in all samples more 

than 90% of cells were CD14-positive monocytes (Heinig et al 2010; Charchar et al. 

2012). Macrophages were obtained from culturing of monocytes for 7 days in 

macrophage-SFM medium (Gibco/Invitrogen, Grand Island, USA) with 50 ng/mL 

recombinant human M-CSF (R&D Systems, Minneapolis, USA) (Schunkert et al. 2011; 

Charchar et al. 2012). Then RNA was extracted from both cell types as it has been 

described elsewhere (Schunkert et al. 2011, Charchar et al. 2012). Preparatory 

procedures of monocyte, macrophage, and RNA isolation were undertaken separately in 

each institution using standardised protocols. Further microarray gene-expression 

profiling of all samples was done in one institution (Paris, France). Every sample was 

run on the Illumina Human Ref-8 arrays (Illumina, San Diego, USA) containing 24,516 

probes (Schunkert et al. 2011, Charchar et al. 2012). The mRNA was amplified and 

labelled with the Illumina Total Prep RNA Amplification Kit (Ambion, Austin, USA) 

(Schunkert et al. 2011). Following hybridisation, array images were scanned with an 

IlluminaBeadArray Reader and probe intensities were extracted with the gene 
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expression module of Illumina Bead Studio software (Heinig et al. 2010).Variance 

stabilisation transformation was applied to the raw intensities and quantile 

normalisation was done in the R statistical environment with the Lumi and Beadarray 

packages (version 1.8.3) (Schunkert et al. 2011). 

The data on monocyte transcriptome profiling from Cardiogenics were available for 541 

men and 308 women. Analysis of macrophage transcriptome was conducted in 449 men 

and 235 women. The comparative (men versus women) analysis was conducted at the 

probe level by using linear regression adjusted for age, centre and disease status using 

STATA v12 software. After quality control filters, information on 9 PAR genes was 

available to examine sex differences in expression of PAR genes in monocytes and 

macrophages. Bonferroni correction was applied to count for multiple testing. 

 

4.2.5. PARs – new generation RNA sequencing  

To fully characterise PAR1 and PAR2 transcriptome in monocytes and macrophages 

new generation RNA sequencing (RNA-seq) was conducted in a sample from 38-year 

old apparently healthy man of white European ancestry. Blood sample was taken after 

antecubital venepuncture. Monocytes isolation and conversion to macrophages was 

conducted using the protocol introduced in Cardiogenics (Schunkert et al. 2011; 

Charchar et al. 2012). RNA was extracted from both monocytes and macrophages 

usingTRIzol, followed by clean-up with RNeasy columns (Qiagen, Venlo, Netherlands) 

and DNase-based treatment (Heinig et al. 2010, Charchar et al. 2012). 

RNA was sequenced on the Illumina HiSeq-2000 sequences using 100 bp paired end 

reads. The sequencing generated 2Gb of sequence data. Transcripts for genes in PAR 
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regions were quantified in reads per kilobase per million reads (Mortazavi et al. 2008). 

FPKM is a normalised measure of transcriptional activity and reflects the molar 

concentration of the transcript within a sample. A minimum FPKM of 0.125 was used 

as a threshold in order to exclude expression signals at very low levels that may be 

artefacts from multi-mapping reads spreading a small amount of supposed expression to 

inactive transcripts.  
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4.3. Results 

 

4.3.1. Characteristics of study cohorts  

A total of 16,226 men and 9,536 women from 12 populations of white European 

ancestry in CARDIoGRAM Consortium were included in the sex-stratified meta-

analyses. The characteristics of the examined populations are listed in table 4.3.1. 

Table 4.3.1: Characteristics of populations in CARDIoGRAM Consortium 

Study 
Total n 

of 
subjects 

Cases Males Females Age 
Females 

Age 
Males 

CCGB 1993 
1626 
(81.6) 

1427 
(71.6) 

566 
(28.4) 

60.48 
(12.32) 

50.33 
(10.64) 

DUKE 1809 
1177 
(65.1) 

1088 
(60.1) 

726 
(39.9) 

62.10 
 (9.19) 

56.81 
(9.87) 

GerMIFSI 657 
215 

(32.7) 
139 

(21.2) 
518 

(79.8) 
59.56 

(10.53) 
56.94 

(11.41) 

GerMIFSII 2520 
1222 
(48.5) 

1650 
(65.5) 

870 
(34.5) 

50.06 
(13.94) 

49.85 
(13.03) 

GerMIFSIV 2328 
1181 
(50.7) 

1204 
(51.7) 

1124 
(48.3) 

58.66 
(14.49) 

56.10 
(12.90) 

LURIC 2949 
2048 
(69.4) 

2074 
(70.3) 

875 
(29.7) 

- - 

MedStar 1322 
875 

(66.2) 
857 

(64.8) 
465 

(35.2) 
- - 

OHGS-A 1955 
947 

(48.4) 
1289 
(65.9) 

666 
(34.1) 

68.40 
(12.37) 

58.56 
(14.66) 

OHGS-B 2811 
1293 
(46.0) 

1660 
(59.1) 

1151 
(40.9) 

69.43 
(11.39) 

59.22 
(14.70) 

OHGS-C 1155 
839 

(72.6) 
900 

(77.9) 
255 

(22.1) 
70.88 

(12.85) 
58.99 
(9.11) 

PennCATH 1401 
933 

(66.6) 
937 

(66.9) 
464 

(33.1) 
- - 

WTCCC 4864 
1926 
(39.6) 

2973 
(61.1) 

1891 
(38.9) 

- - 

In total 25,762 14,282 
(55.4) 

16,228 
(63.0) 

9,536 
(37.0) - - 

Data are counts and percentages or means and standard deviations, n – number of individuals in 
the analysis, (-) - information not available 
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All individuals were recruited in four countries. CCGB, DUKE and OHGS studies were 

recruited in Canada, GerMIFSI, GerMIFSII, GerMIFSIV and LURIC in Germany, 

MedStar and PennCATH in the USA and WTCCC in UK. 63% of participants were 

males. Overall, approximately 55% were CAD cases and 45% healthy controls. The 

mean age of participants ranged from 49.85 to 59.22 for males and 50.06 to 70.88 for 

females.  

 

4.3.2. Analysis of association between PAR1 and CAD in males 

A total of 3,442 SNPs survived post-imputation quality filters and were used in the 

male-specific meta-analysis. Of those 277 (8.0%) SNPs showed nominal association 

with CAD (P<0.05) (data not shown). Imputed SNP rs141738136 (P=8.75x10-4) 

showed the most significant association with CAD (Figure 4.3.1). This SNP has been 

merged into rs123468 and is located in the intronic region of XG gene, the most 

centromeric protein coding gene in PAR1 (very close to the pseudoautosomal – MSY 

boundary). After correction for multiple testing no PAR1 SNPs retained their 

association with CAD (Table 4.3.2). The top 20 association signals map to three 

different loci in PAR1 (Figure 4.3.2). 
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Table 4.3.2: Analysis of association between PAR1 and CAD in males in CARDIoGRAM 
Consortium – top association signals 

 SNP Position 
Minor 
allele 

MAF 
N of 

studies 
OR (95% CI) P value 

FDR 
Qvalue 

1 rs141738136 2673098 T 0.23 10 (13107) 0.88 (0.82, 0.95) 8.75x10-4 0.32 

2 rs183905870 700841 C 0.15 11 (13962) 0.88 (0.82, 0.96) 0.0017 0.32 

3 rs141933565 2667544 A 0.23 11 (13962) 0.89 (0.83, 0.96) 0.0017 0.32 

4 rs146326145 2672215 G 0.27 11 (13962) 0.90 (0.84, 0.96) 0.0018 0.32 

5 rs147056284 680909 G 0.15 8 (11419) 1.18 (1.06, 1.30) 0.0018 0.32 

6 rs150156698 2366612 G 0.49 9 (12183) 1.10 (1.04, 1.18) 0.0020 0.32 

7 rs150344862 1534293 G 0.25 8 (11327) 0.88 (0.81, 0.96) 0.0023 0.32 

8 rs138561386 1533596 G 0.27 9 (12183) 0.89 (0.82, 0.96) 0.0023 0.32 

9 rs147969925 2420103 A 0.07 7 (8399) 0.76 (0.64, 0.91) 0.0024 0.32 

10 rs180982472 698630 A 0.14 11 (13962) 0.88 (0.81, 0.96) 0.0024 0.32 

11 rs148564958 1532533 A 0.27 8 (11327) 0.89 (0.82, 0.96) 0.0025 0.32 

12 rs138671348 2366617 T 0.49 9 (12183) 1.10 (1.03, 1.17) 0.0025 0.32 

13 rs141006490 2326782 C 0.43 9 (11762) 1.09 (1.01, 1.17) 0.0026 0.32 

14 rs150905436 1533771 T 0.28 9 (12183) 1.12 (1.04, 1.20) 0.0027 0.32 

15 rs139494123 1455800 T 0.50 7 (9747) 0.91 (0.85, 0.97) 0.0029 0.32 

16 rs146697737 1533165 T 0.26 9 (12183) 0.89 (0.82, 0.96) 0.0029 0.32 

17 rs146844905 707404 C 0.13 10 (13107) 0.86 (0.78, 0.95) 0.0031 0.32 

18 rs146688868 2366547 C 0.45 10 (13038) 1.10 (1.03, 1.17) 0.0032 0.32 

19 rs188321807 1534591 A 0.35 7 (10329) 1.13 (1.04, 1.22) 0.0033 0.32 

20 rs28665237 2328102 C 0.28 7 (8524) 0.87 (0.80, 0.96) 0.0033 0.32 

SNP – single nucleotide polymorphism, MAF – minor allele frequency, N – number of studies, 
n – number of individuals in the analysis, OR – odds ratio, CI – 95% confidence interval, P 
value – level of statistical significance from inverse variance fixed model effects (or random 
model effects if I2 >40%) meta-analysis, FDR Qvalue – corrected level of statistical significance 
after applying FDR, SNP positions match chrX and are based on build 37.  
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Figure 4.3.1: Association between rs141738136 and CAD in males – forest plot. Results 
from each study for rs141738136 are shown as grey squares and a horizontal line represents the 
effect estimate (OR) together with its confidence intervals. The size of the square corresponds to 
the sample-size – the weight that the study contributes to the meta-analysis. The combined-
effect estimate and its confidence interval are illustrated as the diamond and the broken vertical 
line, OR – odds ratio, CI – confidence intervals, MAF – minor allele frequency.  
 

 

 

In all but one study (OHGS-A), the direction of association between rs141738136 and 

CAD was consistent with minor allele decreasing the risk of CAD by 3% to19 % and on 

average - by 12%. There was no heterogeneity between studies (I2 P=0.95). The 

frequency of the minor allele in each study is given on the right side of the plot. The 

MAF of rs141738136 varied across the examined studies (0.17 to 0.29).  

There was no association between this SNP and CAD in women (P=0.97) (Table 4.3.3). 

 

Overall  (I-squared = 0.0%, p = 0.953)

WTCCC

study

GerMIFSII
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0.86 (0.68, 1.09)

0.92 (0.71, 1.20)

1.03 (0.74, 1.43)

0.81 (0.64, 1.03)

0.84 (0.62, 1.13)

0.89 (0.58, 1.36)
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0.26
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0.92 (0.71, 1.20)
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0.81 (0.64, 1.03)

0.84 (0.62, 1.13)

0.89 (0.58, 1.36)

0.82 (0.68, 0.98)
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MAF
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0.17
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1.577 1 1.73
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Table 4.3.3: Association between top male SNP (rs141738136) and CAD in women in 
CARDIoGRAM Consortium 

SNP Position 
Minor 
allele 

MAF N of studies OR (95% CI) P value 

rs141738136 2673098 T 0.19 12 (8501) 1.00 (0.91, 1.10) 0.97 

SNP – single nucleotide polymorphism, MAF – minor allele frequency, N – number of studies, 
n – number of individuals in the analysis, OR – odds ratio, CI – confidence interval, P value – 
level of statistical significance from inverse variance fixed model effects (or random model 
effects if I2 P>40%) meta-analysis. 
 

Figure 4.3.2 Regional association plot – association between PAR1 and CAD in males. 
Associations of individual PAR1 SNPs with CAD based on meta-analysis from all studies are 
plotted as –log10 P values (Y-axis) against chromosomal bp position (X-axis). The most 
significant SNP (rs141738136) is shown as a purple diamond. Its LD relationship with the other 
SNPs is shown by different colours (red is r2>0.8 and blue is r2<0.2). The bottom panel of the 
plot shows the name and location of known genes. Positions of exons are displayed, and the 
transcribed strand is shown with an arrow to facilitate the visual comparison of association 
results relative to coding regions. Recombination hotspots are presented as blue peaks. 
 

 

 

As illustrated in Figure 4.3.2, there were two gaps in PAR1 where no SNP coverage 

was provided by the SNP array. The lead SNP rs141738136 is located in an intron of 

XG blood group gene (XG).  
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4.3.3. Analysis of association between PAR1 and CAD in females 

A total of 3,083 SNPs survived post-imputation filters and were used in the female-

specific meta-analysis. Of those 115 (3.7%) SNPs showed nominal association with 

CAD (P<0.05) (data not shown). After correction for multiple testing, 20 SNPs retained 

their association with PAR1 and CAD (Table 4.3.4). All of them were common SNPs 

(MAF varied between 0.18 and 0.46). The effect size of these SNPs in CAD risk is 

modest to moderate (OR from 1.13 to 1.25). Imputed SNP rs144253516 (P=2.44x10-5) 

showed the most significant association (Figure 4.3.3) with CAD. Each minor allele (T) 

copy increases the risk of CAD by approximately 19% [OR=1.19 (1.10-1.29)]. This 

SNP has been merged into rs113921272 and is located in an intragenic locus (Figure 

4.3.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



209 

 

 
Table 4.3.4: Analysis of association between PAR1 and CAD in females in CARDIoGRAM 
Consortium – top association signals 

 
SNP Position 

Minor 
allele 

MAF N of 
studies 

OR (95% CI) P value 
FDR 

Qvalue 

1 rs144253516 946524 T 0.27 12 (8501) 1.19 (1.10, 1.29) 2.44x10-5 0.02 

2 rs188358977 942659 A 0.24 12 (8531) 1.21 (1.11, 1,21) 2.56x10-5 0.02 

3 rs145495800 942973 G 0.23 12 (8501) 1.21 (1.11, 1.21) 2.67x10-5 0.02 

4 rs142933381 944463 T 0.41 12 (8501) 0.85 (0.78, 0.92) 3.29x10-5 0.02 

5 rs145362525 944713 A 0.27 12 (8501) 1.18 (1.09, 1.27) 3.51x10-5 0.02 

6 rs146991652 947544 T 0.27 12 (8501) 1.19 (1.10, 1.29) 3.68x10-5 0.02 

7 rs138100619 947948 T 0.27 12 (8501) 1.19 (1.09, 1.29) 4.45x10-5 0.02 

8 *rs5946608 944168 T 0.45 12 (9019) 1.16 (1.08, 1.25) 4.86x10-5 0.02 

9 rs148241722 944436 T 0.40 12 (8501) 0.85 (0.79, 0.82) 5.54x10-5 0.02 

10 rs151295303 943652 T 0.40 12 (8501) 0.85 (0.79, 0.82) 7.05x10-5 0.02 

11 rs141390273 945100 A 0.39 12 (8502) 0.86 (0.80, 0.93) 8.78x10-5 0.02 

12 rs143775210 948002 T 0.28 12 (8501) 1.18 (1.09, 1.29) 9.06x10-5 0.02 

13 rs145889839 944098 C 0.40 12 (8501) 0.86 (0.80, 0.93) 9.20x10-5 0.02 

14 rs147465651 942891 C 0.37 12 (8501) 0.84 (0.77, 0.92) 9.39x10-5 0.02 

15 rs141739675 942367 T 0.18 9 (6924) 1.25 (1.11, 1.41) 1.92x10-4 0.04 

16 rs150852359 946631 G 0.43 12 (8501) 0.86 (0.79, 0.83) 2.16x10-4 0.04 

17 rs138614173 945269 T 0.41 12 (8502) 0.87 (0.81, 0.94) 2.23x10-4 0.04 

18 rs144066964 944385 C 0.42 12 (8501) 0.86 (0.80, 0.93) 2.31x10-4 0.04 

19 rs147393599 945374 C 0.46 11 (8123) 0.93 (0.86, 1.00) 2.41x10-4 0.04 

20 rs149476563 944371 C 0.42 12 (8501) 0.86 (0.80, 0.94) 2.59x10-4 0.04 

SNP – single nucleotide polymorphism, MAF – minor allele frequency, N – number of studies, 
n – number of individuals in the analysis, OR – odds ratio, CI – 95% confidence interval, P 
value – level of statistical significance from inverse variance fixed model effects (or random 
model effects if I2 >40%) meta-analysis, FDR Qvalue – corrected level of statistical significance 
after applying FDR, SNP positions are based on build 37, *rs5946608 is a directly genotyped 
SNP.  
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Figure 4.3.3: Association between rs144253516 and CAD in females – forest plot. Results 
from each study for rs144253516 are shown as grey squares and a horizontal line represents the 
effect estimate (OR) together with its confidence intervals. The size of the square corresponds to 
the sample-size - the weight that the study contributes to the meta-analysis. The combined-
effect estimate and its confidence interval are illustrated as the diamond and broken vertical 
line. OR – odds ratio, CI – confidence intervals, MAF – minor allele frequency.  
 

 

 

In all but one study (MedStar) the direction of association between rs144253516 and 

CAD was consistent with minor allele increasing the risk of CAD by 4% to 39% and 

overall on average by 19% (Figure 4.3.3). The frequency of the minor allele (0.25 to 

0.30) showed a good constancy across studies. There was no heterogeneity between 

studies included in the meta-analysis (I2 P=0.71).  

Further exploration of the association between this SNP and CAD in men revealed no 

significant findings (P=0.40) (Table 4.3.5).  
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Table 4.3.5: Association between top female SNP (rs144253516) and CAD in men in 
CARDIoGRAM Consortium 

SNP Position 
Minor 
allele 

MAF N of studies (n)  OR (95% CI) P value 

rs144253516 946524 T 0.28 11 (13962) 1.03 (0.97, 1.10) 0.40 

SNP – single nucleotide polymorphism, MAF – minor allele frequency, N – number of studies, 
n – number of individuals in the analysis, OR – odds ratio, CI – confidence interval, P value – 
level of statistical significance from inverse variance fixed model effects meta-analysis. 
 

Figure 4.3.4: Regional association plot – Association between PAR1 and CAD in females.  
Associations of individual PAR1 SNPs with CAD based on meta-analysis from all 12 studies 
are plotted as –log10 P values (Y-axis) against chromosomal bp position (X-axis). The most 
significant SNP (rs144253516) is shown as a purple diamond. Its LD relationship with the other 
SNPs is shown by different colours (red is r2>0.8 and blue is r2<0.2). The bottom panel of the 
plot shows the name and location of known genes. Positions of exons are displayed, and the 
transcribed strand is shown with an arrow to facilitate the visual comparison of association 
results relative to coding regions. Recombination hotspots are presented as blue peaks.  
 

 

 

20 SNPs with strongest associations with CAD are in moderate to high LD (r2>0.6) and 

map to an intergenic region. The lead SNP rs144253516 is located ~330kb away from 

the 3’untranslated region of SHOX gene and ~370kb and ~440kb away from the 3’ 

untranslated regions of CRLF2 and 5’ CSF2RA genes, respectively.  



212 

 

Further exploration of the intergenic region of PAR1for other regulatory genomic 

features (Figure 4.3.5) in UCSC public database revealed presence of a long intergenic 

non-coding RNA (lincRNA) - RP11-309M23, only ~4kb away from the CAD-

associated region. The length of the RP11-309M23 is 4254bp and its transcript is 588bp 

in length. It contains several transposable elements. For example, there is an enrichment 

of retroviral elements, ERV1 and ERVL-MalR families in RP11-309M23. 

Characteristically, a long terminal repeat (LTR) that belongs to ERV1 LTR family 

overlaps with exon1 of the lincRNA. There is no information on biological function of 

this lincRNA. RP11-309M23 lies ~437kb upstream of CSF2RA gene, a cytokine which 

is biologically an interesting candidate gene.  

The top imputed PAR1 SNP - rs144253516 maps to a repeat masked region, a SINE 

AluY element whilst the most significant genotyped polymorphism - rs5946608 is 

located in an LTR ERV1 sequence (Figure 4.3.6). 
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Figure 4.3.5: An in-depth view of the female-specific CAD associated locus in PAR1 (in blue). The genomic coordinates 942,367…948,002 (±5000bp) are 
shown on top of the graph. A detailed annotation of the interspersed repeating elements that are present in the explored region is provided in the bottom panel. 
The level of colour shading reflects the amount of base mismatch, base deletion, and base insertion associated with a repeat element. The higher the combined 
number of these, the lighter the shading. SINE – short interspersed nuclear element (which include Alu), LINE – long interspersed nuclear element, LTR – 
long terminal repeat elements, top imputed SNP rs144253516 and genotyped SNP rs5946608 (circled in red) and lincRNA RP11-309M23 (in green) are 
highlighted in the top panel [Produced in UCSC database]. 
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Figure 4.3.6: UCSC-based view of the genomic location of top PAR1 SNPs - imputed 
rs144253516 (A) and directly genotyped rs5946608 (B) SNPs. The green tracks refer to the 
level of alignability of sequence surrounding the SNP, black tracks refer to the uniqueness of 
sequence that surround the SNP (signal intensity range: 0-1; whereby 0 – weak and 1 – strong); 
Repetitive sequences (SINE, LINE LTR) are listed on the bottom. [Obtained from UCSC 
database]. 
 

 

 

A 
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4.3.4. Analysis of association between PAR2 and CAD 

SNP data on PAR2 were available only in Canadian studies, CCGB, DUKE, OHGS-B 

and OHGS-C. Therefore, the analysis was restricted to 5,075 men and 2,698 women 

from these studies. 

A total of 317 SNPs in PAR2 passed the post-imputation quality filters and were used in 

the male-specific meta-analysis. The results of the most significant findings from this 

analysis are shown in Table 4.3.6. Of 317 analysed SNPs, only 2 (rs143917348, 

rs149183634) showed a nominal level of association with CAD.  

 
Table 4.3.6: Analysis of association between PAR2 and CAD in males – top association signals 
in 4 Canadian studies from CARDIoGRAM Consortium. 

 SNP Position 
Minor 
allele 

MAF 
N of 

studies (n) 
OR (95% CI) P value 

1 rs143917348 155037001 G 0.34 3 (2727) 0.84 (0.71, 0.99) 0.0353 

2 rs149183634 155229826 T 0.30 3 (2727) 1.18 (1.00, 1.40) 0.0484 

3 rs142003474 155207586 G 0.32 3 (2727) 1.17 (1.00, 1.37) 0.0511 

4 rs139264026 155037027 G 0.35 3 (2727) 0.85 (0.72, 1.00) 0.0513 

5 rs147560965 155207391 G 0.30 3 (2727) 1.17 (1.00, 1.38) 0.0518 

SNP – single nucleotide polymorphism, MAF – minor allele frequency, N – number of studies, 
n – number of individuals in the analysis, OR – odds ratio, CI – confidence interval, P value – 
level of statistical significance from inverse variance fixed model effects meta-analysis, SNP 
positions are based on build 37. 
 

A total of 281 SNPs in PAR2 survived the post-imputation quality filters and were used 

in the female meta-analysis. Of those, 12 SNPs showed association with CAD at the 

nominal level of statistical significance (P<0.05) (Table 4.3.7). However, neither of the 

nominal association signals detected in PAR2 remained significant after correction for 

multiple testing. 
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Table 4.3.7: Analysis of association between PAR2 and CAD in females – top association 
signals in Canadian studies in CARDIoGRAM Consortium. 

 SNP Position 
Minor 
allele 

MAF NS (n) OR (95% CI) P value 

1 rs192915026 154943982 A 0.28 3 (1564) 1.30 (1.05, 1.61) 0.0148 

2 rs150396739 154949953 G 0.23 3 (1564) 1.30 (1.05, 1.61) 0.0161 

3 rs149164276 155017860 C 0.18 3 (1564) 0.77 (0.61, 0.95) 0.0164 

4 rs139362836 154941571 A 0.23 3 (1564) 1.30 (1.05, 1.62) 0.0187 

5 rs149869683 154947398 T 0.23 3 (1564) 1.29 (1.04, 1.61) 0.0193 

SNP – single nucleotide polymorphism, MAF – minor allele frequency, N – number of studies, 
n – number of individuals in the analysis, OR – odds ratio, CI – confidence interval, P value – 
level of statistical significance from inverse variance fixed model effects (or random model 
effects if I2 P>40%) meta-analysis, SNP positions are based on build 37 and match chrX.  
 
 
 

4.3.5. PAR1 and PAR2 gene expression studies 

Sex-stratified comparative analysis of PAR genes expression was conducted in 

Cardiogenics Study where gene expression at mRNA was measured in both human 

monocytes and macrophages. Only 9 PAR1 genes (AKAP17A, ASMTL, CD99, CSF2RA, 

DHRSX, GTPBP6, PLCXD1, P2RY8 and ZBED1) with a total of 11 probes were 

available on the microarray platform used in transcriptome profiling in this study. Apart 

from CSF2RA gene that had 3 transcripts measured, all other PAR1 genes were 

represented by single probes. All PAR1 genes represented on the microarray platform 

were expressed in human monocytes/macrophages (Figure 4.3.7). In context, of all 

18,311 genes with measurable expression in monocytes/macrophages, PAR1 genes 

showed moderate abundance (above inclusion threshold) in both cell types. 
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Figure 4.3.7: Expression levels of PAR1 genes in monocytes and macrophages.  
 

 

 

The findings from sex-stratified comparative gene expression analysis in human 

monocytes/macrophages are shown in Table 4.3.8. Except of AKAP17A, all PAR1 

genes were up-regulated in male monocytes and macrophages when compared to 

females. Of 11 analysed probes, 6 showed an expression difference in monocytes and 8 

in macrophages at the nominal level of statistical significance (P<0.05). CD99, 

CSF2RA, P2RY8 and ZBED1 genes showed a statistically significant difference in their 

expression level between men and women in monocytes and ASMTL, CD99 and 

CSF2RA genes showed a statistically significant difference in their expression level 

between men and women in macrophages (Corrected P< 4.5x10-3). 
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Table 4.3.8: Sex differences in PAR1 genes expression in human macrophages and monocytes – 
Cardiogenics cohort 

Gene 
Monocytes Macrophages 

M vs F Beta ± SE P value M vs F Beta ± SE P value 

AKAP17A Down -0.02±0.03 0.55 Up 0.04±0.03 0.22 

ASMTL Up 0.001±0.02 0.87 Up 0.06±0.02 2.92x10-3 

CD99 Up 0.09±0.02 8.58x10-5 Up 0.09±0.03 2.55x10-3 

CSF2RA1 Up 0.06±0.03 0.02 Up 0.07±0.04 0.03 

CSF2RA2 Up 0.09±0.02 2.02x10-7 Up 0.16±0.04 6.08x10-5 

CSF2RA3 Up 0.10±0.02 1.20x10-9 Up 0.15±0.04 5.04x10-5 

DHRSX Up 0.02±0.01 0.13 Up 0.02±0.02 0.35 

GTPBP6 Up 0.05±0.03 0.10 Up 0.03±0.03 0.30 

P2RY8 Up 0.13±0.02 5.29x10-12 Up 0.14±0.06 0.01 

PLCXD1 Up 0.02±0.02 0.29 Up 0.10±0.05 0.04 

ZBED1 Up 0.12±0.01 5.60x10-16 Up 0.08±0.03 6.86x10-3 

M – males, F – females, Beta – beta coefficient, SE – standard error, P value – level of 
statistical significance from linear regression analysis. 
 

4.3.6. New generation RNA-sequencing of human monocytes and macrophages 

Overall, reads were mapped to 81 PAR1 and 16 PAR2 transcript sequences in human 

monocytes and macrophages (Table 4.3.9, Table 4.3.12). A majority of PAR1 and 

PAR2 transcripts showed relatively low expression in monocytes and macrophages 

when compared to average transcript expression in both types of cells (Figures 4.3.8, 

Figure 4.3.9). Two PAR genes – SLC25A6 and CD99 showed relatively high expression 

levels (233.83 and 123.07 FPKM, respectively). Nine novel transcripts were identified 

in PAR1 through RNA-seq (Table 4.3.11).  

Of 135 known PAR1 transcripts in 38 genes (including protein coding, pseudogenes, 

RNA and non-coding RNA genes), 81 showed expression in monocytes (65) or 

macrophages (61) or both cell types (Table 4.3.10). Four known protein coding genes 

were not expressed at all in either type of cell (SHOX, CRLF2, ASMT and XG). 
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Figure 4.3.8: Atlas of PAR1 genes expression in human monocytes and macrophages - new 
generation RNA-sequencing 

 

Left panel – heat maps of each individual PAR1 transcript expressed in either cell type mapping 
to respective PAR1 genes. Middle panel – alignment of all PAR1 genes based on genomic order 
(based onEnsembl), in pink – pseudogenes, in orange- protein coding genes. Right panel –
symbols of genes that are expressed in at least one of monocytes or macrophages. Far right 
panel – PAR1 location (in pink) in the context of the cytogenetic banding pattern of the X 
chromosome. Log2FPKM+1 – units of expression in RNA-sequencing data.
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Table 4.3.9: PAR1 transcripts in human monocytes and macrophages – the results of RNA-sequencing 

 Gene Symbol Gene name 
Total number 
of transcripts 
in Ensembl 

Number of 
transcripts 
expressed 

Transcripts 
expressed in 
monocytes 

Transcripts 
expressed in 
macrophages 

1 NCRNA00108 - 1 - - - 

2 PLCXD1 
phosphatidylinositol-specific phospholipase C, X 

domain containing 1 
11 5 4 3 

3 GTPBP6 GTP binding protein 6 (putative) 3 4 3 3 

4 PPP2R3B-AS1 
protein phosphatase 2, regulatory subunit B, 

antisense RNA 1 (LINC00685) 
1 - - - 

5 PPP2R3B protein phosphatase 2, regulatory subunit B 10 4 4 1 

6 AL732314.1 - 1 2 1 2 
7 FABP5P13 fatty acid binding protein 5 pseudogene 13 1 - - - 
8 KRT18P53 - 1 - - - 
9 SHOX short stature homeobox 7 - - - 

10 RP11-309M23.1 - 1 1 - 1 

11 RPL14P5 - 1 - - - 
12 CRLF2 cytokine receptor-like factor 2 4 - - - 

13 CSF2RA 
colony stimulating factor 2 receptor, alpha 

(granulocyte-macrophage) 
21 11 10 7 

14 BX649553.4 - 1 - - - 
15 BX649553.2 - 1 - - - 
16 MIR3690 - 1 - - - 
17 BX649553.1 - 1 - - - 
18 RNA5SP498 - - - - - 
19 RN7SL355P - 1 - - - 
20 IL3RA interleukin 3 receptor, alpha 3 3 3 2 

21 SLC25A6 
solute carrier family 25 (mitochondrial carrier; 

adenine nucleotide translocator), member 6 
3 5 3 3 
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 Gene Symbol Gene name 
Total number 
of transcripts 
 in Ensembl 

Number of 
transcripts 
expressed 

Transcripts 
expressed in 
monocytes 

Transcripts 
expressed in 
macrophages 

22 LINC00106 long intergenic non-protein coding RNA 106 2 2 2 2 

23 ASMTL-AS1 ASMTL antisense RNA 1 5 2 2 2 

24 ASMTL acetylserotonin O-methyltransferase-like 7 6 4 6 

25 P2RY8  purinergic receptor P2Y, G-protein coupled, 8 
 

2 2 1 2 

26 AKAP17A A kinase (PRKA) anchor protein 17A 3 4 4 4 

27 ASMT  acetylserotonin O-methyltransferase 
 

4 - - - 

28 RP13-297E16.3 - 1 - - - 

29 RP13-297E16.4 - 2 2 2 - 

30 RP13-297E16.5 - 1 1 1 - 

31 DHRSX dehydrogenase/reductase (SDR family) 7 7 4 7 

32 DHRSX-IT1 DHRSXintronic transcript 1 (non-protein coding) 1 1 1 - 

33 ZBED1 zinc finger, BED-type containing 1 4 4 3 4 
34 RP11-325D5.3 - 1 1 1 1 
35 CD99P1 CD99 molecule pseudogene 1 5 5 4 4 

36 LINC00102 long intergenic non-protein coding RNA 102 1 - - - 

37 CD99 CD99 molecule 9 9 8 7 
38 XG Xg blood group 6 - - - 
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Table 4.3.10: Average expression levels of PAR1 gene transcripts in human monocytes and 
macrophages – the results of RNA-sequencing 

Gene/transcript 
symbol 

Transcript 
length (bp) 

Monocytes 
expression 
(FPKM)  

Macrophages 
expression 
(FPKM)  

Class code 

PLCXD1-001 5287 1.90 1.39 = 

PLCXD1-010 587 1.70 1.96 = 

PLCXD1-003 284 - 2.38 = 

PLCXD1-010 587 2.54 - = 

PLCXD1-004 828 0.15 - = 

GTPBP6-003 2675 0.60 - = 

GTPBP6-201 2677 - 0.65 J 

GTPBP6-201 1527 2.06 0.16 = 

GTPBP6-001 1186 4.47 3.88 = 

LINC00685-001 2378 0.16 0.95 = 

LINC00685-001 428 - 3.56 = 

PPP2R3B-001 2511 0.14 - J 

PPP2R3B-001 2151 0.13 0.38 = 

PPP2R3B-001 458 0.26 - = 

PPP2R3B-009 408 0.17 - = 

RP11-309M23-001 588 - 0.14 = 

CSF2RA-006 1816 12.96 3.51 = 

CSF2RA-203 2330 0.65 - J 

CSF2RA-203 1575 1.96 1.09 J 

CSF2RA-203 2313 0.65 - J 

CSF2RA-001 2291 6.22 0.82 = 

CSF2RA-009 802 2.06 0.61 = 

CSF2RA-005 1601 0.57 - = 

CSF2RA-012 490 22.26 5.78 = 

CSF2RA-011 459 0.40 - = 

CSF2RA-013 391 - 1.03 = 

CSF2RA-015 389 0.82 0.76 = 

IL3RA-001 1472 0.17 0.24 J 

IL3RA-001 1706 0.50 - = 

IL3RA-001 801 0.42 1.13 X 

SLC25A6-001 2062 - 0.15 = 

SLC25A6-001 2170 0.92 - J 

SLC25A6-001 1583 233.83 117.43 J 
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Gene/transcript 
symbol 

Transcript 
length (bp) 

Monocytes 
expression 
(FPKM)  

Macrophages 
expression 
(FPKM)  

Class code 

SLC25A6-001 2173 - 0.40 J 

SLC25A6-002 900 0.74 - = 

LINC00106-002 2231 0.88 1.01 = 

LINC00106-001 370 0.14 0.41 = 

ASMTL-AS1-003 574 1.48 0.95 = 

ASMTL-AS1-004 840 0.22 0.70 = 

ASMTL-202 2048 0.39 0.25 = 

ASMTL-005 2027 4.50 3.73 = 

ASMTL-001 2035 2.17 0.85 = 

ASMTL-004 573 0.62 0.30 = 

ASMTL-202 965 - 1.47 J 

ASMTL-002 851 - 0.18 = 

P2RY8-002 4272 - 0.22 = 

P2RY8-001 4198 16.55 2.37 = 

AKAP17A-003 3204 6.72 1.76 = 

AKAP17A-001 3232 3.62 1.53 = 

AKAP17A-002 2187 2.49 1.24 = 

AKAP17A-001 4299 1.37 0.82 J 

RP13-297E16.4-001 761 0.47 - J 

RP13-297E16.4-001 445 0.47 - = 

RP13-297E16.5-001 548 0.15 - = 

DHRSX-001 2571 1.89 1.18 = 

DHRSX-001 2575 - 0.47 J 

DHRSX-004 744 2.80 4.10 = 

DHRSX-003 572 - 0.20 = 

DHRSX-002 797 0.64 0.76 = 

DHRSX-005 539 3.04 0.82 = 

DHRSX-006 679 - 0.56 = 

DHRSX-IT1-001 651 0.36 - = 

ZBED1-201 4510 6.55 4.65 = 

ZBED1-001 4485 5.55 3.20 = 

RP11-325D5.3-001 905 0.81 2.19 = 

ZBED1-002 2832 - 1.47 = 

ZBED1-201 947 7.63 11.24 = 

CD99P1-001 1350 - 0.21 J 
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Gene/transcript 
symbol 

Transcript 
length (bp) 

Monocytes 
expression 
(FPKM)  

Macrophages 
expression 
(FPKM)  

Class code 

CD99P1-001 943 0.85 0.62 J 

CD99P1 984 3.12 0.41 = 

CD99P1 561 2.18 2.37 = 

CD99P1 3071 0.17 - = 

CD99 1513 0.20 - J 

CD99 1245 123.07 148.94 = 

CD99 892 2.37 2.38 = 

CD99 918 3.29 20.78 = 

CD99 530 0.73 0.31 = 

CD99 604 - 1.23 = 

CD99 1383 0.41 - J 

CD99 806 0.42 0.78 = 

CD99 430 1.15 2.52 = 

Data are average expression levels in FPKM (Fragments per kilobase of transcript per million 
mapped reads), (-) – transcript not expressed, (=) – complete match of intron, (J) – potentially 
novel isoform (fragment) - at least one splice junction is shared with a reference transcript, (X) - 
exonic overlap with reference on the opposite strand.  
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Table 4.3.11: Average expression levels of novel PAR1 gene transcripts in human monocytes 
and macrophages – the results of RNA-sequencing 

Gene/transcript 
ID 

Start  
(bp) 

End 
(bp) 

Transcript 
length (bp) 

Monocytes 
expression 
(FPKM)  

Macrophages 
expression 
(FPKM)  

XLOC_056423 284832 285230 398 0.25 1.70 

XLOC_056424 366225 366800 575 - 0.77 

XLOC_055336 1430497 1430951 454 11.15 3.24 

XLOC_055337 1431106 1432068 962 4.43 1.59 

XLOC_056425 1433962 1435841 1879 0.94 0.24 

XLOC_056426 1436534 1437664 1130 1.25 - 

XLOC_056427 1437882 1438764 882 1.23 0.28 

XLOC_056428 1438942 1439519 577 0.86 - 

XLOC_056429 1439973 1440983 1010 1.04 - 

XLOC_056430 1444635 1444968 333 1.77 - 

XLOC_056431 1511974 1512667 693 1.06 0.60 

XLOC_056432 1519503 1519923 420 0.35 1.44 

XLOC_056433 1850514 1850988 474 1.43 0.46 

XLOC_055345 2484979 2527216 376 1.55 - 

XLOC_055345 2484979 2527216 806 0.83 0.31 

XLOC_056434 2484979 2527216 352 0.16 1.95 

XLOC_056435 2484979 2527216 382 1.37 1.30 

XLOC_056436 2484979 2527216 301 2.63 2.65 

XLOC_056437 2484979 2527216 1113 0.59 0.73 

XLOC_056438 2578722 2580009 1287 1.05 1.36 

XLOC_056439 2580075 2581136 1061 1.28 1.22 

XLOC_056440 2581244 2581765 521 3.15 1.68 

XLOC_056441 2581887 2582308 421 0.69 1.22 

XLOC_056442 2582579 2582912 333 2.30 - 

XLOC_056443 2583238 2583478 240 4.45 0.36 

XLOC_056444 2662977 2663619 642 1.05 0.24 

XLOC_056445 2663764 2664288 524 1.48 0.79 

FPKM – Fragments per kilobase of transcript per million mapped reads, unit of expression 

in RNA sequencing data, (-) – not expressed. 
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Ensembl identifies 11 genes (including protein coding, pseudogenes, RNA and non-

coding RNA genes) with a total of 37 transcripts in PAR2. Of those 16 transcripts 

showed expression in monocytes (9) or macrophages (15) or both cell types. One 

known protein coding gene was not expressed at all in either monocytes or macrophages 

(IL9R).  

 
 
Figure 4.3.9: Atlas of PAR2 genes expression in human monocytes and macrophages - new 
generation RNA-sequencing 

 

Left panel – heat maps of each individual PAR2 transcript expressed in either cell type mapping 
to respective PAR2 genes. Middle panel – alignment of all PAR2 genes based on genomic order 
(based on Ensembl), in pink – pseudogenes, in orange – protein coding genes. Right panel – 
symbols of genes that are expressed in at least one of monocytes or macrophages. Far right 
panel – PAR2 location (in pink) in the context of the cytogenetic banding pattern of the X 
chromosome. Log2FPKM+1 – units of expression in RNA-sequencing data.
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Table 4.3.12: PAR2 transcripts in human monocytes and macrophages – the results of RNA-sequencing 

 Gene Symbol Gene name 
Total number 
of transcripts 
in Ensembl 

Number of 
transcripts 
expressed 

Transcripts 
expressed – 
monocytes 

Transcripts 
expressed – 

macrophages 

1 SPRY3 Sprouty homolog 3 (drosophila) 1 2 0 2 

2 AMDP1 
adenosylmethionine decarboxylase pseudogene 

1 
1 - - - 

3 DPH3P2 
DPH3, KTI11 homolog (S. cerevisiae) 

pseudogene 2 
1 - - - 

4 VAMP7 vesicle-associated membrane protein 7 6 6 5 6 

5 TCEB1P24 
transcription elongation factor B (SIII), 

polypeptide 1 pseudogene 24 
1 - - - 

6 TRPC6P 
transient receptor potential cation channel, 

subfamily C, member 6 pseudogene 
1 - - - 

7 IL9R interleukin 9 receptor 6 - - - 
8 AJ271736.10 - 1 - - - 
9 WASIR1 WASH and IL9R antisense RNA 1 1 - - - 

10 WASH6P WAS protein family homolog 6 pseudogene 16 8 4 7 

11 DDX11L16 
DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 

11 like 16 
2 - - - 
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Table 4.3.13: Average expression levels of PAR2 gene transcripts in human monocytes and 
macrophages – the results of RNA-sequencing 

Gene/transcript 
symbol 

Transcript 
length 
(bp) 

Monocytes 
expression 
(FPKM)  

Macrophages 
expression 
(FPKM)  

Class code 

SPRY3-201 3302 - 0.29 = 

SPRY3-001 9019 - 0.14 = 

VAMP7-002 2646 8.68 6.17 = 

VAMP7-003 742 3.04 3.27 = 

VAMP7-005 696 0.36 0.63 = 

VAMP7-004 673 - 1.32 = 

VAMP7-001 2496 1.99 0.64 = 

VAMP7-006 658 0.19 2.09 = 

WASH6P-012 3449 0.33 - J 

WASH6P-012 3069 - 0.31 J 

WASH6P-016 4244 0.30 0.34 = 

WASH6P-015 3187 - 0.20 = 

WASH6P-014 1826 - 0.17 = 

WASH6P-008 542 - 0.64 = 

WASH6P-010 832 3.98 2.20 = 

WASH6P-011 534 - 1.59 = 

FPKM - Fragments per kilobase of transcript per million mapped reads, unit of 
expression in RNA sequencing data, (-) – transcript not expressed (=) – complete match 
of intron, (J) - potentially novel isoform (fragment): at least one splice junction is shared 
with a reference transcript. 

 

The lincRNA RP11-309M23.1 in close proximity to rs144253516 that was associated 

with CAD in females, showed expression in macrophages but not in monocytes. In the 

Human Body Map 2.0 project (Cabili et al. 2011), this lincRNA showed expression in 

other tissues including brain, breast, kidney, ovary and thyroid (Figure 4.3.10). The 

lincRNA showed no expression in peripheral white blood in this dataset. The expression 

data from Human Body Map suggest that this lincRNA might be longer than what 

Ensembl reports - strong signals were observed downstream of this lincRNA (Figure 

4.3.10).  
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Figure 4.3.10: RP11-309M23.1 lincRNA expression profile across different human tissues 
in HumanBodyMap 2.0 dataset. RNA sequencing data from the Human Body Map 2.0 dataset 
(for all different tissue types) are shown. The bottom row shows the Ensembl gene annotations 
for the RP11-309M23.1lincRNA. Expression abundances were estimated on the gene locus 
level and are given as raw FPKM.  
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4.4. Discussion 

Both PARs belong to the most un-explored regions of human genome in complex 

human diseases. The unusual genetic “behaviour” of these regions, their complex 

biology, small size and very poor coverage in commercial arrays made them unpopular, 

a genetic “blind-spot” for genetic association studies. They were routinely excluded 

from GWA studies. 

So far only three human diseases have been mapped to PAR1. Isolated short stature, 

Leri-Weill (Belin et al. 1998; Shears et al. 1998) and Langer (Belin et al. 1998) 

syndromes are all caused by the functional loss of SHOX gene. This gene represents the 

only known disease locus within the human PAR1 (Blaschke and Rappold, 2006). Two 

additional studies examined the involvement of PARs in susceptibility to psychiatric 

disorders. A GWA study in schizophrenia, revealed a strong association signal near 

CSF2RA in the PAR1 region (Lencz et al. 2007b) and a linkage study highlighted a new 

susceptibility locus for bipolar affective disorder very close to ASMTL and ASMT in 

PAR1 (Flaquer et al. 2010). 

The associations between PARs and either risk factors or terminal manifestations of 

cardiovascular disease have not been explored to date in prior candidate gene studies. 

Interestingly, several genes in PARs including IL3RA, CSF2RA appear as strong 

biological candidates in relation to atherosclerosis. This genetic study is the first robust 

analysis of association between PARs and predisposition to CAD.  

Despite the sequence homology of PARs, gene expression levels in these regions can be 

different in males and females, which may result in a variety of dose-dependent effects 

and different functional consequences in both sexes (Carrel and Willard, 2005; 

Talebizadeh et al. 2006; D’Esposito et al. 1996). The analysis of an existing genome-
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wide microarray expression profiling dataset – Cardiogenics – showed sexual dimorphic 

differences in expression of ~50% of PAR genes in monocytes and macrophages. Very 

recently, another study highlighted the sexual gene expression dimorphism of another 

cardiovascular disease, ischeamic stroke (Stamova et al. 2012). There was a sexual 

dimorphism in expression changes of PAR genes after ischaemic stroke. This was most 

striking for dehydrogenase/reductase SDR family X-linked (DHRSX) and sprouty 

homolog 3 (SPRY3) and a kinase anchor protein 17A (AKAP17A) genes. For example at 

24 hours after stroke, there was a male-specific up-regulation of DHRSX and a female-

specific up-regulation of AKAP17A (Stamova et al. 2012). Although it is not feasible to 

discriminate whether PAR gene expression can be driven by X or Y chromosome (or 

both) based on the experimental design of these studies, several PAR genes showed 

clear differences in expression pattern between both sexes (Stamova et al. 2012). These 

different patterns of PAR expression in women compared with men provided a first 

glimpse into the sexually dimorphic nature of PAR response to cardiovascular disease.  

The most important finding from the genetic meta-analysis of PARs was that 

rs144253516 showed association with CAD in females. The lead SNP is located in an 

intergenic region. Four kb away from it, is a long intergenic non-coding RNA gene, 

RP11-309M23. Long non-coding RNA (lincRNA) is most commonly defined as a non-

protein-coding RNA molecule longer than 200 nucleotides (Shi et al. 2013). 

Accumulating evidence suggests that lincRNAs are key regulators in cell differentiation 

and disease pathways (Huarte et al. 2010; Wang et al. 2011a; Guttman et al. 2011; 

Prensner et al. 2011; Cesana et al. 2011; Hu et al. 2011; Ng et al. 2012; Kretz et al 

2012; Gupta et al. 2010). The transcriptome analysis revealed that RP11-309M23 was 

expressed in macrophages but not in monocytes. Its expression levels were very low but 

it is not surprising assuming that its function is regulatory. It is also known that long 
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non-coding RNAs expression patterns tend to be more tissue-specific than protein-

coding genes (Schonrock et al. 2012). Its expression in macrophages only, may suggest 

that differentiation into macrophages, an important initial step in the process of 

atherosclerosis (Ross, 1993), might be the key stage at which rs144253516 (or any of its 

proxies) act on the risk of CAD. 

This lincRNA contains transposable elements such as long terminal repeat endogenous 

retroviruses (LTR-ERVs), SINE-Alus and LINE-L1 repetitive sequences. Transposable 

elements are nucleic acid sequences capable of inserting into genomic DNA (Kelley and 

Rinn, 2012).They are typically considered “selfish” genomic parasites and occupy 45 to 

65% of the human genome (De Koning et al. 2011). Whether these transposable 

elements influence lincRNA sequence is largely unexplored, but various recent studies 

point to interesting transposable element-associated lincRNA functions (Gong and 

Maquat, 2011; Cartault et al. 2012; Loewer et al. 2010). For example a mutated L1 

element in a lincRNA is associated with infantile encephalopathy (Cartault et al. 2012). 

In addition, there is a strong enrichment of ERV1 and ERVL-MalR LTR families in this 

lincRNA. ERVs are remnants of exogenous retrovirus insertions into the germline and 

contain retroviral protein open reading frames, flanked by transcription-promoting 

LTRs (Lower et al. 1996; Kelley and Rinn, 2012). ERVs usually exhibit position and 

orientation biases, preferring the 5’ end of lincRNA transcripts and sense orientation 

with the transcript, consequently placing their LTRs in proper position to promote 

transcription. This suggests that transcription of ERVs may play a role in lincRNA 

transcriptional regulation (Keller and Rinn, 2012). Characteristically RP11-309M23 

lincRNA contains an ERV1-LTR at its 5’ end. Alterations in these repetitive elements 

could affect the functional role of this lincRNA function and can contribute to disease.  
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However, at this stage, the potential involvement of other genes in close proximity such 

as CSF2RA or CRLF2 as drivers of the identified association cannot be excluded. Both 

genes are strong biological candidate genes in relation to CAD. Indeed, because of 

involvement in inflammatory response, CRLF2, a cytokine receptor gene, could have 

been a promising biological candidate gene; however the RNA-sequencing data showed 

that it is not expressed in either monocytes or macrophages. 

CSF2RA gene is located ~440kb from the lead SNP. The gene encodes the alpha subunit 

of the heterodimeric receptor for colony stimulating factor 2 (GM-CSF), a cytokine 

controlling the production, differentiation and function of granulocytes and 

macrophages (Lencz et al. 2007b; Tian et al. 2012). The encoded protein is a member 

of the cytokine family of receptors and contributes to the development and progression 

of atherosclerosis. This gene has 11 transcripts expressed in monocytes, macrophages or 

both and shows sexual dimorphism in expression, at least in some of its transcripts. 

Three CSF2RA transcripts were present on the expression platform and two of them 

showed a significantly different up-regulation in men when compared to women. Up to 

date, this gene has been associated with schizophrenia (Lencz et al. 2007b) and its 

elevated expression levels were observed in males with stroke compared to healthy 

controls (Tian et al. 2012). CSF2RA mRNA level was reported as higher in healthy 

females than in healthy males in the stomach and lung tissue (Talebizadeh et al. 2006). 

Further studies are required to explain the role of this cytokine in these chronic disease 

processes and most importantly in relation to the role of PAR1 in CAD. 

It is certainly important to identify potential functional effects of rs144253516 in cells 

of relevance to CAD. To this end, associations between this SNP and both monocyte 

and macrophage expression of RP11-309M23 lincRNA and CSF2RA should be 
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examined. The rs144253516 is located inside a repeat masked region, a SINE AluY 

element. This SNP lies in a non-unique DNA area. Examination of both alignability 

(how often this sequence will align within the whole genome) and uniqueness (how 

unique is this sequence throughout the reference genome) of the DNA sequence 

surrounding this SNP, highlighted how difficult it is to design specific primers for this 

SNP. Indeed, there is no unique base which could be possibly used to anchor 

rs144253516. The genotyped SNP rs5946608 is in high LD (r2=0.91) with rs144253516 

and is located in a LTR ERV1 repetitive sequence. The rs5946608 is an easier target for 

genotyping and will be used as a proxy in the future studies. 

The association between the lead PAR1 SNP (rs141738136) and CAD in male-stratified 

analysis did not survive multiple testing correction. This variant mapped to XG which 

encodes the XG blood group antigen, and is located in the boundary of PAR1/MSY. 

Indeed, three 5’ exons reside in the PAR1 and the remaining exons within the MSY. 

One possibility is that the observed signal is driven by the MSY due to its proximity.  

Indeed, one of the MSY haplogroups was associated with predisposition to CAD in men 

(Charchar et al. 2012). Alternatively, the signal could be a simple false positive.  

It should be acknowledged that similar to other common genetic variants associated 

with increased risk of cardiovascular disease, rs144253516 on the short arm of the sex 

chromosomes shows a modest effect size and on its own is unlikely to offer sufficiently 

high positive predictive value for CAD. Indeed, SNPs that are fairly common in both 

cases and controls (and lead to a 1.1-1.5 increase in the OR of a disease) are not really 

specific enough to offer sufficient predictive value (Wald et al. 1999; Holmes et al. 

2011; Charchar et al. 2012). The new associations of PAR1 with susceptibility to CAD 

will require additional independent replication. 
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Next generation deep sequencing technology has been proven to be a powerful tool for 

transcriptome analysis of PARs. In this project a detailed atlas of PAR1 and PAR2 

genes expression in human monocytes and macrophages was provided. A majority of 

previous studies exploring the global gene profile change in monocytes and 

macrophages were based on commercially available microarrays (Schunkert et al. 2011; 

Chachar et al. 2012). The coverage of each platform is variable but generally much 

inferior to RNA-seq. Different microarray platforms only have 30-40% overlap in 

transcript detection (Barnes et al. 2005; Pedotti et al. 2008). With the advent of direct 

ultra-high-throughput sequencing of RNA transcripts, analyses of gene expression are 

significantly improved. The major advantages of RNA-sequencing are improved 

detection accuracy (more sensitive), quantification of transcripts with low expression, 

ability to identify alternative splicing without probe dependency and de novo analysis of 

novel transcripts and long non-coding RNAs (Labaj et al. 2011). RNA-sequencing 

provided the unique opportunity to identify 9 novel transcripts in PAR1 and reveal the 

expression profiles of miRNAs and lincRNA in human monocytes and macrophages. 

Further larger scale analyses followed by real-time quantitative PCR validation are 

necessary to confirm the findings from this analysis and offer more accurate 

quantitative studies.  

There is still a long way to understanding of the exact mechanisms underlying the 

association between PARs and cardiovascular disease. The collected data provided the 

first glimpse into their role in CAD. Further larger scale studies will be necessary to 

replicate the findings from the association analysis. Future studies should focus on 

DNA-mRNA correlation analysis (eQTL analysis) using appropriately sized samples to 

clarify which PAR1 transcript(s) is/are the driver of the identified association.



236 

 

 

 
 
 
 
 

CHAPTER 5 
GENERAL DISCUSSION 

 

 

 

 

 

 

 

 



237 

 

5. General Discussion 

5.1. Lessons from GWA studies on CAD 

Genome-wide SNP arrays have been used to identify common risk alleles for CAD. 

These studies and their meta-analyses have included thousands of patients and healthy 

individuals and provided the appropriate statistical power to identify fairly common 

genetic variants associated with CAD. A total of 46 chromosomal regions affecting 

CAD risk and a further 104 independent variants (r2<0.2) strongly associated with CAD 

at a 5% FDR were reported (Deloukas et al. 2013; Kessler et al. 2013). However, the 

collective contribution of these variants to CAD is very modest and explains only a 

small proportion of the overall heritability (up to 10.6%) (Peden and Farrall, 2011; 

Deloukas et al. 2013). To date, several important and novel insights into CAD biology 

have been provided by GWA studies. 

 

5.2. Un-explored regions of the human genome  

Despite their overall success in genetic discovery, GWA studies have overlooked 

several regions of the human genome. For example, sex chromosomes have been almost 

routinely excluded from these investigations. In addition, a majority of GWA studies 

were simply not powered to detect the effect of low-frequency/rare variants on complex 

disorders. As a result, the contribution of GWA studies to our knowledge on the role of 

both sex chromosomes and rare alleles in complex polygenic cardiovascular disorders 

has been limited.  

The two sex chromosomes lag behind autosomes in GWA findings despite being 

represented on all current GWA microarray platforms. Many reasons accounted for this 
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exclusion. For example, male specific region (95% the Y chromosome length) is 

haploid in nature and is transmitted from one generation to another along male lineage 

only (Charchar et al. 2012). It does not recombine during meiosis with the X 

chromosome. The traditional methods of LD-based association mapping applied to 

autosomal chromosomes cannot be used to examine the variation between MSY and 

human disease (Charchar et al. 2012) and the most suitable approach is the investigation 

of the Y chromosome phylogenetic tree.  

Unlike Y, X chromosome was included in a few GWA studies. However, of a total of 

>2,800 GWA signals, only 15 (~0.5%) were reported on the X chromosome (Wise et al. 

2013). Although similar in size to bigger autosomes (155Mb), X exhibits several major 

differences when compared to the rest of the human chromosomes. For example, a 

special feature of the X is the process of inactivation as a mechanism of dosage 

compensation at gene expression level (Chow et al. 2005). Due to lack of consensus on 

how to handle/equalise X chromosomal allele/genotype data across both sexes, X 

chromosome was usually excluded from GWA studies. Unfortunately, a majority of 

current GWA platforms are still poorly designed for this region (Wise et al. 2013).  

Similar to X and Y, PARs were almost completely excluded from previous genetic 

association analyses, mostly because of their modest size, location within the sex 

chromosomes and unusual genetic behaviour during meiosis. The coverage for PARs in 

GWA arrays remains very poor.  

These factors together created a significant barrier precluding their inclusion in analyses 

of complex diseases. In addition, the plethora of findings obtained from the autosomal 

genome alone, led many researchers to overlook the X, Y and PARs. 
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ROHs, long segments of uninterrupted consecutive homozygous SNPs and potential 

signatures for recessive variants were used before in genetic mapping of rare recessive 

disorders in families. It is now apparent that ROHs are more common in outbred 

populations than previously thought (Gibson et al. 2006, McQuillan et al. 2008). Only 

the last few years brought discoveries from genome-wide analysis of ROHs and 

complex disorders (Ku et al. 2011). For example, ROHs were associated with human 

height (Yang et al. 2010), schizophrenia (Lencz et al. 2007a; Keller et al. 2012) and 

Alzheimer’s disease (Nalls et al. 2009a; Sims et al. 2011). It would be fair to 

acknowledge that the number of these studies is much lower than “traditional” GWA 

studies and certain diseases, for example CAD, have never been examined in ROH-

based analyses.  

A majority of low-frequency/rare variants were excluded from GWA studies, usually at 

the level of quality control checking.  

 

5.3. The sex chromosomes and CAD 

The strongest level of evidence for association between sex chromosomes and CAD 

comes from the recent phylogenetic analysis and gene expression studies on MSY 

(Charchar et al. 2012). Indeed, haplogroup I of the human Y chromosome was 

associated with 50% risk of CAD in men of European ancestry, possibly through its 

effect on immunity and inflammation (Charchar et al. 2012). The very recent analysis 

from our group further revealed that CAD predisposing haplogroup I of the Y 

chromosome was associated with down-regulation of ubiquitously transcribed 

tetratricopeptide repeat containing Y-linked (UTY) and protein kinase, y-linked, 

pseudogene (PRKY) genes in macrophages (Bloomer et al. 2013). The association 
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between haplogroup I of the Y chromosome and CAD was independent of traditional 

cardiovascular risk factors such as BMI, blood pressure, total cholesterol, HDL-C, 

triglycerides, LDL-C, and glucose in European men (Bloomer et al. 2013). These data 

put the sex chromosome on the map of genetic predisposition to CAD.   

Of all human chromosomes, X contains the largest number of genes related to immunity 

and inflammation (Bianchil et al. 2012), both of which are recognised biological 

components of atherosclerosis and CAD. X chromosome anomalies are a risk factor of 

pro-ischaemic phenotype of cardiovascular disease – women with Turner syndrome 

have two-fold increase in risk of CAD when compared to the general population 

(Gravholt et al. 1998). Men and women differ in expression patterns of X chromosome 

genes in blood cells after ischaemic stroke (Stamova et al. 2012). However, so far there 

is no published genome-wide based evidence for association with CAD. 

The collected body of evidence for potential biological role of the sex chromosomes 

(mostly MSY) in CAD was a major trigger to explore possibly mostly unexplored part 

of both X and Y – PARs. These two small parts of the human DNA have proved to be 

more exciting and informative than their size implies. Indeed, genetic variation in PAR1 

was associated with CAD risk in sex-specific manner in the meta-analysis of 

CARDIoGRAM Consortium. Specifically, common genetic variants were associated 

with CAD in women but not in men after correction for multiple testing in the meta-

analysis. Although the biological foundations of sex specific patterns of association 

between PAR1 with CAD are not clear, sex-stratified comparative gene expression 

analysis in human monocytes and macrophages revealed statistically significant 

differences in PAR1 gene expression levels between men and women. This further 

emphasises the importance of sex-specific analysis of this region in further studies on 
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complex disorders. Interestingly, RNA-sequencing of human macrophages uncovered 

expression of lincRNA in close proximity to the region of PAR1 where an association 

with CAD was identified. Further studies should verify whether this lincRNA is a 

mediator of the association between PAR1 and CAD. Results from GWA studies 

suggest that a significant proportion of genetic variation (>80%) associated with 

complex diseases falls in non-coding regions of the genome (Hindorff et al. 2009; 

Bernstein et al. 2012). Most of these transcripts have little or no protein-coding capacity 

and may hold the key to understanding the regulatory complexity inherent to advanced 

biological networks (Amaral et al. 2008). Many non-coding RNAs have fundamental 

indices of functionality such as regulation by tissue-restricted transcription factors, 

dynamic developmental and cell type-specific expression patterns, localisation to 

specific subcellular compartments, association with chromatin signatures indicative of 

active transcription, conservation of promoters, structure and genomic location and 

association with human disease (Mattick, 2009). All of these renewed enthusiasm for 

exploring functional implications of these transcripts that ar present are weakly 

understood. 

 

5.4. ROHs and CAD – genetic signature of recessive variants? 

Recessive effects that make a substantial contribution to susceptibility to disease have 

been ignored by GWA studies that focused on additive mode of inheritance. The 

presence of ROHs in outbred populations provided evidence for a recessive component 

to the human genetic architecture. Evaluation of the distribution of ROHs in this project 

showed their over-representation favouring increased CAD risk. This suggests that 

accumulation of recessive alleles may increase the risk of CAD.  
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5.5. Low-frequency/rare variants and CAD 

The role of low-frequency/rare variants in relation to CAD has not been examined extensively. 

There is no doubt that low-frequency/rare variants exist and play a role in CAD biology. For 

example, low frequency SNP rs3798220 (MAF~3%) in LPA gene, is consistently 

associated with CAD risk (Clarke et al. 2009; The IBC 50K CAD Consortium, 2011). 

Taking advantage of the already available information on low-frequency and rare 

variants produced by the HumanCVD 50K chip, a search for their association was 

conducted using an aggregate method where the overall accumulation of low-

frequency/rare variants in a locus were compared across CAD patients and controls. The 

previously reported association in LPA was confirmed in populations of European 

ancestry and new associations in F10, F7 and TRAF2 genes were discovered in South 

Asians. These findings highlight the need of gigantic discovery sample sizes to detect 

low-frequency/rare variants - ~20,000 individuals from the IBC 50K CAD Consortium 

were clearly an insufficient resource in terms of power. Finding rare variants is a 

challenging task, but the advent of next generation sequencing technologies has markedly 

facilitated discovery of rare variants. A recent study based on whole-genome-based 

analysis indicated that 7.8% of HDL-cholesterol heritability is attributable to rare 

variants (MAF<1%) (Morrison et al. 2013). A major part of HDL-C heritability (61.8%) 

was accounted for by common variants. These results suggest that many common 

variants with individual small effects primarily determine genetic architecture of HDL-

C. The data from this study also appear to suggest that rare variants may play a lesser 

role in HDL-C biology than was initially suggested. Whether these findings apply to 

other cardiovascular risk factors or indeed CAD remains to be established.  
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5.6. Common versus rare polymorphisms and risk prediction 

In the past, it was predicted that the identification of common genetic variants could 

eventually lead to stable prediction risk models with significant individual and public 

health implications (Bowles and Marteau, 1999; Chatterjee et al. 2013). The complexity 

of the genetic architecture of CAD, with multiple variants conferring usually modest 

increases in its relative risk (Manolio et al. 2009) makes the prediction problematic - 

odds ratio of 1.3-1.7 typical for common variants identified in GWA studies do not 

offer sufficient specificity in risk classification (Jakobsdottir et al. 2009; Manolio, 

2009). The precise fraction of risk attributable to single common genetic polymorphism 

is difficult to determine since all people carry numerous risk alleles. Genetic risk scores 

aggregate and weight the number of risk alleles carried by each individual - the overall 

burden of them may have a substantial impact on the predisposition to CAD at the 

population level (Kessler et al. 2013).  

Thousands of common susceptibility variants for a wide spectrum of complex traits 

indicate that they collectively have low predictive value (van Hoek et al. 2008;  Lango 

et al. 2010; Speliotes et al. 2010; Teslovich et al. 2010; Jostins and Barrett, 2011; Kraft 

and Hunter, 2009; Chatterjee et al. 2013). Although risk prediction models will continue 

to improve as total sample sizes increase, the improvement will be slow and modest 

(Chatterjee et al. 2013) even when thousands of them with individually undetectable 

effect sizes will be encompassed in risk prediction.  
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5.7. Final conclusions 

There is still a long way to elucidating genetic background of CAD. The experiments 

conducted here revealed novel associations between CAD and ROHs as well as PAR1 

and highlighted the difficulties in the analysis of rare alleles in search of novel genes 

underlying susceptibility to CAD. Most importantly, these data showed that in-depth 

exploration of regions commonly neglected by previous GWA studies has a potential to 

provide new insights into genetic architecture of common complex diseases. With the 

advent of new technologies including whole-genome DNA and RNA sequencing, future 

studies should focus on further fine mapping and functional characterisation of these 

regions to bring us closer to full understanding of their roles in CAD.  
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