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Abstract 

Understanding the genetic basis of disease endotypes in idiopathic 

pulmonary fibrosis 

Luke Michael Kraven 

Idiopathic pulmonary fibrosis (IPF) is a rare, incurable disease of unknown cause characterised by 

progressive scarring of the lungs. The prognosis of IPF is poor with a median survival time of 

approximately 4 years and current treatment options are limited. The aim of the analyses in this thesis 

was to utilise genomic and transcriptomic data to improve the understanding of the pathogenesis of IPF, 

which could aid drug development and lead to improvements in treatments. 

This thesis describes the first genetic analyses of the age at which IPF is first developed. First, genome-

wide association studies were performed to identify common genetic variants that are associated with 

the age-of-onset of IPF. Following this, gene-based collapsing analyses were performed to investigate 

the role of rare genetic variation in the age-of-onset of IPF. These analyses highlighted some 

suggestively significant genes of potential interest as well as some important factors to consider when 

studying this phenotype. 

A series of transcriptomic analyses were conducted to identify groups of IPF patients that could 

represent endotypes of the disease. New bioinformatics methods were utilised in these analyses to 

combine and cluster multiple datasets. This approach allowed for the largest transcriptomic cluster 

analysis in IPF to-date to be performed, which revealed three distinct groups of patients with IPF. These 

findings were consistent with the theory of multiple endotypes of IPF; significant differences in lung 

function and survival were found between clusters and gene enrichment analysis implicated metabolic 

changes, apoptosis, cell cycle and the immune system in the development of these potential IPF 

endotypes. Supervised machine learning was used to develop a gene expression-based classifier with 

the ability to assign patients with IPF to one of the three clusters. With further development, this 

classifier could be a useful clinical tool for outcome prediction and patient stratification in IPF.  
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Chapter 1 – Introduction 

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease with a poor prognosis and 

limited treatment options. This PhD thesis details genetic and transcriptomic analyses that were 

performed to improve the understanding of the pathogenesis of IPF, which could inform drug 

development and improve treatment options for patients. This initial chapter introduces IPF, genetics 

and transcriptomics. Following this, the specific aims of the thesis are outlined.  

1.1 Idiopathic Pulmonary Fibrosis 

1.1.1 Introduction 

Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease (ILD). It is a specific form of 

chronic, progressive interstitial pneumonia of unknown cause, characterised by scarring in the lungs. 

An IPF diagnosis requires the exclusion of other forms of interstitial pneumonia, including other 

idiopathic interstitial pneumonias (IIPs) and ILDs associated with environmental exposure, medication, 

or systemic disease1. Typically, symptoms begin to present in individuals in their sixties and seventies, 

and the incidence of the disease increases with older age2. The most common symptoms are shortness 

of breath and a dry, persistent hacking cough. Over time, other signs and symptoms may develop, 

including rapid, shallow breathing, unintended weight loss, fatigue, malaise (a general feeling of being 

unwell), aching muscles/joints and clubbing of the tips of the fingers or toes. Complications can include 

pulmonary hypertension, heart failure, pneumonia, or pulmonary embolism.  

The life expectancy of the disease is poor, with studies from the late 1990s and early 2000s often 

reporting median post-diagnosis survival times of 2.5-3.5 years3,4,4,5,5. However, in recent years, two 

anti-fibrotic therapies (pirfenidone and nintedanib) have been approved for the treatment for IPF as they 

have been shown to slow disease progression and improve survival6,7,7. As such, recent studies have 

estimated slightly greater median post-diagnosis survival times, typically between 3-5 years8,9,9. 

In 2008, it was estimated that there were approximately 5 million people worldwide who suffer from 

IPF and that incidence appears to be increasing10. The incidence and prevalence of IPF varies 

significantly across countries11 and are both widely reported to be higher in males. For example, for 

every 100,000 individuals in the UK in 2012, 16 males and 9 females were newly diagnosed with IPF 

and 62 males and 40 females had been previously diagnosed with IPF at some time in their life12.  

The clinical course of IPF can be highly variable13. The rate of decline and progression to death in 

patients may take several clinical forms: slow deterioration with worsening severity of dyspnoea 

(difficult or laboured breathing), rapid deterioration and progression to death, or periods of relative 

stability interposed with periods of sudden respiratory decline (called acute exacerbations and 

sometimes exhibited by hospitalizations for respiratory failure).  
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Whilst the cause of IPF is currently unknown, several risk factors associated with the disease have been 

identified. Firstly, cigarette smoking has shown a significant association with the disease. In a meta-

analysis of six studies (totalling 784 IPF cases and 1,397 controls), which investigated the link between 

smoking and IPF, it was found that patients with IPF were significantly more likely than controls to 

have previously smoked (OR = 1.58; 95% CI = [1.27, 1.97]) and estimated that 49% of IPF cases would 

be prevented if smoking was eliminated as an exposure14. Secondly, other environmental and 

occupation exposures have also been shown to increase the risk of developing IPF. These include 

exposure to metal dust; wood dust; coal dust; silica; stone dust; biological dusts coming from hay, 

mould spores or other agricultural products; and occupations related to farming/livestock15. This could 

partly explain the discrepancies in prevalence and incidence between males and females, as men are 

traditionally more likely to work in jobs in which such exposures occur and therefore more likely to 

develop the disease. In addition, a recent study16 has shown that the differences in IPF prevalence and 

incidence between males and females may partly be due to diagnostic bias, with males being more likely 

to be diagnosed with IPF than females.  

Additionally, many studies have investigated the possible role of chronic viral infection in the aetiology 

of IPF, focusing on viruses such as hepatitis C and herpesviruses17. However, evaluating the 

associations between IPF and microbes such as viruses was hindered by many confounding factors, for 

example when patients were receiving immunosuppressive therapy18. Consequently, both positive 

associations and negative associations between these viruses and IPF have been reported, and until 

recently, strong conclusions about the role of infection in IPF could not be drawn. However, a recent 

meta-analysis of 20 case-control studies from 10 countries (totalling 1,287 IPF cases) reported that a 

viral infection was associated with a significant increase in the odds of developing IPF (OR = 3.48; 

95% CI = [1.61, 7.52], P = 0.001), therefore supporting the idea that viral infection is a risk factor for 

IPF19.    

A further risk factor for IPF is genetic predisposition. IPF is considered a ‘polygenic’ disease, where 

several genetic signals have been shown to contribute to disease susceptibility. As a polygenic disease, 

the disease is likely the result of complex interactions between the genetic and environmental factors20.   

1.1.2 Disease mechanism 

The current model for the pathogenesis of IPF21 (Figure 1.1), is as follows: first, a host becomes 

susceptible due to their genetic composition and age. Then when the alveolar epithelium is injured (by 

cigarette smoke, industrial dusts, viral infection etc.), an abnormal wound healing response is triggered, 

which results in the activation of inflammatory cells, increased vascular permeability and the release of 

profibrotic cytokines. This creates an environment that is supportive of exaggerated fibroblast and 

myofibroblast activity and leads to an increase in the deposit of extracellular matrix within the lung 

parenchyma, which impairs gas exchange.   
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FIGURE 1.1: A diagram showing the current model for the disease mechanism of IPF. Figure taken from 

Goodwin et al.21.  

Several cell types and signalling pathways have been implicated in the pathogenesis of the disease, 

including dysregulated epithelial repair, host defence, the immune response, fibroproliferative 

responses linked to aberrant kinase activation, transforming growth factor-β and its downstream pro-

fibrogenic pathways, and developmental pathway reactivation22. Furthermore, dysfunction of alveolar 

type II (AT2) cells appears to play a role in the development of IPF, with telomere shortening and 

increased endoplasmic reticulum stress being proposed as factors that may contribute to this23.  

Another important pathogenic mechanism in IPF is cellular senescence, which significantly contributes 

to chronic matrix remodelling and fibrosis23. A major driver of cellular senescence is DNA damage, 

which is consistent with the finding that telomere shortening is linked to IPF susceptibility, as shortened 

telomeres predispose cells to DNA damage. Importantly, clearing of senescent cells in mice protected 

from lung fibrosis, indicating that senotherapeutics which target these cells by eliminating them or 

putting them back on the right repair track could be a novel therapeutic approach in IPF24,25,25.  

The highly heterogeneous clinical course of IPF may suggest that the disease consists of different 

subtypes. Subtypes of a disease that are defined by a particular pathophysiological mechanism are 

known as endotypes. These are in contrast to disease phenotypes, which are particular observable 

characteristics of a disease but are not directly suggestive of a particular underlying mechanism. It has 
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been speculated previously that IPF may consist of multiple endotypes26,27,27, though these are not yet 

well understood. Several different biomarkers have been developed to define clinically significant 

subtypes of IPF, which could support the theory that multiple IPF endotypes exist. For example, serum 

biomarkers have been found that are able to predict prognosis in IPF, such as serum matrix 

metalloproteinase (MMP)728,29,29,  surfactant protein D, CA19-9, CA-12530 and serum levels of the 

collagen synthesis neoepitopes PRO-C3 and PRO-C631.  

1.2 Genetics 

1.2.1 Background 

The human genome is 99.9% identical between any two unrelated individuals32. However, as it is 

incredibly large, consisting of approximately 3.3 billion base pairs33, many genetic differences can still 

be found between two such individuals. As genetics play a part, to a greater or lesser extent, in all 

diseases34, this genetic variation can be leveraged to help us gain a better understanding of how diseases 

work and can even provide insight into how they may be treated. Rare ‘Mendelian’ disorders such as 

cystic fibrosis and haemophilia are defined by variants (or ‘mutations’) within a single gene, whilst 

more common, complex ‘polygenic’ diseases, such as heart disease and type 2 diabetes, are typically 

the result of interactions between environmental factors and genetic variants from multiple genes. 

Whilst disease status for a Mendelian disease is usually directly attributable to the presence of a 

particular mutation, genetic variants that are associated with a polygenic disease each typically confer 

a relatively small change in the risk of developing that disease. Still, the small individual effects from 

such variants can accumulate and can give an individual a considerably increased odds of developing a 

polygenic disease, compared to individuals who do not possess those variants.  

Genetic epidemiology is a relatively new scientific field that aims to study the genetic and 

environmental risk factors of complex diseases through the application of epidemiological methodology 

to genetic data. Genetic data is measured in two main ways: deoxyribonucleic acid (DNA) sequencing 

and targeted probe-based assays (Section 1.2.4). The first type of assays to be widely used were panels 

that were designed to detect microsatellites, which are small sequences of DNA that are repeated many 

times and are among the most variable types of sequence in the genome35. A common type of study in 

this early period was linkage analysis, which considered and compared variant signatures (for example, 

microsatellites) in multiplex families (a family in which more than one family member was afflicted 

with a particular disease) to identify genes that are influencing the disease. These studies were largely 

successful at determining the genes linked to a disease of interest when the disease was Mendelian, but 

were far less successful when the disease was polygenic, due to the greater genetic heterogeneity36.   

Towards the end of the 20th century, the field started to shift away from studying multiplex families and 

towards cohorts of unrelated individuals. In addition, microarray technology started to focus on single-

nucleotide polymorphisms (SNPs, Section 1.2.3) instead of microsatellites. As genetic variants that lay 



16 
 

close together on the same chromosome are often correlated (linkage disequilibrium, Section 1.2.3), 

this enabled the development of strategically designed SNP microarrays, which together with 

imputation reference panels (Section 1.2.4), allowed for genetic variation across the entire genome to 

be studied without an individual’s whole genome needing to be directly measured. This paved the way 

for genome-wide association studies (GWAS, Section 2.2), which utilise genome-wide genetic data to 

identify genetic variants that are associated with a trait for a polygenic disease.  

The other main approach to measuring DNA is with high-throughput sequencing. This involves 

measuring an individual’s entire genetic code, including non-variant positions. However, sequencing 

the whole human genome was originally an expensive and time-consuming process: it took the Human 

Genome Project, an international consortium of multiple research labs, over 10 years to sequence the 

whole genomes of just a few individuals. However, the time and cost of DNA sequencing have dropped 

dramatically in recent years, and it is becoming increasingly feasible to sequence the exomes (the parts 

of the genome comprised of exons, approximately 1-2% of the genome) or even the entire genomes for 

all individuals in a study. Studying sequencing data has some advantages over studying genotyping 

data, including the ability to discover new variants as well as investigate the impact of the rarest variants, 

which are not usually considered in GWAS.  

Since the publication of the first GWAS in 200537, at least 5,600 GWAS have been performed and over 

71,000 unique variant-trait associations have been reported38. In addition, sample sizes in genetic 

studies are increasing, with some recent GWAS meta-analyses reaching over 1 million 

participants39,40,40. Findings from genetic studies can help us gain a better understanding of the genetic 

architecture of a disease trait, such as the number of independent genetic loci that are associated with 

the disease, the frequency and effect sizes of the suspected causal variants (those that are exerting a 

genuine biological effect on the phenotype) in the study population and the disease’s level of 

heritability41. Importantly, combining genetic results with data from external resources (such as gene 

expression data) can implicate genes and biological mechanisms in the pathogenesis of the disease. This 

can inspire testable hypotheses and molecular experiments, such as the effect on the disease trait in a 

mouse model when a particular suspected causal gene is ‘knocked out’, which could ultimately lead to 

improved treatment options in humans.   

Genetic findings can also inform drug development. Clinical drug development is an expensive and 

time-consuming process that many drugs fail due to a lack of efficacy, but drugs that are developed 

with genetic support are twice as likely to pass clinical development as those without it42,43,43. 

Furthermore, chemical compounds that target the protein products of genes that were identified in a 

GWAS can be promising candidates for drug repurposing. One example of this is CDK4/CDK6 

inhibitors for the treatment of rheumatoid arthritis44. In addition, some genetic variants have been linked 
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to how well a person tolerates certain drugs, with some that have been found to render certain drugs 

ineffective, or even toxic45. 

Findings from genetic studies also have applications in preventative healthcare. Once multiple disease 

susceptibility-associated genetic variants have been discovered for a particular disease, these can be 

used to develop a ‘polygenic risk score’, which can provide an individual with an estimate of their 

relative genetic risk for that disease. This information can be used to identify at-risk populations to 

inform screening strategies or to target preventative interventions or lifestyle modifications46,47,47.  

1.2.2 Other ‘omics’  

The scientific field which studies the structure, function, evolution, mapping and editing of genomes is 

referred to as genomics. But the genome is not the only informative biological system that can be 

leveraged to help us gain a better understanding of the pathogenesis of human diseases. It is also 

possible to study an individual’s entire collection of ribonucleic acid (RNA) transcripts, proteins, 

metabolites or epigenetic modifications. These systems are often tissue-specific and more dynamic than 

the genome as they can change in response to certain stimuli, such as a therapeutic intervention, as well 

as being influenced by genetic variation. Each named with the suffix –omics to mirror the term 

genomics, the study of these systems are respectively referred to as transcriptomics, proteomics, 

metabolomics and epigenomics.  

Measurements of these ‘omic’ systems provide a snapshot of the system at a particular time point, which 

can be used to infer the biological processes that are being activated and may be important in the 

development of a disease. In addition, omic data can be used to develop predictive or prognostic models 

of a particular disease that are more accurate than those obtained using standard clinical approaches48. 

However, due to the dynamic nature of these biological systems, they are subject to some issues that 

are not present when studying the genome, such as reverse causation, confounding (by factors other 

than ancestry, see Section 2.1.4) and batch effects (Section 5.13).  

1.2.3 Genetic variation and linkage disequilibrium 

The term genotype is used to refer to the genetic constitution of an individual at a particular locus. The 

sequences of DNA that differ between individuals at a particular locus are known as alleles. SNPs are 

the most common type of genetic variation found in humans49 and each SNP represents a difference in 

a single nucleotide. For example, where one individual may have an adenine on the 5’ strand of one or 

both chromosomes (paired with a thymine on the 3’ strand), another may have a guanine on the 5’ 

strand (paired with a cytosine on the 3’ strand). These occur almost once in every 1,000 nucleotides on 

average, which means that there are roughly 3 to 4 million SNPs in a person's genome50. These 

variations may be unique or occur in many individuals. Some SNPs have functional consequences, such 

as changing amino acids and mRNA, or disrupting known regulatory regions. As humans have two 

copies of each chromosome, for a SNP with two possible alleles (which is usually the case), a person 
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can have one of three genotypes, two that are homozygous and one that is heterozygous (Figure 1.2). 

The prevalence of a SNP is given in terms of the minor allele frequency (MAF), which is the frequency 

of the less common allele in a population. As each person possesses two alleles at a genetic locus (one 

inherited from each parent in meiosis), the MAF of a population for a particular SNP can be calculated 

as follows:  

MAF = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑒𝑎𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑎𝑙𝑙𝑒𝑙𝑒 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

2∗(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑜𝑝𝑙𝑒 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛)
 (1.1) 

 

 
FIGURE 1.2: Diagram showing the three possible genotypes at a locus with two alleles, A and G. 

Linkage disequilibrium (LD) is a key concept in the field of population genetics. SNPs that lay close 

together on a chromosome are less likely to be separated by a recombination event during meiosis than 

SNPs that lay farther apart. As such, they are more likely to be inherited together. Two genetic loci are 

in LD if, across the whole population, they are found together on the same haplotype (the allelic 

configuration along a single chromosome) more often than expected. This is useful because this means 

that tests of association may be informative even when the true causal variant has not been measured51.  

An important point to note is that variant frequency and LD differ between ancestral populations. 

Evidence suggests that this is because all modern human populations have a common origin (believed 

to be in Africa) and each ancestral population is the result of groups that migrated out of Africa at 

different times52. More ancient ancestral populations have greater genetic diversity and finer LD 

structure between genetic markers than ancestral populations that migrated out of Africa more recently. 

If these differences in ancestry are unaccounted for, confounding by ancestry can occur, which is also 

known as population stratification (Section 2.1.4). As a result, studies considering LD between SNPs 

are often performed in one particular ancestral population.  
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LD between two SNPs is most commonly measured in terms of D’ or r2, both of which measure the 

deviation from random association. Both of these measures are derived from the coefficient of linkage 

disequilibrium, D. The level of LD between two alleles, say allele A and allele B, is defined as follows:   

𝐷𝐴𝐵 = 𝑝𝐴𝐵 − 𝑝𝐴𝑝𝐵 (1.2) 

Where 𝑝𝐴𝐵 is the frequency with which both allele A and allele B occur on the same haplotype, 𝑝𝐴 is 

the allele frequency of A and 𝑝𝐵 is allele frequency of B. The two alleles are in LD when 𝐷𝐴𝐵 ≠ 0. D 

is normalised to produce D’, which allows for the comparison of the level of LD between different pairs 

of alleles. Alternatively, the correlation coefficient r can be calculated as follows:  

𝑟 =
𝐷

√𝑝𝐴(1 − 𝑝𝐴)𝑝𝐵(1 − 𝑝𝐵)
 (1.3) 

An r2 value of 1 means that one SNP is always observed with - or perfectly ‘tags’ - the other. Therefore, 

SNPs that are in high LD with, and thus representative of, other SNPs in a particular haplotype are 

called tag SNPs. Due to the presence of tag SNPs, it is possible to identify genetic variation and an 

association with a phenotype without genotyping every SNP in a chromosomal region. This, together 

with imputation (next section), reduces the need to directly measure every single SNP across the 

genome.  

1.2.4 Collecting genetic data 

Genotyping is the process of determining which genetic variants an individual possesses through the 

analysis of a sample of their DNA once it has been extracted from a tissue sample (e.g. whole blood, 

saliva or buccal swab). This can be done via a number of methods, such as a genotyping array, 

polymerase chain reaction (PCR) or next-generation sequencing (NGS). Genotyping arrays report the 

genotypes of the tested individuals for a large number of SNPs (for example, the UK BiLEVE Axiom 

Array by Affymetrix probes 807,411 variants and the UK Biobank Axiom Array probes 825,92753) by 

returning two allele probe intensities (i.e. an intensity for each allele) for each variant. These intensities 

are plotted and genotype calling software assigns each individual to a genotype group (Figure 1.3). 

Genotyping chips are an effective method of measuring many different variants at once, especially 

common variants. However, they require prior knowledge of the location and alleles of the variants of 

interest. 



20 
 

 

FIGURE 1.3: Example of a genotype cluster plot, taken from Phillipe et al54. The green circles are samples 

that have been called as BB genotypes, blue triangles are samples that have been called as AB genotypes and 

the red plus signs are samples that have been called as AA genotypes.  

By utilising the fact that variants close to each other are inherited together in haplotype blocks, the 

genotypes of variants not included on a genotyping array can be inferred through imputation. This is 

done by comparing the alleles of the genotyped individuals to a large reference panel of sequenced 

individuals, estimating which haplotype an individual is likely to have and therefore which alleles for 

the non-genotyped variants they are likely to possess. Imputation allows a GWAS to test millions of 

variants when relatively few were directly genotyped. This is hugely beneficial as it improves the 

coverage of the genome, can identify genotyping errors and can allow for studies with different 

genotyping arrays to be combined, which increases the statistical power. 

Examples of imputation reference panels include the 1000 Genomes Project, which has collected 

genetic information from over 2,500 individuals from 26 different populations at 84.7 million SNPs55, 

and UK10K which contains information on 3,781 individuals at over 42 million SNPs56. More recently, 

the Haplotype Reference Consortium (HRC) has combined multiple reference panels (including 1000 

Genomes Project and UK10K) to construct a reference panel of approximately 65,000 human 

haplotypes at around 39 million SNPs57. 

Although most GWAS utilise imputation to vastly increase the number of variants tested, some variants 

may not be imputed well. Imputation quality for a variant is usually denoted R2 and is scored from 0 to 

1, with 0 indicating the lowest possible imputation quality and 1 being the highest possible quality58.  

Whilst genotyping is used to determine genotypes for pre-specified genetic variants, sequencing is a 

method that is used to determine the whole DNA sequence, including non-variant positions. This is 

done by generating many small overlapping reads of the DNA and then reconstructing the DNA from 
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these using a reference sequence for assembly. Each part of the DNA sequence can be read numerous 

times and the more times it is read, the more accurate the sequencing becomes. However, this also 

increases costs.  

1.2.5 Genetic research into IPF  

There are a few different lines of evidence which suggest that the development of pulmonary fibrosis 

is partly determined by genetic factors. The primary implicating factor is that clustering of cases of 

pulmonary fibrosis (an uncommon disease) have been widely reported between members of genetically 

related individuals, including: monozygotic twins raised in different environments, in consecutive 

generations in the same families, and in family members separated at an early age59. Familial pulmonary 

fibrosis (FPF), also referred to as familial interstitial pneumonia and familial idiopathic pulmonary 

fibrosis, is identified when two or more members of a family have an idiopathic interstitial pneumonia. 

Up until early in the 21st century it was believed that FPF represented a rare subset of IIP, comprising 

3-5% of cases60,61,61,62,62. However, more recent estimates put this figure as high as 20%63,64,64.  

Early genetic studies found that rare mutations in the TERT and TERC genes were associated with 

familial pulmonary fibrosis65,66,66. TERT is a gene that encodes telomerase reverse transcriptase, which 

together with the RNA component of telomerase (TERC), is required to maintain telomere integrity. 

Since these FPF studies, common and low-frequency polymorphisms in or near telomere genes 

(including TERT) have been found to be associated with susceptibility to IPF67,68,68. It is believed that 

mutations in TERT or TERC that result in telomere shortening over time confer a dramatic increase in 

susceptibility to IPF.  

Many genetic studies have since been performed to identify genetic loci associated with IPF 

susceptibility. Early studies showed that IPF has a strong association with a common variant on 

chromosome 11 called rs35705950, which lies in the promoter region of a gene called MUC5B69,70,70. 

This has been widely replicated in many GWAS71,72,72,73,73. In a meta-analysis that combined nine studies 

of IPF (with a total of 2,733 IPF patients and 5,044 controls)74, it was found that each copy of the minor 

(T) allele of rs35705950 was associated with a 5-fold increased risk of IPF compared with the major 

(G) allele (OR 4.85, 95% CI [3.79–6.21], P = 5.88 × 10−36).  

In addition to its association with susceptibility to IPF, the effect of the MUC5B promoter 

polymorphism on an individual’s disease progression has been the subject of investigation. Peljto et 

al.75 (n=586) reported that the number of copies of the T allele at this locus was significantly associated 

with an increased survival time in patients with IPF. However, Dudbridge et al.76 have suggested that 

the paradoxical association between the strong susceptibility variant rs35705950 and increased survival 

time may be the result of index event bias. Index event bias can occur when the phenotype of interest 

is an event subsequent to disease onset and the individuals in a study are selected based on their disease 

status, but common causes of incidence and prognosis are not accounted for. After adjusting for index 
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event bias using an effect size correction that utilises the residuals from the regression of genetic effects 

on prognosis on genetic effects on incidence, the authors found that rs35705950 was instead associated 

with decreased survival (n=565).  

After the discovery of the association between MUC5B and IPF risk, a subsequent GWAS72 (with 542 

IPF cases and 542 controls in the discovery stage and 544 IPF cases and 687 controls in replication) 

found genome-wide significant associations between IPF susceptibility and three SNPs within the Toll-

interacting protein (TOLLIP) locus, which lies in the same region on chromosome 11 as MUC5B 

(11p15). The SNPs in the TOLLIP region were found to be in low LD with rs35705950 and therefore 

indicated that these were independent associations. However, they were later found to be non-

independent in a larger GWAS meta-analysis77. In addition, this study reported genome-wide 

associations between IPF susceptibility and variants near the MDGA2 and SPPL2C regions on 

chromosomes 14 and 17 respectively.   

Fingerlin et al.71 (2013) conducted a case-control GWAS (with 1,616 IPF cases and 4,683 controls in 

discovery, 876 cases and 1,890 controls in replication) to identify additional genetic risk factors linked 

with IIPs (of which IPF is the most common). In their study they confirmed the associations between 

IIP and the previously reported variants found in the MUC5B, TERC and TERT gene regions. In 

addition, the authors identified seven novel genetic risk loci associated with risk of IIP, including one 

located in the desmoplakin (DSP) gene.  

In 2017, Allen et al. published a two-stage GWAS of IPF susceptibility73 (stage 1: 602 IPF cases and 

3,366 controls, stage 2: 2,158 IPF cases and 5,195 controls) and identified a novel variant near A-kinase 

anchoring protein 13 (AKAP13), as well as confirming the associations between IPF susceptibility and 

the DSP and MUC5B variants. More recently, Allen et al.77 used polygenic risk scores to show that 

there is still a significant amount of genetic variation in IPF risk which has not been explained by the 

previously reported genetic variants. The authors then performed the largest GWAS meta-analysis of 

IPF susceptibility to-date (with a total of 2,668 IPF cases and 8,591 controls), in which they identified 

and successfully replicated three new genome-wide significant signals of association with IPF 

susceptibility (near KIF15, MAD1L1 and DEPTOR) and confirmed associations at 11 previously 

reported loci.  

In a recent case-control study by Lorenzo-Salazar et al.78, genetic data from individuals with IPF were 

sequenced at three genetic loci, 11p15.5 (the locus containing MUC5B), 14q21.3 (MDGA2) and 

17q21.31 (SPPL2C). The discovery stage of this study (181 IPF cases and 501 controls) identified 36 

correlated variants that reached genome-wide significance. Three of these had MAF <5%, suggesting a 

minor impact of low-frequency variants in IPF susceptibility in these loci. The most strongly associated 

variant in the study was rs35705950, the previously reported variant in the MUC5B promoter region. 

Additionally, their results suggested that the MUC5AC gene could also be contributing to IPF risk, as 
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two variants in this region were found to be associated with IPF, were nominally significant when 

adjusting for rs35705950 and were successfully replicated in an additional independent cohort.  

Moore et al.79 also performed a sequencing study, though theirs was larger with 3,624 cases and 4,442 

controls targeting 10 genetic loci that were chosen based on results from previous GWAS. In addition 

to identifying for the first time that rare variation in FAM13A is associated with disease, the authors 

confirmed the role of rare variation in the TERT and RTEL1 gene regions in the risk of IPF and found 

that the FAM13A and TERT regions have independent common and rare variant signals.  

Most recently, an exome-wide association study of 752 sporadic IPF cases and 119,055 UK Biobank 

controls80 identified a novel IPF susceptibility signal in the form of a single rare missense variant in the 

SPDL1 region, at which each copy of the minor allele was estimated to increase the odds of developing 

IPF by 2.9 times. Table 1.1 shows a summary of the genetic loci that have displayed genome-wide 

significant associations with IPF susceptibility as of November 2021.  
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TABLE 1.1: List of genetic variants that have been reported to be associated with IPF at genome-wide significance. EAF = effect allele frequency, OR = odds ratio, 

CI = confidence interval. Summary statistics are from the largest GWAS meta-analysis of IPF susceptibility performed to date by Allen et al77. All co-ordinates are 

according to human genome build 19.  

SNP/Allele Chr. Position Gene EAF OR (95% CI) References 

rs78238620 3 44902386 Intergenic (8kB from KIF15, 1kB from TMEM42) 5.5% 1.51 [1.30, 1.75] 77 

rs12696304 3 169481271 Intergenic (100kB from MECOM, 1kB from TERC)  28.1% 1.30 [1.21, 1.41] 65† 

rs2609255 4 89811195 FAM13A (intronic) 22.5% 0.79 [0.73, 0.85] 71† 

rs7725218 5 1282414 TERT (intronic) 32.5% 0.72 [0.67, 0.77] 67† 

rs116483731 5 169015479 SPDL1 (missense) 0.9% 2.18 [1.53, 3.09] 80 

rs2076295 6 7563232 DSP (intronic) 46.9% 1.46 [1.37, 1.56] 71,73,73† 

HLA-DQB1*06:02 6 06:02 HLA-DQB1   81 

rs12699415 7 1909479 MAD1L1 (intronic) 42.0% 0.78 [0.73, 0.83] 77 

rs28513081 8 120934126 DEPTOR (intronic) 52.7% 1.20 [1.14, 1.27] 77 

rs11191865 10 105672842 OBFC1 (intronic) 49.1% 1.15 [1.08, 1.23] 71 

rs7934606 11 1093945 MUC2 (intronic) 44.9% 0.95 [0.88, 1.03]* 71 

rs35705950 11 1241221 MUC5B (promoter) 14.9% 4.84 [4.37, 5.36] 70,71,71,72,72,73,73† 

rs111521887 11 1312706  TOLLIP (intronic) 19.8% 1.00 [0.91, 1.10]* 72 

rs9577395 13 113534984 ATP11A (intronic) 20.7% 0.77 [0.71, 0.83] 71† 

rs7144383 14 48040375 MDGA2 (intronic) 11.0% 0.90 [0.81, 1.00] 72 

rs2034650 15 40717302 Intergenic (7kb from IVD, 33kB from BAHD1)  47.0% 1.30 [1.21, 1.39] 82† 

rs62025270 15 86300198 Intergenic (12kB from AKAP13, 11kB from KLHL25) 5.3% 1.54 [1.38, 1.73]  73,77,77†  

rs17690703 17 43925297  MAPT-AS1 (intronic) 24.5% 0.78 [0.72, 0.85] 72 

rs1981997 17 44056767 MAPT (intronic) 20.9% 0.74 [0.68, 0.80] 71 

rs12610495 19 4717672 DPP9 (intronic) 30.5% 1.31 [1.22, 1.42] 71† 

†: A previously reported signal that was confirmed in Allen et al77. 

*: Previously reported variants that were not independently associated with IPF susceptibility in Allen et al.77 after conditioning on rs35705950 genotype.  
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In summary, several studies have identified independent genetic signals for IPF susceptibility. Over 

time, as technology and methodology advance, data collection costs decrease and study sample sizes 

grow larger, these studies will likely continue to identify novel signals that are associated with IPF risk. 

However, there has been relatively little genetic research into other IPF phenotypes, such as the age-of-

onset, survival or disease progression, as there is less data available for these traits as they are not as 

commonly recorded for research use. Studying these underutilised phenotypes could reveal novel 

genetic signals that are important to the aetiology of IPF but which would be missed in studies of IPF 

susceptibility. As such, the identification of genes and biological processes involved in the development 

of these phenotypes could be informative for elucidating the pathogenesis of IPF and discovering novel 

treatments.    

1.3 Transcriptomics 

1.3.1 The transcriptome 

During the initial stage of gene expression, a sequence of DNA is read by an enzyme called RNA 

polymerase, which binds to the DNA (together with one or more transcription factors) and separates 

the two strands of the DNA double helix. RNA polymerase then produces a complementary strand of 

RNA which is identical to one of the strands of DNA but with each thymine nucleotide base replaced 

with a base of uracil. This RNA molecule is known as a primary transcript, which can then be further 

processed into messenger RNA (mRNA) that could ultimately be translated into a protein. The entire 

collection of transcripts that are present within a tissue or a cell are known as the transcriptome. The 

transcriptome can be measured to learn about the level of gene expression within that tissue/cell at a 

certain time point.  

Part of the processing of mRNAs involves a process known as splicing, in which the introns (the 

sections that do not directly code for a protein) of a gene are removed and the exons (the protein coding 

regions) are combined in different ways to create different proteins. Importantly, this means that a single 

gene can code for multiple protein ‘isoforms’. mRNA transcripts from the same gene that are 

alternatively spliced to code for different protein isoforms are known as splice variants.  

The measurement of gene expression within a sample was first made possible in 1977 through the 

development of the Northern blot, in which the RNA from a gene is isolated and detected using a 

hybridisation probe. This was followed by the development of reverse transcription-PCR, which is 

faster than northern blotting and provides a better quantitative estimate of the level of gene expression83. 

However, both methods only allowed one gene (or very few) to be analysed at a time. This issue was 

addressed through the development of microarrays (Section 1.3.2), which revolutionised the field as 

they allowed for thousands of genes to be analysed simultaneously. Microarrays were the primary 

method of choice for the measurement of transcriptomic data until the recent rise in popularity of RNA-
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sequencing (RNA-seq, Section 1.3.2), which uses high-throughput NGS to measure the entire 

transcriptome.  

The transcriptome can be affected by genetic variation in the genome in several important ways. For 

instance, missense variants result in missense mRNAs, which bear one or more mutated codons that 

code for a different amino acid sequence than the naturally occurring sequence and will lead to the 

translation of a different protein. Similarly, stop-gain mutations cause the transcript (and resulting 

protein) to be abnormally shortened by the presence of a premature stop codon. Frameshift mutations 

also commonly alter the first stop codon, which can lead to the amino acid chain being abnormally short 

(or long). Fortunately, there is a mechanism known as nonsense-mediated RNA decay, which 

safeguards the quality of the transcriptome by eliminating transcripts which contain premature stop 

codons84.    

When genetic mutations occur in non-coding sequences, it is often less clear how they affect gene 

expression. Although, some mechanisms through which non-coding variants can affect gene expression 

are known. For example, a mutation that lays in the promoter sequence of a gene can influence gene 

expression by disturbing the recruitment of transcription factors at the promoter. Alternatively, a 

mutation in the splicing site of an intron can interfere with correct splicing of the transcribed mRNA, 

even when the mutation is synonymous85. Plus, a mutation in a transcription factor binding site (the 

region of the gene where transcriptional machinery binds to the protein) can change the rate of 

efficiency of transcription, which in turn can alter the levels of mRNA and the resulting protein86. 

In addition to being influenced by variation in the genome, the transcriptome can also change in 

response to external stimuli, such as a drug. As such, it can be difficult to infer the direction of cause-

and-effect when investigating the effect of a particular disease on the transcriptome. In addition, the 

measurements in a transcriptomic analysis can be affected by non-biological factors, which gives rise 

to the issue of batch effects (Section 5.1.4). 

1.3.2 Data collection 

Broadly, the transcriptome is usually measured in similar ways to the genome, namely with microarray 

assays that are comparable to genotyping arrays or with RNA-seq that is comparable to whole-

exome/genome sequencing. Microarrays assays contain many probes, each designed to detect and 

measure the prevalence of a particular transcript within a tissue/cell sample. Each probe contains a DNA 

fragment for a particular sequence of interest. The RNA within the sample is extracted, converted into 

complementary DNA (cDNA) and then labelled with a fluorescent tag. If there are any cDNA molecules 

present in the sample that are complementary to the sequence of the probe, they will bind together 

during hybridisation. The cDNA is then amplified through PCR and the fluorescence intensity of the 

amplification reaction is monitored to quantify the prevalence of that particular transcript within the 
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sample. As microarrays require prior knowledge of the RNA sequences, they cannot be used to discover 

new structural variations in the transcripts.  

Alternatively, RNA-seq can be used to measure all of the transcripts present in the transcriptome and 

so provides a more comprehensive examination of the system than microarrays. RNA-seq is performed 

by isolating the RNA, breaking it into fragments, converting it into cDNA and then applying next-

generation sequencing to the fragments. These sequences are then aligned and mapped to a reference 

genome. As RNA-seq requires no a-priori knowledge of RNA sequences, it is equipped to detect 

variations in the transcripts, such as splice variants. Despite being more expensive than microarrays, 

RNA-seq provides greater sensitivity and has become the most popular choice of transcriptomic 

technology in recent years87.  

1.3.3 Normalisation 

An important step in a transcriptomic analysis is normalisation, in which the raw data are adjusted to 

account for factors that could lead to bias when comparing expression measures across different probes 

or samples88. One of the most common methods to remove between-probe variation is quantile 

normalisation89. Quantile normalisation is applied to a set of arrays and transforms the distribution of 

probe intensities for each array so that all arrays follow the same distribution, whilst maintaining the 

order of probe intensities within each array.  

In addition, when using RNA-seq data the number of reads that map to a gene are affected by the length 

of the gene and the sequencing depth. Therefore, normalised metrics that account for these factors, such 

as reads per kilobase million (RPKM), fragments per kilobase million (FPKM) and transcripts per 

million (TPM), are usually preferred to standard read counts. Also, as read counts can vary greatly, with 

some that can be very large, they are often commonly transformed. The log2 scale is the most common 

transformation as this allows for the simple calculation of fold change between measurements.  

1.3.4 Transcriptomic analyses 

Studying the transcriptome can provide information on how genes are regulated and can also help to 

infer the functions of previously unannotated genes87. Comparison of the transcriptome between groups 

(e.g. a group of individuals with a disease and a group of healthy individuals, or the same individuals 

but at different time points) allows for the identification of differentially expressed genes (DEGs), 

which can highlight important genes, biological pathways and mechanisms related to a disease. In 

addition, DEGs can be used to develop diagnostic or prognostic biomarkers capable of making 

predictions about disease status or outcome based on the levels of gene expression for those DEGs90,91,91.  

Clustering of transcriptomic data can allow for the identification of genes that are often expressed 

together (‘co-expressed’), which can be useful as this can highlight biological pathways and processes 

that are being activated at particular times or under certain stimuli92,93,93. Another use for clustering in 
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transcriptomics is that this can identify groups of patients with similar patterns in gene expression, 

which can represent patients with the same disease or a particular disease subtype92,94,94. It can then be 

helpful to study the DEGs between these groups, for the reasons described above.  

1.3.5 Transcriptomic research into IPF 

Studies of gene expression have also been important in increasing the understanding of IPF (see Chapter 

5). For instance, transcriptomic data is well suited to the investigation of disease endotypes as 

individuals with the same disease and similar transcriptomic profiles have genes that are co-expressed, 

which suggests that the same biological processes are being activated. Whilst this does not confer 

information about causality, this could suggest that those individuals are experiencing the same form of 

the disease (i.e. the same endotype). As such, several studies have used gene expression data to identify 

subtypes of IPF patients and some have used gene expression-derived subtypes to develop diagnostic 

and prognostic biomarkers for IPF (see Section 5.1.2 for a description of these studies). Whilst most 

transcriptomic studies in IPF have historically used microarrays or bulk RNA sequencing, which do not 

allow for cell-specific expression to be studied, in recent years the field has seen an increase in the 

number of studies that use single-cell RNA sequencing (scRNAseq). This has resulted in the 

development of the IPF Cell Atlas, which provides public access to four of the largest single-cell IPF 

data sets produced to-date, along with several visualization tools for differential gene expression 

analysis95.  

1.4 Aims of this thesis 

The pathogenesis of IPF remains unclear and treatment options remain limited for patients. Therefore, 

the overall objective of this thesis is to utilise genomic and transcriptomic data to improve our 

understanding of the pathogenesis of IPF, which could aid drug development and lead to improvements 

in treatments. More specifically, there are two aims that will be addressed in this thesis: i) to define the 

genetic determinants of age-of-onset of IPF and ii) to use transcriptomic data to define potential 

endotypes of IPF. 

1.4.1 Aim 1: To define the genetic determinants of age-of-onset of IPF 

There have been several GWAS to-date that have been performed to identify genes that are associated 

with IPF susceptibility. However, there has been relatively little genetic research into other phenotypes, 

such as the age-of-onset of IPF. Studying this novel phenotype could reveal genes and biological 

processes that are involved in the pathogenesis of IPF, which could be potential drug targets. As such, 

the first aim in this thesis is to identify genetic variants and genes that are associated with the age-of-

onset of IPF. The objectives of this aim are:   

 To identify common genetic variants that are significantly associated with the age-of-onset of 

IPF.   
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 To identify genes in which a burden of rare genetic variants is significantly associated with the 

age-of-onset of IPF.  

1.4.2 Aim 2: To use transcriptomic data to define potential endotypes of IPF 

The considerable clinical heterogeneity in IPF may suggest that the disease consists of multiple 

clinically distinct endotypes. If such endotypes do exist, the identification of these could allow for the 

development of prognostic biomarkers and for more tailored approaches to treatment for patients. In 

addition, this could implicate particular biological mechanisms and pathways in the development of the 

different endotypes of the disease, which could inform drug development. As gene expression data can 

be used to identify transcriptomic profiles that are associated with particular disease characteristics and 

trajectories, the second aim in this thesis is to identify clinically distinct endotypes of IPF through the 

application of clustering to transcriptomic data from IPF patients. There were three specific objectives 

to this aim:   

 To identify groups of IPF patients that could be representative of distinct and clinically relevant 

endotypes of IPF 

 To use any putative endotypes to develop prognostic biomarkers for IPF 

 To investigate the genetic basis of any putative IPF endotypes 
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Chapter 2 – General methods 

This chapter describes methods which pertain to more than one of the subsequent chapters in the thesis, 

including genetic association studies, genome-wide association studies (GWAS) and time-to-event 

analysis. 

2.1 Genetic association studies 

Genetic association studies are performed to identify genes or genome regions that contribute to the risk 

of a specific disease by testing for a correlation between genetic variation and a phenotype of interest96. 

A phenotype is a particular trait or measurable characteristic of an individual, aside from their genetic 

information. Phenotypes may be binary traits, such as disease status, or quantitative characteristics (also 

commonly referred to as continuous traits), such as systolic blood pressure or lung function 

measurements. For example, in a study where the phenotype of interest is disease status, a particular 

allele may be found to appear significantly more frequently in a diseased population than in a healthy 

population. This can be interpreted as meaning that possessing this particular allele increases an 

individual’s risk of developing the disease. Association studies are a major tool for investigating genetic 

components of complex diseases that are influenced by many genes, with each contributing a modest 

effect to overall disease pathogenesis.  

2.1.1 Quality control  

Without thorough quality control (QC), genetic association studies will not generate reliable results 

because raw genotype data can contain errors97. These errors can arise for numerous reasons, such as 

poor quality of DNA samples, poor DNA hybridization to the array, poorly performing genotype 

probes, sample mix‐ups and sample contamination. QC consists of filtering out SNPs (this is especially 

important in a genome-wide analysis, see Section 1.3) and individuals based on several qualities, for 

example, an individual’s genotype call rate.  

Genotypes that are missing at random will not bias a test but non-random missingness, with one specific 

genotype having a lower call rate, may bias tests of association. In addition, a poor call rate for a subject 

may indicate wider issues with the data and that all the data for that individual may be unreliable. 

Additionally, if the cases and controls in a case-control study are drawn from separate studies or 

genotyped separately, different call rates between these groups may also lead to spurious results. 

Therefore, SNPs that are missing in a large proportion of subjects and individuals who have high rates 

of genotype missingness should be removed during the QC stage of a genetic association study. 

Sample mix-ups can be identified by checking that the reported sex-at-birth of an individual is consistent 

with the sex that is derived from their genetic data98, which can be easily predicted as males should have 

zero true heterozygote calls on the X chromosome and females should have many. In addition, 

evaluating the proportion of genotype calls that are heterozygous for all individuals can indicate samples 
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that have been contaminated, as contaminated samples are likely to have a far greater proportion of 

heterozygous calls than uncontaminated samples99.    

Genotypes within a population are expected to appear in certain ratios. The Hardy-Weinberg 

equilibrium (HWE) is the principle that in the absence of evolutionary influences, such as: mate choice, 

inbreeding, mutation, selection and genetic drift, the proportions of alleles and genotypes in an infinitely 

large diploid population will be the same from one generation to the next, given that there is no 

migration and that the allele frequencies are equal in the sexes.  

Say that for a particular SNP, there are two possible alleles, A and B. The following equation can be 

derived from the HWE principle: 

𝑝2 + 2𝑝𝑞 + 𝑞2 = 1 (2.1) 

Where p is the allele frequency of A and q is the allele frequency of B. This equation states that if the 

population is in HWE, we would expect to see a proportion of p2 AA homozygotes, q2 BB homozygotes 

and 2pq AB heterozygotes. 

The HWE principle is useful in genetic association studies as it can be used to test whether the observed 

genotype frequencies in a population differ from the frequencies predicted by Equation 1.4. Significant 

deviations from HWE are often the consequence of missingness or genotyping error, and HWE tests 

are an efficient way of detecting genotyping error100. Therefore, variants that depart from HWE should 

potentially be excluded from the analysis, especially if the variant departs from HWE in healthy controls 

(who should represent the general population).  

Depending on the study design and sample size of the study, it can also be important to filter SNPs 

based on MAF because rare variants are often less well measured/imputed than more common variants 

and statistical power is low for rare SNPs unless the sample size is very large98. As a result, SNPs with 

low MAF (e.g. less than 1%) may be excluded from genome-wide analyses (Section 2.2). In addition 

to removing spurious results, this lightens the computational burden and reduces the number of tests to 

correct for. Related individuals may also need to be removed as some GWAS approaches assume that 

all subjects are unrelated and so the inclusion of relatives could lead to biased estimations of standard 

errors of SNP effect sizes98. Finally, when using imputed data, poorly imputed variants are usually 

excluded based on imputation quality to ensure that spurious associations are not the result of poor 

imputation.  

2.1.2 Genetic models 

If we again consider a particular locus that contains a SNP with alleles A and B where the B allele 

confers an increase in risk, under a dominant genetic model, those with an AB genotype and those with 

a BB genotype would both have an n-fold risk of disease. Whereas under a recessive model, only those 
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with a BB genotype would have an n-fold risk of disease. Under an additive model, it is assumed that 

the risk of disease is increased n-fold for those of genotype AB and 2n-fold for those with genotype 

BB. In genetic association studies an additive genetic model is often assumed for all genetic loci. This 

is because the true underlying genetic models are often unknown and the additive model has reasonable 

power to detect both additive and dominant effects101. 

2.1.3 Testing for genetic association 

The analysis of genetic data varies depending on the choice of study design, with the two most common 

designs being case-control studies and quantitative trait studies. The case-control approach compares 

two groups of individuals, usually one healthy control group and one disease-afflicted case group. 

Often, the control group is matched to the diseased group on covariates such as sex, age and smoking 

history to reduce any biases which may be introduced through differences between the groups. At each 

SNP it is tested whether the allele frequency is significantly different between the case and the control 

group using standard statistical approaches such as contingency table methods or logistic regression to 

produce odds ratios (ORs).  

Alternatively, a genetic association study may be designed to investigate a quantitative trait. This type 

of study often has more power than a case-control study consisting of the same number of disease cases 

and are typically analysed using linear regression models. When using a linear model, it is assumed that 

there exists a linear relationship between the independent variables and the mean of the dependent 

(outcome) variable, that the individuals in the study are independent and that the model residuals are 

normally distributed with constant variance. 

One benefit of using regression methods is that they allow for the adjustment of important covariates 

such as age and sex. In addition, genetic principal components (Section 2.1.4) are also commonly 

included as covariates in the regression model to adjust for fine-scale population structure within an 

ancestral population, as this can confound the results. 

Returning to the example in the previous sections, say that at a genetic locus an individual may have 

either an AA, AB or BB genotype and that B is the risk/effect allele. To investigate a quantitative trait, 

the following linear regression model could be used:  

𝑌𝑖 =  𝛽0 + 𝛽1𝐺𝑖 + 𝛽2𝑋1𝑖  + 𝛽3𝑋2𝑖 + ⋯ +  휀𝑖 (2.2) 

Where 𝑌𝑖 is the value of the quantitative phenotype for individual i, 𝛽𝑗 is the change in the phenotype 

for a one unit increase in the jth variable, 𝑋1𝑖 are the values for covariates for individual i that are being 

adjusted for, 휀𝑖  is an error term which we assume is normally distributed around a mean of zero and 𝛽0 

is the intercept term. 𝐺𝑖 corresponds to the coding for the genotype of the ith
 individual, which is the 

value given under the genotypic model used in the study. If the variant was directly genotyped, 𝐺𝑖 can 

be either 0, 1 or 2. For example, under a dominant model individuals with an AA genotype will be 
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coded 0 and those with AB and BB genotypes will all be coded 1, whereas under an additive model an 

AA genotype will be coded 0, an AB genotype will be coded 1 and a BB genotype will be coded 2.  

If the variant was not directly genotyped but was instead imputed, the value of 𝐺𝑖 is often estimated in 

two main ways. Say that for an individual the probability of an AA genotype at this locus is estimated 

to be 0.1, the probability of an AB genotype is estimated to be 0.4 and the probability of a BB genotype 

is estimated to be 0.5 (note that they must sum to 1). If we assume ‘hard calls’, we assume that the true 

genotype corresponds to the genotype with the greatest probability (which in this case is BB, 

corresponding to 𝐺𝑖 being coded as 2). If we assume genotype ‘dosages’, we perform the following 

simple linear transformation of the genotype probabilities to calculate 𝐺𝑖: 

 𝐺𝑖 = (0 × 𝑃(𝐴𝐴 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒)) + (1 × 𝑃(𝐴𝐵 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒)) + (2 × 𝑃(𝐵𝐵 𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒)) (2.3) 

Which would result in 𝐺𝑖 being coded as 1.4 in our example.  

Similarly to the linear regression model (Equation 1.5), we may use logistic regression to analyse a 

binary trait (e.g. case-control status) with the following statistical model:  

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑙𝑜𝑔 (
𝑝𝑖

1 − 𝑝𝑖
) =  𝛽0 + 𝛽1𝐺𝑖 + 𝛽2𝑋1𝑖  + 𝛽3𝑋2𝑖 + ⋯ + 휀𝑖 (2.4) 

Where the outcome is coded as 0 or 1 and 𝑝𝑖 is the probability of individual i having an outcome of 1, 

i.e. the probability that they are in the case group. In this case, the logit function provides the log-odds 

of 𝑝𝑖. The values of 𝛽𝑗 correspond to the log odds ratio for every unit increase in the jth variable. Of 

particular interest is the value of 𝑒𝛽1 which corresponds to the odds ratio for the genetic effect. When 

testing for evidence of a genetic association (using either Equation 1.5 or 1.7), we test the null 

hypothesis that the genetic variant is not associated with the phenotype, i.e. 𝛽1=0. This is most 

commonly done using either the score test, the Wald test or the likelihood ratio test.  

2.1.4 Population stratification 

In a genetic association study, there is one true confounder that must be controlled for: confounding by 

ancestry, also known as population stratification. Population stratification is particularly important to 

account for in case-control studies and occurs when the two disease status groups have poorly matched 

ancestry, leading to differences in variant frequencies between the groups that are not caused by the 

disease status and therefore produces spurious associations. To help combat this issue, studies often 

only include subjects from one particular ancestral group, such as those of European ancestry. However, 

there will still be an underlying population structure in a group of individuals from the same ancestral 

group, which could impact the results of an analysis.  

Principal components analysis (PCA) is a dimensionality-reduction technique that can be applied to 

genetic data to generate genetic principal components (also known as principal components of 
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ancestry), which are a relatively small number of uncorrelated variables that explain as much of the 

total variance within the data as possible. Novembre et al.102 showed that a plot of the first two genetic 

principal components for a group of European individuals resembled a map of Europe, with those from 

the same countries often grouped closely together (Figure 1.4). This study suggested that population 

structure correction may be important even in seemingly closely related populations, such as Europeans. 

As such, in a genetic association study, genetic principal components are usually included as covariates 

in the regression model to help explain some of the variation in the data caused by the differences in 

ancestry and reduce the risk of spurious associations103.  

 

 

FIGURE 2.1: Population structure within individuals of European ancestry. Figure taken from Novembre et 

al.102. It shows a statistical summary of genetic data from 1,387 Europeans based on the first genetic principal 

component (PC1) and the second genetic principal component (PC2). Small coloured labels represent 

individuals and large coloured points represent median PC1 and PC2 values for each country. The inset map 

provides a key to the labels. The axes are rotated to emphasize the similarity to the geographic map of Europe. 

2.2 Genome-wide Association Studies  

A genome-wide association study (GWAS) is a large-scale genetic association study, in which the entire 

human genome, rather than particular candidate gene regions, is scanned to identify variants that are 

associated with a certain phenotype. As such, the methods for testing the genetic association of a single 

variant with a phenotype of interest are largely the same as those described in Section 2.1. However, as 
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they do not require candidate regions, GWAS have been characterized as ‘hypothesis-free’ and are thus 

less likely to miss important variants that may have been overlooked in a candidate gene/variant study.  

2.2.1 Testing genome-wide genetic variation 

As genotyping and imputation technology advance, the number of SNPs that are able to be included in 

a GWAS is growing larger. However, false positive results occur more frequently in a study as the 

number of tests increases. As such, adjustment for multiple testing is vital to reduce the false positive 

rate in a GWAS. The Bonferroni correction, the most commonly used adjustment in GWAS, works by 

testing each individual hypothesis at a significance level of α/m, where α is the desired overall 

significance level (usually 0.05) and m is the number of independent tests. The Bonferroni correction 

is easy to implement but assumes that the tests are independent, and SNPs in LD are not independent. 

Therefore, rather than correcting for the total number of SNPs tested, the standard threshold for genome-

wide statistical significance in a GWAS is P<5×10-8, which is equivalent to a Bonferroni correction for 

an assumed 1 million independent variants across the human genome104.   

2.2.2 GWAS results 

Even after QC, the results of a GWAS should still be evaluated for evidence of systematic biases, such 

as population stratification. This is often performed by plotting the p-values of the GWAS in a quantile-

quantile (Q-Q) plot (Figure 1.5) and by calculating the genomic inflation factor (λ), which is a measure 

that quantifies the level of excess false positives within the results of a GWAS. λ is calculated by taking 

the p-values from the association tests for all genetic variants and then using each of these to calculate 

a corresponding test statistic from a chi-square test with one degree of freedom. Then, the median of all 

the test statistics is divided by the expected median of the chi‐squared distribution with one degree of 

freedom and the resulting value is the genomic inflation factor.  

A λ value of 1 is desirable as it indicates that there is no inflation of the test statistic due to systematic 

biases and thus the results require no adjustment. In practice, λ is deemed to be acceptable if it is 

between 0.9 and 1.1 in a GWAS. If there is evidence of systematic bias, the results can be adjusted 

using a method called genomic control105.  
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FIGURE 2.2: Example of a Q-Q plot. Figure taken from Allen et al.77. Log-transformed expected P-values are 

on the x-axis and log-transformed observed P-values are on the y-axis. The red line shows where the expected 

distribution equals the observed distribution. There are approximately 8 million SNPs in this plot, with most 
laying in the bottom left-hand corner. Despite the number of highly statistically significant SNPs shown on the 

right-hand side of the plot, the genomic inflation factor (λ) is low because the vast majority of SNPs closely 

follow the red line.  

Genomic control is performed as follows: first, the standard error of each SNP is multiplied by the 

square root of the genomic inflation factor. Then, a new z-statistic is calculated for each SNP by dividing 

the beta coefficient for that SNP by the adjusted value of the standard error. Finally, a corrected p-value 

for each SNP is calculated by performing a Z-test using the new z-statistic for that SNP. 

The results of GWAS are usually visualised using a Manhattan plot (Figure 1.6), which is a type of 

scatter plot where each point represents one SNP, the x-axis represents the position of the SNP along 

its chromosome and the value on the y-axis shows the negative base-10 logarithm of the p-value from 

the association test for that SNP. Named after its resemblance to the Manhattan skyline, this type of 

plot will ideally show numerous peaks - indicating genetic loci that have displayed strong associations 

with the phenotype of interest - which tower over the less significantly associated genetic variants. The 

horizontal red line in Figure 1.6 represents the threshold for genome-wide statistical significance  

(P<5×10-8) and each point that lies above this line represents a SNP that is genome-wide significantly 

associated with the disease. The peaks are observed because there are many SNPs close together along 

the chromosome and they are in LD, therefore being found together on the same haplotype more often 

than expected. Because of this, the ‘sentinel’ SNP at the top of a peak (the most statistically significant 
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SNP of that genetic locus) is not necessarily the variant that is influencing the disease and the challenge 

lies in determining the true underlying causal variant (or variants).  

 
FIGURE 2.3: Example of a Manhattan plot, a commonly used visualisation tool in genome-wide association 

studies. This figure was taken from Allen et al77. The horizontal red line represents a genome-wide threshold 

for statistical significance, set at P<5×10-8 here.  

Regional association plots (Figure 1.7) provide a closer look at an area of a Manhattan plot and can be 

used to examine a genetic locus of interest in greater detail. Regional association plots also show the 

LD relationship between a particular variant (usually the sentinel SNP) and the other variants in the 

region. For example, in Figure 1.7 the most strongly associated variant in the region is at position 

130,184,065 and several SNPs in the region are in LD with this variant, as indicated by the various 

colours. Additionally, regional association plots can show recombination frequency information for the 

region as well as the genes within or close to the association peak.  
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FIGURE 2.4: Example of a regional association plot, a commonly used plot in genome-wide association 

studies. 

Due to the high frequency of false positive results found in a GWAS, a study should aim to verify any 

genetic signals that have displayed strong statistical significance in the genome-wide scan to rule out 

false positive associations. A traditional discovery and replication study design is commonly used, in 

which the genome-wide scan is performed in one cohort to identify genome-wide significant 

associations (the discovery stage), and then any proposed associations are tested in an additional 

independent cohort (the replication stage). Any genetic signals that reach a Bonferroni-corrected 

threshold in the replication stage are considered to have successfully replicated (i.e. to represent true 

and verified associations).  

However, genetic variants often suffer from ‘winner’s curse’, which is a phenomenon where the effect 

size of an association is overestimated in the first study to report it and is found to be lower when 

investigated in subsequent analyses. Winner’s curse can lead to underpowered replication analyses and 

so a replication sample should ideally be larger than the sample that the association was discovered in. 

There must also be homogeneity between the initial and replication cohorts; the subjects should be 

drawn from the same ancestral population and they should have identical phenotype criteria.  

Alternative variations of this study design are often used. For example, a study may choose to use a 2-

stage design. In this type of study, stage 1 is a genome-wide scan in which SNPs that reach statistical 

significance at a certain predefined threshold (i.e. P<5×10-6) qualify for follow-up in stage 2. Stage 2 

subsequently tests these variants in an additional independent sample and then the stage 1 and stage 2 
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results are meta-analysed. Variants that reach genome-wide significance in the meta-analysis are 

considered to be verified. This type of study design can be particularly useful in low powered studies 

with relatively small sample sizes in the discovery stage.  

2.2.3 Investigating genetic association signals  

If a significant association is detected between a genetic variant and a disease, this does not always 

mean that this variant is directly influencing the disease, as the true causal variant may be in LD with 

the detected SNP. Bayesian fine-mapping (Section 3.5.1) can be used to produce a set of variants 

(referred to as the 95% credible set) for each putative signal that are 95% likely to contain the underlying 

causal variant, assuming that the causal variant has been analysed106. However, fine-mapping has three 

important requirements: all variants in the region must be either genotyped or have high imputation 

quality, the variant quality control must have been stringent and the sample size must be large enough 

to provide sufficient power to differentiate between SNPs in high LD.  

One approach that is used to explain the functional link between a SNP and the risk of a disease is 

expression quantitative trait loci (eQTL) analysis (Section 3.5.1). Genotype and gene expression data 

from particular tissues of interest (e.g. blood or lung tissue) are queried to identify whether a genetic 

variant that has been found to be associated with a disease trait is also significantly associated with 

changes in expression for any genes. This eQTL evidence gives an indication of which genes might be 

functionally relevant to a signal, although conclusive evidence for a causal relationship between SNP 

genotype and gene expression can only be obtained through further bespoke molecular experiments. 

2.3 Time-to-event analysis 
In time-to-event analysis, there are several useful functions that can be estimated. Of note are the 

survival function (Equation 2.5), which is the probability of an event of interest occurring after time t, 

and the hazard function (Equation 2.6), which is the instantaneous probability of the event of interest 

occurring at time t, given that the event has not already occurred. If T is the time that the event of interest 

occurs, these can be written as:  

𝑆(𝑡) =P(T ≥ t) (2.5) 

ℎ(𝑡)  = lim
𝛿→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛿)

𝛿
 (2.6) 

The survival function can be estimated from the data using the Kaplan-Meier estimator107. At the kth 

time point in the data, the Kaplan-Meier estimator can be written as:  

�̂�(𝑡𝑘) = ∏
𝑛𝑖 − 𝑑𝑖

𝑛𝑖

𝑘

𝑖=1

 (2.7) 
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where 𝑑𝑖 is the number of events at time point i and 𝑛𝑖 is the number of individuals still at risk of 

experiencing the event at time i. Plotting �̂�(𝑡𝑘) against time gives a Kaplan-Meier curve. On a Kaplan-

Meier plot, the median survival time of a group of individuals is the point in time at which their Kaplan-

Meier curve crosses 0.5 on the y-axis (i.e. when �̂�(𝑡𝑘) = 0.5).  

One of the most common approaches in time-to-event analysis is the Cox PH model108, which is as 

follows: 

ℎ(𝑡) = ℎ0(𝑡) × exp (𝛽1𝑋1 +  𝛽2𝑋2 + ⋯ ) (2.8) 

where  ℎ0(𝑡) denotes the baseline hazard function, which describes how the hazard function changes 

over time for an individual with baseline levels of covariates.  

The Cox PH model assumes that the covariates are multiplicatively related to the hazard, which means 

that the hazard function in one group over time is always equal to the hazard function in another group 

multiplied by a constant value. This assumption is known as the PH assumption. Two groups with 

different covariate values can be compared using the hazard ratio (HR), which is the hazard function in 

one group divided by the hazard function in the other. As the time-dependent effects in Equation 2.8 

will cancel each other out in this calculation, the HR will be a constant and the Cox PH model can be 

fit without making any assumptions about the underlying distribution of the baseline hazard function.  

Evidence of breaches to the PH assumption can be checked using Schoenfeld residuals109. For each 

subject and for each covariate, Schoenfeld residuals are calculated as the difference between the 

observed covariate values minus the expected covariate values at each failure time. Under the PH 

assumption, these residuals should not show a trend when plotted against time.



41 
 

Chapter 3 – Genome-wide analyses to identify genetic 

determinants of the age-of-onset of IPF 

Previous GWAS have identified several genetic variants that are associated with IPF susceptibility, but 

none have investigated the age-of-onset. This chapter describes the first analyses to investigate the 

genetic basis of the age-of-onset phenotype in non-familial IPF. The objective of these analyses was to 

identify common (MAF >5%) and low-frequency (MAF 1-5%) genetic variants that were significantly 

associated with the age-of-onset of IPF, and to verify findings via follow-up in additional independent 

samples or through internal validation methods. 

3.1 Introduction 

In 2019, Krauss et al.110 showed that individuals with familial pulmonary fibrosis (FPF) had a 

significantly lower average age-of-onset than those with sporadic cases of IPF. In addition, the authors 

found that in cases of FPF the younger generation tended to manifest disease at a younger age compared 

to their counterparts in the older generation. These findings suggested that there is a genetic component 

to the age-of-onset of FPF and it stands to reason that the age-of-onset of Idiopathic PF may also possess 

a genetic component.  

Three cohorts of subjects with IPF were included in these analyses. These were the PROFILE, Trent 

Lung Fibrosis (TLF) and UK Biobank (UKB) cohorts (Section 3.2.1). The age-of-onset of IPF is 

difficult to determine exactly as it takes place prior to the development of symptoms and to the IPF 

diagnosis. It was assumed that a subject’s diagnosis would have been the earliest accurately recorded 

time after the development of the disease and onset of symptoms. As such, each subject’s age-at-

diagnosis was considered to be a reasonable proxy for their age-of-onset in these analyses.  

In the first analysis, the age-at-diagnosis of IPF was modelled as a continuous outcome using linear 

regression (Section 3.2). This GWAS was performed using a two-stage study design111. In the first stage, 

a genome-wide analysis was performed to identify variants that were associated with the age-at-

diagnosis of IPF in a discovery cohort (PROFILE). In the second stage, the strongest genetic signals of 

association were tested further in the two remaining independent cohorts (TLF and UKB). Following 

this, the results from both stages were meta-analysed to identify whether any variants were genome-

wide significantly associated with the age-of-diagnosis of IPF when all three cohorts of IPF subjects 

were considered together.  

The analysis was then repeated with two key improvements regarding the study design and the choice 

of statistical model (Section 3.3). Firstly, the age-at-diagnosis of IPF was modelled using time-to-event 

analysis methods, which are better suited to model the age-of-onset than linear regression, as the age-

of-onset could be considered time-to-event data. In addition, time-to-event methods are not affected by 
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deviations from normality within the distributions for the age-of-onset proxies, which were encountered 

during the first analysis. Secondly, a 3-way GWAS meta-analysis study design was utilised, which 

allowed all available data to be incorporated in the discovery analysis. In addition, criteria specifying 

support for signals from multiple contributing studies were applied to improve the credibility of any 

findings by ensuring that any novel genetic signals must have showed consistent association in each 

independent cohort.   

3.2 Two-stage GWAS analysis 

3.2.1 Datasets and study design 

Three cohorts of individuals with IPF from separate studies were included in this analysis. These studies 

were selected as they had either reported the age-at-diagnosis of their subjects or they had recruited all 

subjects within six months of their IPF diagnosis and reported the age of their subjects at the time of 

enrolment. All three studies originated from the United Kingdom. The first was the Prospective 

Observation of Fibrosis in the Lung Clinical Endpoints (PROFILE) study112. The primary aim of the 

PROFILE study was to develop and validate novel prognostic biomarkers for IPF patients. Across two 

centres (the University of Nottingham and the Royal Brompton Hospital), a total of 560 newly 

diagnosed individuals were recruited to the study.  

The second cohort originated from the Trent Lung Function (TLF) study113, a prospective study which 

aimed to investigate hypercoagulability in IPF patients. Patients were eligible for inclusion in the study 

if they were newly diagnosed with IPF in the six months before the start of the study or throughout the 

recruitment period (from January 2010 to February 2012). 211 incident cases of IPF were recruited to 

the study during this time.  

The third cohort of IPF subjects were part of the UK Biobank (UKB) study114. Approximately 500,000 

British individuals aged 40-69 years were recruited into the study from 2006 to 2010. Of these, 121,271 

individuals later responded to a questionnaire that asked whether they had been diagnosed with IPF by 

a doctor and their age-at-diagnosis (if applicable). 108 of the participants said they had been diagnosed 

by a doctor to have IPF (data field 22135) and provided their age-at-diagnosis (data field 22155).  

This analysis consisted of three parts. Stage 1 was the discovery analysis, in which association testing 

was conducted genome-wide in individuals with IPF from the PROFILE study. In stage 2, any variants 

that met P<10-5 in stage 1 were tested in the additional independent IPF cases from the TLF and UKB 

studies. Following this, the results from stage 1 and stage 2 were meta-analysed.  

3.2.2 Methods 

In this study, the age at which each subject was diagnosed with IPF was used as a proxy for their age-

of-onset. The IPF cases in UK Biobank self-reported their age-at-diagnosis via a questionnaire. For the 
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individuals in the PROFILE and TLF studies, their age-at-enrolment was used as a proxy for their age-

at-diagnosis.  

To address the issue of population stratification, individuals were excluded from this analysis if they 

had self-reported non-European ancestry. In addition, PCA was used to identify and exclude individuals 

who were not of European Ancestry based on their genotype data; individuals were considered to be of 

non-European ancestry and excluded if they were visually determined to be an outlier on a plot of the 

first two genetic principal components (i.e. if they laid far apart from the main group of overlapping 

individuals). Additionally, individuals in UKB with outlier values for age-at-diagnosis (<35 years) were 

removed as these were self-reported and thus subject to error.  

KING relationship inference software115 was used to check for duplicate subjects and related individuals 

across the three cohorts. Subjects present in more than one cohort and those found to be second degree 

related (or higher) to another individual in the study were excluded. In cases where a pair of identical 

or related individuals were identified across cohorts and one of the individuals was in the PROFILE 

cohort, the identical/related individual was removed from the other study (TLF/UKB). This was done 

to maintain the largest possible sample size in the PROFILE cohort, therefore maximising the statistical 

power of the discovery stage of the analysis. In all other cases where related individuals were identified, 

one member of the related pair was selected at random and excluded.  

Sex information was available in all cohorts, with all subjects being self-reported as either male or 

female. In the PROFILE cohort, individuals were recruited from either Nottingham or Brompton. All 

subjects in PROFILE were genotyped using the UK Biobank Axiom array, all subjects in TLF were 

genotyped using the closely related UK BiLEVE Axiom array and UKB used both of these arrays. 

Genotype imputation for the PROFILE and TLF cohorts was performed for a previously published 

GWAS of IPF susceptibility116. Genotype imputation for the UKB cohort was performed as described 

in Bycroft et al.117. Smoking history information was reported as ‘never smoker’, ‘former smoker’ or 

‘current smoker’ in the PROFILE study and the TLF study. In the UK Biobank study, each subject’s 

smoking status was reported as either ‘smokes on most or all days’, ‘never smoker’, ‘ex-smoker’ or 

‘smokes occasionally’. In both cases, these were included as categorical variables in the statistical 

model.  

In each study cohort, a linear regression model was used to test for genetic associations, with the age-

at-diagnosis of IPF as the response variable. Sex, smoking status, recruitment centre (only applicable 

to those in PROFILE) and genotyping array (only applicable to those in UKB) were included as 

covariates in the linear regression model. Additionally, the first 10 principal components of ancestry 

were included in the model to account for fine-scale population structure. For each genetic locus, the 

number of copies of the risk allele present for each individual was input into the model as an imputed 
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dosage and the primary variable of interest was the genetic effect at that locus. An additive genetic 

model was assumed. The equation for the linear model is shown in Equation 3.1.   

𝐴𝑔𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 =  𝛽0 + 𝛽1𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑟𝑖𝑠𝑘 𝑎𝑙𝑙𝑒𝑙𝑒 + 𝛼1𝑆𝑒𝑥  

+ 𝛼2𝑆𝑚𝑜𝑘𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑢𝑠 + 𝛼3𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡 𝐶𝑒𝑛𝑡𝑟𝑒 + 𝛼4𝐴𝑟𝑟𝑎𝑦  

                              +𝛽2𝑃𝐶1 + ⋯ + 𝛽11𝑃𝐶10 + 휀 

(2.1) 

Quality control was performed in the discovery stage by excluding any genetic variants that could have 

led to spurious results due to being poorly imputed, by being too rare in the discovery population or by 

being out of HWE in that population. Only the variants that were well imputed (R2 > 0.5), that were 

common/low frequency (MAF ≥ 0.01) and that were in Hardy-Weinberg equilibrium (P > 1×10-6) were 

included in the analysis.  

The genome-wide analysis of stage 1 (PROFILE cohort only) was performed using SNPTEST v2.5.2. 

The genome-wide results were visualised in a Manhattan plot using R (v4.0.0 and the ‘qqman’ package). 

A Q-Q plot and the genomic inflation factor (λ, Section 2.2.2) were used to determine whether there 

was unadjusted population structure present within the stage 1 results. If λ ≥ 1.1, the results were 

considered to require adjustment, which was undertaken using genomic control (Section 2.2.2).  

Suggestive statistical significance for the purpose of defining independent signals within the data was 

set as P < 5×10-5 based on visualisation of the stage 1 results.  Sentinel SNPs were defined as those that 

met the suggestive threshold and were at least 1 megabase (Mb) away from any other variants that 

showed a more significant association with the age-at-diagnosis (i.e. those with a lower p-value). 

LocusZoom118 software was used to create a regional association plot for each sentinel SNP that 

visualised the genetic region 1Mb to either side of the sentinel SNP, as well as the LD structure between 

that SNP and the other genetic variants in that region. These plots were used to check each region for 

evidence of additional independent signals, as well as to identify any spurious signals (defined as those 

with abnormal LD structure or LD structure that was not consistent with the MAF of the sentinel 

variant). Signals that were found to be spurious according to these criteria were disqualified from 

follow-up in stage 2 of the analysis.  

Conditional analyses were then conducted using SNPTEST v2.5.2 to test for independent signals within 

regions ±1Mb around the sentinel SNPs. The association test at each region was repeated with the same 

covariates as described previously, whilst additionally including the number of copies (as a dosage) of 

that region’s sentinel SNP coded allele in the linear model. The other signals in that region were then 

evaluated to see if they were significantly associated with the age-at-diagnosis of IPF after the 

adjustment for the first signal. If at least one of these variants reached suggestive statistical significance, 

the number of copies of the coded allele of the most significantly associated SNP in the region was then 

added to the linear model. This process was repeated until no variants reached the suggestive threshold. 
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Any independent suggestively significant (P<5×10-5) signals were investigated further using 

LocusZoom regional association plots. 

Of all independent signals that met P<5×10-5 in stage 1 following conditional analyses, those that met 

a slightly stricter threshold of P<10-5 were prioritised for follow up in stage 2. Association tests for these 

variants were then performed in the individuals in the TLF and UKB cohorts. This was done in each 

cohort separately and using the same statistical approach and software as described for stage 1. These 

results were then meta-analysed using a fixed-effect inverse variance model. Genome-wide statistical 

significance was defined as Pmeta<5×10-8.  

To assess whether there was any overlap between the genetic determinants of the age-at-diagnosis of 

IPF and those of IPF susceptibility, a lookup was performed within the stage 1 results. The variants in 

this lookup consisted of the most significantly associated SNPs from the 14 genome-wide significant 

signals in the largest GWAS meta-analysis of IPF susceptibility to-date77, as well as the rare variant in 

the SPDL1 region that was recently identified as being genome-wide significantly associated with IPF 

susceptibility119 (Additional Table B.3.1 in Appendix B). A variant was considered to be associated 

with both IPF susceptibility and the age-at-diagnosis of IPF if the corresponding P-value for that variant 

in the age-at-diagnosis lookup was lower than the Bonferroni-corrected threshold for 15 tests at a 

significance level of 0.05 (i.e. P<0.003). 

3.2.3 Results 

After exclusions, there were 465 individuals with IPF in the PROFILE cohort, 210 in the TLF cohort 

and 98 in the UKB cohort (Table 3.1). There was only one individual in the UKB cohort who reported 

that they were a current smoker, so this category was removed and this individual was moved into the 

former smoker group. In all three cohorts, there were a higher proportion of males than females and on 

average males were slightly older when they were diagnosed/enrolled into their study. Individuals in 

the TLF cohort had the greatest mean age-at-diagnosis/enrolment at 73 years for females and 74 years 

for males. Those in the UKB cohort had the lowest mean age-at-diagnosis/enrolment at 63 years for 

females and 65 years for males. In the PROFILE cohort, those who were recruited from the Royal 

Brompton Hospital were on average 4 years younger than those who were recruited from the University 

of Nottingham at the time of recruitment (Additional Figure A.3.1 in Appendix A).  

The age-at-enrolment of PROFILE and TLF both appeared approximately normally distributed around 

a mean of 70-75 years, whilst the distribution of the UKB cohort appeared to be truncated (Figure 3.1). 

This was likely because only individuals who were between 40 and 69 years of age were recruited into 

the study and so there were no subjects whose age-at-diagnosis could have been greater than 75 years 

at the time the information was gathered. 
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TABLE 3.1: Demographics for the individuals with IPF from the three cohorts that were included in the analysis.  

 
PROFILE  

(n=465) 

Trent Lung Fibrosis  

(n=210) 

UK Biobank 

(n=98) 

Phenotype  Count (%) 

Mean age-at-

enrolment 

(years) (sd) 

Count (%) 

Mean age-at-

enrolment 

(years) (sd) 

Count (%) 

Mean age-at-

diagnosis 

 (years) (sd) 

Sex 

 

Female 

Male 

108 (23.2%) 

357 (76.8%) 

70.1 (7.6) 

71.0 (8.3) 

65 (31.0%) 

145 (69.0%) 

72.8 (8.7) 

73.8 (9.1) 

43 (43.9%) 

55 (56.1%) 

63.3 (7.7) 

64.5 (7.6) 

Smoking status 

 

 

Never 

Former 

Current 

144 (31.0%) 

296 (63.7%) 

25 (5.4%) 

71.5 (7.4) 

70.9 (8.1) 

64.6 (9.4) 

56 (26.7%) 

136 (64.8%) 

18 (8.6%) 

74.7 (9.5) 

73.7 (8.6) 

68.1 (8.4) 

33 (33.7%) 

65 (66.3%) 

- 

64.4 (7.6) 

63.1 (7.7) 

- 

Recruitment centre 

 

Brompton 

Nottingham 

205 (44.1%) 

260 (55.9%) 

68.5 (8.1) 

72.5 (7.7) 

- 

- 

- 

- 

- 

- 

- 

- 

Genotyping array 

 

UK BiLEVE 

Axiom 

- 

465 (100%) 

- 

70.8 (8.1) 

210 (100%) 

- 

73.5 (9.0) 

- 

12 (12.2%) 

86 (87.8%) 

61.8 (9.1) 

64.3 (7.4) 
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FIGURE 3.1: Histograms showing the distributions of the age-at-enrolment into study of the PROFILE and Trent Lung Fibrosis (TLF) cohorts and the distribution 

of the self-reported age-at-diagnosis of the UK Biobank (UKB) cohort. 
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Prior to variant QC, there were 39,131,578 variants available for the discovery analysis. Of these, 

10,858,143 variants were polymorphic in the PROFILE cohort. Of those, 9,958,982 had good 

imputation quality (R2>0.5), of which 7,647,898 had MAF ≥ 0.01. 2,674 of those SNPs were found to 

be out of HWE (P<1×10-6) and were excluded, leaving 7,645,224 SNPs that were included in the 

discovery analysis.  

Association testing was performed genome-wide on the 7,645,224 SNPs in the PROFILE cohort. The 

p-values of the association tests did not suggest inflation due to unadjusted population structure (Figure 

3.2). This was supported by a λ of 1.008, and no further adjustment was made to account for population 

stratification. 

The genetic variant with the most statistically significant association with the age-at-diagnosis was 

found on chromosome 8 with a p-value of 2.87×10-7 (Figure 3.3). In total there were 82 sentinel SNPs 

(represented by the green points in Figure 3.3). 

 

FIGURE 3.2: A quantile-quantile plot of the p-values in the discovery analysis 

(performed in 465 subjects from the PROFILE study). λ = the genomic inflation factor.  

 

λ = 1.008 
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FIGURE 3.3: A Manhattan plot showing the results of the genome-wide analysis, in which each genetic variant that passed quality control was tested for an association 

with the age-at-diagnosis of IPF in the PROFILE cohort. The 82 sentinel SNPs are highlighted green and the threshold for suggestive significance (P<5×10-5) is represented 

by the blue horizontal line. All variants with a p-value greater than 0.1 were removed to reduce the computational burden of the plot. 

 

Genetic variants associated with the age-at-diagnosis of IPF 
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Conditional analyses for the 82 sentinel SNPs identified six additional independent genetic signals, 

producing a total of 88 independent genetic signals of interest (Additional Table B.3.2). None of the 

regional association plots for the 88 signals indicated that any variants should be disqualified from 

further study due to abnormalities in the LD structure or inconsistencies between variant frequency and 

LD structure. 

Of the 88 independent genetic signals, 14 variants had P<10-5 and were prioritised for follow-up in stage 

2 (Table 3.2). For all 14 variants, each copy of the minor allele corresponded to a younger expected 

age-at-diagnosis of IPF. The variant with the greatest effect size was rs114791520, where each copy of 

the effect allele corresponded to a younger age-at-diagnosis of 1.3 years. 
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TABLE 3.2: Summary statistics from the stage 1 results for the 14 genetic variants that were eligible for follow-up in stage 2 of this 

study. EAF= effect allele frequency, SE= standard error, R2 refers to the imputation quality of the variant. 

       rsid Chr. Position Locus 
Reference/ 

effect allele 
EAF  P-value Beta SE R2 

rs78672887 1 11473150 Intergenic C / T 3.4% 1.11×10-6 -0.83 0.170 0.862 

rs12471179 2 49568428 LOC105374595 (intron) A / C 32.4% 9.89×10-6 -0.29 0.065 0.972 

rs7599256† 2 171495421 
MYO3B (intron)/ 

LOC100130256 (intron) 
G / T 54.4% 6.80×10-6 0.28 0.062 0.998 

rs72958256 2 217676681 LOC101928278 (intron) C / T 21.2% 3.22×10-6 -0.35 0.075 0.967 

rs72749864 5 54507085 Intergenic T / A 3.3% 6.49×10-6 -0.73 0.162 0.967 

rs114791520 6 29487974 Intergenic T / C 1.1% 9.48×10-6 -1.32 0.297 0.906 

rs76259754 7 65599188 CRCP (intron) C / T 1.4% 5.34×10-6 -1.19 0.262 0.933 

rs75681116 8 20248930 Intergenic C / T 2.9% 2.87×10-7 -0.95 0.184 0.998 

rs12155839 8 130184065 Intergenic C / T 17.3% 4.63×10-6 -0.37 0.081 0.987 

rs182317201 10 133919390 JAKMIP3 (intron) C / T 1.7% 5.02×10-6 -1.08 0.237 0.974 

rs74715174 12 10065926 CLEC2A (intron) A / T 3.9% 6.81×10-6 -0.71 0.157 0.950 

rs113262525‡ 12 10291177 Intergenic T / G 8.0% 4.63×10-6 -0.48 0.104 0.977 

rs61459715 15 80777127 ARNT2 (intron) G / A 1.6% 1.67×10-6 -1.17 0.244 0.883 

rs117388035 19 57260406 LOC105372472 (intron) G / A 2.6% 5.36×10-7 -0.98 0.195 0.981 

†: Conditional on the number of copies of the rs192643964 coded allele. 

‡: Conditional on the number of copies of the rs74715174 coded allele. 
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In stage 2, the 14 variants listed in Table 3.2 were tested for an association with the age-at-diagnosis of 

IPF in the subjects from the TLF cohort (n=210) and the UKB cohort (n=98). One variant, rs76259754, 

could not be tested in UKB as there was only one instance of the alternate allele, which meant that the 

allele count for this SNP was below the minimum allele count required by SNPTEST. The results from 

stages 1 and 2 were then meta-analysed (Table 3.3).  

There were no genetic variants that reached genome-wide statistical significance (P<5×10-8) in the 

meta-analysis. However, there were three SNPs (rs114791520, rs75681116 and rs182317201, indicated 

by the highlighted rows in Table 3.3) that had a consistent direction of effects across all three cohorts. 

All three of these variants were low frequency, with MAF in the 1-5% range in all cohorts. rs75681116 

and rs182317201 maintained suggestive statistical significance in the meta-analysis at a threshold of 

Pmeta<10-5. However, none of these three variants had greater statistical significance in the meta-analysis 

than in the stage 1 discovery analysis. Of the three, the variant with the greatest estimated effect size 

was rs182317201 (β=-0.83), where each copy of the effect allele corresponded to an estimated younger 

age-of-onset of IPF by approximately 10 months. Only one variant, rs72958256, maintained suggestive 

significance in the meta-analysis despite not having a consistent direction of effects in each cohort. This 

SNP, which is found on chromosome 2, had a lower p-value in the meta-analysis (Pmeta=3.0×10-6) than 

in the discovery analysis (P=3.2×10-6) but did not have a consistent direction of effects across the three 

cohorts as the estimated effect size was negative in PROFILE and TLF but positive in UKB, though 

very close to zero (β= 0.001). The estimated effect size of this SNP was -0.28, which meant that each 

copy of the T allele at this locus corresponded to a younger estimated age-of-onset of IPF by 

approximately 3 months. Forest plots for these four variants (rs114791520, rs75681116, rs182317201 

and rs72958256) are shown in Figure 3.4. 
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Stage 2: Trent Lung  

(n=210) 

 Stage 2: UK Biobank  

(n=98) 
 

Meta-analysis of stages 1 & 2 

(n=773*) 

     rsid Chr. 
Reference / 

effect allele 
EAF Beta SE P-value 

 
EAF Beta SE P-value  

Direction 

of effects 
Beta SE P-value 

rs78672887 1 C / T 2.4% 0.058 0.283 0.838  1.1% -0.708 0.673 0.293  - + - -0.599 0.143 2.70×10-5 

rs12471179 2 A / C 31.1% 0.129 0.104 0.216  32.3% 0.006 0.154 0.692  - + + -0.144 0.052 0.005 

rs7599256† 2 G / T 51.4% -0.073 0.089 0.414  58.2% 0.234 0.144 0.104  + - + 0.172 0.048 3.22×10-4 

rs72958256 2 C / T 18.9% -0.236 0.121 0.051  18.2% 0.001 0.171 0.996  - - + -0.279 0.060 3.01×10-6 

rs72749864 5 T / A 4.3% 0.199 0.224 0.373  2.1% -0.192 0.487 0.694  - + - -0.396 0.127 0.002 

rs114791520 6 T / C 1.2% -0.006 0.435 0.988  1.0% -0.126 0.682 0.853  - - - -0.811 0.231 4.47×10-4 

rs76259754 7 C / T 1.2% 0.275 0.435 0.527  <1% - - -  - + -0.801 0.224 3.52×10-4 

rs75681116 8 C / T 2.6% -0.240 0.297 0.420  4.1% -0.453 0.350 0.196  - - - -0.701 0.143 9.71×10-7 

rs12155839 8 C / T 16.5% -0.205 0.128 0.110  19.1% 0.011 0.171 0.949  - - + -0.277 0.063 1.25×10-5 

rs182317201 10 C / T 2.2% -0.291 0.327 0.374  1.0% -1.137 0.676 0.094  - - - -0.833 0.185 6.30×10-6 

rs74715174 12 A / T 2.6% -0.118 0.272 0.664  3.1% 0.065 0.400 0.871  - - + -0.495 0.129 1.20×10-4 

rs113262525‡ 12 T / G 6.9% 0.160 0.192 0.403  6.1% 0.114 0.293 0.696  - + + -0.292 0.087 0.001 

rs61459715 15 G / A 1.4% 0.979 0.398 0.014  1.0% 0.469 0.675 0.487  - + + -0.491 0.199 0.014 

rs117388035 19 G / A 4.8% 0.095 0.226 0.673  1.5% -0.355 0.557 0.524  - + - -0.508 0.143 3.64×10-4 

†: Conditional on the number of copies of the rs192643964 coded allele. 

‡: Conditional on the number of copies of the rs74715174 coded allele. 

*: n=675 for variant rs76259754 as this had a MAF of less than 1% in the UKB cohort, n=773 for all other variants. 

TABLE 3.3: Stage 2 and meta-analysis results for the 14 sentinel variants that had P<10-5
 in stage 1. EAF = effect allele frequency, SE = standard error. The 

symbols in the direction of effects column show whether the effect size of that variant was positive or negative in the PROFILE cohort, the Trent Lung Fibrosis 

cohort and the UK Biobank cohort respectively. Variants with a consistent direction of effect across all three studies are highlighted. 
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FIGURE 3.4: Forest plots for the four genetic variants that showed consistent directions of effects across all 

three cohorts or maintained suggestive significance in the meta-analysis (Pmeta<10-5). These plots show the 

effect sizes and confidence intervals of each variant in each cohort and in the meta-analysis using a fixed-

effects model. 

 

Regional association plots for the same four variants (Figure 3.5) showed that the common variant 

rs72958256 (MAF=21.2% in PROFILE) was in LD with several other variants within the same genetic 

region. The other three variants were less common with minor allele frequencies ranging from 1-5% 

and were each in LD with very few variants at the same genetic loci.  

The results of the lookup for the 15 SNPs that were previously identified as being genome-wide 

significantly associated with IPF susceptibility are shown in Table 3.4. None of these variants were 

significantly associated with the age-at-diagnosis of IPF in the PROFILE cohort at a Bonferroni-

corrected significance threshold (all P>0.003).
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FIGURE 3.5: Regional association plots for the four genetic variants that showed consistent directions of effects across all three cohorts or maintained 

suggestive significance in the meta-analysis (Pmeta<10-5). Plots were produced using stage 1 results. 

rs72958256 

rs75681116 
rs182317201 

rs114791520 
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TABLE 3.4: Summary statistics from the lookup for the 15 SNPs that have been previously identified as being 

genome-wide associated with IPF susceptibility. EAF = effect allele frequency, SE = standard error.  

Chr. Position EAF rsid Locus Beta SE P-value 

3 44902386 6.2% rs78238620 KIF15 0.032 0.132 0.811 

3 169481271 32.9% rs12696304 LRRC34/TERC -0.009 0.067 0.888 

4 89885086 44.7% rs2013701 FAM13A 0.052 0.065 0.427 

5 1282414 28.1% rs7725218 TERT 0.131 0.071 0.067 

5 169015479 2.5% rs116483731 SPDL1 0.090 0.197 0.647 

6 7563232 56.6% rs2076295 DSP -0.055 0.061 0.366 

7 1909479 56.6% rs12699415 MAD1L1 0.130 0.063 0.040 

7 99630342 43.4% rs2897075 7q22.1 0.013 0.064 0.840 

8 120934126 40.2% rs28513081 DEPTOR -0.043 0.064 0.495 

11 1241221 34.7% rs35705950 MUC5B 0.073 0.072 0.313 

13 113534984 17.5% rs9577395 ATP11A 0.092 0.083 0.270 

15 40720542 57.6% rs59424629 IVD -0.045 0.064 0.478 

15 86097216 31.2% rs62023891 AKAP13 0.100 0.067 0.138 

17 44214888 16.0% rs2077551 MAPT 0.299 0.192 0.121 

19 4717672 34.7% rs12610495 DPP9 -0.043 0.063 0.499 

 

3.3  Meta-analysis of three GWAS of age-at-diagnosis of IPF using time-to-event 

methods 

Three significant issues were encountered during the 2-stage GWAS. Firstly, the analysis had limited 

power due to the relatively small sample size of the discovery cohort (n=465 IPF cases). Secondly, the 

findings of the study had limited credibility due to a lack of support in the stage 2 cohorts. Thirdly, the 

age-at-diagnosis of those in the UKB cohort was not normally distributed due to being truncated at 

approximately 75 years and so linear regression may not have been the most effective approach to 

model this data. 

In this next analysis, the first issue was addressed through the implementation of a ‘3-way’ GWAS 

meta-analysis study design, in which a separate GWAS was performed in each cohort of IPF subjects 

(PROFILE, TLF and UKB), with age-at-diagnosis of IPF as the phenotype of interest. Following this, 

the association summary statistics for each SNP were meta-analysed. The rationale for adopting this 

approach was that this would maximise the available statistical power for the discovery of genetic 

associations. To address the second issue, study-level thresholds were applied to each signal after the 

meta-analysis to exclude signals that were only present in one of the three studies, thus ensuring that 

any novel genetic signals were not being driven by a strong false positive association in only one cohort. 

Finally, in this subsequent analysis, time-to-event analysis methods were applied in place of linear 

regression. The method that was used, a Cox proportional-hazards (PH) model, does not assume a 

particular underlying distribution for the outcome of interest or that the residuals in the model are 
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normally distributed, and was therefore robust to the non-normality of the UKB cohort’s age-at-

diagnosis distribution.  

3.3.1 Methods 

This analysis was conducted using the same data from the same individuals as described in Section 

3.2.1, i.e. the individuals with IPF from the PROFILE, TLF and UKB cohorts. Subject exclusion criteria 

were identical regarding ancestry, relatedness and outliers. The same proxies for the age-of-onset of 

IPF were used (age-at-enrolment as an approximation of age-at-diagnosis diagnosis in PROFILE and 

TLF and self-reported age-at-diagnosis in UKB). In addition, the same variant-level QC thresholds were 

applied as described in Section 3.2.2.  

Time-to-event methods (Section 2.3) were utilised in this analysis to model the proxy for the age-of-

onset of IPF. Genome-wide association testing was performed in each cohort separately to assess the 

association between the age-at-diagnosis of IPF and each available genetic locus. All genetic association 

testing was performed using a Cox PH model with the diagnosis of IPF as the event of interest. This 

was performed in R v4.0.0 using the ‘survival’ package. Again, genotype dosages were used and an 

additive model was assumed for the genetic effect of each variant. The same covariates as in the 

previous analysis were included in the model. The equation for the Cox PH model is shown in Equation 

2.2. 

ℎ(𝑡) = ℎ0(𝑡) × exp (𝛽1𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑝𝑖𝑒𝑠 𝑜𝑓 𝑟𝑖𝑠𝑘 𝑎𝑙𝑙𝑒𝑙𝑒 +  𝛼1𝑆𝑒𝑥

+  𝛼2𝑆𝑚𝑜𝑘𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑢𝑠 + 𝛼3𝑅𝑒𝑐𝑟𝑢𝑖𝑡𝑚𝑒𝑛𝑡 𝐶𝑒𝑛𝑡𝑟𝑒 + 𝛼4𝐴𝑟𝑟𝑎𝑦 

                              +𝛽2𝑃𝐶1 + ⋯ +  𝛽11𝑃𝐶10) 

(2.2) 

For each covariate, a Chi-square test based on the correlation between time and the scaled Schoenfeld 

residuals for that variant was used to assess whether there was evidence that the PH assumption was 

being violated. 

The genomic inflation factor (λ) and Q-Q plots were used to evaluate whether there was evidence of 

inflation within the results for each cohort. In the case where there was evidence of inflation (λ>1.1) for 

a particular cohort, genomic control (Section 2.2.2) was used to correct the results of that cohort. Q-Q 

plots were then used to assess the efficacy of the genomic control corrections.  

All variants that were measured and passed QC in all three cohorts were then meta-analysed using a 

fixed-effect inverse variance model, as in the previous analysis. Variants that were at least nominally 

significantly associated with the age-at-diagnosis of IPF in each cohort (P<0.05, post-genomic control) 

and had a consistent direction of effects across cohorts were considered to meet our internal validation 

criteria. All variants that did not meet these criteria were excluded. Genome-wide significance was 

defined as Pmeta<5×10-8 and suggestive significance was defined as Pmeta<5×10-6. A sensitivity analysis 
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was performed to assess whether any of the suggestively significant signals would have reached 

genome-wide significance if genomic control had not been applied.  

Finally, a lookup of previously reported IPF susceptibility signals was conducted within the results of 

the meta-analysis, as described in Section 3.2.2. 

3.3.2 Results 

In each cohort, more than 7.5 million variants passed QC and were tested for an association with the 

age-at-diagnosis of IPF. However, the results from all three cohorts showed evidence of genomic 

inflation (Figure 3.6) and the genomic inflation factor for each cohort was greater than 1.1 (λPROFILE = 

1.155, λTLF = 1.132 and λUKB = 1.194). 

As no inflation was observed within the results when the linear regression model was applied to the 

PROFILE cohort in the previous analysis (Section 3.2.3) and the same covariates were adjusted for 

(including the first 10 genetic principal components), the inflation observed in this analysis was unlikely 

to be due the presence of unadjusted population structure within the data. Instead, it appeared more 

likely that the inflation was a result of the application of time-to-event analysis methods in place of the 

linear regression model.  

The removal of all variants in which the genetic effect was found to break the PH assumption at a 

nominal level (P<0.05) did not significantly lower the genomic inflation factor of any of the cohorts 

(Table 3.5). Likewise, more stringent thresholds for imputation quality and MAF did not reduce the 

inflation to acceptable levels (λ<1.1) for any cohort. As no cause of the inflation was identified, genomic 

control was applied to the results of each cohort (Figure 3.7).  

After genomic control (Figure 3.8), there were two genome-wide significant signals (P<5×10-8) in the 

PROFILE cohort and five in the TLF cohort. All seven sentinel variants for these signals were 

uncommon, with MAF<3%.   
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A B C 

λ=1.155 λ=1.132 λ=1.194 

FIGURE 3.6: Quantile-quantile plots showing the presence of genomic inflation in the results of the PROFILE cohort (A), the Trent Lung Fibrosis cohort (B) and the UK 

Biobank cohort (C). λ = genomic inflation factor. There were 7,645,226 variants tested in the PROFILE cohort, 7,714,782 variants tested in the Trent Lung Fibrosis cohort 

and 8,857,166 variants tested in the UK Biobank cohort.  
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TABLE 3.5: The results of the investigation into the cause of the inflation within the results of each genome-wide 

analysis. Various filters were applied to the results of each cohort to study the effect of excluding certain genetic variants. 

The remaining number of variants and corresponding genomic inflation factor is shown for each cohort. The proportional 

hazards p-value is from a Chi-square test based on the correlation between time and the scaled Schoenfeld residuals for 

that variant. R2 refers to the imputation quality of the genetic variants.  

Criteria for inclusion 

Number of remaining variants (genomic inflation factor) 

PROFILE TLF UKB 

None (all variants post-quality control) 7,645,226 (1.155) 7,714,782 (1.132) 8,857,165 (1.194) 

Proportional-hazards p-value > 0.05 7,193,642 (1.155) 6,942,873 (1.130) 8,502,005 (1.194) 

R2 > 0.9 7,058,965 (1.156) 6,884,951 (1.126) 8,155,498 (1.189) 

R2 > 0.99 3,208,805 (1.155) 3,182,168 (1.122) 5,007,509 (1.181) 

Minor allele frequency > 0.05 5,410,313 (1.159) 5,455,668 (1.115) 6,116,205 (1.169) 

Minor allele frequency > 0.1 4,285,762 (1.168) 4,329,547 (1.110) 4,868,863 (1.164) 
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λ=1.000 λ=1.000 λ=1.000 

FIGURE 3.7: Quantile-quantile plots displaying the p-values of the PROFILE cohort (A), the Trent Lung Fibrosis cohort (B) and the UK Biobank cohort (C) after genomic 

control. λ = genomic inflation factor. 
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FIGURE 3.8: Manhattan plots showing the association between each genetic variant and the age-at-diagnosis of IPF in each cohort. Sentinel SNPs for genetic signals that 

displayed genome-wide statistical significance (P<5×10-8, threshold indicated by the red line on each plot) are highlighted green. All variants with a p-value greater than 0.1 

were removed to reduce the computational burden of the plots.
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7,179,468 variants were measured in all three study cohorts and passed QC in each cohort. These were 

meta-analysed (Additional Figure A.3.2). 248 variants had a consistent direction of effects across the 

three studies and showed nominal significance (P<0.05) in each cohort. All variants that did not meet 

these criteria were excluded.  

None of the 248 variants reached genome-wide significance (Pmeta<5×10-8) in the meta-analysis (Figure 

3.9), though there were five genetic signals that reached suggestive significance (Pmeta<5×10-6, Table 

3.6). Of the five genetic signals that reached suggestive significance (Pmeta<5×10-6), the variant with the 

strongest association with the age-of-onset of IPF in the meta-analysis was rs183759512 

(Pmeta=1.05×10−6). This variant is found on chromosome 7 within an intron of DOCK4 and had a MAF 

of approximately 4% in all three study cohorts. The HR for this variant was 2.2, which means that at 

any follow-up time, individuals with one additional copy of the risk allele at this locus were estimated 

to be 2.2 times as likely to develop IPF compared to those with one fewer copy. Due to the additive 

model assumed, individuals who possess two copies of the risk allele at this locus were estimated to be 

4.8 times as likely to develop IPF as those with no copies, at any follow-up time.  

The other four sentinel variants included two uncommon SNPs that are found within introns of the 

genes RBM17 (MAF=1.9%) and RNF121 (MAF=1.2%), a common SNP found within an exon of the 

gene FARP1 (MAF=28.5%) and one uncommon intergenic SNP (MAF=3.3%). The HRs for these 

variants ranged from 1.38-4.00. None of the five suggestively significant signals reached genome-wide 

significance in the sensitivity analysis (Additional Table B.3.3).  

The results of the lookup for the 15 SNPs that were previously identified as being genome-wide 

significantly associated with IPF susceptibility are shown in Table 3.7. None of these variants were 

significantly associated with the age-at-diagnosis of IPF in the meta-analysis at a Bonferroni-corrected 

significance level (all P>0.003).
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FIGURE 3.9: A sparse Manhattan plot showing the statistical significance of the associations between the age-at-diagnosis of IPF and the 248 genetic 

variants that passed the internal validation criteria after the results for the PROFILE, TLF and UKB cohorts were meta-analysed. Sentinel SNPs for genetic 

signals that reached suggestive statistical significance (Pmeta<5×10-6, threshold indicated by the blue line on the plot) are highlighted green. 

 

 

Meta-analysis results for the 248 genetic variants that met the internal validation criteria 
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TABLE 3.6: Summary statistics for the sentinel SNPs of the five independent genetic signals that were suggestively significant in the meta-analysis. EAF = effect allele 

frequency, HR = hazard ratio.  

     

PROFILE  

(n=465) 

Trent Lung Fibrosis 

(n=210) 

UK Biobank  

(n=98) 

Meta-analysis 

(N=773) 

rsid Chr. Position Gene Ref/effect 

allele 
EAF HR 95% CI P-value EAF HR 95% CI P-value EAF HR 95% CI P-value HR 95% CI P-value 

rs183759512 7 111708942  DOCK4 

(intron) 

C / T 4.1% 2.11 (1.38, 

3.22) 

0.001 4.0% 2.09 (1.24,  

3.90) 

0.007 4.1% 2.64 (1.13, 

6.18) 

0.025 2.20 (1.60,  

3.02) 

1.05×10−6 

rs41295127 10 6134617  RBM17 

(intron) 

A / T 1.6% 2.00 (1.13, 

3.54) 

0.016 2.7% 4.05 (2.09, 

7.82) 

9.3×10−5 1.5% 4.42 (1.04, 

18.8) 

0.045 2.77 (1.81,  

4.22) 

2.32×10−6 

rs3915628 11 71682613  RNF121 

(intron) 

C / T 1.3% 2.15 (1.08, 

4.31) 

0.030 1.1% 12.29 (6.09,  

24.8) 

4.5×10−5 1.1% 19.69 (3.42, 

113.1) 

8.4×10−4 4.00 (2.27,  

7.07) 

1.68×10−6 

rs9513422 13 99083935 FARP1 

(exon) 

C / T 27.8% 1.27 (1.08,  

1.49) 

0.004 30.0% 1.65 (1.47,  

1.87) 

2.9×10−4 28.1% 1.60 (1.03, 

2.48) 

0.035 1.38 (1.21,  

1.58) 

2.08×10−6 

rs118122250 16 54209057 Intergenic G / A 3.4% 2.09 (1.40,  

3.12) 

3.1×10−4 3.4% 2.08 (1.09,  

3.97) 

0.026 2.6% 3.84 (1.24, 

11.9) 

0.020 2.20 (1.58,  

3.04) 

2.30×10−6 
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TABLE 3.7: Summary statistics from the meta-analysis for the 15 SNPs that have been previously identified 

as being genome-wide associated with IPF susceptibility. EAF = effect allele frequency, SE = standard error.  

Chr. Position EAF rsid Locus Betameta SEmeta Pmeta 

3 44902386 6.9% rs78238620 KIF15 0.077 0.112 0.492 

3 169481271 32.3% rs12696304 LRRC34/TERC -0.033 0.062 0.601 

4 89885086 44.9% rs2013701 FAM13A -0.029 0.061 0.639 

5 1282414 27.5% rs7725218 TERT -0.047 0.062 0.447 

5 169015479 2.2% rs116483731 SPDL1 -0.183 0.201 0.363 

6 7563232 55.2% rs2076295 DSP 0.054 0.054 0.321 

7 1909479 53.9% rs12699415 MAD1L1 -0.049 0.055 0.370 

7 99630342 41.5% rs2897075 7q22.1 -0.025 0.060 0.679 

8 120934126 40.0% rs28513081 DEPTOR -0.072 0.059 0.217 

11 1241221 33.4% rs35705950 MUC5B -0.109 0.065 0.093 

13 113534984 17.7% rs9577395 ATP11A -0.040 0.077 0.603 

15 40720542 58.2% rs59424629 IVD 0.033 0.054 0.541 

15 86097216 32.6% rs62023891 AKAP13 -0.003 0.061 0.962 

17 44214888 16.4% rs2077551 MAPT -0.094 0.117 0.424 

19 4717672 35.2% rs12610495 DPP9 0.003 0.060 0.965 

 

3.4 Comparison of genome-wide results between linear regression and Cox 

proportional-hazards models in the PROFILE cohort 

Two different approaches have been used in this thesis chapter to model the age-at-diagnosis of IPF: 

linear regression and Cox proportional-hazards. When using the Cox PH model, a time-to-event 

method, genomic inflation was observed within the results of the genome-wide analyses. As both types 

of model have been applied genome-wide to the PROFILE cohort, a direct comparison between the 

results from each approach could be informative as to whether this inflation was spurious and therefore 

whether it was necessary to correct the time-to-event results using genomic control.  

There were 7,657,086 genetic variants that were tested for an association with the age-at-diagnosis of 

IPF in PROFILE using both methods. The beta coefficients from the linear regression model were 

strongly negatively correlated (Pearson’s r = -0.837) with the log-hazard ratios from the Cox PH model 

(Figure 3.10). This negative correlation is due to the fact that an estimated increase in the age-at-

diagnosis is denoted by a positive beta under the linear regression model but a negative hazard ratio 

under the linear regression model and vice versa for an estimated decrease in the age-of-onset. Despite 

the appearance of a slight skew on the plot, the line of best fit (blue) closely resembled the line 𝑦 = −𝑥 

(red), indicating that the effect sizes from the Cox model were unbiased in comparison to the effect 

sizes from the linear regression.  
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FIGURE 3.10: A scatterplot comparing effect sizes between linear regression and time-to-event methods in 

the PROFILE cohort. There are two lines on the plot which are nearly completely overlapping; the red line 

corresponds to y=-x and the blue line indicates the linear line of best fit between the two sets of results. 

Figure 3.11A shows the comparison of p-values between the two methods, which were positively 

correlated (Pearson’s r = 0.570). This plot indicated that the variants that had the most statistically 

significant p-values in the linear regression tended to have even stronger statistical significance using 

the time-to-event model. However, the line of best fit on the plot (blue) suggests that most genetic 

variants had a lower p-value under the linear regression model than the time-to-event model. The 

histograms in Figure 3.11B show that the p-values from the linear regression model appeared to be 

uniformly distributed (as expected), but the distribution of p-values under the Cox model was right-

skewed, which resulted in an overabundance of p-values that were close to zero. This suggests that the 

Cox model overestimated the statistical significance for a considerable number of genetic variants and 

supports the basis for correcting the results of the time-to-event GWAS using genomic control.  
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FIGURE 3.11: A scatterplot (A) and histograms (B) comparing p-values between linear regression and time-to-event methods in the PROFILE cohort. In Figure A the red 

line corresponds to y=x and the blue line indicates the linear line of best fit between the two sets of results.  

 

 

A B 
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3.5 Signal refinement and functional follow-up of suggestively significant signals of 

association 

Five signals of genetic association were found to be suggestively significant in the meta-analysis of 

three GWAS for the age-at-diagnosis of IPF (Section 3.3). Functional follow-up of these signals could 

enable the development of testable hypotheses about how these variants may be exerting an effect on 

the age-of-onset of IPF as well as identifying potential drug targets. This section describes the signal 

refinement and functional follow-up that was performed for each suggestively significant signal.  

3.5.1 Methods 

Bayesian fine mapping was performed to generate a set of variants that was 95% likely to contain the 

causal variant for each signal, assuming that the causal variant had been analysed. The standard 

Bayesian approach is to assume that there is a single causal variant per genetic region and to calculate 

a 95% credible set of variants such that this set is at least 95% likely to contain the causal variant124. 

This approach involves computing a Bayes factor for each SNP, which is a measure of the strength of 

the association between that SNP and the trait of interest. The Bayes factor is defined as:  

𝐵𝑎𝑦𝑒𝑠 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑃(𝐷𝑎𝑡𝑎 | 𝐻0)

𝑃(𝐷𝑎𝑡𝑎 | 𝐻1)
 (3.3) 

Where H0 is the null hypothesis (that the phenotype of interest is independent of genotype at this SNP) 

and H1 is the alternative hypothesis (that the phenotype of interest is associated with this SNP). As such, 

a Bayes factor >1 suggests that there is more evidence for the null hypothesis and a Bayes factor <1 

suggests that there is more evidence for the alternative hypothesis. The posterior odds of H0 equals the 

Bayes factor multiplied by the prior odds of H0.  

However, the Bayes factor cannot always be calculated or it may be computationally intensive to do so. 

Therefore, some methods, such as that proposed by Wakefield125, use an approximation of the Bayes 

factor. The approximate Bayes factor (ABF) used in the Wakefield method is calculated using the 

following formula:  

𝐴𝐵𝐹 = √
𝑉 + 𝑊

𝑉
exp (−

𝜃2

2

𝑊

𝑉(𝑉 + 𝑊)
) (3.4) 

Where 𝜃 is a parameter of interest (e.g. the effect size for the genetic effect), which has variance V. It 

is assumed that 𝜃~N(0, W) and so W is a measure of the strength of the genetic association, conditional 

upon the existence of one.  

The approximate posterior probability of a variant being causal is calculated as the ABF for that variant 

divided by the sum of all ABFs in that signal, as the sum of the probabilities must equal one. A 95% 

credible set for each signal is then produced by taking the variants with the greatest approximate 

posterior probabilities until the sum of the approximate posterior probabilities exceeds 0.95.  
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Bayesian fine-mapping was performed for each of the five suggestively significant signals using the 

Wakefield method. This was performed using all variants within 1Mb of the sentinel SNP with 

Pmeta<0.001, regardless of whether they had passed the internal validation criteria. A prior value of 0.04 

was chosen for the Wakefield prior (W in Equation 3.4), which is equivalent to a 95% belief that the 

hazard ratio lays between 
2

3
 and 

3

2

125. Following this, functional annotation of each variant in the credible 

sets was performed using SnpEff v.5.0126. 

The Open Targets Genetics Portal127 was used to investigate whether the SNP with the greatest posterior 

probability in each 95% credible set had been associated with any other disease trait in a previous 

phenome-wide association study (PheWAS). The Open Targets Genetics Portal recommends a 

Bonferroni-corrected threshold of approximately 1×10-5 for their PheWAS data and so any variant-trait 

association that reached this threshold was reported.  

An expression quantitative trait locus (eQTL) is a genetic locus that explains a proportion of the 

variance of a gene expression phenotype (i.e. a genetic variant that is associated with the level of 

expression for a gene)128. Variants that act on nearby genes (conventionally defined as within 1Mb of 

the gene) are referred to as cis-eQTLs whereas those that act on genes farther away or on a different 

chromosome are referred to as trans-eQTLs. 

Data from the eQTLGen consortium129, a large resource containing genetic and blood-derived 

transcriptomic information from 31,684 individuals, were used to assess whether each variant in the 

95% credible sets were significant cis-eQTLs in blood (defined as having a false discovery rate [FDR] 

<0.05). If so, a colocalisation analysis was performed to investigate whether the age-of-onset GWAS 

signal was likely to share a causal variant with the gene expression signal, which may suggest that the 

SNP is exerting an effect on the age-of-onset of IPF via expression of that gene.  

The colocalisation analysis was performed using the method introduced by Giambartolomei et al.130, in 

which a Bayesian test is applied to the summary statistics from the analyses of the two traits. This 

method jointly tests five different hypotheses and calculates the probability that each is true. These 

hypotheses are:  

 H0: There are no causal variants for either trait in the region of interest. 

 H1: There is a causal variant for the first trait in the region of interest but not the second trait. 

 H2: There is a causal variant for the second trait in the region of interest but not the first trait. 

 H3: There is a causal variant for the first trait in the region of interest and a causal variant for 

the second trait in the region, but these are different variants. 

 H4: There is a variant in the region of interest that is causal for both traits. 

The signals were considered to have successfully colocalised if the probability of H4 was calculated to 

be ≥ 80%. This test was implemented in R v.4.0.0 using the ‘coloc’ package. For each signal, the region 
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of interest was defined as the region ±1Mb around the gene under consideration. The age-at-diagnosis 

of IPF was regarded to be the first trait and the level of expression for the gene under consideration was 

regarded as the second trait. The summary statistics for these two traits were then jointly visualised in 

a mirror plot (also known as a Miami plot) using the ‘mirrorplot’ R package.  

3.5.2 Results 

Bayesian fine-mapping was used to generate a 95% credible set for each of the five suggestively 

significant signals (Additional Table B.3.4). In brief, there were 13 variants within the credible set for 

the signal on chromosome 7, 20 within the credible set for the chromosome 10 signal, 18 variants within 

the credible set for the chromosome 16 signal and the credible sets for the chromosome 11 and 13 

signals each contained a single variant. Of the variants with the greatest posterior probability in each 

credible set, none had been significantly associated with a disease trait in a previous PheWAS at the 

Bonferroni-corrected threshold of P=1×10-5 according to the Open Targets Genetics Portal. Of these 

five variants, two were found to be significant cis-eQTLs (FDR <0.05): rs9513422 (chromosome 13) 

was a significant eQTL for FARP1 and rs118122250 (chromosome 16) was an eQTL for IRX3. The 

five credible sets also contained eQTLs for IFRD1, PRKCQ-AS1, RP11-554I8.1 and RP11-5N23.3. 

The variant with the greatest posterior probability for the signal on chromosome 7 (rs183759512) lays 

within an intron of DOCK4. DOCK4 encodes a guanine nucleotide exchange factor protein which is 

involved in regulation of adherens junctions between cells. Interestingly, adherens junctions have been 

implicated in the pathogenesis of IPF, with the epithelia of patients with IPF having increased 

expression of tight junction proteins compared with healthy controls131,132,132. rs183759512 flanks the 

promoter region for DOCK4 and so this variant may affect gene expression via interactions at the 

promoter. However, it was not found to be a significant eQTL for DOCK4 or any other genes (in blood) 

in this study. 

The variant with the greatest posterior probability for the signal on chromosome 10 (rs41295127) is an 

intronic variant for RBM17. RBM17 encodes an RNA binding protein which is part of the spliceosome 

complex and functions in the second catalytic step of mRNA splicing133. However, this variant was not 

a significant cis-eQTL for RBM17 (or any other genes).  

For the chromosome 11 signal, the sole variant in the credible set was rs3915628, an intronic variant 

for RNF121 that is predicted to have a role in nonsense-mediated decay. RNF121 encodes a ring finger 

protein, which are involved in protein-protein and protein-DNA interactions134. However, rs3915628 

was not found to be a significant eQTL for RNF121 (or any other genes).  

The only variant in the credible set for the chromosome 13 signal was rs9513422, a protein coding 

variant in FARP1 that is predicted to lie within a binding site for CTCF (a transcriptional repressor). 

The FARP1 protein plays a role in the formation of dendritic filopodia and dendritic spines, regulation 



72 
 

of dendrite length and ultimately the formation of synapses. rs9513422 was found to be a significant 

cis-eQTL for FARP1 in blood, which could implicate FARP1 (and thus the development of dendritic 

cells) in the age-of-onset of IPF. This would be an interesting finding as circulating dendritic cells are 

markedly depleted in IPF patients at the time of diagnosis135.  

Finally, for the chromosome 16 signal, the variant with the greatest posterior probability was 

rs118122250. Despite being an intergenic variant, rs118122250 was found to be a significant cis-eQTL 

for IRX3 (which plays a role in an early step of neural development136) and so may have a role in gene 

regulation. Although, this gene does not appear to have immediate biological relevance to IPF 

pathology.  

The results of the colocalisation analyses were not suggestive of a shared causal mechanism between 

any of the age-of-onset signals and the level of expression of the aforementioned genes (Table 3.8). The 

probability that a single causal variant for both signals was within the region of interest ranged from 

1.9-12.6%. Instead, the Bayesian model predicted that it was much more likely that in each region of 

interest there was a causal variant for the eQTL signal but not the age-at-diagnosis of IPF, or that there 

was a causal variant for the age-at-diagnosis of IPF and a causal variant for the eQTL signal but that 

these were different variants. The lack of successful colocalisation was supported by the mirror plots 

(Additional Figures A.3.3-8), which showed that the signals from the age-at-diagnosis of IPF GWAS 

did not fully overlap with the signals from the eQTLGen cis-eQTL analyses.  

TABLE 3.8: The results from the colocalisation analyses between the age-of-onset of IPF 3-way GWAS signals 

and each gene for which a variant in the 95% credible set for that signal was an eQTL. H0 = in the region of 

interest there are no causal variants for either trait, H1 = in the region there is a causal variant for the age-

at-diagnosis of IPF but not a causal variant for the eQTL signal, H2 = in the region there is a causal variant 

for the eQTL signal but not the age-at-diagnosis of IPF, H3 = in the region there is a causal variant for the 
age-at-diagnosis of IPF and a causal variant for the eQTL signal but these are different variants, H4 = in the 

region there is a variant that is causal for both traits. As all H4 < 80%, none of the signals were considered to 

have successfully colocalised. 

GWAS 

Signal 
Gene 

Probability of hypothesis being true (%) 

H0 H1 H2 H3 H4 

Chr. 7 IFRD1 0.0% 0.0% 57.6% 39.2% 3.2% 

Chr. 10 PRKCQ-AS1 0.0% 0.0% 58.1% 37.8% 4.1% 

Chr. 10 RP11-554I8.1 0.0% 0.0% 54.5% 35.1% 10.4% 

Chr. 10 RP11-5N23.3 0.0% 0.0% 53.0% 34.4% 12.6% 

Chr. 13 FARP1 0.0% 0.0% 46.2% 51.9% 1.9% 

Chr. 16 IRX3 0.0% 0.0% 56.2% 35.2% 8.6% 

 

3.6 Discussion 
The two analyses described in this chapter were conducted with the objective of identifying genetic 

determinants of the age-of-onset of IPF. As these were the first GWAS in IPF research to investigate 
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the age-of-onset phenotype, they have provided some important insight into the genetic aetiology of the 

disease. Firstly, the findings in this chapter suggest that the genetic variants associated with the age-of-

onset of IPF appear to be different from those reported to confer susceptibility to the disease. Secondly, 

five signals of association were suggestively significant (P<5×10-6) in the 3-way GWAS meta-analysis, 

despite the low sample size (n=773 IPF cases total) and the use of genomic control, and could be true 

positive signals for which there was insufficient power to achieve genome-wide significance.  

However, there were no genome-wide significant genetic associations with the age-at-diagnosis of IPF 

identified in these studies. One possible reason for this could be due to the relatively small sample size 

(773 IPF cases in total across the three cohorts) which meant that these GWAS were greatly 

underpowered. In a sample of 773 unrelated individuals, the additive genetic effects from a single 

variant would need to explain 5.1% of the phenotypic variance for the study to have an 80% probability 

of detecting that variant at a genome-wide significance level (P<5×10-8). 5.1% of the phenotypic 

variance is greater than an individual variant typically explains, although the existence of a single SNP 

that exerts a much larger effect on a trait than other variants is not unheard of in IPF, as the MUC5B 

promoter variant rs35705950 (the single largest genetic risk factor for IPF susceptibility) explains 5.9-

9.4% of disease liability in the general population whilst all 13 non-MUC5B SNPs that have been 

discovered through GWAS collectively explain 1.8–2.9%120. Therefore, if the age-of-onset of IPF had 

a similar genetic aetiology to IPF risk, these studies may have had sufficient power to detect genome-

wide significant associations.  

Additionally, the two-stage study presented in Section 3.2 had some important limitations. Firstly, the 

choice of study design meant that the discovery stage did not utilise all available data and so this part 

of the analysis was greatly underpowered, with a sample size of 465 individuals. Secondly, studies with 

low sample size (i.e. <3,000 individuals) that apply linear regression to non-normally distributed data 

are subject to a loss of accuracy and an increase in the uncertainty of estimates121. This means that the 

non-normality shown in the distribution of the age-at-diagnosis for the subjects in UK biobank could 

have restricted the potential for the linear regression model in the two-stage GWAS (Section 3.2) to 

detect a genuine genetic effect in those individuals. Thirdly, the statistical significance of the 

associations for the 14 variants in the meta-analysis were clearly being driven by the strong associations 

found in stage 1. For example, the variant with the strongest association with the age-at-diagnosis of 

IPF in the meta-analysis was rs75681116 with a p-value of 9.7×10-7. The effect size of this variant was 

-0.95 in the PROFILE cohort yet was considerably smaller in both stage 2 cohorts (βTLF=-0.24 and 

βUKB=-0.45). Therefore, it is possible that the novel suggestive associations between the age-of-onset of 

IPF and each of the variants reported in this study could be false positive results. Although, the effect 

sizes for these variants being lower in the replication cohorts than reported in the discovery cohort 

(PROFILE) could be partly explained by the ‘winner’s curse’ phenomenon.  
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A second GWAS was performed to address these limitations (Section 3.3). Firstly, the adoption of a 3-

way GWAS meta-analysis study design allowed for more individuals to be tested genome-wide, 

increasing the statistical power of the study for discovery. However, as noted previously, even with all 

three cohorts combined (N=773) the study was underpowered to detect variants at a genome-wide 

significance level unless the additive effects of a variant could explain a large proportion of the 

phenotypic variance (approximately 5%).  

Secondly, the Cox PH model used in this study did not assume an underlying distribution within the 

data and so was less likely to be affected by the non-normality within the distribution for the age-at-

diagnosis in the UKB cohort than linear regression. Lastly, this study had the important strength that 

there were internal validation criteria which reduced the likelihood that a novel signal was being driven 

purely by a strong association within one cohort, thereby reducing the likelihood of false positives. 

Through these improvements to methodology and study design, this study was able to identify five 

genetic variants that were suggestively significantly associated with the age-at-diagnosis of IPF 

(Pmeta<5×10-6).  Still, none reached genome-wide significance in the meta-analysis (Pmeta<5×10-8) and 

therefore the inclusion of additional independent data is needed. 

An unexpected issue that arose during the 3-stage GWAS was the unusually high genomic inflation 

factor (greater than 1.1 for all three cohorts). It was thought to be unlikely that the inflation was a result 

of unadjusted population structure within the data, as the 2-stage analysis (Section 3.2) also tested the 

PROFILE cohort genome wide, adjusted for the same covariates, yet had a genomic inflation factor 

within the acceptable range. Therefore, it was suspected that the inflation was an artefact of the time-

to-event methods being applied genome-wide.  

However, the exact cause of the inflation remained unknown as the removal of variants that broke the 

PH assumption did not reduce the genomic inflation factor to acceptable levels, nor did the removal of 

poorly imputed or uncommon variants. As a result, the findings from each genome-wide analysis 

required adjustment prior to the meta-analysis and internal validation. The method used to correct the 

results from each cohort was genomic control, which can often be over-conservative122 and therefore 

could have prevented some variants that are genuinely associated with the age-at-diagnosis of IPF from 

meeting the internal validation criteria.   

The cause of the inflation could be investigated further through a simulation study. In fact, a recent 

simulation study123 compared the performance of the Cox PH model to a logistic regression model when 

both are used in a genome-wide analysis, finding that the Cox model had greater power with 

approximately the same level of type I error. As such, the genomic inflation factors for the Cox model 

tended to be greater than those from the logistic regression model. It stands to reason that this would 

also be true when the Cox model is used in place of linear regression, as in this study. If this were the 

case, this may suggest that the application of genomic control in this study was an overcorrection. 
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However, as evidenced in the sensitivity analysis, there were no genetic signals that would have reached 

genome-wide significance had genomic control not been applied.  

The exact age-of-onset of a disease such as IPF is difficult to determine precisely as the onset of the 

disease occurs at an unrecorded time prior to the diagnosis and takes place even before the development 

of symptoms. Chest computed tomography (CT) scans can be a useful tool for the detection of early 

IPF as individuals with interstitial lung abnormalities (ILA) often go on to develop IPF137. However, 

most ILA cases do not develop to IPF and the prevalence of ILA has been estimated to be 50-200 times 

greater than the prevalence of IPF138.  

As such, the exact age-of-onset of IPF was not known for any of the individuals that were included in 

these analyses and proxies for the age-of-onset were relied upon instead. These proxies, the self-

reported age-at-diagnosis for the subjects in the UK Biobank cohort and the age-at-enrolment for the 

individuals in the PROFILE and Trent Lung Function cohorts, were deemed to be appropriate 

substitutes for the age-of-onset but the use of proxies in place of the actual phenotype would have been 

detrimental to these analyses in a few important ways. Firstly, the time between the onset of the disease 

and the diagnosis/enrolment into a study could vary greatly from person to person and could be subject 

to some important biasing factors such as sex139 and smoking status140. Whilst sex and smoking status 

were adjusted for in these analyses, other unmeasured variables could have biased the results. For 

example, a considerable difference in the average age-at-diagnosis was observed between individuals 

in the PROFILE study who were enrolled from two different recruitment centres, one in London and 

the other in Nottingham. This difference could be the result of unmeasured factors, such as differences 

in the levels of pollution between the two cities or the socioeconomic status of the individuals from the 

two areas, which has been found to affect waiting times for hospital procedures in England141, as well 

as being linked to the levels of occupational exposure to IPF risk factors of the individuals from each 

area142. However, differences in referral processes between the two regions likely played a large part in 

the disparity in the average age-at-enrolment between recruitment centres.  

Secondly, for individuals in the UK Biobank cohort, the age-at-diagnosis of IPF was self-reported and 

as a result these values could have been impacted by recall bias. Third, the proxies for the age-of-onset 

in all cohorts were likely affected by survival bias, as only those who survived long enough to enrol 

into each study were available for inclusion in the analysis. Fourth, some individuals in the PROFILE 

and TLF studies could have enrolled into their study soon after their diagnosis, whilst others could have 

been recruited six months after their diagnosis. This could have affected the accuracy of the age-at-

enrolment proxy and impacted the statistical power of these parts of the analysis, as well as significantly 

increasing the survival bias in these cohorts due to the short median survival time of IPF. Fifth, GWAS 

that use events that are subsequent to the development of disease as the phenotype of interest are 

vulnerable to index event bias143, where the associations detected in the study can be biased by factors 
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relating to the selection of subjects into the study. However, as the genetic determinants for the age-at-

diagnosis of IPF appear to be different to those for IPF susceptibility and the sentinel variants for the 

suggestive signals had not been strongly associated with any traits in a previous PheWAS, it appears 

unlikely that these signals are strongly associated with factors related to study selection, and thus are 

unlikely to be the result of index event bias.  

Two statistical approaches were used in this chapter to model the proxies for the age-of-onset of IPF: 

linear regression in the first study and a Cox PH model in the second. Linear regression had the 

advantage that it was simple to implement with widely available and well supported software, as well 

as producing results that were arguably easier to interpret under the additive genetic model that was 

assumed. On the other hand, the Cox PH model was robust to the non-normality observed in the 

distribution for the age-at-diagnosis of the UK Biobank cohort and appeared to have greater statistical 

power, as some variants in the PROFILE cohort reached genome-wide significance in the second study 

but did not in the first. However, it appeared that the Cox model had overestimated the statistical 

significance for many of the most significant variants, which meant that the results required adjustment 

using genomic control.   

As discussed previously, there was a considerable difference in the average age-at-diagnosis between 

individuals in the PROFILE study who were enrolled from the two different recruitment centres. This 

was adjusted for in this study by including recruitment centre as an interaction term in the statistical 

model. However, it may have been more appropriate to use a linear mixed model with recruitment 

centre included as a random effect, as this can prevent false-positive associations that may arise due to 

population structure and can increase statistical power by applying a correction that is specific to the 

sample structure144.  

Due to the meta-analysis approach that was taken in both studies, additional, independent cohorts of 

IPF cases could be easily added to these analyses to increase statistical power. For this reason, it may 

be of interest for future work to focus on updating these studies if data for additional IPF cohorts can 

be obtained. This could potentially boost the power of these analyses to the point that novel variants 

with genuine associations with the age-of-onset of IPF could be identified at a genome-wide 

significance level. However, this would likely require thousands of additional IPF cases. The next age-

of-onset GWAS should aim to have a sample size of at least 4,000 unrelated individuals as this would 

provide 80% power for the detection of a genetic effect that accounts for 1% of the phenotypic variance.  

In these analyses, a single variable from the UK Biobank was used to identify individuals who had been 

previously diagnosed with IPF by a doctor (data field 22135), which originated from a questionnaire. 

However, this questionnaire was completed by less than a quarter of the total number of UKB 

participants and so there are likely many additional individuals with IPF who have contributed their 

genetic data to the UKB project but were not included in these analyses. Many of these individuals 



77 
 

could be identified by using Hospital Episode Statistics (HES) data and then could be incorporated into 

future analyses. However, for a patient with IPF to be in the HES database they must have been admitted 

to hospital, but the first instance of this may have occurred a long time after their initial IPF diagnosis 

and therefore their age at this time may not be a good proxy for their age-at-diagnosis. A further 

difficulty with this approach is that UK Biobank do not use a HES code that specifies only cases of IPF. 

Therefore, a more general code (such as J84.9: unspecified interstitial pulmonary disease) would need 

to be used instead, resulting in the need to disentangle the IPF cases from the non-IPF interstitial lung 

disease cases, which may prove challenging.   

Alternatively, primary care data could potentially be used to determine an IPF subject’s age when they 

first visited the doctor after developing symptoms for IPF. This information could provide an even 

closer estimate for the age-of-onset of IPF than the age-at-diagnosis or age-at-enrolment, and would 

arguably make for the best possible proxy for the age-of-onset. Plus, UK Biobank have made primary 

care data available for around half of their participants. However, this is dependent on the use of primary 

care symptom codes and deciding which symptom codes to use and how best to use these to define the 

onset of IPF would require careful consideration. A recent study of 462 individuals with IPF145 found 

that the most common primary care symptom patterns observed within a year of the diagnosis of IPF 

were dyspnoea (in 48.7% of patients), cough (40.9%) and cough with dyspnoea (23.4%). 50% of the 

IPF cases in this study were diagnosed within 5 years from their first recorded cough and within 3 years 

from their first recorded dyspnoea. However, 31% of the patients were not recorded as having any 

symptoms in the 1 year prior to the IPF diagnosis, and 15% did not have any symptom codes at all prior 

to their IPF diagnosis. Additionally, this study did not consider other conditions or co-morbidities which 

may have been causing the recorded symptoms. Therefore, using primary care data to estimate the age-

of-onset of IPF could improve the accuracy of the estimate for some individuals, but would not be 

possible for everybody.  

In addition, future larger studies may wish to estimate the level of heritability of the age-of-onset of IPF 

and compare this to the level of heritability for IPF susceptibility. Furthermore, it would be of interest 

to assess whether the heritability of the age-of-onset of IPF is greater in individuals with younger disease 

onset, which would be consistent with the finding of Krauss et al.110 that on average, individuals with 

FPF were developing the disease younger than sporadic IPF cases. If this is the case, therapeutics that 

are developed to target mechanisms involved in the pathogenesis of the age-of-onset of IPF may prove 

to be more effective in individuals who developed the disease at an early age. This could therefore help 

inform the design of clinical trials for such therapeutics.  

To conclude, the first GWAS to investigate the age-of-onset of IPF have highlighted important factors 

to consider when analysing this phenotype, such as the use of time-to-event analysis methods and the 

choice of suitable proxies for the age-of-onset. These studies suggest that there could be a genetic basis 
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to the age-of-onset as five genetic signals of suggestive association were discovered in the meta-analysis 

of the second study, but larger studies must be conducted before these can be confirmed at a genome-

wide significance level.   
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Chapter 4 – Rare variant analyses to identify genes 

associated with the age-of-onset of IPF 

Rare genetic variants (MAF<1%) are known to play an important role in the development of IPF and it 

stands to reason that rare variants may similarly influence the age at which IPF is developed. However, 

statistical power is low when studying individual rare variants. As such, rare variants within the same 

gene are often grouped at the gene level to increase statistical power. The aim of the analyses in this 

chapter was to use this approach to identify genes in which an excess of rare genetic variants was 

associated with the age-of-onset of IPF.  

4.1 Introduction 

Chapter 3 of this thesis described two GWAS of the age-of-onset of IPF. The GWAS approach, which 

utilizes imputed genotype data, is useful for detecting common (MAF >5%) and low-frequency (MAF 

1-5%) genetic variants associated with a phenotype of interest. However, the loci detected in GWAS 

rarely explain more than a small fraction of the genetic variance of the trait of interest, which has led to 

speculation of a ‘missing heritability problem’146,147,147. One possible explanation for this missing 

heritability is that much of the unexplained genetic variance could be down to rare variants (MAF<1%) 

that exert large effect sizes on the trait148, but which are usually not well-covered in GWAS as they are 

more prone to genotyping and imputation errors99. However, rare variants have been found to play an 

important role in the genetic architecture of complex diseases149,150,150, including type 1 diabetes151 and 

heart failure152.   

Due to recent advances in technology and falling costs, it is becoming increasingly feasible to use 

whole-genome sequencing (WGS), which has better measurement accuracy than genotyping153 and can 

therefore allow for rare variants to be tested. However, tests for single rare variants have low statistical 

power unless the sample size or effect size is very large154. Additionally, the number of independent 

rare variants is far greater than the number of independent common variants and so if all single rare 

variants are tested genome-wide, a more stringent multiple-testing correction may be needed than the 

typical threshold for genome-wide significance used in a GWAS (P<5×10-8), which would further 

reduce statistical power154. As such, methods have been proposed that involve grouping rare variants 

together in order to raise statistical power. Most commonly, rare variants are grouped together 

(‘collapsed’) at the gene-level to create a burden variable that can be regressed against the phenotype 

of interest to test for the cumulative effects of rare variants within that gene.  

There are several statistical approaches that can be used to collapse and test the aggregation of rare 

variants within a gene or other genomic region of interest155. Early approaches, labelled burden tests, 

assumed that all rare variants within the region of interest are causal with the same direction of effect. 

Burden tests usually require a frequency threshold to be selected in order to define rare variants (e.g. 
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rare variants could be defined as those with MAF lower than 1% or 5%). Alternatively, there are 

methods known as non-burden tests that do not assume that all of the rare variants in the region of 

interest are causal or that they all have the same direction of effect. Non-burden tests do not require the 

selection of thresholds and can be applied to both rare and common genetic variants, but with greater 

weights given to rare variants if these are expected to have larger effect sizes than common variants or 

are more likely to be causal.   

As discussed in Section 1.2.5, rare variants are known to be important in the development of IPF. One 

sequencing study of 3,624 IPF cases and 4,442 control subjects156 found that the FAM13A and TERT 

gene regions, which had been previously identified in GWAS of IPF susceptibility, actually contain a 

combination of independent common and rare genetic signals that each contribute to IPF susceptibility. 

More recently, an exome-wide association study of 752 sporadic IPF cases and 119,055 UK Biobank 

controls80 identified a novel IPF susceptibility signal in the form of a single rare missense variant in the 

SPDL1 region, for which each copy of the minor allele was estimated to increase the odds of developing 

IPF by 2.9 times. Additionally, a gene-based collapsing analysis was successful in identifying three 

genes (TERT, RTEL1 and PARN) in which an excess of rare variants were contributing to the 

pathogenesis of sporadic (non-familial) IPF157.  

To date, there have been no rare variant studies in IPF that have investigated the age-of-onset phenotype. 

In Chapter 3 of this thesis, many of the sentinel SNPs from the suggestively significant signals were 

low-frequency and appeared to exert large effect sizes on the age-at-onset of IPF. It stands to reason 

that there may be rare variants with similarly large effect sizes (or perhaps greater) that are associated 

with the age-of-onset of IPF, and that pooling these variants into genes could provide sufficient 

statistical power to detect them. As such, this chapter describes the first gene-based collapsing analyses 

in IPF to study the age-of-onset phenotype. The objective of these studies was to identify genes in which 

an aggregated excess of rare genetic variants was associated with the age-of-onset of IPF at a study-

wide significance level. Two different statistical methods were used to collapse genetic variants at the 

gene level and test the statistical significance of the collapsed variable. A burden test was used in the 

first study (Section 4.2) and a non-burden test was utilised in the second study (Section 4.3).  

4.2 Gene-based collapsing analysis using a burden test 

4.2.1 Methods 

As in Chapter 23, the age-at-diagnosis of IPF was considered a suitable proxy for the age-of-onset. This 

study was performed in individuals with IPF from the PROFILE study who were enrolled into 

PROFILE within six months of their IPF diagnosis (Section 3.2.1). Therefore, age-at-enrolment was 

considered a suitable proxy for the age-at-diagnosis for these individuals.  

WGS, alignment (to human genome assembly GRCh38) and variant calling for the PROFILE cohort 

was performed externally, as previously described by Dhindsa et al.80. In brief, the DNA underwent 
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paired-end 150bp WGS and the average coverage was a 42-fold read depth. More than 98% of the 

reference bases had at least 10x coverage.  

Many quality metrics that are used to filter out spurious variant calls utilise Phred quality scores, which 

are measures that assess the quality of the identification of the nucleotide bases. A Phred quality score 

(Q) is linked to the probability of an erroneous call (P) as follows: 

𝑄 =  −10 log10 𝑃 (4.1) 

So, for example, if there was a 10% probability of an erroneous call, the Phred-scaled quality score 

would equal 10, and if there was a 1% probability that the call was erroneous, the Phred-scaled quality 

score would equal 20.  

The following metrics were used to quality control the data:  

 QUAL: The Phred-scaled probability that a polymorphism exists at a particular site. 

 DP: The combined read depth across all samples. 

 GQ: The Phred-scaled probability that the genotype assignment for a sample is correct. 

Specifically, GQ is the difference between the Phred-scaled likelihood of the most likely 

genotype and the Phred-scaled likelihood of the second most likely genotype.  

 FS: Phred-scaled p-value for strand bias, estimated using Fisher's exact test.  

 MQ: Root mean square of the mapping quality of reads supporting the variant call, across all 

samples. 

 MQRankSum: An approximation of the Z-score from a rank-sum test comparing the mapping 

qualities of the reads supporting the reference allele and the reads supporting the alternate allele.  

 ReadPosRankSum: An approximation of the Z-score from a rank-sum test comparing whether 

the positions of the reference and alternate alleles are different within the reads. 

Variant calls with QUAL ≤ 30, DP ≤ 10, GQ ≤ 30, FS ≥ 200, MQ ≤ 40, MQRankSum ≤ -8 or 

ReadPosRankSum ≤ -2 were removed from the analysis.  

The individuals in the PROFILE cohort were then quality controlled to reduce the risk of bias within 

the results due to population stratification or relatedness. This was re-performed for this study (as 

opposed to simply using the same individuals as in the age-of-onset GWAS) as the samples had been 

re-analysed using WGS, which re-introduced the possibility of contamination and mix-ups during 

sample handling. In addition, the re-analysis of the PROFILE samples meant that some individuals who 

had been excluded from the GWAS because their array-based genotype data had failed QC may be re-

included in this WGS analysis, which would increase the sample size and statistical power of the study. 

This sample QC was performed using peddy158.  
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First, the proportion of variant calls for each sample that were heterozygous was calculated and a 

histogram was used to visualise the distribution of these proportions. Any samples that were visually 

determined to be an outlier because their proportion of heterozygosity was much greater than the other 

individuals in the cohort were considered likely to be contaminated and were excluded from the 

analysis.  

Second, genotype information from 2,504 individuals in the 1000 Genomes Project159 was used to build 

a classifier that can predict the most likely ancestry of additional samples. This was done for all 

remaining individuals in the PROFILE cohort and any individuals that were predicted to be of non-

European ancestry were excluded from the study. Additionally, any individuals with a predicted 

probability of European ancestry ≤ 0.9 were also excluded. The efficacy of this filtering was visualised 

using plots of the first two genetic principal components for the individuals in PROFILE.  

Third, the coefficient of relatedness between all individuals in the cohort was calculated. If a pair of 

individuals had a coefficient of relatedness ≥ 0.125 (indicating at least a third-degree relationship), one 

individual was selected at random and excluded from the analysis.  

Finally, by utilising the fact that males should have zero true heterozygote calls on the X chromosome 

and females should have many, the sex of each sample was predicted from the genetic data. Any samples 

whose self-reported sex did not match the sex predicted using the genetic data were excluded.  

Of the genetic variants that passed quality control, only rare variants that met strict criteria relating to 

population frequency and functionality were included in the analysis. These variants were termed 

qualifying variants (QVs). Two different models were used for the selection of QVs (Table 4.1). The 

primary model considered only likely deleterious variants, defined as those that were annotated as 

frameshift, missense, start loss, stop gain or stop loss variants. The negative control model considered 

only synonymous variants. Whilst some synonymous variants can exert effects on a trait through 

disruption of regulatory elements, it was considered unlikely that several synonymous variants within 

the same gene would act in this way and therefore any genes which were to show a strong association 

with the age-of-onset of IPF could indicate the presence of bias within the results. This approach was 

previously implemented by Dhindsa et al. in their gene-based collapsing analysis for IPF 

susceptibility80. Variant annotation was performed using SnpEff v5.0126.  

Two types of variant MAF were considered when selecting QVs: an ‘external’ MAF (which represents 

that variant’s MAF in the general population) and an ‘internal’ MAF (which is the frequency of the 

minor allele in the study population). In this study, the external MAF of a variant was defined as the 

MAF in the Genome Aggregation Database (gnomAD)160 v3.1, a resource that contains sequencing data 

from the genomes of 76,156 unrelated individuals. A strict external MAF threshold of 0.05% was 

selected to increase the specificity of the model by minimizing the background variation within a gene 

and allowing genuine genetic-risk alleles to become prominent in the test. In addition, the use of a strict 
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external MAF threshold reduced the risk that multiple QVs within the same gene were in LD and not 

independent. The internal MAF of each variant was calculated as the MAF in the PROFILE cohort after 

sample QC and a maximum threshold of 1.0% was implemented.  

  

Collapsing 

model 

External 

MAF 

Internal  

MAF 
Variant type 

Primary model 
<0.05% in 

gnomAD 

<1% in 

PROFILE 

Frameshift, missense, start loss,  

stop gain, stop loss 

Negative control 
<0.05% in 

gnomAD 

<1% in 

PROFILE 
Synonymous 

 

In this analysis, the age-at-diagnosis of IPF was modelled in a linear regression framework as a function 

of the proportion of QVs at each gene for which an individual carries a minor allele, as first described 

by Morris and Zeggini161. This was performed using RVTESTS software162. The Morris-Zeggini 

approach assumes that all individuals in the study cohort are unrelated and that the phenotype is a 

normally distributed quantitative trait. As a burden test, this approach assumes that all QVs are causal 

and are all acting on the phenotype of interest with the same direction of effect. A burden test was 

selected for this analysis as it was expected that rare mutations would usually be associated with poorer 

patient outcomes, corresponding to a decrease in the age-at-diagnosis of IPF. This rationale was 

supported by the results of the age-of-onset GWAS in Chapter 3, as for each of the most statistically 

significant variants in the two studies in that chapter, the minor allele was associated with a younger 

age-of-onset. In addition, the results from a burden test approach (with simpler assumptions) are 

arguably easier to interpret than the results produced by a non-burden test.  

For each gene, let 𝑛 denote the number of QVs that have been found to lay within that gene across the 

study population and let 𝑟𝑖 denote the number of those QVs for which individual 𝑖 carries at least one 

copy of the minor allele.  

The phenotype of the 𝑖th individual, 𝑦𝑖, can be modelled as:  

𝑦𝑖 = 𝛼 +  𝜆 
𝑟𝑖

𝑛
+ 𝛽𝑥𝑖 + 휀𝑖 (4.2) 

Where xi denotes a vector of covariate measurements for the 𝑖th individual, with corresponding 

regression coefficients β. The parameter λ is the covariate of interest and represents the expected 

increase in the phenotype for an individual carrying at least one minor allele for all possible QVs 

compared to an individual carrying none. The statistical significance of the association between the 

accumulation of QVs within the gene and the phenotype was assessed using the likelihood ratio test, in 

TABLE 4.1: The criteria for the two different collapsing models used in this study. MAF = 

minor allele frequency. 
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which a model representing the null hypothesis (where λ=0) was compared to a model representing the 

alternate hypothesis (where λ≠0).  

Both models were adjusted for the following covariates: sex (male or female), recruitment centre 

(Nottingham or Brompton), smoking status (never smoker, former smoker or current smoker) and the 

first 10 genetic principal components. Any individuals with missing information for any of these 

covariates were removed from the study.  

Genes for which there were fewer than two individuals carrying minor alleles for QVs within that gene 

were removed. Q-Q plots were used to visualise the results for the remaining genes. The genomic 

inflation factor, λ, was calculated as described in Section 2.2.2 and was used to assess whether there 

was evidence of genomic inflation within the results. If λ was calculated to be above 1.1, the results 

were corrected using genomic control (Section 2.2.2). The threshold for study-wide significance was 

defined as P<2.6×10–6, as this corrects the standard significance level of 0.05 for approximately 19,000 

protein coding genes, as recommended in Povysil et al.150.  

Three sensitivity analyses were performed to assess the robustness of the results. In sensitivity analysis 

1, the gene-based burden testing was repeated but any individuals who had extreme values for the age-

at-enrolment (determined visually using a histogram) were excluded from the analysis. This was done 

for the both the primary model and negative control model.  

In sensitivity analysis 2, two additional gene collapsing models (Table 4.2) were tested to investigate 

the effect that changes to the internal MAF and definition of deleterious variants may have on the 

results. First, a ‘strict’ model was implemented by reducing the internal MAF threshold to 0.5%, whilst 

all other variables remained the same. Second, a ‘lenient’ model was implemented by keeping the 

original internal MAF unchanged at 1% but instead considering additional types of variants to be 

deleterious and thus qualifying for inclusion in the gene collapsing model. Individuals that were 

identified as age outliers in the first sensitivity analysis were not included in these analyses. All other 

methods were the same as previously described.  

Lastly, in sensitivity analysis 3, a ‘leave-one-out’ analysis was performed for all genes that remained 

study-wide significant (P<2.6×10–6) in either of the previous sensitivity analyses. This was performed 

to assess whether those signals were being driven by a single QV. In this analysis, the statistical test for 

each study-wide significant gene was repeated but each of the QVs within that gene were excluded from 

the model in turn. A signal was considered to be robust if that gene maintained study-wide significance 

despite the removal of any single QV within that gene (i.e. all P<2.6×10–6).   
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TABLE 4.2: The qualifying variant criteria under the primary collapsing analysis model and the two models 

used in sensitivity analysis 2. MAF = minor allele frequency.  

Collapsing 

model 

External 

MAF 

Internal  

MAF 
Variant type 

Primary 

model 

<0.05% in 

gnomAD 

<1% in 

PROFILE 

Frameshift, missense, start lost, stop gained, stop lost 

Strict  

model 

<0.05% in 

gnomAD 

<0.5% in 

PROFILE 

Frameshift, missense, start lost, stop gained, stop lost 

Lenient 

model 

<0.05% in 

gnomAD 

<1% in 

PROFILE 

Frameshift, missense, start lost, stop gained/lost, 3’/5’ 

untranslated region, untranslated region premature 

start gain, gene fusion, inframe insertion/deletion, 

splice donor/acceptor, splice region 

 

4.2.2 Results 

WGS data were available for 541 individuals with IPF in the PROFILE cohort. One sample had a 

proportion of heterozygous calls that was much higher than the other individuals in the PROFILE cohort 

(Figure 4.1), which indicated that this sample may have been contaminated. This sample was excluded 

from the study.  

 
FIGURE 4.1: A histogram showing the proportion of variant calls that were heterozygous for each individual 

in the PROFILE cohort.  

While most individuals in the PROFILE cohort were predicted to be of European ancestry, there were 

also some that appeared to be of South Asian, American or African descent, and one individual that was 

predicted to be of European ancestry but laid far apart from the other European subjects (Figure 4.2A). 
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Of all individuals in PROFILE, 519 were estimated to be of European ancestry with a probability greater 

than 90% (Figure 4.2B) and all other individuals were excluded from the study. The European outlier 

was removed by this filtering, along with all individuals of non-European ancestry.  

Of the remaining subjects, two pairs of individuals had a coefficient of relatedness above 0.125, 

suggesting at least a third-degree relationship. One individual from each pair was selected at random 

and excluded from the study, which left 517 IPF cases remaining. Of these 517 individuals, there were 

507 whose study-reported sex matched their genetically predicted sex and the 10 sex mismatches were 

excluded.  

493 subjects had complete data for all covariates and were included in the gene-based collapsing 

analysis (Table 4.3). As observed in Section 3.2.3, on average, males were slightly older than females 

when enrolled into the PROFILE study and those who were recruited in Nottingham were older than 

those who were recruited in Brompton. Additionally, current smokers had a far lower mean age-at-

enrolment than former smokers and never smokers.
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FIGURE 4.2: Scatter plots of the first two genetic principal components for the individuals in PROFILE before (A) and after (B) filtering based on genetic data-derived 

ancestry predictions. Solid points represent individuals in the PROFILE cohort and transparent points represent individuals of known ancestry in the 1000 Genomes Project. 

The individuals in the PROFILE cohort in Figure 4.2B were predicted to be of European ancestry with a probability greater than 90%. AFR = African ancestry, AMR = 

American ancestry, EAS = East Asian ancestry, EUR = European ancestry, SAS = South Asian ancestry.  

The first two genetic principal components for the PROFILE 

cohort before filtering on ancestry predictions 

The first two genetic principal components for the PROFILE 

cohort after filtering on ancestry predictions 
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TABLE 4.3: Demographics for the individuals with IPF from the PROFILE cohort that were 

included in the analysis.  

 PROFILE (n=493) 

Phenotype  Count (%) 
Mean age-at-

enrolment (years) (sd) 

Sex Female 

Male 

116 (23.5%) 

377 (76.5%) 

69.8 (8.5) 

70.7 (8.4) 

Smoking status Never 

Former 

Current 

158 (32.0%) 

306 (62.1%) 

29 (5.9%) 

71.3 (8.4) 

70.7 (8.1) 

64.0 (8.9) 

Recruitment 

centre 

Brompton 

Nottingham 

205 (41.6%) 

288 (58.4%) 

68.6 (8.0) 

71.8 (8.5) 

 

As mentioned previously, the Morris-Zeggini collapsing analysis method expects the phenotype of 

interest to be normally distributed. The age-at-enrolment into PROFILE was approximately normally 

distributed (Figure 4.3), though there was one individual whose age-at-enrolment was moderately lower 

than that of the other subjects. This individual was not removed from the main analysis but a sensitivity 

analysis was performed by repeating the study with that subject excluded.  

 
FIGURE 4.3: histogram showing the distribution of the age-at-enrolment for the subjects in the PROFILE 

cohort.  

Primary model (deleterious variants) 

Across the genome, there were a total of 41,025 rare, likely deleterious variants that met the QV criteria 

under the primary model (Table 4.4). There were 8,603 genes that contained at least 2 QVs, with a 

median of 3 QVs per gene. The genomic inflation factor (λ) was 1.061, indicating that the results did 
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not require adjustment due to genomic inflation (Figure 4.4). Two genes, IGF2BP2 and RELT, reached 

the threshold for study-wide statistical significance (P<2.6×10-6).  

TABLE 4.4: The count and percentage for each type of variant that were 

considered in the collapsing analysis under the primary model.  

Variant type Count Percentage 

Frameshift 934 2.3% 

Missense 39,201 95.6% 

Start loss 63 0.2% 

Stop gain 794 1.9% 

Stop loss 33 0.1% 

Total 41,025  

 

  
 

 

FIGURE 4.4: A quantile-quantile plot displaying the p-values from the gene-based collapsing analysis under 

the primary model. The dashed line represents the threshold for study-wide statistical significance  

(P=2.6×10-6). λ = the genomic inflation factor. 

λ = 1.061 
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The gene with the greatest statistical significance under the primary model was IGF2BP2 (Insulin-Like 

Growth Factor 2 MRNA-Binding Protein 2, P=4.5×10-8). There were three individuals in PROFILE 

that carried a minor allele for a QV within IGF2BP2. The mean age-at-diagnosis for these three 

individuals was 48.7 years, which was lower than the mean age-at-diagnosis for those who carried no 

QVs within IGF2BP2 (70.6 years).  

The other gene that reached study-wide statistical significance under the primary model was RELT 

(Tumor necrosis factor receptor superfamily member 19L, P=1.5×10-6). Five individuals in PROFILE 

carried minor alleles for QVs within RELT and these five individuals had a mean age-at-diagnosis of 

54.8 years (compared to 70.7 years for those with no QVs within RELT). 

Negative control model (synonymous variants) 

There was a total of 22,848 synonymous variants that were considered QVs in the analysis under the 

negative control model. There were 5,719 genes that contained at least 2 QVs and a median of 2 QVs 

per gene. There was no evidence of genomic inflation (λ = 0.981) and none of the genes reached study-

wide statistical significance (P<2.6×10-6) (Figure 3.5). However, several of the observed p-values on 

the right-hand side of the plot deviated from the expected line. As this was under the negative control 

model, which in theory should not detect any genes that are strongly associated with the phenotype of 

interest, this was considered irregular and motivated sensitivity analysis 1.  
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FIGURE 4.5: A quantile-quantile plot displaying the p-values from the gene-based collapsing analysis under 

the negative control model. The dashed line represents the threshold for study-wide statistical significance 

(P=2.6×10-6). λ = the genomic inflation factor. 

Sensitivity analyses 

492 individuals remained in the PROFILE cohort for sensitivity analysis 1 after the exclusion of the 

sole age outlier (Figure 4.3). Under the primary model, there were now 8,592 genes that contained at 

least 2 QVs, with a median of 3 QVs per gene. The genomic inflation factor was 1.082 (Figure 4.6). No 

genes reached the threshold for study-wide statistical significance, which suggested that the significant 

results found previously were largely being driven by the presence of the age outlier. The two genes 

that were previously study-wide significant, IGF2BP2 and RELT, had p-values of 0.001 and 0.003 

respectively in this sensitivity analysis.  

λ = 0.981 
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FIGURE 4.6: A quantile-quantile plot showing the p-values from sensitivity analysis 1 under the primary 

model. The dashed line represents the threshold for study-wide statistical significance (P=2.6×10-6). λ = the 

genomic inflation factor. 

Figure 4.7 shows the Q-Q plot for the results of sensitivity analysis 1 under the negative control model. 

The observed p-values in Figure 4.7 laid closer to the expected line than in Figure 4.5, therefore 

suggesting that the inclusion of the age outlier was causing spurious results.  

λ = 1.082 

 

Gene-based collapsing analysis p-values in sensitivity analysis 1 under the 

primary model 



93 
 

 

 
FIGURE 4.7: A quantile-quantile plot showing the p-values from sensitivity analysis 1 under the negative 

control model. The dashed line represents the threshold for study-wide statistical significance (P=2.6×10-6). 

λ = the genomic inflation factor. 

In sensitivity analysis 2, there were 40,954 QVs under the strict model and 123,413 under the lenient 

model (Table 4.5). The distribution of variant types for the strict model closely resembled the 

distribution under the primary model (Table 4.3), whereas the majority of the QVs under the lenient 

model were variants that lay in an untranslated region. Under the strict model, there were 8,582 genes 

that contained at least 2 QVs and a median of 3 QVs per gene. Under the lenient model, there were 

11,219 genes that contained at least 2 QVs, with a median of 3 QVs per gene. Neither set of results 

required adjustment for genomic inflation (λstrict = 1.082 and λlenient = 1.062), however none of the genes 

reached the study-wide significance threshold under either model (Figure 4.8). As there were no genes 

in sensitivity analyses 1 and 2 that reached the study-wide significance threshold, no leave-one-out 

analyses were performed for sensitivity analysis 3.  

 

λ = 0.981 

 

Gene-based collapsing analysis p-values in sensitivity analysis 1 under 

the negative control model 
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TABLE 4.5: The count and percentage for each type of variant that were considered in the 

collapsing analysis under the primary model.  

Variant type Strict model Lenient model 

Frameshift 931 (2.3%) 934 (0.8%) 

Missense 39,135 (95.6%) 39,201 (31.8%) 

Start loss 63 (0.2%) 63 (0.1%) 

Stop gain 793 (1.9%) 794 (0.6%) 

Stop loss 32 (0.1%) 33 (0.0%) 

3’ untranslated region 0 (0%) 64,253 (52.1%) 

5’ untranslated region 0 (0%) 9,311 (7.5%) 

Untranslated region premature start gain 0 (0%) 1,513 (1.2%) 

Gene fusion 0 (0%) 2 (0.0%) 

Inframe insertion 0 (0%) 149 (0.1%) 

Inframe deletion 0 (0%) 564 (0.5%) 

Splice donor 0 (0%) 322 (0.3%) 

Splice acceptor 0 (0%) 228 (0.2%) 

Splice region 0 (0%) 6,046 (4.9%) 

Total number of variants 40,954 123,413 
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FIGURE 4.8: Quantile-quantile plots showing the results sensitivity analysis 2, under the strict model (A) and under the lenient model (B). The dashed lines represent the 

threshold for study-wide statistical significance (P=2.6×10-6). λ = the genomic inflation factor. 

 

 

λ = 1.082 

 

λ = 1.062 
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Gene-based collapsing analysis p-values in sensitivity analysis 2 

under the strict model 

Gene-based collapsing analysis p-values in sensitivity analysis 2 

under the lenient model 
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4.3 Gene-based collapsing analysis using a non-burden test 

As discussed in the previous section, using a non-burden test to perform the gene-based collapsing 

analysis may be preferable to a burden test in certain scenarios and could lead to an increase in statistical 

power. As such, the analysis was repeated using the Sequencing Kernel Association Test (SKAT)164, a 

non-burden test that performs well when there are non-causal, deleterious and protective variants 

present within the gene of interest. 

4.3.1 Methods 

Variant calling and QC were performed as described in Section 4.2.1. The methods for sample QC were 

the same as described in Section 4.2.1 with one exception: the sole age outlier was not included in this 

analysis.  

The Sequencing Kernel Association Test (SKAT) was used to test for associations between the joint 

effects of genetic variants within a gene and the age-at-diagnosis of IPF. This was performed using 

RVTESTS software162. As SKAT does not assume that all variants are causal, genetic variants did not 

need to meet any criteria based on frequency or function to be included in the analysis. A weighting 

function was used to increase the importance of rarer variants and to decrease the importance of more 

common variants in the analysis (see below for details).  

Like the Morris-Zeggini method, SKAT uses a regression framework and allows for the adjustment of 

covariate factors. Assume that sequencing data are available for n individuals and there are p variant 

sites observed within a gene. For subject i, 𝑦𝑖 denotes the phenotype of that individual, 𝑿𝑖 =

(𝑋𝑖1, 𝑋𝑖2, … , 𝑋𝑖𝑚) denotes a vector of m covariate values for that individual and 𝑮𝑖 = (𝐺𝑖1, 𝐺𝑖2, … , 𝐺𝑖𝑝) 

denotes that individual’s genotype for the p variants.  

The following linear model was used to model the age-at-diagnosis of IPF:  

𝑦𝑖 =  𝛼0 + 𝜶𝑇𝑿𝑖 + 𝜷′𝑮𝑖 + 휀𝑖 (4.3) 

Where 𝛼0 is an intercept term, 𝜶𝑇 = (𝛼1, 𝛼2, … , 𝛼𝑚)𝑇 is a vector of regression coefficients for the m 

covariates, 𝜷𝑇 = (𝛽1, 𝛽2, … , 𝛽𝑝)𝑇  is a vector of regression coefficients for the p variants within the gene 

of interest and 휀𝑖  is an error term that has a mean of zero and a variance of 𝜎2. To evaluate whether the 

genetic variants within each gene of interest are influencing the age-at-diagnosis of IPF, the null 

hypothesis 𝐻0: 𝜷 = 0 (i.e. 𝛽1, = 𝛽2 = ⋯ = 𝛽𝑝 = 0) was tested. This was done by assuming that each 

𝛽𝑗 follows an arbitrary distribution with a mean of zero and a variance of wjτ, where τ is a variance 

component and wj is a pre-specified weight for variant j. Testing the null hypothesis 𝐻0: 𝜷 = 0 is 

equivalent to testing whether the variance component τ is equal to 0 (i.e. 𝐻0: τ = 0), which can be tested 

using a score test. The variance component score test statistic for each gene was calculated as: 
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𝑄 = (𝒚 − �̂�)𝑇𝑲(𝒚 − �̂�), (4.4) 

Where �̂� is the predicted mean of 𝒚 under 𝐻0 (equal to 𝛼0̂ + 𝑿�̂�, where 𝛼0̂ and �̂� are estimated under 

the null model by regressing 𝒚 on only the covariates 𝑿). Here 𝑲 = 𝑮𝑾𝑮𝑻, where 𝑮 is an n×p matrix 

with the (i, j)-th element being the genotype of variant j of subject i, and 𝑾 = 𝑑𝑖𝑎𝑔(𝜔1, 𝜔2, … , 𝜔𝑝) is 

a diagonal matrix that contains the weights of the p variants. 𝑲 is an n×n matrix with the (i, i')-th element 

equal to 𝐾(𝐺𝑖 , 𝐺𝑖′) =  ∑ 𝜔𝑗𝐺𝑖𝑗𝐺𝑖′𝑗

𝑝

𝑗=1
. 𝐾(. , . ) is known as the weighted linear kernel function and 

𝐾(𝐺𝑖 , 𝐺𝑖′) measures the genetic similarity between subjects i and i' for the p variants in the gene of 

interest.  

The variant weights 𝜔𝑗  were pre-specified as a function of the MAF of each variant. In particular, √𝜔𝑗   

was set as 𝐵𝑒𝑡𝑎(𝑀𝐴𝐹𝑗; 1, 25) (i.e. the Beta distribution density function with shape parameters 1 and 

25 evaluated at the sample MAF for variant j). The shape parameters 1 and 25 were selected as this 

increases the weight of rare variants but maintains moderate non-zero weights for uncommon variants 

(1% < MAF < 5%) (Additional Figure A.4.1).  

The same covariates were included in the model as in the previous analysis (i.e. sex, recruitment centre, 

smoking status and the first 10 genetic principal components) and an additive genetic model was 

assumed.  

Any genes for which fewer than two individuals in the PROFILE cohort carried genetic variants were 

excluded from the analysis. Q-Q plots were used to visualise the results for the remaining genes and the 

genomic inflation factor (λ) was calculated as described in Section 2.2.2. Applying genomic control to 

the output of SKAT and generating adjusted p-values is non-trivial and so in the case where λ was 

calculated to be above 1.1, genomic control was not applied. The threshold for study-wide significance 

was again defined as P<2.6×10–6.  

4.3.2 Results 

In total there were 16,505,366 genic genetic variants that were present in the 492 individuals in the 

PROFILE cohort. There were 24,818 genes for which at least two individuals in PROFILE carried 

variants within those genes, with a median of 234 variants per gene. These genes were analysed using 

SKAT (Figure 4.9). Despite evidence for the presence of genomic inflation within the results (λ=1.144), 

none of the genes reached the study-wide significance threshold of P<2.6×10–6. The gene with the 

greatest statistical significance in the analysis was LOC101929550, with a p-value of  

1.0×10-4.  
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FIGURE 4.9: Quantile-quantile plot showing the results of the analysis using SKAT. The dashed lines 

represent the threshold for study-wide statistical significance (P=2.6×10-6). λ = the genomic inflation factor. 

4.4 Discussion 

This chapter described the first gene-based collapsing analyses in IPF to investigate the age-of-onset 

phenotype. By utilizing WGS data, this study was able to consider rare variants (MAF<1%) that were 

not included in the age-of-onset of IPF GWAS meta-analysis (Chapter 3).  

The first approach was to use the Morris-Zeggini method, a burden test that assumes that all variants 

within a gene are causal and are acting with the same direction of effect. Therefore, it was crucial to 

select genetic variants such that only those that were most likely to be causal were included in the 

analysis. Rare, likely deleterious variants were selected for inclusion in the primary model and the 

Morris-Zeggini method was used to test each gene for an association between the aggregated burden of 

these variants and the age-of-diagnosis of IPF. There were initially two genes that reached the threshold 

for study-wide statistical significance (P<2.6×10-6) but it was discovered in a sensitivity analysis that 

these findings were being driven by a single individual who had been enrolled into the PROFILE study 

at a much younger age than the other individuals in the cohort. Two additional collapsing analysis 

λ=1.144 
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models were then tested in an additional sensitivity analysis by altering the definition of a qualifying 

variant. Despite these changes, neither model detected any study-wide significant associations.  

Although the two genes that were initially study-wide significant were not robust to the removal of the 

age outlier, it may be worth speculating on the plausibility of an association between these genes and 

the age-of-onset of IPF. Before the removal of the age outlier, the gene with the greatest statistical 

significance under the primary model was IGF2BP2 (Insulin-Like Growth Factor 2 MRNA-Binding 

Protein 2, P=4.5×10-8). This gene encodes IGF2BP2, which binds to insulin-like growth factor 2 (IGF2) 

and regulates its translation. IGF2 plays a key role in regulating fetoplacental development and it is 

involved in glucose metabolism in adipose tissue, skeletal muscle and liver in adults. Interestingly, both 

IGFBP2 and IGFBP1 (another insulin-like growth factor binding protein) have been proposed as 

biomarkers for IPF166–168 and recent findings have shown that epigenetic repression of IGFBP2 

promotes pulmonary fibrosis in mice, suggesting that restoring IGFBP2 in fibrotic lungs could be 

effective for the treatment of IPF169. Our results before the removal of the age outlier would support this 

hypothesis. Therefore, an association between IGFBP2 and the age-of-onset of IPF is plausible and this 

gene could be a good candidate for future studies of this phenotype, preferably once larger study sizes 

are available.    

The second study-wide significant gene was RELT, a gene which is believed to play a role in 

apoptosis170. This gene has not been previously linked to the pathogenesis of IPF, although it is plausible 

that apoptosis may influence the age-of-onset of IPF; it has been previously reported that apoptosis is 

increased in alveolar epithelial cells of IPF patients but decreased in myofibroblasts171, with this 

imbalance contributing to the development of IPF172. Furthermore, the use of therapies that can 

selectively manipulate apoptosis have been proposed173. These results could support the hypothesis that 

apoptosis is an important factor in the development of IPF, though again additional data is needed to 

confirm this finding.   

There could be several reasons to explain why no genes reached the threshold for study-wide 

significance (P<2.6×10-6) when using the Morris-Zeggini burden test after the removal of the single age 

outlier. Firstly, the relatively low sample size of the study (n= 492 IPF cases in the sensitivity analyses) 

meant that it may have been underpowered to detect associations between genes and the age-of-onset 

of IPF if the effect sizes were small. In fact, a simulation study that compared different types of 

collapsing-analysis methods, which had a sample size of 697 unrelated individuals, found that the 

Morris-Zeggini approach (labelled RVT1 in the study) had an average power of only 17% when 

considering gene-based variants for a quantitative phenotype and a MAF threshold of 1%163. 

Secondly, as the Morris-Zeggini method assumes that all variants are causal, it was important to 

functionally annotate the variants and include only those that are most likely to be deleterious. However, 

these functional annotations are merely predictions and can vary from one tool to another. As the 
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Morris-Zeggini approach is reliant on high quality annotations, any errors in the annotations of SnpEff 

could have led to a loss in statistical power.  

Thirdly, as a burden test, the Morris-Zeggini method assumes that all QVs within a gene are causal and 

are acting with the same direction of effect. Therefore, in a scenario where these assumptions are not 

met, this method will have reduced statistical power. If so, a non-burden test may have been more 

appropriate. Non-burden approaches also have the advantage that they can include uncommon and 

common variants in the calculations (often with lower weights than the rare variants), which may be 

more appropriate in this instance, given the low sample size of the study and low counts of rare variants.  

Therefore, for completeness, the analysis was then repeated using SKAT, a type of non-burden test that 

can perform well when the assumptions of a burden test are not met. As SKAT can allow for non-causal 

variants within the gene of interest, there was no need to exclude variants based on frequency or function 

prior to the analysis. Instead, a weighting function was used to increase the weight of rare variants and 

to decrease the weight of common variants in the calculations. SKAT was used to test each gene for an 

association between the joint effects of all genetic variants within the gene and the age-of-diagnosis of 

IPF. However, this did not reveal any statistically significant genes that were associated with the age-

at-diagnosis of IPF. This suggests that the reason that no statistically significant genes were identified 

when using the Morris-Zeggini method was not due to the presence of non-causal genetic variants or 

the presence of harmful and protective variants within the same gene. It therefore appears more likely 

that these analyses did not detect any statistically significant results due to a lack of statistical power as 

a result of the relatively low sample size.  

It is possible that the statistical power of the SKAT analysis could have been increased by changing the 

variant weighting function. For example, a variant weighting function that gives even greater weight to 

rare variants and less weight to uncommon variants may have been a more appropriate choice. However, 

the pre-specified parameters for the weighting function are fairly arbitrary and performing follow-up 

analyses with different choices of parameters could be considered data dredging. A better approach to 

boost the statistical power of the SKAT analysis would be to incorporate functional information for the 

variants in an effort to give greater weights to functional variants that are more likely to be causal. 

However, it is not yet possible to implement this using RVTESTS software. 

Genomic inflation was observed in the results when using SKAT. This has been previously reported to 

occur in analyses with an insufficient number of samples and has led to the development of adaptive 

procedures, such as AP-SKAT165, that offer more accurate p-values in this scenario. Regardless, none 

of the genes in this analysis reached the study-wide significance threshold and so correcting the p-values 

for the genomic inflation would not change the conclusions of this analysis.  

A threshold for study-wide significance (P<2.6×10-6) was used to correct the standard significance level 

of P=0.05 for the presence of approximately 19,000 protein coding genes. However, this may have been 
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over-conservative as only genes for which multiple individuals in PROFILE carried at least one QV in 

that gene were considered in each analysis. For example, there were only 8,604 genes that met this 

criterion under the primary model and a Bonferroni correction for this number of genes would give a 

less strict study-wide significance threshold of P=5.8×10-6. On the other hand, the study-wide 

significance threshold was not corrected for the fact that after the inclusion of the two sensitivity 

analysis models, a total of four different models were used in this study (excluding the negative control 

models), and so the study-wide significance threshold of P=2.6×10-6 may have actually been slightly 

under-conservative. Regardless, no genes came close to reaching this threshold after the exclusion of 

the age outlier, under any model.   

The lack of statistical power due to the relatively low sample size was therefore the primary limitation 

of these analyses. However, the role of rare variants in the genetic architecture of the age-of-onset of 

IPF had not previously been investigated and it was possible that multiple causal variants within the 

same genes could have been exerting such large effects on the age-of-onset that the collapsing models 

could have detected them. As no such genes were detected in this study, future studies on this topic will 

likely need to aim to obtain a larger sample size to increase the statistical power of the collapsing 

models. If this is not possible, it may be necessary to consider candidate genes to reduce the search 

space and lower the multiple testing burden.  

Individuals with IPF were excluded from the study if they had any missing values for any of the 

covariates that were included in the model. One method to increase the statistical power of the study 

would be to impute the missing covariate data and include these individuals. However, that would only 

increase the sample size by 14 individuals, which would be unlikely to substantially increase the 

statistical power.  

The optimal way to significantly increase statistical power would be to obtain and test additional 

independent IPF WGS datasets and meta-analyse these with the results of the PROFILE cohort. 

However, this type of data remains costly to measure and so obtaining a suitably large dataset may 

prove challenging. Alternatively, collapsing the genes into known pathways and regressing the rare 

variant burden of those pathways against the age-of-onset of IPF could increase the statistical power of 

the study by further reducing the multiple testing burden. Given the current available sample size, this 

may be a more viable approach to assessing whether rare variants are influencing the age-of-onset of 

IPF.     

Another weakness of this study is that genetic variants located outside of gene regions were not 

considered in these analyses, despite them being measured and present within the WGS dataset. Using 

SKAT, it was possible to have searched areas across the entire genome for regions associated with the 

age-at-diagnosis of IPF by using moving windows as the regions of interest rather than genes. However, 

this would have greatly increased the multiple testing burden and the low power of the study meant that 
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increasing the testing space any further would have likely been counter-productive towards identifying 

statistically significant results.  

However, this study did have some important strengths. Firstly, the use of both a burden test and a non-

burden test meant that the effects of rare variants on the age-of-onset of IPF could be investigated under 

two opposing sets of assumptions. In the scenario where many rare variants are causal and acting in the 

same direction on the age-of-onset of IPF, the Morris-Zeggini method would have been relatively well 

powered compared to SKAT. Conversely, in the scenario where not all variants are causal and those 

that are causal are acting in opposing directions, SKAT would likely have outperformed the Morris-

Zeggini method. Whilst this thoroughness was an asset to our study, it is worth noting that an optimised 

method that combines burden and SKAT statistics, referred to as SKAT-O, has been developed and has 

been shown to maintain statistical power in both scenarios174. As such, it may have been preferable to 

use SKAT-O rather than perform the burden and non-burden tests separately. 

Another strength is that both the Morris-Zeggini method and SKAT allowed for the adjustment of 

important covariate factors. Adjusting for the non-confounding covariates (sex, recruitment centre and 

smoking status) should have reduced bias within the results and could have explained more of the 

phenotypic variance, thereby increasing the statistical power of the linear model175. Additionally, 

adjusting for genetic principal components should have reduced the risk of confounding within the 

results due to population stratification. However, including 10 genetic principal components in the 

models (as is common practice in a GWAS) may have been an over-adjustment, given the small sample 

size and the fact that less population structure underlies rare variants than common variants150. 

Therefore, it may have been more appropriate to include fewer genetic principal components in the 

models, which could have increased their statistical power. 

As discussed previously, a non-burden test such as SKAT has a few advantages compared to a burden 

test such as the Morris-Zeggini method. The use of a variant weighting function meant that MAF 

thresholds were not needed to define rare variants, which allowed information from uncommon and 

common variants to be included in the calculations. In addition, SKAT was not dependent on high 

quality functional effect predictions, which was a source of potential error and power loss when using 

the Morris-Zeggini method. Still, after the exclusion of the age outlier the results of the two methods 

were similar and no genes reached the study-wide significance threshold in either analysis. Therefore, 

it is difficult to conclude that one method was a more appropriate choice than the other in this instance.  

In conclusion, a greater sample size is required, or alternative methods must be applied in order to 

increase the statistical power of the analysis. Until then, the extent to which rare variants are playing a 

role in the age-of-onset of IPF is uncertain.  
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Chapter 5 – Cluster analysis in multiple transcriptomic 

datasets to identify endotypes of IPF 

Considerable heterogeneity in disease progression, survival and response to therapy in IPF suggests that 

a range of subtypes of the disease may exist. The aim of this chapter is to identify these endotypes by 

utilizing gene expression data and two new statistical methods. The first is a method of data co-

normalization that enables multiple transcriptomic datasets to be combined, whilst the second is a 

method of clustering that considers data from various clustering algorithms in order to identify the most 

robust subgroups of subjects within the pooled data.  

5.1 Introduction 

5.1.1 Identification of endotypes through cluster analysis of transcriptomic data 

Omic analyses allow researchers to perform a close examination of a biological system to gain a deeper 

understanding of its underlying mechanisms, which is achieved through taking a huge number of 

molecular measurements within a tissue or cell. As omics technologies continue to emerge and develop, 

the number of molecular measurements in these analyses continue to increase, often producing 

complex, high-dimensional datasets. These high-dimensional datasets can potentially contain tens of 

thousands of measurements for each subject and as a result, they are often so large that they can become 

troublesome to analyse or visualise. Additionally, as there are so many variables to consider, 

recognising patterns in the data and identifying subgroups of subjects with similar biological 

measurements often cannot be done without the use of a computational method.   

One approach to defining subgroups in large, multi-dimensional datasets is cluster analysis. Cluster 

analysis is a method of unsupervised machine learning, in which objects (such as individuals, or genes) 

that are similar are put into groups called clusters, whilst dissimilar objects are put into separate clusters. 

Cluster analysis can be applied to transcriptomic data to define disease endotypes. Individuals with the 

same disease and similar transcriptomic profiles have genes that are co-expressed, which indicates that 

the same biological processes are being activated. This does not confer information about causality, but 

it does suggest that the individuals within the same clusters may be experiencing forms of the disease 

with similar underlying biological mechanisms.  

Previous transcriptomic analyses have been particularly successful in defining clinically significant 

subgroups of cancer patients that have led to improvements in treatment. For example, one study176 used 

microarrays to extract gene expression data from tumours in 117 breast cancer patients who did not 

have tumour cells at their local lymph nodes at diagnosis. Hierarchical clustering was applied to the 

dataset (consisting of approximately 5,000 genes), which revealed two groups of tumours, one that was 

associated with a favourable prognosis and one that was associated with a poor prognosis. From this, 

the authors created a 70-gene signature that was able to predict a poor prognosis in breast cancer patients 



104 
 

and has been successfully validated in multiple subsequent studies177,178,178,179,179. This led to the 

development of the MammaPrint assay180, which is a prognostic tool that uses the same 70-gene 

signature to help physicians decide whether a patient would benefit from chemotherapy. The assay is 

currently used in the U.S. to spare patients that are at a low risk of developing distant metastases from 

needlessly experiencing the severe side effects of chemotherapy. Other examples include lung cancer181 

and bowel cancer182. 

5.1.2 Previous work on this topic in IPF  

There have been some previous studies in IPF that have aimed to identify subgroups of subjects by 

utilizing gene expression data. Another common aim for these studies is to then take their subgroups 

and use them to try to develop prognostic biomarkers in the form of gene signatures. For example, Boon 

et al.183 used gene expression collected from the lung parenchyma to show that the transcriptomic 

profiles of 12 IPF samples (6 clinically defined as stable IPF and 6 progressive IPF) were 

distinguishable from healthy control samples. However, the authors were not able to successfully 

validate a gene signature (of 134 genes) that they had built to distinguish between the progressive and 

stable IPF samples, perhaps due to the low sample size of the validation cohort (n=8 IPF subjects, 4 

clinically defined to have slow progression and 4 clinically defined to have accelerated progression). 

Additionally, not all the genes included in their progression signature were measured in their validation 

dataset, which would have greatly hindered the signature’s efficacy. More recently, Wang et al.184 used 

gene expression from whole lung tissue to build a gene signature (of 392 genes) with the ability to 

differentiate between subjects that had mild IPF (with lung tissue from biopsy) and those who had 

severe IPF (with lung tissue from explant). However, when looking at an additional cohort of IPF cases, 

they were not able to build a signature that could successfully differentiate between patients who had 

stable IPF and IPF with acute exacerbations.    

In 2013, Herazo-Maya et al.185 studied the peripheral blood transcriptome of 45 individuals with IPF 

and found 52 genes that were significantly associated with transplant-free survival. The authors used 

these 52 genes to build a gene signature that was applied to a validation cohort of 75 IPF cases. The 

gene expression data was then clustered, showing two main clusters of IPF subjects. There were 

significant differences in survival found between clusters (median transplant-free survival time was 3.4 

years in cluster 1 and 1.6 years in cluster 2), but the clusters did not differ significantly in terms of other 

measured clinical traits. Pathway analysis was used to show that the biological pathway that was most 

strongly associated with transplant-free survival was the ‘costimulatory signal during T cell activation’ 

pathway.  

This 52-gene signature was later validated further in a large international multi-centre study186 where it 

was applied to 425 IPF cases, who were classed as either high risk (those more likely to die or require 

a lung transplant) or low risk (those less likely to die or require a lung transplant) using a method called 
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The Scoring Algorithm for Molecular Subphenotypes (SAMS). There were significant differences in 

survival time between the two risk groups in all six cohorts and the authors demonstrated that the gene 

signature could be added to the Gender, Age and Lung Physiology (GAP) index187 to substantially 

improve prediction accuracy when incorporated with currently used clinical tools. However, one 

weakness of their 2013 study is that the two groups were not well characterized in terms of the biological 

mechanisms that may be driving the differences in survival between groups. Perhaps this aspect of the 

study was held back by the fact that once all the genes that were not associated with transplant-free 

survival in the initial study had been discarded, only a relatively small number of genes remained for 

pathway analysis. Pathway analysis uses a list of genes to identify biological pathways that are enriched 

(when the genes in the list lay along that pathway more than would be expected by chance), and so a 

small list of genes may limit the potential for the pathway analysis to detect any significant results. 

Another important weakness of their 52-gene signature is that its clinical use is limited by the 

requirement that gene expression from a whole cohort of IPF patients would be needed in order to 

predict whether a single new patient is high risk or low risk, due to the way that the gene expression 

data must be normalised within-cohort before calculations can be made.  

5.1.3 Improvements to transcriptomic analysis methodology 

A key issue with transcriptomic analyses is that non-biological experimental variation or ‘batch effects’ 

are commonly observed across multiple batches of microarray experiments188. These technical 

differences between batches can be caused by many factors, including: the batch of amplification 

reagent used, the time of day when the gene expression is measured or even the atmospheric ozone 

level189. This creates an issue when comparing gene expression data that were collected at different 

times within the same study, and an even greater issue when comparing data from separate studies. 

Furthermore, differences in microarray technology and data collection procedures between studies also 

contribute to the non-biological variation, making transcriptomic data from different studies even more 

difficult to compare or combine. This, compounded with the fact that it can be extremely 

expensive/difficult to gain access to the relevant tissue/cell types, means that many transcriptomic 

studies end up with a low sample size.  

In addition to limiting the statistical power of the analysis, a low sample size presents a problem for 

cluster analysis, as this often leads to the disease heterogeneity not being fully captured and results in 

findings that cannot not be successfully validated. Another reason that the results from many cluster 

analyses fail in the validation stage is that small changes in the methodology can lead to very different 

results. However, recent advances in clustering and data pooling methods can help to solve these 

problems. 

An example of these improvements in methodology can be found in a study by Sweeney et al.94, where 

the authors demonstrated new methods that allowed them to increase the sample size of their study by 
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pooling publicly available gene expression data from 14 studies (providing a total of 700 sepsis cases) 

and then performing a cluster analysis to identify three distinct clusters of sepsis patients. These clusters 

were clinically distinct, with the first cluster comprising of less severe patients, while the second and 

third clusters separated the more severe patients into a younger and an older group. The authors then 

used gene ontology analysis to further characterise the three clusters. The authors stated that since they 

had not used clinical data whatsoever in their clustering, discovering differences in mortality between 

the clustered patients suggests that the clusters may represent distinct pathophysiologic states of clinical 

relevance. They then validated their findings using nine independent validation datasets (n=600), in 

which they assigned each of the validation sepsis cases into one of the three clusters and found that the 

same clinical and molecular phenotypes were observed. When comparing their findings to previously 

reported endotypes of sepsis, Sweeney et al. found that other groups had reported subtypes similar to 

two of their clusters, but the substantially larger size of their study had allowed them to discover the 

third cluster.  

This chapter describes a transcriptomic cluster analysis of IPF cases that was performed to identify 

clinically relevant and distinct endotypes of IPF. Sweeney et al.’s new method of data co-

normalisation190, which aims to reduce the technical differences between datasets, was adopted in this 

analysis. This allowed for multiple publicly available datasets to be combined, thus providing a 

relatively large sample size of IPF cases for the analysis. Additionally, a new method of unsupervised 

clustering191 was utilised. This approach combined multiple clustering algorithms over a range of genes 

and validation measures to identify the most robust number of clusters in the pooled dataset of IPF 

cases. Following this, a gene expression-based classifier with the ability to assign new individuals into 

one of these clusters was developed, which allowed for validation of findings in additional independent 

datasets. 

5.2 Study design  

There were three main parts to this analysis (Figure 5.1). First, a systematic search of publicly available 

IPF gene expression datasets was performed to collect the data to include in the analysis (Section 5.3). 

After these data were collected, the selected datasets were partitioned into those that would be analysed 

during the discovery stage and those that would be used for validation, based on the criteria described 

in the following section. In the discovery stage, the transcriptomic data from the discovery studies were 

co-normalised, pooled and clustered. Comparisons of phenotypic traits between clustered subjects and 

enrichment analysis on clustered genes were performed to characterize each of the clusters. Following 

this came the development of a gene-expression based cluster classifier with the ability to accurately 

assign additional independent samples in to one of the discovery clusters, whilst using far fewer genes 

than the original clustering. In the validation stage, this cluster classifier was applied to the validation 

datasets and again phenotypic traits were compared between clustered subjects to evaluate whether the 
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clinical/demographic differences between clusters were consistent with those observed in the discovery 

stage.  

 

FIGURE 5.1: Flowchart showing the study design for this analysis. 

5.3 Systematic selection of publicly available transcriptomic datasets 

The Gene Expression Omnibus (GEO)192 is an international public repository that archives and freely 

distributes transcriptomic data submitted by the research community. This includes data obtained via 

microarray, next-generation sequencing or other forms of high-throughput functional genomics. 

Authors may also upload ‘meta’ data to accompany the gene expression data, which contains additional 

information for the samples, such as demographic information, clinical data or details about the 
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collection process of the samples. A systematic search of GEO was performed in March 2020 to select 

the datasets that were suitable for inclusion in the cluster analysis.  

5.3.1 Methods 

Multiple sets of transcriptomic data from independent cohorts were required for the analysis. GEO was 

searched for all collections that contained the term ‘IPF’ and all collections that did not contain data 

from human tissue were excluded. The GEO search was then restricted to collections with at least 30 

samples, which allowed for the inclusion of the largest datasets with the most IPF cases and healthy 

control subjects. These datasets were the most likely to successfully co-normalise due to the higher 

counts of healthy control subjects (Section 5.5). The systematic search was not restricted by platform.  

Each of the remaining collections were then reviewed to assess whether they contained data for IPF 

cases, as it was possible that a collection could have contained the term ‘IPF’ but did not contain data 

originating from individuals with IPF. All collections that did not contain data for IPF subjects were 

excluded.  

The method for data co-normalisation, COmbat CO-Normalization Using conTrols (COCONUT), 

requires data from healthy controls to perform the first step of the co-normalisation, as well as disease 

cases from the same study (Section 5.5). COCONUT assumes that the gene expression profiles of the 

healthy subjects in all cohorts come from the same statistical distribution. As gene expression varies by 

tissue/cell-type, the co-normalisation would have been most successful if the gene expression data from 

each dataset had been measured from the same tissue/cell type. As such, the GEO search was then 

restricted to collections that had measured gene expression data from the single most appropriate 

tissue/cell type to use for the analysis. The choice of the optimal tissue/cell type was based on the 

following criteria:  

 More than one of the remaining collections must have studied this tissue/cell type. 

 Of these, multiple collections must have contained data for healthy control subjects in addition 

to the IPF subjects, so that the data for the IPF cases could be co-normalised with COCONUT.  

 The optimal tissue/cell type should have provided a suitable sample size to fully capture the 

heterogeneity of IPF. As such, if there were fewer than 100 IPF cases across all collections for 

a tissue/cell type, this tissue/cell type was excluded.  

 The collections that contained transcriptomic data measured from the optimal tissue/cell type 

must have additionally reported meta data for the subjects, as meta data was required for the 

discovery analysis to characterise the clusters and to identify any clinical or demographical 

differences between the subjects in each cluster. Meta data was also important for use in the 

validation stage (Section 5.10). For a phenotypic trait to be used in both stages, it must have 

been reported for the subjects in multiple independent cohorts, at least one of which must have 



109 
 

included healthy controls. For a tissue/cell type to be selected as the optimal choice, several 

traits should have met this criterion.  

The relevance of the tissue/cell type to IPF was also considered in selecting the optimal tissue/cell type, 

with the most relevant being considered a preferable choice compared to those that are less relevant. 

However, the four factors listed above took precedence over this and none of the tissue/cell types were 

excluded based on this factor.  

After an optimal tissue/cell type was selected, all collections that did not include data from this 

tissue/cell type were excluded. In addition, any cohorts that were found to have fewer than 10 IPF cases 

were excluded. Collections that contained gene expression data from the optimal tissue/cell type that 

did not include data for healthy controls were not discarded as these were used in the validation stage, 

which did not require the data to be co-normalised.  

As multiple transcriptomic datasets were to be combined, it was important to check across collections 

for samples that originated from the same individual, as one person may have participated in multiple 

studies, or separate studies could have analysed the same tissue sample to test different hypotheses. The 

subjects in each collection were checked for unique study identification codes. If samples from common 

subjects were identified, all but one of these were removed as they were not independent and therefore 

could have biased the results of the study. 

5.3.2 Results 

The results of the systematic selection of suitable datasets is summarised in a flow diagram (Figure 5.2). 

There were 143 collections on GEO with gene expression data available that featured the term ‘IPF’, 

125 of which contained data from human cohorts. 38 collections remained after these were filtered by 

sample count. The distribution of collection sizes is shown in Appendix B (Table B.5.1). 
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FIGURE 5.2: Flow diagram showing the process used for the systematic selection of publicly available IPF 

gene expression datasets from the Gene Expression Omnibus for use in this analysis. 

The transcriptomic data from these collections were measured from many different tissue types 

(including blood, lung explants and lung fibroblasts) and using a wide range of platforms (including 

both microarray and high-throughput sequencing platforms). The oldest collection originated from a 

study published in 2009 and the newest collections were not yet published but were uploaded to GEO 

in 2020. The collections that were uploaded to GEO before December 2016 were all microarray-based. 

After this date, an increasing number of collections had measured gene expression data using RNA-

sequencing instead of microarrays, as the cost of this method fell, making it increasingly feasible to 

sequence the entire human transcriptome.  

27 collections contained data for IPF cases and so were suitable for further consideration (Table 5.1 and 

Additional Table B.5.2). Some of these collections included gene expression data collected from several 

different types of lung tissue, including whole lung, lung fibroblasts, epithelial cells and lung squamous 

cell carcinoma. However, for a tissue/cell type to be chosen as the optimal choice, multiple collections 

GEO collections that contained the 

term ‘IPF’ (n=143) 

Collections containing human data 

(n=125) 

Collections with at least 30 samples 

(n=38, see Table B.5.1) 

Collections containing data for 

individuals with IPF (n=27, see Table 

B.5.2 & Table 5.1) 

Collections containing expression 

data measured from blood (n=8) 

Collections with independent cohorts 

(n=7) 

Cohorts used in 

discovery stage 

(n=3) 

Cohorts used in 

validation stage 

(n=3) 

Excluded: collections that did not 

contain human data (n=18) 

Excluded: collections with fewer 

than 30 samples (n=87) 

Excluded: collections without data 

for IPF subjects (n=11) 

Excluded: collections containing 

non-blood data (n=19) 

Excluded: collection containing a 

non-independent cohort (n=1) 

Excluded: collection excluded during 

validation stage (n=1) 
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of data from that tissue/cell type must have included healthy controls. This left only blood, whole lung 

and lung fibroblasts in consideration. The total number of IPF cases in the collections with lung 

fibroblasts (n=35) was deemed too low to fully capture the disease heterogeneity and this cell type was 

excluded. At this stage, lung tissue was considered a preferable choice of tissue type to blood, as it is 

more relevant to IPF, a disease of the lungs. Additionally, the cell-types that are most relevant to IPF, 

such as epithelia and fibroblasts, should have been represented within whole-lung samples. Two of the 

11 lung collections had fewer than 10 IPF cases so these studies were excluded.  

 

 

 

 

Clinical and demographic traits were not widely reported in the collections of lung tissue data that had 

passed the inclusion criteria (Table 5.2), with many collections not having any meta data to accompany 

the gene expression data on GEO. Sex was the most commonly reported trait and yet was only available 

for three of the nine studies. Despite lung tissue being the preferred tissue type, the lack of commonly 

reported traits across cohorts meant that it would not have been feasible to perform the analysis using 

the lung collections without additional data being made available by the study authors. The study 

authors of the lung collections were contacted in March 2020 to request additional clinical and 

demographic data that they would be willing to share. 

 

Human tissue type  

Number of collections 

with controls (number 

of IPF cases) 

Number of collections 

without controls 

(number of IPF cases) 

Total IPF 

cases 

Alveolar macrophages 1 (15) 0 (0) 15 

Blood 4 (295) 4 (245) 540 

Bronchoalveolar lavage 1 (176) 0 (0) 176 

Epithelial cells 1 (325) 0 (0) 325 

Whole lung 9 (318) 2 (19) 337 

Lung fibroblasts 3 (22) 1 (13) 35 

Lung squamous cell carcinoma 1 (10) 0 (0) 10 

TABLE 5.1: A summary by tissue type for the 27 collections on the Gene Expression Omnibus that contained 

gene expression data for individuals with IPF with at least 30 samples. The table is stratified by whether 

each collection included healthy control data.  
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Trait 

Collections with  

control data 

Collections without  

control data 

GSE10667 GSE124685 GSE134692 GSE110147 GSE92592 GSE53845 GSE32537 GSE48149 GSE24988 

Age ❌ ❌ ✔ ❌ ❌ ❌ ✔ ❌ ❌ 

Ancestry ❌ ❌ ✔ ❌ ❌ ❌ ❌ ❌ ❌ 

Sex ❌ ❌ ✔ ❌ ❌ ✔ ✔ ❌ ❌ 

Smoking status ❌ ❌ ✔ ❌ ❌ ❌ ✔ ❌ ❌ 

Height ❌ ❌ ✔ ❌ ❌ ❌ ❌ ❌ ❌ 

Weight ❌ ❌ ✔ ❌ ❌ ❌ ❌ ❌ ❌ 

Smoking pack years ❌ ❌ ❌ ❌ ❌ ❌ ✔ ❌ ❌ 

St George's score ❌ ❌ ❌ ❌ ❌ ❌ ✔ ❌ ❌ 

Predicted FVC ❌ ❌ ❌ ❌ ❌ ❌ ✔ ❌ ❌ 

Predicted DLCO ❌ ❌ ❌ ❌ ❌ ❌ ✔ ❌ ❌ 

TABLE 5.2: Clinical and demographic traits that were reported in at least one of the lung tissue data collections, and their availability across collections. The ✔ 

symbol indicates that the trait was reported in that collection and the ❌ symbol indicates that the trait was not reported in that collection. St George’s score = total 

score on the St George’s Respiratory Questionnaire for IPF246, FVC=Forced vital capacity, DLCO = Diffusing capacity for carbon monoxide. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92592
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53845
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32539
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48149
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Clinical and demographic traits were more widely reported in the collections that contained 

transcriptomic data from blood (Table 5.3). Age and sex were available for the individuals in all eight 

of the blood cohorts and there were also several other traits that were sufficiently commonly reported 

across studies to be used for validation, including ancestry; forced vital capacity (FVC); diffusing 

capacity for carbon monoxide (DLCO); survival time; forced expiratory volume in one second (FEV1) 

and the Gender, Age and Physiology (GAP) index for IPF mortality193. Genotype information for the 

MUC5B promoter variant rs35705950 (the strongest genetic risk factor for IPF) was also available for 

some individuals in collections GSE33566, GSE93606 and GSE132607. As a result, blood was selected 

as the optimal tissue/cell type for the analysis. The rationale was that the analysis could be repeated in 

lung tissue once sufficient clinical data had been collected, or that the lung tissue datasets could possibly 

be used to validate any findings that were discovered from performing the analysis in blood.  

It was discovered that two of the blood collections, GSE132607 (n=74) and GSE85268 (n=68), both 

contained subjects from the Correlating Outcomes With Biochemical Markers to Estimate Time-

progression in Idiopathic Pulmonary Fibrosis (COMET) study (ClinicalTrials.gov identifier: 

NCT01071707). Both collections had reported the COMET identification numbers of their subjects as 

meta data on GEO. Using these, it was found that there were 59 IPF subjects in common between the 

two cohorts. Both studies were performed using the Affymetrix Human Gene Expression Array by the 

same team of researchers. However, as they were not independent, GSE85268 was excluded as it was 

the collection with fewer IPF subjects and fewer clinical traits in common with the other blood 

collections. This left seven collections, four that included healthy control samples and three that did 

not.  

The seven remaining collections of data were uploaded by research groups from across the USA 

(including the University of Virginia, Yale University, the University of Nevada and the University of 

Colorado) and the UK (Imperial College London). GSE27957 and GSE28042 were uploaded by the 

Kaminski Lab in Yale. These two collections were both used in the same study185, where GSE27957 

was used as discovery data and GSE28042 was used as independent replication data. Similarly, the data 

found in GSE133298 and GSE132607 were uploaded by researchers at the University of Virginia and 

were used as independent cohorts in the same study (unpublished as of April 2022, both collections 

uploaded to GEO in September 2019). All remaining collections were uploaded by separate research 

groups and no additional evidence of common individuals across cohorts was found so the seven cohorts 

of IPF subjects were deemed independent. However, the possibility that subjects could be common in 

two or more studies cannot be ruled out. The collection GSE133298 was removed during the validation 

stage (Section 5.10).
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TABLE 5.3: Clinical and demographic traits that were reported in at least one of the blood data collections, and their availability across collections. The ✔ 

symbol indicates that the trait was reported in that collection and the❌ symbol indicates that the trait was not reported for that collection. FVC=Forced vital 

capacity, DLCO = Diffusing capacity for carbon monoxide, GAP index = the Gender, Age and Physiolic index for IPF mortality187.  

 

 

Trait 

Collections with healthy control data Collections without healthy control data 

GSE38958 GSE33566 GSE93606 GSE28042 GSE133298 GSE132607 GSE85268 GSE27957 

Age ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Ancestry ✔ ❌ ❌ ✔ ✔ ✔ ❌ ✔ 

Sex ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Smoking status ❌ ❌ ✔ ❌ ✔ ✔ ❌ ❌ 

FVC ✔ ✔ ✔ ✔ ✔ ✔ ❌ ✔ 

DLCO ✔ ✔ ✔ ✔ ✔ ✔ ❌ ✔ 

Height ❌ ❌ ❌ ❌ ❌ ❌ ✔ ❌ 

Weight ❌ ❌ ❌ ❌ ❌ ❌ ✔ ❌ 

Survival time ❌ ❌ ✔ ✔ ❌ ❌ ❌ ✔ 

GAP index ✔ ✔ ✔ ✔ ✔ ✔ ❌ ✔ 

FEV1 ❌ ❌ ✔ ✔ ❌ ❌ ❌ ❌ 
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5.4 Discovery stage studies 

The datasets were then divided into those that would be used in the discovery stage and those that would 

be used in the validation stage. Cohorts used in the discovery analysis were required to have included 

healthy controls in order to enable the gene expression co-normalisation. Of the four cohorts that 

included healthy control subjects, the three with the greatest number of controls were selected to use in 

the discovery stage, as theoretically the co-normalisation would have worked more effectively with 

studies with a greater number of healthy controls. The fourth study was saved for use in the validation 

stage to boost the statistical power of that part of the analysis.  

The first cohort used in the discovery analysis, with GEO accession code GSE38958, came from an 

American observational study194 that was investigating the relationship between sphingosine-1-

phosphate lyase and pulmonary fibrosis. To this end, the authors studied gene expression data from 

peripheral blood mononuclear cells of IPF subjects (n=70) and compared this to gene expression from 

healthy controls (n=45). IPF cases were recruited from the University of Chicago. 

The second gene expression dataset, GSE33566, contained data for 123 IPF subjects and 30 healthy 

controls. The IPF cases were recruited through the ILD or the FPF Programs conducted at National 

Jewish Health and Duke University. A subset of this data was used in an American observational 

study195, where the authors hypothesised that a peripheral blood biomarker for IPF would be able to 

identify the disease in its early stages and allow for disease progression to be monitored. In the study, 

40 IPF cases were split into groups based on their predicted FVC and DLCO, then the authors looked for 

differentially expressed genes between groups. In addition, these groups were compared to a group of 

27 non-diseased family members who acted as age and sex matched healthy controls. A larger subset 

of the GSE33566 dataset (89 IPF cases and 26 healthy controls) was later used in a study that aimed to 

develop a gene signature with the ability to diagnose IPF196.  

The third collection was GSE93606, which contained data from a subset of participants in the PROFILE 

study112 (n=57 IPF subjects and n=20 healthy age, sex and smoking history matched controls). The 

transcriptomic data in GSE93606 is from a study that had the objective of examining host-microbial 

interactions in IPF subjects over time197. In this study, gene expression data from peripheral blood and 

lung function measurements were collected at multiple time points. However, in the cluster analysis 

described within this thesis, only the gene expression/lung function data that had been collected at 

baseline was used. IPF patient survival was also recorded up to a maximum follow-up time of 34 months 

(Additional Figure A.5.1). More than 50% of subjects were still alive at the end of the study, so a median 

survival time could not be calculated.  

In each study, the average ages of the IPF cases and control subjects were both between 60 and 70 years 

(Table 5.4). The proportion of males in each disease status group varied more across cohorts, being 

most different in GSE38958, where the IPF group was comprised of 83% males and the control group 
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was only 60% males. In each cohort, the lung function measurements percent predicted FVC and DLCO 

were reported for the IPF cases but not the control subjects. These also varied greatly between cohorts. 

Curiously, the IPF subjects in GSE93606 had the highest mean percent predicted FVC (suggesting 

healthier individuals) but the lowest percent predicted DLCO (suggesting unhealthier individuals). One 

limitation of combining data from separate studies is that different studies, particularly those originating 

from different countries, may have inconsistent procedures for data collection and different study 

recruitment criteria, which could partly explain the conflicting lung function statistics.  

All three studies were microarray-based (Table 5.5) and each dataset came with a corresponding gene 

mapping file. In each dataset, probes that did not map to a gene were removed. In the instance where 

multiple probes mapped to the same gene, only the probe with the greatest mean expression was 

included in the analysis. Each dataset was then quantile normalised to reduce any technical differences 

between the gene probes within a study. Following this, each dataset was log2-scaled so that all 

expression data was in a consistent form prior to co-normalisation. Genes were matched across studies 

based on their gene symbols, giving 9,371 that were commonly measured across all three studies.  
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TABLE 5.4: Summary statistics for the IPF and control subjects in each of the discovery stage studies. 

 GSE38958  GSE33566  GSE93606 

Study reference 194  195  197 

Country USA  USA  UK 

Disease status IPF  Control  IPF  Control  IPF  Control 

Sample size 70  45  93  30  57  20 

Age (years, sd) 68.2 (7.2)  69.3 (9.3)  67.2 (11.4)  62.4 (14.3)  67.4 (8.0)  66.0 (10.6) 

Sex (% male) 82.6%  60.0%  65.6%  46.7%  66.7%  60.0% 

Ancestry (% European) 82.8%  71.1%  Unknown  Unknown  Unknown  Unknown 

FVC % predicted (sd) 62.4 (15.0)  Unknown  62.0 (28.8)  Unknown  72.2 (20.3)  Unknown 

DLCO % predicted (sd) 43.3 (18.7)  Unknown  52.1 (27.9)  Unknown  39.2 (14.1)  Unknown 

Mortality (%) Unknown  Unknown  Unknown  Unknown  40.4%  Unknown 

 

TABLE 5.5: Information about the transcriptomic data in the discovery datasets and the platform used in each study.  

 GSE38958  GSE33566  GSE93606 

Microarray platform 
Affymetrix Human Exon 

1.0 ST Array 
 

Agilent-014850 Whole Human 

Genome Microarray 
 

Affymetrix Human Gene 

1.1 ST Array 

Number of gene probes 44,280  32,850  33,297 

Number of unique genes 17,256  12,171  20,254 
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5.5 Data co-normalisation 

5.5.1 Methods 

COmbat CO-Normalization Using conTrols (COCONUT) was used to reduce the technical differences 

between the three discovery transcriptomic datasets, therefore enabling a cluster analysis to be 

performed on the pooled, co-normalized data. COCONUT is an unbiased co-normalisation method 

which assumes that all healthy controls across studies come from the same statistical distribution. It 

uses the healthy controls in each study to calculate correction factors that remove the technical 

differences in the data for the disease cases, without introducing bias based on the number of disease 

cases present. The method is adapted from the ComBat empiric Bayes normalization method188, which 

is often used to adjust for batch effects within a study.  

Data for each study was input into COCONUT by providing a gene expression matrix of common genes 

against subjects. These were accompanied by an indicator variable that specified which individuals 

were cases and which were controls. This was performed in R v.4.0.0 with the ‘COCONUT’ package 

v.1.0.2. The procedure used by COCONUT is described below in three main steps.  

Step 1: Standardize the healthy control data  

First, the data for the disease cases is separated from the healthy control subject data across all studies. 

Steps 1 and 2 use only the data for the healthy control subjects, and step 3 uses only the data from the 

disease cases. The gene expression data for each study should be normalised and on the same scale (e.g. 

the log2 scale). The expression value for gene g for sample j from study i is modelled as:  

𝑌𝑖𝑗𝑔 =  𝛼𝑔 + 𝑋𝛽𝑔 + 𝛾𝑖𝑔 +  𝛿𝑖𝑔휀𝑖𝑗𝑔. (5.1) 

Where 𝛼𝑔 represents the overall gene expression for gene g, X is a design matrix for sample conditions, 

𝛽𝑔 is the vector of regression coefficients corresponding to X and 휀𝑖𝑗𝑔 are the error terms, which are 

assumed to follow 휀𝑖𝑗𝑔~N(0, 𝜎𝑔
2). 𝛾𝑖𝑔 and 𝛿𝑖𝑔 are the additive and multiplicative technical effects of 

study i for gene g, respectively.  

The data is then standardised gene-wise so that all genes have similar overall mean and variance. This 

is done by first estimating the variance of gene g, as follows:  

�̂�𝑔
2 =

1

𝑁
∑ (𝑌𝑖𝑗𝑔 − �̂�𝑔 − 𝑋�̂�𝑔 − 𝛾𝑖𝑔)

2
𝑖𝑗  . (5.2) 

Where N is the total number of samples. The standardised data, 𝑍𝑖𝑗𝑔, are then calculated as:  

𝑍𝑖𝑗𝑔 =  
𝑌𝑖𝑗𝑔 − �̂�𝑔 − 𝑋�̂�𝑔

�̂�𝑔
 . (5.3) 
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Step 2: Obtain technical effect parameter estimates using parametric empirical priors 

It can be assumed that 𝑍𝑖𝑗𝑔 ~ N(𝛾𝑖𝑔 , 𝛿𝑖𝑔
2), but note that the 𝛾𝑖𝑔 parameters are not the same as those in 

Equation 4.1. Additionally, the parametric forms for prior distributions on the technical effect 

parameters are assumed to be: 𝛾𝑖𝑔 ~ N(𝛾𝑖 , 𝜏𝑖
2) and 𝛿𝑖𝑔

2
 ~ Inverse Gamma (𝜆𝑖 , 𝜃𝑖). The hyperparameters 

𝛾𝑖, 𝜏𝑖
2, 𝜆𝑖 and 𝜃𝑖 are then estimated empirically from the standardized data using the method of moments. 

The technical effect parameters 𝛾𝑖𝑔 and 𝛿𝑖𝑔
2
 are then estimated using the following equations:  

𝛾𝑖𝑔
∗ =

𝑛𝑖  �̅�𝑖
2𝛾𝑖𝑔 + 𝛿𝑖𝑔

2∗�̅�𝑖

𝑛𝑖  �̅�𝑖
2 + 𝛿𝑖𝑔

2∗  and 𝛿𝑖𝑔
2∗ =

�̅�𝑖 +
1
2

∑ (𝑍𝑖𝑗𝑔 − 𝛾𝑖𝑔
∗)2

𝑗

𝑛𝑗

2
+ �̅�𝑖 − 1

 . (5.4) 

Where 𝑛𝑖 is the number of studies and 𝑛𝑗  is the number of healthy control samples.  

Step 3: Adjust the diseased samples data for the technical differences between studies 

With the estimated parameters, 𝛾𝑖𝑔
∗ and  𝛿𝑖𝑔

2∗, now obtained for the control samples, the adjustment is 

then applied to the data for the corresponding disease cases, 𝐷𝑖𝑗𝑔. This forces the disease components 

of all cohorts to be from the same background distribution, while retaining their relative distance from 

the control component. The adjusted disease cases data, 𝐷𝑖𝑗𝑔
∗
, is obtained as follows:  

𝐷𝑖𝑗𝑔
∗ =  

�̂�𝑔

�̂�𝑖𝑔
∗  (𝐷𝑖𝑗𝑔 − 𝛾𝑖𝑔

∗) + �̂�𝑔 + 𝑋�̂�𝑔 (5.5) 

After the application of COCONUT, the efficacy of the co-normalisation was visualised using plots of 

the first two principal components of the gene expression data. PCA was performed in R v4.0.0.  

5.5.2 Results 

COCONUT was applied to the total discovery dataset consisting of 220 IPF cases and 90 healthy control 

subjects from the three studies. After this, all control subjects were removed from further analysis. Prior 

to COCONUT co-normalisation (Figure 5.3A), the data from the three cohorts were entirely separated 

in high-dimensional space due to technical differences between the studies. Therefore, clustering this 

data would simply recapitulate the study clusters. Whereas after COCONUT (Figure 5.3B), the data for 

the IPF cases from the three studies were overlapping in high-dimensional space, indicating that the 

technical differences between datasets had been reduced and that the pooled dataset was now suitable 

for clustering. However, there remained a degree of separation between the blue and yellow points in 

Figure 5.3B, suggesting that there may still be technical differences present between the co-normalised 

datasets GSE38958 and GSE93606.  
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FIGURE 5.3: Plots of the first two principal components of the gene expression data for the IPF samples from 

the three studies, before (A) and after (B) COCONUT co-normalisation. PC1 = the first principal component 

of the data, PC2 = the second principal component of the data.  

5.6 Clustering 

5.6.1 Methods 

Applying a single clustering algorithm (e.g. hierarchical clustering) for a chosen validity measure (e.g. 

connectivity) can often yield unstable, non-reproducible results198. Therefore, methods that attempt to 

find more robust solutions are becoming more popular, such as consensus clustering. Consensus 

clustering is an approach where multiple iterations of the chosen clustering method are performed on 

sub-samples of the dataset.  

To identify the optimal number of clusters in the pooled transcriptomic data, the Combined Mapping 

of Multiple clUsteriNg ALgorithms (COMMUNAL)191 approach was used. COMMUNAL is a method 

of unsupervised clustering that integrates data from multiple clustering algorithms, across a range of 

input variables (in this case, genes) and evaluates the validity of each number of clusters using multiple 

validity measures. COMMUNAL then outputs a 3-dimensional (3D) map that can be used to select the 

optimal number of clusters in the data, as well as the optimal number of genes to use in the clustering.  

In this study, COMMUNAL was run using consensus clustering versions of two algorithms, K-means 

clustering and Partitioning Around Medoids (PAM). K-means clustering was selected for its efficiency 

in large datasets199 and PAM, also known as k-medoids clustering, was selected as it is robust to noisy 

datasets and outliers200. The two methods are similar; both are iterative and attempt to split the data into 

groups by minimising the distance between the points labelled to be in a cluster and the centre point of 

that cluster. In k-means clustering this centre point is the average between the points in that cluster, 

whilst in PAM a data point (labelled a medoid) is chosen as the centre point. Both methods are 

unsupervised, although the number of clusters must be specified beforehand. 

A B 
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Five different metrics were used to assess the validity of the clustering for different numbers of clusters 

and genes. These were chosen automatically by COMMUNAL. All validity measures were standardized 

so that they were on a comparable scale, then the mean of all standardised validity measures was used 

to decide the optimal clustering. The first validity metric was the gap statistic201, which is the most 

widely used method for determining the optimal number of clusters in applied statistics and has been 

shown to perform well with gene expression data202. The gap statistic compares the total within-cluster 

variation for different values of K (the number of clusters) with their expected values under an 

appropriate null reference distribution. The estimate of the optimal number of clusters will be the value 

that maximizes the gap statistic, which indicates that the clustering structure is the most different from 

a random uniform distribution of points.  

The second validity measure used in this study was connectivity203. This metric indicates the degree of 

connectedness of the clusters and has a value between zero and infinity. In a system where the clustering 

has been effective, the clusters will be clearly separated and thus the connectivity will be minimised. 

The third validity metric was the average silhouette width204. The silhouette width coefficient ranges 

from -1 to 1 and indicates how well each data point lies within its cluster. A value close to 1 for a data 

point implies that it is a part of the correct cluster, whereas a value close to -1 means that the data point 

is assigned to the wrong cluster. Therefore, a high average silhouette width across all of the data points 

indicates that the data has been well-clustered. 

The fourth validity measure was the G3 metric205, which compares dissimilarity across clusters and will 

be minimised in a good clustering assignment. The final measure used to assess the validity of the 

clustering was Pearson’s gamma coefficient, which is a normalised version of Hubert’s gamma 

statistic206, where values lie between -1 and 1 and values close to 1 indicate a strong clustering.  

Figure 5.4 illustrates how these five validity measures vary for clustering assignments of different 

quality. The three plots in Figure 5.4 each show an example of a clustering assignment for omics data 

from the same 13 individuals, where clustering assignment 1 is very poor, clustering assignment 2 is 

acceptable and clustering assignment 3 is excellent. For clustering assignment 1, the worst assignment, 

we see that the connectivity and G3 metric are at their greatest whilst the average silhouette width and 

Pearson’s gamma coefficient are at their lowest. As the clustering assignments improve, the 

connectivity and G3 metric decrease towards 0 whilst the average silhouette width and Pearson’s 

gamma coefficient increase towards 1. The gap statistic only varies depending on the number of clusters 

and not the quality of a particular assignment, so it is the same for clustering assignment 1 and 2 (both 

of which have 4 clusters) but is greater in cluster assignment 3 (2 clusters). 
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FIGURE 5.4: Plots illustrating how the five validity measures used in the COMMUNAL clustering vary for different quality clustering assignments. Each plot shows the 

first two principal components of some example omics data for 13 subjects. Clustering assignment 1 is an example of a very poor clustering assignment, whilst clustering 

assignment 2 is acceptable and clustering assignment 3 is excellent.  
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The COMMUNAL R package outputs a 3D map, which allows the user to choose the best clustering 

assignment for the data. The map shows the mean of standardized values of each validity measure across 

the entire tested space. On the 3D map, blue squares indicate a potentially optimal clustering at a certain 

number of genes by finding the assignment where the mean combined validation metric is greatest. The 

absolute maximum K for any consensus subset is marked with a red square. The points where the blue 

and red squares overlap indicate stable optima. If stable optima at K clusters are seen over most of the 

tested space, this indicates the presence of a strong, consistent biological signal at this number of 

clusters. Once the optimal number of clusters had been selected, the optimal number of genes was then 

chosen as the lowest number of genes for which there were stable optima at this number of clusters, in 

order to minimise the amount of noise or redundant signal.  

Before applying COMMUNAL to the pooled data, the genes were ranked in order of variance, with the 

‘top’ 100 genes referring to the 100 genes with the greatest variance. The COMMUNAL algorithm was 

then applied (in R v.3.4.0 with the ‘COMMUNAL’ package v.1.1.0), using a range of input genes, from 

the top 100 to the top 5,000. The genes with the greatest variance were used as those were the most 

likely to be informative, so as to minimise the number of non-informative genes and increase the signal-

to-noise ratio.  

PCA and heatmaps (using R v.3.4.0 and the ‘gplots’ v.3.1.3 package) were used to visualise the 

separation of the clusters from the optimal cluster assignment in high-dimensional space. Heatmaps are 

a data visualisation technique where numerical values (which in this case are the levels of gene 

expression for each gene for each clustered individual) are represented by different colours. The samples 

in a heatmap are often ordered using hierarchical clustering for visualisation purposes, as this groups 

samples with similar transcriptomic profiles closely together. 

5.6.2 Results 

COMMUNAL was applied to the co-normalised data for a range of genes from the top 100 to the top 

5,000. In the resulting optimality map (Figure 5.5) there are stable optima at K=4 from 250 genes to 

1,000 genes, and at K=3 from 2,500 genes to 5,000 genes, as shown by the red and blue squares meeting. 

Despite the K=4 clustering assignment at 1,000 genes showing the highest mean standardized validity 

score of all tested clustering assignments, there were stable optima at K=3 clusters over a larger range 

of tested space, indicating a stronger biological signal. As such, K=3 was chosen as the optimal number 

of clusters in the pooled IPF dataset.  
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FIGURE 5.5: The 3D optimality map produced by COMMUNAL to identify the most robust number of clusters in the co-normalised data. The map 

shows the mean of standardized values of each validity measure across the entire tested space. On the 3D map, blue squares indicate a potentially 

optimal clustering at a certain number of genes by finding the assignment where the mean combined validation metric is greatest. The absolute 

maximum K for any consensus subset is marked with a red square. A higher validity score indicates a better clustering assignment and stable optima 
are the points where the blue and red squares meet. If stable optima at K clusters are seen over most of the tested space, this indicates the presence 

of a strong, consistent biological signal at this number of clusters. 
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The clustering at 2,500 genes (and K=3 clusters) was chosen as the optimal clustering assignment, under 

the assumption that using the fewest number of genes has the least amount of redundant signal. At this 

clustering assignment, 64 IPF cases were assigned to Cluster 1 (termed the red cluster), 95 were 

assigned to Cluster 2 (the blue cluster) and 37 were assigned to Cluster 3 (the yellow cluster). 24 

individuals (10.4%) were not assigned into the same cluster by the two algorithms and were instead 

labelled ‘unclustered’. 

The three clusters were clearly separated in high-dimensional space (Figure 5.6) and the unclustered 

samples generally laid at the boundaries between the three clusters, which could represent samples that 

could not be perfectly assigned to a given cluster. Since the intention was to use the clustered data to 

create a gene-expression based cluster classifier, and classifiers trained on data with fewer errors are 

more robust, these uncertain samples were removed from further analysis to improve the accuracy of 

the classifier.  

The clear separation of the clusters can also be seen when looking at a heatmap of gene expression for 

the clustered samples across the top 2,500 genes (Figure 5.7A). This heatmap shows that individuals 

who were assigned to the same cluster but originated from different studies showed differences in their 

gene expression profiles, particularly those in cluster 2. This suggests that some technical differences 

were still present in the co-normalised dataset. However, it is clear that the clustering assignment has 

not simply recapitulated the groups of subjects by study as Clusters 2 and 3 contain individuals from 

all three studies, while cluster 1 contained individuals from both GSE38958 and GSE33566.  

When the IPF samples in the heatmap were ordered using hierarchical clustering (Figure 5.7B), the 

separation of the three clusters was mostly maintained, showing that the clusters were robust to another, 

independent method of clustering to the two used by COMMUNAL. This also showed that in terms of 

gene expression, Clusters 1 and 3 (the red and yellow clusters) were the most similar and Cluster 2 was 

most different to the other two.  
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FIGURE 5.6: Plots of the first two principal components of the co-normalised gene expression data, both with (A) and without (B) the 10.4% of 

samples which were unclustered, showing that the clusters were clearly separated in high-dimensional space. 

 

A B 
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Cluster 1 Cluster 2 Cluster 3 

FIGURE 5.7: Heatmaps of gene expression for the clustered samples (x-axis) across the top 2,500 genes (y-

axis), without hierarchical clustering of the samples (A) and with hierarchical clustering of the samples (B). 

Blue inside the heatmap indicates low expression and red indicates high expression. In both plots, the genes 

have been hierarchically clustered for presentation purposes, the bar above the plot shows the cluster that 

subject was assigned in to (red = cluster 1, blue = cluster 2 and yellow = cluster 3) and the bar below the plot 

indicates which original study the subject was in (red = GSE38958, green = GSE33566 and blue = GSE93606). 
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5.7 Comparison of clinical traits across clusters 

5.7.1 Methods 

The next step was to characterize the clusters by comparing the clinical and demographic traits of the 

individuals with IPF in each cluster. This was done for each trait that was reported in at least one 

discovery cohort and one validation cohort. Histograms were plotted for each continuous variable and 

stratified by cluster to assess whether each variable represented a normal or skewed distribution. The 

statistical significance of the phenotypic differences across clusters was evaluated for all studies 

combined using a chi-square test for count data, an analysis of variance to compare means for non-

skewed continuous data and a Kruskal-Wallis rank-sum test207 to compare medians for skewed 

continuous data. For traits in the form of time-to-event data, Kaplan-Meier curves (Section 2.3) were 

used to approximate and visualise the survival function for these variables. Further, Cox PH models 

(Section 2.3) were fit with cluster as the sole independent variable and the time to the event as the 

response variable. Scaled Schoenfeld residuals (Section 2.3) were used to evaluate these models for 

breaches of the PH assumption.  

5.7.2 Results 

The following traits were evaluated: age, sex, ancestry (subjects were classed as having European or 

non-European ancestry), smoking status (ex-smokers and current smokers were defined as ‘ever 

smokers’ and compared to non-smokers), predicted FVC, predicted DLCO, predicted FEV1, GAP index 

and genotype for the MUC5B promoter variant rs35705950.  

One study (GSE93606) reported lung function data at multiple time points as well as patient survival 

information in the form of time-to-event data, including right-censored observations (which is when an 

individual drops out of the study or the study ends before the event of interest occurs). In this study, 

only baseline measurements of the lung function variables from GSE93606 were used. The proportion 

of subjects in GSE93606 who were observed to have died during the study was compared across clusters 

and a Cox PH model was used to evaluate differences in survival time across clusters.  

Table 5.6 shows the summary statistics for the subjects in each cluster by study, as well as for all studies 

combined. As there were no individuals from study GSE93606 who were assigned to the red cluster, 

smoking history, predicted FVC and survival information could not be assessed for the individuals in 

that cluster. However, with all studies combined, statistically significant differences in predicted DLCO 

were observed across clusters (P=0.009). In all three studies, individuals in the blue cluster had the 

greatest median predicted DLCO (indicating relatively good lung function), whilst the subjects in the 

yellow cluster had the lowest. Additionally, there was a significant difference in average score from the 

GAP index for IPF mortality (P=0.006), with those in the red cluster having the greatest GAP score 

(indicating those predicted to be at a higher risk of mortality) and those in the blue cluster having the 
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lowest average GAP score. Individuals in the blue cluster had a higher average predicted FVC and FEV1 

than those in the yellow cluster, although these differences were not statistically significant.  

Additionally, there was a statistically significant difference in survival across clusters, with death 

observed for 25% of subjects in the blue cluster and 67% of subjects in the yellow cluster (P=0.009) 

during the nearly 3-year follow-up of study GSE93606. A Kaplan-Meier plot (Figure 5.8) showed that 

survival over time was consistently poorer over time for those in the yellow cluster compared with those 

in the blue cluster. The median survival time for subjects in the yellow cluster was approximately 1 

year, whilst the median survival time for those in the blue cluster was greater than 33 months, though 

this could not be directly calculated as more than 50% of subjects were still known to be alive at the 

end of the study.  

The hazard ratio between the blue cluster and yellow cluster from a Cox PH model was 3.59 (95% CI: 

[1.40, 9.19], P=0.008), which meant that at any follow-up time individuals in the yellow cluster were 

estimated to be 3.59 times as likely to die as individuals in the blue cluster. There was no evidence that 

the PH assumption had been broken in this model (Additional Figure A.5.2).  

The phenotypic differences that were observed across clusters indicated that on average, the blue cluster 

contained the healthiest individuals that were at a relatively low risk of mortality, whilst the red and 

yellow clusters contained less healthy, higher risk individuals. This could be a significant finding; as 

the clustering was performed independently of clinical data, yet significant differences in lung function 

and mortality were observed between clusters, these clusters may be representative of distinct and 

clinically relevant endotypes of IPF. 
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TABLE 5.6: Comparison of clinical and demographic traits of clustered subjects from each study, as well as when all studies are combined. Data are presented as count 

(percentage), mean (standard deviation [sd]) or median (interquartile range [IQR]). NA = data not available, FVC=Forced vital capacity, DLCO = Diffusing capacity for carbon 

monoxide, FEV1 = Forced expiratory volume in one second, GAP index = Gender, Age and Physiology index for IPF mortality193, MUC5B genotype = genotype for the MUC5B 

promoter polymorphism rs35705950. ǂ: P-value for count data is from a chi-square test, test comparing means is analysis of variance and test comparing medians is the Kruskal-

Wallis log rank test. P-values less than 0.05 are highlighted in bold.  

Phenotypic trait GSE38958 (n=65) GSE33566 (n=83) GSE93606 (n=48) All studies combined (n=196) 
 

Red 

cluster 

Blue 

cluster 

Yellow 

cluster 

Red 

cluster 

Blue 

cluster 

Yellow 

cluster 

Red 

cluster 

Blue 

cluster 

Yellow 

cluster 

Red 

cluster 

Blue 

cluster 

Yellow 

cluster 

P-

valueǂ 

Total 

n used 

n subjects in cluster 22 39 4 42 32 9 0 24 24 64 95 37   

Age (years)  

(mean, sd) 

70 .0 

(6.3) 

68.3 

(7.9) 

64.0 

(2.7) 

66.7 

(9.8) 

67.0 

(14.1) 

67.0 

(12.1) 
- 

64.8 

(5.9) 

70.3 

(8.8) 

67.8 

(8.9) 

66.9 

(10.2) 

68.8 

(9.4) 
0.592 188 

Male  

(%) 

20 

(91.0%) 

30 

(77.0%) 

4 

(100%) 

32 

(76.2%) 

21 

(65.6%) 

3 

(33.3%) 
- 

15 

(62.5%) 

16 

(66.7%) 

52 

(81.3%) 

66 

(69.5%) 

23 

(62.2%) 
0.091 196 

European ancestry 

(%) 

17 

(81.0%) 

29 

(82.9%) 

3 

(75.0%) 
NA NA NA - NA NA 

17 

(81.0%) 

29 

(82.9%) 

3 

(75.0%) 
0.883 60 

Ever smoker  

(%) 
NA NA NA NA NA NA - 

15 

(62.5%) 

18 

(78.3%) 
- 

15 

(62.5%) 

18 

(78.3%) 
0.389 47 

Death observed 

during study (%) 
NA NA NA NA NA NA - 

6 

(25%) 

16 

(66.7%) 
- 

6 

(25%) 

16 

(66.7%) 
0.009 48 

FVC % predicted 

(median, IQR) 

59.5 

(19.5) 

65.0 

(24.0) 

51.5 

(7.8) 

77.0 

(36.0) 

66.0 

(46.0) 

73.0 

(17.5) 
- 

71.5 

(27.7) 

60.8 

(24.1) 

63 

(35.0) 

70.5 

(30.1) 

60.1 

(23.4) 
0.342 154 

DLCO % predicted 

(median, IQR) 

34.5 

(17.5) 

49.0 

(21.0) 

28.5 

(21.0) 

65.0 

(37.0) 

66.0 

(40.0) 

30.0 

(30.0) 
- 

38.1 

(17.1) 

36.6 

(15.9) 

35.0  

(30.0) 

45.0 

(29.2) 

34.4 

(17.3) 
0.009 133 

FEV1 % predicted 

(median, IQR) 
NA NA NA NA NA NA - 

74.9 

(23.1) 

65.4 

(22.7) 
- 

74.9 

(23.1) 

65.4 

(22.7) 
0.216 48 

GAP index 

(mean, sd) 

5·3  

(1·3) 

3·9 

(1·3) 

4·5 

(1·3) 

4·3 

(1·5) 

4·1 

(1·6) 

4·3 

(3·1) 
- 

3·7 

(1·8) 

4·4 

(1·6) 

4·9 

(1·4) 

3·9 

(1·5) 

4·4 

(1·7) 
0·006 132 

MUC5B genotype:    

GG (%) 
NA NA NA 

5 

(29·4%) 

6 

(28·6%) 

3 

(60·0%) 
- 

5 

(26·3%) 

11 

(50·0%) 

5 

(29·4%) 

11 

(27·5%) 

14 

(51·9%) 
0·230 84 

MUC5B genotype:  

GT (%) 
NA NA NA 

10 

(58·8%) 

14 

(66·7%) 

2 

(40·0%) 
- 

12 

(63·2%) 

8 

(36·4%) 

10 

(58·8%) 

26 

(65·0%) 

10 

(37·0%) 
  

MUC5B genotype:   

TT (%) 
NA NA NA 

2 

(11·8%) 

1 

(4·8%) 

0 

(0%) 
- 

2 

(10·5%) 

3 

(13·6%) 

2 

(11·8%) 

3 

(7·5%) 

3 

(11·1%) 
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FIGURE 5.8: Kaplan-Meier curves and corresponding 95% confidence intervals showing survival over time for 

the subjects from study GSE93606, stratified by the cluster which they were assigned to in this study. The dashed 

line indicates the median survival time for those in the yellow cluster. The p-value shown on the plot is from a 

log-rank test testing the two curves for equality. 
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5.8 Gene enrichment analysis 

5.8.1 Methods 

With the clusters having been characterized using clinical information, further characterization using 

gene enrichment analysis was performed to investigate the biological mechanisms that could be driving 

the observed differences in lung function and survival between clusters. Enrichment analysis is a 

method that is often used to search a list of genes to identify classes of genes that are statistically 

overrepresented. Classes of interest often include biological processes or biological pathways. In 

enrichment analysis, biological processes consist of broad terms for the purpose of a gene (such as 

immune response), whilst the biological pathways are more specific and denote that a gene is known to 

be featured along a particular pathway (such as the proinsulin C-peptide signalling pathway). 

First, each of the 2,500 genes used in the optimal COMMUNAL clustering assignment were assigned 

to the cluster in which its expression was most different to its expression in the other two clusters, as 

this suggests that that gene is contributing to the identity of that cluster. This was achieved by 

performing three ANOVA tests for each gene (one for each cluster), each comparing the expression of 

that gene in subjects within a given cluster against the expression of subjects in both other clusters. 

Each gene was then assigned to the cluster in which it had the lowest ANOVA p-value. One benefit of 

this approach is that the ANOVA tests allow for filtering based on statistical significance; a nominal p-

value significance threshold of 0.05 was introduced and genes whose lowest ANOVA p-value was 

greater than this threshold were removed. The rationale for the introduction of this filtering step was 

that removing genes that were not associated with any cluster would reduce noise and strengthen the 

gene enrichment analysis for each cluster. The threshold for statistical significance was kept at a 

nominal level as a correction for all 7,500 ANOVA tests would have likely left too few genes assigned 

to each cluster to successfully perform the enrichment analysis.  

Then, gene enrichment analysis was performed separately on the three resulting gene lists using the R 

package ‘metabaser’. This was used to search databases of gene ontology terms for statistically 

overrepresented biological processes and biological pathways. At the time that the analysis was 

performed, there were 17,552 biological processes and 12,222 biological pathways in the database 

accessed by metabaser. In gene enrichment analysis, overrepresented terms are given an enrichment 

score, which is similar to a weighted Kolmogorov-Smirnov statistic208. The statistical significance of 

the term is then determined by comparing the enrichment score to a null distribution. However, as a 

large number of gene ontology terms are being compared, a correction for multiple testing must be 

implemented. For instance, metabaser reports ‘q-values’, which are p-values that have been adjusted 

for multiple tests using the false-discovery rate.  

Gene ontology terms with q-value < 0.05 were deemed statistically significant in this analysis. The most 

significantly enriched biological pathways for each cluster were visualised using Sankey diagrams to 
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show which genes corresponded to which enriched pathways. Additionally, the gene lists of each cluster 

were searched for the presence of the nearest gene for any of the 14 variants that were genome-wide 

significant in the largest GWAS meta-analysis of IPF susceptibility to-date209. The 14 genes were as 

follows: AKAP13, ATP11A, DEPTOR, DPP9, DSP, FAM13A, LRRC34, IVD, KIF15, MAD1L1, MAPT, 

MUC5B, TERC and TERT. Following this, enrichment analysis was performed on the genes of each 

cluster to investigate whether those genes were statistically overconnected (in terms of direct gene 

regulation) to any of the IPF-associated genes listed above. If the genes that were assigned to a particular 

cluster were found to be overconnected to one or more of the IPF-associated genes (say the exact 

number of overconnected IPF-associated genes is N), then a hypergeometric test was performed to 

approximate the statistical significance of the finding that N out of the 14 IPF-associated genes were 

present within the list of overconnected genes for that cluster.  

5.8.2 Results 

Each of the 2,500 genes used in the optimal COMMUNAL cluster classification were assigned into the 

cluster in which their expression was most different to all other clusters. 814 genes were assigned to the 

red cluster, 866 to the blue cluster and 820 to the yellow cluster. Genes whose lowest ANOVA p-value 

was greater than 0.05 were then removed, leaving 769 genes in the red cluster, 839 in the blue cluster 

and 784 in the yellow cluster. Gene enrichment was then performed on each cluster separately.  

Red cluster 

Several biological processes were significantly enriched in the red cluster, as shown in Table 5.7. The 

most significantly enriched terms were related to electron transport and cellular respiration. There were 

32 biological pathways that were significantly enriched for the genes in the red cluster. The 20 most 

significantly enriched pathways for this cluster are shown in Figure 5.9, which is a Sankey diagram that 

shows which genes from the red cluster correspond to each of the pathways. The 20 most significantly 

enriched pathways included cell adhesion extracellular matrix remodelling, which is relevant to IPF as 

the disease is a result of deposition of extracellular matrix within the lung parenchyma210. In addition, 

the most significantly enriched pathways for the red cluster included two pathways related to TGF-β 

signalling (TGF-β signalling via kinase cascades in breast cancer and development TGF-β receptor 

signalling). The TGF-β signalling pathway is a well-known driver of fibrosis211,212,212,213,213 and so these 

findings could support the idea that the red cluster represents a genuine endotype of IPF. Other enriched 

pathways included those related to adipocytes (cells that are specialised in storing energy as fat) and 

metabolism. 
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TABLE 5.7: Significantly enriched (q-value <0.05) biological processes for the 769 genes assigned to the 

red cluster.  

Biological process 
Enrichment 

score 
p-value q-value 

Mitochondrial ATP synthesis coupled electron transport 7.18 1.0×10-7 7.8×10-4 

ATP synthesis coupled electron transport 7.12 1.2×10-7 7.8×10-4 

Respiratory electron transport chain 6.88 1.4×10-7 7.8×10-4 

Cellular respiration 5.95 1.3×10-6 0.005 

Oxidative phosphorylation 5.84 4.0×10-6 0.012 

Electron transport chain 5.56 4.3×10-6 0.012 

Homeostasis of number of cells 5.12 1.1×10-5 0.024 

Homeostatic process 4.54 1.7×10-5 0.032 

 

None of the 14 genes suspected to be associated with IPF susceptibility were assigned to the red cluster, 

nor were they statistically overconnected to the genes that were assigned to this cluster.  
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FIGURE 5.9: A Sankey diagram for the red cluster showing which genes correspond to the 20 most significantly enriched biological pathways.
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Blue cluster 

427 biological processes were significantly enriched in the blue cluster (q-value <0.05). The top 20 

most significantly enriched processes are shown in Table 4.8. The top processes were highly significant, 

with q-values less than 5×10-15. The 20 most significantly enriched biological pathways for the blue 

cluster (Figure 5.10) included biological pathways relating to gene regulation, DNA repair, cell cycle 

and apoptosis. As discussed in Section 4.4, apoptosis has been previously implicated in IPF 

development and apoptosis-based therapies for IPF have been proposed. Another notable significantly 

enriched biological pathway for the blue cluster was ‘HIF-1 targets’, a pathway related to hypoxia. 

Recent findings have shown that hypoxia induces the proliferation of pulmonary fibroblasts214 and so it 

is plausible that dysregulation of the HIF-1 targets pathway could represent a causal mechanism for the 

development of IPF, thus supporting the hypothesis that the blue cluster could represent an endotype of 

the disease.  

TABLE 5.8: The 20 most significantly enriched (q-value <0.05) biological processes for the 839 genes 

assigned to the blue cluster.  

Biological process Enrichment score p-value q-value 

Cell activation 12.78 2.2×10-27 3.7×10-24 

Immune system process 11.33 1.7×10-25 1.4×10-21 

Leukocyte activation 11.76 2.4×10-23 1.2×10-19 

Immune response 9.83 6.0×10-19 2.5×10-15 

Regulation of immune system process 9.75 1.5×10-18 4.9×10-15 

Regulated exocytosis 8.90 2.5×10-14 6.9×10-11 

Response to stimulus 7.30 1.3×10-13 3.1×10-10 

Defence response 8.16 1.6×10-13 3.2×10-10 

Multi-organism process 7.74 1.9×10-13 3.5×10-10 

Lymphocyte activation 8.73 4.5×10-13 7.5×10-10 

Translational initiation 9.72 6.4×10-13 9.1×10-10 

Symbiotic process 8.24 6.6×10-13 9.1×10-10 

Interspecies interaction between organisms 8.02 1.6×10-12 2.1×10-9 

Peptide metabolic process 8.31 1.9×10-12 2.1×10-9 

Exocytosis 8.06 1.9×10-12 2.1×10-9 

Peptide biosynthetic process 8.43 2.9×10-12 2.9×10-9 

Translation 8.46 3.2×10-12 3.1×10-9 

Regulation of biological quality 7.14 3.8×10-12 3.5×10-9 

Myeloid leukocyte activation 8.09 4.1×10-12 3.6×10-9 

Regulation of multicellular organismal process 7.20 5.0×10-12 4.0×10-9 

 

The IPF-associated gene FAM13A was one of the genes that was assigned to the blue cluster, though it 

did not belong to any of the top 20 significantly enriched biological pathways. Additionally, the genes 
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in this cluster were statistically overconnected to five other IPF-associated genes. These were: AKAP13, 

DSP, LRRC34, MAPT and TERT. The hypergeometric p-value was calculated to be 0.020, indicating 

that it is significant that five IPF-associated genes were overconnected to the genes in this cluster and 

this is more than would be expected due to chance.  
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FIGURE 5.10: A Sankey diagram for the blue cluster showing which genes correspond to the 20 most significantly enriched biological pathways. 
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Yellow cluster 

952 biological processes were significantly enriched in the yellow cluster. The most highly significant 

processes were related to the immune system response (Table 5.9). These were very highly significant, 

with q-values lower than 1×10-40. The significantly enriched biological pathways for this cluster (Figure 

5.11) included immune system response pathways related to IL-6 signalling and IL-3 signalling. The 

role of the immune response in IPF has been historically difficult to elucidate, however all stages of 

fibrosis are accompanied by innate and adaptive immune responses215 and recent findings suggest that 

immune dysregulation is a key driver of disease pathophysiology216. The finding that genes involved in 

immune response pathways are dysregulated in the individuals in the yellow cluster could therefore 

support the idea that this cluster represents a genuine endotype of the disease. 

TABLE 4.9: The 20 most significantly enriched (q-value <0.05) biological processes for the 784 genes 

assigned to the yellow cluster.  

Biological process 
Enrichment 

score 
p-value q-value 

Cell activation 20.78 1.3×10-60 1.5×10-56 

Immune response 19.53 1.8×10-60 1.5×10-56 

Leukocyte activation 20.87 3.3×10-59 1.8×10-55 

Immune system process 18.04 1.6×10-57 6.6×10-54 

Immune effector process 19.19 1.2×10-52 4.0×10-49 

Myeloid leukocyte activation 20.63 1.7×10-52 4.7×10-49 

Leukocyte activation involved in immune response 20.07 9.2×10-51 2.2×10-47 

Cell activation involved in immune response  19.98 1.9×10-50 3.9×10-47 

Neutrophil activation 20.19 1.0×10-48 1.9×10-45 

Granulocyte activation 20.02 3.5×10-48 5.7×10-45 

Neutrophil activation involved in immune response 19.55 4.0×10-46 6.1×10-43 

Leukocyte degranulation 19.42 5.0×10-46 6.8×10-43 

Neutrophil degranulation 19.43 1.3×10-45 1.7×10-42 

Myeloid cell activation involved in immune response 19.21 1.5×10-45 1.8×10-42 

Neutrophil mediated immunity 19.23 3.6×10-45 3.9×10-42 

Myeloid leukocyte mediated immunity 18.99 1.1×10-44 1.1×10-41 

Leukocyte mediated immunity 17.11 4.3×10-43 4.2×10-40 

Secretion by cell 16.63 3.9×10-41 3.5×10-38 

Export from cell 16.50 5.9×10-41 5.2×10-38 

Defence response 15.95 1.2×10-40 1.0×10-37 

 

None of the 14 IPF-associated genes were found in the gene list for the yellow cluster. However, 4 of 

these genes were found to be statistically overconnected to the genes in this cluster. These were as 

follows:  DSP, MAD1L1, MAPT and TERT. The statistical significance of this was approximated to be 
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P=0.008 using a hypergeometric test, again indicating that this was significantly more than would be 

expected due to chance. 
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FIGURE 5.11: A Sankey diagram for the yellow cluster showing which genes correspond to the 20 most significantly enriched biological pathways. 
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5.9 Development of gene-expression based classifier  

5.9.1 Methods 

Following the gene enrichment analysis, a gene expression-based classifier with the ability to assign 

new IPF cases to one of the three clusters was designed. Classification is a method of supervised 

machine learning which uses a correctly labelled training dataset to predict which category new 

observations belong in.  

This classifier was designed following the approach described by Sweeney et al. in their cluster analysis 

of bacterial sepsis94. The classifier does not use absolute levels of gene expression to make predictions, 

but instead utilizes relative gene expression between individuals in a cohort. This means that the 

classifier can be applied to a group of disease cases from the same study without first requiring the 

removal of technical effects, as the (scaled) relative gene expression between those individuals will be 

the same regardless of the presence of technical effects. This allowed for the use of datasets that did not 

contain data for healthy controls.  

Classification accuracy was the most important feature of the classifier. However, the ability to assign 

individuals based on as few genes as possible was beneficial for three reasons. First, trimming the 

classifier would have reduced the risk of overfitting, which is a common problem in machine learning. 

Second, a classifier that requires the measurement of fewer genes whilst maintaining classification 

accuracy would be more cost-effective in a clinical setting as a prognostic biomarker. Finally, as 

validation studies may not have measured all 2,500 genes used in the original clustering, designing the 

classifier to use as few genes as possible lowered the probability of encountering unmeasured genes, 

and thus being unable to fully utilize the classifier.  

Making predictions with the classifier was a two-stage process. First, each subject was given a 

classification score for each cluster. Then, these scores were used to fit a multinomial logistic regression 

model with the ability to predict the most likely cluster assignment for new samples.  

To determine the optimal genes to include in the classifier for the IPF data, an R function called 

‘classifiergenes’ was produced (see Appendix C for R code). This function was applied to each cluster 

separately and performed a greedy forward search to determine an optimal combination of genes to 

differentiate between subjects in that cluster vs all other clusters. The function required two input 

arguments: the first was an 𝑖 × 𝑗 gene expression matrix where each column represented a subject and 

each row represented a gene. The second argument was a numerical vector that indicated which columns 

contained the subjects that were assigned into the cluster under question. 

The function performed an iterative algorithm, which chose the best gene at each iteration to add to the 

classifier. The algorithm began by fitting a receiver operating characteristic (ROC) curve to the gene 

expression data for each gene to assess how well each gene could discern between the subjects in that 
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particular cluster against subjects in all other clusters. This was evaluated using the area under the ROC 

curve (AUC), which ranges from 0.5 to 1. The gene with the greatest AUC indicated the gene that had 

the best combination of sensitivity and specificity when differentiating between subjects in that cluster 

against all other clusters. Thus, this gene should have been included in the cluster classifier. This optimal 

gene was then added to a list of over-expressed genes or under-expressed genes, based on whether that 

gene was more highly expressed in subjects from that cluster compared to the average expression across 

all subjects. Following that, a classification score was calculated for each remaining gene and for each 

subject. This score was calculated as the geometric mean of the over-expressed genes for subject j minus 

the geometric mean of the under-expressed genes for subject j, if gene i was included in the calculation. 

ROC curves were then fit to the classification scores for each gene, and the gene whose inclusion led 

to the greatest improvement in AUC was selected and added to the over/under-expressed gene list. This 

was then repeated for all remaining genes until no additional gene could have improved the AUC.  

At each iteration, classifiergenes output the name of the optimal gene to include in the classifier as well 

as the AUC of the classifier for that cluster once that optimal gene had been added. The gene expression 

data for the over-expressed and under-expressed genes were then saved (separately) to the local R 

environment by the classfiergenes function. Once the function had been applied to all K clusters, the 

optimal genes to include in the classifier were known, as well as whether each gene was over-expressed 

or under-expressed in that cluster.  

Using the same formula as described above, K classification scores were then calculated for each subject 

using only the optimal genes in each cluster. These scores were then mean centred around zero and 

scaled to reflect a Z-score (i.e. standard deviation equal to 1). Ideally, individuals that belonged to a 

certain cluster should have had a high classification Z-score for that cluster and low classification Z-

scores for the other clusters.  

The classification Z-scores were then used to fit a multinomial logistic regression model, with cluster 

as the independent categorical variable and the Z-scores from each cluster as the dependent variables. 

This model had the ability to take data from new individuals and predict which cluster they were each 

most likely to belong in, using only expression data from the optimal genes in the classifier. The 

probability of individual i belonging to cluster C was calculated using the following equation:  

Pr(𝑌𝑖 = 𝐶) =  
𝑒𝛽𝐶·𝑋𝑖

∑ 𝑒𝛽𝑘·𝑋𝑖𝐾
𝑘=1

 (5.6) 

Where 𝛽𝐶 denotes the model coefficients from the multinomial logistic regression model for cluster C, 

Xi is the vector of classification Z-scores for subject i and there is a total of K clusters. One cluster must 

be used as a reference class in the model and as such the model coefficients for this cluster were all 

equal to zero. 
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5.9.2 Results 

The classifiergenes function was applied to the pooled, co-normalised gene expression data for each 

cluster separately, using all 196 IPF cases that were successfully clustered in the discovery analysis. To 

reduce the computational burden, only the genes that were assigned into each cluster prior to the gene 

enrichment analysis (Section 5.8) were used. The resulting optimal 23-gene classifier is shown in Table 

5.10.  

TABLE 5.10: The 23 genes in the optimal classifier. ‘Up genes’ refer to genes that were more highly expressed 

in the subjects for that cluster compared to the mean expression across all subjects, and ‘down genes’ refer to 

genes that were less highly expressed in the subjects in that cluster.  

Cluster 1 (red) Cluster 2 (blue) Cluster 3 (yellow) 

Up genes Down genes Up genes Down genes Up genes Down genes 

KCNK15 RPF1 NOP58   CA4   

SORBS1   PSMA5   BCL2A1   

HBB   RASGRP1   UGCG   

EIF4G1   IFI30   FPR2   

    HLA-DRA       

    ATM       

    ECHDC2       

    EXOSC8       

    BLVRA       

    PSMD11       

    SLC38A1       

    MRPL41       

    PPIA       

    AES       

 

Classification scores were calculated for each cluster by calculating the geometric mean of the 

expression for the up genes minus the geometric mean of the expression of the down genes. For 

example, the cluster 1 classification scores were calculated as: (𝐾𝐶𝑁𝐾15 × 𝑆𝑂𝑅𝐵𝑆1 × 𝐻𝐵𝐵 ×

𝐸𝐼𝐹4𝐺1)
1

4 − 𝑅𝑃𝐹1. These scores were then mean centred and scaled to reflect Z-scores (Figure 5.12). 

As desired, the Z-scores based on the genes from each particular cluster were greatest on average for 

the subjects assigned to that cluster. This was especially effective for the Z-scores based on the Cluster 

2 (blue cluster) and Cluster 3 (yellow cluster) classifier genes, where there was minimal overlap in the 

classification Z-score distributions between the individuals in those clusters and the individuals in the 

other two clusters.  
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FIGURE 5.12: The distribution of classification Z-scores for each cluster. The x-axis represents subjects, stratified by the cluster they were assigned to. 
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A multinomial logistic regression model was then fit with cluster as the independent variable and the 

three types of classification Z-scores as the dependent variables (Table 5.11). Cluster 1 was chosen as 

the reference cluster and so the coefficients for this cluster were all zero and are not shown in Table 

5.11. The coefficients for this model were quite large, which may indicate that the model was overfit to 

the data. The feasibility of classifiers with fewer genes that may be less overfit to the data is explored 

in Section 5.11.  

TABLE 5.11: Coefficients of the multinomial logistic regression fit to the classification scores for 

clusters 2 and 3. The coefficients for the reference cluster (cluster 1) are all zero and have been 

omitted.  

 Intercept Cluster 1 score Cluster 2 score Cluster 3 score 

Cluster 2 -21.22 -36.99 258.09 21.18 

Cluster 3 -79.98 -93.07 -29.62 107.79 

 

The following example demonstrates how this model may be used to classify new subjects to one of the 

three clusters. Say subject i had the classification Z-scores Z1 = 0.5, Z2 = 0 and Z3 = 2.  

First, we calculate the denominator from Equation 5.6, which will be the same for all clusters:  

∑ 𝑒𝛽𝑘·𝑋𝑖

𝐾

𝑘=1

= 𝑒0 + 𝑒−21.2+(0.5×−37.0)+(0×258.1)+(2×21.2) + 𝑒−80.0+(0.5×−93.1)+(0×−29.6)+(2×107.8)

= 𝑒0 + 𝑒2.7 + 𝑒89.1  

Then, the probability of this subject belonging to each cluster may be calculated as follows: 

Pr(𝑌𝑖 = 1) =  
𝑒𝛽1·𝑋𝑖

∑ 𝑒𝛽𝑘·𝑋𝑖𝐾
𝑘=1

=  
𝑒0

𝑒0 + 𝑒2.7 + 𝑒89.1
≈ 0 

Pr(𝑌𝑖 = 2) =  
𝑒𝛽2·𝑋𝑖

∑ 𝑒𝛽𝑘·𝑋𝑖𝐾
𝑘=1

=
𝑒−21.2+(0.5×−37.0)+(0×258.1)+(2×21.2)

𝑒0 + 𝑒2.7 + 𝑒89.1
=

𝑒2.7

𝑒0 + 𝑒2.7 + 𝑒89.1
≈ 0 

Pr(𝑌𝑖 = 3) =  
𝑒𝛽3·𝑋𝑖

∑ 𝑒𝛽𝑘·𝑋𝑖𝐾
𝑘=1

=
𝑒−80.0+(0.5×−93.1)+(0×−29.6)+(2×107.8)

𝑒0 + 𝑒2.7 + 𝑒89.1
=

𝑒89.1

𝑒0 + 𝑒2.7 + 𝑒89.1
≈ 1 

The model predicts that subject i would almost certainly belong to Cluster 3.  

This model was used to re-assign each of the 196 discovery subjects to a cluster. It correctly assigned 

100% of subjects (Table 5.12), which means that the 23 gene classifier was able to completely 

recapitulate the original clustering that had used expression data from 2,500 genes. As the classifier was 

shown to be highly accurate, it was deemed suitable to apply it to the additional independent validation 

datasets.  
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TABLE 5.12: A two-way table comparing ‘True’ assignment of individuals from the 

discovery analysis (determined using COMMUNAL with 2,500 genes) to the 

reassignment of these individuals using the 23 gene classifier.  

  
True cluster 

Cluster 1 Cluster 2  Cluster 3 

Predicted  

cluster 

Cluster 1 64 0 0 

Cluster 2 0 95 0 

Cluster 3 0 0 37 

 

5.10 Validation of classifier in independent datasets 

5.10.1 Methods 

The classifier was designed to use a minimal number of genes for the reasons described in Section 5.9.1. 

However, using a small number of genes in the classifier meant that the individual contribution of each 

gene was greater than the contribution of a single gene in a classifier that considered many genes. As a 

result, applying the classifier to a dataset with even a single required gene missing could lead to a large 

decrease in classification accuracy. Although, if the classifier were to be used as a clinical tool, the 

assay would be designed in such a way that all necessary genes could be measured in all patients. 

Therefore, in the validation stage the classifier was applied only to datasets that had measured all of the 

genes that are used in the classifier as this would provide the most accurate representation of the 

classifier’s performance in a potential clinical setting.  

Any validation datasets that did not contain data from all 23 genes in the classifier were excluded. In 

addition, all data from non-IPF cases were removed. The gene expression data from the remaining 

studies and individuals in each study were then quantile normalised and put on the log2 scale. The cluster 

classifier was applied to each dataset separately, producing each subject a classification score for each 

cluster. These classification scores were then fed into the multinomial logistic regression model (Table 

5.11), which assigned each IPF case to a cluster. Clinical and demographic traits were then compared 

across clusters for the individuals in each validation study separately, as well as across clusters with all 

validation studies combined. This was performed using the same methods as described in Section 5.7.1. 

5.10.2 Results 

There were four sets of gene expression data from blood that were reserved for validation, with GEO 

accession codes GSE133298, GSE132607, GSE27957 and GSE28042. GSE133298 was the only 

dataset that did contain information for all 23 genes in the cluster classifier (13 of the 23 were present 

in the dataset) and was excluded from the analysis. The data from GSE132607 comes from a study 

(unpublished as of April 2022) that aimed to develop a predictor of FVC progression by studying gene 

expression differences in 74 IPF cases over time. The data from GSE27957 and GSE28042 both 

originate from the same study185, where the data in GSE27957 (n=45 IPF subjects) was used in 

discovery and the data in GSE28042 (n=75 IPF subjects) was used as independent validation data. This 
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study was described previously (Section 5.1.2). In brief, the authors developed a 52-gene signature that 

had the ability to successfully predict transplant-free survival in patients with IPF.  

Summary statistics for the IPF cases in each of the three cohorts are shown in Table 5.13. In all three 

cohorts, the average individual was in their late sixties, male and of European ancestry. The individuals 

in each study were similar in terms of the lung function measures FVC and DLCO. Survival data was 

available for the individuals in GSE27957 and GSE28042, where less than half of the IPF cases in each 

study were observed to have died during the 3.5 year follow-up period (Additional Figure A.5.3).  

TABLE 5.13: Summary statistics for the IPF subjects in each of the three cohorts that were used 

in the validation stage of this study. Data are presented as percentage or mean (standard deviation 

[sd]). FVC = forced vital capacity, DLCO = diffusing capacity of lung for carbon monoxide.  

Phenotypic trait 
GSE132607 

(n=74) 
GSE27957 

(n=45) 
GSE28042 

(n=75) 

Age (years) (mean, sd) 66.6 (7.6) 67.1 (8.2) 68.9 (8.1) 

Sex (% male) 70.3% 88.9% 69.3% 

Ancestry (% European) 94.6% 82.2% 97.3% 

FVC % predicted (mean, sd) 69.7 (18.4) 60.6 (14.3) 65.4 (16.7) 

DLCO % predicted (mean, sd) 45.6 (15.4) 43.4 (17.7) 48.9 (18.6) 

Mortality (% death observed during study) Unknown 37.8% 32.0% 

 

The gene expression-based cluster classifier was applied to the IPF cases in each cohort and assigned 

each individual to a cluster (Table 5.14). Phenotypic traits were compared across clusters and the results 

for all validation studies combined are shown in Table 5.15. Comparisons of phenotypic traits for each 

validation study separately can be found in the appendix (Additional Table B.5.3). Again, there were 

significant differences in mortality between clusters, with death observed for 22% of subjects in the 

blue cluster, 44% of subjects in the red cluster and 63% of subjects in the yellow cluster (P=0.003). 

Additionally, there was a significant difference in the proportion of ever smokers across clusters, with 

the blue cluster having the lowest proportion of ex/current smokers and the yellow cluster having the 

greatest proportion. As in the discovery stage, those in the blue cluster had the greatest average DLCO 

and lowest GAP score, although these variables were not significantly different across clusters in the 

validation stage (P=0.274 and P=0.377 respectively).  

TABLE 5.14: The number of IPF subjects from each validation study that were 

assigned into each of the three clusters.  
 

Cluster 1 

(red) 

Cluster 2 

(blue) 

Cluster 3 

(yellow) 

Total in 

study 

GSE132607 19 35 20 74 

GSE27957  14 26 5 45 

GSE28042 25 39 11 75 

Total in cluster 58 100 36 194 
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All validation studies combined (n=194) 

 Cluster 1 

(red) 

Cluster 2 

(blue) 

Cluster 3 

(yellow) 
P-value 

Total 

n used 

No. of 

datasets 

Total subjects in cluster 58 100 36    

Phenotypic Trait       

Age (mean, sd) 68.6 (8.1) 67.7 (7.7) 65.8 (8.6) 0.242 194 3 

Male (%) 44 (75.9%) 70 (70.0%) 30 (83.3%) 0.276 194 3 

European Ancestry (%) 56 (96.6%) 91 (91.0%) 33 (91.7%) 0.412 194 3 

DLCO % predicted (median, IQR) 43.0 (25.1) 46.0 (22.2) 43.3 (24.8) 0.274 194 3 

GAP index (mean, sd) 4.3 (1.6) 3.9 (1.5) 4.1 (1.5) 0.377 193 3 

Death observed during study (%) 17 (43.6%) 14 (21.5%) 10 (62.5%) 0.003 120 2 

FEV1 (median, IQR) 73.5 (21.7) 74.0 (23.8) 81.8 (12.1) 0.804 75 1 

Ever smoker (%) 12 (63.2%) 19 (54.3%) 18 (90%) 0.025 74 1 

MUC5B genotype: GG (%) 3 (17.6%) 6 (18.8%) 3 (20.0%) 0.922 64 1 

MUC5B genotype: GT (%) 13 (76.5%) 25 (78.1%) 12 (80.0%)    

MUC5B genotype: TT (%) 1 (5.9%) 1 (3.1%) 0 (0%)    

TABLE 5.15: Comparison of clinical and demographic traits across clusters for all validation studies combined. Data are 

presented as count (percentage), mean (standard deviation [sd]) or median (interquartile range [IQR]). NA = data not 

available, FVC=Forced vital capacity, DLCO = Diffusing capacity for carbon monoxide, GAP index = Gender, Age and 

Physiology index for IPF mortality193, FEV1 = Forced expiratory volume in one second, MUC5B genotype = genotype for 

the MUC5B promoter polymorphism rs35705950. Significant P-values (P < 0.05) are highlighted in bold. 
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In terms of survival over time (Figure 5.13), individuals in the blue cluster fared the best and those 

in the yellow cluster fared significantly worse, which was consistent with the findings from the 

discovery stage. Individuals in the red cluster also had consistently poorer survival than those in the 

blue cluster. This too is consistent with the discovery stage findings: whilst survival information was 

not directly available for the individuals in cluster 1 in the discovery stage, their significantly low 

average DLCO and high average GAP score was suggestive of poor survival. The median survival time 

was at approximately 17 months for those in the yellow cluster and 28 months for those in the red 

cluster. Again, median survival could not be directly calculated for those in the blue cluster as the 

survival probability for this group never dropped below 0.5, so the median survival time for this 

group must be greater than 45 months.  

A Cox PH model was fit to the survival data, again with the blue cluster as the reference group (Table 

5.16). There was no evidence that the Cox model had broken the PH assumption (Additional Figure 

A.5.4). There were significant differences in survival between both clusters and the blue cluster, with 

an estimated hazard ratio of 2.89 for the red cluster and 4.23 in the yellow cluster. This means that at 

any follow-up time, those in the red cluster were estimated to be 2.89 times as likely to die as those 

in the blue cluster, whilst those in the yellow were 4.23 times as likely to die as those in the blue 

cluster. Importantly, these results showed that the cluster classifier was able to assign new 

independent individuals with IPF in such a way that the significant differences in survival that were 

observed in the discovery stage had been recaptured, therefore validating the classifier.   

However, the difference in survival time between the red and yellow clusters was not statistically 

significant, with a hazard ratio of 1.47 (95% CI [0.67, 3.22], P=0.341), using the red cluster as the 

reference cluster. This may have been due to a lack of statistical power, particularly as these were the 

two clusters with the fewest individuals, or it may indicate that these two clusters are not 

representative of real, clinically distinct endotypes of IPF.  
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TABLE 5.16: Summary statistics from the Cox proportional-hazards model that was fit to the 

survival data from the validation studies. The reference group in the model was the blue 

cluster.  

Cluster Hazard ratio 95% CI P-value 

Red cluster 2.89 1.41, 5.93 0.004 

Yellow cluster 4.23 1.87, 9.60 0.001 

 

  

p=0.00041 

FIGURE 5.13: A Kaplan-Meier plot showing survival over time for the validation subjects in each cluster, 

as well as tables showing the number of subjects at risk and the cumulative number of events at each 10-

month period. The p-value shown on the plot is from a log-rank test testing the three curves for equality. 

Median survival in each cluster is shown by dotted lines, where possible. 
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5.11 The feasibility of reduced gene classifiers  

5.11.1 Methods 

A classifier that requires the measurement of fewer genes could be preferable to one that requires a 

greater number of genes to be measured (Section 5.9.1). Additionally, the full 23-gene cluster classifier 

may be overfit to the data, as indicated by the large coefficients in the multinomial logistic regression 

model (Table 5.11). Overfitting occurs in supervised machine learning when the model is learning from 

a training dataset but detects noise and treats these random fluctuations as part of the true underlying 

distribution. This presents an issue when the overfit model is used to make predictions using additional 

data, as the new datasets will not contain the same patterns of noise and so the same concepts learnt by 

the model do not apply, leading to a loss of prediction accuracy and reduced generalisability.  

If the iterative classifiergenes function (Section 5.9.1) were to be stopped once a certain AUC threshold 

had been reached, the resulting classifier would consist of fewer genes and would perform less well in 

reassignment of discovery subjects, but may improve the generalisability of the classifiers and their 

ability to assign validation subjects in such a way as to recreate the clusters observed in the discovery 

analysis. AUC thresholds of 0.99, 0.98 and 0.95 were implemented into the classifiergenes function and 

classification scores using these genes were calculated using the same method as described in Section 

5.9.1. Multinomial logistic regression models were then fit to these classification scores to create new, 

reduced-gene classifiers.  

The reduced classifiers were then used to reassign the IPF cases in the discovery and validation datasets 

to a cluster. The feasibility of these classifiers was evaluated by their ability to detect statistically 

significant differences in phenotypic traits between the newly clustered validation subjects, as this 

evaluates the classifier’s ability to recreate the same clusters that were observed in the discovery 

analysis. For this reason, the traits that were found to be statistically significantly different across 

clusters in the discovery analysis (survival, DLCO and GAP index) were of particular interest. Phenotypic 

traits were compared using the same methods as described in Section 5.7.1.   

5.11.2 Results 

For each cluster, the classifiergenes function was stopped once the AUC had met or exceeded 0.99 

(reduced classifier 1), 0.98 (reduced classifier 2) and 0.95 (reduced classifier 3). Reducing the AUC 

threshold led to a decrease in the number of genes used in each classifier (Table 5.17), with 13 genes in 

reduced classifier 1, 7 genes in reduced classifier 2 and 4 genes in reduced classifier 3. The coefficients 

of the corresponding multinomial logistic regression model for each classifier are shown in Table 5.18. 

The coefficients in these models are lower than those found when using the full 23 gene classifier, 

which could indicate that these models are less overfit to the data. Reduced classifiers 1, 2 and 3 

correctly reassigned 99.0%, 94.9% and 92.9% of discovery subjects respectively (Table 5.19).   
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TABLE 5.17: The genes used in the full 23 gene cluster classifier and the genes included in the reduced classifiers that were produced when AUC 

thresholds were implemented when applying the classifiergenes function to each cluster. ‘Up genes’ refer to genes that were more highly expressed in 

the subjects for that cluster compared to the mean expression across all subjects, and ‘down genes’ refer to genes that were less highly expressed in the 

subjects in that cluster. AUC = area under curve.  

Red cluster  Blue cluster  Yellow cluster       

Up  

genes 

Down 

genes 
AUC 

Up  

genes 

Down 

genes 
AUC 

Up 

genes 

Down 

genes 
AUC 

     

KCNK15 
 

0.962 NOP58   0.935 CA4   0.960      

   PSMA5   0.968 
 

        

  RPF1  0.984 RASGRP1   0.980 BCL2A1  0.989      

SORBS1  0.984 IFI30   0.988 UGCG   0.998      

HBB  0.991 HLA-DRA   0.989           

     ATM   0.992           

EIF4G1     0.992 ECHDC2   0.993 FPR2    1      

   EXOSC8   0.995           

     BLVRA   0.996           

     PSMD11   0.998           

     SLC38A1   0.998           

     MRPL41   0.998           

     PPIA   0.999           

     AES   0.999           

 

Reduced classifier 3 

(AUC ≥ 0.95)  

 

Reduced classifier 1 

(AUC ≥ 0.99)  
 

 

Reduced classifier 2 

(AUC ≥ 0.98)  

 

Full 23 gene 

classifier 
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TABLE 5.19: Two-way tables comparing ‘true’ assignment of subjects from the 

discovery analysis (determined using COMMUNAL with 2,500 genes) to the 

reassignment of these subjects using the reduced gene classifiers.  

  

True cluster 

Red  

cluster  

Blue 

cluster  

Yellow 

cluster  

Reduced classifier 1 

predicted cluster 

Red cluster  63 1 0 

Blue cluster 1 94 0 

Yellow cluster 0 0 37 

Reduced classifier 2 

predicted cluster 

Red cluster  61 1 0 

Blue cluster 2 92 2 

Yellow cluster 1 2 33 

Reduced classifier 3 

predicted cluster 

Red cluster  59 2 3 

Blue cluster 3 92 3 

Yellow cluster 2 1 31 

 

 

 

 

 

 

 

 

 

 
 Cluster Intercept 

Red cluster 

score 

Blue cluster 

score 

Yellow cluster 

score 

Full 23 gene 

classifier 

Blue -21.22 -36.99 258.09 21.18 

Yellow -79.98 -93.07 -29.62 107.79 

Reduced 

classifier 1 

Blue 3.12 -9.75 8.87 1.66 

Yellow -16.6 -11.92 -3.15 29.42 

Reduced 

classifier 2 

Blue 1.59 -5.71 3.50 0.05 

Yellow -3.37 -3.66 -0.40 7.48 

Reduced 

classifier 3 

Blue 1.06 -5.32 4.33 -1.35 

Yellow -0.64 -3.13 0.78 3.17 

TABLE 5.18: Coefficients of the multinomial logistic regression models fit using classification scores 

from the genes in the reduced classifiers. In each case, the red cluster is the reference cluster and as 

such the coefficients for this cluster are all zero and have been omitted. 
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The IPF cases from the validation studies were reassigned to clusters using the reduced gene classifiers 

and phenotypic traits were compared across clusters (Table 5.20). For all classifiers, there were 

statistically significant (P<0.05) differences across clusters in the proportion of those who were 

observed to have died during their study, with those in the blue cluster being the least likely to die. 

Furthermore, reduced classifier 1 (the 13 gene classifier) produced the most significant difference in 

survival, with a p-value of 0.001, which was more statistically significant than the difference found 

when using the full 23 gene classifier. Additionally, the difference in DLCO between clusters when using 

reduced classifier 1 was trending towards statistical significance (P=0.069), with those in the blue 

cluster having the highest median DLCO. The difference in DLCO across clusters was not close to 

statistical significance for any other classifier, including the full 23-gene classifier. There was not a 

significant difference in average GAP index score across clusters under any of the classifiers. Overall, 

these results suggested that the 13 gene classifier was the best at recapturing the clusters that were found 

in the discovery analysis, where significant differences in survival and DLCO were observed between 

clusters.
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Full 23 gene classifier Reduced classifier 1 (13 genes) 

Trait 
Total 

n used 

No. of 

datasets 

Red 

cluster 

Blue 

cluster 

Yellow 

cluster 

P-

value 

Red 

cluster 

Blue 

cluster 

Yellow 

cluster 

P-

value 

   (n=58) (n=100) (n=36)  (n=52) (n=101) (n=41)  

Age  

(mean, sd) 

194 3 68.6 

(8.1) 

67.7 

(7.7) 

65.8 

(8.6) 

0.242 67.1 

(8.1) 

68.5 

(7.6) 

66.2 

(8.6) 

0.239 

Male  

(%) 

194 3 44 

(75.9%) 

70 

(70.0%) 

30 

(83.3%) 

0.276 38 

(73.1%) 

72 

(71.3%) 

34 

(82.9%) 

0.347 

European Ancestry 

(%) 

194 3 56 

(96.6%) 

91 

(91.0%) 

33 

(91.7%) 

0.412 51 

(98.1%) 

91 

(90.1%) 

38 

(92.7%) 

0.196 

DLCO % predicted  

(median, IQR) 

194 3 43.0 

(25.1) 

46.0 

(22.2) 

43.3 

(24.8) 

0.274 42.1 

(26.4) 

48.2 

(21.1) 

43.4 

(20.3) 

0.069 

FVC % predicted  
(median, IQR) 

193 3 64.0 
(25.6) 

65.0 
(23.8) 

63.4 
(17.0) 

0.841 64.3 
(23.6) 

65.0 
(24.3) 

63.1 
(15.3) 

0.467 

GAP index 
(mean, sd) 

193 3 4.3  
(1.6) 

3.9  
(1.5) 

4.1  
(1.5) 

0.377 4·1  

(1·6) 
4·0  

(1·5) 
4·3  

(1·5) 
0·753 

Death observed  

during study (%) 

120 2 17  

(43.6%) 

14 

(21.5%) 

10 

(62.5%) 
0.003 16 

(48.5%) 

13 

(19.7%) 

12 

(57.1%) 
0.001 

FEV1  

(median, IQR) 

75 1 73.5  

(21.7) 

74.0 

(23.8) 

81.8 

(12.1) 

0.804 74.8 

(21.7) 

75.2 

(22.2) 

75.4 

(17.7) 

0.913 

Ever smoker  

(%) 

74 1 12 

(63.2%) 

19 

(54.3%) 

18 

(90%) 
0.025 11 

(57.9%) 

21 

(60.0%) 

17 

(85.0%) 

0.114 

TABLE 5.20: Comparison of phenotypic traits across clusters when all validation subjects are clustered using the full 23 gene and the reduced gene 

classifiers. Data are presented as count (percentage), mean (standard deviation [sd]) or median (interquartile range [IQR]). FVC=Forced vital 

capacity, DLCO = Diffusing capacity for carbon monoxide, GAP index = Gender, Age and Physiology index for IPF mortality193, FEV1 = Forced 

expiratory volume in one second. Significant P-values (P < 0.05) are highlighted in bold. 
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Reduced classifier 2 (7 genes) Reduced classifier 3 (4 genes) 

Trait 
Total 

n used 

No. of 

datasets 

Red 

cluster 

Blue 

cluster 

Yellow 

cluster 

P-

value 

Red 

cluster 

Blue 

cluster 

Yellow 

cluster 

P-

value 

   
(n=56) (n=103) (n=35)  (n=62) (n=100) (n=32)  

Age  

(mean, sd) 

194 3 68.2 

(9.0) 

67.5 

(7.3) 

67.0 

(8.4) 

0.768 68.9 

(8.5) 

68.0 

(7.6) 

66.7  

(8.2) 

0.560 

Male  

(%) 

194 3 40 

(71.4%) 

75 

(72.8%) 

29 

(82.9%) 

0.428 47 

(75.8%) 

73 

(73.0%) 

24 

(75.0%) 

0.919 

European Ancestry 

(%) 

194 3 55 

(98.2%) 

94 

(91.3%) 

31 

(88.6%) 

0.153 57 

(91.9%) 

92 

(92.0%) 

31 

(96.9%) 

0.619 

DLCO % predicted  

(median, IQR) 

194 3 44.8 

(24.5) 

47.2 

(25.0) 

43.6 

(15.8) 

0.495 42.8 

(23.3) 

47.3 

(24.3) 

44.7 

(22.3) 

0.461 

FVC % predicted  
(median, IQR) 

193 3 63.3 
(26.3) 

65 
(24.0) 

63.4 
(14.3) 

0.417 62.3 
(24.3) 

69  
(22.1) 

62.8 
(20.1) 

0.037 

GAP index 
(mean, sd) 

193 3 4.2  
(1.7) 

4.0 
(1.5) 

4.3 
(1.4) 

0.971 4.3  
(1.6) 

3.9 
(1.4) 

4.1 
(1.6) 

0.429 

Death observed  
during study (%) 

120 2 18 
(43.9%) 

13 
(21.3%) 

10 
(55.6%) 

0.007 21 
(46.7%) 

14 
(23.7%) 

6  
(37.5%) 

0.048 

FEV1  
(median, IQR) 

75 1 76.0 
(20.8) 

73.3 
(23.7) 

75.4 
(17.7) 

0.995 76.0 
(21.9) 

80.0 
(22.6) 

70.5 
(16.8) 

0.111 

Ever smoker  

(%) 

74 1 8 

(53.3%) 

28 

(66.7%) 

13 

(76.5%) 

0.384 14 

(82.4%) 

24 

(58.5%) 

11 

(68.8%) 

0.212 

TABLE 5.20 (continued): Comparison of phenotypic traits across clusters when all validation subjects are clustered using the full 23 gene and the 
reduced gene classifiers. Data are presented as count (percentage), mean (standard deviation [SD]) or median (interquartile range [IQR]). 

FVC=Forced vital capacity, DLCO = Diffusing capacity for carbon monoxide, GAP index = Gender, Age and Physiology index for IPF mortality193, 

FEV1 = Forced expiratory volume in one second. Significant P-values (P < 0.05) are highlighted in bold. 
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Kaplan-Meier plots were used to visualise survival over time for the validation subjects in each cluster 

when using the reduced-gene classifiers (Figure 5.14). In all cases, those in the blue cluster fared the 

best over time and were most different in terms of survival to the subjects the other two clusters. As the 

number of genes in the classifier was reduced the survival in the yellow and red clusters became more 

similar, with the survival curves crossing multiple times when clusters were assigned using reduced 

classifiers 2 and 3.  

Both reduced classifier 1 and reduced classifier 2 were able to produce clusters with similar survival 

over time to the full 23 gene classifier (Figure 5.13) and that were reflective of the survival shown in 

the blue and yellow clusters in the discovery analysis (Figure 5.8). Reduced classifier 1 produced the 

clusters with the greatest differences in survival, as indicated by the p-value for the log-rank test on the 

plot. Conversely, reduced classifier 3 produced clusters with the least difference in survival between 

groups. The Kaplan-Meier curves for this classifier were not as reflective of the clusters shown in the 

discovery analysis, particularly for the yellow cluster which had a median survival time of 

approximately 1 year in discovery, yet could not be calculated when using reduced classifier 3 as the 

survival probability for the yellow cluster never dropped below 0.5.  

Cox PH models were fit to the survival data under each clustering assignment (Table 5.21). Significant 

differences between the blue cluster and both other clusters were found using the full classifier, reduced 

classifier 1 and reduced classifier 2. It was reduced classifier 1 that was shown to be the best at 

distinguishing between the low-risk patients in the blue cluster and the high-risk patients in the red and 

yellow clusters. As this information could potentially be used to predict survival in IPF, reduced 

classifiers 1 and 2 may each be feasible as a prognostic biomarker, with reduced classifier 1 being the 

preferred choice.  

Importantly, the findings from this section suggest that despite using fewer genes, reduced classifier 1 

is superior to the full 23 gene classifier in its ability to assign IPF subjects in such a way as to create 

clusters with significant differences in survival and lung function between groups.  
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FIGURE 5.14: Kaplan-Meier plots showing survival over time for the clustered validation subjects 

when using the reduced gene classifiers. The p-value shown on the plot is from a log-rank test testing 

the three curves for equality. Median survival in each cluster is shown by dotted lines, where possible. 
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Classifier Cluster 
Hazard 

Ratio 

95% Confidence 

Interval 
P-value 

Full 23 gene 

classifier 

Red 2.89 (1.41, 5.93) 0.004 

Yellow 4.23 (1.87, 9.60) 0.001 

Reduced 

classifier 1 

Red 3.80 (1.78, 8.12) 0.001 

Yellow 5.05 (2.24, 11.35) 9.1×10
-5 

Reduced 

classifier 2 

Red 2.73 (1.33, 5.59) 0.006 

Yellow 3.80 (1.66, 8.74) 0.002 

Reduced 

classifier 3 

Red 2.30 (1.17, 4.53) 0.016 

Yellow 1.88 (0.72, 4.89) 0.198 

TABLE 5.21: Summary statistics from the Cox proportional hazards models fit to the 

survival data from the validation studies when subjects are assigned using the full 
classifier and each reduced gene classifier. In all cases, the blue cluster is the reference 

cluster and as such the coefficients for this group are all zero and have been omitted. 
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5.12 Characterisation of the genes used in the classifier 

The genes used in the classifier may have been previously implicated in research of pulmonary fibrosis 

or IPF. For each gene used in the 13 gene classifier, a search of PubMed was performed to 

systematically quantify the extent to which that gene has been linked to pulmonary fibrosis in the past. 

Each search term contained the acronym of the gene and the term ‘pulmonary fibrosis’. Advanced 

search settings were applied so that the full gene acronym must have appeared within the main text of 

the publication, whilst ‘pulmonary fibrosis’ could have appeared in any field (e.g., main text, title or 

abstract). 

The full name of each gene is shown in Table 5.22 along with a brief summary of its function, found 

using the GeneCards online resource217. The number of publications returned in each PubMed search is 

also shown. Only two genes produced relevant search results: HBB and ATM. HBB was mentioned in a 

single publication218, which described a proteomic analysis that aimed to discover non-invasive protein 

biomarkers that could be used to diagnose IPF. In this analysis, the protein encoded by HBB was found 

to be one of the three most significantly upregulated proteins when comparing the peripheral blood of 

60 IPF cases to that of 60 healthy controls.  

ATM featured in seven publications. Mutations in the ATM gene result in a rare autosomal recessive 

disorder called Ataxia-telangiectasia which can lead to interstitial lung disease and pulmonary 

fibrosis219. As such, the publications produced by the PubMed search for this gene consisted of studies 

that investigated Ataxia-telangiectasia. ATM was not mentioned in connection with idiopathic PF. 

However, the protein encoded by ATM is thought to control the cell-cycle checkpoint signalling 

pathways that are required for cell response to DNA damage and for genome stability. As discussed in 

Section 1.1.2, cellular senescence driven through DNA damage is an important factor in the 

development of IPF as so it is plausible that changes in expression of ATM between clusters could 

reflect a causal disease mechanism. In addition, recent genetic studies have implicated processes 

involved in cell proliferation in IPF susceptibility220, which also increases the plausibility of a causal 

link between dysregulation of ATM and the development of IPF. 

None of the other genes used in the classifier have been specifically implicated in IPF, although some 

are involved in broader processes that have been previously linked to IPF or pulmonary fibrosis. This 

included genes related to the immune response221,222,222 (HLA-DRA, IFI30, RASGRP1), 

metabolism223,224,224 (HBB, UGCG), signalling225,226 (IFI30, RASGRP1, ATM) and cell cycle227,228 (PSMA5, 

ATM).  

 



162 

 

 

Cluster 
Gene 

acronym 
Full gene name Summary 

No. of 

papers 

Red KCNK15 Potassium channel subfamily  

K member 15 

Encodes a member of the superfamily of potassium channel proteins.  0 

  RPF1  Ribosome Production Factor 1 

Homolog 

Encodes a protein which may be required for ribosome biogenesis. 0 

 SORBS1 Sorbin and SH3 domain- 

containing protein 1 

Encodes a protein which functions in the signalling and stimulation of insulin. 0 

 HBB Hemoglobin Subunit Beta Involved in oxygen transport from the lung to the various peripheral tissues. Among its related 

pathways are folate metabolism. 

1 

Blue NOP58 Nucleolar protein 58 Related to pathways involved in rRNA processing in the nucleus and metabolism of proteins. 0 

 PSMA5 Proteasome 20S Subunit  

Alpha 5 

A component of the 20S core proteasome complex, which plays numerous essential roles within the 

cell by associating with different regulatory particles.  

0 

 RASGRP1 RAS guanyl-releasing  

protein 1 

Activates the Erk/MAP kinase cascade and regulates T-cells and B-cells development, homeostasis 

and differentiation. 

0 

 IFI30 Gamma-interferon-inducible 

lysosomal thiol reductase 

The protein encoded by this gene can reduce protein disulphide bonds. Among its related pathways 

are interferon gamma signalling and the innate immune system. 

0 

 HLA-DRA HLA class II histocompatibility 

antigen, DR alpha chain 

Plays a central role in the immune system by presenting peptides derived from extracellular proteins. 0 

 ATM Ataxia telangiectasia mutated Encodes a protein that is thought to be one of the master controllers of cell cycle checkpoint signalling 

pathways that are required for cell response to DNA damage and for genome stability. 

7 

Yellow CA4 Carbonic Anhydrase 4 Encodes part of a large family of zinc metalloenzymes that catalyse the reversible hydration of carbon 

dioxide and participate in a variety of biological processes, including respiration and calcification.  

0 

 BCL2A1 B-cell lymphoma 2-related  

protein A1 

Encodes a member of the BCL-2 protein family. The proteins of this family form hetero- or 

homodimers and act as anti- and pro-apoptotic regulators that are involved in a wide variety of cellular 

activities such as embryonic development, homeostasis and tumorigenesis. 

0 

 UGCG Ceramide glucosyltransferase Encodes an enzyme that catalyses the first glycosylation step in the biosynthesis of 

glycosphingolipids, which are essential components of membrane microdomains that mediate 

membrane trafficking and signal transduction. 

0 

TABLE 5.22: The full names and summaries of the genes in the 13 gene cluster classifier, as well as the number of papers found on PubMed that contained the name of 

that gene plus the term ‘pulmonary fibrosis’.  
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5.13 Comparison of the classifier to another transcriptomic biomarker for IPF 

As discussed in Section 5.1.3, Herazo-Maya et al. identified 52 genes that were associated with 

transplant-free survival in a cohort of IPF cases185. In a large multi-centre validation study186, the authors 

applied a method called The Scoring Algorithm for Molecular Subphenotypes (SAMS) to gene 

expression data (from the 52 genes) to classify the IPF cases in each cohort as either high-risk or low-

risk (in terms of mortality or requiring a transplant). The results of the validation study showed that 

their method was successful and that the high-risk group in each centre was significantly more likely to 

die or require a transplant than those in the low-risk group.  

The gene-expression based cluster classifier has been shown to be able to assign the individuals with 

IPF that are least likely to die into the blue cluster and those who are most likely to die into the two 

remaining clusters and so this could potentially also be used as a prognostic biomarker. As the optimal 

classifier uses gene expression data from only 13 genes, it would likely be more cost-effective than 

Herazo-Maya et al.’s prognostic tool, which uses data from 52 genes. In this section, the two approaches 

are compared in terms of their ability to predict mortality in IPF.  

5.13.1 Methods  

First, the names of the 52 genes used in Herazo-Maya et al.’s prognostic tool were compared to the 

names of the 13 genes used in our classifier (as well as any aliases) to check whether there were any 

common genes between the two methods. This was also done for the 23 genes in the full classifier.  

Then, each of the IPF cases in the two validation studies for which survival data was available, 

GSE27957 (n=45) and GSE28042 (n=75), were classed as either ‘high risk’ or ‘low risk’ by applying 

Herazo-Maya et al.’s method SAMS. 7 of the 52 genes were expected to be more highly expressed in 

high risk cases than low risk cases (‘up genes’). Likewise, the remaining 45 genes were expected to be 

less highly expressed in high risk cases than low risk cases (‘down’ genes). SAMS was implemented 

as follows: 

1. For each gene, the geometric mean of the expression for that gene across all subjects was 

calculated. This value represents the average level of expression for that gene across the whole 

cohort. It was then subtracted from the gene expression of that gene for each subject so that 

positive values represented subjects that had increased expression of that gene compared to the 

average and negative values represented subjects that had decreased expression compared to 

the average.  

2. For each subject, the proportion of the 7 ‘up genes’ that were overexpressed was calculated. 

Similarly, the proportion of the 45 ‘down genes’ that were less highly expressed than average 

was calculated. So, if a subject had 4 ‘up genes’ that were greater than the average and 30 ‘down 

genes’ that were lower than the average, these proportions would have been 0.571 and 0.667 

respectively. 
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3. For each subject, the sum of the geometric mean-normalised expression data was summed up 

for the ‘up genes’ that were more highly expressed than average. Then the sum of the geometric 

mean-normalised expression data was summed up for the ‘down genes’ that were less highly 

expressed than average. So, for example, for the subject above who had 4 of the 7 ‘up genes’ 

that were more highly expressed than the average, say with expression values 0.185, 0.553, 

0.123 and 1.003 for these four genes, the sum would have been 1.864. The sum for the ‘down 

genes’ must always be negative, for example say that this sum for the subject above was -7.645.   

4. The proportion of the ‘up genes’ calculated in step 2 was multiplied by the sum for the ‘up 

genes’ calculated in step 3 to produce the ‘up score’ for each subject. So, for the example subject 

above, their up score would have been 0.571×1.864 = 1.064. A ‘down score’ for each subject 

was also calculated by multiplying their proportion of down genes by their down sum from step 

3. For our example subject, this would have been 0.667× -7.645=-5.099.  

5. Subjects with up scores greater than the median value and down scores lower than the median 

value were classed as ‘high risk’, while all other subjects were classed as ‘low risk’.  

This was done separately for each cohort and by using data from as many of the 52 genes as were 

measured in the datasets. These subjects were also assigned into one of the three clusters (red, blue, 

yellow) using the 13 gene classifier. As the red and yellow clusters were not clinically distinct in the 

previous analyses, but both contained individuals that were more likely to die at any follow-up time 

than those in the blue cluster, the individuals in both of these clusters were considered ‘high risk’ whilst 

those in the blue cluster were considered ‘low risk’. Two-way tables were used to compare agreement 

between the two methods.  

Kaplan-Meier plots were used to visualise the survival over time for the validation subjects in each risk 

group under each method. In both cases, the log-rank test was used to test the survival curves of each 

risk group for equality. Univariate Cox PH models were fit to the data with risk group as the sole 

covariate and time-to-death as the outcome of interest. In both cases, the low-risk group was used as 

the reference group. The Concordance index (C-index), the equivalent of the AUC for an ROC curve, 

and the p-values from the log-rank test were used to assess which method performed best at assigning 

the IPF subjects to the correct risk group and therefore predicting survival.  

Following this, multivariate Cox PH models were used to assess whether the predictions made by each 

method were significant predictors of mortality in the validation datasets whilst adjusting for age, sex, 

ancestry, FVC and DLCO. The likelihood ratio test and C-index were used to assess whether either of the 

two methods of risk prediction led to a significant increase in predictive ability over a Cox PH model 

containing only age, sex, ancestry, FVC and DLCO. 
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5.13.2 Results 

The 52 genes in Herazo-Maya et al.’s gene signature to predict outcome in IPF were as follows: LBD1, 

TPST1, MCEMP1, IL1R2, HP, FLT3, S100A12, LCK, CAMK2D, NUP43, SLAMF7, LRRC39, ICOS, 

CD47, LBH, SH2D1A, CNOT6L, METTL8, ETS1, C2orf27A, P2RY10, TRAT1, BTN3A1, LARP4, 

TC2N, GPR183, MORC4, STAT4, LPAR6, CPED1, DOCK10, ARHGAP5, HLA-DPA1, BIRC3, 

GPR174, CD28, UTRN, CD2, HLA-DPB1, ARL4C, BTN3A3, CXCR6, DYNC2LI1, BTN3A2, ITK, 

SNHG1, CD96, GBP4, S1PR1, NAP1L2, KLF12, IL7R. There were no genes in common with the 13 or 

23 gene classifier, or any alisases of the genes used in these classifiers (see Additional Table B.5.4 for 

full list of aliases). One of the 52 genes (SNHG1) was missing from the dataset GSE27957 and two 

genes (MCEMP1 and CPED1) were missing from GSE28042.  

The individuals in the GSE27957 and GSE28042 cohorts were each classed as ‘high risk’ or ‘low risk’ 

using both methods. There was 84.4% agreement between the two methods for the individuals in 

GSE27957, 66.7% agreement for those in GSE28042 and 68.3% agreement overall (Table 5.23). 

TABLE 5.23: The agreement between the two methods when 

validation subjects were assigned to risk groups.  

GSE27957 (n=45) 
Our 13 gene classifier 

High risk Low risk 

Herazo-Maya et 

al.’s method 

High risk 13 2 

Low risk 5 25 

GSE28042 (n=75) 
Our 13 gene classifier 

High risk Low risk 

Herazo-Maya et 
al.’s method 

High risk 17 12 

Low risk 19 27 

Both datasets combined 

(n=120) 

Our 13 gene classifier 

High risk Low risk 

Herazo Maya et 

al.’s method 

High risk 30 14 

Low risk 24 52 

 

Survival over time for the subjects in each risk group according to each method (for both datasets 

combined) was visualised using Kaplan-Meier plots (Figure 5.15). See Additional Figures A.5.5 and 

A.5.6 for the survival curves for each study separately. Figure 5.15A showed that the classifier 

performed well at predicting survival, with the individuals in the high-risk clusters having consistently 

poorer survival over time than those in the blue ‘low-risk’ cluster and a highly significant p-value 

(P<0.0001) for the log-rank test. A univariate Cox PH model estimated that at any follow-up time, those 

in the high-risk clusters were 4.25 times more likely to die than those in the low-risk cluster (95% CI = 

[2.14, 8.46], P=3.7×10-5). This model had a C-index of 0.664 (95% CI= [0.590, 0.737]). 
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SAMS (Figure 5.15B) performed less well, with survival curves that laid closer together and a less 

highly significant log-rank test p-value (0.027). A univariate Cox PH model estimated that at any 

follow-up time, those in the high-risk group were 1.98 times as likely to die than those in the low-risk 

group (95% CI = [1.07, 3.68], P = 0·030) and a C-index of 0.609 (95% CI = [0.531, 0.686]). 

After adjusting for age, sex, ancestry, FVC and DLCO, the risk predictions made using the classifier 

remained statistically significant (P=0.007, Table 5.24), with a HR of 2.70 between the high-risk and 

low-risk clusters (95% CI= [1.32, 5.53]). This model had a C-index of 0.773 (95% CI = [0.697, 0.848]), 

which was greater than that of the Cox model containing only age, sex, ancestry, FVC and DLCO (C-

index = 0.747, 95% CI = [0.670, 0.825]). A likelihood ratio test between the two models gave a p-value 

of 0.005, suggesting that the predictions made by the classifier were able to significantly improve the 

predictive ability of the model. The multivariate Cox model containing SAMS’ risk predictions had a 

C-index of 0.760 (95% CI = [0.684, 0.837]), which was an improvement over the Cox model containing 

only age, sex, ancestry, FVC and DLCO. However, the likelihood ratio test p-value between these two 

models was not statistically significant (P=0.105).  
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FIGURE 5.15: Survival over time for the IPF cases in GSE27957 and GSE28042, stratified by risk group according to our 13 gene classifier (A) and Herazo-Maya et al.’s 

method SAMS (B). The P-value on each plot is from a log-rank test, testing the two curves for equality.  
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TABLE 5.24: Summary statistics from the Cox proportional hazards model adjusting for cluster, 

age, sex, ancestry, predicted forced vital capacity (FVC) and predicted diffusing capacity of the 

lung for carbon monoxide (DLCO). OR = odds ratio, SE = standard error and CI = confidence 

interval. Significant p-values (P<0.05) are highlighted in bold.  

Covariate OR SE P-value 95% CI 

Cluster (high-risk clusters) 2.697 0.367 0.007 (1.315, 5.534) 

Age (years) 1.006 0.020 0.748 (0.968, 1.046) 

Sex (male) 5.720 0.752 0.020 (1.310, 24.969) 

Ancestry (non-European) 1.099 0.608 0.876 (0.334, 3.619) 

Predicted FVC 0.996 0.013 0.745 (0.971, 1.022) 

Predicted DLCO 0.967 0.013 0.008 (0.944, 0.991) 

 

5.14 Application of classifiers to lung tissue datasets 

The previous sections have shown that the full cluster classifier and the 13 gene classifier were both 

effective when applied to gene expression data that were measured from samples of whole blood from 

patients with IPF. However, as IPF is a lung disease it would be of value to identify whether the gene 

expression in the blood reflects pathology in the lungs. Whilst gene expression patterns vary across 

tissues and so a classifier trained on expression data from one tissue type is unlikely to be effective 

when applied to expression from another, expression of a gene in blood is often a significant predictor 

of its expression in the lung229 and so it is possible that the classifiers could be effective when applied 

to data from lung tissue.  

5.14.1 Available data 

This part of the analysis was conducted in May 2020. By this time, clinical data had been obtained for 

some of the lung tissue gene expression datasets that were initially considered for the cluster analysis 

(Section 5.3). We had also become aware of an additional collection (with GEO accession code 

GSE47460) that contained data for 122 IPF subjects but did not appear in the initial search as the term 

‘IPF’ is not mentioned in the GEO description. The updated table of available clinical traits for the 

collection of lung studies is shown in Table 5.25.  

Both the new collection GSE47460, and GSE32537, contained samples originating from the Lung 

Tissue Research Consortium (LTRC). As both collections had reported the unique LTRC identification 

codes for each subject, neither collection need be excluded entirely as common individuals could be 

identified and removed from one of the collections. The 61 common individuals were removed from 

GSE47460 as collection GSE32537 contained more extensive clinical data for each individual.   

The lung tissue samples in these studies were collected by either biopsies or transplants. As these are 

invasive procedures, the controls included in these studies were not necessarily ‘healthy’ controls (as 

they must have had a medical reason to justify the collection of their lung tissue sample). For instance, 
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the controls in the lung tissue dataset GSE47460 all went for surgery for the investigation of a nodule 

but no evidence of chronic lung disease was found.  
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N IPF cases 

N controls 

 
Collections with control subject data 

Collections without  

control subject data 

GSE10667 
31 

15 

GSE124685 
10 

3 

GSE134692 
36 

17 

GSE110147 
22 

11 

GSE92592 
20 

19 

GSE53845 
40 

8 

GSE32537 
119 

50 

GSE47460 
122 

15 

GSE48149 
13 

0 

GSE24988 
44 

0 

Trait            

Age ❌ ✔ ✔ ✔ ❌ ❌ ✔ ✔ ✔ ✔ 

Ancestry ❌ ❌ ✔ ❌ ❌ ❌ ❌ ❌ ❌ ❌ 

Sex ❌ ✔ ✔ ✔ ❌ ✔ ✔ ✔ ✔ ✔ 
Smoking 

status ❌ ❌ ✔ ❌ ❌ ❌ ✔ ✔ ✔ ❌ 

Smoking 
pack years ❌ ❌ ❌ ❌ ❌ ❌ ✔ ❌ ❌ ❌ 

St George's 

total score ❌ ❌ ❌ ❌ ❌ ❌ ✔ ❌ ❌ ❌ 

FVC ❌ ✔ ❌ ✔ ❌ ❌ ✔ ✔ ✔ ✔ 

DLCO ❌ ✔ ❌ ✔ ❌ ❌ ✔ ✔ ✔ ✔ 

BMI ❌ ❌ ✔ ✔ ❌ ❌ ❌ ❌ ❌ ✔ 

TLC ❌ ❌ ❌ ✔ ❌ ❌ ❌ ❌ ✔ ✔ 

PT survival ❌ ❌ ❌ ✔ ❌ ❌ ❌ ❌ ❌ ✔ 

FEV1 ❌ ✔ ❌ ❌ ❌ ❌ ❌ ✔ ❌ ❌ 

TABLE 5.25: Updated clinical and demographic traits that were reported in at least one of the lung tissue data collections, and their availability across collections. The ✔ 

symbol indicates that the trait was reported in that collection and the ❌ symbol indicates that the trait was not reported in that collection. FVC=Forced vital capacity, DLCO = 

Diffusing capacity for carbon monoxide, BMI = body mass index, TLC = Total lung capacity, PT = post-transplant, FEV1 = Forced expiratory volume in one second. 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92592
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53845
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32539
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48149
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5.14.2 Methods 

Lung tissue study cohorts were excluded if not all 13 genes in the optimal classifier were measured or 

if relevant clinical data (such as FVC, DLCO and post-transplant survival) were not available for the 

individuals in that cohort. The full 23 gene classifier and the 13 gene classifier were both applied to the 

IPF cases from each remaining study to test whether either classifier could effectively assign IPF 

subjects when applied to gene expression data from lung tissue. Clinical and demographic traits were 

compared using the same methods as described in Section 5.7.1. 

5.14.3 Results 

Four studies met the criteria for inclusion in this analysis: GSE47460, GSE110147, GSE24988 and 

GSE32537. GSE47460 was a large collection from the LTRC containing gene expression data from 

whole lung samples (totalling 582 individuals, including 122 IPF cases). GSE110147 contained data 

from a Canadian study230 that compared the gene expression profiles from explanted lungs of IPF 

patients (n=22) to those with non-specific interstitial pneumonia. The data in collection GSE24988 was 

from a Canadian study231 that used gene expression from the explanted lungs of 116 pulmonary fibrosis 

patients (N=44 IPF cases) to investigate the relationship between pulmonary fibrosis and pulmonary 

hypertension. Finally, GSE32537 originates from an American study232 that used gene expression data 

(collected from whole lung of 119 patients with IPF/usual interstitial pneumonia) to find transcripts that 

were differentially expressed compared to healthy control lungs. As most of the samples in these studies 

were collected from explanted lungs and transplants have a large impact on the trajectory of the disease, 

patient survival could not be evaluated as reliably as in the analyses of blood expression. 

The 23 and 13 gene classifiers were used to assign the IPF subjects in the four datasets to a cluster and 

phenotypic traits were compared across clusters (Table 5.26). There was only one statistically 

significant (P<0.05) difference between clusters, which was the age of the subjects when using the full 

23 gene classifier. In the absence of informative survival data, the most important variable to determine 

whether the classifiers were effective was DLCO, which was not significant when using either classifier, 

but did trend toward significance when using the full 23 gene classifier (P=0.087). In this case, those in 

the yellow cluster had the lowest average DLCO and those in the other two clusters had a similarly 

relatively high average DLCO. This somewhat reflects the findings from the blood analyses, although 

those in the red cluster would have been expected to have a lower average DLCO than those in the blue 

cluster. However, the 13 gene classifier did not create clusters representative of those observed in the 

blood analyses, with those in the yellow cluster having the highest average DLCO and a P-value of 0.133.  

In summary, when applied to gene expression data from lung tissue, there was little evidence that the 

classifiers (that were trained using transcriptomic data from blood) were able to assign patients into 

clinically distinguishable groups that reflected the clusters that were observed in the previous analyses. 
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This could be due to a lack of clinical data or be due to differing gene expression patterns between the 

lung and the blood, which could suggest that the pathology of the two tissue types are distinct.  
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  Full 23 gene classifier Reduced classifier 1 (13 genes) 

Trait 
Total 

n used 

No. of 

datasets 

Cluster 1 

(red) 

Cluster 2 

(blue) 

Cluster 3 

(yellow) 

P-

value 

Cluster 1 

(red) 

Cluster 2 

(blue) 

Cluster 3 

(yellow) 

P-

value 

   (n=97) (n=108) (n=38)  (n=80) (n=118) (n=45)  

Age  

(mean, sd) 

243 4 63.8 

(8.2) 

63.2  

(8.1) 

59.4 

(11.2) 
0.027 63.6  

(7.1) 

63.2  

(9.0) 

60.4 

(10.4) 

0.120 

Male  

(%) 

243 4 59 

(60.8%) 

79 

(73.1%) 

25 

(65.8%) 

0.170 53 

(66.3%) 

80 

(67.8%) 

30 

(66.7%) 

0.972 

FVC % predicted  

(median, IQR) 

234 4 60.0 

(23.0) 

64.0 

(29.6) 

53.9 

(30.0) 

0.394 58.2 

(25.0) 

62.9 

(23.3) 

60.0 

(29.1) 

0.813 

DLCO % predicted  

(median, IQR) 

187 3 46.2 

(21.3) 

47.0 

(24.2) 

34.0 

(37.4) 

0.087 41.0 

(23.7) 

46.7 

(24.7) 

48.0 

(33.4) 

0.133 

Ever smoker  
(%) 

170 2 40 
(59.7%) 

50 
(67.6%) 

17 
(58.6%) 

0.545 32 
(60.4%) 

53 
(60.9%) 

22 
(73.3%) 

0.429 

St George’s score 

(median, IQR) 

119 1 43.3 

(30.6) 

44.2 

(41.9) 

55.7 

(28.0) 

0.216 46.7 

(34.6) 

42.8 

(36.8) 

59.9 

(50.9) 

0.353 

Post-transplant 
death observed (%) 

63 2 11 
(42.3%) 

18 
(62.1%) 

5 
 (62.5%) 

0.298 14 
(51.9%) 

13 
(52.0%) 

7  
(36.4%) 

0.778 

BMI 

(median, IQR) 

63 2 24.9  

(6.1) 

27.0  

(3.9) 

25.5 

(6.4) 

0.440 25.0 

(5.8) 

27.0  

(3.4) 

26.0 

(10.3) 

0.389 

TLC  

(median, IQR) 

60 2 55.5 

(14.8) 

61.0 

(19.5) 

64.5  

(9.5) 

0.550 56.0 

(18.0) 

61.0 

(14.5) 

59.5 

(18.5) 

0.861 

FEV1  

(median, IQR) 

59 1 74.0 

(16.6) 

77.0 

(17.1) 

70.9 

(18.1) 

0.441 72.3 
(12.5) 

76.5 
(19.7) 

73.8 
(16.2) 

0.716 

TABLE 5.26: Comparison of phenotypic traits across clusters when all subjects in the lung tissue validation cohorts are clustered using the full 23 

gene classifier and reduced classifier 1.  Data are presented as count (percentage), mean (standard deviation [sd]) or median (interquartile range 

[IQR]). FVC=Forced vital capacity, DLCO = Diffusing capacity for carbon monoxide, BMI = body mass index, TLC = total lung capacity, FEV1 = 

Forced expiratory volume in one second. Significant P-values (P < 0.05) are highlighted in bold. 
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5.15 Cluster analysis in multiple lung tissue datasets 

Three clusters were identified when using gene expression data from whole blood, yet the classifiers 

were not shown to be effective at recreating these clusters when applied to data from lung tissue. 

Therefore, an important question stood as to whether similar clusters are present when gene expression 

data from a more relevant tissue type, such as lung tissue, is clustered. With sufficient levels of clinical 

data having been subsequently obtained from investigators, an additional cluster analysis was 

performed using the lung tissue datasets to address this question.  

5.15.1 Methods 

Gene expression data for the IPF cases in the lung tissue collections (shown in Table 5.25) that had 

included data for non-IPF control subjects were co-normalised using COCONUT (Section 5.5.1). 

Again, PCA was used to visualise and assess the efficacy of the co-normalisation. Any cohorts that 

were found to have not co-normalised well with the others were excluded from further analysis and the 

co-normalisation was repeated without this cohort. The pooled, co-normalised data was then clustered 

using COMMUNAL (Section 5.6.1) and the optimal clustering assignment was selected using the 

resulting 3D map. Phenotypic traits were compared across clusters as described in Section 5.7.1. 

5.15.2 Results 

Eight collections contained data for control subjects and were included in the initial co-normalisation. 

The collections originated from either the USA or Canada and contained a mix of microarray and RNA-

seq data from a range of platforms (Table 5.27). Summary statistics for the IPF cases and the controls 

in each cohort are shown in Table 5.28, though there were still many missing clinical variables across 

the studies. Additionally, the controls tended to be younger, were less likely to smoke or have been a 

smoker and they were more likely to be female than the IPF subjects in the same cohorts. The 

differences in age across disease groups were particularly large in collections GSE134692 and 

GSE32537 where the controls were on average 28 and 17 years younger than the corresponding IPF 

cases, respectively. This could have presented a problem for the co-normalisation, as COCONUT 

theoretically works best when the control subjects in each study are similarly matched to the disease 

cases as well as being similar to the control subjects in the other studies. Despite this, no control subjects 

were excluded from this analysis based on their clinical variables due to the high amount of missing 

data across the cohorts.  
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TABLE 5.27: Information on each of the lung tissue cohorts included in this analysis.   

GEO 

accession 
Reference Country 

Platform 

type 
Platform name 

Number of 

gene probes 

Number of 

unique genes 

GSE10667 28 USA Microarray 
Agilent-014850 Whole Human 

Genome Microarray 
43,376 19,749 

GSE124685 233 USA RNA-seq Ion Torrent Proton 22,653 22,653 

GSE134692 234 USA RNA-seq Illumina HiSeq 2500 15,210 15,210 

GSE110147 230 Canada Microarray 
Affymetrix Human Gene 1.0 ST 

Array 
33,297 23,307 

GSE92592 25 USA RNA-seq Illumina HiSeq 2000 23,398 23,398 

GSE53845 235 USA Microarray 
Agilent-014850 Whole Human 

Genome Microarray 
41,000 19,595 

GSE32537 232 USA Microarray 
Affymetrix Human Gene 1.0 ST 

Array 
11,950 9,928 

GSE47460 ǂ USA Microarray 
Agilent-014850 Whole Human 

Genome Microarray 
15,262 15,181 

ǂ: GSE47460 did not contain data from one particular study but instead contained data from the Lung Tissue Research Consortium. 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92592
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53845
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32539
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TABLE 5.28: Summary statistics for the IPF and control subjects in the lung tissue cohorts. sd = standard deviation, IQR = interquartile 

range, FVC = Forced vital capacity, DLCO = Diffusing capacity for carbon monoxide, BMI = body mass index. 

GEO 

accession 

Disease 

status 

Sample 

size 

Age  

(years, sd) 

Sex  

(% male) 

Ever smoker 

(%) 

FVC  

(sd) 

DLCO 

(IQR) 

BMI 

(IQR) 

GSE10667 
IPF 31 Unknown Unknown Unknown Unknown Unknown Unknown 

Control 15 Unknown Unknown Unknown Unknown Unknown Unknown 

GSE124685 
IPF 10 57.0 (5.1) 100% Unknown 58.7 (19.7) 26.0 (10.0) Unknown 

Control 6 58.8 (11.7) 100% Unknown Unknown Unknown Unknown 

GSE134692 
IPF 36 62.8 (5.6) 77.8% 61.1% Unknown Unknown 27.7 (6.3) 

Control 17 34.0 (25.9) 52.9% 35.3% Unknown Unknown 23.8 (9.1) 

GSE110147 
IPF 22 61.5 (6.5) 77.3% Unknown 57.4 (19.3) 37.0 (14.0) 26.5 (5.3) 

Control 11 Unknown Unknown Unknown Unknown Unknown Unknown 

GSE92592 
IPF 20 Unknown Unknown Unknown Unknown Unknown Unknown 

Control 19 Unknown Unknown Unknown Unknown Unknown Unknown 

GSE53845 
IPF 40 Unknown 80.0% Unknown Unknown Unknown Unknown 

Control 8 Unknown 87.5% Unknown Unknown Unknown Unknown 

GSE32537 
IPF 119 62.6 (8.7) 64.7% 63.1% 61.3 (17.0) 44.4 (29.7) Unknown 

Control 50 45.6 (18.6) 46.0% 58.3% Unknown Unknown Unknown 

GSE47460 
IPF 61 66.7 (8.2) 68.9% 67.3% 67.8 (15.9) 49.0 (24.0) Unknown 

Control 91 63.4 (11.5) 44.0% 62.2% 94.5 (13.1) 80.0 (20.5) Unknown 

 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92592
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53845
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32539
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There was a total of 339 IPF cases across the eight cohorts and 5,667 common genes that were measured 

in all datasets. COCONUT was used to co-normalise the datasets. Before COCONUT (Figure 5.16A), 

the IPF cases from all eight cohorts are entirely separated in high-dimensional space due to technical 

differences between datasets. Whereas post-COCONUT (Figure 5.16B), the IPF cases from several of 

the cohorts overlapped on the plot, indicating that the co-normalisation had reduced the technical 

differences between those datasets. However, there was one dataset (GSE110147) that did not co-

normalise well with the other studies and was still entirely separated from the other datasets in the plot. 

This dataset was excluded from the analysis and the COCONUT co-normalisation was repeated.  

 

 
FIGURE 5.16: Plots of the first two principal components of the gene expression data for the IPF samples 

from the eight lung tissue datasets, before (A) and after (B) COCONUT co-normalisation.  

With cohort GSE110147 removed, there was a total of 317 IPF subjects across the seven datasets and 

the number of genes measured in all datasets remained unchanged at 5,667. As before, these datasets 

were completely separated in gene expression space prior to the co-normalisation (Figure 5.17A). After 

COCONUT was applied (Figure 5.17B), the technical effects between datasets were reduced and the 

cohorts overlapped in gene expression space as desired. However, the co-normalisation appeared to 

have been imperfect. For example, the individuals from GSE124685 all laid closely together toward the 

top left of the plot and did not overlap at all with the individuals from GSE53845, who all laid towards 

the bottom of the plot. In spite of this, and as there were no further obviously outlying datasets, no 

additional studies were removed and the pooled data was clustered using COMMUNAL.  
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FIGURE 5.17: Plots of the first two principal components of the gene expression data for the IPF samples 

from the seven remaining lung tissue datasets, before (A) and after (B) COCONUT co-normalisation.  

The resulting 3D map (Figure 5.18) was used to select the optimal clustering assignment for the data. 

However, there were few points on the map where the mean validity score was above 0, suggesting 

overall weak clustering. Additionally, there were few points where the blue and red squares met, 

indicating that there were not many stable optima and therefore there was no strong signal for any 

particular number of clusters. The greatest number of stable optima was observed for K=4 clusters and 

the fewest genes for which there were stable optima was using 100 genes, so this assignment was 

selected as the optimal assignment for the data. 

Under the optimal clustering assignment (Figure 5.19A), 292 individuals (93%) were successfully 

clustered and clusters 1 and 2 contained individuals from many of the cohorts. However, cluster 4 only 

contained two individuals, both of whom were from GSE124685, which as discussed previously did 

not co-normalise well with the other studies. This cluster may therefore be an artefact of the poor co-

normalisation. As such, these two subjects were removed along with the unclustered samples, which 

left three clusters (Figure 5.19B). Another issue was that the clusters were not entirely separated in 

high-dimensional space, particularly clusters 1 and 2 which overlapped quite substantially. 

Additionally, comparing Figure 5.19B to Figure 5.17B shows that cluster 3 was comprised almost 

entirely of individuals from GSE32537, which was presumably another artefact of poor co-

normalisation.  
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FIGURE 5.18: The 3D map output by COMMUNAL when applied to the pooled, co-normalised data from the 

seven lung tissue datasets to identify the optimal cluster assignment. The map shows the mean of standardized 

values of each validity measure across the entire tested space. On the 3D map, blue squares indicate a 

potentially optimal clustering at a certain number of genes by finding the assignment where the mean combined 

validation metric is greatest. The absolute maximum K for any consensus subset is marked with a red square. 

A higher validity score indicates a better clustering assignment and stable optima are the points where the blue 

and red squares meet. If stable optima at K clusters are seen over most of the tested space, this indicates the 

presence of a strong, consistent biological signal at this number of clusters. 

The clinical and demographic traits of the clustered individuals were compared across the three clusters 

(Table 5.29). No significant differences in phenotypic traits were observed across clusters, though some 

variables may have been underpowered due to the high proportion of missing data.  
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FIGURE 5.19: Plots of the first two principal components for the clustered IPF samples from the seven 

remaining lung tissue datasets, before (A) and after (B) the removal of the samples in cluster 4 and the 

unclustered samples.  

 

 

 

 
 

 Total 

n used 

No. of 

datasets 

Cluster 1 

(green) 

Cluster 2 

(orange) 

Cluster 3 

(purple) 
P-value 

   (n=111) (n=120) (n=61)  

Phenotypic Trait       

Age  

(mean, sd) 

214 4 62.2  

(9.4) 

64.8  

(8.0) 

63.4  

(7.2) 

0.170 

European ancestry 

(%) 

32 1 11 

(68.8%) 

10 

(90.9%) 

5 

(100%) 

0.177 

Male  

(%) 

247 5 62 

(66.0%) 

65 

(70.7%) 

40 

(72.1%) 

0.670 

Ever smoker  

(%) 

204 4 48  

(61.5) 

48 

(67.6%) 

35 

(63.6%) 

0.606 

Smoking pack years 
(median, IQR) 

114 2 20.0 
(39.5) 

19.5 
(28.0) 

14.5 
(40.0) 

0.897 

Predicted FVC 

(mean, sd) 

178 3 65.5 

(18.1) 

63.3 

(16.8) 

60.3 

(16.8) 

0.282 

Predicted DLCO 
(median, IQR) 

158 3 49.8 
(32.1) 

43.3 
(21.3) 

44.9 
(26.9) 

0.301 

Predicted FEV1 

(mean, sd) 

65 2 72.9 

(18.8) 

72.5 

(17.4) 

- 0.921 

St George's score 
(median, IQR) 

115 1 49.1 
(37.6) 

43.0 
(41.5) 

43.5 
(34.7) 

0.724 

BMI  

(median, IQR) 

32 1 25.9  

(6.3) 

27.2  

(6.8) 

27.7  

(3.4) 

0.878 

A B 

 

B 

TABLE 5.29: Comparison of clinical and demographic traits for the clustered subjects in the lung 

tissue analysis. FVC = Forced vital capacity, DLCO = Diffusing capacity for carbon monoxide, FEV1 = 

Forced expiratory volume in one second, BMI = body mass index. 
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5.16 Cluster analysis in a single lung tissue dataset 

As repeating the cluster analysis using multiple lung tissue datasets was inconclusive, perhaps due to 

the weak clustering as a result of the poor co-normalisation, an additional cluster analysis was 

performed using a single lung tissue dataset. Focusing the analysis on one dataset meant that the co-

normalisation step could be circumvented, which could have improved the strength of the clustering 

and allowed for the identification of clinically distinct clusters despite the reduction in sample size and 

statistical power. In addition, using only a single cohort meant that a greater number of genes were 

available for inclusion in the clustering.  

5.16.1 Methods 

The dataset with the greatest number of IPF cases was selected as the sole dataset for inclusion in the 

analysis. The data for the IPF cases was clustered using COMMUNAL (Section 5.6.1) and the resulting 

3D map was used to select the optimal clustering assignment. Phenotypic traits were then compared 

across clusters using the same approach as described previously (Section 5.7.1). 

5.16.2 Results 

The largest dataset was GSE47460 with a total of 122 IPF cases (including the individuals who were 

found to be common with GSE32537 and were excluded from the previous analyses). Age, sex, 

smoking status, predicted FVC, predicted DLCO and predicted FEV1 were available for the individuals 

in this cohort. There were 15,181 unique genes in the dataset, which was clustered using COMMUNAL 

(Figure 4.20). Again, there were not many stable optima across the tested space. K=2 clusters 

consistently displayed the highest mean standardised validity score (indicated by the blue squares) and 

had the greatest number of stable optima, so this was selected as the optimal number of clusters. The 

lowest number of genes for which there was a stable optimum at K=2 clusters was 250 genes, so this 

assignment was selected as the optimal assignment.  
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FIGURE 5.20: The 3D map to identify the optimal cluster assignment output by COMMUNAL when applied 

to the data from the single lung tissue dataset GSE47460. The map shows the mean of standardized values of 

each validity measure across the entire tested space. On the 3D map, blue squares indicate a potentially optimal 

clustering at a certain number of genes by finding the assignment where the mean combined validation metric 

is greatest. The absolute maximum K for any consensus subset is marked with a red square. A higher validity 

score indicates a better clustering assignment and stable optima are the points where the blue and red squares 

meet. If stable optima at K clusters are seen over most of the tested space, this indicates the presence of a 

strong, consistent biological signal at this number of clusters. 

The two clusters were clearly separated in gene expression space (Figure 5.21), suggesting a stronger 

clustering than that observed when incorporating multiple lung datasets. 112 samples were successfully 

clustered (91.8%) and the unclustered samples were removed from the analysis. The clinical and 

demographic traits of the clustered subjects were compared across the two clusters (Table 5.30). As 

before, the results were inconclusive as there were no significant differences in clinical and 

demographic traits across clusters, perhaps through a lack of power due to the decreased sample size. 
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FIGURE 5.21: Plots of the first two principal components for the clustered IPF samples from the lung tissue 

dataset GSE47460, before (A) and after (B) the unclustered samples were removed.  

 

 

TABLE 5.30: Comparison of phenotypic traits across clusters for the single lung tissue 

dataset. FVC = Forced vital capacity, DLCO = Diffusing capacity for carbon monoxide, 

FEV1 = Forced expiratory volume in one second. 

Trait 
Cluster 1 (green) 

(n=66) 

Cluster 2 (purple) 

(n=46) 
P-value n used 

Age (mean, sd) 65.0 (8.5) 64.0 (8.3) 0.534 112 

Male (%) 45 (68.2%) 32 (69.6%) 1.000 112 

Ever smoker (%) 38 (61.3%) 31 (67.4%) 0.431 108 

FVC (mean, sd) 63.4 (18.3) 65.5 (13.9) 0.325 106 

DLCO (mean, sd) 46.5 (25.3) 50.0 (23.0) 0.120 101 

FEV1 (mean, sd) 69.8 (18.9) 73.2 (16.0) 0.325 106 

A 

 

A 

B 

 

B 
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5.17 Discussion 

This chapter described cluster analyses of multiple publicly available transcriptomic datasets that were 

performed to identify groups of IPF patients that could be representative of distinct disease endotypes. 

The first of these analyses was conducted using three datasets (totalling 220 IPF cases) in which the 

gene expression data were measured from whole blood samples. A new method of transcriptomic data 

pooling (COCONUT) was utilised to reduce the technical differences between the transcriptomic 

datasets so that the data for the IPF cases in each cohort could be combined. Following this, another 

new bioinformatics method (COMMUNAL) was used to cluster the pooled data, resulting in three 

clusters of patients with IPF (termed the red, blue and yellow clusters). There were statistically 

significant differences in lung function, GAP index and survival between the clusters, with those in the 

blue cluster appearing to be healthier on average compared to those in the red and yellow clusters and 

at a lower risk of mortality.   

Gene enrichment analysis was used to characterise the clusters in terms of the underlying biology. It 

was found that the genes that were most differently expressed in the individuals in the red cluster were 

significantly enriched for biological processes and biological pathways related to metabolic changes. 

Recent findings appear to suggest that metabolic dysregulation could be a contributing factor to fibrosis, 

though its role is not yet fully understood223,224,224. It has been previously reported that metabolic 

changes in IPF, such as decreased electron transport chain function, could potentially impact the 

functionality of lung cells and activate fibrotic responses236. In turn, these changes can lead to the 

activation of the TGF-β signalling pathway, which is a known driver of fibrosis211,212,212,213,213. 

Interestingly, the genes assigned to the red cluster were also significantly enriched for pathways related 

to TGF-β signalling.  

Among the biological pathways that were significantly enriched for the blue cluster were pathways 

related to apoptosis and cell cycle. As discussed in Section 4.4, apoptosis has been previously implicated 

in IPF development and apoptosis-based therapies for IPF have been proposed. Additionally, genetic 

variants within cell cycle genes have been shown to be associated with IPF development and 

progression227. The results for this cluster could further support the idea that apoptosis and cell cycle 

each play an important role in the pathology of IPF.  

The genes that were assigned to the yellow cluster were significantly enriched for processes related to 

the immune system response, as well as pathways related to the immune response, including an IL-6 

signalling pathway. IL-6 has been implicated previously in IPF where it was reported that increased 

levels of IL-6 are related to an increased risk of death in IPF patients237. It is interesting that this cluster 

was enriched for biological pathways and processes related to the immune response as the role of the 

immune response in IPF has been controversial in the past, with some types of immunosuppresants 

being found to lead to worse clinical outcomes for some IPF patients238. This has led to speculation that 



185 
 

some immune responses in IPF are harmful whilst some are protective221,222,222. Perhaps IPF consists of 

multiple immune-driven endotypes, which is consistent with the results of the gene enrichment analysis, 

and these harmful and protective immune responses are each more predominant in certain endotypes. 

If this were the case, perhaps immunosuppressants could prove effective (and safe) in treating IPF when 

targeted to a specific endotype as part of a precision medicine approach.  

Whilst these findings may be able to provide some mechanistic insight into the pathology of IPF, it 

must be acknowledged that changes in gene expression can be causal or consequential of disease. This 

means that it is possible that the clinically distinct groups identified in this study could be so as a result 

of downstream effects of having the disease and that it was the disease itself that led to the activation 

of pathways related to metabolic changes, apoptosis, cell cycle or the immune system response. 

However, the genes assigned to the blue and yellow clusters were found to be statistically overconnected 

(in terms of direct gene regulation) to a significant number of the 14 genes that were implicated in the 

largest genome-wide association study meta-analysis of IPF susceptibility to date209. Importantly, this 

could suggest that some of the differences in gene expression across the clusters reflect causal effects 

of the disease rather than consequential effects.  

Following this, a gene expression-based cluster classifier was developed to assign additional 

independent IPF cases to one of the three clusters. The original classifier used data from 23 genes and 

was successfully validated when applied to IPF subjects from three validation datasets (totalling 194 

IPF cases). The classifier accurately reassigned 100% of discovery subjects and assigned the validation 

subjects to clusters that displayed statistically significant differences in survival between groups that 

were consistent with the discovery clusters. It was estimated that at any follow-up time, those in the red 

cluster were 2.89 times as likely to die than those in the blue cluster (95% CI = [1.41, 5.93], P=0.004), 

whilst those in the yellow cluster were 4.23 times as likely to die compared to individuals in the blue 

cluster (95% CI = [1.87, 9.60], P=0.001). However, the difference in survival over time between the 

red and yellow clusters was not significant (P=0.341).  

This classifier showed signs of being overfit to the discovery data, which could have affected its 

generalisability to additional datasets and so the feasibility of less overfit, reduced-gene classifiers was 

evaluated. A classifier that used 13 genes was shown to be superior to the full 23 gene classifier when 

applied to validation datasets, as it was able to define groups with greater differences in lung function 

as well as survival, therefore more closely resembling the clusters that were observed in the discovery 

analysis.  

This 13 gene classifier was shown to have the ability to assign IPF cases in such a way as to, on average, 

put the individuals who are at a lower risk of death into the blue cluster and the individuals who are at 

a greater risk of death into the other two clusters. Therefore, it could potentially be used as a prognostic 

biomarker. The performance of the 13 gene classifier in predicting survival was compared to SAMS, 
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another transcriptomic approach to outcome prediction in IPF186, which uses expression data from 52 

genes. Both approaches were applied to the two validation cohorts for which survival information was 

available. The classifier was able to assign individuals so that at any follow up time, those in the ‘high-

risk’ (red and yellow) clusters were estimated to be 4.25 times as likely to die than those in the ‘low-

risk’ (blue) cluster (95% CI=[2.14, 8.46], P=3.7×10-5). SAMS performed less well at discerning 

between truly high-risk and low-risk individuals; those who were assigned to the high-risk group were 

estimated to be 1.98 times as likely to die at any particular time compared to those who were assigned 

to the low-risk group (95% CI=[1.07, 3.68], P=0.030). In addition, when added to a model adjusting for 

age, sex, ancestry, FVC and DLCO, the predictions made by the classifier led to a significant 

improvement in predictive ability (P=0.005), whereas the predictions made by SAMS did not 

(P=0.105).  

There are a few possible reasons that may explain why the classifier performed better than SAMS at 

assigning individuals into the correct risk group and thus predicting survival in IPF. Firstly, different 

approaches to cluster assignment were used. Using the classifier, every subject is given a score for each 

cluster, which are fed into a multinomial model that considers all three scores and predicts the most 

likely cluster assignment for that individual. Whereas in SAMS, individuals with an up score greater 

than the median value and a down score lower than the median value are classified as high risk. This 

means that an individual can have the greatest up score of the entire cohort but if their down score is 

just slightly above the median, they will be classed as low risk. The converse is also true for an 

individual with an extreme down score and an up score just above the median. These examples should 

highlight that there is a greater risk of misclassification using this method where truly high-risk 

individuals could be classed as low-risk. This is backed up by the fact that the classifier assigned 54 

individuals into the high-risk clusters while SAMS only classed 44 individuals as high-risk.   

Secondly, the 52 genes that are used in their method were originally included as they were found to be 

associated with transplant-free survival. As such, deaths and lung transplants were both treated as events 

of interest in the time-to-event analysis within their study. Whereas in the analyses described in this 

thesis chapter, deaths were the only outcome of interest. This difference in methodology may have 

affected the efficacy of SAMS in our analysis.  

Lastly, some of the 52 genes in the SAMS gene signature were not measured in the validation cohorts, 

which will have also influenced the efficacy of SAMS. However, as this was only 1 of 52 genes (1.9%) 

in the first cohort and 2 out of 52 genes (3.8%) in the second cohort, this is unlikely to have had a 

considerable impact on the risk group assignments. Overall, the results in this section suggested that the 

classifier may be a feasible cost-effective alternative to the current best transcriptomic prognostic 

biomarker in IPF.  
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The blood expression-based classifiers were then applied to additional transcriptomic datasets from IPF 

cases where the gene expression was measured from whole lung tissue. This was conducted to 

investigate whether the pathology in the lung reflected that found in the blood, which would have added 

some credibility to the hypothesis that the three clusters were representative of three distinct endotypes 

of IPF. However, there was no evidence that the classifiers were able to assign subjects in such a way 

as to recreate the clinically distinct clusters observed in the discovery analysis when applied to the lung 

tissue data. This may have been because only a limited amount of clinical data was available to discern 

the resulting clusters or may suggest that the pathology in the lung was not reflected by gene expression 

markers the blood.  

Following this, the cluster analysis was repeated using multiple lung tissue datasets to see whether the 

results would be concordant with those observed in blood. However, issues with the co-normalisation 

step led to poor clustering, which in turn led to clusters that were not clinically distinct. The clustering 

was repeated using only the single largest lung tissue dataset (totalling 122 IPF subjects) so that the co-

normalisation step was not required. Two clusters of IPF cases were found in this analysis, though again 

there were no significant differences in clinical traits between the two groups. It was unclear from the 

results of these analyses whether clinically significant clusters were not found due to a lack of statistical 

power (as a result of the high proportion of missing clinical data in the first analysis and the reduced 

sample size of the second), or because the clusters were not representative of distinct pathophysiological 

states of the disease.   

One of the main strengths of the first analysis described in this chapter was that the utilization of 

COCONUT allowed for three datasets to be combined, resulting in a relatively large discovery sample 

size of 220 IPF subjects, which increased the statistical power of the analysis and possibly allowed for 

more of the heterogeneity of the disease to be captured than if only one dataset were analysed. When 

also considering the three additional cohorts of independent IPF cases that were included in the 

validation stage, this study was one of the largest transcriptomic studies in IPF to date with a total of 

416 IPF cases.  

Another strength of these analyses was the application of COMMUNAL, which considered two 

different clustering algorithms (K-means clustering and PAM) and tested five validity measures over a 

range of genes. This allowed for the selection of an optimal clustering assignment, in terms of the most 

robust number of clusters in the dataset as well as the number of genes for which there was the greatest 

ratio of signal (informative genes) to noise (uninformative genes). These factors meant that this 

clustering was more reliable and more likely to be reproducible than the standard approach, which 

would have been to apply one clustering algorithm and test one validity measure. 

Previous studies on this topic have often split IPF cases based on clinical variables or definitions before 

comparing levels of gene expression between those groups183,184,184. However, this approach is subject 
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to misclassification errors which could result in an individual being assigned to the incorrect group. For 

example, an individual in one of these studies could have been classed as having ‘mild IPF’ based on 

their lung function during the study but then have gone on to experience a sudden rapid progression of 

the disease and death shortly after the study, while another subject who was classed as having ‘severe 

IPF’ could have gone on to live for several years after the study. These misclassifications will have 

weakened the results of the study as those individuals’ gene expression profiles were compared as part 

of the incorrect groups. On the contrary, the studies in this chapter did not use clinical data or definitions 

prior to cluster assignment and so were not reliant on these clinical variables or definitions. Furthermore, 

statistically significant differences in lung function, GAP index and survival were found between the 

clustered subjects in the first study despite clinical data not having been used in the clustering. This 

shows that clinically distinct groups of IPF patients can be identified through the clustering of gene 

expression data and could suggest that those groups may represent distinct endotypes of IPF with 

clinical relevance. Of course, a limitation of both approaches is that they are dependent on the presence 

of accurate and extensive phenotype data. In addition, it cannot be concluded unequivocally that the 

differences in survival across clusters were the result of differing IPF pathology between subjects, as 

other co-morbidities (such as age or heart disease) may have also varied across clusters. Whilst age was 

reported for nearly all subjects in the analysis and there were no significant differences in age observed 

across clusters, the limited phenotype data for other co-morbidities meant that the influence of 

unmeasured factors cannot be ruled out. Therefore, these clusters should be confirmed in a prospective 

study that considers a wide range of relevant phenotypes before conclusions regarding the existence of 

disease endotypes can be made.  

In Sweeney et al.94, each gene used in their clustering was assigned to the cluster in which its expression 

was most different to the expression in the other clusters, as this suggests that this gene contributes to 

the identity of that cluster. A similar approach was taken in this study, though with the improvement 

that ANOVA tests were introduced which allowed for the significance of the association between each 

gene and each cluster to be calculated. This allowed for the genes that were not at least nominally 

significantly associated to the cluster to which it was assigned to be excluded prior to the gene 

enrichment analysis. The inclusion of these uninformative genes would have weakened the enrichment 

analysis and so excluding them provided an additional level of confidence to the results from this 

section.  

However, there were several limitations to these analyses. The objective of this chapter was to identify 

groups of patients that could represent distinct endotypes of IPF through cluster analysis. However, the 

red and yellow clusters could not be distinguished in terms of clinical traits. It is possible that these 

clusters were in fact clinically distinct, but that a difference between the groups was not detected in this 

analysis. A possible reason for this is that the analysis relied on the use of publicly available data and 

as a result some clinical variables (e.g. ancestry and FVC) were relatively underpowered in the 
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discovery analysis due to not being reported in all three studies. Alternatively, it is possible that the red 

and yellow clusters could both represent the same endotype of IPF. In the subsequent cluster analysis 

of a single lung tissue dataset, two clusters were found which could support this theory. However, as 

those clusters were not clinically distinct, the conclusions that can be made from that analysis are 

limited. This is an additional reason why a prospective study on this topic would be beneficial, as a well 

powered prospective study with comprehensive clinical data collection for all participants could help 

to clinically distinguish the clusters.   

There are also some limitations to the gene expression data that should be recognised. Firstly, in the 

cluster analysis of whole blood datasets, not all genes were measured in each discovery stage study, 

which meant that many potentially informative genes could not be included in the analysis. This 

restricted the total number of genes in the analysis to approximately 9,000, even though the study with 

greatest coverage measured over 20,000. Additionally, due to the way that probes were mapped to 

genes, it is possible that the detection of different transcripts was used to represent the expression for 

the same genes across studies. Whilst expression for transcripts that represent the same gene are 

generally assumed to be correlated, this is not always the case239. In addition, as gene expression is 

tissue-specific, the results from the blood analysis may not be generalizable to other tissue types, such 

as lung. Finally, due to the types of data that were available (microarray and bulk RNA-seq), it was not 

possible to investigate whether there were any cell-type-specific effects across clusters. Future studies 

of this type could benefit from including single-cell RNA-seq data to address this. Finally, there are 

limitations to the use of blood as the tissue type in a transcriptomic analysis. For example, blood is a 

mixture of cell types that can change greatly in response to stimuli such as an infection, which will 

impact transcript abundance240. This could add another layer of variability between datasets from 

different studies and could have reduced the efficacy of the data co-normalisation.  

Another weakness of these analyses is that COCONUT assumes that the healthy controls across the 

different studies came from the same statistical distribution and so all differences between healthy 

controls across studies must have been due to non-biological variation. This is a strong assumption as 

any large differences in confounding factors (such as age, sex and ethnicity) between the groups of 

healthy controls would have restricted the efficacy of the co-normalisation. However, the healthy 

controls in each of the three discovery blood datasets appeared similar in terms of the available 

phenotypic traits (age and sex) and the co-normalisation appeared to work well as the data for the control 

subjects from the three cohorts overlapped considerably in high-dimensional space post-co-

normalization. However, the red cluster did not contain any individuals from the dataset with GEO 

accession code GSE93606. This could suggest that the co-normalisation was imperfect and meant that 

the discovery subjects in the red cluster could not be assessed for the important clinical variables that 

were reported in only that dataset, including: survival over time, smoking status and FEV1. Importantly, 

this may explain why there were three clusters in this analysis but only two that were clinically distinct; 
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it is possible that the red and yellow clusters were both representative of the same endotype of IPF and 

it was an imperfect co-normalisation that led to the individuals in these groups being clustered 

separately.  

It was more evident in the lung tissue analyses that the controls did not fully account for the technical 

differences between datasets. There could be several reasons for this. Firstly, the lung tissue studies 

tended to have fewer control subjects than the whole blood studies, perhaps partly because the collection 

of a lung tissue sample (which requires a procedure such as a biopsy or a transplant) is more invasive 

than the collection of a whole blood sample (done through phlebotomy or venepuncture) and thus lung 

tissue samples are more difficult to obtain. This would have affected the accuracy of the co-

normalisation as the correction factors for each study would be less reliable. Further, as lung tissue 

samples are harder to obtain than blood samples, it stands to reason that the authors from the lung tissue 

studies were less particular over their control subjects in regard to recruiting those that were well 

matched to the disease cases. If the control subjects from the lung studies were indeed less well matched 

to the disease cases, they would likely be less well matched to the controls from the other studies, which 

would have been detrimental to the co-normalisation. One approach to combat this issue would have 

been to remove controls that were clearly poorly matched to the IPF cases, such as those much younger 

than a typical IPF patient. However, there was such a large amount of unreported clinical data for the 

lung tissue studies, particularly for the control subjects, that this could not have been done for the 

majority of the included datasets and doing so for only a proportion of the cohorts may have meant that 

the remaining cohorts would have co-normalised less well.  

As mentioned previously, the 13 gene classifier could have potential use as a clinical biomarker to 

predict IPF patient survival. However, several important factors must be considered before this is done. 

First, more extensive validation in additional independent cohorts is needed to further characterise the 

clusters and gain additional support for the classifier’s ability to predict survival in IPF. Second, the 

classifier should only be introduced as a prognostic tool if it could improve the outcome for the patients 

by leading to a change in the clinical management of the disease. For example, perhaps those in a 

particular cluster may react more favourably to one of the two existing IPF drugs nintedanib and 

pirfenidone, or perhaps those in the high-risk clusters should be prioritised for lung transplants over 

those in the low risk blue cluster. Further work must be done to assess the possible benefit to treatment 

that the classifier could provide as a biomarker.  

Third, in its current form, the classifier can only work effectively when applied to transcriptomic data 

from a whole cohort of individuals with IPF. It was designed in this way so that non-biological variation 

within the data would not need to be accounted for and removed prior to the cluster assignment, which 

allowed for the inclusion of studies that had not considered healthy control subjects. However, this is 

not ideal as it would hinder the clinical applicability of the classifier. A way to standardise the procedure 
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so that a single individual with IPF can be assigned to a cluster would be preferable and should be 

developed in the future. 

Fourth, there are some factors that may interfere with the efficacy of the classifier, such as drug effects 

or the timing of the blood sample collection in the disease course. Factors such as this should be 

investigated before the classifier can be introduced to a wide range of patients with IPF. Fifth, the cost-

effectiveness of the classifier must be evaluated. There is a precedent for a clinically cost-effective 

transcriptomic biomarker: MammaPrint, the 70-gene signature that is used to predict whether an 

individual’s breast cancer tumours are likely to spread241. MammaPrint is cost-effective as it can prevent 

low-risk patients from receiving chemotherapy unnecessarily. As the classifier requires measurement 

of only 13 genes, it may cost less per patient to implement than MammaPrint, but the cost must be 

weighed up against the benefit that the classifier can provide to assess whether clinical use is feasible.   

The cohorts that were used in these analyses were checked for common subjects across datasets. This 

included checking for the origin of the samples or whether the study participants had been given a 

unique reference code from their study. Those who were found to have featured in multiple cohorts 

were removed from all except one in an effort to minimise any bias in the results. However, the 

possibility of subject overlap between datasets cannot be completely ruled out. Still, it is unlikely that 

there were significant levels of subject overlap and so any bias in the results should not have had a 

substantial effect on the findings of these analyses. 

A further weakness of these analyses is that each participating cohort of IPF patients was subject to 

survival bias, as only individuals who survived long enough to enrol into each study could have 

contributed their transcriptomic data to it. It is therefore likely that there were some individuals with 

IPF that would have been included in one of these studies, had they not died before their enrolment or 

prior to the collection of their tissue/cell sample. Their absence would have meant that less 

heterogeneity of IPF was captured in these analyses and as a result meant that the clusters found in this 

chapter were less likely to represent the entire range of endotypes of IPF. This survival bias would have 

had a greater effect on the lung tissue studies than the blood studies, as these required the use of 

explanted lung tissue/biopsies and the wait for these procedures likely would have been longer than the 

wait for the collection of the blood samples. This may have been a contributing factor as to why 

clinically distinct clusters were not identified using the transcriptomic data from lung tissue. 

If the clusters identified in this chapter do truly represent endotypes of IPF, it may be worth speculating 

about the nature of these endotypes. A traditional discrete endotype model assumes that all individuals 

with IPF should fit the description for just one endotype and that there should be little heterogeneity 

between the individuals with a particular endotype. However, this approach is more consistent with 

disorders that have rare, high impact genetic and environmental exposures. Endotypes of a complex 

disease such as IPF, which has many known common genetic and environmental exposures, would 



192 
 

likely behave under a more complex model, such as the palette model described by McCarthy242. The 

palette model assumes that there are a range of key pathophysiological traits and processes (termed 

‘component pathways’) which all contribute to the risk of disease, and every single person lies 

somewhere on a spectrum of disease risk, with their exact position defined by the sum of their genetic 

risk and history of environmental exposure to each component pathway. The results of the gene 

enrichment analysis in this chapter could implicate metabolic changes, cell cycle, apoptosis and the 

immune system response as being among the component pathways for IPF. Under the palette model, 

an individual with IPF does not have to be neatly defined as having a particular endotype, as they may 

exhibit biology suggestive of multiple endotypes. This would be consistent with the findings of the 

cluster analysis of whole blood datasets as there were roughly 10% of subjects who could not be placed 

into a cluster because the two clustering algorithms disagreed on their cluster assignment.  

To conclude, the results from this chapter suggest that there are at least two clinically distinct groups of 

individuals with IPF that can be identified through clustering transcriptomic data. The three clusters 

identified were defined using expression from groups of genes that were significantly enriched for many 

different biological pathways and processes. Therefore, these clusters could be representative of distinct 

pathophysiological states of IPF and could suggest the existence of multiple endotypes of IPF. If so, 

these findings would implicate metabolic changes, cell cycle, apoptosis and the immune response as 

the dominant pathways underlying these endotypes. However, the existence of these endotypes should 

be confirmed through additional follow-up studies. Additionally, a classifier with the ability to assign 

individuals with IPF to one of the clusters was developed. With further development, this classifier 

could be a useful tool in outcome prediction and patient stratification in IPF.  
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Chapter 6 – Discussion 

This thesis describes a series of analyses that were conducted to improve the understanding of the 

pathogenesis of idiopathic pulmonary fibrosis. There were two primary aims: i) to define the genetic 

determinants of age-of-onset of IPF and ii) to identify endotypes of IPF using gene expression data. 

This chapter will summarise the main findings of these analyses and discuss how they have made 

original contributions to the field of IPF research. Following this will be a discussion of the strengths 

and limitations of these analyses, as well as speculation on future work that could potentially follow 

this research.  

6.1 Summary of thesis 

Two different approaches were used to investigate the genetic determinants of the age-of-onset of IPF. 

First, genome-wide association studies were performed with the objective to identify common genetic 

variants (MAF>1%) that were significantly associated with the age-of-onset of IPF (Chapter 3). 

Following this, a gene-based collapsing analysis was conducted to investigate the possible role of rare 

genetic variants (MAF<1%) in the age-of-onset of IPF (Chapter 4). These analyses were the first genetic 

studies to investigate the age-of-onset phenotype in IPF. In these analyses, the age-at-diagnosis of IPF 

was used as a proxy for the age-of-onset of IPF. When the age-at-diagnosis of IPF was unavailable, the 

age-at-enrolment into a study was used as a proxy for this, as long as all individuals in that study were 

recruited within six months of their initial IPF diagnosis.  

Two GWAS were performed in Chapter 3, using genetic data from 465 individuals with IPF from the 

PROFILE study, 210 from the Trent Lung Fibrosis Study and 98 from UK Biobank. In the first GWAS, 

linear regression was used to model the proxy for the age-of-onset of IPF and a two-stage study design 

was adopted. The discovery analysis (stage 1) was performed in the PROFILE cohort and suggestive 

signals of association were followed-up in the remaining two cohorts (stage 2). The results of stages 1 

and 2 were then meta-analysed. In the second GWAS, improvements were made to the methodology 

and the design of the study by modelling the proxy for the age-of-onset of IPF using time-to-event 

analysis methods and implementing a 3-way GWAS meta-analysis study design with internal validation 

criteria (only variants that were nominally significant in each cohort and had a consistent direction of 

effects across all cohorts were included in the meta-analysis). There were no genetic variants that 

reached genome-wide significance (Pmeta<5×10-8) in either of these analyses, but there were five 

independent genetic signals in the 3-way GWAS meta-analysis that met the internal validation criteria 

and reached suggestive statistical significance (Pmeta<5×10-6). Signal refinement and functional follow-

up was performed for these suggestively significant signals but none could be robustly linked to any 

genes using the resources available, which limited the biological interpretation of the signals.  
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In Chapter 4, whole-genome sequencing data (from 493 individuals with IPF from the PROFILE 

cohort) were utilised to identify genes in which an aggregated excess of rare variants was associated 

with the age-of-onset of IPF. Two different statistical methods were used to collapse and test genetic 

variants at the gene level: the Morris-Zeggini approach, a type of burden test, was used in the first 

analysis and SKAT, a type of non-burden test, was used in the second analysis. Initial results in the first 

analysis showed two genes (IGF2BP2 and RELT) that reached the threshold for study-wide significance 

(P<2.6×10-6), but sensitivity analyses showed that these results were largely being driven through the 

presence of a single individual whose age-at-enrolment into PROFILE was much lower than the 

average. After the removal of this individual, there were no genes that reached the threshold for study-

wide significance under the primary model or in any of the models in subsequent sensitivity analyses. 

Likewise, there were no genes that reached the threshold for study-wide significance in the second 

analysis using SKAT.  

Chapter 5 described a series of transcriptomic analyses that were performed to identify endotypes of 

IPF. In the first analysis in this chapter, three publicly available whole blood gene expression datasets 

(220 IPF cases total) were co-normalised and clustered to identify groups of individuals with IPF that 

could represent disease endotypes. Three clusters of patients were identified, with significant 

differences in lung function and survival between clusters. The clusters were used to build a gene 

expression-based cluster classifier, which was then validated using three additional cohorts of 

individuals with IPF (194 IPF cases total). With a total of 414 IPF cases across both the discovery and 

validation stages, this was one of the largest gene expression studies in IPF to-date.  

As IPF is a lung disease, the transcriptome of the lung may be more informative about IPF pathogenesis 

than the transcriptome of the blood. As such, analyses were also performed using publicly available 

whole lung transcriptomic datasets. First, the whole blood-trained cluster classifiers were applied to 

four whole lung expression datasets (total 243 IPF cases) to assess whether the gene expression 

differences in the blood reflected pathology in the lungs. However, the resulting clusters were not 

significantly clinically distinct. Second, the transcriptomic cluster analysis was repeated using eight 

whole lung gene expression datasets (totalling 339 IPF cases). However, this analysis was inconclusive 

as the co-normalisation was ineffective with substantial technical differences remaining between the 

datasets, which led to poor clustering. Finally, a single lung expression dataset of 122 IPF cases was 

clustered, which circumvented the need to remove technical differences between studies through co-

normalisation. Two clusters were identified in this analysis, though again the results were inconclusive 

as there were no significant differences in clinical traits between the two clusters, perhaps due to a lack 

of power as a result of the lower sample size compared to the previous analyses. 
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6.2 Original contributions to the field 

The analyses in this thesis were the first genetic studies in IPF to consider the age-of-onset phenotype. 

Although no variants reached statistical significance overall, there were five potentially interesting 

association signals in the 3-way GWAS meta-analysis that may prove to be true positives when larger 

samples sizes are available. Furthermore, it appears that the genetic determinants for the age-of-onset 

are likely distinct to those for IPF risk; lookups for the known IPF risk-associated variants within the 

results of the age-of-onset GWAS showed that none were significantly associated with the age-of-onset 

following adjustment for multiple testing. However, it is possible that this was due to a lack of statistical 

power within the age-of-onset analysis. In addition, there were no common genetic variants that were 

exerting very large effects on the age-of-onset comparable to the large effect of rs35705950 on IPF 

susceptibility. This means that future genetic studies to investigate this phenotype must prioritise 

gaining a sufficiently large sample size to provide enough statistical power to detect more modest 

genetic effects for common variants.  

With additional support in independent datasets and with further functional follow-up to robustly link 

those signals to genes, the five suggestively significant signals in the age-of-onset GWAS could 

implicate new genes and pathways in the development of IPF. As such, studying this phenotype further 

could improve the understanding of the disease pathogenesis and could potentially lead to new treatment 

options for patients. Therefore, future genetic studies in IPF should continue to pursue this phenotype, 

preferably in studies of greater sample size and statistical power.  

The cluster analysis of whole blood expression datasets was performed to identify groups of IPF patients 

that could represent clinically distinct endotypes of the disease. In this analysis, three clusters of IPF 

patients were identified and there were significant differences in lung function and survival across 

clusters. As clinical data were not used in the clustering process itself, the finding that these clusters 

were clinically distinct could suggest that they are representative of distinct pathophysiological states. 

Furthermore, gene enrichment analysis showed that the genes that were differentially expressed in each 

cluster were significantly enriched for many different biological pathways and processes, including 

metabolic changes (red cluster), cell cycle and apoptosis (blue cluster) and the immune response (yellow 

cluster). As discussed in Section 5.17, these findings are consistent with previous studies that have 

implicated metabolic dysfunction223,224,224, cell cycle227 and apoptosis171,172,172 in the pathogenesis of IPF. 

As such, our findings suggest that drugs that target these mechanisms may warrant further investigation 

when considered as potential therapies for subgroups of IPF patients. Furthermore, as the clusters may 

represent groups of IPF patients with different predominant disease processes, cluster assignment may 

be informative as to treatments that might prove effective when targeted to a specific group of patients. 

For example, if chronic inflammation is revealed to be a driver of IPF for the patients in a particular 

cluster, the use of anti-inflammatories (which are known to not be effective when considered in an 

unselected patient population215) might prove beneficial when targeted specifically towards the 
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individuals in that cluster. Similarly, the results of the gene enrichment analysis are consistent with the 

existence of immune-driven endotypes in IPF, which may suggest that immunosuppressants could 

prove effective (and safe) in treating IPF when targeted to a specific endotype.  

The cluster analysis also led to the development of a gene expression-based classifier, which could 

potentially have clinical applications in IPF. Firstly, as the classifier was able to assign IPF cases to 

clusters that showed significant differences in survival across groups, it could be used as a prognostic 

biomarker to predict outcome for IPF patients. These predictions could be used by clinicians to prioritise 

earlier treatment (such as anti-fibrotic therapy or a lung transplant) to those who are classed as high-

risk. The classifier was shown to be more accurate at distinguishing individuals at a high risk of death 

from those at a low risk of death than another transcriptomic prognostic biomarker for IPF186 and could 

be a more cost-effective clinical tool as it requires expression from fewer genes to be measured.  

Secondly, stratifying patients into groups using the classifier and matching treatments to each cluster or 

risk group could allow for a precision medicine approach in IPF. For example, patients assigned to a 

particular cluster could be prescribed either pirfenidone or nintedanib depending on which anti-fibrotic 

therapy has been found to be most effective for the patients in that cluster. Similarly, the classifier could 

allow for immunosuppressive therapy to be targeted towards individuals with a particular immune-

driven endotype. Of course, these hypotheses must be tested and proven in clinical trials before they 

can be introduced clinically and there are some limitations to the classifier that should be addressed first 

(Section 6.4).  

It was of interest to investigate whether there were any genetic variants associated with the clusters (as 

putative IPF endotypes). However, except for the MUC5B promoter polymorphism rs35705950, genetic 

data could not be directly compared across clusters as this required paired genetic and transcriptomic 

data, which was not available. For rs35705950, there were no significant differences in genotype across 

clusters, although this may have been due to a lack of power as a result of the large amount of missing 

data. Gene enrichment analysis was used to test whether the genes that defined each cluster were 

statistically overconnected (in terms of direct gene regulation) to IPF risk-associated genes209. The genes 

that were most differentially expressed in the blue and yellow clusters were each found to be 

overconnected to a significant number of IPF risk-associated genes, which suggested that genes and 

biological mechanisms related to IPF susceptibility may be important to the development of the 

pathophysiological states that those clusters could represent. However, more extensive approaches are 

needed to fully evaluate the genetic basis of these putative endotypes (Section 6.4).  

6.3 Strengths and limitations  

In addition to the original contributions to the understanding of IPF pathogenesis discussed in the 

previous section, the analyses in this thesis had some important strengths. Firstly, the methodology used 

in these analyses was rigorous to ensure that any findings were genuine and robust. For example, the 
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internal validation criteria in the age-of-onset of IPF GWAS ensured that the genetic variants were 

associated with the proxy for the age-of-onset in all cohorts and so reduced the possibility of signals 

being reported that were being driven through a strong association in only one cohort. Additionally, the 

sensitivity analyses in the gene-based collapsing analysis highlighted the spurious results that were the 

result of the age outlier and COMMUNAL was used in the transcriptomic cluster analysis to provide a 

more reproducible and robust clustering than a traditional clustering approach.  

Another strength was the use of the PROFILE cohort, which was the largest individual study in the age-

of-onset GWAS, the only study in the gene-based collapsing analysis and contributed to the discovery 

stage of the transcriptomic cluster analysis. The individuals in the PROFILE cohort were prospectively 

enrolled and newly diagnosed, which meant that their age at enrolment could be used as a proxy for 

their age-of-onset, thus allowing for the first genetic studies of the age-of-onset phenotype to be 

performed. In addition, the individuals in PROFILE were treatment naïve as the two anti-fibrotic 

treatments currently licensed for IPF were not licensed at the time of study recruitment. This therefore 

reduced the possibility that any differences in gene expression between individuals were due to 

treatment effects. Also, the rich clinical data that was available for this cohort allowed for clinically 

significant traits to be studied, such as smoking history, lung function measurements and survival over 

time. However, any unique characteristics of this cohort could have potentially weakened or biased the 

results of all the analyses in this thesis at once. For example, if the individuals in PROFILE had a better 

average socioeconomic status than the general public, the results in this thesis may not be as 

generalizable to that population.  

The analyses in this thesis had some additional limitations that should be recognised. Firstly, statistical 

power was a significant issue in these analyses due to the relatively low sample sizes that were available. 

For example, there were a total of 773 IPF cases in the age-of-onset GWAS but a GWAS investigating 

a continuous phenotype for a polygenic disease would require approximately 4,000 individuals to have 

80% power to detect a variant with an additive genetic effect that accounts for 1% of the phenotypic 

variance at a genome-wide significance level (P<5×10-8). A relatively straightforward way to increase 

the statistical power of these analyses would have been to incorporate data from additional independent 

cohorts of IPF patients into the studies and to meta-analyse the results. However, aside from those used 

in this thesis, there were no genetic datasets available for IPF patients whose age-of-onset (or a suitable 

proxy) was known. Statistical power due to sample size was also a limitation in the transcriptomic 

cluster analysis and this was exacerbated by there being large amounts of missing data for some clinical 

variables. This limitation highlights the need for additional independent omic studies in IPF, as well as 

the need for more detailed collection of clinical data in those studies. In the interim, it may be beneficial 

for future studies in IPF to identify cases using large biobanks and inferring disease phenotypes, such 

as the age-of-onset, using electronic health records (Section 6.4).  
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Another weakness of these analyses is that they were almost entirely comprised of individuals of white 

European ancestry and so the results may not be generalizable to individuals of other ancestries. 

Furthermore, most previous genetic studies of IPF have been in populations of European ancestry. 

Unfortunately, this is typical of current genetic studies, with over 75% of participants in published 

GWAS being of European ancestry243. This data inequality risks missing disease-associated genetic loci 

that are specific to other ancestries and must be addressed in future studies. In addition, many of the 

available genetic and transcriptomic datasets for IPF originate from randomised control trials and 

registries and biases in terms of sex and ethnicity in recruitment for these kind of studies have recently 

been noted, with females and non-white individuals being underrepresented244. Going forward, action 

must be taken to ensure that study populations are more representative of individuals with IPF in the 

general population, including offering registry enrolment to all patients seen in ILD clinics and 

introducing quotas for enrolment of racial minority participants in clinical trials.  

6.4 Future work 

One way to increase the power of future omic analyses in IPF could be to use electronic health records 

(EHRs) to identify patients with IPF and define their phenotype. For instance, if the phenotype of 

interest in a future study was the age-of-onset of IPF, individuals in a biobank who have IPF would be 

identified using primary care data (such as general practice records and International Classification of 

Diseases [ICD] codes), whilst primary care codes for common IPF symptoms (such as cough and 

dyspnoea) could be used to determine their age when they first visited the doctor after developing IPF. 

This age, if estimated accurately, would provide a more accurate approximation of the age-of-onset of 

IPF than the proxies used in this thesis. In addition, this could allow for the inclusion of individuals 

with IPF from different ancestral groups by utilising biobanks from around the world, which would 

make the results more generalizable to populations of non-European ancestry.  

However, there also some disadvantages to this approach. One recent study (not yet peer-reviewed)245 

performed the largest meta-analysis of IPF risk to-date by using EHRs to define IPF in biobanks but 

found that effect sizes for IPF susceptibility-associated SNPs varied across studies based on how the 

IPF cases were ascertained. Effect sizes were 2.1 times greater on average in studies where IPF was 

diagnosed clinically than in studies where biobanks and EHRs were used to define IPF, suggesting that 

there was misclassification of IPF in biobanks. Therefore, due to the expectation of attenuated effect 

sizes, biobank studies to investigate IPF phenotypes will likely require greater sample sizes than studies 

that use clinically defined IPF in order to maintain the same level of statistical power. Moreover, as IPF 

is an uncommon disease, the biobanks will likely need to be very large in order to accumulate enough 

IPF cases to provide sufficient statistical power to the study. In addition, the strengths and limitations 

of using primary care codes will be dependent on the particular IPF phenotype being derived. For 

example, defining an age-of-onset using primary care symptom codes may prove difficult as some 

symptoms will be caused by co-morbidities.  
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As discussed in Chapter 5, a large prospective cohort study to follow-up the transcriptomic cluster 

analysis is now needed. Firstly, this would allow for more extensive clinical data to be recorded for the 

IPF patients, including clinically important traits that were not available in these analyses, such as lung 

function over time, patient reported outcomes and treatment history. Secondly, a larger sample size, 

coupled with more comprehensive clinical data, will provide greater statistical power and possibly allow 

for more of the disease heterogeneity to be captured than in the Chapter 5 analyses. This increase in 

statistical power will help to elucidate the true number of clinically distinct endotypes of IPF. Thirdly, 

conducting a single large prospective study would mean that the gene expression data would not need 

to be co-normalised prior to the clustering, thus eliminating a potential source of bias. Fourth, an 

important question still stands as to whether the findings from this analysis about gene expression in 

the blood reflects pathology in the lungs. A prospective study could allow for gene expression from a 

more relevant tissue type than blood (e.g. whole lung or lung fibroblasts) to be investigated and 

clustered.  

In addition, a prospective study could allow for genetic and transcriptomic data to be collected for the 

same patients, which would allow for genetic associations with clusters to be investigated. For example, 

rather than simply studying the MUC5B promoter variant rs35705950, a future study could test for 

associations between cluster membership and all of the SNPs that have been previously identified as 

being associated with IPF susceptibility. Alternatively, genome-wide approaches could be used to 

search for genetic variants that are associated with cluster membership. For example, assigning patients 

into clusters using the gene expression-based classifier and then performing a GWAS to compare 

individuals in the low-risk (blue) cluster against individuals in the high-risk (red and yellow) clusters 

could be informative as to whether the clusters identified in this thesis reflect genetically driven 

endotypes. However, such studies would likely require thousands of subjects in order to be well-

powered.  

Future work could also focus on the classifier, which could be utilised in clinical trials to evaluate the 

efficacy of treatments in each cluster of IPF patients. For example, the efficacy of the two current 

antifibrotic interventions (pirfenidone and nintedanib) for IPF could be assessed stratified by cluster 

membership. This could reveal whether targeting each of these treatments to a particular cluster 

improves its efficacy. Importantly, this may not require a new clinical trial to be conducted and could 

potentially be performed post-hoc if a previous clinical trial for pirfenidone or nintedanib had measured 

gene expression for the 13 genes in the classifier at baseline.  

However, before the classifier can possibly be implemented as a clinical tool in IPF, additional work to 

address its limitations should be conducted. As discussed in Section 5.15, this would include the 

development of a reference panel and a standardised procedure for the collection of expression data (so 

that the classifier can be applied to an individual IPF patient as opposed to an entire cohort), more 
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extensive validation in additional independent cohorts (to further characterise the clusters and to gain 

additional support for the classifier’s ability to predict survival in IPF), the investigation of factors that 

could interfere with the classifier’s efficacy (such as drug effects or the timing of the blood sample 

collection in the disease course) and an evaluation of the classifier’s cost-effectiveness.  

6.5 Conclusion 

In this thesis I have contributed to the understanding of the pathogenesis of IPF by performing the first 

genetic analyses to study the age-of-onset of IPF, which highlighted some genes of potential interest as 

well as some important factors to consider when studying this phenotype. In addition, through 

combining and clustering multiple gene expression datasets I have identified potential endotypes of IPF 

and used these to develop a transcriptomic classifier capable of predicting outcome in IPF. These 

findings could lead to improvements in treatment for patients with IPF as well as inspiring future studies 

in the field of IPF research.  
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Appendix  
A: Additional Figures  
 

 

ADDITIONAL FIGURE A.3.1: Histograms showing the distribution of the age-at-

enrolment of the PROFILE cohort, stratified by recruitment centre. 
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ADDITIONAL FIGURE A.3.2: Manhattan plot showing the results of the meta-analysis for all SNPs that passed quality control in each of the three study cohorts. The SNPs 

that passed the internal validation procedure are highlighted green. Variants with a P-value greater than 0.1 were filtered out to reduce the computational burden of the plot. 

The red line indicates the threshold for genome-wide statistical significance (P=5×10-8). 



203 

 

 
ADDITIONAL FIGURE A.3.3: A mirror plot to jointly visualise the summary statistics from the age-at-diagnosis of IPF GWAS meta-analysis and the summary statistics 

from the analysis of cis-eQTLs for IFRD1. The sentinel variant (rs183759512) is coloured blue. All variants in the 95% credible set for the chromosome 7 signal in the 

GWAS are denoted by triangles whereas all other variants are denoted by circles. The gene region of IFRD1 is highlighted yellow.  
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ADDITIONAL FIGURE A.3.4: A mirror plot to jointly visualise the summary statistics from the age-at-diagnosis of IPF GWAS meta-analysis and the summary statistics 

from the analysis of cis-eQTLs for PRKCQ-AS1. All variants in the 95% credible set for the chromosome 10 signal in the GWAS are denoted by triangles whereas all other 

variants are denoted by circles. The gene region of PRKCQ-AS1 is highlighted yellow.  
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ADDITIONAL FIGURE A.3.5: A mirror plot to jointly visualise the summary statistics from the age-at-diagnosis of IPF GWAS meta-analysis and the summary statistics 

from the analysis of cis-eQTLs for RP11-554I8.1. The sentinel variant (rs41295127) is coloured blue. All variants in the 95% credible set for the chromosome 10 signal in 

the GWAS are denoted by triangles whereas all other variants are denoted by circles. The gene region of RP11-554I8.1 is highlighted yellow.  
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ADDITIONAL FIGURE A.3.6: A mirror plot to jointly visualise the summary statistics from the age-at-diagnosis of IPF GWAS meta-analysis and the summary statistics 

from the analysis of cis-eQTLs for RP11-5N23.3. All variants in the 95% credible set for the chromosome 10 signal in the GWAS are denoted by triangles whereas all other 

variants are denoted by circles. The gene region of RP11-5N23.3 is highlighted yellow.  
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ADDITIONAL FIGURE A.3.7: A mirror plot to jointly visualise the summary statistics from the age-at-diagnosis of IPF GWAS meta-analysis and the summary statistics 

from the analysis of cis-eQTLs for FARP1. The sentinel variant (rs9513422) is coloured blue. All variants in the 95% credible set for the chromosome 13 signal in the GWAS 

are denoted by triangles whereas all other variants are denoted by circles. The gene region of FARP1 is highlighted yellow.  
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ADDITIONAL FIGURE A.3.8: A mirror plot to jointly visualise the summary statistics from the age-at-diagnosis of IPF GWAS meta-analysis and the summary statistics 
from the analysis of cis-eQTLs for IRX3. The sentinel variant (rs118122250) is coloured blue. All variants in the 95% credible set for the chromosome 16 signal in the GWAS 

are denoted by triangles whereas all other variants are denoted by circles. The gene region of IRX3 is highlighted yellow.  
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ADDITIONAL FIGURE A.4.1: The variant weight function used by SKAT in the non-burden test 

analysis, which follows a Beta distribution with shape parameters 1 and 25.  
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ADDITIONAL FIGURE A.5.1: A Kaplan-Meier plot showing survival over time for the subjects in study 

GSE93606. 
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ADDITIONAL FIGURE A.5.2: A plot of the scaled Schoenfeld residuals over time for the Cox proportional 

hazards model that was fit to the survival data from the discovery study GSE93606. The plot shows no trend 

with time and thus the proportional hazards assumption has not been broken.  
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ADDITIONAL FIGURE A.5.3: Kaplan-Meier plots showing survival over time for the subjects in the validation cohorts GSE27957 (left) and GSE28042 (right). A 

dotted line on the plot indicates the median survival time, if this could be calculated.     . 
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ADDITIONAL FIGURE A.5.4: A plot of the scaled Schoenfeld residuals over time for the Cox proportional 

hazards model that was fit to the survival data from the validation studies. The plot shows no trend with time 

and thus there is no evidence that the proportional hazards assumption has been broken. 
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ADDITIONAL FIGURE A.5.5: Kaplan-Meier plots showing survival over time for the subjects in the validation cohort GSE27957 when subjects are assigned using 

our classifier (left) or Herazo Maya et al.’s SAMs method (right). A dotted line on the plot indicates the median survival time for that group and the p-value on each 

plot is from a log-rank test, testing the two curves for equality.     
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ADDITIONAL FIGURE A.5.6: Kaplan-Meier plots showing survival over time for the subjects in the validation cohort GSE28042 when subjects are assigned using 

our classifier (left) or Herazo Maya et al.’s method SAMs (right). A dotted line on the plot indicates the median survival time and the p-value on each plot is from a log-

rank test, testing the two curves for equality.     



216 
 

B: Additional Tables 
 

ADDITIONAL TABLE B.3.1: Suspected causal variants for previously reported genome-wide 

signals of association with IPF susceptibility. 

Chr. Position rsid Locus Reference 

3 44902386 rs78238620 KIF15 77 

3 169481271 rs12696304 LRRC34/TERC 77 

4 89885086 rs2013701 FAM13A 77 

5 1282414 rs7725218 TERT 77 

5 169015479 rs116483731 SPDL1 119 

6 7563232 rs2076295 DSP 77 

7 1909479 rs12699415 MAD1L1 77 

7 99630342 rs2897075 7q22.1 77 

8 120934126 rs28513081 DEPTOR 77 

11 1241221 rs35705950 MUC5B 77 

13 113534984 rs9577395 ATP11A 77 

15 40720542 rs59424629 IVD 77 

15 86097216 rs62023891 AKAP13 77 

17 44214888 rs2077551 MAPT 77 

19 4717672 rs12610495 DPP9 77 

 

ADDITIONAL TABLE B.3.2: Summary statistics for the sentinel SNP of each signal of interest in the two-stage 

GWAS analysis (section 3.2). EAF = effect allele frequency.  

rsid Chr Position 
Conditional 

upon 

Ref 

allele 

Effect 

allele 
EAF P-value Beta SE R2 

rs78672887 1 11473150  C T 0.034 1.11×10-6 -0.830 0.170 0.862 

rs2999900 1 13830815  T C 0.827 4.51×10-5 -0.331 0.081 0.990 

rs79264639 1 64346109  C G 0.975 2.64×10-5 -0.836 0.199 0.737 

rs76719272 1 156129796  C T 0.132 3.15×10-5 -0.390 0.094 0.967 

rs113212335 1 234601869  G A 0.025 2.31×10-5 -0.842 0.199 0.992 

rs72765831 1 244357437  A G 0.014 4.18×10-5 -1.072 0.262 0.986 

rs76719272 2 28809554  T C 0.023 2.56×10-5 -0.798 0.190 0.913 

rs72791696 2 29690051 rs72791696 G A 0.013 1.7×10-5 -1.146 0.267 0.857 

rs12471179 2 49568428  A C 0.324 9.89×10-6 -0.286 0.065 0.972 

rs74703036 2 113020207  G T 0.012 3.22×10-5 -1.180 0.284 0.879 

rs7599256 2 171495421 rs192643964 G T 0.544 6.8×10-6 0.277 0.062 0.998 

rs192643964 2 171819000  A G 0.012 2.95×10-5 -1.185 0.284 0.878 

rs7562987 2 202815530  G A 0.757 2.85×10-5 -0.309 0.074 0.993 

rs72958256 2 217676681  C T 0.212 3.22×10-6 -0.349 0.075 0.967 

rs71043147 2 239509442  T C 0.011 2.78×10-5 -1.246 0.297 0.711 

rs3849481 3 76448409  G A 0.625 4.18×10-5 0.257 0.063 0.977 

rs798582 3 118510843  T C 0.629 2.69×10-5 0.263 0.063 0.980 

rs11943143 4 24376579  A G 0.361 2.72×10-5 0.275 0.066 0.992 
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rs4865060 4 57035690  A G 0.752 4.25×10-5 -0.282 0.069 0.987 

rs72641509 4 64265863  C A 0.220 3.24×10-5 -0.311 0.075 0.992 

rs28536140 4 126144080  T C 0.141 3.79×10-5 -0.359 0.087 0.937 

rs56267054 4 141953175  T C 0.582 4.25×10-5 0.260 0.064 0.964 

rs72699571 4 166114257  C T 0.037 4.38×10-5 -0.677 0.166 0.995 

rs79073584 4 174832314  T C 0.038 3.30×10-5 -0.659 0.159 0.985 

rs112101321 4 177862046  G T 0.031 3.86×10-5 -0.734 0.178 0.966 

rs1035908 5 465510  T C 0.911 4.26×10-5 0.461 0.113 0.981 

rs16901464 5 11301495  A G 0.043 1.51×10-5 -0.632 0.146 0.992 

rs72749864 5 54507085  T A 0.033 6.49×10-6 -0.731 0.162 0.967 

rs12518082 5 103033128  T G 0.910 1.86×10-5 0.454 0.106 0.950 

rs62381849 5 113452092  T A 0.115 1.60×10-5 -0.404 0.094 0.988 

rs149865510 5 124640655  G T 0.012 1.61×10-5 -1.224 0.284 0.921 

rs55742238 5 133022616  G A 0.313 2.50×10-5 -0.274 0.065 0.994 

rs114697189 5 147442328  C T 0.020 3.26×10-5 0.905 0.218 0.920 

rs72814140 5 172438977  C T 0.012 4.77×10-5 -1.154 0.284 0.931 

rs185529470 6 9088333  T C 0.015 4.27×10-5 -1.033 0.252 0.744 

rs189806018 6 21799534  T C 0.019 3.09×10-5 -0.931 0.224 0.820 

rs114791520 6 29487974  T C 0.011 9.48×10-6 -1.316 0.297 0.906 

rs113727117 7 37818692  G A 0.054 2.30×10-5 0.589 0.139 0.892 

rs2392610 7 38952795  C T 0.908 3.37×10-5 -0.431 0.104 0.979 

rs73364290 7 63682097  G A 0.075 4.35×10-5 -0.485 0.119 0.986 

rs76259754 7 65599188  C T 0.014 5.34×10-6 -1.190 0.262 0.933 

rs140795717 7 110907680  A C 0.034 1.67×10-5 -0.651 0.151 0.933 

rs113419491 8 18627701  A G 0.012 3.52×10-5 -1.174 0.284 0.883 

rs75681116 8 20248930  C T 0.029 2.87×10-7 -0.946 0.184 0.998 

rs12155839 8 130184065  C T 0.173 4.63×10-6 -0.369 0.081 0.987 

rs10974627 9 4563255  G C 0.016 1.08×10-5 -1.074 0.244 0.947 

rs148740072 9 5249347 rs10974627 T C 0.058 3.8×10-5 -0.521 0.126 0.881 

rs62541874 9 16840005  A T 0.068 3.72×10-5 -0.502 0.122 0.866 

rs113887396 9 138670699  A G 0.099 4.28×10-5 -0.416 0.102 0.950 

rs1769215 10 802445  C T 0.300 1.16×10-5 0.290 0.066 0.997 

rs11252666 10 4735548  C T 0.554 4.01×10-5 0.258 0.063 0.959 

rs77761367 10 25031285  G A 0.041 1.93×10-5 -0.673 0.157 0.964 

rs182317201 10 133919390  C T 0.017 5.02×10-6 -1.080 0.237 0.974 

rs117946291 11 38076713  T C 0.014 2.11×10-5 1.112 0.262 0.988 

rs7944090 11 44513229  G C 0.233 2.76×10-5 -0.297 0.071 0.976 

rs3018480 11 77208493  T C 0.423 1.11×10-5 -0.270 0.061 0.987 

rs112777739 11 90510739  C T 0.022 1.41×10-5 0.923 0.213 0.908 

rs74715174 12 10065926  A T 0.039 6.81×10-5 -0.705 0.157 0.950 

rs113262525 12 10291177 rs74715174 T G 0.080 4.6×10-6 -0.477 0.104 0.977 

rs181150706 12 29738685  T C 0.014 2.95×10-5 -1.093 0.262 0.830 

rs12431370 13 23525132  C T 0.058 4.53×10-5 -0.527 0.129 0.965 

rs111673280 13 66165105  G A 0.183 2.37×10-5 -0.328 0.078 0.987 
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rs61969491 13 106268991  T C 0.268 1.04×10-5 0.301 0.068 0.972 

rs2391813 13 110767948  C T 0.011 4.92×10-5 -1.207 0.297 0.908 

rs10130876 14 35983946  T C 0.160 3.09×10-5 0.346 0.083 0.979 

rs60667478 14 45206340  A G 0.058 4.72×10-5 0.548 0.135 0.932 

rs79552221 14 85195323  G T 0.035 1.56×10-5 -0.726 0.168 0.964 

rs79577629 14 88798784  A G 0.044 2.50×10-5 -0.625 0.148 0.983 

rs41317306 14 96864374  T G 0.022 3.16×10-5 -0.885 0.213 0.991 

rs11633299 15 22768701  T C 0.522 1.89×10-5 0.258 0.060 0.805 

rs143547312 15 77136340  C G 0.015 4.60×10-5 -1.028 0.252 0.972 

rs61459715 15 80777127  G A 0.016 1.67×10-6 -1.169 0.244 0.883 

rs72755373 15 91421010  G C 0.011 2.20×10-5 1.261 0.297 0.831 

rs76137938 15 94190256  C T 0.020 2.79×10-5 0.913 0.218 0.985 

rs55752757 16 3112715  C G 0.181 4.69×10-5 -0.333 0.082 0.893 

rs72784561 16 65795865  A G 0.338 1.71×10-5 -0.279 0.065 0.983 

rs189629869 17 13341945  T C 0.013 1.90×10-5 -1.163 0.272 0.870 

rs9906660 17 64882726  C T 0.308 4.74×10-5 0.272 0.067 0.995 

rs72900412 17 75777150  C T 0.092 2.55×10-5 -0.449 0.107 0.951 

rs139518622 19 4524306  G A 0.025 1.90×10-5 -0.850 0.199 0.734 

rs117388035 19 57260406  G A 0.026 5.36×10-7 -0.977 0.195 0.981 

rs118021492 20 39722647  C T 0.015 4.74×10-5 -1.027 0.252 0.929 

rs78914239 20 40275250 rs118021492 A T 0.063 3.8×10-5 -0.505 0.123 0.990 

rs148565491 20 43602081  G A 0.012 4.49×10-5 -1.158 0.284 0.895 

rs6025056 20 55255474  A G 0.156 1.71×10-5 0.362 0.084 0.909 

rs11910170 21 18194592  G A 0.586 3.36×10-5 0.253 0.061 0.987 

rs1007614 22 22935155 rs144531880 G A 0.312 2.8×10-5 0.280 0.067 0.971 

rs144531880 22 23728611  C T 0.011 3.99×10-5 1.221 0.297 0.918 

 

ADDITIONAL TABLE B.3.3: Results from the sensitivity analysis in Section 3.3, in which the five suggestively 

significant results in the 3-way GWAS meta-analysis were re-meta-analysed without including a genomic control 

correction. None of the signals reached genome-wide significance (P<5×10-8) in the sensitivity analysis.  

rsid Chr. Position Gene 
Ref/effect 

allele 
HR 95% CI P-value 

rs183759512 7 111708942 DOCK4 (intron) C / T 2.20 (1.64, 2.96) 1.5×10-7 

rs41295127 10 6134617 RBM17 (intron) A / T 2.77 (1.86, 4.09) 4.2×10-7 

rs3915628 11 71682613 RNF121 (intron) C / T 4.00 (2.36, 6.81) 2.7×10-7 

rs9513422 13 99083935 FARP1 (exon) C / T 1.38 (1.22, 1.56) 3.6×10-7 

rs118122250 16 54209057 Intergenic G / A 2.20 (1.62, 2.98) 3.7×10-7 
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ADDITIONAL TABLE B.3.4: 95% credible sets for each of the five suggestively significant signals from the GWAS meta-analysis (Section 3.3). In 

each credible set, variants are presented in descending order of posterior probability. MAF and P-value refer to the minor allele frequency and P-

value for the variant in the meta-analysis of Section 3.3. 

rsid Chr Position MAF P-value 
Posterior 

probability 

Cumulative 

probability 
Gene Functional annotation 

eQTL 

genes 

rs183759512 7 111708942 4.1% 1.05E-06 31.4% 31.4% DOCK4 
Protein coding, processed transcript, 

promoter flanking region 
 

rs11761827 7 112051706 22.0% 6.19E-05 15.5% 46.9% AC004112.4 
Antisense, CTCF binding site, promoter 

flanking region 
IFRD1 

rs116923970 7 111732366 4.3% 7.33E-06 11.9% 58.8% DOCK4 
Protein coding, processed transcript, 

enhancer 
 

rs6944057 7 112074766 20.4% 1.76E-04 6.3% 65.1% IFRD1 Protein coding, enhancer IFRD1 

rs6969907 7 112054974 21.8% 2.97E-04 4.2% 69.3%  CTCF binding site IFRD1 

rs58295122 7 112058508 21.8% 3.01E-04 4.1% 73.4% IFRD1 Protein coding IFRD1 

rs7798715 7 112062523 21.8% 3.43E-04 3.7% 77.1% IFRD1 
Protein coding, promoter flanking region, 

CTCF binding site 
IFRD1 

rs7780160 7 112062683 21.8% 3.44E-04 3.7% 80.8% IFRD1 Protein coding, promoter flanking region IFRD1 

rs13223482 7 112059772 21.7% 3.62E-04 3.5% 84.3% IFRD1 Protein coding IFRD1 

rs4730544 7 112059842 21.7% 3.63E-04 3.5% 87.8% IFRD1 Protein coding, promoter flanking region IFRD1 

rs12216563 7 112060989 21.7% 3.66E-04 3.5% 91.3% IFRD1 Protein coding, promoter flanking region IFRD1 

rs7810707 7 112082651 20.4% 3.83E-04 3.3% 94.6% 
IFRD1, 

AC079741.2 
Protein coding, processed pseudogene IFRD1 

rs720639 7 112067629 21.3% 4.46E-04 2.9% 97.5% IFRD1 Protein coding, enhancer IFRD1 

rs41295127 10 6134617 1.9% 2.32E-06 12.7% 12.7% RBM17 Protein coding  

rs75827481 10 6138462 1.9% 2.36E-06 12.6% 25.3% RBM17 Protein coding  

rs117413330 10 6166270 1.9% 3.12E-06 10.7% 36.0%    

rs62626316 10 6110135 2.9% 4.45E-05 7.0% 43.1% 
RP11-

414H17.2 
Processed pseudogene  

rs41295051 10 6111210 2.9% 4.79E-05 6.7% 49.8% 
RP11-

414H17.2 
Processed pseudogene  

rs62626324 10 6120365 3.0% 7.46E-05 5.2% 55.0%    

rs17421433 10 6124793 2.9% 9.95E-05 4.4% 59.4%  Promoter flanking region  
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rs1924137 10 6099887 3.0% 1.72E-04 3.6% 63.0% IL2RA Protein coding  

rs12722492 10 6100471 3.0% 1.73E-04 3.6% 66.6% IL2RA Protein coding, promoter flanking region  

rs41294927 10 6102259 3.0% 1.75E-04 3.6% 70.1% IL2RA Protein coding  

rs41294935 10 6106609 3.0% 1.88E-04 3.4% 73.5% IL2RA Protein coding, promoter  

rs12722491 10 6101430 2.2% 9.54E-05 3.0% 76.5% IL2RA Protein coding  

rs80214570 10 5317344 4.8% 5.03E-04 2.9% 79.4% 
AKR1C7P, 

RP11-
445P17.8 

Transcribed unprocessed pseudogene, 
Processed transcript, lincRNA, promoter 

flanking region 

 

rs12722498 10 6095836 2.9% 2.82E-04 2.7% 82.1% IL2RA Protein coding, CTCF binding site  

rs12722494 10 6098177 2.9% 2.84E-04 2.7% 84.8% IL2RA Protein coding  

rs142101282 10 6105544 3.0% 3.19E-04 2.6% 87.3% IL2RA Protein coding  

rs77744503 10 6706598 1.9% 7.31E-05 2.4% 89.7%   

PRKCQ-
AS1, 

RP11-
554I8.1, 
RP11-
5N23.3 

rs76673065 10 5557435 1.7% 1.02E-04 2.3% 92.0% 
CALML3-

AS1 
antisense, enhancer  

rs11256971 10 6187096 3.6% 8.63E-04 1.9% 93.9% RN7SKP78 misc_RNA, Protein coding, promoter  

rs12722503 10 6091643 3.0% 6.05E-04 1.8% 95.7% IL2RA Protein coding  

rs3915628 11 71682613 1.2% 1.68E-06 100.0% 100.00% RNF121 
Protein coding, nonsense mediated decay, 

retained intron 
 

rs9513422 13 99083935 28.5% 2.08E-06 100.0% 100.00% FARP1 
Protein coding, antisense, CTCF binding 

site 
FARP1 

rs118122250 16 54209057 3.3% 2.30E-06 17.8% 17.8%  Intergenic variant IRX3 

rs78387400 16 54206097 3.3% 2.76E-06 16.0% 33.8%  Regulatory region variant, TF binding site 
variant 

IRX3 

rs1013170 16 54210447 15.4% 9.12E-05 10.1% 44.0%  Intergenic variant  

rs72811760 16 54210144 5.6% 2.97E-05 9.8% 53.8%  Intergenic variant IRX3 

rs115769282 16 54175752 4.2% 4.01E-05 5.1% 58.9%  Intergenic variant  

rs116940325 16 54209223 3.1% 2.10E-05 4.6% 63.5%  Intergenic variant IRX3 

rs59504288 16 54176478 4.0% 7.86E-05 3.1% 66.6%  Intergenic variant  
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rs117820196 16 54198778 3.0% 4.26E-05 3.0% 69.6%  Intergenic variant IRX3 

rs60589529 16 54177237 4.0% 8.07E-05 3.0% 72.6%  Intergenic variant  

rs182248506 16 54177423 4.0% 8.69E-05 2.9% 75.5%  Intergenic variant  

rs4567704 16 54177413 4.0% 8.69E-05 2.9% 78.4%  Intergenic variant  

rs78644184 16 54178671 4.0% 8.95E-05 2.9% 81.3%  Intergenic variant  

rs115079931 16 54178564 4.0% 9.23E-05 2.8% 84.1%  Intergenic variant  

rs112409776 16 54196864 3.0% 5.02E-05 2.8% 86.8%  Intergenic variant IRX3 

rs113905985 16 54195689 3.0% 5.48E-05 2.6% 89.5%  Regulatory region variant, TF binding site 
variant 

IRX3 

rs76289419 16 54195273 3.0% 5.53E-05 2.6% 92.1%  Regulatory region variant IRX3 

rs111930423 16 54194787 3.0% 5.73E-05 2.6% 94.7%  Intergenic variant IRX3 

rs77489535 16 54194567 3.0% 5.88E-05 2.5% 97.2%  Intergenic variant IRX3 

 

 

 

ADDITIONAL TABLE B.5.1: The distribution of collection sizes of the 125 collections of human 

gene expression data on GEO that contained the term ‘IPF’. 

Number of samples 1-10 11-20 21-30 31-50 51-100 >100 

Number of IPF studies on GEO 32 36 21 10 11 15 
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ADDITIONAL TABLE B.5.2: Summary information for the collections on the Gene Expression omnibus with transcriptomic data for human IPF subjects and at least 30 

samples.  

GEO 

accession 

Total IPF 

cases 

Total 

samples 

Date public 

on GEO 

Included 

controls 

Total 

controls 

PubMed 

ID 
Technology Platforms Tissues Phenotype 

GSE147066 32 58 16/03/2020 Yes 26 
 

RNA-seq Illumina HiSeq 4000  Lung IPF 

GSE15197 8 39 24/01/2020 Yes 13 20081107 Array Whole Human Genome Microarray 4x44K 
G4112F 

Lung IPF 

GSE98764 6 30 10/12/2019 No 
  

RNA-seq Illumina HiSeq 2000  Lung IPF 

GSE121849 10 33 26/10/2019 Yes 
  

Array Illumina HumanMethylation450 BeadChip Lung squamous 

cell carcinoma 

IPF 

GSE124685 10 59 11/10/2019 Yes 6 31600171 RNA-seq, 
microRNA 

Ion Torrent Proton Lung Severe IPF 

GSE133298 54 54 30/09/2019 No 
  

RNA-Seq Illumina HiSeq 4000 Blood IPF 

GSE132607 74 276 30/09/2019 No 
  

Array Affymetrix Human Gene Expression Array Blood IPF 

GSE135099 5 30 31/07/2019 Yes 
 

31603936 Array Illumina HumanMethylation450 BeadChip, 
Affymetrix Human Gene Expression Array 

Lung fibroblasts IPF 

GSE134692 36 80 24/07/2019 Yes 17 31423451 RNA-seq Illumina HiSeq 2500 Lung Severe 

IPF/ALI 

GSE98925 13 61 30/06/2019 No 
  

Array Affymetrix Human Genome U133 Plus 2.0 
Array 

Lung fibroblasts IPF 

GSE70866 176 196 31/12/2018 Yes 
 

30141961 Array Agilent-028004 SurePrint G3 Human GE 
8x60K Microarray 

Bronchoalveolar 
lavage (BAL) 

IPF 

GSE110147 22 48 06/02/2018 Yes 11 30111332 Array Affymetrix Human Gene 1.0 ST Array Lung IPF 

GSE93606 57 174 14/01/2017 Yes 20 28085486 Array Affymetrix Human Gene 1.1 ST Array Blood and BAL IPF 

GSE92592 20 39 01/01/2017 Yes 19 28230051 RNA-seq Illumina HiSeq 2000 Lung IPF 

GSE86618 325 540 08/12/2016 Yes 
 

28157391 RNA-seq Illumina NextSeq 500 Epithelial cells IPF 

GSE85268 68 68 15/08/2016 No 
 

28157391 Array Affymetrix Human Gene Expression Array Blood IPF 

GSE53845 40 48 14/10/2014 Yes 8 25217476 Array Agilent-014850 Whole Human Genome 
Microarray 4x44K G4112F 

Lung IPF 

GSE49072 15 84 30/06/2014 Yes 
 

23924348 Array Affymetrix Human Genome U133A Array Alveolar 
macrophages 

IPF 

GSE38958 70 115 30/06/2014 Yes 45 26286721 Array Affymetrix Human Exon 1.0 ST Array Blood IPF 

GSE45686 5 40 04/03/2014 Yes 
 

24590289 Array Illumina HumanHT-12 V4.0 expression 
beadchip 

Lung fibroblasts IPF 

GSE27957 45 45 15/10/2013 No 
 

24089408 Array Affymetrix Human Exon 1.0 ST Array Blood IPF 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15197
https://www.ncbi.nlm.nih.gov/pubmed/20081107
https://www.ncbi.nlm.nih.gov/pubmed/30111332
https://www.ncbi.nlm.nih.gov/pubmed/28085486
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92592
https://www.ncbi.nlm.nih.gov/pubmed/28230051
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86618
https://www.ncbi.nlm.nih.gov/pubmed/28157391
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85268
https://www.ncbi.nlm.nih.gov/pubmed/28157391
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53845
https://www.ncbi.nlm.nih.gov/pubmed/25217476
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE49072
https://www.ncbi.nlm.nih.gov/pubmed/23924348
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38958
https://www.ncbi.nlm.nih.gov/pubmed/26286721
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45686
https://www.ncbi.nlm.nih.gov/pubmed/24590289
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE27957
https://www.ncbi.nlm.nih.gov/pubmed/24089408
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GSE28042 75 94 15/10/2013 Yes 19 24089408 Array Agilent-014850 Whole Human Genome 
Microarray 

Blood IPF 

GSE32537 119 217 21/06/2013 Yes 50 23783374 Array Affymetrix Human Gene 1.0 ST Array Lung IPF/UIP 

GSE48149 13 53 21/06/2013 No 
 

21360508 Array Illumina HumanRef-8 v3.0 expression 
beadchip 

Lung IPF 

GSE33566 93 123 01/07/2012 Yes 30 22761659 Array Agilent-014850 Whole Human Genome 
Microarray 4x44K 

Blood IPF 

GSE17978 12 58 19/05/2010 Yes 
 

20451601 Array Duke Human Operon 36k v4.0 spotted 
microarray 

Lung fibroblasts End-stage 
IPF 

GSE10667 31 46 20/02/2009 Yes 15 19363140 Array Agilent-014850 Whole Human Genome 
Microarray 4x44K G4112F 

Lung IPF 

 

ADDITIONAL TABLE B.5.3: Comparison of phenotypic traits across clusters in each validation study. Data are presented as count (percentage), mean (standard 

deviation) or median (interquartile range). NA = data not available, FVC=Forced vital capacity, DLCO = Diffusing capacity for carbon monoxide, FEV1 = Forced 

expiratory volume in one second. Significant p-values (P < 0.05) are highlighted in bold. 

 
GSE132607 (n=74) GSE27957 (n=45) GSE28042 (n=75) 

Trait 

Cluster 

1 

Cluster 

2 

Cluster 

3 

P-

value 

Cluster 

1 

Cluster 

2 

Cluster 

3 

P-

value 

Cluster 

1 

Cluster 

2 

Cluster 

3 

P-

value 

Total in cluster 19 35 20 
 

14 26 5 
 

25 39 11 
 

Age (mean, sd) 
67.6 

(8.1) 

66.8 

(65.4) 

65.4 

(6.6) 
0.660 

68.3 

(7.6) 

67.6 

(7.5) 

61.4 

(12.2) 
0.248 

69.6 

(8.6) 

68.8 

(7.5) 

68.5 

(10.2) 
0.903 

Male (%) 
13 

(68.4%) 

24 

(68.6%) 

15 

(75.0%) 
0.864 

14 

(100%) 

21 

(80.8%) 

5 

(100%) 
0.128 

17 

(68.0%) 

25 

(64.1%) 

10 

(90.9%) 
0.231 

European Ancestry 

(%) 

19 

(100%) 

33 

(94.3%) 

18 

(90%) 
0.383 

13 

(92.9%) 

20 

(76.9%) 

4 

(80%) 
0.449 

1 

(4.0%) 

1 

(2.6%) 

0 

(0%) 
0.789 

FVC % predicted 

(median, IQR) 

74 (27.2) 70.0 

(30.9) 

66.2 

(22.5) 
0.735 

50.5 

(20.8) 

65.0 

(19.3) 

52.0 

(8.0) 
0.024 

65.1 

(18.6) 

62.0 

(25.7) 

62.7 

(13.8) 
0.636 

DLCO % predicted 

(median, IQR) 

41.6 

(19.3) 

45.5 

(22.7) 

40.2 

(21.1) 
0.157 

38 .0 

(18.8) 

45.1 

(23.3) 

56.0 

(28.0) 
0.195 

52.7 

(31.5) 

47.0 

(20.1) 

44.1 

(20.4) 
0.537 

Death observed 

during study (%) 
NA NA NA - 

9 

(64.3%) 

4 

(15.4%) 

4 

(80%) 
0.001 

8 

(32.0%) 

10 

(25.6%) 

6 

(54.5%) 
0.193 

Ever smoker (%) 
12 

(63.2%) 

19 

(54.3%) 

18 

(90%) 
0.025 NA NA NA - NA NA NA - 

FEV1 (median, IQR)  NA NA NA - NA NA NA - 
73.5 

(21.7) 

74.0 

(23.8) 

81.8 

(12.1) 
0.804 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28221
https://www.ncbi.nlm.nih.gov/pubmed/24089408
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32539
https://www.ncbi.nlm.nih.gov/pubmed/23783374
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48149
https://www.ncbi.nlm.nih.gov/pubmed/21360508
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33566
https://www.ncbi.nlm.nih.gov/pubmed/22761659
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17978
https://www.ncbi.nlm.nih.gov/pubmed/20451601
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10667
https://www.ncbi.nlm.nih.gov/pubmed/19363140
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ADDITIONAL TABLE B.5.4: A list of aliases for each the 23 genes in the full classifier. 

Gene name Aliases 

KCNK15 TASK5, K2p15.1, TASK-5, KCNK11, KCNK14 

SORBS1 CAP, KIAA1296, SH3P12, SH3D5, FLJ12406, KIAA0894, Sh3p12, FLAF2, 

R85FL, SORB1 

HBB ECYT6 

EIF4G1 P220, EIF-4G1, EIF4GI, PARK18, EIF4F, EIF4G, EIF-4G 1, EIF4G1 

RPF1 BXDC5 

NOP58 HSPC120, NOL5 

PSMA5 ZETA, PSC5 

RASGRP1 IMD64 

IFI30 GILT, IP30, IFI-30, IP-30, MGC32056 

HLA-DRA HLA-DRA1 

ATM TELO1, TEL1, ATDC, AT1, ATA, ATC, ATD, ATE 

ECHDC2 FLJ10948 

EXOSC8 RRP43, OIP2, P9, OIP-2, CIP3, EAP2, EXOSC8, PCH1C 

BLVRA BLVR, BVR, BVRA 

PSMD11 P44.5, S9, MGC3844 

SLC38A1 ATA1, NAT2, SAT1, SNAT1 

MRPL41 MRPL27, RPML27, BMRP, MRP-L27, MRP-L41, PIG3 

PPIA CYPA, HEL-S-69p, CYPH 

AES GRG5, TLE5, GRG, AES-1, AES-2, ESP1 

CA4 CA-IV, CAIV, RP17 

BCL2A1 BCL2L5, BFL1, GRS, ACC-1, ACC-2, HBPA1, ACC1, ACC2 

UGCG GCS, GLCT-1, GLCT1 

FPR2 LXA4R, HM63, FMLPX, FPR2A, FPRH1, FPRH2, FPRL1, ALXR, RFP, FPR2 
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C: R code 

classifiergenes function 
classifiergenes <- function(cluster1genes3,clustersubjects){ 

clustersubjectsindicator <- rep(0,ncol(cluster1genes3)) 

clustersubjectsindicator[clustersubjects] <- 1 

Nsubjects <- ncol(cluster1genes3) 

auc <- rep(0,20) 

X <- rep(0,20) 

upgenes <- as.matrix(cluster1genes3[1,1:Nsubjects]) 

upgenes[1,1:Nsubjects] <- 1 

Nupgenes <- 1 

rownames(upgenes) <- "referencegene" 

downgenes <- as.matrix(cluster1genes3[1,1:Nsubjects]) 

downgenes[1,1:Nsubjects] <- 1 

Ndowngenes <- 1 

rownames(downgenes) <- "referencegene" 

for (i in 1:nrow(cluster1genes3)){ 

  ifelse(mean(as.numeric(cluster1genes3[i,clustersubjects]))>mean(as.numeric(cluster1genes3[i,])), 

         cluster1genes3$up[i]<-TRUE,cluster1genes3$up[i]<-FALSE) 

} 

 

for (k in 1:20){ 

 

for (i in 1:nrow(cluster1genes3)){ 

  cluster1genes3$auc[i] <- 0 

  ifelse(cluster1genes3$up[i]==TRUE,                

#if the gene has higher expression in the cluster than the average across all clusters, then:  

         roc <- 

roc(clustersubjectsindicator,(as.numeric(colProds(as.matrix(upgenes)))*as.numeric(cluster1genes3[i,1:Nsubject

s]))^(1/Nupgenes)-(colProds(as.matrix(downgenes))^(1/Ndowngenes))),                                          

# or if the gene has lower expression in the cluster than the average across all clusters, then: 

         roc <- roc(clustersubjectsindicator,(as.numeric(colProds(as.matrix(upgenes)))^(1/Nupgenes))-

((colProds(as.matrix(downgenes))*as.numeric(cluster1genes3[i,1:Nsubjects]))^(1/Ndowngenes)))) 

  cluster1genes3$auc[i] <- auc(roc) 

} 

   

if(max(auc) < max(cluster1genes3$auc)){ 

    X[k] <- which(cluster1genes3$auc==max(cluster1genes3$auc))  

    auc[k] <- max(cluster1genes3$auc)  

    ifelse(cluster1genes3$up[X[k]]==TRUE,upgenes<-

rbind(upgenes,cluster1genes3[X[k],1:Nsubjects]),downgenes<-

rbind(downgenes,cluster1genes3[X[k],1:Nsubjects])) 

    Nupgenes <- max(nrow(upgenes)-1,1) 

    Ndowngenes <- max(nrow(downgenes)-1,1) 

    print(c(rownames(cluster1genes3)[X[k]],k,auc[k])) 

} 

  else {break} 

} 

auc <<- auc 

upgenes <<- upgenes 

downgenes <<- downgenes 

} 

 

#example input 
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classifiergenes(cluster1genes,1:64)      #4 upgenes, 1 downgene 

classifiergenes(cluster2genes,65:159) #14 upgenes, 0 downgenes 

classifiergenes(cluster3genes,160:196) #4 upgenes, 0 downgenes 
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