University of Leicester
Browse

Understanding the mechanism and cost of bacteriophage resistance in the Enterobacteriaceae

Download (19.32 MB)
thesis
posted on 2022-05-23, 12:12 authored by Lucy Gannon

Bacteriophages are viruses able to kill bacteria, forcing bacteria to adapt to survive phage attack and helping drive microbial evolution. Little is known about specificity of the interactions or how phages shape bacterial ecological traits. The aim of this thesis is to investigate how Enterobacteriacae gain resistance to bacteriophage infection, and to evaluate how different bacteriophages predating on a bacterial species can alter adaptation mechanisms utilised by the bacteria. It is known that multiple bacteriophage families can infect the same bacterial species, but how different bacterial species respond to these different phages is poorly understood. The adaptations that occur in different species of bacteria within the Enterobacteriacae when exposed to the same bacteriophage species was compared.

A diverse panel of six bacteriophage species was used to create a collection of 123 phage resistant mutants in E. coli and 20 in Salmonella enterica Typhimurium. The costs of resistance in the bacteria were measured, with no fitness cost as well as decreased or increased fitness observed. Putative genes involved in bacteriophage resistance were identified by whole genome sequencing and identification of SNPs and INDELs, with 118 genes found to contain mutations. Using gene knock-out mutants, the contribution of individual genes to phage resistance was evaluated for 18 genes. Only three of these genes (btuB, sdaC, dcrB) could be confirmed to confer a phage resistance phenotype.

Furthermore, fhuA which was one of the most commonly mutated genes, did not confer phage resistance when gene knockouts were created. The results demonstrate the complexity in understanding phage resistance mechanisms.

History

Supervisor(s)

Andrew Millard; Ellie Jameson

Date of award

2022-04-21

Author affiliation

Department of Genetics and Genome Biology

Awarding institution

University of Leicester

Qualification level

  • Doctoral

Qualification name

  • PhD

Language

en

Usage metrics

    University of Leicester Theses

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC