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Abstract. The study of the early high-energy emission from both long and short

Gamma-ray bursts has been revolutionized by the Swift mission. The rapid response

of Swift shows that the non-thermal X-ray emission transitions smoothly from the

prompt phase into a decaying phase whatever the details of the light curve. The

decay is often categorized by a steep-to-shallow transition suggesting that the prompt

emission and the afterglow are two distinct emission components. In those GRBs with

an initially steeply-decaying X-ray light curve we are probably seeing off-axis emission

due to termination of intense central engine activity. This phase is usually followed,

within the first hour, by a shallow decay, giving the appearance of a late emission

hump. The late emission hump can last for up to a day, and hence, although faint,

is energetically very significant. The energy emitted during the late emission hump is

very likely due to the forward shock being constantly refreshed by either late central

engine activity or less relativistic material emitted during the prompt phase. In other

GRBs the early X-ray emission decays gradually following the prompt emission with no

evidence for early temporal breaks, and in these bursts the emission may be dominated

by classical afterglow emission from the external shock as the relativistic jet is slowed

by interaction with the surrounding circum-burst medium. At least half of the GRBs

observed by Swift also show erratic X-ray flaring behaviour, usually within the first few

hours. The properties of the X-ray flares suggest that they are due to central engine

activity. Overall, the observed wide variety of early high-energy phenomena pose a

major challenge to GRB models.
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1. Introduction

Gamma-ray bursts (GRBs) are detected as bright, brief flashes of gamma-rays which

occur at some random location on the sky. For a short time, typically a few tens

of seconds, the GRB is the brightest single object in the gamma-ray sky, and more

importantly is the intrinsically brightest object in the Universe. It is now generally

accepted that long-duration GRBs result from the death of a rapidly-rotating massive

star (a collapsar) while short-duration GRBs arise from a merger of two compact objects,

most likely two neutron stars or a neutron star and a black hole (see [1, 2, 3, 4] and

references therein). Either the collapsar or merger result in a black hole fed for a short

time by an accretion disk or torus. The accreting black hole can somehow power a

relativistic jet, presumably oriented along the rotation axis of the black hole. The jet

contains a relatively modest amount of baryonic material moving at very high Lorentz

factor – the fireball. Within the jet the flow is not homogeneous, leading to internal

shocks which produce the initial, prompt gamma-rays that can be viewed if our line-

of-sight lies within the jet beam. As the jet moves out from the progenitor, it also

encounters circum-stellar and inter-stellar material which results in classical afterglow

emission produced by an external shock ([4] and references therein). We observe some

combination of these emission components and require as continuous and lengthy an

observation as possible in order to disentangle them and hence test GRB models.

In this article we discuss the early gamma-ray and X-ray emission from GRBs,

concentrating on the observed temporal and spectral behaviour as the GRB evolves

over the first few hours. Early GRB observations have been revolutionized following the

launch of the Swift satellite on 20 November 2004 [5]. Although gamma-ray emission

can typically be detected by the Burst Alert Telescope (BAT; [6]) on Swift for only a

few tens of seconds, the satellite can rapidly (∼ 100s) slew to point its Ultraviolet and

Optical Telescope (UVOT; [7]) and X-ray Telescope (XRT; [8]) at the GRB. The XRT

permits observations in the 0.3–10 keV band. This capability has ended what might

be termed the“X-ray dark ages” for GRBs as previous missions rarely obtained X-ray

data in the period from a few minutes to a few hours. It is this capability that we will

exploit to describe the early high-energy emission from GRBs.

In section 2 we provide an historical overview and outline why Swift was built. The

observational results are summarised in section 3, in which the emphasis is on the new

phenomena revealed by Swift. Conclusions are given in section 4.

2. Historical overview

Gamma-ray bursts were first announced as MeV events lasting between 0.1 and 30s, not

from the Earth or Sun [9]. Their discovery led to the inclusion of the BATSE instrument

on the Compton Gamma-Ray Observatory, which was operational between 1991 and

2000. See [10] for a BATSE-era review. BATSE acted as an all sky monitor over 20–600

keV, detecting around 2,700 GRBs. The striking isotropy of these GRBs indicated an
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origin either very close by or at cosmological distances, but the BATSE GRB position

uncertainties of 4 arc-minutes or larger prevented identification of possible counterparts

in other regions of the electromagnetic spectrum. Even so, tantalising details did emerge

from the large BATSE GRB sample: the burst duration distribution was found to be

bimodal, with a population of short and spectral hard bursts having durations of around

0.1–2s and a larger group of slightly softer bursts with typical durations of 10–100s [11];

and the distribution of burst intensities was non-Euclidian, pointing to a distance effect

in the population.

Over the BATSE bandpass, GRB spectra were shown to be non-thermal and usually

well fitted by a broken power law or Band function [12, 13]. A minority of the GRBs

detected by BATSE were also detected at higher energies by the EGRET or COMPTEL

instruments on CGRO. Aside from a few exceptions [14], the extrapolation of the Band

function fitted the very high energy spectra well [15, 16]. The burst profiles, which were

highly variable, defied classification.

It was not until the Beppo-SAX satellite (1996–2002) coded-mask hard X-ray Wide

Field Camera detected bursts, that a GRB was rapidly observed with an imaging X-ray

telescope. The discovery of a fading X-ray afterglow to GRB970228 [17] ushered in

a new era in which positions sufficiently precise became available quickly enough for

ground-based follow up observations. Faint optical afterglows were discovered, and it

was quickly established that GRBs occurred at very large distances (the first redshift

was measured for GRB970508 at z = 0.835 [18]).

With the distance scale known, the energetics of GRBs were thrown into sharp

relief. The observed fluences (the flux integrated over the duration of the burst) and

redshifts led to isotropic energies of ∼ 1052 − 1054 erg, comparable to or larger than

those of supernovae. The very high gamma-ray luminosity leads to a compactness

problem caused by the high electron-positron pair production rate. This can be solved by

invoking a very high outflow velocity, v with Lorentz factor, Γjet = (1−(v/c)2))−0.5 ∼ 100

– 300 [19, 20].

A connection with supernovae was soon revealed by GRB980425/SN1998bw,

although this was an atypically nearby and low energy burst [21, 22]. The supernova

nevertheless showed very high velocities (tens of thousands of kilometers per second),

and was given a new classification as a hypernova. The more typical GRB030329

confirmed the hypernova connection [23, 24], firmly establishing the collapsar model

for long GRBs. Optical observations of GRB afterglow decays also showed a break to

an increased decay rate at around a few days. This was taken to be a sign that the

relativistic beaming of the slowing collapsar ejecta had declined to the opening angle of

the ejecta jet, θjet, derived to be ∼ 3 – 40 degrees, [25]). This evidence for a jet rather

than isotropic ejecta simultaneously reduced the energetics of the GRB to ∼ 1051 erg,

and of course increased the implied GRB production rate. See [4] for an excellent review

of GRB knowledge before the launch of Swift.

Prior to Swift, afterglows had only been securely detected for long GRBs. The

expectation was that short GRBs might have a different progenitor (e.g., a neutron
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Figure 1. Example bursts showing the various behaviour patterns seen by Swift:

a steep-to-shallow transition (GRB050315, dark upper points); a large X-ray flare

(GRB050502B, middle light points); and a gradually declining afterglow (GRB050826;

lower points, divided by 100 for clarity). BAT data are shown as crosses, XRT data

as filled circles.

star – neutron star collision), however the lack of any short GRB afterglows and hence

precise positions for these bursts had prevented the kind of progress made with the long

GRBs. Swift was created to provide accurate and prompt positions for both short and

long GRBs. The great difficulty of obtaining early X-ray observations with existing

satellites had led to very poor knowledge of the afterglow behaviour before around 8

hours. Swift has shown the richness of this interval, and has clarified the nature of the

short GRBs. There is much still to be understood, but Swift is delivering a wonderfully

rich scientific return.

3. Observations in the Swift era

Since launch Swift has detected an average of 2 GRBs per week. The standard sequence

of observations starts with detection by the BAT. The on-board software then determines

if it is safe to slew, and if so commands the spacecraft to turn and point its narrow-field

instruments at the burst location. The slew typically takes 1–2 minutes. Thus, for the

longest duration bursts, XRT and UVOT observations can begin while the BAT is still

detecting the GRB. This capability of rapid, autonomous response provides data which

have revealed a wealth of phenomena in the X-ray afterglow. Swift has detected a wide

range of bursts including the highest redshift GRB to date [26] and the first localization
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of a short burst [27].

We adopt the convention here of describing GRBs as long or short in terms of the

timescale over which 90% of the gamma-rays were detected — the T90 parameter. GRBs

with T90 greater than or less than 2s are denoted long or short bursts respectively [11].

The GRB X-ray flux can be represented as a function of time and frequency using a

function fν ∝ ν−βt−α, where β is the spectral index and α is the temporal index. The

photon index Γ is related to β by Γ = β + 1.

The Swift data presented here were processed using the standard analysis software.

The BAT data were processed using Swift software v2.0 as described in the BAT Ground

Analysis Software Manual [28] and then light curves and spectra were extracted over

15–150 keV. Power laws were fitted over the T90 period to provide spectral indices

(fν ∝ ν−βb). In most cases a single power law provides a statistically acceptable fit (i.e.,

reduced chi-squared, χ2
ν ≤ 1), although on occasion a cutoff power law provides a better

fit. Similar power law fits were used to parameterise the XRT spectra (fν ∝ ν−βx), over

0.3–10 keV. For many GRBs intrinsic absorption in addition to the Galactic column is

required to provide a good fit. The required intrinsic column is in the range 2–35 ×1022

cm2 [29, 30].

Analysis of a large GRB sample [30] shows that the XRT spectra of GRBs usually

require a softer power law than the BAT spectra (i.e. βx > βb). To form unabsorbed,

0.3–10 keV flux light curves for each GRB, we therefore (a) converted the XRT count

rates into unabsorbed fluxes using the XRT power law spectral model and (b) converted

the BAT count rates into unabsorbed fluxes by extrapolating the BAT data to the XRT

band using a power law spectral model with an absorbing column derived from the XRT

data and a spectral index which is the mean of the XRT and best-fit BAT spectral

indices. In those GRBs which have high signal-to-noise ratio data, more complex

spectral evolution can be seen, but the above procedure has been applied for consistency

for all bursts discussed in this paper.

The initial Swift results appeared contradictory; some long-duration bursts

displayed a rapid decline in the first hour, with temporal decay indices, α ≥ 3 [31, 32],

while in others the early X-ray flux declined more gradually with α ∼ 1 [33]. Several

of those with a steep decline also displayed a shallower decay starting within an hour

and lasting up to a day from trigger. A large fraction of GRBs also have X-ray “flares”

during the first few hours superimposed on the declining light curves. Examples of

the various observational phenomena are shown in Fig. 1. Here, GRB050315 shows a

steep decline followed by a long shallower decay before breaking again at late times;

GRB050502B displays a large X-ray flare, while GRB050826 shows a gradual decline

after the prompt emission. As more bursts have been observed a pattern has emerged

which is summarised schematically in Fig. 2 (see also [34, 35, 30]). Each of these

phenomena are discussed below, but the overall behaviour is as follows:

(i) The “prompt” emission is that emitted directly during the burst. With Swift this

emission is seen by the BAT but can also be detected by the XRT if the burst is

long enough to last until the completion of the first slew to target. Most bursts
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Figure 2. A schematic view of the early GRB X-ray light curve. Following the prompt

emission, which typically lasts a few 10s of seconds, the decay tends to follow one of

two paths: (i) a steep decay (flux ∝ t−3), during which the flux can fall by 3 or more

orders of magnitude, followed by a shallower, late emission hump (∝ t−0.5) starting

at ∼ 103s; or (ii) a gradual decay (∝ t−1). Either decay path can end with a break

at > 104s to a steeper decay. X-ray flares can occur during either decay path, most

prominently during the first hour. See text for details.

observed by Swift typically have a 15–150 keV spectral index of βb = 0 – 2 during

the prompt phase.

(ii) The prompt phase is followed by a power law decline phase. The first temporal

index, α1, during this phase can be very large (up to ≈ 5) and in most GRBs

α1 > 2, but in a significant minority, perhaps 20–30%, a gradual decline is observed

with 0.5 ≤ α1 ≤ 1.5. The wide range in temporal index suggests several emission

processes may be involved. The spectral index in the 0.3–10 keV band during this

phase is usually in the range 0.5–2.5, although occasionally larger values are seen.

(iii) For those bursts which initially decline steeply, the decay breaks to a shallower rate,

typically within the first hour, such that 0.5 ≤ α2 ≤ 1.5. This “late emission hump”,

can last for up to ∼ 105s before breaking to a steeper decay. The late emission hump

appears to have a harder spectrum on average than the steep decline phase (section

3.3). It can have a fluence equal to that of the prompt phase [30], so although faint

in observed flux, this phase is energetically very significant.

(iv) For those bursts which initially decline gradually the temporal and spectral indices

are broadly consistent with a “classical afterglow” interpretation, in which the X-
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ray emission comes from the external shock. In these GRBs the late emission hump

is usually not seen. This does not mean that the late emission hump is absent as

it may be hidden by the classical afterglow component.

(v) Limited statistics make quantifying later phases difficult, but both the initially

steeply declining bursts and those that decline more gradually can show a late

temporal break (typically at 104 – 105s) to a steeper decay. These late breaks are

not seen in all GRBs — some decay continuously beyond 106s until they fade below

the Swift XRT detection limit. There is usually no evidence for spectral changes

during late temporal breaks, which can be represented either as a series of temporal

breaks using multiple broken power laws or a smoothly curving decay (e.g. [32]).

(vi) X-ray flares are seen in the first few hours for around half of the GRBs observed

by Swift, and occur in GRBs which decline rapidly or gradually. The majority of

these flares are only detected in the XRT but in some bright, long bursts flares are

observed simultaneously with the BAT. Strong spectral evolution can be observed

in some cases. Most of the X-ray flares are energetically small, but a few are very

powerful [36, 37, 38] with a fluence comparable to that of the prompt phase. Late

flares are also occasionally seen.

(vii) The X-ray light curves for short bursts have been less well studied by Swift as they

are fainter (on average) and Swift has detected fewer examples of short bursts. To

date, the short burst light curves display a range in phenomena remarkably similar

to those seen in the long bursts, including either rapid or gradual decay, flares and

a late emission hump [39, 40].

The behavioural pattern of prompt emission followed by a steep X-ray decay and

then a shallow decay has been characterised as the “canonical GRB light curve” [34].

But, while this pattern is seen in a majority of GRBs, as outlined above, it is not

observed in all. To understand the various phases we need to consider each of them in

turn.

3.1. The prompt phase

BAT has detected and located on-board the prompt emission of GRBs at a rate of

approximately 100 yr−1. In terms of duration, BAT GRBs span the same range as those

detected by the BATSE instrument, as illustrated in Fig. 3. The BAT data are for

those GRBs with values of T90, 15–150 keV fluence and spectral index available from

the data table on the Swift web site [41] as of mid-February 2006. While the parameters

given in the data table are preliminary, the shape of the distribution does not change

significantly if data from the forthcoming Swift catalog are used (T. Sakamoto, private

communication). The BATSE data plotted in Fig. 3 are those from the revised 4B

catalog [42]. Comparing the BAT and BATSE distributions is difficult due to their

different energy-dependent sensitivities and trigger software [43], but as for BATSE,

most Swift GRBs have durations of 10 to 100s and have a 15–150 keV fluence within a
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Figure 3. The distribution of burst durations T90 (left panel) and 15-150 keV fluence

values (right panel) for GRBs detected by the Swift BAT. The dashed line in the left-

hand panel is the T90 distribution for BATSE normalized to the number of Swift

bursts.

factor of 10 of 2 × 10−6 erg cm−2. Fig. 4 shows how BAT fluence correlates with T90,

illustrating that the shortest GRBs have much less fluence than the longest.

The spectral indices derived from spectral fits to the 15–150 keV BAT data are

shown in Fig. 5. Due to differences between the BAT and BATSE detector energy

bands and how BAT uses rate triggers plus image-accumulation to find a point source,

the BAT is more sensitive than BATSE to long, soft bursts and detects relatively fewer

short, hard bursts than might be expected despite its greater sensitivity to short triggers

[43]. Thus, the large majority of all BAT detected bursts lie in the long, soft category,

and include amongst them the highest redshift bursts yet detected. There is some

indication from Fig. 5 that shorter bursts are spectrally harder, as previously noted for

BATSE bursts [11], but a much larger sample is required to confirm this trend.

3.2. The early decay phase

One of the most surprising results from Swift has been the rapid decay observed in many

bursts starting, typically, within a few minutes of the trigger. The steep decay rates,

t−α with α = 2− 5, are significantly larger than those routinely observed in the optical

or X-ray for GRBs discovered pre-Swift, although it must be remembered that those

observations were usually at half a day or more post-trigger.

The early rapidly fading X-ray emission could have a variety of possible explanations

[35], including high-latitude emission from the fading burst [44], the interaction of the

jet with the surroundings — the classical afterglow emission produced by an external

shock [45], or thermal emission from a photosphere around the outflow [46] or from a

hot cocoon associated with the jet [47].

For almost all of the GRBs observed by Swift the X-ray light curve derived from the

BAT data joins smoothly to that from the XRT. If the BAT and the XRT are initially
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Figure 4. Correlation of the 15–150 keV fluence with T90 for GRBs detected by the

Swift BAT. The very long burst at far right is GRB 060123. The sensitivity of the

BAT limits the detection of long faint GRBs.

Figure 5. The distribution of BAT spectral indices for GRBs. Left-panel: The

spectra were fitted using either a single power law or a cutoff power law and are shown

as the dark or light grey histograms respectively. The cutoff power law model was

used when that improved the fit at > 99% confidence. Right-panel: Correlation of the

BAT spectral index with T90. Spectra fitted using either a single power law or a cutoff

power law are shown as filled dots or stars respectively.
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detecting the prompt emission from the jet, when this emission stops (for example the

end of internal shocks) we would continue to observe photons coming from regions of the

jet which are off the line of sight — the “curvature effect” or “high-latitude emission”

[44, 48, 34, 35, 49, 30]. For such a model emission at angles θ from the line of sight

which are in excess of θ = Γ−1
jet will start to dominate the observed emission. If the

jet has uniform surface brightness, the observed X-ray flux will fall as t−β−2 where the

spectrum is ∝ ν−β. Thus this model predicts a relation such that α − β = 2 for the

early, rapidly declining part of the temporal decay. It is possible to get a shallower

decay if viewing a structured-jet off-axis [50] although the general trend is similar to the

standard high-latitude model. When considering high latitude emission, the zero-time

used to calculate the decay index need not correspond to the trigger time if the light

curve is dominated by a later event, such as a large flare.

The possible contribution of standard afterglow emission as the jet interacts with its

surroundings complicates the comparison between models and observations. Indeed as

afterglow emission can begin within minutes of the burst we are likely to be observing

a mixture of emission components, each contributing to the observed temporal and

spectral indices. To disentangle the relative contribution of emission from the central

engine and that due to the afterglow, O’Brien et al. [30] systematically analysed the

temporal and spectral properties of a large GRB sample combining data from the BAT

and XRT. The sample comprised 40 GRBs detected by Swift prior to 2005 October 1

for which Swift slewed to point its narrow-field instruments within 10 minutes of the

burst trigger time. Of the 40 GRBs, 38 are long bursts.

In order to compare light curves for GRBs with different power law decay indices,

O’Brien et al. [30] developed a procedure to fit light curves assuming there is a common

intrinsic form to the early X-ray light curve. An average X-ray decay curve expressed by

log(time) as a function of log(flux), τ(F ), and log(flux) as a function of log(time), F (τ),

was derived by taking the sum of scaled versions of each of the individual light curves,

fi(ti), where ti is approximately the time since the largest/latest peak in the BAT light

curve. The data points were transformed to normalised log(flux), Fi = log10(fi/fd),

and log(time) delay values, τi = αd log10(ti − td) − τd. Four decay parameters (suffix

d) specify the transformation for each GRB: fd, the mean prompt flux; td, the start of

the decay; τd, a time scaling; and αd, a stretching or compression of time. The best fit

fd, td, αd and τd for each GRB were found using a least squares iteration procedure,

excluding bright flares. The resultant composite light curve for the entire sample is

shown in Fig. 6.

Under the transformation all the light curves conform to an approximately universal

behaviour with an initial exponential decline ∝ exp(−t/tc) followed by a power law decay

∝ t−α0 . The transition between the two decay phases occurs when the exponential and

power law functions and their first derivatives are equal, and is given for the average

decay curve by t0 = tcα0 (τ0 = 1.7). Adopting this transition, for each GRB we define

the division between the prompt and power law decay phases to be τ0, corresponding

to a prompt time Tp = 10(τ0+τd)/αd seconds. This prompt time definition provides us
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Figure 6. The composite X-ray light curve for 40 GRBs in [30] for which there are

BAT and early XRT data. The axis are normalized flux and transformed time units.

The average decay curve is shown as a solid curve and is well fit by an exponential

for τ0 ≤ 1.7. It then relaxes to a power law with index α0 = 2.1, shown as a dashed

line. The shaded area bordered by dotted lines indicates the range of the individual

flux values as a function of time. In this transformed space, those GRBs which show

a gradual power law decline follow the average decay curve until close to τh and then

continue to decline as power laws. The light curves for the majority of GRBs flatten

above τh. About half of the GRBs exhibit sporadic flaring during the initial decay

and/or the late period.

with an alternative estimate of the duration of the prompt phase for each burst which

depends on the physical shape of the BAT+XRT light curve rather than the sensitivity

of the BAT. As shown in Fig. 7, Tp is comparable to T90 for many bursts, but it can be

considerably shorter or longer.

The average decay curve relaxes into a power law with a decay index α0 = 2.1,

found by linear regression on the average decay curve for τ0 < τ < 3.0. This power

law fit is shown as a dashed line in Fig. 6. The fitting procedure results in those GRBs

which follow a fairly continuous decay lying close to the power law. At τ ∼ 3 the average

decay curve starts to rise above the power law decay in the majority of bursts. This is

the start of the late emission hump, which we define to start at τh = 3.5.

The initial temporal decay index for individual GRBs can be calculated by

multiplying α0 by the best fit αd. GRBs with αd > 1 have decays steeper than average

and those with αd < 1 shallower. The resultant α = α0αd are based on all the available

data from both the BAT and XRT and are expected to be a more robust estimate of the

initial power law decay rate than fitting a power law to a short section of light curve.
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Figure 7. Correlation of the duration of the prompt emission Tp, derived from fitting

to the average 0.3–10 keV decay curve derived from the combined BAT+XRT data,

with T90, derived from the BAT 15–150 keV data.

The values of α and β can be used to test the high latitude and afterglow models,

where β is taken as the average of the BAT and XRT spectral indices. The correlation

between these quantities is shown in Fig. 8. In principle, the relationship between the

temporal decay index and spectral index has two components such that α = ανβ + αf .

The coefficient αν arises from the redshift of the peak of the spectral distribution of the

synchrotron emission as a function of time and αf arises from the temporal decay in

the peak flux value of the same spectral distribution. The solid line in Fig. 8 shows the

expected relationship for the high latitude model with αν = 1 and αf = 2. The dashed

line shows the relationship expected for an afterglow model of a jet expanding into a

constant density medium observed at a frequency below the cooling break (νx < νc) and

before a jet break, with αν = 3/2 and αf = 0 [51]. If νx > νc then αν is unchanged

and αf = −0.5. This is plotted as a dot-dashed line on Fig. 8. All of the GRBs lie on

or above these afterglow lines. Very similar conclusions are reached if a wind afterglow

model is adopted.

It is clear from Fig. 8 that the decay and spectral indices correlate well with the

strength of the late emission hump. The bursts with the most significant humps do not

have large X-ray flares but they do have steep decays and straddle the high latitude line

[30]. The bursts with weaker humps lie below the high latitude line reaching down to

the afterglow lines. The majority of GRBs lie below the high latitude prediction. For

these it is likely that we are seeing a combination of high latitude prompt emission and
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Figure 8. Correlation of the decay index, α, with the spectral index, β, for the 40

GRBs contributing to Fig. 6, where β is the average of the spectral indices from the

BAT and XRT. Each GRB is plotted as an ellipse representing the 90% confidence

region. Blue indicates no late emission hump while red indicates a strong late emission

hump (see [30] for details). Shades of green indicate areas between these extremes.

Open ellipses are GRBs for which there are no late time data. The solid line is

the predicted relationship for high-latitude emission. The dashed and dot-dashed

lines are the predictions for an afterglow model of a jet expanding into a constant

density medium before a jet break, observing in an energy band below and above the

cooling break respectively. Almost all of the GRBs lie between the model predictions

suggesting most objects have a contribution from several emission components.

conventional, pre-jet-break afterglow.

We note that those GRBs which decay more gradually are more likely to have an

early optical detection. Using the initial Swift UVOT V-band exposure to quantify the

early optical brightness, for the GRBs in our sample with UVOT observations in the

first 10 minutes, those with α < 2 are four times more likely to have been optically

detected.
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3.3. The late emission hump

Both the rapid-decay and classical afterglow models have difficulties explaining the late

emission hump. Using the light-curve fitting procedure described above, for τ > 3.5, the

maximum fluence of the late emission hump is commensurate with the prompt fluence

[30], suggestive of some kind of equipartition in energy between the emission phases. A

number of models have been proposed to explain the late emission hump. It may be

due to forward shock emission, which is refreshed with energy either due to continued

emission from the central engine or because the ejecta has a range in initial Lorentz

factor [52, 53, 54, 34, 35, 55]. As the injection process adds energy the decay does not

simply resume the previous decay curve following the shallow phase but rather shows a

step (Figs 1 and 2).

We can use the spectral characteristics to test possible relationships between

emission phases. Spectral index distributions for those GRBs with a steep decay phase

taken from [30], plus a few others, are shown in Fig. 9. The prompt (BAT) spectra have

a mean spectral index of 0.61± 0.02 and standard deviation σ = 0.59. The steep decay

phase has a steeper mean spectral index of 1.12 ± 0.02 and σ = 0.6, while during the

late emission hump the mean spectral index is 0.86± 0.03, and σ = 0.36. Interestingly,

the late emission hump exhibits a far narrower range in spectral shape than the earlier

phases. The narrowness of the spectral index distribution during this phase argues in

favour of a universal energy generation mechanism for this segment of the light-curve.

The late emission hump spectra are, on average, harder than the steep-decline

spectra, supporting the concept of late-time shock refreshing. These two spectral indices

are uncorrelated (r = 0.19, P = 0.49). There is a much stronger correlation between

the difference in the spectral indices (steep-late hump) and the steep-decline spectral

index (r = 0.85, P = 3×10−5). There is no correlation between the late emission hump

spectral index and the prompt spectral index (r = 0.28, P = 0.3).

3.4. Late evolution and jet breaks

It has been previously shown that GRBs can show a wavelength-independent late break

in their optical and infrared light curves [56, 57]. If this break is associated with

the jet slowing down, such that θjet becomes larger than Γ−1
jet (the jet also starts to

expand laterally), it can be used to estimate the jet opening angle and hence the actual

emitted energy. The derived θjet imply a tightly clustered intrinsic, beaming-corrected,

luminosity of ∼ 1051 erg, which, if confirmed over a wider redshift range, could allow

the use of GRBs as standard candles [58].

A significant number of the GRBs found by Swift are at high redshift. The mean

redshift of the Swift sample is < z >= 2.6, more than twice the mean redshift < z >= 1.2

pre-Swift. This allows for a test of the idea of GRBs as standard candles, but also poses

a challenge for Swift. The late temporal breaks previously observed in the optical and

infrared occur at a few days, and will appear later, on average, for Swift due to the

increased time dilation. By this time the X-ray count rates can be down by around five
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Figure 9. The observed distribution in spectral indices for the prompt phase (upper),

steep decay phase (middle) and late emission hump (lower). The spectral indices for

the late emission hump are the most tightly clustered.

orders of magnitude, or more, from peak. In the spectroscopy sample discussed above,

only 9 GRBs have sufficient counts to derive a spectral index after the end of the late

emission hump. Of these, 3 show spectral steeping, 5 shown no evidence for spectral

variation, and the remaining GRB is inconclusive.

The late temporal decay slope and the usual absence of clear spectral variability

suggests that this segment is associated with the normal afterglow phase seen in pre-Swift

bursts at those epochs. Currently it is unclear if any jet breaks have been detected in

long bursts using data from Swift (although see [59]). The discovery of the late emission

hump further complicates detection, as the end of that phase could be mistaken for a jet

break. Sato et al. [60] analysed Swift data for three GRBs with extended light curves

and known redshifts. They show that the bursts do not show an achromatic break at the

times expected, derived from an empirical relationship between the peak in the energy

spectrum of the prompt emission and the isotropic luminosity [61]. If confirmed for a

larger sample, this would indicate that the jet opening angle has a wider dispersion than
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Figure 10. The 0.3–10 keV light curves for GRB050502B (black), GRB060124 (blue)

and GRB050820A (red) — three GRBs with large X-ray flares. The fluxes have been

normalised to the start of the prompt phase using the flux scale for GRB050820A.

Observations of GRB050820A were interrupted by the passage of Swift through the

South Atlantic Anomaly.

previously thought and hence GRBs have a wider range in intrinsic luminosity.

3.5. X-ray flares

The standard model for GRB afterglows, a spherical blastwave expanding into a uniform

density ambient medium, predicts smooth afterglow light-curves. At least half of the

GRBs observed by Swift show X-ray flares [30]. Suggested models for the origin of

flares include density fluctuations in the surrounding medium into which the blastwave

expands, structured jets, reverse shocks, refreshed shocks and late-time central engine

activity. These models predict relative fluctuation amplitudes and timescales which can

be used to rule out some scenarios for the origin of the flares.

Three of the strongest X-ray flares, observed in GRB050502B, GRB050820A and

GRB060124, are shown in Fig. 10 [36, 37, 38]). These flares are quite late, and beyond

the burst duration measured by T90. It can be argued that the initial flux is a “pre-

cursor”, in which case the “flare” is actually the burst. This is a distinct possibility,

although we note that without a flare all three light curves would still have been classified

as that of a GRB. This illustrates the uncertain definition of pre-cursors, bursts and

flares.
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Figure 11. The observed XRT count-rate light curve for GRB060124 (black; left-

hand scale) and the (2–10 keV / 0.2–2 keV) hardness ratio (red; right-hand scale). The

spectrum hardens during each flaring episode.

The X-ray flares can show considerable sub-structure. Fig. 11 shows a close-up

view of the large flare event in GRB060124. This large flare shows several episodes of

flux increase during which the spectrum rapidly hardens, followed by a more gradual

softening as the flux declines. The simplest explanation for the observed spectral

behaviour is the movement of the break energy to higher energies at the onset of the flare,

which then falls to lower energies as the intensity decreases. This behaviour is consistent

with that seen in gamma-ray flares observed during the prompt phase [62, 63].

The rapid rise and fall in flux during these early X-ray flares is inconsistent with an

explanation involving interaction of the external jet shock with the surrounding medium.

In addition, where large energy output is seen it is likely due to the central engine being

fed matter as late times due to fragmentation of the progenitor [64] and/or a clumpy

accretion flow [65, 66]. The timescale over which large X-ray flares occur is mostly

confined to the first hour after the trigger, consistent with the previously known range

in burst duration.

4. Short bursts

The discussion above is based mainly on the observed properties of long GRBs (i.e.

T90 > 2s). Pre-Swift no accurate localizations had been obtained for short bursts,

but now both Swift and HETE-2 have provided data which has allowed for the

accurate localization of several short bursts. From the first two which were localized,

GRB050509B [27] and GRB050709 [67], it was apparent that short bursts are associated

with host galaxies that have less active star formation than long bursts and that they are
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Figure 12. The BAT+XRT flux light curves for the short bursts GRB050724 and

GRB051221A. GRB050724 displays a steep decay and several flares. GRB051221A is

a very bright burst with a gradual initial decline, flux ∝ t−1, a late emission hump

from a few thousand to ∼ 104s, followed by another gradual decline ∝ t−1.

in lower density local environments [27, 68, 40]. Follow-up observations have provided

redshifts for most of the localized short bursts and show they have systematically lower

redshifts than the long bursts. The lower redshifts and lower fluences imply lower

luminosities, although as for long bursts determining the jet opening angle is problematic

[40, 69]. The long-burst progenitor is thought to be a collapsar (section 1) whereas the

properties of the short-bursts are consistent with a neutron star–neutron star or neutron

star – black hole binary progenitor. Short-lifetime massive stars (collapsars) are very

unlikely progenitors for the observed short bursts because of both the lack of recent

star formation in the host galaxies and the absence of a supernova which should be

detectable at low redshifts [68, 70].

Despite the environmental and likely progenitor differences, the X-ray light curves

of short bursts are very similar to those of long bursts. In Fig. 12 the BAT+XRT light

curves of two well studied short bursts display the full range of X-ray phenomena:

steep decay and flares (GRB050724); and gradual decay and late emission hump

(GRB051221A). To Swift GRB050724 is technically a long burst, but it would have

appeared as a short burst to the BATSE instrument [39]. The long duration of X-ray

emission for the short bursts suggests that their central engines can also be fuelled for

many hours, possibly due to the same processes discussed above to explain X-ray flares.

5. Conclusions

The Swift era has truly energized the study of Gamma-ray Bursts. In its first year of

operation Swift has provided the first accurate X-ray localization for a short burst, found

the highest redshift and highest X-ray luminosity source, GRB050904, observed large

X-ray flares which can occur up to an hour or more after the burst and observed a wide
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variety of temporal and spectral shapes for GRBs. The early high-energy emission from

most GRBs appears to be dominated by central engine activity, which may continue

low energy output for up to a day after the burst. This phase, plus X-ray flares, are

seen in both long and short bursts. In a significant minority of GRBs, the early X-ray

emission is consistent with a classical afterglow, where we see early interaction of the jet

with the circum-burst environment. The wealth of observational phenomena challenge

practically all of the theories as to how GRBs are powered, the nature of the relativistic

jet and the interaction between a GRB and its environment.
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