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ABSTRACT 
We describe the engineering of Succinct DOM (SDOM), a DOM 
implementation, written in C++, which is suitable for in-memory 
representation of large static XML documents. SDOM avoids the 
use of pointers, and is based upon succinct data structures, which 
use an information-theoretically minimum amount of space to 
represent an object. 

SDOM gives a space-efficient in-memory representation, with 
stable and predictable memory usage. The space used by SDOM 
is an order of magnitude less than that used by a standard C++ 
DOM representation such as Xerces, but SDOM is extremely fast: 
navigation is in some cases faster than for a pointer-based 
representation such as Xerces (even for moderate-sized 
documents which can comfortably be loaded into main memory 
by Xerces). 

A variant, SDOM-CT, applies bzip-based compression to textual 
and attribute data, and its space usage is comparable with 
“queryable” XML compressors.  Some of these compressors 
support navigation and/or querying (e.g. subpath queries) of the 
compressed file.  SDOM-CT does not support querying directly, 
but remains extremely fast: it is several orders of magnitude faster 
for navigation than queryable XML compressors that support 
navigation (and only a few times slower than say Xerces). 

1. INTRODUCTION 
XML is increasingly the format of choice for data storage and 
transmission, particularly when there are complex relationships 
between data items. However, XML is inherently a verbose 
representation – for example, the addition of tags to a flat file can 
easily triple its size.  A number of applications require XML 
documents to be read into main memory; these applications often 
access the document through the W3C standard Document Object 
Model (DOM) interface. Unfortunately, typical implementations 
of DOM produce an in-memory representation that is several 
times larger than the (already verbose) XML file. This “XML 
bloat” seriously impedes the performance and scalability of 
applications that use XML documents.  

XML bloat can be addressed – at least for minimizing storage and 
transmission time – via data compression. The structure inherent 
in XML files allows regularities that can be exploited for 

compression purposes to be discovered easily.  This has led to the 
development of specialized XML compressors that achieve 
excellent compression ratios (see, e.g., [1][4][5][10][14][18]).  
However, a traditional compression algorithm would require the 
XML document to be de-compressed in its entirety before it could 
be processed or queried.    

A number of query-friendly XML compressors have recently been 
developed (see, e.g., [1][4][5][10][21][18]). The regularity that 
makes XML files highly compressible to the right compressor can 
also be exploited to answer subpath or simple XPath queries, for 
example. The characteristic of a query-friendly compressor is that 
answering the query involves inspection only of a (usually small) 
fraction of the XML file, and in principle, only a fraction of the 
compressed file must be decompressed as well.  However, few of 
these compressors offers support for DOM-like navigation, which 
can move e.g. from a tag to its sibling in one operation.  Indeed, if 
a node has many descendants, its sibling will be located quite far 
away in the (compressed or original) file, and query-friendly 
compressors such as XGRIND or XPRESS may be quite slow 
when supporting such navigation.   

Other compressors such as BPLEX [4] or XBZIPIndex [10] do 
support navigation using the compressed representation. A 
detailed experimental evaluation focusing on navigation speeds is 
not presented in either paper, although [10] claims that navigation 
operations take a few milliseconds. Also, [4] claims that an 
individual navigation operation can be performed in time O(h), 
where h is a parameter that depends upon the XML file being 
compressed, and is closely related to the size of the compressed 
representation.  Thus, the larger the size of the compressed output, 
the slower the navigation (BPLEX also does not consider textual 
data, and instead focuses on compressing the tree structure).  
However, navigation is not the primary focus of either of these 
papers: e.g. XBZIPIndex can perform rapid subpath searches; we 
on the other hand, are focused purely on the (lower-level) DOM 
operations.  From this viewpoint, the excellent compression 
performance of these query-friendly compressors comes at a 
significant price in terms of speed (note e.g. that a pointer-based 
representation takes just a memory access, or tens of nanoseconds, 
to perform a navigation operation).  Finally, we encode XML 
documents in an implicit manner, eschewing the use of explicit 
pointers.  A number of XML storage schemes for secondary 
memory use related ideas, for example [2][28].  However, these 
schemes are not focused on compression and fast navigation, 
which is our main goal. 

1.1 Contributions 
We describe SDOM, which is a DOM implementation based upon 
succinct data structures. SDOM is particularly suitable for 
representing large, static XML documents. DOM operations that 
modify the document are not currently supported, but almost the 
full DOM Level 3 Core API is currently supported. 
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If textual data is kept uncompressed, SDOM uses significantly 
less space than the original file. A simple variant, SDOM-CT, 
compresses the textual data, and achieves compression ratios 
competitive with “query-friendly” XML compressors, but worse 
than the best XML compressors (details in Table 3).  

The main advantage of SDOM is that navigation is extremely fast: 
navigation is, in some common cases such as a document-order 
traversal of the tree nodes, over three times faster than a standard 
C++ pointer-based implementation such as Xerces-C (abbreviated 
to just Xerces in the following). In the rest of the section, the 
comments we make about Xerces apply to similar C++ DOM 
implementations.  This holds even when both Xerces and SDOM 
fit comfortably within the main memory of the computer.  Parsing 
an XML file into the representation is also very fast, as is 
outputting the XML file from its representation. 

Even SDOM-CT, tested with more complex navigation, is still 
only a few times slower than Xerces, and several orders of 
magnitude faster than other “query-friendly” XML compressors 
(note however, that SDOM(-CT) only supports DOM operations, 
and direct support is not provided for more complex operations 
such as subpath queries). 

Obviously, for moderately large documents, whose size is such 
that the Xerces representation is too large to fit into main memory, 
SDOM(-CT) can successfully represent a file where Xerces would 
fail. As Xerces’s representation starts to exceed the size of main 
memory, even SDOM(-CT) begins to approach Xerces. 

SDOM is based on succinctness, which is related to, but distinct 
from, data compression. In particular, the size of the 
representation can be estimated quite accurately using the number 
of nodes, the number of distinct element and attribute names, and 
the number characters of textual data in the file. SDOM offers 
some “compression” even for random files, but misses out on 
space savings for highly regular files.  

XML compressors use insights into the structure of XML files, 
including regularities in the tree structure [13], the predictive 
value of the upward path from an element in determining the 
element [14], and also more generally, the use of containers in 
grouping textual data elements with similar characteristics, and 
applying specialized compression algorithms to each group [1, 3, 
4, 9, 13, 16, 17]. SDOM-CT exploits none of these in any direct 
way: it effectively concatenates all the textual data in document 
order into a single string, and represents this string using bzip2 or 
related libraries [2, 8]. Yet, SDOM-CT compares surprisingly 
well with regards to compression performance, because: 

• If one uses bzip-based algorithms to compress text 
arranged in document-order, then in most cases, bzip2 
does pretty well even relative to specialized 
compression algorithms applied to containers. 

• When using bzip2, the difference between grouping text 
according to path-order or document-order is limited in 
most cases. 

• In most documents, the tree structure, if represented 
compactly, as in SDOM(-CT), is already much smaller 
than the compressed text.  Compressing it further using 
ideas such as [4] yields limited improvements in overall 
compression ratio. 

Succinct data structure building blocks underlying SDOM(-CT) 
have been studied in isolation in previous works [7][8][11], which  
already demonstrated their speed. The performance of SDOM(-
CT) has been further improved by additional ideas that are 
specific to the use of these data structures in SDOM. 

The remainder of this paper is organized as follows. In Section 2 
we discuss existing DOM implementations. In Section 3 we 
discuss the succinct data structures. In Section 4 we present the 
architecture of SDOM, together with the application of the 
succinct data structures. In Section 5, we discuss the outcome of 
our experimental evaluation, and conclude in Section 6. 

2. DOM Implementations 
There have been a number of implementations of the DOM API in 
both C++ and Java.  As our focus is on performance, we focus on 
C++ DOM implementations. 

2.1 Xerces   
Xerces-C++ [22] is a popular DOM implementation that dopts a 
pointer-based design of its tree structure. Each node contains 
pointers to its parent, next-sibling, previous-sibling and first-child 
node (if it has a child). Other pointers to objects exist, such as the 
NamedNodeMap object for attribute node handling of elements, 
in addition basic string arrays for node values and a name pools 
exist for handling of node names. 

2.2 TinyTree 
Saxon [20] is an XSLT/XQuery processor which has an internal 
data structure to represent XML trees called TinyTree. The data 
structure is composed of several arrays of length n, where n is the 
number of nodes in the tree. There are arrays to represent the 
depth of each node, the node type information, element and 
attribute names as namecode values, and attribute and text node 
values in character sequence stores, etc. Tinytree interfaces with 
DOM and only supports the read-only methods in DOM. The 
memory usage of the TinyTree data structure is more than the 
original XML file size (often by a factor of 2), but is much better 
than a pointer-based implementation like Xerces. 

2.3 DDOM 
DDOM (Dictionary-based Document Object Model) [16] is a 
DOM implementation that supports read-only access on a 
document in a Java platform. It uses dictionary compression 
approach to reduce memory usage when representing the 
document. The core component is a linear table with an index 
dictionary of the document structure. Elements are referred by a 
simple number Id, which is referenced in a table. All textual data 
instances are stored in a managed indexed dictionary which is 
referred to by the parent Element tag. They claimed to get 30-80% 
space saving for real world data-centric or regular documents 
compared to standard DOM implementations such as Xerces or 
Crimson. However for document-centric XML they only get a 
saving of 20% to 30% relative to Xerces.  Finally, the 
representation is usually larger than the file size. 

3. Preliminaries 

3.1 Succinct Data Structures 
Succinctness is based upon a simple information-theoretic lower 
bound: when representing an object from some set of objects C, 

one requires at least log2 |C| bits to uniquely identify the object in 
the worst case.  A succinct representation of an object approaches 
this lower bound. For example, there are roughly 4n/(2πn)1/2 



ordinal trees1 on n nodes.  Thus, in the worst case, an ordinal tree 
requires at least 2n – O(log n) bits of storage. Indeed, an ordinal 
tree can be represented as a sequence of 2n parentheses – see 
Figure 2 (c) for an example – giving a succinct representation (if 
one maps parentheses strings to bit strings appropriately). A naïve 
way to represent ordinal trees is to store two pointers per node 
(one each to its first child and next sibling).  If a pointer takes 32 
bits, a succinct representation is 32 times smaller than the naïve 
representation. Note the difference between succinctness and data 
compression: a succinct tree representation takes 2n bits 
regardless of the tree being represented – a random tree and a 
highly regular tree both take the same amount of space. Equally, 
since there are 2n bit-strings of length n, an optimal succinct 
representation of a bit-string is the bit-string itself, regardless of 
whether the bit-string is compressible or random. While succinct 
representations are give up some compressibility, by using 
appropriate data structures, they support operations very rapidly. 

3.2 The Bit-Vector Data Structure 
A bit-vector is a fundamental data structure used in many succinct 
data structures. It stores a bit-string x of length n, and supports the 
following operations on x. 

o SELECT1(x, i): Given an index i, return the position of 
the ith 1 bit in x. 

o RANK1(x, i): Returns the number of 1s to the left of, and 
including, position i in x. 

For example, if x = 1 0 0 1 1 0 1 0 then SELECT1(x, 4) =  7 (the 
fourth 1 is in position 7) and RANK1(x, 4) = 2 (there are two 1s in 
positions 1 to 4). SELECT0 and RANK0 are defined analogously 
for the 0 bits in the bit string. From an asymptotic viewpoint, there 
are bit-vector data structures that use n + o(n) bits2 to support 
SELECT0/1 and RANK0/1 in O(1) time [6]. Fast and practical 
implementations of bit-vectors were studied in [7] and [13].  We 
use the implementation from [6], which uses (1 + ε)n bits for any 
fixed user-specified parameter ε > 0, and supports operations in 
O(1/ε) time3, thus trading off space for time. We choose a point of 
the trade-off at the “moderately fast” rather than the “space-
efficient” end. With these parameter choices, this data structure 
uses 2n bits to support SELECT1 and RANK0/1. The RANK0/1 
operation is very fast (on the order of a memory access) and 
SELECT1 is about 2.5 times slower.   
 

3.3 Balanced Parentheses Data Structure 
This data structure stores a balanced sequence s of 2n parentheses, 
and supports the following operations: 

                                                                 
1 An ordinal tree is a rooted tree with arbitrary fan-out at each 

node, and where the order of the children of the node is fixed – 
in other words, XML trees. 

2 In this paper, we say that f(n) = o(g(n)) if limn→∞  f(n)/g(n) = 0.  
Thus, n + o(n) bits means a space bound of (1 + εn) n bits, where 
εn goes to zero as n grows. 

3 Note the subtle difference to footnote 2: although ε can be 
chosen to be arbitrarily small, it does not change with n, and 
lowering ε increases the running time.  A space usage of (1 + 
ε)n bits is asymptotically worse than n + o(n) bits; however, for 
any practical values of n (e.g. n ≤ 264), the n + o(n)-bit data 
structures can be slower and use more space, as noted in [10]. 

o ENCLOSE(s, i):  Return the position of the opening 
parenthesis of the parenthesis pair that most immediately 
encloses the parenthesis in position i of s. 

o FINDOPEN(s, i): Return the position of the opening 
parenthesis that matches the closing parenthesis in position i 
of the sequence; and return -1 if the parenthesis in position i 
of s is an open parenthesis. 

o FINDCLOSE(s, i): Return the position of the closing 
parenthesis that matches the parenthesis in position i of the 
sequence and return -1 if the parenthesis in position i of s is a 
closing parenthesis. 

o INSPECT(s, i): Return the state of the ith parentheses of s, 
which is either an opening or closing parenthesis 

From an asymptotic viewpoint, there are data structures that take 
2n + o(n) bits and support these operations in O(1) time (see 
[16],[11]). In practice, the best implementation [11] uses about 
2.86n bits in all (varying slightly depending upon the precise 
parenthesis sequence).  Again, there is a trade-off between space 
and speed; the space usage reported is at the most space-efficient 
parameter setting. We remark here that although all operations are 
asymptotically O(1) time, they vary in speed: INSPECT is the 
fastest, FINDOPEN/FINDCLOSE are next, and ENCLOSE is the 
slowest, being typically 5-6 times slower than FINDOPEN. 

3.4 Prefix Sum Data Structure 
Given a (static) sequence of positive integers x = (x1,…, xt), such 

that ∑ t

i 1=
xi = m, a prefix sum data structure supports the operation 

SUM(x, j), which returns ∑ j
i 1=

xi. A naïve approach is to pre-

compute all prefix sums, and store each prefix sum using log m 
bits. This uses at most t (log m + 1) bits overall and supports SUM 
trivially in O(1) time. A succinct representation uses t log (m/t) + 
O(t) bits, and also supports SUM in O(1) time[7]. We use the 
implementation of [7], which uses about 4.33t + t log(m/t) bits  
and supports SUM in O(1) time. 

Note that the succinct representation uses space per prefix sum 
that depends on m/t, the average of the xis, plus a fixed overhead 
of 4.33 bits. In contrast, the naïve representation uses space that 
depends on m, the sum of the xis.  

4. SDOM Architecture  
The process of building the SDOM data structure from an XML 
document is done using a SAX parser, with event handling 
methods written by us.  The parser creates the tree structure of the 
document consisting of the elements, their contents, 
CDataSection, PI instructions, on the ‘fly’ in temporary structures. 
These are then converted into their final succinct form. For 
example, if the tree has n nodes, it is stored as a sequence of 2n 
bits, viewed as a parenthesis sequence, during the parsing phase. 
Once the document is parsed, the parenthesis sequence is 
converted into a Balanced Parenthesis data structure.  In this 
instance, the intermediate representation is slightly smaller than 
the final data structures. For other building blocks, the 
intermediate representation takes more space than the final 
representation – for example, in SDOM-CT, the textual data is 
stored temporarily in uncompressed form before it is compressed.  
Although we do not go into details here, we point out that the 
parsing is fast, and the intermediate data structures take, at worst,  
only somewhat more space than the final SDOM representation. 



The architecture of SDOM(-CT) consists of 5 core components: 
the succinct tree data structure (DS), henceforth called Stree, the 
Namecode DS, the Text DS, the Attribute DS, the Namepool, and 
the hash table (see Figure 1). We now describe the individual 
components and their functions. 

4.1 Stree 
The Stree component consists of an instance of the Balanced 
Parenthesis data structure (Section 3.3), representing the 
document tree, together with a bit-vector, which we come back to 
later. The parenthesis bit-string corresponding to a DOM tree with 
n nodes is the one created in the obvious way (as already 
suggested by the examples): traverse the tree in document order, 
and output an opening parenthesis when a node is first 
encountered and a closing parenthesis once all its descendants 
have been visited.  In what follows, we use TP to denote the tree 
parenthesis bit-string, and assume that TP is stored in a Balanced 
Parenthesis data structure, which supports the operations in 
Section 3.3. We now describe how the parenthesis data structure 
is integrated into SDOM. 

We number the nodes 1 to n in document order, and let φ(i) 
denote the position of the ith opening parenthesis in TP. In effect, 
we consider the opening parenthesis at position φ(i) as being the 
representation of node i in TP4. E.g., in Figure 2 (c), the 8th open 
parenthesis, which represents node 8, is at position 14 in the 
parenthesis bit-string, so φ(8) = 14. Maintaining the association 
between i and φ(i) is critical for fast navigation, as tree navigation 
operations are implemented by operations on TP. For example, to 
find the parent of a node i, we first find its representation φ(i). We 
then observe that the parent of i is represented by the pair of 
parentheses that most closely enclose φ(i) and φ(i)’s matching 
closing parenthesis.  

To go from the representation of the parent in TP to its document-
order number, we invert the mapping φ.  In summary: 

PARENT(i):= φ-1(ENCLOSE(TP, φ(i)) 
 

The other operations can similarly be verified: 

FIRST-CHILD(i):= if INSPECT(TP, φ(i)+1)=“(” 
                 then i+1 else nil 

 

                                                                 
4 Alternatively a node may be associated to a closing parenthesis, 

or pair of parenthesis, but these are slightly worse alternatives. 

 

(a) 

 

(b) 

φ (i ) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

i 1 2 3 4 5 6 7 8 9 10 11 12 13

( ( ) ( ( ) ( ( ) ) ) ( ) ( ( ) ) ( ) ( ( ) ) ( ) )  

(c) 

Figure 2 - (a): Simple XML fragment. (b): Corresponding 

DOM tree representation. (c) Parentheses rep of the tree 

structure with double numbering of nodes. e.g. the 11th node 

(the element ‘year’) is at the 20th position in the bit-string. 

NEXT-SIBLING(i):=  

  if INSPECT(FINDCLOSE(TP, φ(i))+1) = “(” 

     then φ-1(FINDCLOSE(TP, φ(i))+1) else nil 
 

Suppose that in TP, an opening (closing) parenthesis is denoted by 
1 (0).  Computing φ and φ-1 can be done by augmenting TP with 
data structures to support RANK

1
 and SELECT

1
, and noting that   

φ(i) = SELECT
1
(TP, i) and φ-1(i) = RANK

1
(TP, i). E.g. in Figure 

2(c), to get the parent of the 8th node, we first call SELECT
1
(TP, 

8), which returns 14. Then, we call ENCLOSE(14), returning 1. 
Finally, RANK

1
(TP, 1) returns the answer, 1.  What we have just 

described is the standard way to use the balanced parenthesis data 
structure to represent trees. 

The difficulty is that RANK and (particularly) SELECT slow 
down the navigation operations. In addition, these additional data 
structures raise the space usage for the tree from 2.86n bits to 
nearly 5n bits, and result in a significant time penalty. A better 
alternative, used in [10], is effectively to number node i using the 
integer φ(i); however, since accessing the information associated 
with a node requires a document-order numbering, this approach  
requires a φ-1 computation (via RANK) each time any of the 
(many) DOM methods that access information associated with a 
node is called.  Our approach is superior to both of these, and 
applies double-numbering [7] for the first time to parentheses-
based trees. We store with each Node object the pair (i, φ(i)) and 
update both components simultaneously (at low cost) during the 
navigation process. E.g., the parent operation becomes: 

PARENT((i, p)) {  

  p’ := ENCLOSE(TP, p);         (1) 
  i’ := i - (p - p’ + 1)/2;     (2) 
  return (i’, p’);               
} 

  <book catalogue=“XML”> 
<author>OND &amp;&plc;</author> 
<title>SDOM Design</title> 
<year>2007</year> 

    </book> 
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Figure 1. SDOM Architecture 



Lemma 1. The pseudo-code for the parent operation, when given 
the pair (i, φ(i)) for node i, correctly returns (i’, φ(i’)) where node 
i’ is the parent of node i. 

Proof. By our earlier reasoning, line (1) correctly computes φ(i’), 
where i’ is the parent of i.  In line (2), the key observation is that 
the parentheses that lie in TP between the open parentheses at 
φ(i’) and φ(i) comprise the representations of the previous siblings 
of node  i and their descendants.  This means that there are an 
equal number of open and close parentheses between positions 
φ(i’) and φ(i).  Furthermore, the open parentheses that lie in 
between φ(i’) and φ(i) correspond precisely to the nodes that lie in 
between i’ and i in document order.  Thus, line (2) subtracts from 
i the number of nodes that lie between i and its parent in 
document order, and correctly computes i’, the document order 
number of i’s parent.            ■ 

We modify all navigation operations to work with this “double 
numbering” in an analogous manner (we omit details). Observe 
that the root is node 1, and φ(1) = 1.  Thus, we obtain the double 
numbering of the root directly, and the double numbering of any 
node reached from the root via navigation operations is correctly 
computed by induction.  The use of double numbering allows the 
mapping i → φ(i), which is crucial to navigation, to be maintained 
incrementally at minimal cost during navigation. Although we do 
not show experiments here (being a little bit out of the main thrust 
of this paper) this idea improves the running time for navigational 
operations by 20% over that reported in [11].  

Further speedups can be obtained if one adds as a primitive the 
operation of going from a node to the next/previous node in 
document order. This primitive is available in the DOM tree-
walker class, and is also required to iterate along the XPATH axes 
FOLLOWING_NODE or PRECEDING_NODE. We define two 
new operations on the parenthesis representation: 

o NEXTOPEN (TP, x): To return the position and rank of the 
next opening parenthesis given that we are at the opening 
parenthesis at position x in the bit-string. Formally, 
NEXTOPEN(TP, x) returns (i+1, φ(i+1)) if i < n and NIL 
otherwise, where i = φ-1(x) 

o PREVIOUSOPEN (TP, x): Analogous. 

These are implemented straightforwardly by inspecting bits in the 
parenthesis sequence. An individual call to NEXTOPEN 
(PREVIOUSOPEN) skips over at most d closing (opening) 
parenthesis, where d is the depth of the tree; thus its time 
complexity is O(d), but with a small constant. In Section 0 we 
show that using NEXTOPEN is much the fastest option for 
document-order traversals. 

To understand why, we need to understand how going to the next 
node using the standard navigational operations varies with the 
location of the current node (we consider document-order 
traversal – a reverse document order traversal is symmetric). For a 
non-leaf node, the next node is its first child. The pseudo-code for 
FIRST-CHILD shows that this only requires the inspection of a 
bit in TP, and is consequently very fast.  For a leaf node, the next 
node is its following sibling – and locating it is almost as fast as 
finding the first child of a non-leaf node – except when the leaf 
node is the last child of its parent. Note that: 

Proposition 2. The number of nodes that are last children of their 
parents equals the number of non-leaf nodes in a tree. 

 

The proportion of non-leaf nodes in XML documents is relatively 
high – it varies between 33% and 50% of all nodes in the 
documents in our corpus.  Thus, for at least one-third of the nodes, 
moving to the next node in document order requires significant 
computation – a series of alternating PARENT and NEXT-
SIBLING calls is made, both of which are relatively expensive 
(generally similar to a few memory accesses). Using 
NEXT/PREVIOUSOPEN is much faster in this case. 

The Stree component also contains a bit-vector we call 
isTextNode, whose ith bit is 1 if the ith node in document order is 
a text node. Let t be the number of text nodes, and e = n – t be the 
number of non-text tree nodes.  We handle these two kinds of 
nodes in a different manner. By augmenting the isTextNode bit-
vector with the RANK1 operation, we provide a consecutive 
numbering of text nodes from 1 to t and of non-text tree nodes 
from 1 to e. For example, if node i is a text node, then 
RANK1(isTextNode, i) gives the ordinal position of node i among 
the text nodes, considered in document order. 

4.2 Textual data offset compression 
We now consider the storage of textual data, including: 

• Text node values 

• Attribute values 

• Comment nodes 

• CDATASection nodes 

For a first approximation, we assume that each of the above 
categories is treated independently, and we consider only the first 
category for now. The content of all text nodes is concatenated 
into a single (virtual) character array C, in the order that text 
nodes occur in the document.  

To access the string associated with the ith text node, we store the 
sequence l = (l1, …, lt), where li is the length of the ith text node, 
in a prefix sum data structure.  The ith string then starts at position 
SUM(l,  i – 1) + 1 and ends at position SUM(l, i). 

Let m denote the sum of the lengths of the text nodes and recall 
that the space usage of the prefix sum data structure is about 4.33 t 
+ t log(m / t) bits.  Since, as m / t, which is the average length of a 
text node, is quite small (typically 10-11) the space usage works 
out to about 8 bits per offset, significantly less than storing offsets 
into C naively, say as 32-bit integers.  

We distinguish between three alternate representations of C: In 
SDOM, C is stored as an uncompressed character array. When 
concatenating individual text strings to form C, we include the 
null terminating character of each string. While not necessary for 
correctness (the offsets demarcate strings already), it allows string 
values to be returned as pointers into C. 

In SDOM-CT, there are two alternate representations of C. The 
first is in the FM-index [8], which stores C in a compressed form 
(using a BZIP-related algorithm). It supports the following 
operations: 

o Allows an arbitrary sub-array of C to be extracted (without 
decompressing C). 



o Given a pattern P, counts the number of occurrences of P in 
C, or locates one occurrence of P in C,  in time dependent 
only on the size of P (the null terminating character for each 
individual string must be left in C if the search functionality 
is required). 

The other representation is to divide C into blocks of B characters, 
and to compress each block using bzip2.  When a text node needs 
to be accessed, the block(s) containing it are decompressed.  Once 
a block is decompressed, it is stored in a cache that contains K 
uncompressed blocks.  Subsequent accesses to a cached block do 
not require decompression, so long as a block is not evicted from 
the cache because the cache is full (we use a FIFO replacement 
mechanism).  We use K= 4 and B = 16KB; and have a separate 
cache for the attribute data and the data in the text nodes.  

The compression performances of the two representations are 
roughly similar. The FM-index is recommended if text nodes are 
not accessed very often, or the access is highly non-local, or the 
search functionality is desired, but if text nodes are accessed 
frequently with a degree of locality, the blocked bzip2 is 
recommended. 

The remaining kinds of textual data: attribute values, comment, 
processing instruction target data and CDataSection nodes are 
concatenated into a separate virtual array C’. The reason for doing 
this (rather than concatenating all textual data into a single virtual 
array) is that the other kinds of textual nodes are typically far less 
numerous than text nodes, and appear to have different 
distributions of the lengths. If t’ is the number of such nodes, and 
m’ their total length, then by the convexity of the log function, 

(t + t’) log ((m + m’)/(t + t’)) ≥ t log m/t + t’ log m’/t’,  

so the space consumption of the offsets is always reduced by 
separately considering offsets into C and C’.  For example, this 
avoids the risk that one very large comment node raises the 
average length of all textual nodes in the tree, and thus the space 
usage of all offsets, were the offsets into C and C’ combined. 

4.3 Namepool and short-code data structures 
The XML names for elements, attributes and other node types are 
first converted into 32-bit name-codes. The data structure for 
mapping string names to name-codes and back is adapted from 
Saxon [20] and works as follows: all unique <localname, URI> 
pairs are stored in a chained hash table, called the NamePool, with 
210 buckets, where each bucket is (effectively) limited to hold lists 
of length 210. A <localname, URI> pair is specified by a 10-bit 
hash code (specifying the bucket) and a 10-bit offset into the list 
in that bucket. A further 10 bits are used to encode the namespace 
prefix. 

However, the use of a 32-bit name-code is wasteful: there tend to 
be very few distinct name-codes in an XML document. E.g., one 
of our documents, SwissProt.xml, has 5166890 elements and 
attribute nodes in the document, but only 99 distinct name-codes.  
To save space, we use an additional level of indirection. 

We create an array of size e, where e is the number of non-text 
tree nodes.  The ith entry of this array is a short-code for the ith 
non-text tree node in document order. A short-code is a positive 
integer, interpreted as follows: 

• If the ith short-code is 12 or less, then the ith node is not 
an element node, and the short-code value gives its type. 

• If the ith short-code j is 13 or greater, then the ith node 
is an element node, and j – 12 is an index into a table 
containing all unique namecodes in the XML document, 
pointing to the entry in this table corresponding to the 
ith element’s name. 

The short-codes thus take  )12log( +p  bits, where p is the 

number of distinct name-codes in the document. The array of 
short-codes is tightly packed, i.e. if short-codes are 7 bits long, 
then we would render the short code array as an integer array, 
where each (32-bit) integer would contain 4 complete short-codes 
and the remaining 32 – 4 * 7 = 4 bits would contain bits from the 
preceding or succeeding short-codes.  The code for extracting an 
individual short-code was carefully optimized. 

As an example, we show how to determine the type of the ith 
node in document order (this task is the basis of the NODETYPE 
operation). First, we access the isTextNode bitvector: if the ith bit 
is 1, then the ith node is a text node. If not, then we compute j = 
RANK0(isTextNode, i), to obtain an index from 1..e. Finally, we 
extract the j-th entry from the short-code array. If this value is 13 
or greater, then i is an element node. Otherwise, its type is given 
by the value of its short-code. 

4.4 Attribute Data Structure 
Attributes themselves are not apart of the DOM tree, but are 
associated with their parent elements, and are accessed through a 
NameNodeMap DOM interface. We propose a mapping strategy 
which maps elements to their attributes and attribute names to 
their values. Our technique is fairly space-efficient and accessing 
attributes is fast; the solution is better than, say, including the 
attribute nodes as “special” children of their parents in the 
Balanced Parenthesis data structure, particularly if the number of 
attributes is large. 

We now describe the attribute data structure. Recall from 
Section 4.1 that the isTextNode bit-vector numbers non-text tree 
nodes from 1 to e, where e is the number of non-text tree nodes. 
We create a sequence of non-negative integers X = (x1, … , xe) of 
length e as follows. If the ith non-text tree node is an element 
node, then xi is the count of attributes it has. Some non-text tree 
nodes have the corresponding xi = 0; others, such as processing 
instruction, CDATA or comment nodes, have the corresponding 
xi = 1, as they have associated data that will be treated as a 
dummy attribute. Letting a be sum of the xis (i.e. a is the total 
number of attributes, including dummy attributes), we now show 
how to represent X to satisfy the following goals: 

a) All attributes should be numbered from 1 to a, and the 
attributes associated with a given non-text tree node should 
be numbered consecutively.  

b) Given a non-text tree node, it should be possible to determine 
quickly the range of integers that number its (dummy) 
attributes, if any.  

c) Given an integer i, 1 ≤ i ≤ a, it should be possible to 
determine quickly the integer j such that the ith (dummy) 
attribute belongs to the jth non-text tree node.  (This is 
needed because DOM defines the parent of an attribute node 
to be the element node with which it is associated.) 

These requirements are met as follows.  We consider each non-
text tree node in document order, and number all its (dummy) 

 



<root>  
  <U a="val" b="val" c="val" />  
  <V /> <-- comment --> 
  <W d="val" e ="val"> 
  <X f="val" g ="val" h="val" i="val"> 
  <Y j="val"> 
  <Z /> 
</root>  

(a) 

r    U V  //   W     X  Y Z 
 a b c   com  e f  g h i j  k   
 1 2 3   4  5 6  7 8 9 10  11   
0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 0 

 
 

(b) 

Figure 3 - (a) Example XML document with elements and 

arrangement of attributes. (b) Bit-string of the attribute 

representation. 

attributes consecutively.  The attributes (if any) of the first non-
text tree node are numbered starting from 1; for any other node, 
its attributes (if any) are numbered starting from the next available 
integer. Clearly, all attributes of a node are numbered 
consecutively, and (a) is satisfied. 

For (b) and (c), we represent X as a bit-string as follows. Each 
value xi is written in unary (e.g. if xi = 4, then xi is written as 
11110) and concatenated in order. Note that this bit-string has e 0s 
and a 1s (see Figure 3 (b) for an example), and it is stored as a bit-
vector that supports SELECT: 

o The attributes of the ith non-text node are numbered from 

SELECT0(i – 1) – i + 2  to SELECT0(i) – i.  (Observe that 

SELECT0(i) – i gives the number of 1s before the ith 0 in the 
bit-string.) 

o The parent of the ith attribute is given by SELECT1(i) – i + 1. 
 
Finally, an array of size a stores the short-codes and node types, 
analogously to the array of element short codes. Attribute values, 
as well as textual data associated with some dummy attributes 
(e.g. text associated with CDATASection or comment nodes) are 
concatenated and stored in an array C’, as described at the end of 
Section 4.2. Using (a)-(c), the attribute data structure provides the 
following functionality: 

o Get an attribute, given the element number and the index of 
the attribute;  

o get the attribute owner node;  

o iterate forwards and backwards through the attribute nodes;  

o get a count of attribute nodes belonging to a particular 
element node and get attribute names and their values. 
Internally these functions apply to the other node types. 

This is a highly space-efficient solution. Existing implementations 
achieve the functions above using pointers: e.g. in Xerces, 
element node objects have a pointer to a vector of attribute node 
objects belonging to that element. Attribute nodes also have 
pointers to their parent. However, we require only about 2 bits for 
each non-text tree node or attribute node to maintain the mapping 
between attribute and element nodes. 

4.5 SDOM Interface 
A Node object in SDOM is fairly lightweight.  It comprises a 
reference to the containing Document, and the integers i and 
φ(i). It is important to remember that, unlike a pointer-based 
DOM implementation, SDOM does not create all Node objects in 
a document when the XML document is parsed.  However, 
SDOM creates a Node object whenever a navigational operation 
is invoked on an existing Node object (the implementation 
currently does not check if an object has previously been created 
for the same node).  Since C++ does not have garbage-collection 
facilities, even transient Node objects stay allocated for the 
duration of an application unless explicitly freed.  Traversing a 
document via navigation performed through the Node interface 
will therefore result in at least one Node object being created for 
each node in the tree; this collection of Node objects will, in 
many cases, occupy more space than the SDOM representation of 
the document.  To avoid this problem, we recommend the use of 
the TreeWalker class [27] for navigation; this has an iterator-
like behaviour, so new Node objects are not created by a 
navigation operation, but it supports all the navigational 
operations supported by Node (our TreeWalker 
implementation does not yet support node filters). 

5. Experimental Evaluation 
SDOM currently supports the static methods of the W3C DOM 
Level 3. In this section we draw comparisons of the space usage 
and running times between SDOM(-CT), Xerces-C and Saxon’s 
TinyTree (as TinyTree is implemented in Java we did not 
compare running times with TinyTree). We also compare our 
space usage against XML-specific compressors such as XMILL, 
XBZipIndex, XPRESS, XQZip and XGRIND. We do not make a 
detailed comparison with their running times: some are not 
efficiently queriable (e.g. XMILL), and those that are focus on 
various kinds of queries rather than navigation, and do not 
generally report times for navigation. (An exception is  [10], 
where they report navigation operations as taking milliseconds; 
however, we are several orders of magnitude faster.)  

5.1 Setup 
We used the Xerces-C v2.5 C++ DOM implementation. The test 
machine was a Pentium 4 machine with 2GB RAM, 3.4 GHz CPU 
and a 2MB L2 cache, running Ubuntu 6.06 Linux. The compiler 
was g++ 3.3.5 with optimization level 2. 

For RANK and SELECT we used an optimised version of the 
Clark-Jacobson bit-vector [10], with parameters B=64 and s=32. 
We used the parenthesis implementation of [10], with parameter 
B=128. We do not report the construction times of SDOM in this 
paper, however it was faster than the Xerces parser. 

We tested our algorithms on XML files taken mainly from a 
standard corpus [23]. Orders.xml, Lineitem.xml: TPC-H 
relational database benchmark converted into XML. 
Treebank_e.xml: English sentences tagged with parts of a 
speech, including encrypted text from the WSJ. 
SwissProt.xml: data from the Swiss-Prot protein database. 
DBLP.xml: DBLP bibliographic data. XPATH.xml: is not in 
[24], but uses the LocusXML schema to represent geospatial 
information in an XML format, it stores annotated human 
genomic data. 
Table 2 contains the basic statistics of these files such as sizes, 
number of nodes and the break-down of the node types. 



 

Figure 4 - Space usage distribution of SDOM components 

excluding text. 

 

Figure 5 - Space usage of SDOM components from figure 4 

(shaded in grey) with compressed text (shaded in black). 

 

5.2 Space Usage 
The succinct data structures share a static lookup table that is 
approximately 2MB in size. We have not added this cost in our 
figures. For relatively large documents this cost is negligible, and 
for multiple documents loaded in SDOM we only pay the cost 
once. Figure 4 shows the space usage of the SDOM components 
in their relative proportions (excluding the text). Note that the 
textual offset data structure (shaded in black diamonds in Figure 
4) makes up the largest proportion of the space usage: recall that 
the succinct representation is four times smaller than the naïve 
one. Indeed, Figure 5 shows that the offsets (assuming naïve 
storage) would take up more space than the compressed text!   

Also, the tree structure, despite being very compactly represented, 
still takes a fourth of the cost of SDOM (excluding the text). The 
naïve representation, which would require at least 2 * 32 = 64 bits 
per node, would be prohibitive. There are other data structures 
whose space usage is so small that they do not show up in Figure 
4.  For example, the Namepool data structure is very small 
because there are few distinct tag names in our files. Figure shows 
the breakdown of space usage within SDOM-CT. We see that the 
compressed text is often smaller than the SDOM components, but 
for irregular or document-centric files such as 
Treebank_e.xml text nodes that do not compress well, the 
compressed text is larger than the SDOM components. 

 

 

Figure 6 - (Top) Space usage of DOM implementations 

compared to original file. (Bottom) Compression ratio 

comparisons with XML compressors 

 

Table 1 - Textual data compression. Uncompressed text data 

size, compression ratio for bzip2 (text in path-order and 

document-order) and FMIndex on text in document-order. 

  libBzip2-blocks FMIndex 

Files Text path-order doc-order doc-order 

Orders 1MB 22% 30% 29% 

Lineitem 6MB 21% 31% 26% 

XPATH 13MB 9% 13% 13% 

Treebank 57MB 42% 45% 56% 

SwissProt 49MB 17% 29% 20% 

DBLP 71MB 28% 35% 30% 

 

Table 1 compares the compression of text for bzip2 arranged in 
path-order versus depth-order. Path-order is where the textual data 
with the same upward path from leaf node to root are arranged 
together in the concatenated file. Document-order is where we 
concatenate the textual data as we meet them in a document-order 
traversal of the tree. We also compare the compression ratio of 
compressing the textual data with bzip25 and FM-Index6. We 
observe that text arranged in document-order compresses 
comparably well to text in document-order. Also, the compression 

                                                                 
5 Currently using default settings for bzip2 and 8KB blocks. 
6 Using default parameter settings for FMIndex [8, 9]. b=2Kb, 

B=32Kb and f=0.05.  



ratio of bzip2 is roughly similar to FM-Index as mentioned earlier 
(we exclude the fixed cost of the cache in the bzip2 columns in 
Table 1, so FM-Index is better than it seems at first sight).  

Figure 6 (top) compares the space usage of SDOM with other 
DOM implementations, and SDOM-CT (bottom) with XML 
compressors: both query-frendly ones (XPRESS, XQZip, 
XBZIPIndex and XGrind) and a standard compressor, XMILL. 
We quote the results for the other compressors from the papers, 
and have not re-derived them ourselves. We only show files in 
Figure 6 (bottom) that are reported by the majority of other 
compressors. The raw data can be found in Table 3. In Figure 6 
(top) the space usage ratio is compared with to original file size 
(in percentage), e.g. SDOM space usage for SwissProt.xml is 
59.9% of the file size. We observe in Table 3 that files that would 
not easily fit into main memory of our test machine under Xerces, 
such as XCDNA.xml (size 607MB, which Xerces increases by a 
factor of 4) fit comfortably into the main memory using SDOM. 

XMILL gives the best compression ratios for all our files (we do 
not report results from XBZIP, which are similar to XMILL); 
however XMILL does not support navigation of queries upon the 
compressed representation. We observe in Figure 6 that SDOM-
CT often gives better compression ratios than the other query-
friendly XML compressors. 

5.3 Running Time 
Our tests are based on traversals of XML documents. We always 
use the SDOM TreeWalker interface, and not the SDOM Node 
interface, to avoid creating many transient objects. Even so, there 
are two different ways of traversing a document in SDOM(-CT): 

o using the NextNode method, which is implemented using the 
optimized NEXTOPEN operation. 

o using the standard DOM navigational methods. Over the 
course of a document-order traversal of an n-node tree, this 
results in a total of n calls to each of the methods FirstChild, 
NextSibling and Parent, thus providing a test that involves a 
mix of standard navigational operations. 

We perform three kinds of traversals: document-order, reverse 
document order and upward path enumeration.  The latter works 
as follows. We perform a document-order traversal using the 
standard DOM navigational methods. When the main iterator 
reaches a leaf, an auxiliary iterator traverses the entire upward 
path from the leaf to the root using the DOM Parent method.  

Along with the traversals, we either gather basic statistics, which 
include the count of element and text nodes, or perform a full test, 
which (i) determines the type of each node (ii) checks whether 
nodes have associated attributes (iii) for nodes with attribute data, 
or text nodes, we retrieve the node value, and check to see if the 
value contains a substring that is unlikely to appear (hence forcing 
the substring search to scan the full node value). 

Each test is repeated several times to obtain stable results (50 
times for Orders, 10 times for Lineitem, XPATH, 
Treebank, DBLP and SwissProt, and 2-5 times for XCDNA). 
The file sizes vary widely, and the graphs are geared primarily 
towards comparing different algorithms on the same file.  It is 
therefore a little hard to see scalability with instance size from the 
graphs. However, given the theoretical analysis of the running 
time, no scalability surprises are expected (and the raw data, 
where shown, confirms this).  

 

Figure 7 – Average running times of tree traversal using single 

numbering, double numbering and the nextOpen operation.  

 

Figure 8 - Running times, document-order and reverse 

document-order traversals gathering basic statistics, of Xerces 

and SDOM using NextNode and PreviousNode operations. 

Average time for XCDNA. 

We begin by demonstrating the effectiveness of the optimizations 
we have made to the parenthesis structure. Figure 7 shows the 
times taken to traverse (in document order) a tree derived from the 
tree structure of the XML documents of our set, when this tree is 
represented as a parenthesis sequence (however, the additional 
data structures for namecodes, textual data etc. are not created). 
The trees are traversed in three ways: using the original 
parenthesis operations, the parenthesis operations using double-
numbering and finally, using the using NEXTOPEN operation. 
We observe double-numbering is about 20% faster than single-
numbering. However, using NEXTOPEN is by far the fastest: the 
improvement over the original parenthesis code is more than 80%. 
However, NEXTOPEN can only be used for simple traverals. 

Figure 8, Figure 9and Figure 10 show various traversals that 
gather basic statistics (as described above). Our tests are repeated: 
50 times for Orders, 10 times for Lineitem, XPATH, 
Swissprot,  Treebank_e and DBLP, with total times 
reported. For XCDNA we report the average time over 5 runs. 
Figure 8 shows the result of a document-order and reverse 
document-order traversal, and shows that traversal using SDOM’s 
NextNode/PreviousNode operations was on average 40% faster 
than Xerces-C. As expected, the gap grows for the largest file, 
XCDNA. Figure 9 shows the result of a document-order and 
reverse document-order traversal using DOM navigation methods; 
SDOM is always within a factor of 2 of Xerces, but equals or 
betters Xerces for XCDNA. Note that SDOM shows very similar 
performance   for   document-order  and   reverse  document-order 



 

Figure 9 – Running times, for document-order and reverse 

document-order traversals using DOM navigation, with basic 

statistics for Xerces and SDOM. Average time for XCDNA.  

 

Figure 10 – Running times of Xerces and SDOM for ‘upward 

path enumeration’ gathering basic statistics. Average time for 

XCDNA. 

traversals. Figure 10 and Table 4 show the results for an upward 
path enumeration traversal. This traversal makes a very heavy use 
of the Parent operation which is (relatively) inefficient in SDOM, 
and may be considered a “worst case” for SDOM. Even here, 
SDOM on average was only a factor of 2.5 slower than Xerces. 

Figure 11 and Table 5 show the result of a document-order 
traversal but performing a full test. Observe that even SDOM-CT 
with the slow DOM navigation is only a few times slower than 
Xerces, for small files, and for our largest file, the gap starts 
narrowing rapidly. Particularly noteworthy is the time of SDOM 
(using the NextNode interface) on XCDNA, which is nearly 3.5 
times faster than Xerces. 

6. Conclusion 
SDOM is a fast in-memory representation of XML documents 
with a small memory footprint. The current implementation is 
close to being a plug-in replacement for a standard DOM 
implementation in any application that does not require dynamic 
changes to the XML document, with very little penalty in terms of 
CPU usage. It is therefore not only suitable for handling 
moderately large (a few GB) size documents on standard PCs, but 
may also be useful for enabling the use of XML on devices with 
limited resources, such as smart cards or handheld computers.  
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Figure 11 - Running times for DOM full test including 

examination of attributes and substring test on contents of 

text and attribute nodes. Average times is reported. 

SDOM is built upon succinct data structures.  Although there has 
been a great deal of interest in the algorithms community in the 
theory of succinct data structures, and implementations of full-text 
indices that are based upon succinct data structures (see e.g. [9]), 
these appear to be relatively unknown to the database community.  
We believe that the data structures we use could also be applied to 
other XML compressors. 

There are a number of tasks and open questions that remain. 
Firstly, SDOM, as described can only be used for static 
documents. Dynamizing succinct data structures is an area of 
active research (see e.g. [19]), but it is far from clear how to 
implement a full DOM with dynamic operations.  Secondly, 
although loading an XML document is fast (it needs to be – our 
traversal tests take so little time that reading in the XML file 
would otherwise be a serious bottleneck in our experiments) and 
does not take anywhere near the amount of memory required by a 
standard DOM parser, we have not made a serious attempt at 
optimizing either the speed or the memory usage of parsing. 
Finally, in addition to the tests that we have performed, it would 
be very interesting to wrap SDOM in an application such as 
Xalan, and investigate its performance therein. 
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Table 2 - Statistics of XML documents used in our experiments (NEG = negligibly small). 

File Nodes #Elem #Attr #text 

#Entity 

Ref Entity #Leaf 

Max. 

Depth 

Max node 

degree 

#text 

chars 

#attr 

Chars 

Orders 300,004 150001 1 150001 0 0 150001 3 30001 1MB NEG 

Lineitem 2,045,954 1022976 1 1022976 0 0 1022976 3 120351 6MB 0 

XPATH 2,522,571 840857 0 1681713 0 0 1681713 5 42075 13MB NEG 

Treebank_e 7,312,613 2437666 1 4874945 0 0 4875331 36 112769 57MB NEG 

SwissProt 10,599,084 2977031 2189859 5432193 0 0 5954060 5 100000 35MB 13MB 

DBLP 10,595,379 3332130 404276 6792148 66756 67 6792149 6 657717 64MB 7MB 

XCDNA 25,221,153 8407051 0 16814101 0 0 16814101 7 82237 256MB 0 

 



Table 3 - Space usage of XML representations.  

  Uncompressed repn’s Queriable compressed representations  

File Size SDOM Xerces-C Saxon SDOM-CT XBZipIndex XPRESS XQZip XGRIND XMILL 

Orders 5MB 37% 451% 157% 17% - - - - 12% 

Lineitem 32MB 28% 399% 161% 13% - - 5% 24% 5% 

XPath 50MB 33% 383% 137% 10% - - - - 3% 

Treebank_e 82MB 84% 866% 266% 43% 54% - 43% 52% 30% 

SwissProt 110MB 60% 704% 272% 22% 8% 38% 38% 43% 7% 

DBLP 128MB 68% 737% 240% 24% 14% 48% 30% 43% 15% 

XCDNA 594MB 50% 491% 136% 14% - - - - 8% 

 

Table 4 – Running times for Xerces and SDOM for ‘upward path enumeration’, plus relevant file parameters.  

File #Nodes %Non-leaf nodes Max. Depth Xerces  SDOM Slowdown 

Orders 300003 50% 3 0.08 0.13 1.64 

Lineitem 2045954 50% 3 0.55 1.28 2.33 

XPATH 2522571 33% 5 0.80 2.52 3.16 

Treebank_e 7312613 33% 36 3.22 9.84 3.05 

SwissProt 10599084 55% 5 2.71 8.76 3.23 

DBLP 10595379 37% 6 2.97 7.90 2.66 

XCDNA 25221153 33% 7 24.50 30.72 1.25 

 

Table 5 - Full test using TreeWalker. Shows running times in seconds for Xerces using tree navigation operations, and using 

NextNode, versus SDOM using tree navigation and NextNode and SDOM-CT using tree navigation. Times in seconds. 

File #Nodes Xerces TreeNav 

Xerces 

NextNode 

SDOM 

TreeNav 

SDOM 

NextNode 

SDOM-CT 

TreeNav 

Orders 300003 0.06 0.05 0.09 0.06 0.22 

Lineitem 2045954 0.37 0.32 0.64 0.39 1.22 

XPATH 2522571 0.44 0.40 0.82 0.51 1.68 

Treebank_e 7312613 1.40 1.25 2.85 1.57 8.51 

SwissProt 10599084 1.70 1.48 3.28 2.30 7.78 

DBLP 10595379 1.86 1.67 3.56 2.28 10.45 

XCDNA 25221153 17.63 16.88 8.50 5.42 27.90 

 


