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ABSTRACT

We describe the engineering of Succinct DOM (SDOM), a DOM
implementation, written in C++, which is suitable for in-memory
representation of large static XML documents. SDOM avoids the
use of pointers, and is based upon succinct data structures, which
use an information-theoretically minimum amount of space to
represent an object.

SDOM gives a space-efficient in-memory representation, with
stable and predictable memory usage. The space used by SDOM
is an order of magnitude less than that used by a standard C++
DOM representation such as Xerces, but SDOM is extremely fast:
navigation is in some cases faster than for a pointer-based
representation such as Xerces (even for moderate-sized
documents which can comfortably be loaded into main memory
by Xerces).

A variant, SDOM-CT, applies bzip-based compression to textual
and attribute data, and its space usage is comparable with
“queryable” XML compressors. Some of these compressors
support navigation and/or querying (e.g. subpath queries) of the
compressed file. SDOM-CT does not support querying directly,
but remains extremely fast: it is several orders of magnitude faster
for navigation than queryable XML compressors that support
navigation (and only a few times slower than say Xerces).

1. INTRODUCTION

XML is increasingly the format of choice for data storage and
transmission, particularly when there are complex relationships
between data items. However, XML is inherently a verbose
representation — for example, the addition of tags to a flat file can
easily triple its size. A number of applications require XML
documents to be read into main memory; these applications often
access the document through the W3C standard Document Object
Model (DOM) interface. Unfortunately, typical implementations
of DOM produce an in-memory representation that is several
times larger than the (already verbose) XML file. This “XML
bloat” seriously impedes the performance and scalability of
applications that use XML documents.

XML bloat can be addressed — at least for minimizing storage and
transmission time — via data compression. The structure inherent
in XML files allows regularities that can be exploited for
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compression purposes to be discovered easily. This has led to the
development of specialized XML compressors that achieve
excellent compression ratios (see, e.g., [1][4][5][10][14][18]).
However, a traditional compression algorithm would require the
XML document to be de-compressed in its entirety before it could
be processed or queried.

A number of query-friendly XML compressors have recently been
developed (see, e.g., [1][4][5][10][21][18]). The regularity that
makes XML files highly compressible to the right compressor can
also be exploited to answer subpath or simple XPath queries, for
example. The characteristic of a query-friendly compressor is that
answering the query involves inspection only of a (usually small)
fraction of the XML file, and in principle, only a fraction of the
compressed file must be decompressed as well. However, few of
these compressors offers support for DOM-like navigation, which
can move e.g. from a tag to its sibling in one operation. Indeed, if
a node has many descendants, its sibling will be located quite far
away in the (compressed or original) file, and query-friendly
compressors such as XGRIND or XPRESS may be quite slow
when supporting such navigation.

Other compressors such as BPLEX [4] or XBZIPIndex [10] do
support navigation using the compressed representation. A
detailed experimental evaluation focusing on navigation speeds is
not presented in either paper, although [10] claims that navigation
operations take a few milliseconds. Also, [4] claims that an
individual navigation operation can be performed in time O(h),
where /4 is a parameter that depends upon the XML file being
compressed, and is closely related to the size of the compressed
representation. Thus, the larger the size of the compressed output,
the slower the navigation (BPLEX also does not consider textual
data, and instead focuses on compressing the tree structure).
However, navigation is not the primary focus of either of these
papers: e.g. XBZIPIndex can perform rapid subpath searches; we
on the other hand, are focused purely on the (lower-level) DOM
operations. From this viewpoint, the excellent compression
performance of these query-friendly compressors comes at a
significant price in terms of speed (note e.g. that a pointer-based
representation takes just a memory access, or tens of nanoseconds,
to perform a navigation operation). Finally, we encode XML
documents in an implicit manner, eschewing the use of explicit
pointers. A number of XML storage schemes for secondary
memory use related ideas, for example [2][28]. However, these
schemes are not focused on compression and fast navigation,
which is our main goal.

1.1 Contributions

We describe SDOM, which is a DOM implementation based upon
succinct data structures. SDOM is particularly suitable for
representing large, static XML documents. DOM operations that
modify the document are not currently supported, but almost the
full DOM Level 3 Core API is currently supported.



If textual data is kept uncompressed, SDOM uses significantly
less space than the original file. A simple variant, SDOM-CT,
compresses the textual data, and achieves compression ratios
competitive with “query-friendly” XML compressors, but worse
than the best XML compressors (details in Table 3).

The main advantage of SDOM is that navigation is extremely fast:
navigation is, in some common cases such as a document-order
traversal of the tree nodes, over three times faster than a standard
C++ pointer-based implementation such as Xerces-C (abbreviated
to just Xerces in the following). In the rest of the section, the
comments we make about Xerces apply to similar C++ DOM
implementations. This holds even when both Xerces and SDOM
fit comfortably within the main memory of the computer. Parsing
an XML file into the representation is also very fast, as is
outputting the XML file from its representation.

Even SDOM-CT, tested with more complex navigation, is still
only a few times slower than Xerces, and several orders of
magnitude faster than other “query-friendly” XML compressors
(note however, that SDOM(-CT) only supports DOM operations,
and direct support is not provided for more complex operations
such as subpath queries).

Obviously, for moderately large documents, whose size is such
that the Xerces representation is too large to fit into main memory,
SDOM(-CT) can successfully represent a file where Xerces would
fail. As Xerces’s representation starts to exceed the size of main
memory, even SDOM(-CT) begins to approach Xerces.

SDOM is based on succinctness, which is related to, but distinct
from, data compression. In particular, the size of the
representation can be estimated quite accurately using the number
of nodes, the number of distinct element and attribute names, and
the number characters of textual data in the file. SDOM offers
some “compression” even for random files, but misses out on
space savings for highly regular files.

XML compressors use insights into the structure of XML files,
including regularities in the tree structure [13], the predictive
value of the upward path from an element in determining the
element [14], and also more generally, the use of containers in
grouping textual data elements with similar characteristics, and
applying specialized compression algorithms to each group [1, 3,
4,9, 13, 16, 17]. SDOM-CT exploits none of these in any direct
way: it effectively concatenates all the textual data in document
order into a single string, and represents this string using bzip2 or
related libraries [2, 8]. Yet, SDOM-CT compares surprisingly
well with regards to compression performance, because:

e If one uses bzip-based algorithms to compress text
arranged in document-order, then in most cases, bzip2
does pretty well even relative to specialized
compression algorithms applied to containers.

e  When using bzip2, the difference between grouping text
according to path-order or document-order is limited in
most cases.

e In most documents, the tree structure, if represented
compactly, as in SDOM(-CT), is already much smaller
than the compressed text. Compressing it further using
ideas such as [4] yields limited improvements in overall
compression ratio.

Succinct data structure building blocks underlying SDOM(-CT)
have been studied in isolation in previous works [7][8][11], which
already demonstrated their speed. The performance of SDOM(-
CT) has been further improved by additional ideas that are
specific to the use of these data structures in SDOM.

The remainder of this paper is organized as follows. In Section 2
we discuss existing DOM implementations. In Section 3 we
discuss the succinct data structures. In Section 4 we present the
architecture of SDOM, together with the application of the
succinct data structures. In Section 5, we discuss the outcome of
our experimental evaluation, and conclude in Section 6.

2. DOM Implementations

There have been a number of implementations of the DOM API in
both C++ and Java. As our focus is on performance, we focus on
C++ DOM implementations.

2.1 Xerces

Xerces-C++ [22] is a popular DOM implementation that dopts a
pointer-based design of its tree structure. Each node contains
pointers to its parent, next-sibling, previous-sibling and first-child
node (if it has a child). Other pointers to objects exist, such as the
NamedNodeMap object for attribute node handling of elements,
in addition basic string arrays for node values and a name pools
exist for handling of node names.

2.2 TinyTree

Saxon [20] is an XSLT/XQuery processor which has an internal
data structure to represent XML trees called TinyTree. The data
structure is composed of several arrays of length n, where # is the
number of nodes in the tree. There are arrays to represent the
depth of each node, the node type information, element and
attribute names as namecode values, and attribute and text node
values in character sequence stores, etc. Tinytree interfaces with
DOM and only supports the read-only methods in DOM. The
memory usage of the TinyTree data structure is more than the
original XML file size (often by a factor of 2), but is much better
than a pointer-based implementation like Xerces.

2.3 DDOM

DDOM (Dictionary-based Document Object Model) [16] is a
DOM implementation that supports read-only access on a
document in a Java platform. It uses dictionary compression
approach to reduce memory usage when representing the
document. The core component is a linear table with an index
dictionary of the document structure. Elements are referred by a
simple number Id, which is referenced in a table. All textual data
instances are stored in a managed indexed dictionary which is
referred to by the parent Element tag. They claimed to get 30-80%
space saving for real world data-centric or regular documents
compared to standard DOM implementations such as Xerces or
Crimson. However for document-centric XML they only get a
saving of 20% to 30% relative to Xerces. Finally, the
representation is usually larger than the file size.

3. Preliminaries

3.1 Succinct Data Structures

Succinctness is based upon a simple information-theoretic lower
bound: when representing an object from some set of objects C,
one requires at least log, |C] bits to uniquely identify the object in
the worst case. A succinct representation of an object approaches
this lower bound. For example, there are roughly 4"/(2mn)"?



ordinal trees' on n nodes. Thus, in the worst case, an ordinal tree
requires at least 2n — O(log n) bits of storage. Indeed, an ordinal
tree can be represented as a sequence of 2r parentheses — see
Figure 2 (c) for an example — giving a succinct representation (if
one maps parentheses strings to bit strings appropriately). A naive
way to represent ordinal trees is to store two pointers per node
(one each to its first child and next sibling). If a pointer takes 32
bits, a succinct representation is 32 times smaller than the naive
representation. Note the difference between succinctness and data
compression: a succinct tree representation takes 2n bits
regardless of the tree being represented — a random tree and a
highly regular tree both take the same amount of space. Equally,
since there are 2" bit-strings of length n, an optimal succinct
representation of a bit-string is the bit-string itself, regardless of
whether the bit-string is compressible or random. While succinct
representations are give up some compressibility, by using
appropriate data structures, they support operations very rapidly.

3.2 The Bit-Vector Data Structure

A bit-vector is a fundamental data structure used in many succinct
data structures. It stores a bit-string x of length », and supports the
following operations on x.

o SELECT,(x, i): Given an index i, return the position of
the ith 1 bit in x.
o RANK(x, i): Returns the number of 1s to the left of, and
including, position 7 in x.
For example, if x=100110 10 then SELECT(x, 4) = 7 (the
fourth 1 is in position 7) and RANK;(x, 4) = 2 (there are two 1s in
positions 1 to 4). SELECT, and RANK, are defined analogously
for the 0 bits in the bit string. From an asymptotic viewpoint, there
are bit-vector data structures that use n + o(n) bits? to support
SELECT,; and RANKy,; in O(1) time [6]. Fast and practical
implementations of bit-vectors were studied in [7] and [13]. We
use the implementation from [6], which uses (1 + €)n bits for any
fixed user-specified parameter € > 0, and supports operations in
O(1/¢) time®, thus trading off space for time. We choose a point of
the trade-off at the “moderately fast” rather than the “space-
efficient” end. With these parameter choices, this data structure
uses 2n bits to support SELECT, and RANKg,. The RANK;;
operation is very fast (on the order of a memory access) and
SELECT, is about 2.5 times slower.

3.3 Balanced Parentheses Data Structure
This data structure stores a balanced sequence s of 2n parentheses,
and supports the following operations:

' An ordinal tree is a rooted tree with arbitrary fan-out at each
node, and where the order of the children of the node is fixed —
in other words, XML trees.

? In this paper, we say that fin) = o(g(n)) if lim,_,, fin)/g(n) = 0.
Thus, n + o(n) bits means a space bound of (1 + ¢,) n bits, where
€, goes to zero as 1 grows.

3 Note the subtle difference to footnote 2: although & can be
chosen to be arbitrarily small, it does not change with n, and
lowering ¢ increases the running time. A space usage of (1 +
€)n bits is asymptotically worse than n + o(n) bits; however, for
any practical values of n (e.g. n < 2%%), the n + o(n)-bit data
structures can be slower and use more space, as noted in [10].

o ENCLOSE(s, i): Return the position of the opening
parenthesis of the parenthesis pair that most immediately
encloses the parenthesis in position 7 of 5.

o FINDOPEN(s, i): Return the position of the opening
parenthesis that matches the closing parenthesis in position i
of the sequence; and return -1 if the parenthesis in position 7
of s is an open parenthesis.

o FINDCLOSE(s, i): Return the position of the closing
parenthesis that matches the parenthesis in position i of the
sequence and return -1 if the parenthesis in position i of s is a
closing parenthesis.

o INSPECT(s, i): Return the state of the ith parentheses of s,
which is either an opening or closing parenthesis

From an asymptotic viewpoint, there are data structures that take
2n + o(n) bits and support these operations in O(1) time (see
[16],[11]). In practice, the best implementation [11] uses about
2.86n bits in all (varying slightly depending upon the precise
parenthesis sequence). Again, there is a trade-off between space
and speed; the space usage reported is at the most space-efficient
parameter setting. We remark here that although all operations are
asymptotically O(1) time, they vary in speed: INSPECT is the
fastest, FINDOPEN/FINDCLOSE are next, and ENCLOSE is the
slowest, being typically 5-6 times slower than FINDOPEN.

3.4 Prefix Sum Data Structure

Given a (static) sequence of positive integers x = (xi,..., x;), such

that ) ;_ (Xi=m,a prefix sum data structure supports the operation

SUM(x, j), which returns Zij=1 X;. A naive approach is to pre-

compute all prefix sums, and store each prefix sum using log m
bits. This uses at most ¢ (log m + 1) bits overall and supports SUM
trivially in O(1) time. A succinct representation uses ¢ log (m/f) +
O(?) bits, and also supports SUM in O(1) time[7]. We use the
implementation of [7], which uses about 4.33¢ + ¢ log(m/t) bits
and supports SUM in O(1) time.

Note that the succinct representation uses space per prefix sum
that depends on m/t, the average of the x;s, plus a fixed overhead
of 4.33 bits. In contrast, the naive representation uses space that
depends on m, the sum of the x;s.

4. SDOM Architecture

The process of building the SDOM data structure from an XML
document is done using a SAX parser, with event handling
methods written by us. The parser creates the tree structure of the
document consisting of the elements, their contents,
CDataSection, PI instructions, on the ‘fly’ in temporary structures.
These are then converted into their final succinct form. For
example, if the tree has n nodes, it is stored as a sequence of 2n
bits, viewed as a parenthesis sequence, during the parsing phase.
Once the document is parsed, the parenthesis sequence is
converted into a Balanced Parenthesis data structure. In this
instance, the intermediate representation is slightly smaller than
the final data structures. For other building blocks, the
intermediate representation takes more space than the final
representation — for example, in SDOM-CT, the textual data is
stored temporarily in uncompressed form before it is compressed.
Although we do not go into details here, we point out that the
parsing is fast, and the intermediate data structures take, at worst,
only somewhat more space than the final SDOM representation.
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Figure 1. SDOM Architecture

The architecture of SDOM(-CT) consists of 5 core components:
the succinct tree data structure (DS), henceforth called Stree, the
Namecode DS, the Text DS, the Attribute DS, the Namepool, and
the hash table (see Figure 1). We now describe the individual
components and their functions.

4.1 Stree

The Stree component consists of an instance of the Balanced
Parenthesis data structure (Section 3.3), representing the
document tree, together with a bit-vector, which we come back to
later. The parenthesis bit-string corresponding to a DOM tree with
n nodes is the one created in the obvious way (as already
suggested by the examples): traverse the tree in document order,
and output an opening parenthesis when a node is first
encountered and a closing parenthesis once all its descendants
have been visited. In what follows, we use TP to denote the tree
parenthesis bit-string, and assume that 7P is stored in a Balanced
Parenthesis data structure, which supports the operations in
Section 3.3. We now describe how the parenthesis data structure
is integrated into SDOM.

We number the nodes 1 to n in document order, and let (i)
denote the position of the ith opening parenthesis in 7P. In effect,
we consider the opening parenthesis at position ¢(i) as being the
representation of node i in TP*. E.g., in Figure 2 (c), the gt open
parenthesis, which represents node 8, is at position 14 in the
parenthesis bit-string, so ¢(8) = 14. Maintaining the association
between i and ¢(i) is critical for fast navigation, as tree navigation
operations are implemented by operations on 7P. For example, to
find the parent of a node i, we first find its representation @(i). We
then observe that the parent of i is represented by the pair of
parentheses that most closely enclose ¢(i) and ¢(i)’s matching
closing parenthesis.

To go from the representation of the parent in 7P to its document-
order number, we invert the mapping ¢. In summary:

PARENT (1) := ¢ * (ENCLOSE (TP, ¢ (1))

The other operations can similarly be verified:

FIRST-CHILD (1) := if INSPECT (TP, ¢ (1)+1)="("
then i+l else nil

4 Alternatively a node may be associated to a closing parenthesis,
or pair of parenthesis, but these are slightly worse alternatives.

<book catalogue=“XML">
<author>OND &amp; &plc;</author>
<title>SDOM Design</title>
<year>2007</year>

</book>

(b)
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Figure 2 - (a): Simple XML fragment. (b): Corresponding
DOM tree representation. (c) Parentheses rep of the tree
structure with double numbering of nodes. e.g. the 11" node
(the element ‘year’) is at the 20™ position in the bit-string.

NEXT-STBLING (i) :=
if INSPECT (FINDCLOSE (TP, ¢ (i))+1) = “(”
then ¢ ' (FINDCLOSE (TP, ¢ (i))+1) else nil

Suppose that in 7P, an opening (closing) parenthesis is denoted by

1 (0). Computing ¢ and @' can be done by augmenting TP with
data structures to support RANK and SELECT, and noting that
@(i) = SELECT (7P, i) and ¢ (z) = RANK (7P, 1) E.g. in Figure
2(c), to get the parent of the 8" node, we ﬁrst call SELECT (7P,
8), which returns 14. Then, we call ENCLOSE(14), returmng 1.
Finally, RANK](T P, 1) returns the answer, 1. What we have just
described is the standard way to use the balanced parenthesis data
structure to represent trees.

The difficulty is that RANK and (particularly) SELECT slow
down the navigation operations. In addition, these additional data
structures raise the space usage for the tree from 2.86n bits to
nearly 5n bits, and result in a significant time penalty. A better
alternative, used in [10], is effectively to number node i using the
integer @(i); however, since accessing the information associated
with a node requires a document-order numbering, this approach
requires a ¢ computation (via RANK) each time any of the
(many) DOM methods that access information associated with a
node is called. Our approach is superior to both of these, and
applies double-numbering [7] for the first time to parentheses-
based trees. We store with each Node object the pair (7, (7)) and
update both components simultaneously (at low cost) during the
navigation process. E.g., the parent operation becomes:

PARENT ( (i, p)) {
p’ := ENCLOSE (T p); (1)
i’ =i - (p - p + 1)/2; (2)
return (i’, p’);



Lemma 1. The pseudo-code for the parent operation, when given
the pair (i, (7)) for node 7, correctly returns (i’, ¢(i’)) where node
i’ is the parent of node i.

Proof. By our earlier reasoning, line (1) correctly computes @(i’),
where i’ is the parent of i. In line (2), the key observation is that
the parentheses that lie in 7P between the open parentheses at
(i) and ¢(i) comprise the representations of the previous siblings
of node i and their descendants. This means that there are an
equal number of open and close parentheses between positions
¢(i") and (7). Furthermore, the open parentheses that lie in
between ¢(i ) and ¢(7) correspond precisely to the nodes that lie in
between i’ and i in document order. Thus, line (2) subtracts from
i the number of nodes that lie between i and its parent in
document order, and correctly computes i’, the document order
number of i ’s parent. ]

We modify all navigation operations to work with this “double
numbering” in an analogous manner (we omit details). Observe
that the root is node 1, and @(1) = 1. Thus, we obtain the double
numbering of the root directly, and the double numbering of any
node reached from the root via navigation operations is correctly
computed by induction. The use of double numbering allows the
mapping i — ¢(#), which is crucial to navigation, to be maintained
incrementally at minimal cost during navigation. Although we do
not show experiments here (being a little bit out of the main thrust
of this paper) this idea improves the running time for navigational
operations by 20% over that reported in [11].

Further speedups can be obtained if one adds as a primitive the
operation of going from a node to the next/previous node in
document order. This primitive is available in the DOM tree-
walker class, and is also required to iterate along the XPATH axes
FOLLOWING NODE or PRECEDING NODE. We define two
new operations on the parenthesis representation:

o NEXTOPEN (7P, x): To return the position and rank of the
next opening parenthesis given that we are at the opening
parenthesis at position x in the bit-string. Formally,
NEXTOPEN(TP, x) returns (i+1, @(i+1)) if i <n and NIL
otherwise, where i = ™' (x)

o PREVIOUSOPEN (7P, x): Analogous.

These are implemented straightforwardly by inspecting bits in the
parenthesis sequence. An individual call to NEXTOPEN
(PREVIOUSOPEN) skips over at most d closing (opening)
parenthesis, where d is the depth of the tree; thus its time
complexity is O(d), but with a small constant. In Section 0 we
show that using NEXTOPEN is much the fastest option for
document-order traversals.

To understand why, we need to understand how going to the next
node using the standard navigational operations varies with the
location of the current node (we consider document-order
traversal — a reverse document order traversal is symmetric). For a
non-leaf node, the next node is its first child. The pseudo-code for
FIRST-CHILD shows that this only requires the inspection of a
bit in 7P, and is consequently very fast. For a leaf node, the next
node is its following sibling — and locating it is almost as fast as
finding the first child of a non-leaf node — except when the leaf
node is the last child of its parent. Note that:

Proposition 2. The number of nodes that are last children of their
parents equals the number of non-leaf nodes in a tree.

The proportion of non-leaf nodes in XML documents is relatively
high — it varies between 33% and 50% of all nodes in the
documents in our corpus. Thus, for at least one-third of the nodes,
moving to the next node in document order requires significant
computation — a series of alternating PARENT and NEXT-
SIBLING calls is made, both of which are relatively expensive
(generally similar to a few memory accesses). Using
NEXT/PREVIOUSOPEN is much faster in this case.

The Stree component also contains a bit-vector we call
isTextNode, whose ith bit is 1 if the ith node in document order is
a text node. Let ¢ be the number of text nodes, and e = n — ¢ be the
number of non-text tree nodes. We handle these two kinds of
nodes in a different manner. By augmenting the isTextNode bit-
vector with the RANK; operation, we provide a consecutive
numbering of text nodes from 1 to ¢ and of non-text tree nodes
from 1 to e. For example, if node i is a text node, then
RANK;(isTextNode, i) gives the ordinal position of node i among
the text nodes, considered in document order.

4.2 Textual data offset compression
We now consider the storage of textual data, including:

e  Text node values

e  Attribute values

e  Comment nodes

e  CDATASection nodes

For a first approximation, we assume that each of the above
categories is treated independently, and we consider only the first
category for now. The content of all text nodes is concatenated
into a single (virtual) character array C, in the order that text
nodes occur in the document.

To access the string associated with the ith text node, we store the
sequence I = ({1, ..., [,), where /; is the length of the ith text node,
in a prefix sum data structure. The ith string then starts at position
SUM(Z, i— 1) + 1 and ends at position SUM(Z, i).

Let m denote the sum of the lengths of the text nodes and recall
that the space usage of the prefix sum data structure is about 4.33 ¢
+ tlog(m / t) bits. Since, as m / t, which is the average length of a
text node, is quite small (typically 10-11) the space usage works
out to about 8 bits per offset, significantly less than storing offsets
into C naively, say as 32-bit integers.

We distinguish between three alternate representations of C: In
SDOM, C is stored as an uncompressed character array. When
concatenating individual text strings to form C, we include the
null terminating character of each string. While not necessary for
correctness (the offsets demarcate strings already), it allows string
values to be returned as pointers into C.

In SDOM-CT, there are two alternate representations of C. The
first is in the FM-index [8], which stores C in a compressed form
(using a BZIP-related algorithm). It supports the following
operations:

o  Allows an arbitrary sub-array of C to be extracted (without
decompressing C).



o Given a pattern P, counts the number of occurrences of P in
C, or locates one occurrence of P in C, in time dependent
only on the size of P (the null terminating character for each
individual string must be left in C if the search functionality
is required).

The other representation is to divide C into blocks of B characters,
and to compress each block using bzip2. When a text node needs
to be accessed, the block(s) containing it are decompressed. Once
a block is decompressed, it is stored in a cache that contains K
uncompressed blocks. Subsequent accesses to a cached block do
not require decompression, so long as a block is not evicted from
the cache because the cache is full (we use a FIFO replacement
mechanism). We use K= 4 and B = 16KB; and have a separate
cache for the attribute data and the data in the text nodes.

The compression performances of the two representations are
roughly similar. The FM-index is recommended if text nodes are
not accessed very often, or the access is highly non-local, or the
search functionality is desired, but if text nodes are accessed
frequently with a degree of locality, the blocked bzip2 is
recommended.

The remaining kinds of textual data: attribute values, comment,
processing instruction target data and CDataSection nodes are
concatenated into a separate virtual array C’. The reason for doing
this (rather than concatenating all textual data into a single virtual
array) is that the other kinds of textual nodes are typically far less
numerous than text nodes, and appear to have different
distributions of the lengths. If #’ is the number of such nodes, and
m’ their total length, then by the convexity of the log function,

(t+)log(m+m)/(t+¢))>tlogm/t+1t logm’/t’,

so the space consumption of the offsets is always reduced by
separately considering offsets into C and C’. For example, this
avoids the risk that one very large comment node raises the
average length of all textual nodes in the tree, and thus the space
usage of all offsets, were the offsets into C and C’ combined.

4.3 Namepool and short-code data structures
The XML names for elements, attributes and other node types are
first converted into 32-bit name-codes. The data structure for
mapping string names to name-codes and back is adapted from
Saxon [20] and works as follows: all unique <localname, URI>
pairs are stored in a chained hash table, called the NamePool, with
2'% buckets, where each bucket is (effectively) limited to hold lists
of length 2'°. A <localname, URI> pair is specified by a 10-bit
hash code (specifying the bucket) and a 10-bit offset into the list
in that bucket. A further 10 bits are used to encode the namespace
prefix.

However, the use of a 32-bit name-code is wasteful: there tend to
be very few distinct name-codes in an XML document. E.g., one
of our documents, SwissProt .xml, has 5166890 elements and
attribute nodes in the document, but only 99 distinct name-codes.
To save space, we use an additional level of indirection.

We create an array of size e, where e is the number of non-text
tree nodes. The ith entry of this array is a short-code for the ith
non-text tree node in document order. A short-code is a positive
integer, interpreted as follows:

e Ifthe ith short-code is 12 or less, then the ith node is not
an element node, and the short-code value gives its type.

e  If the ith short-code j is 13 or greater, then the ith node
is an element node, and j — 12 is an index into a table
containing all unique namecodes in the XML document,
pointing to the entry in this table corresponding to the
ith element’s name.

The short-codes thus take |_10g( p+12)_| bits, where p is the

number of distinct name-codes in the document. The array of
short-codes is tightly packed, i.e. if short-codes are 7 bits long,
then we would render the short code array as an integer array,
where each (32-bit) integer would contain 4 complete short-codes
and the remaining 32 — 4 * 7 = 4 bits would contain bits from the
preceding or succeeding short-codes. The code for extracting an
individual short-code was carefully optimized.

As an example, we show how to determine the type of the ith
node in document order (this task is the basis of the NODETYPE
operation). First, we access the isTextNode bitvector: if the ith bit
is 1, then the ith node is a text node. If not, then we compute j =
RANK((isTextNode, i), to obtain an index from 1..e. Finally, we
extract the j-th entry from the short-code array. If this value is 13
or greater, then 7 is an element node. Otherwise, its type is given
by the value of its short-code.

4.4 Attribute Data Structure

Attributes themselves are not apart of the DOM tree, but are
associated with their parent elements, and are accessed through a
NameNodeMap DOM interface. We propose a mapping strategy
which maps elements to their attributes and attribute names to
their values. Our technique is fairly space-efficient and accessing
attributes is fast; the solution is better than, say, including the
attribute nodes as “special” children of their parents in the
Balanced Parenthesis data structure, particularly if the number of
attributes is large.

We now describe the attribute data structure. Recall from
Section 4.1 that the isTextNode bit-vector numbers non-text tree
nodes from 1 to e, where e is the number of non-text tree nodes.
We create a sequence of non-negative integers X = (xy, ... , x,) of
length e as follows. If the ith non-text tree node is an element
node, then x; is the count of attributes it has. Some non-text tree
nodes have the corresponding x; = 0; others, such as processing
instruction, CDATA or comment nodes, have the corresponding
x;=1, as they have associated data that will be treated as a
dummy attribute. Letting @ be sum of the x;s (i.e. @ is the total
number of attributes, including dummy attributes), we now show
how to represent X to satisfy the following goals:

a) All attributes should be numbered from 1 to a, and the
attributes associated with a given non-text tree node should
be numbered consecutively.

b) Given a non-text tree node, it should be possible to determine
quickly the range of integers that number its (dummy)
attributes, if any.

c¢) Given an integer i, 1 < i < a, it should be possible to
determine quickly the integer j such that the ith (dummy)
attribute belongs to the jth non-text tree node. (This is
needed because DOM defines the parent of an attribute node
to be the element node with which it is associated.)

These requirements are met as follows. We consider each non-
text tree node in document order, and number all its (dummy)



<root>
<U a="val" b="val" c="val" />
<V /> <-- comment -->
<W d="val" e ="val">
<X f="val" g ="val" h="val" i="val">
<Y j="val">

<z />
</root>
(@
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Figure 3 - (a) Example XML document with elements and
arrangement of attributes. (b) Bit-string of the attribute
representation.

attributes consecutively. The attributes (if any) of the first non-
text tree node are numbered starting from 1; for any other node,
its attributes (if any) are numbered starting from the next available
integer. Clearly, all attributes of a node are numbered
consecutively, and (a) is satisfied.

For (b) and (c), we represent X as a bit-string as follows. Each
value x; is written in unary (e.g. if x; = 4, then x; is written as
11110) and concatenated in order. Note that this bit-string has e 0s
and a 1s (see Figure 3 (b) for an example), and it is stored as a bit-
vector that supports SELECT:

o  The attributes of the ith non-text node are numbered from
SELECTo(i — 1) — i + 2 to SELECT(i) — i. (Observe that

SELECT,(7) — i gives the number of 1s before the ith 0 in the
bit-string.)
o  The parent of the ith attribute is given by SELECT,(i) —i + 1.

Finally, an array of size a stores the short-codes and node types,
analogously to the array of element short codes. Attribute values,
as well as textual data associated with some dummy attributes
(e.g. text associated with CDATASection or comment nodes) are
concatenated and stored in an array C’, as described at the end of
Section 4.2. Using (a)-(c), the attribute data structure provides the
following functionality:

o  Get an attribute, given the element number and the index of
the attribute;

o  get the attribute owner node;
o iterate forwards and backwards through the attribute nodes;

o get a count of attribute nodes belonging to a particular
element node and get attribute names and their values.
Internally these functions apply to the other node types.

This is a highly space-efficient solution. Existing implementations
achieve the functions above using pointers: e.g. in Xerces,
element node objects have a pointer to a vector of attribute node
objects belonging to that element. Attribute nodes also have
pointers to their parent. However, we require only about 2 bits for
each non-text tree node or attribute node to maintain the mapping
between attribute and element nodes.

4.5 SDOM Interface

A Node object in SDOM is fairly lightweight. It comprises a
reference to the containing Document, and the integers i and
¢(7). It is important to remember that, unlike a pointer-based
DOM implementation, SDOM does not create all Node objects in
a document when the XML document is parsed. However,
SDOM creates a Node object whenever a navigational operation
is invoked on an existing Node object (the implementation
currently does not check if an object has previously been created
for the same node). Since C++ does not have garbage-collection
facilities, even transient Node objects stay allocated for the
duration of an application unless explicitly freed. Traversing a
document via navigation performed through the Node interface
will therefore result in at least one Node object being created for
each node in the tree; this collection of Node objects will, in
many cases, occupy more space than the SDOM representation of
the document. To avoid this problem, we recommend the use of
the TreeWalker class [27] for navigation; this has an iterator-
like behaviour, so new Node objects are not created by a
navigation operation, but it supports all the navigational
operations  supported by Node (our TreeWalker
implementation does not yet support node filters).

5. Experimental Evaluation

SDOM currently supports the static methods of the W3C DOM
Level 3. In this section we draw comparisons of the space usage
and running times between SDOM(-CT), Xerces-C and Saxon’s
TinyTree (as TinyTree is implemented in Java we did not
compare running times with TinyTree). We also compare our
space usage against XML-specific compressors such as XMILL,
XBZipIndex, XPRESS, XQZip and XGRIND. We do not make a
detailed comparison with their running times: some are not
efficiently queriable (e.g. XMILL), and those that are focus on
various kinds of queries rather than navigation, and do not
generally report times for navigation. (An exception is [10],
where they report navigation operations as taking milliseconds;
however, we are several orders of magnitude faster.)

5.1 Setup

We used the Xerces-C v2.5 C++ DOM implementation. The test
machine was a Pentium 4 machine with 2GB RAM, 3.4 GHz CPU
and a 2MB L2 cache, running Ubuntu 6.06 Linux. The compiler
was g++ 3.3.5 with optimization level 2.

For RANK and SELECT we used an optimised version of the
Clark-Jacobson bit-vector [10], with parameters B=64 and s=32.
We used the parenthesis implementation of [10], with parameter
B=128. We do not report the construction times of SDOM in this
paper, however it was faster than the Xerces parser.

We tested our algorithms on XML files taken mainly from a
standard corpus [23]. Orders.xml, Lineitem.xml: TPC-H
relational  database  benchmark converted into XML.
Treebank e.xml: English sentences tagged with parts of a
speech, including encrypted text from the WSJ.
SwissProt.xml: data from the Swiss-Prot protein database.
DBLP.xml: DBLP bibliographic data. XPATH.xml: is not in
[24], but uses the LocusXML schema to represent geospatial
information in an XML format, it stores annotated human
genomic data.

Table 2 contains the basic statistics of these files such as sizes,
number of nodes and the break-down of the node types.
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5.2 Space Usage

The succinct data structures share a static lookup table that is
approximately 2MB in size. We have not added this cost in our
figures. For relatively large documents this cost is negligible, and
for multiple documents loaded in SDOM we only pay the cost
once. Figure 4 shows the space usage of the SDOM components
in their relative proportions (excluding the text). Note that the
textual offset data structure (shaded in black diamonds in Figure
4) makes up the largest proportion of the space usage: recall that
the succinct representation is four times smaller than the naive
one. Indeed, Figure 5 shows that the offsets (assuming naive
storage) would take up more space than the compressed text!

Also, the tree structure, despite being very compactly represented,
still takes a fourth of the cost of SDOM (excluding the text). The
naive representation, which would require at least 2 * 32 = 64 bits
per node, would be prohibitive. There are other data structures
whose space usage is so small that they do not show up in Figure
4. For example, the Namepool data structure is very small
because there are few distinct tag names in our files. Figure shows
the breakdown of space usage within SDOM-CT. We see that the
compressed text is often smaller than the SDOM components, but
for  irregular or  document-centric  files such as
Treebank e.xml text nodes that do not compress well, the
compressed text is larger than the SDOM components.
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Figure 6 - (Top) Space usage of DOM implementations
compared to original file. (Bottom) Compression ratio
comparisons with XML compressors

Table 1 - Textual data compression. Uncompressed text data
size, compression ratio for bzip2 (text in path-order and
document-order) and FMIndex on text in document-order.

libBzip2-blocks FMIndex

Files Text path-order | doc-order | doc-order
Orders IMB 22% 30% 29%
Lineitem 6MB 21% 31% 26%
XPATH 13MB 9% 13% 13%
Treebank | 57MB 42% 45% 56%
SwissProt | 49MB 17% 29% 20%
DBLP 71MB 28% 35% 30%

Table 1 compares the compression of text for bzip2 arranged in
path-order versus depth-order. Path-order is where the textual data
with the same upward path from leaf node to root are arranged
together in the concatenated file. Document-order is where we
concatenate the textual data as we meet them in a document-order
traversal of the tree. We also compare the compression ratio of
compressing the textual data with bzip2® and FM-Index’. We
observe that text arranged in document-order compresses
comparably well to text in document-order. Also, the compression

> Currently using default settings for bzip2 and 8KB blocks.

§ Using default parameter settings for FMIndex [8, 9]. »=2Kb,
B=32Kb and f=0.05.



ratio of bzip2 is roughly similar to FM-Index as mentioned earlier
(we exclude the fixed cost of the cache in the bzip2 columns in
Table 1, so FM-Index is better than it seems at first sight).

Figure 6 (top) compares the space usage of SDOM with other
DOM implementations, and SDOM-CT (bottom) with XML
compressors: both query-frendly ones (XPRESS, XQZip,
XBZIPIndex and XGrind) and a standard compressor, XMILL.
We quote the results for the other compressors from the papers,
and have not re-derived them ourselves. We only show files in
Figure 6 (bottom) that are reported by the majority of other
compressors. The raw data can be found in Table 3. In Figure 6
(top) the space usage ratio is compared with to original file size
(in percentage), e.g. SDOM space usage for SwissProt.xml is
59.9% of the file size. We observe in Table 3 that files that would
not easily fit into main memory of our test machine under Xerces,
such as XCDNA. xml (size 607MB, which Xerces increases by a
factor of 4) fit comfortably into the main memory using SDOM.

XMILL gives the best compression ratios for all our files (we do
not report results from XBZIP, which are similar to XMILL);
however XMILL does not support navigation of queries upon the
compressed representation. We observe in Figure 6 that SDOM-
CT often gives better compression ratios than the other query-
friendly XML compressors.

5.3 Running Time

Our tests are based on traversals of XML documents. We always
use the SDOM TreeWalker interface, and not the SDOM Node
interface, to avoid creating many transient objects. Even so, there
are two different ways of traversing a document in SDOM(-CT):

o using the NextNode method, which is implemented using the
optimized NEXTOPEN operation.

o using the standard DOM navigational methods. Over the
course of a document-order traversal of an n-node tree, this
results in a total of n calls to each of the methods FirstChild,
NextSibling and Parent, thus providing a test that involves a
mix of standard navigational operations.

We perform three kinds of traversals: document-order, reverse
document order and upward path enumeration. The latter works
as follows. We perform a document-order traversal using the
standard DOM navigational methods. When the main iterator
reaches a leaf, an auxiliary iterator traverses the entire upward
path from the leaf to the root using the DOM Parent method.

Along with the traversals, we either gather basic statistics, which
include the count of element and text nodes, or perform a full test,
which (i) determines the type of each node (ii) checks whether
nodes have associated attributes (iii) for nodes with attribute data,
or text nodes, we retrieve the node value, and check to see if the
value contains a substring that is unlikely to appear (hence forcing
the substring search to scan the full node value).

Each test is repeated several times to obtain stable results (50
times for Orders, 10 times for Lineitem, XPATH,
Treebank, DBLP and SwissProt, and 2-5 times for XCDNA).
The file sizes vary widely, and the graphs are geared primarily
towards comparing different algorithms on the same file. It is
therefore a little hard to see scalability with instance size from the
graphs. However, given the theoretical analysis of the running
time, no scalability surprises are expected (and the raw data,
where shown, confirms this).
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Figure 7 — Average running times of tree traversal using single
numbering, double numbering and the nextOpen operation.
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Figure 8 - Running times, document-order and reverse
document-order traversals gathering basic statistics, of Xerces
and SDOM using NextNode and PreviousNode operations.
Average time for XCDNA.

We begin by demonstrating the effectiveness of the optimizations
we have made to the parenthesis structure. Figure 7 shows the
times taken to traverse (in document order) a tree derived from the
tree structure of the XML documents of our set, when this tree is
represented as a parenthesis sequence (however, the additional
data structures for namecodes, textual data etc. are not created).
The trees are traversed in three ways: using the original
parenthesis operations, the parenthesis operations using double-
numbering and finally, using the using NEXTOPEN operation.
We observe double-numbering is about 20% faster than single-
numbering. However, using NEXTOPEN is by far the fastest: the
improvement over the original parenthesis code is more than 80%.
However, NEXTOPEN can only be used for simple traverals.

Figure 8, Figure 9and Figure 10 show various traversals that
gather basic statistics (as described above). Our tests are repeated:
50 times for Orders, 10 times for Lineitem, XPATH,
Swissprot, Treebank e and DBLP, with total times
reported. For XCDNA we report the average time over 5 runs.
Figure 8 shows the result of a document-order and reverse
document-order traversal, and shows that traversal using SDOM’s
NextNode/PreviousNode operations was on average 40% faster
than Xerces-C. As expected, the gap grows for the largest file,
XCDNA. Figure 9 shows the result of a document-order and
reverse document-order traversal using DOM navigation methods;
SDOM is always within a factor of 2 of Xerces, but equals or
betters Xerces for XCDNA. Note that SDOM shows very similar
performance for document-order and reverse document-order
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Figure 10 — Running times of Xerces and SDOM for ‘upward
path enumeration’ gathering basic statistics. Average time for
XCDNA.

traversals. Figure 10 and Table 4 show the results for an upward
path enumeration traversal. This traversal makes a very heavy use
of the Parent operation which is (relatively) inefficient in SDOM,
and may be considered a “worst case” for SDOM. Even here,
SDOM on average was only a factor of 2.5 slower than Xerces.

Figure 11 and Table 5 show the result of a document-order
traversal but performing a full test. Observe that even SDOM-CT
with the slow DOM navigation is only a few times slower than
Xerces, for small files, and for our largest file, the gap starts
narrowing rapidly. Particularly noteworthy is the time of SDOM
(using the NextNode interface) on XCDNA, which is nearly 3.5
times faster than Xerces.

6. Conclusion

SDOM is a fast in-memory representation of XML documents
with a small memory footprint. The current implementation is
close to being a plug-in replacement for a standard DOM
implementation in any application that does not require dynamic
changes to the XML document, with very little penalty in terms of
CPU wusage. It is therefore not only suitable for handling
moderately large (a few GB) size documents on standard PCs, but
may also be useful for enabling the use of XML on devices with
limited resources, such as smart cards or handheld computers.
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Figure 11 - Running times for DOM full test including
examination of attributes and substring test on contents of
text and attribute nodes. Average times is reported.

SDOM is built upon succinct data structures. Although there has
been a great deal of interest in the algorithms community in the
theory of succinct data structures, and implementations of full-text
indices that are based upon succinct data structures (see e.g. [9]),
these appear to be relatively unknown to the database community.
We believe that the data structures we use could also be applied to
other XML compressors.

There are a number of tasks and open questions that remain.
Firstly, SDOM, as described can only be used for static
documents. Dynamizing succinct data structures is an area of
active research (see e.g. [19]), but it is far from clear how to
implement a full DOM with dynamic operations. Secondly,
although loading an XML document is fast (it needs to be — our
traversal tests take so little time that reading in the XML file
would otherwise be a serious bottleneck in our experiments) and
does not take anywhere near the amount of memory required by a
standard DOM parser, we have not made a serious attempt at
optimizing either the speed or the memory usage of parsing.
Finally, in addition to the tests that we have performed, it would
be very interesting to wrap SDOM in an application such as
Xalan, and investigate its performance therein.
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Treebank_e 7,312,613] 2437666 1| 4874945 0 0 4875331 36| 112769 57MB NEG
SwissProt 10,599,084 2977031 2189859 5432193 0 0 5954060 5 100000 35MB| 13MB
DBLP 10,595,379 3332130, 404276 6792148 66756 67 6792149 6| 657717 64MB 7MB
XCDNA 25,221,153 8407051 0 16814101 0 0 16814101 7 82237  256MB 0




Table 3 - Space usage of XML representations.

Uncompressed repn’s Queriable compressed representations
File Size | SDOM |Xerces-C | Saxon | SDOM-CT |XBZipIndex | XPRESS | XQZip |XGRIND |XMILL
Orders 5MB 37% 451%| 157% 17% - - - - 12%
Lineitem 32MB 28% 399%| 161% 13% - - 5% 24% 5%
XPath 50MB 33% 383%| 137% 10% - - - - 3%
Treebank_e 82MB 84% 866%| 266% 43% 54% - 43% 52% 30%
SwissProt 110MB 60% 704% | 272% 22% 8% 38% 38% 43% 7%
DBLP 128MB 68% 737% | 240% 24% 14% 48% 30% 43% 15%
XCDNA 594MB 50% 491%| 136% 14% - - - - 8%

Table 4 — Running times for Xerces and SDOM for ‘upward path enumeration’, plus relevant file parameters.

File #Nodes %Non-leaf nodes | Max. Depth | Xerces SDOM Slowdown

Orders 300003 50% 3 0.08 0.13 1.64
Lineitem 2045954 50% 3 0.55 1.28 2.33
XPATH 2522571 33% 5 0.80 2.52 3.16
Treebank e 7312613 33% 36 3.22 9.84 3.05
SwissProt 10599084 55% 5 2.71 8.76 3.23
DBLP 10595379 37% 6 2.97 7.90 2.66
XCDNA 25221153 33% 7 24.50 30.72 1.25

Table 5 - Full test using TreeWalker. Shows running times in seconds for Xerces using tree navigation operations, and using
NextNode, versus SDOM using tree navigation and NextNode and SDOM-CT using tree navigation. Times in seconds.

Xerces SDOM SDOM SDOM-CT
File #Nodes Xerces TreeNav NextNode TreeNav NextNode TreeNav
Orders 300003 0.06 0.05 0.09 0.06 0.22
Lineitem 2045954 0.37 0.32 0.64 0.39 1.22
XPATH 2522571 0.44 0.40 0.82 0.51 1.68
Treebank e 7312613 1.40 1.25 2.85 1.57 8.51
SwissProt 10599084 1.70 1.48 3.28 2.30 7.78
DBLP 10595379 1.86 1.67 3.56 2.28 10.45
XCDNA 25221153 17.63 16.88 8.50 5.42 27.90




