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Abstract

On Conditional Wiener Integrals and a Novel Approach to the Fermion Sign Problem

by

Warwick Michael Dumas

Doctor of Philosophy in Applied Mathematics

The path-integral formulation of nonrelativistic quantum mechanics was introduced by Feyn-

man in 1948. The use of Path Integral Monte Carlo can be put on a rigorous footing using

conditional Wiener integrals. This thesis addresses the topics both of numerical error and

of Monte Carlo error.

A piecewise constant numerical method which is of second order of accuracy for comput-

ing conditional Wiener integrals for a rather general class of su¢ ciently smooth functional

is proposed. The method is based on simulation of Brownian bridges via the corresponding

stochastic di¤erential equations (SDEs) and on ideas of the weak-sense numerical integra-

tion of SDEs. A convergence theorem is proved. Special attention is paid to integral-type

functionals. Results of some numerical experiments are presented.

In a further part of the research, the goal is to develop Monte Carlo methods for fermion

simulations that are resistant to the explosion of variance which happens due to the fermion

sign problem. A novel approach is developed which represents a radical departure from the

current approaches. This is based on the principle of using a geometrical interpretation of the

problem in order to �nd ways to maximize the negative covariance between the countersigned

functional contributions. The fundamental connection between quantum exchange and the

fermion sign problem is exploited. It is shown that this leads to a mathematical proof of the

well-known exact solution to the sign problem for 1-dimensional fermion systems, and also

to a novel exact solution in the case of a pair of 2-dimensional fermions.
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A selection of the notation used

General

Notation Formula Description

w.r.t. with respect to

s.t. such that

pdf probability density function

cdf cumulative distribution function

SDE stochastic di¤erential equation

i.i.d. independent and identically distributed

fdd �nite-dimensional distribution

�A indicator function for A

'�2 : R2r ! R 1

(2��2)r=2
exp

�
� (kx�yk2

2�2

�
Gaussian pdf, for any dimension r 2 N

�(z) standard Gaussian cdf

� a permutation

�
the ratio between the circumference of

a circle and its diameter

sgn(�) �1 for � odd; 1 for � even signature of the permutation

�n group of permutations of order n

X � � the law of the r.v. X induces the measure �.

�y Dirac delta probability measure with �y(fyg) = 1:

�(x; y) Kronecker delta
a real-valued function:

�(x; y) = 1 if x = y; 0 otherwise:

� Lebesgue measure on B(Rnd) or B(R).
1U
i=1

Bi a countable union of disjoint sets

H �2 + V Hamiltonian operator
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Parameters

Notation Formula Description

n number of particles in the system

d dimension of the space which the particles inhabit

N T=h number of time intervals in discretisation

T Inverse temperature: ie, temperature is 1=kBT

h discretisation timestep

M number of Monte Carlo draws

Space and measure etc

Notation Formula Description

CT0 fX : [0; T ]! Rnd, X continuousg

CT0;x0 fX 2 CT0 : X(0) = x0g

CT;xT0;x0
fX 2 CT0 : X(T ) = xTg

CT;�nxT0;x0
fX 2 CT0 : X(0) = x0g

CT;�nxT0;�nx0
fX : [0; T ]! Rnd

�
�n; X(0) = �nx0; X(T ) = �nxTg

CO fX 2 CT0 : X(0) = X(T )g

C� fX 2 CT0 : X(0) 2 �nX(T )g

wT0;x0 Wiener measure on CT0;x0
wT;xT0;x0

wT0;x0
��
X(T )=xT

Conditional Wiener measure on CT;xT0;x0

wT;�nxT0;x0
wT0;x0

��
X(T )2�nxT

Wiener measure conditioned on X(T ) 2 �nxT

wT;�nxT0;�nx0

"Conditional Wiener measure" corresponding to

process with state space Rnd
�
�n

w� �� wT;y0;y

w?� �� �(y)wT;�ny0;y where �(y) =
P

�2�n 'T (y; �y)

W Brownian motion

X[a;b),X(a;b) etc for 0 � a < b � T , the restriction of X to [a; b)

Ex the event of a crossing in the x-coordinate

� a �rst (or last) crossing time

� measure corresponding to �rst crossing time and point
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Functionals and integrals

Notation Formula Description

V : Rnd ! R potential (scalar �eld)

F : CT0;x0 ! R a functional

U
R
F (X)dwT;y0;y a conditional Wiener integral

c(�)
sgn (�) [ for fermions ]

1 [ for bosons ]

S : CT0;x0 ! R
R T
0
V (x(t))dt action functional for a path x

St;x dS = V (X(t)), S(0) = 0

Y : CT0;x0 ! R exp(�S(x)) exponentiated action functional

uT (t; x; y)
R
CT;yt;x

exp
�R T

t
�V (s)ds

�
dwT;yt;x action integral

JT (x0; xT )
R
CT;xT0;x0

Y (X)dwT;xT0;x0
(X) action integral

IT (x0; xT )
R
CT;�nxT0;x0

c
�
X(T )
xT

�
Y (X)dwT;�nxT0;x0

(X) action integral

GT (x0; xT )
�P

�2�n 'T (x0; �xT )
�
IT (x0; xT ) action integral

A or AD
R
Rnd
R
CT;y0;y

F (x)dwT;y0;y dy con�gurational integral

A
R
Rnd
R
CT;�ny0;y

F (x)dwT;�ny0;y dy con�gurational integral

Z or ZD 1
n!

R
Rnd 'T (y; y)JT (y; y)dy

partition function

(distinguishable particles)

Z 1
n!

R
Rnd
�P

�2�n 'T (y; �y)
�
IT (y; y)dy

partition function

(indistinguishable particles)

Subdiamond notations

Notation Description

�i for i odd, x ; for i even, y.

� i; �
0
i for i > 0; �rst and last crossing times of �i within (� i�1; � 0i�1) ; (� 0; �

0
0) = (0; T ):

� maximum crossing index: within (��; � 0�) there is no crossing of �i+1.

& i for 0 � i < �; last crossing of �i before � i+1.

& 0i for 0 � i < �; �rst crossing of �i after � 0i+1.

fi; f
0
i a measure-preserving bijection (of some description given in the text)

�i [in Lemma 7.2.7] Y (X[� i�1;� i])� Y
�
fi
�
X[� i�1;� i]

��
�i [from p.197 onwards] Y (X[&i�1;� i])� Y

�
fi
�
X[&i�1;� i]

��
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Simulation-related

Notation Formula Description

Xh Piecewise constant approximation to X

F (X) = F (Xh) Piecewise constant approximation to F (X)

U
R
CT;y0;y

F (X)dwT;y0;y

A
R
Rnd
R
CT;y0;y

F (x)dwT;y0;y dyeF (X) either unspeci�ed approximation to F

or
approximation to F based on

using Simpson�s Rule for SeU R
CT;y0;y

eF (X)dwT;y0;yeA R
Rnd
R
CT;y0;y

eF (x)dwT;y0;y dyeAMC Monte carlo estimator for eAeZMC Monte carlo estimator for eZ
� : B (CO)! R see (4.14) action measure

� : B (C�)! R see (4.24) action measure

� : B(RNnd)! R (discretised) action measure

System description

Notation Formula Description

hAi expectation of observable AghAi an approximation to hAidhAi Monte Carlo estimator forghAi
q or qD

unnormalized thermal density matrix

(distinguishable particles)

q unnormalized thermal density matrix

� : Rnd ! R system position density

$ : Rd ! R particle density

E0; E1; : : : energy level

rn(x) real eigenfunction of H

 n wavefunction (for distinguishable)

�n wavefunction (for indistinguishable)
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Chapter 1

Introduction

1.1 Principles and aims of this thesis

Since R.P. Feynman introduced his path integral formulation of quantum physics [Fey48],

inspired by some earlier work of P.A.M. Dirac [Dir33], there has been interest in using

functional integrals to calculate statistics of quantum systems. The aim of this thesis is to

address certain issues that arise in performing Monte Carlo evaluations of these functional

integrals.

We are going to be concerned with statistics of �nite-temperature quantum systems with

n identical particles inhabiting a d-dimensional space, in a potential V : Rnd ! R, at inverse

temperature T . Using the insights of M. Kac, described in works such as [Kac56, Kac57,

Fre85], it is possible to rigorously provide expressions for the expectations of observables

in terms of conditional Wiener integrals [MT04] (this is done in Chapter 2). For example,

in order to �nd the thermal average of the potential energy for a system of distinguishable

particles ("boltzmannons"), we may take

hV i =

R
Rnd
R
CT;x00;x0

V (x)Y (x)dwT;x00;x0
(x)d�(x0)R

Rnd
R
CT;x00;x0

Y (x)dwT;x00;x0
(x)d�(x0)

; (1.1)

where CT;x00;x0
�
�
Rnd
�[0;T ]

is the space of continuous functions x : [0; T ]! Rnd with x(0) = x0

and x(T ) = x0, where w
T;x0
0;x0

denotes the conditional Wiener measure (de�ned on p.16), and
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where the exponentiated action functional Y : C ! R is given by

Y (x) = exp

�
�
Z T

0

V (x(s))ds

�
. (1.2)

(Note that our de�nition of the action shall di¤er from that which applies in Lagrangian

mechanics, especially in that the kinetic energy term is for us, in e¤ect, supplied by the

conditional Wiener measure itself and does not need to be included.) In order to estimate

the conditional Wiener integrals in (1.1), it is most expedient to use Monte Carlo methods.

Any approach to calculating quantum statistics based on these ideas is referred to as Path

Integral Monte Carlo; some applied examples are [CM00, HR05, BMNR01, LN04, She05].

The probabilistic approach to numerically evaluating integrals consists in regarding the

desired integral as the expectation of a random variable. We shall see that it is possible to

construct an evaluatable weak approximation F to any functional F from a broad class FA

(see p.51). We are able to use Monte Carlo to estimate the expectation of such an F , since

we write

U = E
X�wT;xT0;x0

F (X) � E
X�wT;xT0;x0

F (X) = U = EUMC

where

UMC = 1

M

MX
i=1

F (Xi) ; Xi i.i.d., Xi � wT;xT0;x0

so that in fact, due to the standard Central Limit Theorem (e.g. [Wil01]),

UMC � Gaussian
�
EF (X); V ar

�
F (X)

�
M�1� .

Inference about functional integrals

We shall adopt a Bayesian perspective, which, in order to provide clarity for the unfamiliar

reader, we set out in detail. We shall model EF and UMC via continuous random variables

�; # de�ned over a probability space (
0;F0; P ) with a joint pdf over R2. The marginal

distribution of � shall be called the prior distribution for EF . The conditional distribution

of #; given a value of �, shall naturally be chosen to be exactly the conditional distribution

of UMC given a hypothetical value of EF . When a realization of UMC = x is obtained, the
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posterior distribution for EF is the name given to the conditional distribution of �; given

that # is equal to x. Intuitively, it is the posterior for EF that describes the information

about EF that is known a posteriori, ie after performing the experiment. Meanwhile, the

prior for EF describes our information about it beforehand. Although EF is a deterministic

quantity, because it is unknown we describe our information about it, both before and after

the experiment, in the form of the distribution of a random variable. Given the prior and

the conditional distribution of UMC, the posterior may be found directly using Bayes�Rule

(see e.g. [HF04]). It is proportional to the product of the prior pdf and the likelihood, the

latter being de�ned as the function of y formed by the conditional pdf of # given that � = y

being evaluated at the realized value x. Note that in our framework, the prior pdf and the

posterior pdf are both Radon-Nikodym derivatives of probability measures, whereas if the

likelihood is regarded as the Radon-Nikodym derivative of a measure then in general, this

likelihood measure does not have full measure 1.

The usual situation, loosely speaking, is that it is desirable to be able to claim a posteriori

that the information contained in the prior did not exert much in�uence on the posterior

obtained, giving the posterior the quality of objective information. When reasonable changes

to the prior do not a¤ect the conclusions of an analysis as described by the posterior, this is

called a robust analysis (see [HF04]). For us, this issue shall be substantially circumvented

by the fact that it is reasonable to assume that a Monte Carlo represents a large amount

of information, as we shall now explain. (For a general discussion of the issues involved

in objective inference, see e.g. [Ber06].) We make several assumptions about the prior for

EF . We have already assumed that a joint pdf for �; # exists. We further assume that the

marginal pdf for � (that is, the prior pdf for EF ) has a bounded derivative. Moreover, we

assume that the prior pdf is nonzero except outside the range of F .

As mentioned, when M is su¢ ciently large, we may regard the distribution of UMC as

Gaussian about (the hypothetical value of) EF , with variance V ar(F (X))M�1. This means

that we think of the likelihood as near-zero outside of a ball about the observed UMC, of
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diameter, say, 8V ar(F (X))1=2M�1=2. If M is su¢ ciently large, the diameter of this region

will be small compared to the maximum gradient of the prior pdf, and consequently, we may

think of the prior pdf as constant over this region. (See also the point of view in [Wil01].)

It follows that approximately, the posterior for EF is then Gaussian about the observed

realization of UMC with variance V ar(F (X))M�1.

The goals of this thesis

In such a schema there are then two separate errors which may be involved in making

inferences about the true value of a functional integral, and hence about a system statis-

tic: there is the numerical error, or bias,
��EF (X)� EF (X)��, and the Monte Carlo error,���UMC � EUMC���. It is our goal to make contributions to the study of both of these errors and

how to control them.

One achievement of the research in this thesis shall be to prove that for a certain piecewise

constant numerical method, the bias is of second order in the discretisation timestep, when

F is in FA. This was already known only for exponential-type functionals [MT04ii, MT04,

Suz91]; ie, those of the form F (x(�)) = exp
�
�
R T
0
f(t; x(t))dt

�
. The numerical method is

based on simulation of the Brownian bridge via stochastic di¤erential equations. Our result

is important in applications, because in many cases, the functionals that are relevant to

�nding statistics are not of exponential type.

In the case of distinguishable particles, the Monte Carlo error is not usually problematic.

However, in practice all quantum particles are either bosons or fermions, indistinguishable

particles. In this thesis we conceptually approach indistinguishability through the idea of

conditioning the Wiener measure on a �nite set of terminal points, calling this measure

w
T;fx1;:::;xkg
0;x . Let us call to mind the following:

De�nition 1.1.1 A permutation of a �nite set f1; : : : ; ng is a bijection � : f1; : : : ; ng !

f1; : : : ; ng. We may use � as an operator over any n-fold product space: where x =

fx1; : : : ; xng, �x = fx�(1); : : : ; x�(n)g.
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The permutations of f1; : : : ; ng are said to be permutations of order n, and these form a

group. We shall use the notation �n to denote the group of permutations of order n. Note

that for any i1; i2 2 f1; : : : ; ng; �n may be partitioned into pairs which are closed under

premultiplication by the pair-exchange of i1; i2.

De�nition 1.1.2 When the irreducible representation of a permutation � takes the form of

an odd number of pair exchanges, we say that � is odd and otherwise we say that � is even.

We de�ne the signature of �, sgn(�); to be 1 when � is even and �1 when � is odd.

In order to �nd statistics for systems of bosons, rather than performing integrals with

respect to wT;xT0;x0
, we need to perform essentially the same integrals with respect to wT;�nxT0;x0

.

Again, in this case, ways of managing the Monte Carlo error are already well-understood.

If instead the particles are fermions, then we must still integrate with respect to wT;�nxT0;x0
,

but must also introduce a factor in the integrand that is equal to sgn(�); where the terminal

point X(T ) = �xT . The phenomenon of particles exchanging places between the initial and

terminal points is called quantum exchange [Cep92]. For fermions, a greater propensity for

quantum exchange means that the magnitude of negative contributions to the integral is

becoming similar to the magnitude of the positive contributions, and this gives rise to the

so-called fermion sign problem (see e.g. [Cep96]), which is the subject of the second half of

this thesis.

In this further part of the research, the goal is to develop Monte Carlo methods for

fermions that are resistant to the explosion of variance which happens due to the fermion

sign problem. We explore the idea of generating a negative covariance between functional

samples (ie, a positive covariance of the magnitudes of samples with opposite signs) by

choosing sample paths which are close to each other in space. Focusing on exponential-type

functionals, we consider a novel approach, the chief virtue of which is that it is based on

taking account of the event that fermion coordinates coincide, which is in some sense the root

cause of the problem, since it is what enables quantum exchange to take place. Examining

�rst the 1-dimensional case, we see that it is possible to reexpress the functional integrals as
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sums of integrals over disjoint events described in terms of particle coincidences. This gives

rise to a mathematical proof of the well-known 1-dimensional exact solution that involves

concentrating the integration measure on those paths where particles never meet. The same

logic is then extended to the case of multidimensional fermion systems, and an exact solution

is found for case of a 2-dimensional fermion pair, in the sense that as T increases the e¢ ciency

of the simulation does not tend to zero. It seems very doubtful that it is possible to avoid

the sign problem as n grows (cf [TW05]); that is, it must be assumed that the complexity

of the simulation grows exponentially with n.

1.2 Overview of chapters

Let us now provide a synopsis of the thesis chapters that are to follow.

Chapter 2 introduces the conditional Wiener measure and its properties, and develops

the idea that indistinguishability results in conditioning on a set of terminal points. We then

explain how conditional Wiener integrals may be related to functional statistics of quantum

systems at �nite temperature, using the Kolmogorov equations for a conditional Wiener

integral (see also [DT82, DT82ii]). We prove a result which expresses the density matrix

in a state of de�nite energy in terms of the zero-temperature limit of a functional integral

expression.

In Chapter 3, we propose a probabilistic numerical method of second order of accuracy

for computing conditional Wiener integrals of su¢ ciently smooth functionals. This method

exploits a Markovian representation of the Brownian bridge. We begin by recalling the

Fréchet derivative of a functional, and the Taylor Theorem for functionals, which is a key

building block for the proof of the main result. This chapter is based on our paper [DT10].

InChapter 4, we then proceed to o¤er a discussion of simulation procedures, concentrating

on the cases of boltzmannons and bosons. It is seen that the conclusions of Chapter 3 also

apply in the case of the Markov Chain Monte Carlo methods (sampling according to the

action measure) which are popular in this area. Some simulation results are then presented,
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illustrating the result of Chapter 3 and some further points.

Chapter 5 explains the fermion sign problem which is the main di¢ culty involved in

performing path integral simulations of fermion systems. The way in which the problem

emerges is discussed, and a brief overview is given of two extant methods. To illustrate the

di¢ culty of the problem, results from some simple algorithms are reported.

Chapter 6 explores the solution to the fermion sign problem in 1 dimension, which is

a very important case to understand before embarking upon the more general case. It is

seen that when two fermions �rst meet on a path, this gives rise to a measure-preserving

bijection between positive and negative contributing paths from that point, such that the

value of the functional is also preserved, leading to complete cancellation. This leads to the

well-known conclusion that in 1 dimension the solution is to prevent fermion paths from

crossing. We then explain how this is to be achieved. Some numerical results are presented

which illustrate the solution.

In Chapter 7, an approach, based upon the same principles that yielded the 1-dimensional

solution, is developed for the case of 2 fermions in a multidimensional space. This allows

the sign problem to be avoided, at least in the 2-dimensional case, in the sense that if T; the

path length, is increased, then the average sign of contributions apparently does not tend

to 0. This is in contrast to some existing approaches which, rather, are more e¤ective for a

large number of particles at su¢ ciently high temperatures. The e¢ cacy of the approach is

tested empirically.

In Chapter 8, we summarize the conclusions of the thesis and provide some remarks about

possible directions of further research.
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Chapter 2

Preliminaries

In this Chapter we shall begin by giving a treatment of some relatively well-known ma-

terial based on sources such as [KS98, Shi89, Fre85, RW94], introducing essential concepts

such as measure conditioning, the Wiener measure and the Markov property. The reader is

advised that we have intentionally avoided directly repeating the "standard" presentation

given in other works, and concentrated mainly on facts that are required for the endeavours

of this thesis. Our treatment does, however, bear some commonalities with that of [Fre85].

Following works such as [Kac57, Kac56, Fre85], we then explain the relationship between

conditional Wiener integrals and quantum statistical mechanics, via the probabilistic repre-

sentation of the solutions to a certain parabolic partial di¤erential equation. The connection

with �nding expectations of observables is brie�y explained.

In Section 2.3, we then prove a novel result, which establishes a functional integral

expression whose zero-temperature limit yields a density corresponding to the sum of the

�rst k eigenstates. A closely related result in the special case of a system of noninteracting

particles was demonstrated in Section 5.6 of [Iva05]; see also [GIV98]; but here the more

general case is considered.
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2.1 Conditioning and the conditional Wiener measure

For convenience, let us recall some well-known facts about measure conditioning. Let

(
;F ; P ) be a probability space. Suppose � to be a random variable on (
;F ; P ) with

codomain Rd. It has been demonstrated (see e.g. [Shi89] p.229) that it is possible to

de�ne the regular conditional probability with respect to the �-algebra generated by �, with

uniqueness up to di¤erent versions. This has the implication that we may de�ne conditional

measures (see [Shi89] p.226). That is, given A 2 �(�), we may de�ne the conditional measure

P jA to be given by P jA(B) = P (BjA) for B 2 F . Naturally this means that in order

for P jA to be well-de�ned when P (A) = 0, a canonical version of conditional probability

P (Bj�(�)) must �rst be assumed for every event B. (Fortunately, for us this shall generally

be straightforward to do, at least in the cases of interest in this work.)

2.1.1 The conditional Wiener measure

The Wiener measure and Brownian motion

For any dimension r 2 N and s > 0, we shall use the notation, 's : R2r ! R to indicate

the independent Gaussian pdf with variance s in all dimensions, viz

's(x; y) = (2�s)
�r=2 exp

 
�kx� yk2

2s

!
.

We shall use CT0;x0 to mean
n
x(�) 2

�
Rd
�[0;T ]

: x(�) continuous and x(0) = x0

o
, the set of con-

tinuous paths over [0; T ] with initial point x0. The reader should make themselves familiar

with the Borel �-algebra on CT0;x0, which is known to be generated by the collection of simple

sets (also known as cylinders) - that is, those of the form

B =
�
x 2 CT0;x0 : x(ti) 2 Gi; i = 1; : : : ; �

	
(2.1)

for some set of ti with 0 < t1 < : : : < t� � T and some products of intervals Gi � Rd, referred

to as gates: (This is described thoroughly in [Fre85] for the 1-dimensional case, which is

essentially the same.) It is clear that measures on B
�
CT0;x0

�
are speci�ed fully by the measure



14

which they assign to simple sets. Moreover, it follows from the Caratheodory Extension

Theorem that given a measure over the algebra of simple sets, there exists an extension to

B
�
CT0;x0

�
. For us, the measure ascribed to simple sets shall be called the �nite-dimensional

distribution; note that this is di¤erent from the standard usage, but more convenient for

our purposes1. Since, as mentioned, we are able to consider a measure on B
�
CT0;x0

�
to be

well-de�ned through the measure ascribed to simple sets, we are able to make the following

de�nition.

De�nition 2.1.1 TheWiener measure, denoted wT0;x0, is that measure on B
�
CT0;x0

�
such

that for any simple set B given by (2.1);

wT0;x0(B) =

Z
� � �
Z
G1�G2�����G�

��1Q
i=0

'ti+1�ti(xi; xi+1)dx1 � � � dx� . (2.2)

The Wiener measure, introduced in [Wie24], is discussed thoroughly in works such as

[KS98, Fre85, IM74, RW94].

De�nition 2.1.2 A random process X is a family of random variables parametrized by a

time variable t; that is, either X = fX(t)gt2[0;T ] for some T > 0, or X = fX(t)gt�0.2 The

codomain of the random variables, together with the co-�-algebra with respect to which they

are measurable, is called the state space of the process.

De�nition 2.1.3 The function of t, for a �xed ! 2 
, given by X(!; t) = X(t) shall be

called a trajectory of the process X.

In general, we may therefore regard a random process with state space Rd as a random

variable with codomain
�
Rd
�[0;T ]

, the space of Rd-valued functions. However, if the trajec-

tories of the process are all continuous then we may regard it as a random variable with

codomain CT0 . Further, if X(0) = x0 2 Rd for every ! then we may consider the codomain

of X to be CT0;x0; and so on.
1If we used the standard de�nition of �nite-dimensional distribution then we would need to require

certain consistency conditions in order for the corresponding measure on simple sets to be well-de�ned; in
this case the Daniell-Kolmogorov Extension Theorem would provide the extension from �nite-dimensional
distributions to measures on B

�
CT0;x0

�
; see e.g. [KS98, p.50].

2We shall usually be interested only in the case that t 2 [0; T ].
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De�nition 2.1.4 (cf [IM74] p.16) A random process W : 
! CT0;x0 ; de�ned on any proba-

bility space (
;F ; P ), shall be called Brownian motion, or aWiener process, when its law

induces the Wiener measure wT0;x0 on B
�
CT0;x0

�
.

It is explained in [KS98] (p.71) that for W to be a Wiener process, one possible choice of

(
;F ; P ) and W is given by 
 = CT0;x0 ;F = B
�
CT0;x0

�
; P = wT0;x0 with W (t;!) = !(t) for all

t 2 [0; T ]; ! 2 
. The authors of that work consider this to be the "canonical" probability

space on which to de�ne the Wiener process. For an heuristic discussion of the Wiener

process and its properties, see e.g. [Ein26] or [RW94]. We make three further de�nitions

relevant to random processes (see e.g. [RY99] p.41-2):

De�nition 2.1.5 A �ltration on a measurable space (
;F) is an increasing family (Ft) of

sub-�-algebras of F . That is, for each t 2 [0; T ]; we have a sub-�-algebra Ft � F and when

s < t, Fs � Ft. A random process X on (
;F) such that X(t) is measurable w.r.t. Ft for

all t 2 [0; T ] is said to be adapted to the �ltration (Ft).

De�nition 2.1.6 Ameasurable space endowed with a �ltration is said to be a �ltered space,

and to say that a random process is de�ned on a particular �ltered space (
;F ;Ft; P ) implies

that it is Ft-adapted.

De�nition 2.1.7 The natural �ltration of a random process X is the minimal �ltration

to which X is adapted, ie it is given by F�
t = �(Xs; s 2 [0; t]).

We therefore may, for instance, consider the process W to be de�ned on the �ltered

probability space
�
CT0;x0 ;B

�
CT0;x0

�
;Ft; wT0;x0

�
where (Ft) is simply the natural �ltration of W .

Remark 2.1.8 The existence of the Wiener process implies that for any measure wT0;x0
��
A

obtained from wT0;x0 through conditioning, there exists a process de�ned on the same 
, and

adapted to the same �ltration, whose distribution induces the conditional measure wT0;x0
��
A
.

For we may take the same X and take P to be this conditional measure. This also applies

iteratively when further conditioning is applied.
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De�nition of the conditional Wiener measure

We shall be interested in conditioning the Wiener measure with respect to the event

that W (T ) takes a particular value. Our de�nition must be in agreement with the required

de�nition of conditioning on the event that W (T ) lies in a certain interval. As indicated

at the beginning of this section, de�ning conditional measures is equivalent to choosing a

version of conditional probability, for every event in B
�
CT0;x0

�
; ie, to de�ne P jA we must

de�ne P (BjA) for each B 2 B
�
CT0;x0

�
. However, it is clear that it is su¢ cient to consider

only simple events B, given by (2.1); in fact we temporarily make the further restriction that

t� < T: A natural choice of canonical version is then given if we consider the probability

density function (pdf) corresponding to the �nite dimensional distribution of the Wiener

process and apply the usual elementary interpretation of conditional probability. Viz,

wT0;x0(BjW (T ) = x) =Z
� � �
Z
G1�G2�:::�G�

��1Q
i=0

'ti+1�ti(xi; xi+1)'T�t�(x�; x)
1

'T (x0; x)
dx1 � � � dx� (2.3)

This then allows the de�nition of the conditional measure wT0;x0
��
A
for any A = f! 2 
 :

W (T ) 2 �g, both for a product of intervals �; and hence also for � the countable union

of some products of intervals. The following proposition allows us to be �exible with the

domain of de�nition of such conditional measures. We shall use the notation wT;xT0;x0
for the

so-called conditional Wiener measure wT0;x0
��
fX(T )=xT g

.

Proposition 2.1.9 Let F be a �-algebra over a non-empty set A and let G be a �-algebra

over a non-empty set B2F s.t. G�F , and assume that G is su¢ ciently rich that every

A 2 FnG contains at least one element of AnB. Then if � is a probability measure de�ned

on (B;G) then �0 : F ! R de�ned by �0(A) = �(A \ B) for A 2 F is a probability measure

on (A;F). Moreover, if �0 is any probability measure on (A;F) s.t. �0(AnB) = 0 then

� : G ! R de�ned by �(B) = �0(B) for B 2 G is a probability measure on (B;G).

Proof. To prove the �rst direction amounts to noting �rstly that A \ B 2 G due to our

assumptions, and then that �0(?) = 0, that countable additivity is inherited from �, and
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that �0(A) = �(B) = 1. To prove the second direction, note that �(?) = 0; that countable

additivity is inherited from �0, and that �(B) = �0(B) = �0(A) = 1.

Thus it is obvious that the conditional Wiener measure may equally well be regarded as

a probability measure on B
�
CT;xT0;x0

�
, since wT;xT0;x0

�
CT;xT0;x0

�
= 1, or as a probability measure on

CT0;x0 which happens to assign full measure to the wT0;x0-nullset C
T;xT
0;x0

. We shall usually have

in mind the latter situation, although the former is perhaps more standard in the literature.

It is notable that we could de�ne wT;xT0;x0
by simply ascribing to it the �nite-dimensional

distributions inducing, for B given by (2.1) with t� < T , (cf (2.3))

wT;xT0;x0
(B) =

Z Z
G1�G2�:::�G�

��1Q
i=0

'ti+1�ti(xi; xi+1)'T�t�(x�; xT )
1

'T (x0; xT )
dx1 : : : dx� .

(2.4)

Since this is a consistent family of �nite-dimensional distributions with the same boundedness

properties as wT0;x0 (cf [Fre85] p.27), we could proceed to use the same techniques to prove the

existence of a corresponding process as are demonstrated in [KS98, Fre85, IM74] in the case

of Wiener measure. However, it shall become clear that the concept of measure conditioning

is rather important in what follows.

2.1.2 The Markov property and conditioning

De�nition 2.1.10 (see e.g. [Shi89] p.248) We shall consider a random process X, or the

corresponding measure on a path space, to have the Markov property when it is such that

if we de�ne the family of transition measures Q(s; x; t) by

8G 2 B(Rd) : 8s; t 2 [0; T ] with s < t : Q(s; x1; t)(G) = P (X(t) 2 GjX(s) = x1)

then the Kolmogorov-Chapman equation is satis�ed:

8r; s; t 2 [0; T ] with r < s < t : Q(r; x1; t)(G) =

Z
Rd
Q(s; x; t)(G)dQ(r1; x1; s)(x) . (2.5)

Equivalently, by applying the above equality repeatedly, we could say that for a simple

set B given by (2.1),

P (X 2 B) =
Z
G1

Z
G2

� � �
Z
G�

dQ(t��1; x; t�)(x�) � � � dQ(t1; x1; t2)(x2)dQ(0; x0; t1)(x1). (2.6)
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This implies that when the transition measures Q are absolutely continuous and thus there

is a corresponding family of probability densities p(s; x1; t; x2), we could write more straight-

forwardly:

P (X 2 B) =
Z
� � �
Z
G1�G2�����G�

��1Q
i=0

p(ti; xi; ti+1; xi+1)dx1 � � � dx� . (2.7)

It is not di¢ cult to prove that our de�nition here is equivalent to the de�nition used in

[KS98] (p.74), which de�nes a Markov process as s.t. almost surely, for s; t 2 [0; T ] and

� 2 B
�
Rd
�
; where (Fs) is the natural �ltration of X,

P (X(t+ s) 2 �j Fs) = P (X(t+ s) 2 �j�(X(s))) : (2.8)

Moreover, this speci�cally means that for X(s)-almost all y 2 Rd, whenever some B 2 Fs

with P (B) > 0 and fX(s) = yg � B,

P (X(t+ s) 2 �jX 2 B;X(s) = y) = P (X(t+ s) 2 �jX(s) = y) . (2.9)

This may in turn be recognised to be equivalent to: for 0 < r < s < t < T;

P (X(t) 2 �jX(r) 2 G;X(s) = y) = P (X(t) 2 �jX(s) = y) . (2.10)

De�nition 2.1.11 We shall say that a Markov process (or measure) is time-homogeneous

in the case that for s1; s2 2 [0; T ], for all x 2 Rd; and for all t > 0 such that both measures

are de�ned:

Q(s1; x; s1 + t) = Q(s2; x; s2 + t) (2.11)

It follows that there is then truly only one transition measure Q(t � s;x) and if this is

absolutely continuous then we have one transition density for the process, p(t � s;x1; x2).

Thus for any simple set B we shall have (see e.g. [RY99] p.36.):

P (X 2 B) =
Z Z

G1�G2�:::�G�

��1Q
i=0

p(ti+1 � ti;xi; xi+1)dx1 � � � dx� . (2.12)

Considering (2.2), it is immediately evident that the Wiener process is Markov and also

is time-homogeneous. Meanwhile, we can clearly see that (2.7) is satis�ed by (2.4) under

t� < T , and hence it follows that (2.6) is satis�ed for any simple set B. On the other hand,

(2.12) is not satis�ed by (2.4).
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The Strong Markov property

For us, a random time shall be a random variable with values in [0; T ].

De�nition 2.1.12 A random time � de�ned on a �ltered probability space�
CT0;x0 ;B

�
CT0;x0

�
;Ft; wT0;x0

�
shall be called a Markov time when it has the property that for

t 2 [0; T ], f� < tg 2 Ft.

De�nition 2.1.13 (cf [KS98] p.81, [Shi89] p.127) We shall say that a random process X,

or the corresponding measure on a path space, has the strong Markov property when it is

such that for any Markov time � , almost surely, whenever some B 2 F� with P (B) > 0 and

fX(�) = yg \B 6= ?,

P (X(t+ �) 2 �jX 2 B;X(�) = y) = P (X(t+ �) 2 �jX(�) = y) . (2.13)

In other words, when a process is strong Markov, conditioning on even the value at

a Markov time still makes the subsequent process independent from what has historically

occurred up to that point. It is proven in works such as [KS98] that the Wiener process is

strong Markov.

Conditioning on sets of non-zero measure

Let P be a Markov measure on B
�
CT0;x0

�
. Recall that when P (A) > 0, for any simple set

B we must have

P jA (B) =
P (A \B)
P (A)

. (2.14)

We now develop the idea of de�ning measures conditional on nullsets, in speci�c cases.

Conditioning on simple sets

Firstly let us suppose that A consists of the event that X passes through a gate A =�
x 2 CT0;x0 : x(s) 2 �

	
, and P (A) > 0, and for simplicity let us also assume B also consists

of just one gate, B =
�
x 2 CT0;x0 : x(t) 2 G

	
. (From this point onwards, "x 2 CT0;x0" or



20

equivalent shall sometimes be taken as read, and we shall simply write fx(s) 2 �g.) Then

clearly,

case s < t : P jA (B) =
R
��G dQ(0; x0; s)(y)dQ(s; x1; t)(x)R

�
dQ(0; x0; s)(y)

case s > t : P jA (B) =
R
G�� dQ(0; x0; t)(x)dQ(t; x1; s)(y)R

�
dQ(0; x0; s)(y)

case s = t : P jA (B) =
R
G\� dQ(0; x0; s)(y)R
�
dQ(0; x0; s)(y)

In general, if B =
�
x 2 CT0;x0 : x(ti) 2 Gi; i = 1; : : : ; �

	
then, for instance, in the case that

s 2 (ti; ti+1),

P jA (B) =R
G1�����Gi���Gi+1�����G� dQ(0; x0; t1)(x1) � � � dQ(ti; xi; s)(y)dQ(s; y; ti+1) � � � dQ(t��1; x��1; t)(x�)R

�
dQ(0; x0; s)(x)

For events such as A = fx(s) = yg we shall use the notation P j(s;y) to indicate P jA. We now

consider the particular case that the transition measures Q(�; �; s) are absolutely continuous

at y 2 Rd, and we consider transition densities p(�; �; s; y) (that is, continuous versions of

the Radon-Nikodym derivatives with respect to Lebesgue measure). Then it is clear that we

may choose a canonical version of conditional probability such that

P j(s;y) (B) =
1

p(0; x0; s)(y)

Z
G1�����G�

p(ti; xi; s; y)dQ(0; x0; t1)(x1) � � �

� � � dQ(ti�1; xi�1; ti)(xi)dQ(ti; xi; s)(y)dQ(s; y; ti+1)(xi+1) � � � dQ(t��1; x��1; t�)(x�) (2.15)

since it is not di¢ cult to verify that this leads to, for A = fx(s) 2 �g,

P jA (B) =
Z
�

P j(s;y) (B)dQ(0; x0; s)(y)

as required. Moreover, this is the version familiar from elementary probability, in the case

that X has absolutely continuous transition measures. For, suppose we consider the case

s > t. We may say that the joint density for X(t); X(s) is p(0; x0; t; x)p(t; x; s; y) and then

consider that the conditional density for X(t) given X(s) is the ratio of this joint density to

the marginal density for X(s).
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We may use (2.15) in a more convenient form: for a suitable choice of (s; y),

P T0;x0
��
(s;y)

= P s;y0;x0 � P Ts;y . (2.16)

In the case that P is strong Markov, then for any Markov time � , (2.16) also holds condi-

tionally given that � = s:

Moreover, we may generalise to the case that A is some simple set

A =
�
x 2 CT0;x0 : x(si) 2 �i; i = 1; : : : ;{

	
:

Note that since for any (s1; s2; : : : ; s{), clearlyX(s1); X(s2); : : : ; X(s{) jointly form a Euclidean-

valued random variable, we are entitled to construct conditional measures based on

X(s1); X(s2); : : : ; X(s{). We consider the conditional measure of a simple set B =�
x 2 CT0;x0 : x(ti) 2 Gi; i = 1; : : : ; �

	
, whose gates all occur at di¤erent times to those of

A. Suppose that all si and ti (other than s0 = t0 = 0 ) are relabelled as t0i so that

0 < t01 < � � � < t0�+{ and correspondingly, the Gi and �i are renamed as Ci. Moreover,

suppose (for simplicity) that X has absolutely continuous transition measures. Then it is

clearly consistent to further de�ne:

P jA (B) =

R R
C1�C2�����C�+{

�+{�1Q
i=0

p(t0i; xi; t
0
i+1; xi+1)d�1(x1) � � � d�c+q(x�+{)R R

�1��2������{

{�1Q
i=0

p(si; xi; si+1; xi+1)d�1(x1) � � � d�{(x{)

where for any gate of B, �i is Lebesgue measure and for any gate of A it is given as follows.

Suppose this gate � has a decomposition over dimensions as � = �(1)��(2)�� � ���(d); then

�i = �
(1)
i � � � � � �

(d)
i s.t. whenever �(k) = fyg; y 2 R, the measure �(k)i is the Dirac delta

�y; and otherwise �
(k)
i is Lebesgue.

Bayes�Rule

Now that P (AjX(t1) = x1; : : : ; X(t�) = x�) has been de�ned (except in pathological

cases), we may deduce from (2.14) a Bayes�Rule (cf [HF04]), which applies when P (A) > 0.

Let Q be the measure on R�d induced by X(ti); i = 1; : : : ; � under P . Then when B =
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�
x 2 CT0;x0 : x(ti) 2 Gi; i = 1; : : : ; �

	
,

P jA (B) =
R
� � �
R
G1�����G� P (AjX(ti) = xi; i = 1; : : : ; �)dQ(x)R
� � �
R
R�d P (AjX(ti) = xi; i = 1; : : : ; �)dQ(x)

.

With this in mind, we make a further choice of de�nition. Let Y be a random variable

with codomain Rd0 ; so that the remarks at the beginning of Section 2.1 apply. Let P � be

the measure induced by the distribution of Y , and let P �jx be the measure induced by

the distribution of Y conditional on X(t1) = x1; : : : ; X(t�) = x�, and suppose that P �jx is

absolutely continuous in a neighbourhood of y 2 Rd0; let p� (�jX(t1) = x1; : : : ; X(t�) = x�)

be the corresponding density. Then we shall write

P jfY=yg (B) =
R
� � �
R
G1�����G� p

�(yjX(ti) = xi; i = 1; : : : ; �)dQ(x)R
� � �
R
R�d p

�(yjX(ti) = xi; i = 1; : : : ; �)dQ(x)
(2.17)

and this is clearly a valid de�nition in the sense that it satis�es

P jA (B) =
Z
�

P jfY=yg (B)dP �(y).

Using �nite sets in place of gates

Now let us consider the situation thatA =
�
x 2 CT0;x0 : x(s) 2 �

	
s.t. � = fy1; y2; : : : ; yj�jg;

and de�ne the measure of a simple set B =
�
x 2 CT0;x0 : x(ti) 2 Gi; i = 1; : : : ; �

	
, again for

simplicity in the case that the transition measures are absolutely continuous and s 2 (ti; ti+1).

It is clearly consistent with our other de�nitions to write:

P jA (B) =
j�jP
j=1

R
G1�����G� p(0; x0; t1; x1) : : : p (ti; xi; s; yj) p (s; yj; ti+1; xi+1) : : : p(t��1; x��1; t�; x�)dx

j�jP
j=1

p(0; x0; s; yj)

.

(2.18)

In the light of (2.17), we may envisage a similar de�nition in the case of conditioning on

fY 2 fy1; y2; : : : ; y�gg for a Euclidean-valued random variable Y .
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Joint conditioning is repeated conditioning

Let A = A1 \ A2 be an event with P (A) > 0. Then we may immediately write, for any

B 2 B
�
CT0;x0

�
;

P (BjA) =
P (A \B)
P (A)

=
P (A1 \ A2 \B)
P (A1 \ A2)

;

P jA1
��
A2
(B) =

P jA1 (A2 \B)
P jA1 (A2)

=
P (A1 \ A2 \B)

P (A1)

�
P (A1 \ A2)
P (A1)

and so clearly P jA = P jA1
��
A2
in the case that P (A) > 0. It is relevant to explore to what

extent this property holds in the cases of conditioning on nullsets as de�ned above.

When X is a random variable with values in CT0 , and I is an interval subset of [0; T ], we

shall de�ne the notation XI to indicate the restriction of X to I; that is, XI is a random

variable whose values are functions over I, and which agrees with X, ie XI(!; s) = X(!; s)

for s 2 I.

Consider the case that A = A1 \ A2 with A1 measurable with respect to X[0;t) (or in

other words, A1 2 Ft) and with A2 measurable w.r.t. X(t;T ]; it is clear that every Borel set

has a decomposition of this kind. Then if P j(t;x) (A) > 0, we may already note that

P j(t;x)
���
A
= P j(t;x)

���
A1

����
A2

=
�
P t;x0;x0

��
A1
� P Tt;x

����
A2
= P t;x0;x0

��
A1
� P Tt;x

��
A2

P jAj(t;x) = P jA1
��
A2

���
(t;x)

=
�
P jA1

��
A2

�t;x
0;x0

�
�
P jA1

��
A2

�T
t;x
=
�
P jA1

�t;x
0;x0

�
�
P jA2

�T
t;x

= P t;x0;x0
��
A1
� P Tt;x

��
A2

. (2.19)

Now let us consider some random variable Y = (Y1; Y2) where Y1 is measurable with respect

to �
�
X[0;t)

�
and Y2 is measurable w.r.t. �

�
X(t;T ]

�
. Note then that P j(t;x) (Y1 2 �1; Y2 2

�2) = P j(t;x) (Y1 2 �1) P j(t;x) (Y2 2 �2): Hence if the induced measure for Y under P j(t;x) has

a density at a particular point y = (y1; y2) then this density is the product of those for Y1 and

for Y2. Let us call these p�1 and p
�
2. Suppose B is a simple set and let B = B1\B2 where B1 is

X[0;t)-measurable and B2 is X(t;T ]-measurable, and let B1 consist of gates G1; : : : ; G�0 and let

B2 consist of gates G�0+1; : : : ; G�. Then let Q1 be the measure on X(t1); : : : ; X(t�0) induced

under P j(t;x), and let Q2 be the measure on X(t�0+1); : : : ; X(t�) induced under P j(t;x). Then

we may use (2.17) to see that:
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P j(t;x)
���
fY=yg

(B) =

R
� � �
R
G1�����G� p

�
1(y1jX(ti) = xi 8i)p�2(y2jX(ti) = xi 8i)d (Q1 �Q2) (x)R

� � �
R
R�d p

�
1(y1jX(ti) = xi 8i)p�2(y2jX(ti) = xi 8i)d (Q1 �Q2) (x)

=

R
� � �
R
G1�����G�0

p�1(y1jX(ti) = xi 8i)dQ1(x)
R
� � �
R
G�0+1�����G�

p�2(y2jX(ti) = xi 8i)dQ2(x)R
� � �
R
R�0d p

�
1(y1jX(ti) = xi 8i)dQ1(x)

R
� � �
R
R(���0)d p

�
2(y2jX(ti) = xi 8i)dQ2(x)

= P t;x0;x0
��
fY1=y1g

� P Tt;x
��
fY2=y2g

. (2.20)

2.1.3 Properties of the conditional Wiener measure

As we mentioned in Chapter 1, we shall be concerned with systems of n particles, each

with d coordinates, so that the "dimension of the system" is nd. The discussion given thus

far, in Subsections 2.1.1 and 2.1.2, applies wholly when considering the full nd-dimensional

system however, since our d in the above may be taken to be nd when we wish to describe

the whole system. When X has state space Rnd, we shall let X i indicate the ith coordinate

of X; if the trajectories of X represent system trajectories then we shall use X(j) to represent

the d-dimensional coordinate vector for the jth particle, and we shall let X(j);i represent the

ith coordinate of the jth particle.

Brownian bridge SDE and incremental simulation procedure Let a; b 2 Rnd. Let

us consider the Ft-adapted stochastic process X given by the following stochastic di¤erential

equation (SDE from here onwards) and initial and terminal conditions: for 0 � t < T and

for i = 1; : : : ; nd,

dX i =
bi�X i

T�t dt + dW i(t); X i(0) = ai; X i(T ) = bi , (2.21)

where by W i(t) we understand an independent Wiener process for each coordinate. By

a standard result (see [IW81, RW94, KS98]), for any measurable A � CT;b0;a , the limiting

proportion of trajectories within A is equal to wT;b0;a(A). The solution of (2.21) can be written

as

X i = ai(T � t) + bit+ (T � t)

Z t

0

dW i(s)

T�s . (2.22)
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Hence, it is clear that for any 0 � � < T � t;

X(t+�) = X(t) + �
b�X(t)

T � t
+ (T � t��)

Z t+�

t

dW (s)

T � s
, (2.23)

where
R t+�
t

dW (s)
T�s is interpreted as a vector of stochastic integrals. Therefore we have

E

�
(T � t��)

Z t+�

t

dW (s)

T � s

����X(t)� = 0; (2.24)

E

"�
(T � t��)

Z t+�

t

dW (s)

T � s

�2�����X(t)
#
=

�
1� �

T � t

�
�:

It follows that we can exactly simulate the solution of (2.21) by a simple recurrent procedure

based on the formula

X(t+�) = X(t) + �
b�X(t)

T � t
+�1=2

r
T � t��
T � t

�; t < T; (2.25)

where � is a random vector of which the components are independent Gaussian random

variables with zero mean and unit variance, and which are independent of X(t):

Dimensional independence Where y0; y00 2 Rr and x0; x00 2 R, w
T;(x00;y

0
0)

0;(x0;y0)
= w

T;(x00)
0;(x0)

�

w
T;(y00)
0;(y0)

.

Moreover, a similar fact holds true when coordinates are rotated, because of the rotational

symmetry of the Gaussian transition density. Where (x1; x2; : : : ; xr) 2 Rr is represented

as (z1; z2; : : : ; zr) in a particular coordinate basis, and where (x01; : : : ; x
0
r) is represented as

(z01; : : : ; z
0
r), then w

T;x0

0;x is equal to w
T;x01
0;x1

�wT;x
0
2

0;x2
�: : :� w

T;x0r
0;xr and is also equal to w

T;z01
0;z1
�wT;z

0
2

0;z2
�

: : :� w
T;z0r
0;zr where components correspond to the new basis vectors. In particular, note that

for a 2-dimensional Brownian bridge X representing two 1-dimensional particles, we have

that X
(1)(t)�X(2)(t)p

2
and X(1)(t)+X(2)(t)p

2
are independent Brownian bridges. This is evident from

considering the �nite-dimensional distributions.

Conditioning on passing through a point It follows from the discussion above that the

conditional Wiener measure has conditional independence: where x 2 Rnd and t 2 (0; T ),

wT;xT0;x0

���
(t;x)

= wt;x0;x0 � wT;xTt;x :
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Joint conditioning Suppose for simplicity that d = 1, suppose x(1)0 > � � � > x
(n)
0 and

x
(1)
T > � � � > x

(n)
T ; and consider conditioning on a set such as E0 = fX 2 CT;xT0;x0

: X(1) >

X(2) > � � � > X(n)g: Then where E0 = E1 \ E2, s.t. E1 is �
�
X[0;t)

�
-measurable and E2 is

�
�
X(t;T ]

�
-measurable,

wT;xT0;x0

���
E0

����
(t;x)

= wt;x0;x0
��
E1
� wT;xTt;x

���
E2

.

De�nition 2.1.14 The �rst crossing time is de�ned as the �rst exit time of X from

D =
�
x(1) > x(2) � � � > x(n)

	
, where if necessary the particles are relabelled so that X(1)(0) �

X(2)(0) � � � � � X(n)(0). In other words, since our attention is restricted to continuous paths

X, it is the minimum t s.t. X(i)(t) = X(j)(t) for some i 6= j:

The �rst crossing time is a Markov time and we denote it by � . Let E(t; x) = f� =

t;X(�) = xg be the event that the �rst crossing time is at t and at system position x. Then

it follows from (2.13) that

wT;xT0;x0

���
E(t;x)

= wt;x0;x0
��
E(t;x)

� wT;xTt;x

���
E(t;x)

= wt;x0;x0
��
E(t;x)

� wT;xTt;x . (2.26)

Linear translation Where la;b : [0; T ]! Rd is given by la;b(t) = t
T
b+ T�t

T
a, wT;b0;a(la;b+B) =

wT;00;0 (B)) where for any event B, la;b +B denotes the event fX + la;b : X 2 Bg.

We can view this in another way. If we consider two processes X(1); X(2) such that X(1)

satis�es (2.21) with endpoints a(1); b(1) whereas X(2) satis�es (2.21) with endpoints a(2); b(2),

but with the same Wiener process W , then X(2) = X(1) + la(2)�a(1);b(2)�b(1).

2.1.4 Conditioning the Wiener measure on a �nite set of terminal

points

We have noted that the choice of a canonical version of conditional probability, with

respect to the �-algebra generated by a real-valued random vector, such as X(T ), allows us

to choose a suitable de�nition for measures such as wT0;x0jX(T )2� when � 2 �(X(T )) is a �nite
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set, � = fy1; : : : ; ykg. Let B =
�
x 2 CT0;x0 : x(ti) 2 Gi; i = 1; : : : ; �

	
: According to (2.18),

wT0;x0
��
X(T )2� (B) =

kP
j=1

R
G1�����G�

��1Q
i=0

'ti+1�ti(xi; xi+1)'T�t�(x�; yj)dx

kP
j=1

'T (x0; yj)

From this de�nition it is evident that the �nite-dimensional distributions of wT0;x0
��
X(T )2�

induce a mixing measure between the conditional Wiener measures corresponding to the k

termini, with coe¢ cients representing the relative probabilities of the termini under wT0;x0 .

That is,

wT0;x0
��
X(T )2� (B) =

kP
j=1

'T (x0; yj)
kP

j0=1

'T (x0; yj0)

w
T;yj
0;x0
(B) .

When the coordinates of X represent sets of coordinates describing positions of separate par-

ticles, we may be especially interested in allowing that the terminal value is any permutation

of the point positions in some system position xT 2 Rd. We shall use the notation wT;fx1;:::;xkg0;x0

and in the case that fx1; : : : ; xkg = f�1xT ; �2xT ; ::; �kxTg for a set of permutations �i which

form a group �, then we shall write wT;�xT0;x0
for wT;fx1;:::;xkg0;x0

.

We can see that wT;�nxT0;x0
is Markov; especially, it is evident that for x 2 Rnd; t 2 (0; T ),

wT;�nxT0;x0

���
(t;x)

= wt;x0;x0 � wT;�nxTt;x .

Moreover, we may consider what happens if we take the state space to be the identi�cation

space Rnd
�
�n , ie the quotient space given by applying to Rnd the equivalence relation

x � �x; � 2 �n (see e.g. [BM99]). We shall now see that we can create a measure on

continuous Rnd
�
�n-valued functions with endpoints X(0) = �nx0;X(T ) = �nxT , and we

shall call this measure wT;�nxT0;�nx0
: In order to show that our de�nition (2.27) makes this well-

de�ned, we shall �rst need to prove a preliminary fact.

It is notable that for 
 2 �n, if we �x t 2 (0; T ) then the law for X(t) under X � wT;�nxT0;x0

and that under X � wT;�nxT0;
x0
are conjugated by 
. That is, for B 2 B(Rnd), where we de�ne
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B := fy 2 Rnd : 
x = y some x 2 Bg,

wT;�nxT0;x0
fX(t) 2 Bg =

X
�2�n

'(x0;�xT )P
�02�n '(x0;�

0xT )
wT;�xT0;x0

fX(t) 2 Bg

=
X
�2�n

'(
x0;�
xT )P
�02�n '(
x0;�

0
xT )
wT;�
xT0;
x0

fX(t) 2 
Bg

=
X

�
�12�n

'(
x0;�xT )P
�0
�12�n '(
x0;�

0xT )
wT;�xT0;
x0

fX(t) 2 
Bg

=
X
�2�n

'(
x0;�xT )P
�02�n '(
x0;�

0xT )
wT;�xT0;
x0

(
B) = wT;�nxT0;
x0
fX(t) 2 
Bg ;

where here we have used the self-evident fact that postmultiplication by 
�1 maps �n to

itself. But then if we �x t 2 (0; T ) and consider the law of X(t); a random variable with

codomain Rnd
�
�n , under X � wT;�nxT0;�nx0

, clearly it makes sense when B 2 B(Rnd), to de�ne

wT;�nxT0;�nx0
fX(t) 2 �nBg := wT;�nxT0;x0

fX(t) 2 �nBg = wT;�nxT0;
x0
fX(t) 2 �nBg (2.27)

where here, obviously �nB takes on two di¤erent meanings according to whether it sig-

ni�es a set in B(Rnd) or its equivalent in B(Rnd
�
�n). Since we therefore have de�ned the

�nite-dimensional distribution, and hence the transition measure, corresponding to a Markov

process X with state space Rnd
�
�n, it follows that w

T;�nxT
0;�nx0

is well-de�ned as a (Markov)

measure on the Borel �-algebra generated by cylinders over Rnd
�
�n.

2.1.5 De�nition of functional integration

Naturally, when we are able to de�ne a measure P on B
�
CT0;x0

�
, it follows immediately that

functional integrals with respect to this measure are already de�ned, via the usual Lebesgue

integration formula (see for example [KF57, Coh80]). Let F : CT0;x0 ! R be measurable with

respect to P . Then for instance, if for some constants y � F � y0, then where we shall

loosely write yk for y + (y0 � y) k
K
,Z

CT0;x0

F (x(�))dP = lim
K!1

KP
k=0

ykP

�
F�1

�
yk �

1

2K
; yk +

1

2K

��
:

However, it is possible to �nd a su¢ cient condition to make this equivalent to the popular

working de�nition of
R
CT0;x0

F (x(t))dP , as used in [FH65, GY56, Cep95], as follows. Let us
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write h for T=N . Let P be a measure de�ned on B
�
CT0;x0

�
, and let �N be the measure induced

on B
�
RNr

�
by the distribution of x(h); x(2h); : : : ; x(T ) under P . Given any vector x =

fx1; : : : ; xNg 2 RNr, let it serve as the parameter for a function `(fx1; : : : ; xNg) : [0; T ]! Rr

to be given by linear interpolation. That is to say, letting tk = kh for k = 0; 1; : : : ; N; we

have that for k = 0; 1; : : : ; N � 1, for t 2 [tk; tk+1) :

`(fx1; : : : ; xNg; t) =
t� tk
h

xk +
tk+1 � t

h
xk+1 .

It is immediately evident that for each coordinate we have

lim
N!1

Z T

0

�
`(fxi(h); xi(2h); : : : ; xi(T )g; t)� xi(t)

�
dt = 0

so clearly, if we assume F to be continuous in the sense that whenever x (�) is the L1 limit

of a sequence (x(j) (�)) over CT0;x0, we have that F (x (�)) is the limit of (F (x(j) (�))), then it

shall follow that for all x 2 CT0;x0,

lim
N!1

F (`(fx(h); x(2h); : : : ; x(T )g)) = F (x (�)): (2.28)

But then Z
CT0;x0

F (x(t))dP (x) = lim
N!1

Z
CT0;x0

F (`(fx(h); x(2h); : : : ; x(T )g))dP (x)

= lim
N!1

Z
RNr

F (`(x))d�N(x).

This means in particular that the conditional Wiener integral of F is given by (see [GY56]):

Z
CT;b0;a

F (x(�))dwT;xT0;x0
= lim

N!1

Z
� � �
Z
RNr

F (`(x1; : : : ; xT ))

N�1Q
i=0

'h(xi; xi+1)

'T (x0; xT )
dx1 : : : dxN�1 .

(2.29)

In the special case that F is the action functional F (x) = Y (x) (cf (1.2)), for an alternative

derivation see [Kac57, p.165]; this relates to the Wiener integral but it is clear that it could

be easily generalised to apply for any Markov measure P .
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2.2 The relationship between path integrals and quan-

tum statistical mechanics

In this section, we prove a theorem based on spectral decomposition of solutions to

the backward and forward Kolmogorov equations for the conditional Wiener integral of the

action functional (cf [Kry99]). The following exposition is largely based on the work of Kac;

see, for example, [Kac51, Kac56] and [Kac57, pp.168-173]. Theorem 2.2.1 is an analogue of

the Feynman-Kac Theorem which applies in the case of the unconditional Wiener measure.

We shall see in Subsection 2.2.2 that this allows us to introduce the connection between

quantum statistical mechanics and functional integrals (see also [DT82ii]).

Notation for action integrals Let V : Rnd ! R be a Borel-measurable function, which

in physical terms shall represent the potential �eld for the system. We shall let u : [0; T ]�

Rnd � Rnd ! R be given by, for t 2 [0; T ) and xt; xT 2 Rnd;

u(t; xt; xT ) =

Z
CT;xTt;xt

exp

�Z T

t

�V (x(s))ds
�
dwT;xTt;xt (2.30)

and for xT ; x0T 2 Rnd;

u(T; xT ; x
0
T ) = 1 . (2.31)

Moreover, de�ne

JT (x0; xT ) = u(0; x0; xT ) =

Z
CT;xT0;x0

exp

�Z T

0

�V (x(s))ds
�
dwT;xT0;x0

=

Z
CT;xT0;x0

Y (x)dwT;xT0;x0
.

(2.32)

Such an integral JT is called an action integral. Further, where E is an event in B
�
CT;xT0;x0

�
such that wT;xT0;x0

���
E
has been de�ned in Section 2.1, we shall use the notation

J E
T (x0; xT ) =

Z
CT;xT0;x0

exp

�Z T

0

�V (x(s))ds
�
dwT;xT0;x0

���
E

(2.33)
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Time translation invariance

Note that because V is not time-dependent,Z
C
T2;xT2
T1;xT1

exp

�Z T2

T1

�V (x(s))ds
�
dw

T2;xT2
T1;xT1

= JT2�T1(xT1 ; xT2) . (2.34)

2.2.1 Using the Kolmogorov equations for a conditional Wiener

integral

In this subection, we prove a Theorem which provides an expansion of the functional

integral u (and hence JT ) in terms of the real-valued eigenfunctions of the Hamiltonian

operator. This shall then allow us, in what follows, to rigorously explain how functional

integration can be used to �nd information about quantum statistics.

Theorem 2.2.1 Let x; y 2 Rnd and let V : Rnd ! R be continuous, bounded from below and

have the property that V (x)!1 as kxk ! 1. Then there is a countable set of orthonormal

(ie, normalized and orthogonal) solutions to the eigenvalue problem

1

2

ndX
i=1

@2r

@x2i
(x)�V (x)r(x) = �Er(x) . (2.35)

Let the solutions be labelled rm with corresponding eigenvalues Em, with Em � Em+1. Then

where u is as de�ned in (2.30), we shall have

u(t; x; y) =
1

'T�t(x; y)

1X
m=0

exp(�Em(T � t))rm(x)rm(y) . (2.36)

Proof. In works such as [Kac56, Dyn65, Fre85], it has been shown, via the probabilistic

representation

u(t; x; y) = E [exp (St;x(T ))] (2.37)

where X is given by (2.21):

dXi =
yi�Xi

T � s
ds + dWi; t � s < T ; X

i
(t) = xi , (2.38)

and St;x is given by

dS = �V (X(t))dt ; St;x(t) = 0 (2.39)
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that u satis�es the Cauchy problem with the backward Kolmogorov equation:

8t < T : 8x 2 Rnd : Lu� V (x)u = 0; (2.40)

8x 2 Rnd : u(T; x; y) = 1 ;

where

L =
@

@t
+

dX
i=1

yi�xi
T � t

@

@xi
+
1

2

dX
i=1

@2

@x2i
: (2.41)

However, a transformation of u also gives us the forward Kolmogorov equation, or Fokker-

Planck equation: let v : [0; T ]� Rnd � Rnd ! R be given by

v(t; x; y) = 't(x; y)u(T � t; x; y) (2.42)

and we will have, instead of (2.40),

8t > 0 : @v
@t
=
1

2

ndX
i=1

@2v

@x2i
� V (x)v , (2.43)

lim
t!0

v(t; x; y) = �(kx� yk) , (2.44)

where in this last, � is understood to signify the Dirac delta. (We have exchanged the

singularity in operator L for singularity in the initial condition.) It is proven in works such

as [Fri64] that the Cauchy problem (2.43)-(2.44) has a classical solution (cf Theorem 16 of

[Fri64]; the conditions of this theorem are satis�ed because we assumed V to be bounded

below). We shall attempt to �nd this solution via separation of variables, writing

v(t; x; y) = �(t; y)r(x) (2.45)

with r : Rnd ! R and � (�; y) : [0; T ]! R. The solutions are characterised by the eigenvalue

problem, for E 2 R (cf (2.35)):

�(t; y) = A(y)exp(�Et) (2.46)

1

2

ndX
i=1

@2r

@x2i
(x)�V (x)r(x) = �Er(x) (2.47)

By a result proven in [Tit58, Fri73], we have that since we assumed V !1 as kxk ! 1, the

spectrum of solutions to (2.35) is discrete; in fact, in general when V is greater than some
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value � for all su¢ ciently large kxk, the spectrum is discrete for E < � (cf Theorem 16.5 of

[Tit58]). We shall apply an index m 2 f0; 1; 2; : : :g to the eigenfunctions and corresponding

eigenvalues, with Em � Em+1. For our purposes in the following we shall choose the rm to

be normalized. Now for t > 0, v is given by

v(t; x; y) =
1X
m=0

Am(y) exp(�Emt)rm(x) (2.48)

and we may determine the coe¢ cients Am(y) from the initial condition as follows. Firstly,

rewrite (2.48), for t 2 (0; T ], as

v(t; x; y) =

1X
m=0

�m(t; y)rm(x)

and notice that

�m(t; y) =

Z
Rnd

1P
l=0

�l(t; y)rl(x)rm(x)dx =

Z
Rnd

v(t; x; y)rm(x)dx .

However, we know from our initial condition that for any measurable function f : Rnd ! R,

lim
t#0

Z
Rnd

v(t; x; y)f(x)dx = f(y)

and so it is apparent that limt#0 �m(t) = rm(y), where we write t # 0 to indicate the limit

from above. Therefore, clearly Am(y) = rm(y). Hence for t 2 [0; T ]; we may write

v(t; x; y) =

1X
m=0

exp(�Emt)rm(x)rm(y) : (2.49)

Therefore

u(t; x; y) =
1

'T�t(x; y)

1X
m=0

exp(�Em(T � t))rm(x)rm(y) . (2.50)

In the case of a Coulombic potential, the spectrum is discrete up to a certain threshold,

and in physical terms the essential spectrum at higher energies corresponds to the escape of

the electron from the atom. However, to avoid this issue we shall always deal with potentials

where the condition V ! 1 as kxk ! 1 is imposed, and hence where Theorem 2.2.1

applies.
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2.2.2 Physical interpretation of the conditional Wiener integral

In this subsection, we seek to explain the rami�cations of Theorem 2.2.1, in terms of the

physical signi�cance of the action integral. We re�ect on the relationship between (2.35), as

considered hitherto, and the time-independent Schrödinger equation, in order to conclude

that functional integrals can be used to represent the so-called thermal density matrix for a

canonical system.

Position density in the case of distinguishable particles

It will be recognised that if in the place of real-valued r, we consider a complex-valued

spatial wavefunction  , neglecting spin, then (2.35) is the stationary Schrödinger equation

(e.g. [AF97, LMR97]), which describes wavefunctions  m corresponding to states of de�nite

energies Em; for the left-hand side is H where H is the Hamiltonian operator. However,

it is then clear that any solution  must be given by some combination r1 + ir2 where r1

and r2 are real-valued functions solving (2.35) which share the same eigenvalue. It is also

clear that any linear combination of r1; r2 with these conditions is an eigenfunction; we

restrict our attention to normalized wavefunctions. In summary, then, the complex-valued

solutions to (2.35) with eigenvalue El are given by
PMl

i=1 �lirli where rli are theMl real-valued

orthonormal eigenfunctions corresponding to El and �li 2 C have
PMl

i=1 j�lij
2 = 1.

It is a well-known fact in statistical mechanics (see e.g. [Fey72, p.60]) that for a system

of n identical particles which is at a �xed temperature 1=kBT , we have the Boltzmann

distribution over the states of de�nite energy, and this means that the normalized density

for system position �(x) can be found via

qD(x0; xT ) =

1X
m=0

exp(�EmT ) m(x0) �m(xT ) (2.51)

Z =

1X
m=0

exp(�EmT ) =
Z
Rnd

qD(x; x)dx (2.52)

�(x) =
qD(x; x)

Z : (2.53)

Usually qD is called the unnormalized thermal density matrix and Z is called the partition
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function. Since the physically relevant eigenstates will be orthonormal (see e.g. [AF97,

LMR97]), they must have the same multiplicity Ml as the rli. This justi�es retaining the

same index m in (2.51) as in (2.36).

It is usually assumed in the physics literature (as in, for example, the treatment given in

[Fey72]) that in general where  li is any choice of orthonormal basis for span(frlig), at any

pair of system points x0; xT 2 Rnd,

MlX
i=1

 i(x0) 
�
i (xT ) =

MlX
i=1

ri(x0)ri(xT ). (2.54)

This is not di¢ cult to verify in the case of multiplicity 2.

If we adopt this assumption, it implies in particular that any choice of orthonormal basis

 li for the space spanned by the rli will have the same sum of squared moduli of the basis

functions when evaluated at any system point. That is, for any x 2 Rnd, if  li are an

orthonormal basis for span(rli),

MlX
i=1

exp(�ElT ) j li(x)j
2 =

MlX
i=1

exp(�ElT )r2li(x) .

(For example, in the case that the eigenfunctions have multiplicity 1, in fact any solution

 m with eigenvalue Em is rmei�m for some phase �m. The value of �m will then in fact

be determined by the time-dependent Schrödinger equation, but we shall not discuss this

further since the phases have no impact on (2.51).)

Thus in fact, it now follows from (2.36) that

qD(x; x) =
1X
l=0

MlX
i=1

exp(�ElT ) j li(x)j
2 =

1X
l=0

MlX
i=1

exp(�ElT )r2li(x) =
1X
m=0

exp(�EmT )
�
r2m(x)

�
= 'T (x; x)JT (x; x)

and therefore

Z =
Z
Rnd

'T (x; x)JT (x; x)dx =
Z
Rnd

'T (y; y)

Z
CT;y0;y

exp

�
�
Z T

0

V (x(t)) dt

�
dwT;y0;y (x)dy

(2.55)

�(x) =
qD(x; x)

Z =
JT (x; x)R

Rnd JT (x; x)dx
.
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In other words, we can �nd �(x) in terms of functional integrals. Moreover, considering

(2.54),

qD(x0; xT ) =
1X
l=0

MlX
i=1

exp(�ElT ) li(x0) �li(xT ) =
1X
m=0

exp(�EmT )rm(x0)rm(xT )

= 'T (x0; xT )JT (x0; xT ) (2.56)

which is important for the following discussion.

Position density in the case of indistinguishable particles

We shall let�n indicate the permutation group of order n, and write �x for (x�(1); x�(2); ::; x�(n)).

We note from p.61 and p.64 of [Fey72] that for indistinguishable particles, the unnormal-

ized density may be found via

q(x; x0) =
1

n!

P
�2�n

c(�)qD(x; �x
0) (2.57)

where for bosons, c(�) is always 1, and for fermions, c(�) represents sgn(�), the signature of

the permutation �. Here we consider only a system described by either a symmetric or anti-

symmetric spatial wavefunction; the spin wavefunction is not considered. The corresponding

partition function is then

Z =

Z
Rnd

q(x; x)dx =
1

n!

Z
Rnd

P
�2�n

c(�)qD(x; �x)dx

=
1

n!

Z
Rnd

P
�2�n

c(�)'T (x; �x)JT (x; �x)dx . (2.58)

This is sometimes called the trace of the (unnormalized) density matrix q. Therefore we

should conclude that for indistinguishable particles,

�(x0) =
q(x0; x0)R

Rnd q(x; x)dx
=

�
1
n!

P
�2�n

'T (x0; �x0)

�
IT (x0; x0)R

Rnd

�
1
n!

P
�2�n

'T (x; �x)

�
IT (x; x)dx

(2.59)

=

�
1

n!

P
�2�n

'T (x0; �x0)

�
IT (x0; x0)

Z (2.60)

=
1

n!

GT (x0; x0)
Z =

GT (x0; x0)R
Rnd GT (x; x)dx

, (2.61)
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where

IT (x0; xT ) =
1P

�2�n
'T (x0;�xT )

P
�2�n

c(�)'T (x0; �xT )JT (x0; �xT ) (2.62)

=
n!P

�2�n
'T (x0;�xT )

q(x0; xT ) (2.63)

=
1P

�2�n
'T (x0;�xT )

1X
m=0

exp(�EmT )
P
�2�n

c(�)rm(x0)rm(�xT ) , (2.64)

GT (x0; xT ) =

� P
�2�n

'T (x0;�xT )

�
IT (x0; xT ) . (2.65)

The reader is invited to compare (2.63) with (2.56). As we shall see, (2.59) enables �(x) and

associated quantities to be calculated quite e¢ ciently for bosons. For fermions, computations

are made more challenging by the so-called fermion sign problem, which is the subject of

Chapters 5-7. Lastly, note that it follows that where � is used for the wavefunctions that

apply in the indistinguishable case,

�m(x0)�
�
m(xT ) =

1

n!

P
�2�n

c(�)rm(x0)rm(�xT ) . (2.66)

2.2.3 Indistinguishability in terms of measure conditioning

Considering (2.62), it will be apparent that we can write it as one functional integral,

using a di¤erent conditional measure. When X(T ) = �x; let c
�
X(T )
x

�
mean c(�). Then

IT (x; x) =
Z
CT;�nx0;x

c

�
X(T )

x

�
exp

�Z T

0

�V (X(s))ds
�
dwT;�nx0;x . (2.67)

This suggests an alternative heuristic for the �nding of the previous subsection, that IT (x; x)

represents the position density of the system at inverse temperature T . For if it is accepted

that for distinguishable particles, �(x) = JT (x; x)
�R

Rnd JT (x; x)dx , then for indistinguish-

able particles the only change necessary is to allow all possible particle permutations at

the terminal point. (The introduction of sgn
�
X(T )
x

�
for fermions is unexplained in such an

heuristic.)

Note that we may, of course, regard V as a function de�ned on Rnd
�
�n since it is neces-

sarily independent of any permutation of the particles. Consequently Y may be viewed as a
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functional de�ned on continuous paths with values in Rnd
�
�n. Then, recalling Subsection

2.1.4, since wT;�nx0;�nx
(�nB) = wT;�nx0;x (�nB) for any B 2 B

�
CT0
�
,

IT (x; x) =
Z
CT;�nx0;�nx

c

�
X(T )

x

�
Y (X) dwT;�nx0;�nx

:= IT (�nx;�nx) . (2.68)

The fact that this holds provides another intuition regarding the nature of IT ; and is often

a helpful perspective to recall when thinking about results involving IT . It is especially

useful for understanding how to implement permutation sampling (cf Subsection 4.2.3). In

a similar spirit to that of (2.68), we may note that

IT (x0; xT ) =

Z
CT;�nxT0;x0

c

�
X(T )

xT

�
exp

�Z T

0

�V (X(s))ds
�
dwT;�nxT0;x0

=

Z
CT;�nxT0;�nx0

c

�
X(T )

xT

�
Y (X) dwT;�nxT0;�nx0

:= IT (�nx0;�nxT ) .

2.2.4 Finding expectations of observables

For the expectation of an observable whose corresponding operator is diagonal in the

position representation [Kle95],

hAi =

Z
Rnd

A(x)�(x)dx (2.69)

=

R
Rnd A(x)

� P
�2�n

'T (x; �x)

�
IT (x; x)dxR

Rnd

� P
�2�n

'T (x; �x)

�
IT (x; x)dx

. (2.70)

More generally, according to Chapter 2 of [Fey72], if an observable corresponds to an operator

A then we may write the expectation of this observable as (see also [Kle95] p.108):

hAi =
Z Z

R2nd
A(x; x0)

q(x; x0)

Z dxdx0 (2.71)

where q is the unnormalized density, de�ned by (2.57). (Our A(x; x0) here is referred to as

hxjAjx0i in some texts.)
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Potential energy

One observable which obeys (2.69) is potential energy, as mentioned in Chapter 1:

hV i =

R
Rnd V (x)

� P
�2�n

'T (x; �x)

�
IT (x; x)dxR

Rnd

� P
�2�n

'T (x; �x)

�
IT (x; x)dx

Two-point correlation function

For d = 1; a two-point correlation function �(�); 0 � � � T; has the form (see [Lob96]):

�(�) = hx(0)x(�)i (2.72)

=
1

Z

Z 1

�1

Z
CT;y0;y

x(0)x(�) exp

�
�
Z T

0

V (t; x(t)) dt

�
dwT;y0;y (x)dy

=
1

Z

Z 1

�1

Z
CT;y0;y

yx(�) exp

�
�
Z T

0

V (t; x(t)) dt

�
dwT;y0;y (x)dy;

Correlation functions contain important information about quantum-mechanical systems and

they are observable in scattering experiments (see, e.g. [Kle95]).

Kinetic energy

In order to discuss kinetic energy we need to take account of mass. Let us consider a

more general de�nition of JT :

JT (x; �x) = E exp
�
�S

�
XT;�x
0;x

��
where we let XT;�x

0;x (t) solve the nd-dimensional system of SDEs

dX =
�x�X

T � t
dt+

1p
m
dw(t); 0 � t < T; X(0) = x: (2.73)

where m here represents the mass of one particle, taken in our customary de�nition of JT

to be 1. Taking account of mass, the partition function for a system of bosons has the form:

Z =

Z
Rnd

X
�2�n

'T=m(x; �x)JT (x; �x)dx (2.74)

=

 X
�2�n

'T=m(x; �x)

!Z
Rnd
I(x; x)dx . (2.75)
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It can be shown to follow from (2.71) that the kinetic energy is given by (see also [TI84]):

hKi = m

TZ
@Z
@m

:

We have, in the case of bosons,

@Z
@m

=

Z
Rnd

X
�2�N

'T=m(x; �x)

�
"
@JT (x; �x)

@m
+ JT (x; �x)

 
nd

2m
� kx� �xk2

2T

!#
dx

and

@JT (x; �x)
@m

= �E
�
exp(�

Z T

0

V (XT;�x
0;x (t))dt)

Z T

0

rV (XT;�x
0;x (t)) � d

dm
XT;�x
0;x (t)dt

�
:

Let Q(t) = d
dm
XT;�x
0;x (t), that is, the derivative of the solution to (2.73) w.r.t. the parameter

m. This process satis�es the SDE (see [GS72])

dQ = � Q

T � t
dt� 1

2
p
m3

dw(t); 0 � t < T; Q(0) = 0:

Clearly,

Q(t) = �XT;0
0;0 (t)=(2m)

= �
�
XT;�x
0;x (t)� x

T
(T � t)� �x

T
t
�
=(2m):

Thus one obtains (see also [DT10]):

hKi = m

TZK; (2.76)

where

K =
Z
Rnd

"X
�2�n

'T=m(x; �x)E

�
exp

�
�
Z T

0

V
�
XT;�x
0;x (t)

�
dt

�
(2.77)

�
�
nd

2m
� jx� �xj2

2T
+

1

2m

Z T

0

rV
�
XT;�x
0;x (t)

�
�
�
XT;�x
0;x (t)� x

T
(T � t)� �x

T
t
�
dt

���
dx:

Here rV is an nd-dimensional vector. We note that this expression for the kinetic energy

is di¤erent to the ones exploited in [Cep95, TI84]. (As was pointed out in [Cep95], it is

desirable for computational purposes to have various representations of the kinetic energy.)
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2.3 Using noninteracting copies to approximate states

of de�nite energy

We shall now devote further attention to the subject matter of Subsection 2.2.2, in order

to demonstrate a result which, in e¤ect, permits simulations of a quantum system that

is in a state of de�nite energy. The problem of simulating excited states has previously

been addressed by at least two di¤erent methods, known as Correlation Function Monte

Carlo [CB88, Cep96ii] and Thermo Field Monte Carlo [Suz86]. Given a suitable method

for performing zero-temperature simulations, the results of this section give rise to a new,

alternative approach to simulating excited states.

Recalling (2.64)-(2.66), it is clear that

IT (x0; xT ) =
n!P

�2�n
'T (x0;�xT )

1X
m=0

exp(�EmT )�m(x0)��m(xT ) .

In fact, we may obtain the densities �m�
�
m as limits of expressions involving IT (x; x), and

this shall now be discussed. It is immediately obvious that as T tends to1, the terms with

eigenvalues equal to E0 dominate and thus qT converges weakly to �0�
�
0 as long as E0 6= E1.

By implication, in particular if we wish to �nd a statistic such as the expected value in the

ground state of an observable A, then

hAi0 =
Z
Rnd

A(x)�0�
�
0(x)dx = lim

T!1

Z
Rnd

A(x)qT (x; x)dx = lim
T!1

R
Rnd A(x)IT (x; x)dxR

Rnd IT (x; x)dx
(2.78)

At temperature zero, the system is e¤ectively con�ned to the ground state(s) (see [FH65,

Fey72]). As shall be explained in Chapter 4, Formula (2.78) e¤ectively tells us how to collect

approximate ground state statistics using Path Integral Monte Carlo, if a su¢ ciently large T

can be used that adequate convergence is achieved, because the integrals and indeed IT (x; x);

for a given x, are quantities which can be obtained as the limiting values from simulations.

As is explained in [Fey72], the average over ground states will be obtained in the case of

ground state degeneracy.

However, it is also possible to construct a controlled approximation to the densities for
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the excited states of the system. We shall now prove several results which indicate a way

to express the sum of the �rst k eigenstates in terms of functional integrals, with the caveat

that there is a speci�c type of averaging over eigenstates if 1; : : : ; k should happen to include

only some of the eigenstates corresponding to Ek. The approach taken here is to consider

�rst the case of distinguishable particles, and then to proceed to considering bosons and

fermions.

2.3.1 Results on how to obtain sums of eigenstates

Let us consider what happens when we have k noninteracting copies of the system of

n distinguishable particles inhabiting a d-dimensional space. Since the copies are nonin-

teracting, we think of the potential for the knd-dimensional coordinates as being the sum

of the potentials at each copy system position. We shall use x for the full system coor-

dinate vector x = (x1; ::; xk) 2 Rknd. We shall overload V : Rknd ! R to be given by

V (x) = V (x1; x2; ::; xk) = V (x1) + V (x2) + ::+ V (xk). This means then that, e.g.

exp

�Z T

0

�V (x1(t); x2(t))dt
�
= exp

�Z T

0

�V (x1(t))dt
�
exp

�Z T

0

�V (x2(t))dt
�

, (2.79)

and hence where copies have sources (x1; : : : ; xk) and destinations (y1; : : : ; yk), and Xi are

for the paths followed by each system copy,

JT (x; y) =

Z
CT;y0;x

kY
j=1

exp

�Z T

0

�V (Xj(t))dt

�
dwT;y0;x

=

kY
j=1

Z
C
T;yj
0;xj

exp

�Z T

0

�V (Xj(t))dt

�
dw

T;yj
0;xj

= JT (x1; y1)JT (x2; y2) : : :JT (xk; yk) (2.80)

Remark 2.3.1 In this case (2.35) becomes

1

2

kX
j=1

ndX
i=1

@2r
(k)
m

@x2ji
(x)�

kX
j=1

V (xj)r
(k)
m (x) = �Fmrm(x) (2.81)

and then the eigenstates for the joint system with the k independent copies, which we shall

denote r(k)m : Rknd ! R; are given by ordered products of k elements from the rm, with
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replacement. Clearly rm1rm2 : : : rmk
has eigenvalue Em1 + Em2 + : : : + Emk

. The fact that

these are the only eigenfunctions follows from (2.80). Then for x; y 2 Rknd, there is a

sequence of eigenvalues Fm and corresponding eigenfunctions r
(k)
m s.t.

JT (x; y) =
1

'T (x; y)

1X
m=0

exp(�FmT )r(k)m (x)r(k)m (y)

=
1

kQ
j=1

'T (xj; yj)

1X
m1=0

� � �
1X

mk=0

"
exp

 
�

kX
j=1

Emj
T

!
kY
j=1

rmj
(xj)rmj

(yj)

#
(2.82)

For example, with k = 2, we have, where Fm = Em1 + Em2 for m = 0; 1; : : : :

JT (x; y) =
1

'T (x; y)

1X
m=0

exp(�FmT )r(2)m (x)r(2)m (y)

=
1

'T (x1; y1)'T (x2; y2)

1X
m1=0

1X
m2=0

exp(�(Em1 + Em2)T )rm1(x1)rm2(x2)rm1(y1)rm2(y2) .

Theorem 2.3.2 (sum to kth state of densities for distinguishable particles) Let JT;k :

Rknd ! R be given by

JT;k(x) =
X
�2�k

sgn(�)'T (x; �x)JT (x; �x)

where �x indicates that systems are permuted (with particle indexing maintained within). Let

the sequence of multiplicities for (2.81) be M0;M1;. . . Let M� =M0+M1+ : : :+Mp�1; and

let k =M� + k� with k� �Mp. Then

M��1X
m=0

r2m(x1) +
k�

Mp

M�+Mp�1X
m=M�

r2m(x1) = k lim
T!1

R
R(k�1)nd JT;k(x)dx2 � � � dxkR
Rknd JT;k(x)dx1 � � � dxk

(2.83)

= k lim
T!1

Z�1T;k

Z
R(k�1)nd

dx2 � � � dxk

"X
�2�k

sgn(�)
1X
m=0

exp(�FmT )r(k)m (x)r(k)m (�x)
#

(2.84)

with ZT;k =
R
Rknd JT;k(x)dx1 � � � dxk.

Proof. Recognise from (2.82) that

1X
m=0

exp (�FmT ) r(k)m (x)r(k)m (�x) =
1X

m1=0

� � �
1X

mk=0

"
exp

 
�

kX
j=1

Eml
T

!
kY
j=1

rmj
(xj)rmj

(x�(j))

#
(2.85)
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Recall that we numbered the eigenstates so that Em � Em+1. The proof is based on the idea

that in the limit as T ! 1, the dominant terms in (2.84) will be those with the minimum

sum of eigenvalues.

We need to start by showing that all the terms containing repeated choices of eigenstates

mj = ml, j 6= l, are zero. So suppose that we pick any term with mj = ml, some j < l.

It is clear that �k can be partitioned into disjoint subsets, each of two elements which are

bijective under the exchange of elements j and l. This is clear because given any � 2 �k,

applying this operation will yield a di¤erent �, but this operation is self-inverse. However, if

we exchange the order of summations, we shall have

JT;k(x) =
1X
m=0

exp (�FmT )
X
�2�k

sgn(�)r(k)m (x)r
(k)
m (�x)

and then we may note that each sum
P

�2�k here is given by the sum of the added contri-

butions from each of these pairs of permutations. However, for our chosen term, the added

contributions from each pair is zero because for all x, the permutations in each pair give

equal values to r(k)m (x)r
(k)
m (�x) but they have opposite signs for sgn(�). (Note that this is

regardless of whether Ej = El.) Therefore the only terms which have a nonzero contribution

to JT;k are indeed those where mj 6= ml for j 6= l.

To �nd the contribution to
R
R(k�1)nd JT;k(x)dx2 � � � dxk from these terms, consider what

will happen for permutations other than the identity. Firstly note that

rm(�x) =
kY
j=1

rm��1(j)
(xj) (2.86)

and suppose that for some system copy xl we have �
�1(l) 6= l for some l > 1. Then notice

that Z
R(k�1)nd

nY
j=1

rmj
(xj)rm��1(j)

(xj)dx2 : : : dxn

can be separated; ie let us consider the integral w.r.t. dxl to be performed last, treating

the result from integrating over the other variables as constant. Due to the orthogonality of

the rm it then follows, however, that the result must be zero. Therefore in (2.84) the only
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contribution to any term with no repeated eigenstate indices is from � = id. Thus,

Z
R(k�1)nd

JT;k(x)dx2 : : : dxn =

Z
R(k�1)nd

dx2 : : : dxn

26664 XX
mj2f0;1;::g for j=f1;::;kg;

mj 6=ml for j 6=l

exp

 
�

kX
j=1

Emj
T

!
kY
j=1

r2mj
(xj)

37775 =
1X

m1=0

26664exp (�Em1T ) r
2
m1
(x1)

XX
mj2f0;1;::g for j2f2;::;kg;
mj 6=ml for j 6=l;l2f1;:::;kg

exp

 
�

kX
j=2

Emj
T

!Z
R(k�1)nd

kY
j=2

r2mj
(xj)dx2 : : : dxn

37775

=

1X
m1=0

26664exp (�Em1T ) r
2
m1
(x1)

XX
mj2f0;1;::g for j2f2;::;kg;
mj 6=ml for j 6=l;l2f1;:::;kg

exp

 
�

kX
j=2

Emj
T

!37775 (2.87)

If we consider that the summands are equal for reorderings of fm2; ::;mkg then counting

through all � 2 �k�1 we shall �ndZ
R(k�1)nd

JT;k(x)dx2 : : : dxn = (k � 1)!
1X

m1=0

XX
mk>mk�1>:::>m2�0;
mj 6=m1;j2f2;:::;kg

exp

 
�

kX
j=1

Emj
T

!
r2m1
(x1)

(2.88)

and meanwhileZ
Rknd

JT;k(x)dx1 : : : dxn = (k � 1)!
1X

m1=0

XX
mk>mk�1>:::>m2�0;
mj 6=m1;j2f2;:::;kg

exp

 
�

kX
j=1

Emj
T

!
(2.89)

= k!
XX

mk>mk�1>:::>m1�0
exp

 
�

kX
j=1

Emj
T

!
: (2.90)

Now let us ask what terms in (2.88) give the minimum value to
kP
j=1

Emj
. Clearly these consist

of choosing all the values up to M� � 1, and also k� values from fM�; : : : ;M� +Mp � 1g.

Thus if we consider the full unordered set of mj to be sampled without replacement over

f1; : : : ;M� + Mp � 1g with f1; : : : ;M� � 1g fully populated, we are then allowing m1 to

range over this set, in order to count all the dominant terms in (2.88). (This also counts the

dominant terms in (2.90), of which there are then
�
Mp

k�

�
k.) Thus, there are

�
Mp

k�

�
choices which

put m1 equal to any particular value in f0; : : : ;M� � 1g but
�
Mp�1
k��1

�
choices which make m1
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equal to any particular value in fM�; : : : ;M� +Mp � 1g, and
�
Mp�1
k��1

�� �
Mp

k�

�
= k/Mp so

lim
T!1

R
R(k�1)nd JT;k(x)dx2 � � � dxkR
Rknd JT;k(x)dx1 � � � dxk

=
1

k

 
M��1X
m=0

r2m(x1) +
k�

Mp

M�+Mp�1X
m=M�

r2m(x1)

!
as required.

In particular, this means that if the sequence of multiplicities is known then we are able

to �nd the average over eigenstates up to a certain energy level:

Corollary 2.3.3 Let JT;k : Rknd ! R be given by

JT;k(x) =
X
�2�k

sgn(�)'T (x; �x)JT (x; �x)

where �x indicates that systems are permuted (with particle indexing maintained within). Let

the sequence of multiplicities be M0;M1; :: and let k =M0 +M1 + : : :+Mp. Then

k�1X
m=0

r2m(x1) = k lim
T!1

R
R(k�1)nd JT;k(x)dx2 � � � dxkR
Rknd JT;k(x)dx1 � � � dxk

: (2.91)

Proof. Follows immediately with this choice of k.

Since we therefore know how to approximate
Pk�1

m=0 r
2
m(x1) for any k (without introducing

any additional bias) such that exactly the �rst p + 1 energy levels are populated, we can

take 1
Mp

�Pk�1
m=0 r

2
m(x1)�

Pk�1�Mp

m=0 r2m(x1)
�
to �nd the average of the set of eigenstates that

share the (p+ 1)th eigenvalue.

We shall now consider the case of indistinguishable particles and see that while there is

not a similarly elegant expression, we can nonetheless still achieve an analogous result via

quantities de�ned in terms of functional integrals.

Theorem 2.3.4 (approximation to nth state for indistinguishable particles) Let IT;k :

Rknd ! R be given by

IT;k(x) =
X
�2�k

sgn(�)

kY
j=1

q(xj; x�(j)) =
X
�2�k

sgn(�)
kY
j=1

P
�2�n

'T (xj;�x�(j))

n!
IT (xj; x�(j)) .

Then

M��1X
m=0

j�mj
2 (x1) +

k�

Mp

M�+Mp�1X
m=M�

j�mj
2 (x1) = k lim

T!1

R
R(k�1)nd IT;k(x)dx2 � � � dxkR
Rknd IT;k(x)dx1 � � � dxk

. (2.92)
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Proof. We shall work backwards using the logic of the proof of the previous theorem:

we shall seek an IT;k(x) giving (2.92); it shall turn out to be as claimed.

Firstly consider that if we can achieve the equivalent of (2.87), ie

Z
R(k�1)nd

IT;k(x)dx2 : : : dxn =

Z
R(k�1)nd

dx2 : : : dxn

26664 XX
mj2f0;1;::g for j2f1;::;kg;

mj 6=ml for j 6=l

exp

 
�

kX
j=1

Emj
T

!
kY
j=1

�mj
(xj)�

�
mj
(xj)

37775 (2.93)

then the same logic as given above will lead to the desired conclusion. In order to achieve

(2.93), however, it shall be seen that it is su¢ cient to have

IT;k(x) =
X
�2�k

sgn(�)
XX

mj2f0;1;::g for j2f1;::;kg

exp

 
�

kX
j=1

Emj
T

!
kY
j=1

�mj
(xj)�

�
mj
(x�(j)) (2.94)

because then the same reasoning will apply as before, �rst to get rid of terms with repeated

energy indices and to then get rid of contributions from non-identity permutations in the

remaining terms. However, (2.94) clearly means that

IT;k(x) =
X
�2�k

sgn(�)
kY
j=1

q(xj; x�(j))

as claimed.

It should be noted that there are therefore marked di¤erences between the way that the

copied system must be treated, and the way that a system of fermions is treated in order to

get the density. Some permutations of particles will occur with an opposite sign in IT;k for n

fermions, from what they would have for IT with kn fermions, and others that occur in IT

with kn fermions will not occur at all in IT;k with n fermions. For the reader to recognise

this immediately, Figure 2.1 shows what paths are collected for IT;2 for a system of 2 1D

fermions (the particles in x1 are marked in green and those in x2 are marked in pink).

Remark 2.3.5 We have presented Theorem 2.3.4 as useful in conjunction with an asymp-

totic approximation to system ground states via Path Integral Monte Carlo. However, it

could well also apply when using a zero-temperature simulation method, provided that it is
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Figure 2.1: Contributions to IT;2 for 2 1D fermions

possible to use such a method to make an estimate of limT!1 IT;k(x), and this would be a

promising direction of further inquiry.
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Chapter 3

On numerical integration methods for

conditional Wiener integrals

In the preceding chapters, we have discussed at length some of the reasons why we would

like to simulate conditional Wiener integrals, which we shall write as

U =
Z
CT;xT0;x0

F (x)dwT;xT0;x0
(x) = EF (X) (3.1)

for some F : CT;xT0;x0
! R, where X � wT;xT0;x0

. Consequently, as mentioned in Chapter 1,

it is desirable to �nd a random variable for which draws can be made, whose expectation

U is close to U . In particular, in our work we shall focus on the case that this random

variable is F (Xh), for another random variableXh with the same codomain asX, measurable

with respect to a set of discretization points X(t0); : : : ; X(tN) whose maximum spacing is

h := max0�k�N�1 (tk+1 � tk).

De�nition 3.0.6 In these conditions, when��U � U�� = ��EF (X)� EF (Xh)
�� � Khp

for a constant K independent of h, we say that the method U has weak order of conver-

gence p.

The key result of this chapter is that a particular piecewise constant method has weak

order of convergence 2 in the case of integration w.r.t. the conditional Wiener measure, for
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a rather general class of functionals. It is immediately clear that the same must then hold

true when the integration measure is wT;�nxT0;x0
.

We shall begin, in Section 3.1, by recalling the Fréchet derivative and Taylor�s Theorem

for functionals; this shall be the main tool in proving Theorem 3.2.1. We shall then specify

precisely a set of assumptions on the functional being integrated which are su¢ cient to make

the result valid, and then proceed to state and brie�y discuss the result; this constitutes

Section 3.2. The proof of Theorem 3.2.1 has its own section devoted to it.

3.1 Fréchet derivatives and Taylor�s Theorem

In this section we begin by recalling necessary background concepts, namely the Fréchet

derivative and Taylor�s theorem for functionals. We shall also specify the class of functionals

for which the corresponding convergence theorem shall shortly be proved. This is done via

the formal assumptions listed in Subsection 3.1.1. Then in Subsection 3.1.2, we give some

examples from this class of functionals.

Fréchet Derivatives

Let A[0; T ] be the space of right-continuous functions x : [0; T ] ! Rd which have no

essential discontinuities. Suppose F : A[0; T ] ! R. Then if it exists, the �rst Fréchet

derivative of F at x in the direction � 2 A[0; T ] is given by (see [KF57]):

F (1)(x)(�) = lim
"!0

F (x(�) + "�(�))� F (x(�))
"

(3.2)

and further Fréchet derivatives are de�ned according to the necessary pattern, that the

(n+ 1)th derivative in the directions (�1; �2; : : : ; �n; �n+1) is simply the derivative of the nth

derivative in direction (�1; : : : ; �n); in the direction �n+1.

Taylor�s theorem

The following result is proven in works such as [KF57].
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Theorem 3.1.1 (Taylor�s theorem for functionals) For any n 2 N, we can expand

F (x+ �) about F (x) and have an expression for the remainder term:

F (x+ �) = F (x) + F (1)(x)(�) + � � �+ 1

n!
F (n)(x)(�; : : : ; �) (3.3)

+
1

(n+ 1)!
F (n+1)(x+ ��)(�; : : : ; �); 0 < � < 1:

3.1.1 The class of functionals to be considered

Let us consider functionals F (x) de�ned on the space A[0; T ] of right-continuous d-

dimensional vector-functions x(t) on the interval [0; T ] without discontinuities of the second

kind, i.e., consider functionals on a larger space than CT;b0;a :We impose the following assump-

tions on F:

(FA) Assumptions.

1. Let 0 < �1 < � � � < �i < � � � < �n < T: Introduce the measure �r on [0; T ]r which is

the sum of r-dimensional Lebesgue measure on [0; T ]r; (r � 1)-dimensional Lebesgue

measure on the hyperplanes f(s1; : : : ; sr) 2 [0; T ]r : sj = �ig; i = 1; : : : ; n; j = 1; : : : ; r;

and on the diagonal hyperplanes f(s1; : : : ; sr) 2 [0; T ]r : si = sjg; (r � 2)-dimensional

Lebesgue measure on (r � 2)-dimensional hyperplanes f(s1; : : : ; sr) 2 [0; T ]r : sk = �i

and sl = �j; k 6= lg and f(s1; : : : ; sr) 2 [0; T ]r : si = sj and sk = slg; and so

on, including the one-dimensional Lebesgue measure on the lines fs1 = �i1 ; : : : ; sr�1 =

�ir�1g; ij 2 f1; : : : ; ng; and on the diagonal fs1 = s2 = � � � = srg plus the unit measures

concentrated on the points (�i1 ; : : : ; �ir); ij 2 f1; : : : ; ng:

2. We assume that the functional F (x) is six times Fréchet di¤erentiable and that its r-th

derivative has the following form:

F (r)(x)(�1; : : : ; �r) =

Z
[0;T ]r

v(r)(x; s1; : : : ; sr)�1(s1) � � � �r(sr)�r(ds1 � � � dsr); (3.4)

r = 1; : : : ; 6;
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where �i 2 A[0; T ] and the vector-functions v(r)(x; s1; : : : ; sr) are symmetric in the

arguments s1; : : : ; sr and uniformly bounded for x 2 A[0; T ]; si 2 [0; T ]:

3. For any function x 2 A[0; T ] constant on a semi-interval [c0; c0) � [0; T ]; there are

continuous derivatives

d

ds
v(1)(x; s);

@

@s1
v(2)(x; s1; s2); s1 6= s2; sj 6= �i;

d

ds
v(2)(x; s; s);

d

ds
v(2)(x; s; �i); i = 1; : : : ; n;

which are bounded by a constant independent of [c0; c0) and x 2 A[0; T ]:

We recall (see, e.g. [KF57]) that F (r)(x)(�1; : : : ; �r) are r-linear functionals. Under

Assumptions (FA) we prove a convergence theorem (Theorem 3.2.1) for the method proposed

in Section 3.2.2. We emphasize that the method is applicable much more widely. The reason

we need to treat up to the sixth Fréchet derivative is that we are going to need to ensure

that the local error is third-order in the timestep, and for the sixth derivative it is possible

to show that the remainder, when applying Taylor�s Theorem is third-order, as we shall see.

Roughly speaking, one might say that we consider functionals of the general form on

A[0; T ] which satisfy some conditions on smoothness and boundedness. As is usual for any

numerical methods, if we weaken the assumptions about the smoothness then, as a rule, the

convergence order of the considered method becomes lower than the optimal one. In phys-

ical applications, the smoothness part of Assumptions (FA) is not particularly restrictive

since it is usually satis�ed. The assumption on boundedness of derivatives of functionals can

be, to some extent, weakened without loss of convergence order but this would signi�cantly

complicate the proof of the convergence theorem. At the same time, the common computa-

tional practice in quantum statistical mechanics is to curtail potentials so that they and their

derivatives remain bounded which usually implies boundedness of derivatives of functionals.

Alternatively, the concept of rejecting exploding trajectories from [MT05] could be exploited

here. That is, we might choose not to take into account those trajectories which leave a
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bounded domain S during the time T . The domain S is chosen so that the boundedness

condition is satis�ed when x(�) 2 S.

3.1.2 Examples of functionals

To illustrate the class of functionals satisfying Assumptions (FA), we give two particular

examples here, although many more can be immediately constructed.

1. We start with the integral-type functionals (see the functional needed to compute the

correlation function (2.72)):

F (x(�)) = '

�
x(�);

Z T

0

f(t; x(t)) dt

�
; 0 � � � T; x 2 Cd0;a;T;b : (3.5)

One can check that if the functions f(t; x) and '(x; z) have continuous and bounded deriva-

tives up to a su¢ ciently high order then Assumptions (FA) hold. In particular, the Fréchet

derivatives (3.4) have the form here:

F (1)(x)(�1) =

Z
[0;T ]

v(1)(x; s1)�1(s1)�1(ds1)

with

v(1)(x; s1)�1(s1) =
@'

@z
rxf(s1; x(s1)) � �1(s1); s1 6= �;

v(1)(x; �)�1(�) = rx' � �1(�);

and the measure �1 being the sum of the Lebesgue measure on [0; T ] and the unit measure

concentrated at the point �;

F (2)(x)(�1; �2) =

Z
[0;T ]2

v(2)(x; s1; s2)�1(s1)�2(s2)�2(ds1ds2)
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with

v(2)(x; s1; s2)�1(s1)�2(s2) =
@2'

@z2
rxf(s1; x(s1)) � �1(s1) rxf(s2; x(s2)) � �2(s2);

s1 6= s2; si 6= �;

v(2)(x; s; �)�1(s)�2(�) =

dX
i=1

@2'

@z@xi
rxf(s; x(s)) � �1(s)�i2(�); s 6= �;

v(2)(x; s; s)�1(s)�2(s) =
@'

@z

dX
i;j=1

@2f

@xi@xj
(s; x(s))�i1(s)�

j
2(s); s 6= �;

v(2)(x; �; �)�1(�)�2(�) =

dX
i;j=1

@2'

@xi@xj
�i1(�)�

j
2(�);

and the measure �2 being the sum of the two-dimensional Lebesgue measure on [0; T ]2; the

one-dimensional Lebesgue measures on the lines fs1 = �g and fs2 = �g and on the diagonal

fs1 = s2g; and the unit measure concentrated at the point (�; �); the other derivatives can

be written analogously. In the above formulas the derivatives of the function ' are taken at

the point
�
x(�);

R T
0
f(t; x(t)) dt

�
and the dot � means the usual scalar product of vectors.

2. Let functions f(t; x); g(t; x); and '(z) have continuous and bounded derivatives up

to a su¢ ciently high order. Then the functional

F (x(�)) = '

�Z T

0

Z t

0

f(s; x(s)) g(t; x(t)) dsdt

�
satis�es Assumptions (FA).

3.2 The piecewise constant method

In this Section, �rst, in Subsection 3.2.1, some background details are o¤ered. Then, in

Subsection 3.2.2, the precise statement of the main result of this chapter is made.

3.2.1 Background: orders of convergence

When a functional F is given by F (x(�)) = exp
�R T

0
f(t; x(t))dt

�
, we say that F is an

exponential-type functional. A case of particular interest is when F is the exponentiated
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action functional (cf (1.2)):

Y (x(�)) = exp
�
�
Z T

0

V (x(t))dt

�
= exp(�S(x)).

In [GM84, VGM84] (see also [MT04]), the probabilistic approach was used for computing

Wiener integrals with respect to the unconditional Wiener measure, and it was shown that

a piecewise constant method gives rise to a bias that is O(h2) where h is the timestep of

the method, for a relatively general class of functionals. In [MT04ii] (see also [MT04]) the

same approach was exploited to compute conditional Wiener integrals of exponential-type

functionals. We may also note that there are a large number of methods and results (see,

e.g. [MT04] and references therein) for approximating simple functionals f(X(T )); where f

is a function from a su¢ ciently wide class and X(t); t0 < t < T; is a solution of SDEs. But

not much attention (except, e.g. [Mac97, MT04, VGM84]) has been paid to approximating

general functionals depending on trajectories of the SDE solution.

There is a body of work in the physics literature that is concerned with the special case

of integrating the exponentiated action functional. The Markov property of the conditional

Wiener measure appears there as the fact that the thermal density matrix may be regarded as

the product of "high-temperature" density matrices. One possible way to approximate this

product is to treat the commutator of the kinetic and potential energy operators as zero, and

this is called the primitive approximation to the action, or the primitive action [Cep95]. This

is essentially equivalent to the piecewise constant method that is to be considered in what

follows, and comes down to using the trapezoidal rule for S(x). In [Tro59] it was proven that

if the Hamiltonian operator is self-adjoint then in the limit of a small timestep, convergence

to (2.69) is achieved. The fact that the trapezoidal rule is of order h2, in the special case of

the action functional, has been addressed in works such as [Suz91, Suz94, IT01].

Thus, it has not to date been proven that for the fairly general class of functionals satis-

fying (FA), the piecewise constant method has bias of order h2 when using the conditional

Wiener measure. It is readily seen that in applications it can be important to be able to deal

with functionals which are not exponential-type, however. As in the case of (2.77), they may
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arise naturally in the �diagonalization�of functional integrals corresponding to observables

whose corresponding operators are diagonal in the momentum representation.

Higher order methods

Results from [Suz91] state that no method based on quadrature of S(x) can be of higher

order than 2 even for the action functional. For exponential-type functionals generally, an

explicit Runge-Kutta method of order 4 is described in [MT04]. However, in experiments

with the order 4 method, it was found to be rather unstable for longer times T: Speci�cally,

there is a tendency for the Runge-Kutta multiplicand to take values greater than 1, and

subsequently, the estimator of exp
�
�
R t
0
V (X(s))ds

�
will head for +1. Apparently, if we

consider evaluating V at points which are not on the sampled trajectory X(s) then it is

possible to attain a higher-order numerical method for the action functional in this way

[PD03, Pre04]; in these works only the local error is discussed.

An alternative, which has been used for most of the simulation work in this thesis, is to

use Simpson�s Rule for S(X), which has bias of order h2, but such that the constant on the

h2 term is considerably less than that encountered using the Trapezoidal Rule.

3.2.2 De�nition of the piecewise constant method

Here, on the one hand, we deal with a more complicated system than in [GM84, VGM84],

since the SDEs involved in the method are singular. On the other hand, we consider a much

wider class of functionals than in [MT04ii]. The proposed method is new in comparison with

the ones available in [MT04ii] and it is analogous to the one used in the case of the usual

Wiener measure [VGM84].

We introduce a discretization of the time interval [0; T ]

0 = t0 < t1 < � � � < tN = T



57

so that the points �i; i = 1; : : : ; n; belong to the set ft0; t1; : : : ; tNg. Let

h := max
0�k�N�1

(tk+1 � tk) :

and tk+1=2 := (tk+1 + tk) =2; k = 0; : : : ; N �1: Let us introduce a piecewise constant function

Xh(t); t 2 [0; T ]; given by:

Xh(t) := a; t 2 [0; t1=2); (3.6)

Xh(t) := X(tk); t 2 [tk�1=2; tk+1=2); k = 1; : : : ; N � 1;

Xh(t) := b; t 2 [tN�1=2; T ]:

Clearly, trajectories Xh(!) belong to the space A[0; T ]:

We de�ne the piecewise constant approximation of the conditional Wiener integral U as

follows:

U = EF (X) � U = EF (Xh): (3.7)

Figure 3.1: Illustration of piecewise constant method Xh.

This method is analogous to the one used in the case of the usual (unconditional) Wiener

measure [VGM84] (see also [MT04]). The key result of this chapter is that the method
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(3.7), (3.6) applied to evaluation of the conditional Wiener integral (3.1) is of second order

of accuracy, i.e., ��U � U�� = ��EF (X)� EF (Xh)
�� � Kh2; (3.8)

where the constant K is independent of h (although naturally it may vary depending on the

structure of timesteps used and depending upon F ).

We prove the following convergence theorem.

Theorem 3.2.1 Assume that Assumptions (FA) hold. The method (3.7),(3.6) applied to

evaluation of the Wiener integral (3.1) is of second order of accuracy, i.e.,

��U � U�� = ��EF (X)� EF (Xh)
�� � Kh2; (3.9)

where the constant K is independent of h:

The proof of the theorem is given in the next section. In Section 4.3, some numerical

experiment results are provided which provide some illustration of (3.9).

Remark 3.2.2 The method (3.7),(3.6) is exact (i.e., there is no integration error) on the

class of functionals which depend only on the value of the function x(t) at a �nite number

of points �i; i = 1; : : : ; n:

The method (3.7), (3.6) together with the Monte Carlo technique gives an e¤ective algo-

rithm for computing conditional Wiener integrals, which is very simple to realize in practice.

The method (3.7), (3.6) can be interpreted as a trapezoidal scheme. This interpretation

becomes obvious in the case of integral-type functionals (see (3.38), (3.39)).

Now consider the Euler method, i.e., introduce the piecewise constant function Xh
E(t);

t 2 [0; T ] :

Xh
E(t) := X(tk); t 2 [tk; tk+1); k = 0; : : : ; N � 1; Xh

E(T ) := b: (3.10)

Theorem 3.2.3 Assume that Assumptions (FA):1 and (FA):3 hold and (FA):2 holds with

r = 1; 2; 3; 4 in (3:4). Then
EULER

U = EF (Xh
E) (3.11)
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approximates U with the �rst order of accuracy.

The proof of this theorem is easier than that of Theorem 3.2.1 and it is omitted here.

3.3 Proof of the convergence theorem

Here we exploit some constructions from [VGM84], although the singularity of the drift in

(2.21) as t approaches T causes additional di¢ culties, which are overcome by adopting ideas

from [MT04ii]. For simplicity and legibility, let us prove the theorem in the one-dimensional

case d = 1. No additional ideas are required to carry it over to an arbitrary dimension d

(see however Remark 3.3.2 at the end of this section). Note that in this section we shall use

the letter K to denote various constants which are independent of k and h:

Wewould like to break down the global error EF (X)�EF (Xh) into a sum of contributions

from so-called local errors. With a view to this, we shall now introduce an auxiliary processes

Xk(t); k = 0; : : : ; N :

Xk(t) := X(t)�[0;tk)(t) +X(tk)�[tk;T ](t) +
N�1X
j=k

�jX�[tj+1=2;T ](t); (3.12)

�jX := X(tj+1)�X(tj);

We shall need to make a careful choice of path to use as an expansion point when applying

Taylor�s Theorem, and this is supplied by introducing a further auxiliary process, which we

shall call �Xk(t); k = 0; : : : ; N � 1 :

�Xk(t) := X(t)�[0;tk)(t) +X(tk)�[tk;T ](t) (3.13)

+

N�1X
j=k+1

�
�jX + (tj+1 � tj)

Z tk+1

tk

dW (s0)

T � s0

�
�[tj+1=2;T ](t):

We note that �Xk(t) = X(tk) for t 2 [tk; tk+3=2) \ [0; T ]; i.e., the random function �Xk(t) is

constant on the interval [tk; tk+3=2) \ [0; T ]:

One can see that XN(t) = X(t) and X0(t) = Xh(t): We rewrite the global error in the
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form:

EF (X)� EF (Xh) = EF (XN)� EF (X0) (3.14)

=
N�1X
k=0

[EF (Xk+1)� EF (Xk)] :

Thus, we need to analyze the di¤erence

�k := EF (Xk+1)� EF (Xk): (3.15)

Consider the Taylor formula for functionals (3.3) applied with n = 6:

F (x+ �) = F (x) + F (1)(x)(�) + � � �+ 1

5!
F (5)(x)(�; : : : ; �)

+
1

6!
F (6)(x+ ��)(�; : : : ; �); 0 < � < 1:

We expand F (Xk+1) and F (Xk) at �Xk:

F (Xk+i) = F ( �Xk) +

Z
[0;T ]

v(1)( �Xk; s1)�k;i(s1)�1(ds1) + � � � (3.16)

+
1

5!

Z
[0;T ]5

v(5)( �Xk; s1; : : : ; s5)�k;i(s1) � � � �k;i(s5)�5(ds1 � � � ds5)

+
1

6!

Z
[0;T ]6

v(6)( �Xk + �i�k;i; s1; : : : ; s6)�k;i(s1) � � � �k;i(s6)�6(ds1 � � � ds6);

0 < �i < 1; i = 0; 1;

where

�k;0(s) = Xk(s)� �Xk(s) = �kX�[tk+1=2;T ](s)�
Z tk+1

tk

dW (s0)

T � s0

N�1X
j=k+1

(tj+1 � tj)�[tj+1=2;T ](s)

(3.17)

= �[tk+1=2;T ](s)

�
(tk+1 � tk)

b�X(tk)

T � tk
+ (T � tk+1)

Z tk+1

tk

dW (s0)

T � s0

�
�
Z tk+1

tk

dW (s0)

T � s0

N�1X
j=k+1

(tj+1 � tj)�[tj+1=2;T ](s);
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�k;1(s) = Xk+1(s)� �Xk(s) = (X(s)�X(tk))�[tk;tk+1)(s) + �kX�[tk+1;T ](s)

�
Z tk+1

tk

dW (s0)

T � s0

N�1X
j=k+1

(tj+1 � tj)�[tj+1=2;T ](s)

= �[tk;tk+1)(s)

�
(s� tk)

b�X(tk)

T � tk
+ (T � s)

Z s

tk

dW (s0)

T � s0

�
+�[tk+1;T ](s)

�
(tk+1 � tk)

b�X(tk)

T � tk
+ (T � tk+1)

Z tk+1

tk

dW (s0)

T � s0

�
�
Z tk+1

tk

dW (s0)

T � s0

N�1X
j=k+1

(tj+1 � tj)�[tj+1=2;T ](s):

It is clear that �k;0(s) = �k;1(s) for s =2 (tk; tk+1): It can also be seen that the measure

�r; r = 1; : : : ; 6; of the set S
(r)
k on which the di¤erence

rQ
j=1

�k;1(sj)�
rQ
j=1

�k;0(sj) is di¤erent from

zero has order O(h): Indeed, S(r)k =
rS
j=1

f(s1; : : : ; sr) : sj 2 (tk; tk+1)g and hence �r
�
S
(r)
k

�
<

r�r (f(s1; : : : ; sr) : s1 2 (tk; tk+1)g) ; which is of order O(h): Further, it is not di¢ cult to

verify that the integral
Z s

tk

dW (s0)

T � s0
; tk � s � tk+1; and �Xk are independent by showing that

E

�
�Xk(t)

Z s

tk

dW (s0)

T � s0

�
= 0 for any 0 � t � T and tk � s � tk+1. In what follows these

properties are used in analysis of the parts of �k. We shall also exploit the inequality (see,

e.g. [MT04ii, Lemma A.4]) for any p � 1

Ejb�X(tk)j2p � K (T � tk)
p : (3.18)

We have from (3.15) and (3.16):

�k = E

Z
[0;T ]

v(1)( �Xk; s1) [�k;1(s1)� �k;0(s1)] �1(ds1) (3.19)

+
1

2
E

Z
[0;T ]2

v(2)( �Xk; s1; s2) [�k;1(s1)�k;1(s2)� �k;0(s1)�k;0(s2)] �2(ds1ds2) + � � �

+
1

5!
E

Z
[0;T ]5

v(5)( �Xk; s1; : : : ; s5)

"
5Y
j=1

�k;1(sj)�
5Y
j=1

�k;0(sj)

#
�5(ds1 � � � ds5)

+
1

6!
E

Z
[0;T ]6

[v(6)( �Xk + �1�k;1; s1; : : : ; s6)

6Y
j=1

�k;1(sj)

� v(6)( �Xk + �0�k;0; s1; : : : ; s6)
6Y
j=1

�k;0(sj)]�6(ds1 � � � ds6):

Before we start with analysis of �k; we state the lemma which will be used in estimating the

second term of (3.19) and which is proved at the end of this section.
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Lemma 3.3.1 Let Us(x) := v(2)(x; s; s): The following estimate holds�����EUtk( �Xk)

"
(b�X(tk))

2

(T � tk)
2 � 1

T � tk

#����� � Kp
T � tk

;

where K > 0 is a constant independent of k and h:

Now we analyze the terms forming �k in (3.19). Introduce the indicator Ik = If�1;:::;�ng(tk):

We obtain for the �rst term in (3.19):

r
(1)
k := E

Z
[0;T ]

v(1)( �Xk; s1) [�k;1(s1)� �k;0(s1)] �1(ds1)

= E

Z tk+1

tk

v(1)( �Xk; s1) [�k;1(s1)� �k;0(s1)] ds1

+ v(1)( �Xk; tk) [�k;1(tk)� �k;0(tk)] Ik + v(1)( �Xk; tk+1) [�k;1(tk+1)� �k;0(tk+1)] Ik+1

= E

Z tk+1

tk

v(1)( �Xk; s1)

�
(s1 � tk)

b�X(tk)

T � tk
+ (T � s1)

Z s1

tk

dW (s0)

T � s0

�
ds1

� E
Z tk+1

tk+1=2

v(1)( �Xk; s1)

�
(tk+1 � tk)

b�X(tk)

T � tk
+ (T � tk+1)

Z tk+1

tk

dW (s0)

T � s0

�
ds1

= E
b�X(tk)

T � tk

"Z tk+1

tk

v(1)( �Xk; s1)(s1 � tk)ds1 � (tk+1 � tk)

Z tk+1

tk+1=2

v(1)( �Xk; s1)ds1

#

= E
b�X(tk)

T � tk

"Z tk+1=2

tk

v(1)( �Xk; s1)(s1 � tk)ds1 �
Z tk+1

tk+1=2

v(1)( �Xk; s1)(tk+1 � s1)ds1

#
:

Integrating by parts, we get

r
(1)
k = E

b�X(tk)

T � tk

�
v(1)( �Xk; tk+1=2)

(tk+1 � tk)
2

8
�
Z tk+1=2

tk

d

ds1
v(1)( �Xk; s1)

(s1 � tk)
2

2
ds1

�v(1)( �Xk; tk+1=2)
(tk+1 � tk)

2

8
�
Z tk+1

tk+1=2

d

ds1
v(1)( �Xk; s1)

(tk+1 � s1)
2

2
ds1

#

= �Eb�X(tk)

T � tk

�Z tk+1=2

tk

d

ds1
v(1)( �Xk; s1)

(s1 � tk)
2

2
ds1

+

Z tk+1

tk+1=2

d

ds1
v(1)( �Xk; s1)

(tk+1 � s1)
2

2
ds1

#
:

It follows from here and the inequality (3.18) that

jr(1)k j �
Kh3p
T � tk

; k = 0; : : : ; N � 1: (3.20)
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Now consider the second term in (3.19). We obtain

r
(2)
k :=

1

2
E

Z
[0;T ]2

v(2)( �Xk; s1; s2) [�k;1(s1)�k;1(s2)� �k;0(s1)�k;0(s2)] �2(ds1ds2) (3.21)

=
1

2
E

Z
[0;T ]2

v(2)( �Xk; s1; s2)

�
("
(s1 � tk)(s2 � tk)

(b�X(tk))
2

(T � tk)
2 + (s1 ^ s2 � tk)

T � s1 _ s2
T � tk

#

� �[tk;tk+1)(s1)�[tk;tk+1)(s2)

+ 2

"
(tk+1 � tk)(s1 � tk)

(b�X(tk))
2

(T � tk)
2 + (s1 � tk)

T � tk+1
T � tk

#
�[tk;tk+1)(s1)�[tk+1;T ](s2)

+

"
(tk+1 � tk)

2 (b�X(tk))
2

(T � tk)
2 + (tk+1 � tk)

T � tk+1
T � tk

#

�
�
�[tk+1;T ](s1)�[tk+1;T ](s2)� �[tk+1=2;T ](s1)�[tk+1=2;T ](s2)

�

� 2

T � tk

N�1X
j=k+1

(tj+1 � tj)�[tj+1=2;T ](s2)

�
h
(s1 � tk)�[tk;tk+1)(s1)� (tk+1 � tk)�[tk+1=2;tk+1)(s1)

io
�2(ds1ds2):

We decompose the integral from (3.21) and estimate each part separately. We have

A1k := E

Z
[0;T ]2

v(2)( �Xk; s1; s2) (3.22)

�
"
(s1 � tk)(s2 � tk)

(b�X(tk))
2

(T � tk)
2 + (s1 ^ s2 � tk)

T � s1 _ s2
T � tk

#

� �[tk;tk+1)(s1)�[tk;tk+1)(s2)�2(ds1ds2)

= E

Z tk+1

tk

v(2)( �Xk; s; s)

"
(s� tk)

2 (b�X(tk))
2

(T � tk)
2 + (s� tk)

T � s

T � tk

#
ds

+ E

Z tk+1

tk

Z tk+1

tk

v(2)( �Xk; s1; s2)

�
"
(s1 � tk)(s2 � tk)

(b�X(tk))
2

(T � tk)
2 + (s1 ^ s2 � tk)

T � s1 _ s2
T � tk

#
ds1ds2;

where the last integral is estimated by Kh3 by observing that sup jv(2)j is bounded (see

Assumptions (FA)) and using (3.18) to get

E
(b�X(tk))

2

(T � tk)
2 � K

T � tk
� K

h
:
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Also note that in (3.22) we omit the integrals over the measure concentrated on the lines

s = tk and s = tk+1 and over the unit measures since it is obvious that they are equal to

zero. Further, since v(2)( �Xk; s; s) = v(2)( �Xk; tk; tk) +
R s
tk

d
ds0v

(2)( �Xk; s
0; s0)ds0; the �rst integral

in the right-hand side of (3.22) can be written as

E

Z tk+1

tk

v(2)( �Xk; s; s)

"
(s� tk)

2 (b�X(tk))
2

(T � tk)
2 + (s� tk)

T � s

T � tk

#
ds

= Ev(2)( �Xk; tk; tk)

"
(b�X(tk))

2

(T � tk)
2

Z tk+1

tk

(s� tk)
2ds+

Z tk+1

tk

(s� tk)
T � s

T � tk
ds

#

+ E

Z tk+1

tk

Z s

tk

d

ds0
v(2)( �Xk; s

0; s0)

"
(s� tk)

2 (b�X(tk))
2

(T � tk)
2 + (s� tk)

T � s

T � tk

#
ds0ds;

where the second integral is estimated by Kh3 using the same arguments as in (3.22). So,

A1k = Ev
(2)( �Xk; tk; tk)

"
(b�X(tk))

2

(T � tk)
2

(tk+1 � tk)
3

3
+
(tk+1 � tk)

2

2

T � tk+1 + (tk+1 � tk)=3

T � tk

#

+O(h3)

with jO(h3)j � Kh3: The next part of (3.21) can be written as

A2k := 2E

Z
[0;T ]2

v(2)( �Xk; s1; s2)

"
(tk+1 � tk)(s1 � tk)

(b�X(tk))
2

(T � tk)
2 + (s1 � tk)

T � tk+1
T � tk

#

� �[tk;tk+1)(s1)�[tk+1;T ](s2)�2(ds1ds2)

= 2E

Z T

tk+1

Z tk+1

tk

v(2)( �Xk; s1; s2)

"
(tk+1 � tk)(s1 � tk)

(b�X(tk))
2

(T � tk)
2

+(s1 � tk)
T � tk+1
T � tk

�
ds1ds2

+
nX
i=1

I�i>tkE

Z tk+1

tk

v(2)( �Xk; s1; �i)

"
(tk+1 � tk)(s1 � tk)

(b�X(tk))
2

(T � tk)
2 + (s1 � tk)

T � tk+1
T � tk

#
ds1

= 2E

"
(tk+1 � tk)

3

2

(b�X(tk))
2

(T � tk)
2 +

(tk+1 � tk)
2

2

T � tk+1
T � tk

#

�
"Z T

tk+1

v(2)( �Xk; tk; s2)ds2 +

nX
i=1

I�i>tkv
(2)( �Xk; tk; �i)

#
+O(h3):

The third part of (3.21) is

A3k := E

"
(tk+1 � tk)

2 (b�X(tk))
2

(T � tk)
2 + (tk+1 � tk)

T � tk+1
T � tk

#Z
[0;T ]2

v(2)( �Xk; s1; s2)

�
h
�[tk+1;T ](s1)�[tk+1;T ](s2)� �[tk+1=2;T ](s1)�[tk+1=2;T ](s2)

i
�2(ds1ds2):
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We have for the integral in A3k :Z
[0;T ]2

v(2)( �Xk; s1; s2)
h
�[tk+1;T ](s1)�[tk+1;T ](s2)� �[tk+1=2;T ](s1)�[tk+1=2;T ](s2)

i
�2(ds1ds2)

=

Z T

tk+1

v(2)( �Xk; s; s)ds�
Z T

tk+1=2

v(2)( �Xk; s; s)ds

+ 2
nX
i=1

I�i>tk

"Z T

tk+1

v(2)( �Xk; s; �i)ds�
Z T

tk+1=2

v(2)( �Xk; s; �i)ds

#

+

Z T

tk+1

Z T

tk+1

v(2)( �Xk; s1; s2)ds1ds2 �
Z T

tk+1=2

Z T

tk+1=2

v(2)( �Xk; s1; s2)ds1ds2

= �(tk+1 � tk)

2
v(2)( �Xk; tk; tk)� (tk+1 � tk)

nX
i=1

I�i>tkv
(2)( �Xk; tk; �i) +O(h2)

� 2
Z T

tk+1=2

Z tk+1

tk+1=2

v(2)( �Xk; s1; s2)ds1ds2 +

Z tk+1

tk+1=2

Z tk+1

tk+1=2

v(2)( �Xk; s1; s2)ds1ds2

= �(tk+1 � tk)

2
v(2)( �Xk; tk; tk)� (tk+1 � tk)

nX
i=1

I�i>tkv
(2)( �Xk; tk; �i)

� (tk+1 � tk)

Z T

tk+1

v(2)( �Xk; tk; s2)ds2 +O(h2):

Then

A3k = �E
" 

v(2)( �Xk; tk; tk) + 2
nX
i=1

I�i>tkv
(2)( �Xk; tk; �i)

!

�
 
(tk+1 � tk)

3

2

(b�X(tk))
2

(T � tk)
2 +

(tk+1 � tk)
2

2

T � tk+1
T � tk

!#

� E
"
(tk+1 � tk)

3 (b�X(tk))
2

(T � tk)
2 + (tk+1 � tk)

2T � tk+1
T � tk

#Z T

tk+1

v(2)( �Xk; tk; s2)ds2

+O(h3):

The last part of (3.21) is

A4k := �
2

T � tk
E

Z
[0;T ]2

v(2)( �Xk; s1; s2)

N�1X
j=k+1

(tj+1 � tj)�[tj+1=2;T ](s2)

�
h
(s1 � tk)�[tk;tk+1)(s1)� (tk+1 � tk)�[tk+1=2;tk+1)(s1)

i
�2(ds1ds2)

= � 2

T � tk
E

Z
[0;T ]2

v(2)( �Xk; s1; s2)
N�1X
j=k+1

(tj+1 � tj)�[tj+1=2;T ](s2)

�
h
(s1 � tk)�[tk;tk+1=2)(s1)� (tk+1 � s1)�[tk+1=2;tk+1)(s1)

i
�2(ds1ds2)
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= � 2

T � tk
E

"Z T

tk+3=2

N�1X
j=k+1

(tj+1 � tj)�[tj+1=2;T ](s2)

�
 Z tk+1=2

tk

v(2)( �Xk; s1; s2)(s1 � tk)ds1 �
Z tk+1

tk+1=2

v(2)( �Xk; s1; s2)(tk+1 � s1)ds1

!
ds2

+

nX
i=1

I�i>tk+1(�i � tk+1)

�
 Z tk+1=2

tk

v(2)( �Xk; s1; �i)(s1 � tk)ds1 �
Z tk+1

tk+1=2

v(2)( �Xk; s1; �i)(tk+1 � s1)ds1

!#
:

Exploiting arguments similar to the ones used before, it is not di¢ cult to get that A4k =

O(h3):

As a result, we obtain

r
(2)
k =

1

2
(A1k + A2k + A3k + A4k) (3.23)

= �(tk+1 � tk)
3

12
Ev(2)( �Xk; tk; tk)

"
(b�X(tk))

2

(T � tk)
2 � 1

T � tk

#
+O(h3):

Applying Lemma 3.3.1, we get

jr(2)k j �
Kh3p
T � tk

: (3.24)

Now we estimate the remaining terms in (3.19). We obtain from (3.17):

�k;0(s) = �[tk+1=2;T ](s)(tk+1 � tk)
b�X(tk)

T � tk
+

Z tk+1

tk

dW (s0)

T � s0

N�1X
j=k+1

(tj+1 � tj)�[tk+1=2;tj+1=2)(s):

Then

Ev(3)( �Xk; s1; s2; s3)

3Y
i=1

�k;0(si)

= Ev(3)( �Xk; s1; s2; s3)

�
3Y
i=1

0@(tk+1 � tk)
b�X(tk)

T � tk
�[tk+1=2;T ](si) +

tk+1Z
tk

dW (s0)

T � s0

N�1X
j=k+1

(tj+1 � tj)�[tk+1=2;tj+1=2)(si)

1A

= Ev(3)( �Xk; s1; s2; s3)(tk+1 � tk)
2 b�X(tk)

(T � tk)
2

 
(tk+1 � tk)

(b�X(tk))
2

T � tk

3Y
i=1

�[tk+1=2;T ](si)

+
3X
i=1

�[tk+1=2;T ](si)

T � tk+1

Y
l 6=i

N�1X
j=k+1

(tj+1 � tj)�[tk+1=2;tj+1=2)(sl)

!
:
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From here, we get the estimate�����E[v(3)( �Xk; s1; s2; s3)

3Y
j=1

�k;0(sj)]

����� � Kh2p
T � tk

:

Analogously, we obtain�����E[v(3)( �Xk; s1; s2; s3)
3Y
j=1

�k;1(sj)]

����� � Kh2p
T � tk

:

Then, also taking into account that the measure �3 of the set S
(3)
k on which the di¤erenceY3

j=1
�k;1(sj)�

Y3

j=1
�k;0(sj) is di¤erent from zero has order O(h); we arrive at�����16E

Z
[0;T ]3

v(3)( �Xk; s1; s2; s3)

"
3Y
j=1

�k;1(sj)�
3Y
j=1

�k;0(sj)

#
�3(ds1ds2ds3)

����� (3.25)

=

�����16E
Z
[0;T ]3

I
S
(3)
k
(s1; s2; s3)v

(3)( �Xk; s1; s2; s3)

"
3Y
j=1

�k;1(sj)�
3Y
j=1

�k;0(sj)

#
�3(ds1ds2ds3)

�����
� 1

6

Z
[0;T ]3

I
S
(3)
k
(s1; s2; s3)

"
jEv(3)( �Xk; s1; s2; s3)

3Y
j=1

�k;1(sj)j

+jEv(3)( �Xk; s1; s2; s3)
3Y
j=1

�k;0(sj)j
#
�3(ds1ds2ds3) �

Kh3p
T � tk

:

Since we have for the terms in (3.17)

E (�kX)
4 � Kh2; E (X(s)�X(tk))

4 �[tk;tk+1)(s) � Kh2;

E

 Z tk+1

tk

dW (s0)

T � s0

N�1X
j=k+1

(tj+1 � tj)�[tj+1=2;T ](s)

!4
� Kh2;

and the measure �4 of the set S
(4)
k on which the di¤erence

Y4

j=1
�k;1(sj) �

Y4

j=1
�k;0(sj) is

di¤erent from zero has order O(h); we obtain����� 14!E
Z
[0;T ]4

v(4)( �Xk; s1; : : : ; s4)

"
4Y
j=1

�k;1(sj)�
4Y
j=1

�k;0(sj)

#
�4(ds1 � � � ds4)

����� (3.26)

� 1

4!
sup jv(4)j

Z
[0;T ]4

I
S
(4)
k
(s1; : : : ; s4)

 
Ej

4Y
j=1

�k;1(sj)j+ Ej
4Y
j=1

�k;0(sj)j
!
�4(ds1 � � � ds4)

� Kh3:



68

By analogous arguments, we get����� 15!E
Z
[0;T ]5

v(5)( �Xk; s1; : : : ; s5)

"
5Y
j=1

�k;1(sj)�
5Y
j=1

�k;0(sj)

#
�5(ds1 � � � ds5)

����� (3.27)

� 1

5!
sup jv(5)j

Z
[0;T ]5

E

�����
5Y
j=1

�k;1(sj)�
5Y
j=1

�k;0(sj)

����� �5(ds1 � � � ds5)
� Kh7=2:

Since E
Y6

j=1
j�k;i(sj)j � Kh3; the last term in (3.19) is estimated as����� 16!E
Z
[0;T ]6

[v(6)( �Xk + �1�k;i; s1; : : : ; s6)
6Y
j=1

�k;1(sj) (3.28)

�v(6)( �Xk + �0�k;i; s1; : : : ; s6)
6Y
j=1

�k;0(sj)]�6(ds1 � � � ds6)
�����

� 1

6!
sup jv(6)j

�����
Z
[0;T ]6

E

"
6Y
j=1

j�k;1(sj)j+
6Y
j=1

j�k;0(sj)j
#
�6(ds1 � � � ds6)

�����
� Kh3:

Substituting (3.20), (3.24)-(3.28) in (3.19), we get

j�kj �
Kh3p
T � tk

; k = 0; : : : ; N � 1;

which together with (3.14)-(3.15) implies (3.9). Theorem 3.2.1 is proved. �

Proof of Lemma 3.3.1. Assumptions (FA) ensure that for a �xed � 2 [0; T ] the

functional U� (x) = v(2)(x; � ; �) is Fréchet di¤erentiable and its derivative has the form:

U (1)� (x)(�) =

Z T

0

u(1)(x; s)�(s)ds+ u(1)(x; �)�(�) +

nX
i=1

u(1)(x; �i)�(�i);

where u(1)(x; s) is uniformly bounded for x 2 A[0; T ]; s 2 [0; T ]:

We also note [MT04ii, Corollary A.1] that

 (tl) :=
(b�X(tl))

2

(T � tl)
2 � 1

T � tl
; l = 0; : : : ; N � 1;

is a martingale.
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Introduce the auxiliary processes �X(0)
k (t); k = 0; : : : ; N � 1 :

�X
(0)
k (t) :=

�Xk(t)�[0;tk)(t) + b�[tk;T ](t):

Using the Taylor formula for functionals, we get

Utk(
�Xk) = Utk(

�X
(0)
k ) +

Z T

0

u(1)( �X
(0)
k + ��; s)�(s)ds+ u(1)( �X

(0)
k + ��; tk)�(tk)

+

nX
i=1

u(1)( �X
(0)
k + ��; �i)�(�i);

where

�(s) = �Xk(s)� �X
(0)
k (s)

=

"
X(tk) +

N�1X
j=k+1

�
�jX + (tj+1 � tj)

Z tk+1

tk

dW (s0)

T � s0

�
�[tj+1=2;T ](s)� b

#
�[tk;T ](s)

and 0 < � < 1.

We have

��EUtk( �Xk) (tk)
�� � ���EUtk( �X(0)

k ) (tk)
���+ ����E (tk)Z T

tk

u(1)( �X
(0)
k + ��; s) (3.29)

�
"
X(tk) +

N�1X
j=k+1

�
�jX + (tj+1 � tj)

Z tk+1

tk

dW (s0)

T � s0

�
�[tj+1=2;T ](s)� b

#
ds

�����
+
���E (tk)u(1)( �X(0)

k + ��; tk) (X(tk)� b)
���+ nX

i=1

I�i>tk

���E (tk)u(1)( �X(0)
k + ��; �i)�(�i)

��� :
It is not di¢ cult to see that the second term in the right-hand side of (3.29) is bounded by

a constant and the third and fourth terms are bounded by K=
p
T � tk: Thus,

��EUtk( �Xk) (tk)
�� � ���EUtk( �X(0)

k ) (tk)
���+ Kp

T � tk
: (3.30)

Now introduce the auxiliary processes �X(j)
k (t); j = 1; : : : ; k; k = 0; : : : ; N � 1 :

�X
(j)
k (t) :=

�X
(j�1)
k (t)�[0;tk�j)(t) + b�[tk�j ;T ](t):

We have

Utk(
�X
(j�1)
k ) = Utk(

�X
(j)
k ) +

Z T

0

u(1)( �X
(j)
k + ��; s)�(s)ds+

nX
i=1

u(1)( �X
(j)
k + ��; �i)�(�i);
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where

�(s) = �X
(j�1)
k (s)� �X

(j)
k (s) = (X(s)� b)�[tk�j ;tk�j+1)(s):

Then (as before, Ik = If�1;:::;�ng(tk)) :

Utk(
�X
(j�1)
k ) = Utk(

�X
(j)
k ) +

Z tk�j+1

tk�j

u(1)( �X
(j)
k + ��; s) [X(s)� b] ds (3.31)

+ Ik�ju
(1)( �X

(j)
k + ��; tk�j) [X(tk�j)� b] :

Recalling that  (tl); l = 0; : : : ; N � 1; is a martingale and observing that Utk( �X
(j)
k ) is Ftk�j -

measurable, we get that

���EUtk( �X(j)
k ) (tk�j+1)

��� = ���EUtk( �X(j)
k ) (tk�j)

��� : (3.32)

It follows from (3.31)-(3.32) that

���EUtk( �X(j�1)
k ) (tk�j+1)

��� � ���EUtk( �X(j)
k ) (tk�j)

��� (3.33)

+

�����E (tk�j+1)
Z tk�j+1

tk�j

u(1)( �X
(j)
k + ��; s) [X(s)� b] ds

�����
+ Ik�j

���E (tk�j+1)u(1)( �X(j)
k + ��; tk�j) [X(tk�j)� b]

��� :
The second term in the right-hand side of (3.33) is estimated as�����E (tk�j+1)

Z tk�j+1

tk�j

u(1)( �X
(j)
k + ��; s) [X(s)� b] ds

�����
� sup ju(1)j

Z tk�j+1

tk�j

q
E 2(tk�j+1)

q
E [X(s)� b]2ds

� K

T � tk�j+1

Z tk�j+1

tk�j

p
T � s ds

� Kp
T � tk�j+1

(tk�j+1 � tk�j) :

The third term in the right-hand side of (3.33) is estimated as KIk�j=
p
T � tk�j+1: Then

���EUtk( �X(j�1)
k ) (tk�j+1)

��� � ���EUtk( �X(j)
k ) (tk�j)

���+ Kp
T � tk�j+1

(tk�j+1 � tk�j) (3.34)

+
KIk�jp
T � tk�j+1

; j = 1; : : : ; k:
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It follows from (3.30), (3.34), and the evident inequality
���EUtk( �X(k)

k ) (0)
��� � K that

��EUtk( �Xk) (tk)
�� � Kp

T � tk
+K

kX
j=1

(tk�j+1 � tk�j)p
T � tk�j+1

+K

kX
j=1

Ik�jp
T � tk�j+1

:

Recalling that the number of points �i is equal to the �xed n, we get
Pk

j=1 Ik�j � n. Finally,

we obtain

��EUtk( �Xk) (tk)
�� � Kp

T � tk
+

Kp
T � tk

kX
j=1

(tk�j+1 � tk�j) +
Kp
T � tk

kX
j=1

Ik�j

� Kp
T � tk

:

Lemma 3.3.1 is proved. �

Remark 3.3.2 It is notable that in the multidimensional case (d > 1), the integrand of

(3:21) contains cross-terms in all coordinate pairs i; j, viz �ik;1(s1)�
j
k;1(s2) � �ik;0(s1)�

j
k;0(s2).

The terms corresponding to i = j are estimated in the same way as in the considered one-

dimensional case. For i 6= j, the contribution from all stochastic integral terms is zero

and the right-hand side of (3:21) has terms with (bi �X i(tk))(b
j �Xj(tk))=(T � tk)

2; which

are martingales [MT04ii, Corollary A.1] and their further estimation yields O(h3=
p
T � tk)

again. In (3:23) it should be understood that the term 1=(T � tk) only appears for i = j.

3.4 Integral-type functionals

In this section we consider conditional Wiener integrals of integral-type functionals:

F (x(�)) = '

�
x(�);

Z T

0

f(t; x(t)) dt

�
; 0 < � < T; x 2 Cd0;a;T;b: (3.35)

Introduce the scalar process Z(t) satisfying the equation

dZ = f(t;X(t))dt; Z(0) = 0; (3.36)

where X(t) is the solution of (2.21). Clearly, the conditional Wiener integral U from (3.1)

of the functional (3.35) is equal to the expectation

U = E' (X(�); Z(T )) : (3.37)
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The approximation (3.7), (3.6) applied to (3.1), (3.35) results in the trapezoidal method for

Z :

U � U = E' (X(�); ZN) ; (3.38)

where

Z0 = 0; (3.39)

Zk+1 = Zk +
tk+1 � tk

2
[f(tk; X(tk)) + f(tk+1; X(tk+1))] ; k = 0; : : : ; N � 1:

Recall that the time discretization used here is so that � 2 ft0; t1; : : : ; tNg:

If we assume that '(x; z) and f(t; x) have bounded derivatives up to a su¢ ciently high

order, it follows from the general Theorem 3.2.1 that the method (3.38), (3.39) for (3.1),

(3.35) has the second order of accuracy; i.e., the estimate (3.9) is valid for it. The other

set of assumptions under which the theorem is valid are that f(t; x) and its derivatives up

to a su¢ ciently high order are bounded and '(x; z) is su¢ ciently smooth. We note that in

the case of integral-type functionals, the convergence theorem can be proved more simply,

exploiting a more standard technique used in the weak-sense approximation of SDEs [MT04]

(see its application in the case of conditional Wiener integrals of exponential-type functionals

in [MT04ii] and in the case of usual Wiener integrals in [VGM84]). It is interesting that no

method of the form

Zk+1 = Zk + (tk+1 � tk)

3X
i=1

�if(tk + �i; X(tk + �i)); �i 2 R; �i 2 [0; tk+1 � tk] ;

has order of accuracy higher than two (in the case of usual Wiener integrals, see a similar

comment in [VGM84]). At the same time, in the case of integral-type functionals of a

particular form �the exponential-type functionals F (x(�)) = exp[
TR
0

f(t; x(t)) dt]; a fourth-

order Runge-Kutta method was constructed in [MT04ii].

We made a computational comparison between (3.39) and the fourth-order Runge-Kutta

method in computing the potential energy of one particle in a 1D harmonic oscillator. De-

spite being of lower order, the method (3.39) turns out to be preferable due to its stabil-

ity properties. These follow from preservation by (3.39) of such structural properties of
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exponential-type functionals as positivity and monotonicity, which can be broken down in

the case of the fourth-order Runge-Kutta method from [MT04ii] (see similar observations

although in a di¤erent context in [MT09]). Further, instead of the trapezoidal rule (3.39),

we can use Simpson�s rule:

Z0 = 0; (3.40)

Zk+1 = Zk +
tk+1 � tk

6

�
f(tk; X(tk)) + 4f(tk+1=2; X(tk+1=2)) + f(tk+1; X(tk+1))

�
;

k = 0; : : : ; N � 1:

Although both methods (3.39) and (3.40) are of order two, the method (3.40) had much

smaller bias in our experiments than the method (3.39) and thus was computationally more

e¤ective. The methods (3.38), (3.39) and (3.38), (3.40) extend the arsenal of numerical tools

considered in [MT04ii, MT04] for computing action integrals given by (2.32).
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Chapter 4

Simulations of Boltzmann and bosonic

statistics

In Chapter 1, we explained why it was important to develop a weak approximation to

our functional integral, in order to then apply the Monte Carlo technique. In the previous

chapter, we introduced such a weak approximation method. In this chapter, we shall begin by

o¤ering a discussion of simulation methods, in Sections 4.1 and 4.2. In Section 4.3, we then

provide some illustrative experimental results, which are in agreement with the theoretical

predictions of the previous chapter. The reader should understand that no particularly novel

ideas are introduced in this Chapter; rather, it is included to provide a sound platform for

what follows.

4.1 The probabilistic approach to �nding expectations

of observables

In Chapter 1, we already introduced the Monte Carlo method for �nding information

about conditional Wiener integrals (cf (3.1)):

U =
Z
CT;xT0;x0

F (x)dwT;xT0;x0
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but in order to �nd expectations of observables, we must make use of (2.69) or (2.71), and

both of these take the form of one functional integral divided by another, this latter being

the partition function Z, given by (2.55). Considering (2.77) and (2.72), it is clear that when

(2.71) leads to an expression suitable for practical implementation, the denominator Z is

often retained and the numerator still involves integration with respect to wT;y0;y or w
T;�ny
0;y ,

or another conditional Wiener measure. Consequently it is of interest to consider how to

simulate a ratio of two "functional integrals" A=Z where for some functional F and for the

action functional Y ,

A =
1

n!

P
�2�n

c(�)

Z
Rnd

Z
CT;�y0;y

'T (y; �y)F (x)dw
T;�y
0;y (x)dy (4.1)

Z =
1

n!

P
�2�n

c(�)

Z
Rnd

Z
CT;�y0;y

'T (y; �y)Y (x)dw
T;�y
0;y (x)dy. (4.2)

Here for concision we de�ne c(�) for the case of distinguishable particles to be n! for the

identity and 0 otherwise. We still let c(�) = 1 for bosons and c(�) = sgn(�) for fermions.

There are a number of rearrangements of (4.1)-(4.2) based on exchanging the sequence of

the sum and integrals, and this shall be discussed further in Subsection 4.2.3.

We should also note that if rather than (4.1), (2.71) were to lead to an expression with

numerator

A = 1

n!

P
�2�n

c(�)

Z
Rnd�Rnd

Z
CT;�y20;y1

'T (y1; �y2)F (x)dw
T;�y2
0;y1

(x)dy1dy2

then it should be clear how to extend the discussion of this chapter to that case.

4.1.1 Integrating in the space of loops

Let us �rst consider how information about quantities such as A (including Z) may be

obtained. We refer to these as functional integrals because we may regard them as integrals

in the space of loops CO = fx 2 C[0;T ]
nd
: x(0) = x(T )g, as follows. Let `(y; �y) : [0; T ]! Rnd

be given by `y;�y(s) =
�
1� s

T

�
y+ s

T
�y. Let us use the notation ��wT;y0;y for the measure on

CO induced by the law of z+ `y;y when (y; z) � ��wT;00;0 , ie the product of Lebesgue measure
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with the conditional Wiener measure wT;00;0 . Then using the linear translation property of the

conditional Wiener measure, which was outlined in Subsection 2.1.3,

A =
1

n!

Z
Rnd

Z
CT;00;0

P
�2�n

c(�)'T (y; �y)F (z + `y;�y)dw
T;0
0;0 (z)dy

=
1

n!

Z
CO

P
�2�n

c(�)'T (y; �y)F (x� `y;y + `y;�y)d
�
�� wT;y0;y

�
(y; x)

: =

Z
CO
G(x)d

�
�� wT;y0;y

�
(y; x) . (4.3)

To facilitate exposition, for the remainder of this section and up until Subsection 4.2.3, we

shall discuss how to estimateAD and ZD, the functional integrals relevant for distinguishable

particles (boltzmannons). Discarding 'T (y; y),

AD =
Z
CO
F (x)d

�
�� wT;y0;y

�
(y; x) . (4.4)

The reader is asked to bear in mind, however, that the following discussion applies readily

to the case of integrating G rather than F and that thus, as we explain in Subsection 4.2.3,

it is relevant to at least two ways of approximating A=Z.

Clearly ��wT;00;0 is not a probability measure, but using the Radon-Nikodym theorem (see

e.g. [Coh80]) we may nonetheless rewrite (4.4) in a form that is accessible for probabilistic

methods. Where � is a Lebesgue-equivalent probability measure over B(Rnd) and f : Rnd !

R is a measurable function,Z
Rnd

f(x)d�(x) =

Z
Rnd

f(x)
d�

d�
(x)d�(x) .

Consequently, for any Lebesgue-equivalent probability measure � over B(Rnd),

AD = E���
�
EX�wT;�0;�

[F (X)]
d�

d�
(�)

�
and we should keep in mind that a similar fact holds with regard to fAD, ie the approximation
to AD that arises from substituting an approximating functional eF for F ; and also with

regard to fZD. Then if we proceed to de�ne a set of i.i.d. random variables fi�gMi=1 with

i� � � , and let iXi� be a set of i.i.d. random variables with codomain R(N+1)nd and the
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law of iXi� induced from wT;i�0;i�
, and (recognising that eF , although de�ned on A[0; T ], is

measurable w.r.t. X(h); X(2h); : : : ; X(T )) we de�ne a random variable

eAMC = 1

M

MP
i=1

� eF (iXi�)
d�

d�
(i�)

�
then it is clear that according to the perspective advanced in Chapter 1, if the drawn value of

eAMC is x then the posterior distribution of fAD is approximately Gaussian�x; V ar( eAMC)�.
The question arises of what choice of � is expedient; basic intuition tells us that we would

like � not to ascribe a high measure to regions where EX��wT;�0;�
[F (X�)] is near zero, and to

ascribe adequate measure to regions where it is not. This is complemented by recalling the

standard conditional variance formula (e.g. [Wil01]), which yields

V ar

264 � � �

X� � wT;�0;�

375� eF (X�)
d�

d�
(�)

�
=

Z
Rnd

V ar

�eF (Xy)
d�

d�
(y)

�
d�(y) + V ar���E

� eF (X�)
d�

d�
(�)

�
=

Z
Rnd

V ar
� eF (Xy)

� d�
d�
(y)

2

dy � fAD2 + Z
Rnd
E

� eF 2(Xy)
d�

d�
(y)

2�
d�(y)

=

Z
Rnd

�
V ar

� eF (Xy)
�
+ E

h eF 2(Xy)
i� d�

d�
(y)

2

dy � fAD2
Therefore where we set p = d�

d�
, optimal choice of p (and hence �) makes the function of y

given by

z(y) = d

dp(y)

��
V ar

� eF (Xy)
�
+ E

h eF 2(Xy)
i�.

p(y)
�

a constant function; that is to say, z(y1) = z(y2) for all y1; y2 2 Rnd. It follows that for the

optimal �,

d�

d�
(y) /

�
V ar

� eF (Xy)
�
+ E

h eF (Xy)
2
i�1=2

.

If we guess that V ar
� eF (Xy)

�
may be somewhat proportional to E eF (Xy) then one good

choice of � would be to make d�
d�
proportional to

�
E eF (Xy)

��
for some optimal � 2 (1=2; 1).

It seems conceivable that E
h eF 2(Xy)

i
often dominates; for example if the conditional distri-

bution of eF (Xy) were Uniform[s; t] for some 0 � s < t < 1 then E
h eF (Xy)

2
i
= (t�s)2

3
+ ts

whereas V ar
� eF (Xy)

�
= (t�s)2

12
. Thus we may imagine that the optimal � is towards 1.
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In simple experiments, using the Gibbs measure for V , ie, d�
d�
(y) / exp (�TV (y)), may

achieve similar e¤ects to optimizing for ZD, as long as T is su¢ ciently small; in some cases

may be possible to sample according to this � directly. In most of the simulations performed

in this chapter, we simply use a Gaussian �, with the covariance matrix optimized by trial

and error in order to achieve a lower variance for eAMC; eZMC, and hence for the posterior
distributions of fAD,fZD.
Estimation of the ratio of functional integrals

We drop the D on AD since the following discussion carries over with no signi�cant

changes for indistinguishable particles.

We have already assumed that we cannot compute quantities such as A and Z directly,

and instead use numerical methods eA � A and eZ � Z. Let us denote the biases by "1; "2 2 R
so that eA = A + "1, eZ = Z + "2. The question immediately arises of in what sense the

posterior distribution of eA; eZ gives rise to information about A/Z. If we are content to

use the simple heuristic of considering a Taylor expansion of the function x�1 about Z for

(Z + "2)
�1 then in fact this yields a most fortuitous result:

ghAi := eAeZ =
A
Z

�
1� "2

Z +
"1
A + h.o.t.

�
(4.5)

where h.o.t. indicates terms of order 2 and above in "1; "2. Therefore we may note in

passing that if it happens that "1="2 is close to A=Z, then it appears that this will have a

favourable e¤ect on the bias for the ratio. More generally, it is clear that the ratio bias is

the same order in the time-step h as "1; "2.

Recalling the Bayesian framework of Chapter 1, if we think of eA; eZ and eAMC; eZMC as
modelled by random variables �1; �2 and #1; #2 respectively, with a joint pdf, then we speak

of the (marginal) joint pdf of (�1; �2) as the prior pdf for
� eA; eZ� ; and given a realisation of� eAMC; eZMC� = (x1; x2) ; we speak of the conditional pdf of (�1; �2) given (#1; #2) = (x1; x2)

as the posterior pdf for
� eA; eZ�; likewise for eA. eZ. If we collect enough information that the

posterior distribution of
� eA; eZ� is (approximately) bivariate Gaussian about � eAMC; eZMC� ;
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with eA = eAMC + �1, eZ = eZMC + �2 then writing

1eZMC + �2
=

1eZMC � �2eZMC 2 + �22eZMC 3 + : : :

it follows that conditional on
� eAMC; eZMC�, where we use E eAeZ to indicate the posterior

expectation of eAeZ , neglecting the contribution from priors we have

E
eAeZ =

eAMCeZMC � Cov(�1; �2)eZMC 2 +
eAMCV ar (�2)eZMC 3 + h.o.t.

where h.o.t. indicates expectations of terms of order 3 and above in �1;2
� eZMC. If all the

other terms can be safely neglected then we shall think that

E
eAeZ �

eAMCeZMC . (4.6)

Neglecting the contribution from priors, the posterior variance of eAeZ is approximately equal to
V ar

� eAMCeZMC
�
(we shall further discuss the posterior distribution of eAeZ shortly). By expandingeZMC�1 as before, roughly speaking we have:

V ar

 eAMCeZMC
!
�
V ar

� eAMC�
E
h eZMCi2 �2

E
h eAMCiCov � eAMC; eZMC�

E
h eZMCi3 +

E
h eAMCi2 V ar � eZMC�

E
h eZMCi4 (4.7)

so clearly, sampling eAMC; eZMC independently would be ine¢ cient. It is advantageous to
obtain as high a covariance between eAMC and eZMC as possible. A simple approach is to use
the same Brownian bridges for both, and let the initial points be perfectly correlated:

eAMC =
1

M

MP
i=1

� eF (iX(1))
d�

d�1
(i�)

�
(4.8)

eZMC =
1

M

MP
i=1

�eY (iX(2))
d�

d�2

�
�2
�1

i�

��
(4.9)

where fi�gMi=1 is a set of i.i.d. r.v.�s with i� � Gaussian(0; �21), and
�
iX(1)

	M
i=1
is a set of i.i.d.

r.v.�s with codomain R(N+1)nd; s.t. the law of iX(1) induces w
T;i�
0;i�
; and where iX(2) = iX(1)�

i�+
�2
�1 i�. (In the case of indistinguishable particles, one approach would be, for example, to

replace F with G, cf (4.3), and likewise for Y .)
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Discretisation sampling methods

Some works, such as [Cep95], describe sampling Brownian bridges using the Bisection

method due to Lévy [Lev39]. However, it is sometimes more convenient to apply the in-

cremental construction of the Brownian bridge as introduced at (2.25). The cost to achieve

particular Monte Carlo errors should be identical to that obtained from using the Lévy con-

struction, or indeed from using any other method of sampling the Gaussian �nite-dimensional

distribution of the discretised path points. In Chapter 3, we used the concept of incremental

sampling in order to prove Theorem 3.2.1. However, it is clear that the method of sampling

the discretisation has no impact on the properties of a numerical method for which the

sampled discretisation serves as input; this shall be emphasised again in Subsection 4.2.4.

4.1.2 Making interval estimates for a ratio of bivariate Gaussian

variables

Clearly it is desirable to be able to report a credibility interval for eA. eZ, given a bivariate
Gaussian posterior density for eA; eZ. We could simply employ (4.7), assuming that we shall
use the sample covariance matrix of eAMC; eZMC as if it were the actual covariance matrix.
We then proceed to approximate the distribution of eA. eZ as Gaussian and voilà! However,
there is no guarantee that the interval thus obtained genuinely has probability at least p.

Approximating the ratio distribution as Gaussian is unjusti�ed; in fact the ratio distribution

is not symmetric, and indeed for some parameters is not unipolar. A better alternative in

this direction would be to exploit an approximation result such as [Hin69].

Bivariate Gaussian contour method

It is usually preferable to �nd an interval (r1; r2) guaranteed to be such that a posteriori,

P
� eA. eZ 2 (r1; r2)� > p. One approach is to consider the contour of likelihood bounding

a set of measure p, and form a sector from 0 bounded by rays which are tangent to this

ellipse. Solving equations yields four candidate points which must be checked for low and
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high extreme values of x=y. Where the sampled value for
� eAMC; eZMC� is (x0; y0), and where

we let V ar
� eAMC� = �2x, V ar

� eZMC� = �2y and denote the correlation by �, and where we

set

K0 =
x20
�2x
� 2� x0y0

�x�y
+
y20
�2y

K = �2(1� �2) ln
�
(1� p)

p
1� �2

�
the possible solutions (points that may extremise x=y) have

y =

�
1� K

K0

�
y0 �

s
K

�
1� K

K0

��
�2y

1� �2
� y20
K0

�
and for each of these values,

x = x0 + �x

 
�
(y � y0)

�y
�

s
K � (y � y0)

2

�2y
(1� �2)

!
.

The main limitation of this procedure is that it delivers intervals which become increasingly

wide relative to the true ones as � gets close to 1.

Bivariate Gaussian Monte Carlo method

If one wishes to �nd a more accurate interval, happily this may be accomplished by a

straightforward expedient: run a post-process Monte Carlo. We let fBigNboxesi=1 be a partition

of some interval (a; b) such that we are happy to assume a priori that eA. eZ lies within

(a; b). (For example, we might choose, say, Nboxes = 104.) We could obtain (a; b) using one

of the above methods, or by trial and error. Then by making a large numberMratio (say, 109)

of bivariate Gaussian draws (again, treating the collected sample covariance matrix as the

true covariance matrix) we may store an array with the sampled frequencies that the ratio

lies within each Bi. A collection of the Bi which form a Highest Probability Density (HPD)

interval can then be ascertained from the array of frequencies. To get a satisfactory estimate

this way is not instant, but typically takes less than 10 minutes using a 2.0 GHz machine.

The question of exactly how the observed HPD interval di¤ers from the true HPD interval

depends on the posterior distribution of eA. eZ, and is not addressed here.
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4.2 Importance sampling and Markov Chain Monte

Carlo

In this section we discuss importance sampling, explain that Markov Chain Monte Carlo

(MCMC) is used in order to achieve this, discuss optimal sampling, and introduce the action

measure, which has a derivative w.r.t. ��wT;y0;y that is proportional to Y (x). We also explain

how we may extend our MCMC to include sampling of initial points and permutations. The

MCMC approach [Met53] is well-known and was �rst introduced in the path integral context

in [FC81]; a comprehensive and modern explanation is o¤ered in [Cep95, Cep03]. This

section draws on material from [Cep95], and in particular, Section 5F of that work explains

the Multilevel Metropolis method as it applies to bosons. However, our focus is on showing

that MCMC is the logical development of the approach discussed in the previous section. A

paper which explains a related idea and also makes some other interesting points is [GM98].

A good resource on the general topic of MCMC is [GRS96]; see also [Mur07, Nea93].

4.2.1 Importance sampling and the action measure

In some cases it will be undesirable to use the conditional Wiener measure to sample

paths. Intuitively, if there are, for instance, many repelling particles, then most Brownian

bridges will have a near-zero contribution to eAMC; eZMC. Consequently, it is desirable to
reduce the Monte Carlo variance by using importance sampling (cf [MT04, p.123]); that is,

by using a di¤erent sampling measure and applying the Radon-Nikodym theorem. (See also

[HF04, p.253] for a discussion of importance sampling and Monte Carlo in a slightly di¤erent

context.)

To simplify the discussion, we shall consider the �nite-dimensional object that is actually

evaluated. Let w� = � � wT;y0;y . Let us write eB = B(X(0); X(h); X(2h); : : : ; X(T )) and let
ew� be the measure on eB induced by the �nite-dimensional distribution corresponding to w�.
Rather than using (4.8)-(4.9), let us consider sampling iX with respect to some e� which is



83

equivalent with ew� and using this same iX for both eAMC and eZMC:
eAMC =

1

M

MP
i=1

� eF (iX)d ew�
de� (iX)

�
(4.10)

eZMC =
1

M

MP
i=1

�eY (iX)d ew�
de� (iX)

�
. (4.11)

This has the advantage that we may decide to let de�
d ew� be proportional to any function

f : RNnd ! R, without needing to know the integral of f with respect to ew� in order to
evaluate contributions, if we are interested only in the ratio eAMC. eZMC, because we may
write

eAMCeZMC =
1
M

MP
i=1

h eF (iX) 1
f(iX)

i
1
M

MP
i=1

heY (iX) 1
f(iX)

i . (4.12)

Again employing the rough approximation (4.7) and noting that under (4.10)-(4.11),

V ar
� eZMC� =

1

M

�Z
RNnd

�eY (x)2 d ew�
de� (x)2

�
de�(x)� eZ2�

V ar( eAMC) =
1

M

�Z
RNnd

� eF (x)2 d ew�
de� (x)2

�
de�(x)� eA2�

Cov
� eAMC; eZMC� =

1

M

�Z
RNnd

� eF (x)eY (x) d ew�
de� (x)2

�
de�(x)� eA eZ�

we �nd that

V ar

 eAMCeZMC
!
� 1

M eZ2
0@Z

RNnd

24 eF (x)� eY (x) eAeZ
!2

d ew�
de� (x)2

35 de�(x)�K

1A
where K 2 R is a constant. We assumed e� to be equivalent with ew�, so let us write p for
de�
d�
= de�

d ew� d ew�d� , a function from RNnd to R+. Then subject toZ
RNnd

p(x)dx = 1
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we may proceed by trying to minimize

Z
RNnd

24 eF (x)� eY (x) eAeZ
!2

d ew�
de� (x)

35 d ew(x) =
Z
RNnd

24 eF (x)� eY (x) eAeZ
!2

d ew�
de� (x)d ew�d�

(x)

35 dx
=

Z
RNnd

24 eF (x)� eY (x) eAeZ
!2

d ew�
d�

(x)
d�

de� (x)d ew�d�
(x)

35 dx
=

Z
RNnd

24 eF (x)� eY (x) eAeZ
!2

d ew�
d�

(x)
2 1

p(x)

35 dx
but then it is clear that the optimum is to make d

dp(x)

�� eF (x)� eY (x) eAeZ�2 d ew�
d�
(x)

2
�
p(x)

�
equal at all x 2 RNnd. It follows that

p(x) /
�����
 eF (x)� eY (x) eAeZ

!
d ew�
d�

(x)

�����
and thus that de�

d ew (x) is proportional to
��� eF (x)� eY (x) eAeZ ���. Since eAeZ is not known a priori (in

fact it is what we are trying to �nd), we would have to guess a value � for this in order to

get a reasonable measure with respect to which we might integrate; perhaps a suitable value

would be furnished by information from a short non-optimized simulation. We may then use

(4.12):

eAMCeZMC =
1
M

MP
i=1

� eF (iX) 1

j eF (iX)��eY (iX)j
�

1
M

MP
i=1

�eY (iX) 1

j eF (iX)��eY (iX)j
� .

and no error is introduced here. Using a suboptimal measure (inaccurate �) a¤ects only the

variance obtained.

In the work [Cep96], the case is discussed of a quantity that is diagonal in the position

representation, so that F = AY and an intuitive discussion of the optimal sampling measure

in that case is o¤ered.
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Using the action measure gets rid of the need for a normalizing constant

The author of [Cep96] then argues that it is preferable to instead let de�
d ew (x) be proportional

to
���eY (x)���. In the case of boltzmannons (and bosons), we shall then �nd that the denominator

integral disappears completely in (4.12):eAMCeZMC = 1

M

MP
i=1

" eF (iX)eY (iX)
#

(4.13)

and in particular if F = AY then the contributions are just eA(iX). Since we usually think
of F (x) as being positively correlated with Y (x) under w�, it seems that in general, this

(discretized) action measure e� makes a sensible choice of measure. In [Cep96, p.5] several
other arguments against using the optimal sampling measure are advanced.

In fact we could have performed all of the above discussion using the space of loops,

although being able to utilize Lebesgue measure was clearly more convenient here. If we

now introduce the (true) action measure �, de�ned on B (CO) via d�
dw� (x) / Y (x); ie, to spell

it out, for any B 2 B (CO),

�(B) =

R
B
Y (x)d

�
�� wT;y0;y

�
(y; x)R

CO Y (x)d
�
�� wT;y0;y

�
(y; x)

: (4.14)

then it is already evident that e� is the measure induced by the �nite-dimensional distribution
of �. We shall loosely refer to either e� or � as the action measure, in the case of distinguishable
particles, without much cause for confusion. It is clear that

hAi =
Z
CO

F (x)

Y (x)
d�(x)

and we have introduced an approximation,

ghAi = Z
RNnd

eF (x)eY (x)de�(x). (4.15)

4.2.2 Sampling according to the action measure via Markov Chain

Monte Carlo

The question is then begged, however, of how sampling according to the action measure

is to be performed. The answer is that since we know the relative probability of two points
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in the sample space (ie, two discretisations), we may use Metropolis Markov Chain Monte

Carlo [Met53, FC81, Cep03]. We form a Markov chain with a transition density such that

when ergodicity is attained, the invariant measure is the measure that we seek. In order to

obtain the correct transition density, we use a two-step algorithm consisting of (1) drawing

a "proposal" or "candidate" move; (2) accepting or rejecting this move. Sampling according

to the action measure and sampling via Markov Chain Monte Carlo (MCMC) are separate

concepts which should not be intellectually confounded, although in practice it is necessary

to run an MCMC in order to sample according to the action measure. The MCMC can-

didate move could in principle follow any distribution conditional on the current point in

(discretised) path space.

In Path Integral Monte Carlo, a popular strategy for proposing candidate moves is known

as the Multilevel Metropolis method [Cep95, Cep03] (note that despite the name, there is no

connection with hierarchical modelling). In order to create a candidate for the MCMC step,

�rst a subset A of the particles and a subset fi; : : : ; i+2j�1g, with counting moduloN , of the

time-slices are sampled, according to whatever law we see �t. Outside of A�fi; : : : ; i+2j�1g,

the candidate will be left equal to the current position. Within A � fi; : : : ; i + 2j � 1g,

we sample "free-particle" moves, i.e. Brownian bridges with altered variance, to be the

candidate moves. We now use Eq. (5.32) from [Cep95]. We shall use � for the pdf that

corresponds to the �nite-dimensional distribution of the conditional Wiener measure. Let

s 2 Rnd(2j�1) represent the current position and s0 2 Rnd(2j�1) the candidate position, and

let sk 2 Rnd(2
k�1) denote the �rst k levels of s; likewise s0k. Let pk : Rnd(2

k�1) ! R denote

likelihood in the target (that is, the pdf of the �nite-dimensional distribution of e�) for the
�rst k levels. Meanwhile let qk : Rnd(2

k�1) ! R denote likelihood in the candidate for the

�rst k levels. Then

pk(s) = �(sk)eY (sk): (4.16)

The acceptance probability for level k is then given by

Pk(s
0
k) = min

�
1;
qk(skjsk�1)pk(s0k)pk�1(sk�1)
qk(s0kjs0k�1)pk(sk)pk�1(s0k�1)

�
: (4.17)
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Therefore if qk is taken equal to �, we have

qk(sk)pk(s
0)pk�1(s)

qk(s0k)pk(s)pk�1(s
0)
=
�(skjsk�1)
�(s0kjs0k�1)

�(s0k�1)�(s
0
kjs0k�1)

�(sk�1)�(skjsk�1)
�(sk�1)

�(s0k�1)

eY (s0k)eY (sk�1)eY (s0k�1)eY (sk) (4.18)

=
eY (s0k)eY (sk�1)eY (s0k�1)eY (sk) : (4.19)

Thus, distributing the candidate via Brownian bridge and then not introducing any com-

pensating factors for this gives a correct formula. In e¤ect if we take the candidate as per

the Brownian bridge then we can accept or reject based on eY . This then yields sampling
according to e�: The Multilevel approach involves the additional steps to spread the chance
of rejection over the levels, ie to include a rejection step at each iteration of the bisection

method, since computing eY for the candidate path is assumed to be the most expensive part
of the algorithm. In practice, when a section of the path is being resampled, often a cheap

approximation to eY may be used for the earlier steps. It is possible to then weight back for

this as further candidate path points fx(tk)g are chosen.

4.2.3 Including permutations in the random sampling

We have deliberately treated the case of distinguishable particles �rst but let us now

reconsider how to treat bosons (and by extension, fermions). Recalling (4.3),

A =
1

n!

P
�2�n

c(�)

Z
CO
'T (y; �y)F (x)d

�
�� wT;�y0;y

�
(y; x) (4.20)

=

Z
CO
G(x)d

�
�� wT;y0;y

�
(y; x) (4.21)

=

Z
�n�CO

c(�)'T (y; �y)F (x)d
�
U � �� wT;y0;y

�
(�; y; x) (4.22)

where U indicates the discrete uniform measure on the �nite set �n. Furthermore, if we set

C� = fX 2 CT0 : X(T ) = �X(0) for some � 2 �ng and de�ne w?� = � � �(y)wT;�ny0;y where

�(y) =
P

�2�n 'T (y; �y),

A =
Z
C�
c

�
x(T )

y

�
F (x)dw?� (y; x) (4.23)

In general, collecting all n! summands in (4.20) is ine¢ cient, since they do not provide

equally important contributions to the integral, and sampling within �n is desirable. To
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sample according to a normalised wT;�ny0;y , ie to use a mixing measure where permutations

receive Gaussian weightings, would also be ine¢ cient.

As already discussed, the popular approach to the problem is to avoid having to estimate a

denominator integral separately (cf (4.12)), which here means that we sample within �n�CO

so that jc(�)'T (y; �y)Y (x)j = 'T (y; �y)Y (x) is the Radon-Nikodym derivative between the

sampling measure and U � ��wT;y0;y . To look at this another way, we could say that we are

sampling X within C� so that Y (x) is the Radon-Nikodym derivative between the sampling

measure and w?�. We then shall �nd that (4.13) again applies. Let us therefore de�ne, now

for indistinguishable particles, the action measure �, de�ned on the Borel �-algebra B (C�)

and given by

�(B) =

R
B
Y (x)dw?�(y; x)R

C� Y (x)dw
?�(y; x)

: (4.24)

It is immediately evident from the de�nition of � that for bosons,

hAi =
Z
C�

F (x)

Y (x)
d�(x).

In particular, if F (x) = A(x)Y (x) then

hAi =
Z
C�
A(x)d�(x): (4.25)

In order to perform the sampling according to the action measure via the Multilevel

Metropolis approach in the case of bosons, we proceed much as described in Subsection 4.2.2,

except that during our MC step we allow the possibility that some particles are permuted

between the �rst and last time-slices of the move. (In [Cep95] the suggested method involves

including cyclic permutations in each candidate move.) To justify this procedure, intuitively

it is su¢ cient to recognise that if we consider times 0 and T to be identi�ed, then by

symmetry we might as well allow the permutation to happen at any time-slice. (In fact, it is

partly in this that the elegance of using the action measure lies: the initial system position,

once identi�ed with the terminal system position, is robbed of any special signi�cance and

is treated the same way to the position at any other time-slice.)
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We can, more rigorously, regard the problem from the perspective of using the state space

Rnd
�
�n. Let us use C� for the set of loops fX : [0; T ] ! Rnd

�
�n s.t. X(0) = X(T )g.

Then as long as F has permutational symmetry, we have for bosons (cf (2.68))

A = 1

n!

Z
C�
F (x)d

�
�� �(y)wT;�ny0;�ny

�
(y; x) . (4.26)

Imagine that we intended to sample (in C�) according to � � wT;�ny0;�ny
, ie the projection of

w� on to C�. Let us resample intermediate discretisation points in Rnd
�
�n; say that in

projection, Xi�1 = �nx1 and Xi+2j = �nx2 . We have said that we can obtain w
t
i+2j

;�nx2

ti�1;�nx1

via w
t
i+2j

;�nx2
ti�1;x1 (see Subsection 2.1.4), so it follows that it is valid to generate points in Rnd

according to ewti+2j ;�nx2ti�1;x1 , and then consider the equivalent points in Rnd
�
�n to have been

sampled.

Again, to develop an intuitive understanding of this, consider what happens if we are

trying to integrate with respect to wT;xT0;x0
and we resample the section of the path over (0; t),

but according to wt;�nx0;x0
where x is the X(t) already obtained. It is a fact that the points �nx

have the same relative likelihood under wT;�nxT0;x0
as their relative probability under wt;�nx0;x0

;

this is clear if one considers that the measures for X(t) supplied by wT;xT0;x0
and wT;
xT0;x0

are

conjugated by 
. Meanwhile X(t;T ] has been sampled according to w
T;xT
t;x but in projection

to paths with state space Rnd
�
�n this is the same as w

T;xT
t;
x for any 
 2 �n. Thus the

projection of the resampled path is being sampled according to wT;�nxT0;�nx0
.

What this really means is that in e¤ect we have a procedure, involving allowing permu-

tations at intermediate times, for sampling in C� according to w�. But we may therefore

employ the usual Metropolis approach, using this type of sampling in w� for the candidate

at each step, to create samples according to �.

An alternative procedure is to also consider permutations between each step of the resam-

pled section, as they are generated. This could be advantageous both from the perspective

of consistency and from the perspective of being congenial to good progress through the full

space of paths.
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Permutation sampling for fermions Although our main discussion of fermions is in the

next chapter, it is pertinent to note at this point why exactly the same sampling procedure

is valid in the fermion case, if one wishes to attain the action measure. The di¤erence is

then that we are no longer integrating a functional which is measurable with respect to the

projection of X into C�: Rather, we integrate such a functional multiplied by the sign of the

overall permutation (ie, that permutation which is obtained by travelling along the path X

through a full circumference of time from any t back to itself). However, it is easily seen that

where � = �1�2; sgn(�) = sgn(�1) sgn(�2) and consequently if we multiply our functional by

the signature of the permutation obtained every time that we perform a resampling, then

the overall sign will be maintained equal to the signature of the overall permutation.

4.2.4 Numerical results still apply under importance sampling

It should be emphasised that to this point, there can be no interaction between the

e¤ectiveness of numerical and simulation methods. In Chapter 1, we assumed that we

would try to �nd a weak approximation eU to a functional integral U , and then estimate the
value of eU via Monte Carlo; the sampling measure and other aspects of the Monte Carlo

method cannot a¤ect the relationship between U and eU . In this Chapter, in Subsection
4.1.1, we have introduced the same idea for estimating hAi; in particular, we identi�ed

a weak approximation to hAi ( cf (4.5),(4.15)), and have also discussed how to best use

Monte Carlo to provide information about this ghAi. To show that the method de�ned in
Subsection 3.2.2 is of second order when using the action measure, as it is for direct path

sampling, amounts only to observing that the expectation of the Monte Carlo estimator ofghAi is the same in both cases. Consequently, we should write
ghAi = Z

C�

eA(x)de�(x):
To say that there is no interaction at all between the numerical method and the simulation

method is to elide a subtle point: the e¢ ciency of the Monte Carlo may of course be di¤erent

for a di¤erent value of the time-step h, since every h gives rise to a di¤erent simulation. This
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shall actually become important later on, but for bosons probably does not matter at all.

The piecewise constant method as "primitive action"

Interestingly, it was anticipated in [Cep95] that for many so-called �static�quantities, the

numerical method introduced in Subsection 3.2.2 should be second-order. In the physics

literature, using this method to estimate the action functional (which then gives rise to

sampling via the action measure) is referred to as using the symmetrized primitive action.

The author of [Cep95] writes:

We have symmetrized . . . with respect to Rm and Rm�1 [system positions at
the end and start of the time interval] since one knows the exact density matrix
is symmetric and thus the symmetrized form is more accurate.

(The reader should note that more generally, our � is not universally taken to be implied

by the �primitive action�; e.g. as in [Sim05] this term may refer to using the Euler method

(3.11).) As mentioned, it was already known for the action functional itself [Suz91] that

the method of Subsection 3.2.2 is second-order. Our result expands on this in a way which

apparently vindicates the intuition held by physicists.

4.3 Numerical results for boltzmannons and bosons

In this section we present some experiment results intended to provide illustrations of

various facts. Firstly we demonstrate the simulation of a correlation function, for a 1-

dimensional system containing 1 particle, both for the harmonic potential and an quartic

potential, using the piecewise constant method from Subsection 3.2.2 in conjunction with

direct path sampling. We then compare this method with the Euler method in an example

where the two are di¤erent, �nding the kinetic energy of four bosons in a 1-dimensional

system. The use of the action measure is then demonstrated, in an experiment which recre-

ates that of [CP84]. We then return to considering the case of a 1-dimensional harmonic
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oscillator system with one particle, to graph the simulated position density and to compare

with using the numerical method given by applying Simpson�s Rule to the action, S.

4.3.1 Experiment results: Correlation function

Let d = 1; n = 1 and consider the correlation function �(�); 0 � � � T (see (2.72)):

�(�) = hx(0)x(�)i (4.27)

=
1

Z(T )

Z 1

�1

Z
C0;y;T;y

x(0) x(�)Y (x)dwT;y0;y (x)dy =

R1
�1R(y; y)dyR1
�1 J (y; y)dy

;

where

R(y; y) =
Z
CT;y0;y

x(0)x(�)Y (x)dwT;y0;y (x) (4.28)

Using (4.8-4.9), (calling our numerator RMC
) we evaluate (4.27) for the harmonic potential

V (x) =
!2

2
x2 (4.29)

and for the quartic potential

V (x) =
!2

2
x4: (4.30)

In the case of the harmonic potential (4.29), the correlation function is equal to [Kle95,

Chapter 3]:

�(�) =
1

2!

cosh!(� � T=2)

sinh(!T=2)
; 0 � � � T: (4.31)

Recall (see Section 3.2.2) that the discretization of the time interval [0; T ] should be such

that the point � belongs to the set of discretization points ft0; t1; : : : ; tNg:

The results of the experiments are presented in Table 4.1 and in Fig. 4.1. In (4.8-4.9), � is

taken to be Gaussian and the parameters �1 and �2 are taken to be 1:2 and 0:8, respectively,

in order to give low variance to RMC
;ZMC. As above, in Table 4.1 the values before ���

are estimates of the bias, computed as the di¤erence between the exact �(1) and its sampled

approximations, while the values after ���give half of the size of the con�dence interval

for the corresponding estimator with probability 0:95. To compute the bias, the exact value

�(1)
:
= 0:1840098 obtained from (4.31) was used. The number of Monte Carlo runs M is
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Figure 4.1: Correlation function. The dependence of the correlation function �(�) from
(4.27) on � simulated with h = 0:2 and M = 108 for T = 10. The left �gure corresponds
to the harmonic potential (4.29) and the right �gure �to the anharmonic potential (4.30),
both with ! = 1.

chosen here so that the Monte Carlo error is small in comparison with the bias. It is not

di¢ cult to see that the experiment illustrates second-order convergence of the method. We

note that weighted least squares �tting of Ch2 to the data of 4.1 yields C :
= 0:015, with the

maximum absolute value of the residuals being equal to 3� 10�5.

Table 4.1: Correlation function. The error in evaluating the correlation function �(�) from
(4.27) in the case of the harmonic potential (4.29) with ! = 1, T = 10 and � = 1.

h M error

0:250 109 9:78� 10�4 � 0:72� 10�4

0:200 109 6:18� 10�4 � 0:72� 10�4

0:125 1010 2:45� 10�4 � 0:23� 10�4

0:100 5� 1010 1:46� 10�4 � 0:10� 10�4

In Fig. 4.1 (left) the results of simulation of �(�) with h = 0:2 are compared with the

exact curve from (4.31). Thanks to the second-order of accuracy of the proposed numerical

method, these curves visually coincide even for this relatively large time step. Figure 4.1

(right) demonstrates behaviour of the correlation function in the case of the quartic potential

(4.30). The presented curve is obtained with the time step h = 0:2 and it visually coincides

with the one simulated with h = 0:05. These experiments give further con�rmation of our
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theoretical results.

4.3.2 Experiment results: Kinetic energy of 4 1D bosons

We now consider a system of 4 bosons in a 1-dimensional space, (n = 4; d = 1) with mass

m = 1 in the harmonic potential

V (x1; : : : ; xn) =
x21
2
+ � � �+ x2n

2
(4.32)

at inverse temperature T = 1:2: It is known (see, e.g. [TI84]) that in the case that d = 1,

the kinetic energy is equal to

hKi = 1

4

nX
l=1

l coth

�
lT

2

�
� n(n� 1)

8
:

and therefore for these parameters, the exact value of the kinetic energy is hKi := 1:3740081:

Again we use (4.8-4.9) in conjunction with the approximation scheme (3.7). We take � to

be Gaussian about zero, with �1 = �2 = 2.

Since the particles are noninteracting, we can decompose U(x; �x) and I(x; �x) to perma-

nents as follows (see a similar idea in [TI84]). Let U : R! R be such that V (x) =
Pr

i=1 U(xi)

and let

J1(xi; xj) = (2�T=m)�1=2 exp
 
�(xi � xj)

2

2T=m

!
E

�
exp

�
�
Z T

0

U
�
X
T;xj
0;xi

(t)
�
dt

�

�
 
1

2m
� (xi � xj)

2

2T
+

1

2m

Z T

0

U 0
�
X
T;xj
0;xi

(t)
��

X
T;xj
0;xi

(t)� xi
T
(T � t)� xj

T
t
�
dt

!#
;

J2(xi; xj) = (2�T=m)�1=2 exp
 
�(xi � xj)

2

2T=m

!
E exp

�
�
Z T

0

U
�
X
T;xj
0;xi

(t)
�
dt

�
:

It is not di¢ cult to show that

U(y; �y) =
X
�2�n

nX
l=1

J1(yl; (�y)l)
Y

k2f1;:::;ngnflg

J2(yk; (�y)k); I(y; �y) =
X
�2�n

nY
k=1

J2(yk; (�y)k) :

(4.33)

and that consequently a similar statement holds for U ; I and indeed UEULER; IEULER. . .

We remark that although we illustrate the above decomposition into permanents in order

to compute K and Z for the case of particles in a 1-dimensional space, its generalization for

noninteracting particles in any real space is straightforward.
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Table 4.2: Kinetic energy of bosons. The errors in evaluating the kinetic energy Ekin of
the system of four bosons (2.76) in the case of the harmonic potential (4.32) with T = 1:2,
n = 4, and m = 1. The number of Monte Carlo runs M = 109.

h Euler method Method (3.7), (3.6)

0:20 0:236� 0:55� 10�4 0:533� 10�2 � 0:75� 10�4

0:15 0:175� 0:61� 10�4 0:300� 10�2 � 0:75� 10�4

0:10 0:116� 0:66� 10�4 0:128� 10�2 � 0:76� 10�4

0:05 0:057� 0:71� 10�4 0:035� 10�2 � 0:75� 10�4

We analyze two methods: the method (3.7), (3.6) and the Euler method (3.11), (3.10).

The results are presented in Table 4.3, which gives the errors of the two methods. As in

the previous examples, the Monte Carlo error was made relatively small in order to be able

to analyze the bias. It is clearly seen from the data that the method (3.7), (3.6) converges

with order two while the Euler method exhibits the �rst order convergence as expected (see

Theorems 3.2.1 and 3.2.3).

4.3.3 Experiment results: Potential energy of 64 boltzmannons

To illustrate that the result of Section (3.2) applies equally when performing an MCMC,

we shall present an example involving the potential energy of a system of many distinguish-

able particles. The experiment here recreates that of [CP84]. We consider 64 particles

interacting via the Lennard-Jones potential

V (r) =
4"

r12
� 4"
r6
; (4.34)

where the value used for well depth " was 10:22. In all experiments, T = 0:195695; so that

"T = 2:0, but the variance of Brownian bridges was in�ated by a factor of 1:856 t 0:1816"

relative to the standard conditional Wiener measure. This corresponds to the choice of

parameters in [CP84], that one unit of length represents 2:556 Å and ~2
2m
= 6:0596.

The simulation uses a periodic boundary condition such that the particles inhabit a cube

about 0 with side length L = 5:6. To generate candidate moves, �rst a candidate move is
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generated in R3N , then by identifying the boundaries of the cube, this is mapped to a point

in [�L=2; L=2]3N . To evaluate the interaction potential between any pair of particles, we

consider the shortest distance between them on the cube with identi�ed boundaries, which

means that V is set to zero for r > L=2.

The initial con�guration was generated by taking a uniform grid of particles �xed in place

for all t 2 [0; T ], and running a burn-in of 105 attempted MCMC moves. The number of

points used in each candidate move was between 2 and 12, with a lower number more likely.

We sample uniformly a start position i for the set of time-slices in which the path for these

points is to be resampled, and an index j is sampled uniformly between 1 and 6. Then the

time-slices used are fi+ 1; ::; i+ 2j � 1g, with modular counting on f1; : : : ; Ng.

Variance estimation

A windowing method was used in order to gather sampling variances. The windows are

non-overlapping but results are autocorrelated due to the fact that they are part of the

same MCMC chain. We let dhV i signify the estimate of hV i obtained using the average of
V samples over the Markov Chain, and let dhV in represent the average value of V samples

over the nth window. Due to autocorrelation, to obtain a credibility interval for hV i, the

following formula, which follows from Eq. (5.6) of [Cep95], was used: where �2 denotes the

true sampling variance of the average over windows of dhV i, �0i denotes the covariance ofdhV in withdhV in�i, and NW is a su¢ ciently large number of windows,

�2 t
1

NW

 
�00 + 2

NW�1X
i=0

�0i

!
(4.35)

The number of attempted MCMC moves per sample of V was 100 and the number of

samples of V per window was 1000. The number of windows was 10000 for M = 512

and greater in the other experiments. Between windows, there was a burn-on of 10000

attempted MCMC moves with no sampling of V . A depth of 5 autocovariances was used in

approximating (4.35), as autocovariance was observed to diminish over this interval and to

be negligible thereafter.
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Results of MCMC

The results of the experiments are given in Table 4.3. For M up to 256, the bias is here

estimated by comparison with the reference value obtained with M = 512. The variance

for the posterior distribution of the �bias�is then taken to be the sum of the relevant dhV i
variances, and the covariance between biases is then the variance of the M = 512 result.

Equal-tails 95% credibility intervals for the ratios of bias were obtained by Monte Carlo with

108 BVN draws. The entry in the table for M = 16 represents the ratio of bias between

M = 16 and M = 32, and so on; clearly it is only possible to report this up to the ratio

between M = 128 and M = 256 so the remaining cells are left blank.

Table 4.3: Results of Markov Chain Monte Carlo to simulate 64 distinguishable particles
interacting via Lennard-Jones potential and collect an estimate of potential energy.

M dhV i s.d. �Bias� s.d. Ratio Low(95%) High(95%)

16 -1.9373086 9.531E-05 -7.918E-02 3.103E-04 2.690037 2.652768 2.728818

32 -1.8875645 9.673E-05 -2.943E-02 3.107E-04 3.167031 3.023195 3.33071

64 -1.8674245 1.039E-04 -9.294E-03 3.130E-04 3.899932 3.2325 5.0453

128 -1.8605138 1.427E-04 -2.383E-03 3.280E-04 2.928521 1.388 10.165

256 -1.8589445 2.292E-04 -8.137E-04 3.738E-04

512 -1.8581307 2.953E-04

The remarkable learning from these results is that for this simulation it takes a very

small value of the time-step h for the quadratic decrease of the bias to become evident, even

in this example which ostensibly should lend itself to a nice result. Convergence towards a

quadratic decrease is observed here only as the number of time steps is increased past 128

and this simulation already has a very long running time (the last experiment here took over

39 days on a 2.0 GHz machine) in order for this quadratic decrease to be distinguished.

4.3.4 Experiment results: 1D harmonic oscillator with 1 particle

Theoretically it has been established that the method (3.7) has bias of order h2, and it

has been pointed out that if we let eI be found by using Simpson�s Rule (3.40) for S(x),
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rather than the Trapezoidal Rule (3.39), then this also has bias of order h2. However, there

is reason to believe that the bias using Simpson�s Rule should be smaller, and this is tested

in the following example.

Analytical solution

Consider the one-dimensional harmonic oscillator with force constant 1, ie let 1 particle

be subject to a potential V : R ! R given by V (x) = 1
2
x2. For convenience, let the mass

of the particle be ~2. We recall the analytical solution for this system in order to make

comparisons with simulation results. It is well-known (see [AF97]) that the eigenstates of

the Hamiltonian are given by

Em = m+
1

2
;  m(x) =

�
2mm! �1=2

� �1=2
Hm(x)e

� 1
2
x2 , (4.36)

where Hm denotes the mth Hermite polynomial, given by H0(x) = 1; H1(x) = 2x and the

recurrence relation

Hm+1 = 2xHm � 2mHm�1.

Therefore

J (x; x) = 1

'T (x; x)

1X
m=0

exp

�
�
�
m+

1

2

�
T

�
H2
m(x) exp (�x2)
2mm! �1=2

(4.37)

However, the solution to the functional integral can also be found analytically in closed form.

Considering the equation (1.9.7) of [BS02], where W � wT0;x0 is a 1-dimensional Brownian

motion, and where � signi�es the measure on B(R) induced by the law of W (T ),

E

�
exp

�
�


2

2

Z T

0

W (s)2ds

�����W (T ) = xT

�
d�

d�
(xT ) =�




2� sinh (T
)

�1=2
exp

�
�(x

2
0 + x2T ) 
 cosh (T
)� 2
x0xT

2 sinh (T
)

�
and it therefore follows that

E

�
exp

�
�


2

2

Z T

0

W (s)2ds

�����W (T ) = xT

�
=

(
T csch (
T ))1=2 exp

�
(xT � x0)

2

2T
� 1
2


�
x20 + x2T

�
coth (
T ) + 
x0xT csch (
T )

�
. (4.38)

Clearly E
h
exp

�
�1
2

R T
0
W (s)2ds

����W (T ) = xT

i
= J (x0; xT ).
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Results

To visually illustrate how well the simulations reproduce the actual system, we graph

the position density �(x). We take a partition of R into intervals Bi and approximate E1Bi

for each i, simultaneously and being careful to keep an eye on the covariance matrix. We

use the approximation P (Bi)=�(Bi) t dP
d�
(xi) for xi the midpoint of Bi in order to provide

comparison with the pdf �(x). Here �(Bi) = 0:04. The results are displayed in Figures

4.2-4.4. The error bars in these �gures show 95% credibility intervals for the simulation

values. For these simulations, Simpson�s Rule (cf (3.40)) was used to approximate S in order

to apply (4.8)-(4.9). It can immediately be seen that there is a very good �t between the

Figure 4.2: Simulated density, for 1 particle in H.O., T = 2; h = 0:05;M = 106, against
solution

points generated by simulation and the true density, so we may have some con�dence that

our algorithm is converging to the correct density (as M !1 and h! 0) and that we may

proceed to discuss it accordingly. We can see that our reported Monte Carlo error easily

accounts for the di¤erence between our experimental results and the true answer. It appears
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Figure 4.3: Simulated density for 1 particle in H.O. with T = 6; h = 0:1;M = 106, against
solution

that in these examples bias is negligible by comparison with Monte Carlo error. It can be

seen that at T = 10, we can still obtain a very close visual �t to the position density using

108 paths.

We let ghV i indicate the approximation to the average potential energy hV i given by
using Simpson�s Rule for S. Setting F = V (x0)Y (x), the value of ghV i was estimated using
(4.8-4.9). We use dhV i to denote eFMCeZMC , and realisations of this are tabulated in Table 4.4.
The correct value is hV i �

= 0:3282588: A credibility interval for ghV i is provided using the
Bivariate Gaussian contour method.

It can be seen that the variance ofdhV i diminishes approximately linearly as the number
of trajectories is increased, which is consistent with (4.7). It can also be seen that the results

exhibit the expected convergence, and that bias begins to surface at 109 trajectories.
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Figure 4.4: Simulated density for 1 particle in H.O., T = 10; h = 0:2;M = 108, against
solution

Table 4.4: Potential energy of 1 particle in a harmonic potential; to 9 d.p. The results were
created by using Simpson�s Rule for S and direct path sampling. The reference value is
0.3282588.

Method T h M dhV i MinghV i (95%) MaxghV i (95%)
Simpson�s Rule 2 0:1 106 0:328675017 0:327607571 0:329744697

Simpson�s Rule 2 0:1 107 0:328157911 0:327820619 0:328495426

Simpson�s Rule 2 0:1 108 0:328336051 0:328229332 0:328442793

Simpson�s Rule 2 0:1 109 0:328322286 0:328288539 0:328356036

Comparison of Simpson�s Rule with Trapezoidal Rule

As mentioned, for integral-type functionals the piecewise constant numerical integration

method described in Section 3.2 becomes the Trapezoidal Rule. Setting F = V (x0)Y (x), the

average potential energy hV i was estimated using (4.8)-(4.9) in conjunction with, variously,

the Trapezoidal Rule or Simpson�s Rule for S, which from theory we believe to both have

bias of order h2. Throughout this experiment, we took T = 4 andM = 1010. The results are

shown in Table 4.5. The correct value of the average potential energy is hV i �
= 0:259328680:
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A credibility interval forghV i, or hV i in the case of the Trapezoidal Rule, is calculated using
the Bivariate Gaussian contour method.

Table 4.5: Potential energy for 1 particle in a harmonic potential; to 6 d.p. The results show
a comparison between using Simpson�s Rule or the Trapezoidal Rule for S. The reference
value is 0.259328680. For all results, T = 4 and M = 1010.

Method h dhV i ghV i [ or hV i ] dhV i � hV i Std. Di¤

Min (95%) Max (95%) [to 2 d.p.]

Simpson�s Rule 0:1 0:259365 0:259354 0:259377 0:000036507 6:3

Simpson�s Rule 0:2 0:259498 0:259486 0:259509 0:00016883 29:1

Simpson�s Rule 0:4 0:259967 0:259955 0:259978 0:000637902 109:47

Trapezoid Rule 0:1 0:259026 0:259015 0:259038 0:000302438 52:32

Trapezoid Rule 0:2 0:258110 0:258099 0:258121 0:00121844 212:11

Trapezoid Rule 0:4 0:254532 0:254521 0:254543 0:00479634 855:55

The �gures for "Std. Di¤", which appear in the last column, are calculated by dividing

hV i�Min by 1.96 to obtain a "standard error" and then dividingdhV i�hV i by this number.
This gives a �avour of how certain we can be about the exact extent of bias (as opposed to

Monte Carlo error) in contributing todhV i � hV i.
We can, loosely speaking, observe from the results given in Table 4.5 for T = 4 that as

determined theoretically in Chapter 3, both methods are of order 2 in h. If we consider the

posterior distribution for the ratio of bias between h = 0:1 and h = 0:2, it is clear that 4 is

a very plausible value. The same thing is even more evident for the ratio of bias between

h = 0:2 and h = 0:4. It is remarkable that the bias for Simpson�s Rule is positive while that

for the Trapezoidal Rule is negative, for this potential.

Let ghV i = hV i + "0:1 indicate the limit of dhV i with h = 0:1: It would be possible to get
the joint posterior distribution of the ratios "0:4="0:2; "0:2="0:1 by performing a Monte Carlo,

making draws from the posterior distribution of eA; eZ for h = 0:1; 0:2; 0:4 simultaneously,

recording the corresponding values of "0:4="0:2; "0:2="0:1. However, we can form a very rough

">95%" bound on the ratios of bias by simply taking the ratios of the extreme values of the

bias corresponding to the intervals given in Table 4.5. This is shown in Table 4.6.
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Table 4.6: Credibility itervals for ratios between biases incurred using Simpson�s Rule and
Trapezoidal Rule; to 6 d.p. Calculated simply by comparing extreme values from intervals
for biases.

Method Min (95%) ratio of bias Max (95%) ratio of bias

Simpson�s from h=0.2 to h=0.1 3:289627 7:165374

Simpson�s from h=0.4 to h=0.2 3:476549 4:123792

Trapezoid from h=0.2 to h=0.1 3:847378 4:224209

Trapezoid from h=0.4 to h=0.2 3:891472 3:982261

Since these will be overestimates of the true intervals, it is clear that for the Trapezoidal

Rule, convergence to a ratio of 4 has not taken place at h = 0:4, but does thereafter; for

Simpson�s Rule the most plausible value of the ratio is also 4. It is evident that both

methods display results consistent with a bias of order h2, but that nonetheless, the gain

from using Simpson�s Rule rather than the Trapezoidal Rule to approximate
R T
0
V (X(t))dt

is considerable. In fact the impact, for this particular potential, is comparable to (but less

than) the impact on Monte Carlo error of increasing the number of trajectories by a factor

of 10. Considering results for di¤erent T, it can be seen that the bias is at the 4th place for

h = 0:2, for all these times, and is < 0:0002. So we may conclude that using h = 0:1 will

yield a bias at the 5th place.
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Chapter 5

Fermionic simulations and the

fermion sign problem

5.1 Simulating systems of fermions

5.1.1 Functional integrals for fermion systems

Direct path sampling

Recalling (??), for fermions

hAi = A
Z =

R
C� sgn

�
x(T )
x(0)

�
F (x)dw?� (x)R

C� sgn
�
x(T )
x(0)

�
Y (x)dw?� (x)

:

We have a choice about how to incorporate the sign sgn
�
x(T )
x(0)

�
: we can either suppose that

we have the integral of a positive functional with respect to a signed measure, or the integral

of a signed functional with respect to a positive measure. For the time being we take the

latter point of view.

The alternative ways of writing the functional integrals (4.20)-(??) lead to several di¤er-

ent ways of performing direct path sampling. The most nā¬ve is that corresponding to (4.20)

or (4.22); meanwhile, (4.21) corresponds to using linear translation to generate permuted

paths, which is somewhat more bene�cial here because of the negative covariance between
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the countersigned summands thus created.

Using the action measure

Direct path sampling simulations of fermions are useful for simple experiments, but fail

rapidly for the same reasons as direct path sampling simulations of bosons (cf [Cep95,

Cep96]). Therefore the action measure is again often used. Recalling (4.10)-(4.12) and

letting de�
d ew�� (x) be proportional to eY (x), which is the absolute value of the denominator

functional, we see that where X i � e�, we must take
dhAi =

MP
i=1

h
sgn

�
Xi(T )
Xi(0)

� eF (Xi)eY (Xi)

i
MP
i=1

h
sgn

�
Xi(T )
Xi(0)

�i . (5.1)

It is impossible to avoid incurring a denominator term when the particles are fermions, since

we cannot sample according to a signed measure. The h ! 0 limit (ie, the limit obtained

with an inde�nitely �ne discretisation of time) of the expectation of the denominator in (5.1)

is called the average sign and shall sometimes be designated h�i:

h�i = ZFERMI
ZBOSE

=

R
C� sgn

�
x(T )
x(0)

�
Y (x)dw?�(x)R

C� Y (x)dw
?�(x)

=

R
Rnd
P
sgn(�)'T (y; �y)J (y; �y)dyR

Rnd
P
'T (y; �y)J (y; �y)dy

=

Z
C�
sgn

�
x(T )

x(0)

�
d� .

While this is the average sign in a simulation which relies on using the action functional

directly, in other simulations the average sign may be di¤erent, as we describe below.

5.1.2 Introduction to the fermion sign problem

In this subsection we shall endeavour to de�ne the fermion sign problem and to super�-

cially explain how it arises.

De�nition 5.1.1 An integral with (real or integer) parameter � is said to have a sign

problem (for �) in the case that

lim
�!1

R
F�d��R
jF�j d��

= 0 (5.2)
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Remark 5.1.2 It is obvious from this de�nition that for F� > 0, no sign problem can occur.

1D real example Let a family of real-valued random variables X� be de�ned on some

(
;F ; P ) and have pdf given by f�(x) = '1(
1
�
; x). Then

R
X�dP has a sign problem for �.

We shall casually say that
R
F�d� "has a sign problem" in the case that � is T .

The reason for the fermion sign problem

Recall from (2.62) that for fermions,� P
�2�n

'T (x; �x)

�
IT (x; x) =

P
�2�n

sgn(�)'T (x; �x)JT (x; �x). (5.3)

Let us imagine �rst of all that we had to independently estimate the integrals JT (x; �x).

The variance of the estimate of the unnormalized density given by (5.3) must then be the

same as if sgn(�) were not present, but the presence of sgn(�) means that the quantity being

estimated is much smaller than otherwise. This explains how the problem arises in the case

of direct path sampling based on (4.20). It shall be observed that the variance increases

relative to the expectation, as T is increased - much more rapidly than in the boltzmannon

or boson case.

The e¢ ciency of a simulation

We shall now consider the variance of dhAi given by a formula similar to (5.1) using a
measure which makes the denominator equal to the observed average sign. We restrict our

attention to observables that are diagonal (although by setting eA = eFeI an extension is not
di¢ cult). However, we shall consider a more general case where we have some functional I

(rather than, hitherto, Y ) such that we take

dhAi = 1
M

MP
i=1

h
C (X i) eA(X i)

i
1
M

MP
i=1

[C (X i)]

,

where A (and hence eA) is assumed to be a positive functional and C is a functional which

takes values in f�1; 1g, and sampling is with respect to � with d�
dw� / eI for a positive
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functional I: Here we call E�C the average sign corresponding to I, noting that

E�C =

Z
C�
C(x)d� =

R
C� C(x)

eI(x)dw?�R
C�
eI(x)dw?� :

It is particularly of interest to discuss the relationship between the variance of this quantity

and the equivalent that is found in the unsigned case, ie by assuming that C = 1 always. (In

the case that I = Y and C(X i) = c
�
X(T )
xT

�
this means that we are comparing the variance

obtained in simulating fermions using (5.1) with that obtained in simulating bosons the same

way.) Recalling (4.7), discarding terms in 1
M2 yields that (where all moments are taken under

� and where we suspend the argument iX)

V ar
�dhAi� � 1

M (E [C])2

0B@V ar �C eA�� 2E
h
C eAi
E [C]

Cov
�
C eA;C�+

�
E
h
C eAi�2

(E [C])2
V ar (C)

1CA .
But

V ar
�
C eA� = E h eA2i� �E hC eAi�2 ;

and since C2 = 1 everywhere,

Cov
�
C eA;C� = E

h
C2 eAi� (E [C])E hC eAi

= E
h eAi� E [C] E hC eAi ;

Then
E
h
C eAi
E [C]

Cov
�
C eA;C� = E h eAi E

h
C eAi
E [C]

�
�
E
h
C eAi�2 ;

and �
E
h
C eAi�2

(E [C])2
V ar(C) =

�
E
h
C eAi�2

(E [C])2
�
�
E
h
C eAi�2 :

Consequently,

V ar
�dhAi� � 1

M (E [C])2

0B@�E h eAi�2 � 2E h eAi E
h
C eAi
E [C]

+

�
E
h
C eAi�2

(E [C])2

1CA
=

1

M (E [C])2

0B@V ar � eA�+
0@E h eAi� E

h
C eAi
E [C]

1A2
1CA (5.4)
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In the case of the action-based simulation with I = Y , the term inside the squared paren-

theses in (5.4) is the di¤erence betweenghAi for bosons andghAi for fermions; meanwhile the
variance for bosons is V ar

� eA� =M . It is clear from (5.4) that if we now introduce, following
[Cep96], the e¢ ciency E , de�ned to be the square of the average sign, then the relative

cost of a simulation (to obtain the same variance) due to the presence of signs is governed

by E and is always more than E times greater.

Thus, in the case of sampling according to the action measure and using (5.1), the

simulation cost to achieve a particular Monte Carlo error threshold scales with E , relative

to the corresponding cost for bosons plus the square of the di¤erence of the observable�s

expectations. Since h�i ! 0 both as T ! 0, and as n!1, this gives rise to the fermion

sign problem: although the cost scaling for bosons is polynomial, the cost scaling for

fermions is exponential in T and in n; if we use the methods introduced in Chapter 4. In

the words of [Cep96] (p. 4), there is "an exponentially vanishing signal-to-noise ratio".

The fact that h�i ! 0 is immediately evident in a simple case, such as a pair of particles

starting from (a; b) 2 R2d. The relative likelihood that they will arrive at (a; b) or (b; a)

under the Wiener measure on paths is becoming close to 1.

�
1 + exp

�
�(a� b)2

T

��Z
CT;�2(a;b)
0;(a;b)

sgn

�
X(T )

(a; b)

�
Y (X)dw

T;�2(a;b)
0;(a;b)

= JT ((a; b); (a; b))� exp
�
�(a� b)2

T

�
JT ((a; b); (b; a))

Meanwhile, intuitively it appears that for large T , JT ((a; b); (a; b)) is close to JT ((a; b); (b; a))

because paths which visit the same parts of space have a similar likelihood under the two

measures. This very rough intuition shall be developed into something much more meaningful

in Chapter 7. Meanwhile, in general there are n! negative and positive terms in IT and

as T increases these terms are all becoming closer together in value. This leads to an

exponential decrease in the e¢ ciency. Using (4.38), it is not di¢ cult to �nd numerically

that for two noninteracting fermions in a 1-dimensional harmonic oscillator, the e¢ ciency is

exactly E = exp (�2T ).
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The sign problem is also discussed in [FH65, Cep92, LL70], amongst other works.

To summarise the conclusions from this and the previous chapter, then, for direct path

sampling, the observed behaviour, even without a sign problem, will usually be an exponen-

tial increase in the cost to achieve a particular variance, as T is increased. However, using

the action measure will, in the absence of a sign problem, allow a polynomial increase of cost

[Cep95], whereas in the presence of a sign problem, the increase of cost is exponential. When

a sign problem exists, the cost increase under direct path sampling is also exponential, but

with a much higher exponent than in the unsigned case.

5.1.3 The fermion sign problem is insoluble

A very instructive contribution to the study of the fermion sign problem was made in

[TW05], which essentially demonstrates that the problem is insoluble. It is shown that any

exact algorithm (ie, one without uncontrolled approximations) has to scale exponentially

with n, unless the so-called "P=NP" condition (see e.g. [Sip92]) holds, and this is generally

thought to not be the case. That the fermion sign problem should turn out to be insoluble, on

a computer using classical logic, is redolent of Feynman�s earlier scepticism about the ability

of such computers to perform quantum simulations e¤ectively - precisely for the reason that

in quantum mechanics "negative probabilities" occur (see [Fey83, p.480]). In [Cep95ii], an

heuristic suggestion is made for why the Troyer-Wiese theorem should hold:

Suppose we have a system which has a probability p of having a positive
contribution and a probability q = 1� p of having a negative contribution. Now
the e¢ ciency, or signal-to-noise ratio is simply the integral divided by the total
number of samplings: (p�q)=(p+q). Now putN of these systems together. Using
the binomial theorem, the signal-to-noise ratio is now: (p� q)N=(p+ q)N = e�cN

where c = � ln (1� 2q) � 2q. Thus no matter how small q may be, one gets
exponential scaling.

Works such as [TW05, Cep96] frequently refer to a notional equivalence between increas-

ing the number of particles and decreasing the temperature, because the relevant variable,

where the sign problem is concerned, is the propensity for fermion exchanges to take place.
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Consequently it is common to loosely de�ne the sign problem as being the manifestation of

exponential cost scaling with T and n. The result we are going to prove in Subsection 5.3.2

also suggests that for noninteracting particles there is some connection between being able

to simulate for larger T and for larger n. But as we shall see, there are reasons to be careful

about taking the equivalence at face value. While the case of large n has been addressed

through a variety of approximate techniques in physics, an exact method is not available,

and until the advent of quantum computers, probably never will be. On the other hand, it is

possible to perform zero-temperature simulations of few-body systems of fermions without

having to use a special strategy to avoid the sign problem, using other Quantum Monte

Carlo methods. So in particular, it is not necessary to believe that solving the sign problem

w.r.t. T , for �xed n, is impossible, just because it is impossible to solve it w.r.t. n with �xed

T .

5.2 Extant practical approaches to fermion simulations

The very notoriety of the fermion sign problem seems to have stimulated a variety of

research activity in the area over the last 20 years. In this section, we shall give some

brief explanation of several particular popular approaches. There is not room to o¤er either

in-depth analysis or an exhaustive catalogue of attempted solutions; the intention is to

give some broad indications of the present state of research on this topic. With this aim

in view, we now o¤er brief descriptions of two notable methods, Restricted Path Integral

Monte Carlo and the Multilevel Blocking approach. Other well-known approaches, which,

like these, would be best described as partially e¤ective, include Gaussian Quantum Monte

Carlo [CD04, Cor08] and the high-temperature "Direct" Path Integral Monte Carlo [ZNF77,

She05]. A recent combinatoric approach based on using the Slater determinant formalism is

treated in [AT05, AT06].
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5.2.1 Restricted Path Integral Monte Carlo

As we shall see in Chapter 6, in the special case of d = 1, the fermion sign problem

has a solution, which consists in restricting the simulation to the set of paths such that the

particles do not ever collide (see Theorem 6.2.1). Using the Restricted Path Integral Monte

Carlo (RPIMC) method, described in e.g. [Cep95ii, Cep92, Cep96] (see also [Cep91]), this

solution appears as a special case; the general principle is that the nodes of the thermal

density matrix (ie the surfaces where it is 0) are avoided. A justi�cation for the method

appears in works such as [Cep95ii, Cep96]. It rests upon the idea that, to quote from [Cep96],

The �ux of positive paths at any spot on the nodal surface exactly cancels the
�ux of negative paths because the gradient of the density matrix is continuous
across the node.

This is therefore apparently an exact method, if the nodes are known, in that restricting

the simulated paths to not cross any of these nodal surfaces should give the correct estimate

of IT . However, since knowing the location of the nodes is tantamount to knowing the

solution, it is necessary to use an approximation, or expert knowledge, in order to determine

their probable location. This is the main problem for the RPIMC method: an imperfect

choice of inputted wavefunction nodes results in an imperfect output. The bias incurred is

usually described as uncontrolled below a certain temperature threshold, known as the Fermi

temperature (see e.g. [Cep00]), but the sign problem is, at any rate, avoided. Wavefunction

node estimates may be obtained approximately by using so-called Variational Monte Carlo,

and this was used in [CM00, Mil00] to perform an RPIMC calculation for the Hydrogen

hugoniot (shock wave). RPIMC has also been used to analyse nuclear fusion [PM04].

RPIMC is analogous to the �xed-node Di¤usion Monte Carlo (DMC) method which

applies in the zero-temperature case [And76, CA80, NKPTR02]; see also [CJL06]. As the

��xed-node�moniker suggests, in the zero-temperature case a method exists which allows

nodes to be adapted while more information about the solution is computed, and this is

called the release-node method [CA84]. Is it inconceivable that a similar exact approach

could exist in the case of �nite-temperature PIMC? However, release-node DMC has costs
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that scale exponentially with n (see e.g. [Tow06]); in view of [TW05] this is of course

unsurprising.

A relatively recent theoretical contribution to RPIMC was made by [Ste99].

5.2.2 Multilevel Blocking

Antisymmetrizing on each time slice

Using (2.68), it is clear, from the comparison with using the state space Rnd
�
�n, that

we may consider particle exchange at intermediate times. Taking account of positive and

negative contributions from this at each time-slice leads to a di¤erent measure on discreti-

sations in which there is some amount of sign cancellation, compared with taking account

of exchange only over the whole path, as we do if we use wT;�nx0;x .

This idea is well-known [TI84, NK92] and in the physics literature this is described

as "antisymmetrizing" on every time slice. The bene�ts of doing only this were further

investigated numerically in [Lyu05] and it is seen that on its own, this improvement does

not make extensive headway against the sign problem. It is apparently incompatible with

the Restricted Path Integral Monte Carlo (cf [Cep95ii]).

Multilevel blocking

The Multilevel Blocking approach is de�ned in [EMWG98], building on other work such

as [Mak92, GS89]. It is an exact approach. It relies on a sampling strategy which creates

�blocks�of paths which are, apparently, in e¤ect sampled together. This basic principle (but

not the Multilevel Blocking approach itself) can be applied to directly give the exact solution

in 1 dimension, as shall be seen in the following chapter.

The authors of [EMWG98] begin by stating their preference for �antisymmetrizing on

each time-slice�. The Multilevel Blocking technique is a way of taking the sign cancellations

of that approach further. It involves constructing a sequence of levels (as with the Multilevel

Metropolis method discussed in Section 4.2.2) so that the �rst consists of 1; 3; 5; 7:: ; the
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second consists of 2; 6; 10; : : : and so on to L levels where N = 2L + 1. Within each of these

levels, working upwards, they create K samples of moves according to the antisymmetrized

action measure. Each of these moves carries either a positive or negative sign, but by taking

them all into account in forming the next level of moves, the average sign from theK samples

is used. The claim is made in [EMWG98] that a complete solution to the sign problem is

achieved by this expedient, although with caveats such as that there is a systematic error

dependent on K.

In works such as [DM01], numerical experiments have been presented with the principal

intention of demonstrating that the required K grows relatively slowly. It turns out that

even for small systems, K must be taken to be more than about 200. It seems that the cost

scaling of the algorithm relative to straightforward PIMC must be at least K, and the extra

systematic error that is introduced apparently scales with K�1=2 [DM01]. Given the Troyer-

Wiese theorem, unless P=NP then the conclusion that the necessary value of K explodes

with n is unavoidable. The algorithm is said to work best at low temperatures [DM01].

The MLB approach was originally developed in connection with so-called real-time path

integrals; that is, in the context of quantum dynamics. Although sadly beyond the scope of

this thesis, this is an important application; see works such as [MH89] for an introductory

treatment.

5.3 Two simple algorithms: linear translation and ex-

pansion

In this section, we introduce two more straightforward approaches which help to develop

intuition about the sign problem and illustrate its resilience.
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5.3.1 Linear translation

Let us recall from (2.62) that

IT (x0; xT ) =
P
�2�n

c(�)
'T (x0; �xT )P

�02�n
'T (x0;�

0xT )
JT (x0; �xT ).

If we think of the JT (x0; �xT ) as being the subject of separate simulations, then it is clear that

to reduce the variance of our Monte Carlo, it is desirable to increase the covariance between

their estimators. We have already noted that linear translation, as a bijection between CT;b10;a1

and CT;b20;a2
; conjugates wT;b10;a1

with wT;b20;a2
, and that in terms of SDEs this simply corresponds to

using the same realisation of W (t) for both bridges. Therefore this gives rise to a method

for generating covariances between estimators of the JT (x0; �xT ): Write

P
�02�n

'T (x0;�
0xT )IT (x0; xT ) =

Z
CT;00;0

P
�2�n

c(�)'T (x0; �xT ) exp (�S(X + `x0;�xT )) dw
T;0
0;0 (5.5)

Of course, this di¤erent functional integral then gives rise to a di¤erent importance sampling

which could be implemented via an MCMC. An alternative way of describing the situation

(5.5) is that a set of n! processes X(i) are speci�ed by X(i)(0) = x0 and the SDEs

dX(i) =
�ixT �X(i)

T � t
dt + dW (t)

for the same nd-dimensional Brownian motion W , where �i is a labelling of the members of

�n.

Clearly the covariances between positive and negative contributions will grow when T

increases. We shall call this the linear translation algorithm.

Favourable sampling

We can take the same line of thinking further. Noting that the di¤erence between paths

is deterministic, we may consider sampling paths according to a measure other than the

integration measure in which paths are actually brought closer together, away from the

endpoints, in a covariance-enhancing swoop. This requires us to invoke only the Radon-

Nikodym theorem; we may regard it as applying in the space of paths, or indeed merely in
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�nite-dimensional real space since it is su¢ cient to think about methods for eA: Being forced
to include the Radon-Nikodym derivative will increase the Monte Carlo variance, but the

pain of this is related to the rate of change of the path di¤erence. Therefore for large T it is

clear that the optimum is to bring the paths close together for most of time, since the gain

in covariance should eventually outweigh the extra cost.

This approach was not highly developed since this kind of thinking does not lead to a

solution to the sign problem. But in some basic tests it was seen that a covariance swoop

brought about a moderate improvement on linear translation.

5.3.2 Rearranging to use expanded paths, for noninteracting par-

ticles

It is possible to improve on the linear translation algorithm by altering the expression

for I so that we regard its summands (positive and negative) as arising from looping paths

with the same endpoints but of di¤erent lengths. This potentially allows a greater amount of

covariance to be achieved in their estimation. In this subsection we shall need to introduce

some extra notation: GT;n shall indicate GT for a system with n noninteracting fermions.

We again let d be the dimension of the system space. A partial description of the position

density of the system is given by the particle density $ : Rd ! R, the marginal density

(with full measure n) obtained by integrating out the positions of all but one particle:

$(x1) =

Z
R(n�1)d

�(x)dx2 � � � dxn

=

R
R(n�1)d GT (x; x)dx2 � � � dxnR

Rnd GT (x0; x0)dx0
:

The particle density is enough to tell us about statistics which are diagonal in the position

representation and not dependent on the relative positions of particles, such as the potential

energy.
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Theorem 5.3.1 (Expanding Paths Theorem)Z
R(n�1)d

GT (x; x)dx2 � � � dxn =
nX
k=1

c(k)
(n� 1)!
(n� k)!

(2�kT )�d=2 J kT (x1; x1)

Z
R(n�k)d

GT;n�k(x; x)dx

(5.6)

where c(k) = 1 for k odd, �1 for k even and where we set
R
RndGT;0(x; x) dx = 1.

Proof. Considering the �nite-dimensional distributions of the Brownian bridge, we may

break down a looping path of length nT into n segments. Where we let x0 and xn denote

the same point:

JnT (x1; x1) =
Z
R(n�1)d

(2� nT )d=2

(2�T )nd=2
exp

 
� 1

2T

nX
j=1

kxj � xj�1k2
!

nY
j=1

JT (xj�1; xj)dx2 � � � dxn :

(5.7)

Moreover, where � is any cyclic permutation of the n particle coordinate vectors, since none

of the variables with respect to which we integrate are distinguished from one another, we

may write

JnT (x1; x1) =

Z
R(n�1)d

(2� nT )d=2

(2�T )nd=2
exp

 
� 1

2T

nX
j=1



xj � x�(j)


2! nY

j=1

JT (xj; x�(j))dx2 � � � dxn

=

Z
R(n�1)d

(2� nT )d=2

(2�T )nd=2
exp

 
�kx� �xk

2T

2
!
JT (x; �x)dx2 : : : dxn . (5.8)

Categorise the elements of �n according to the length of the cycle in which is found the

distinguished coordinate, viz x1: Also name Ck the cyclic permutation group of order k.

ThenZ
R(n�1)d

GT;n(x; x)dx2 � � � dxn =Z
R(n�1)d

X
�2�n

c(�)(2�T )�nd=2 exp

 
�kx� �xk

2T

2
!
JT (x; �x)dx2 � � � dxn

=

Z
R(n�1)d

nX
k=1

X
�2�k

 X
�2Ck

c(�)(2�T )�kd=2 exp

 
�kx

0 � �x0k
2T

2
!
JT (x0; �x0)

!
�0@ X

�2�n�k

c(�)(2�T )�(n�k)d=2 exp

 
�kx

00 � �x00k
2T

2
!
JT (x00; �x00)

1A dx2 � � � dxn ,

where � signi�es a relabelling of the n particles excluding x1, and �k signi�es a particular

set of such relabellings, so constituted that each possible partition into the �rst k�1 and the
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succeeding n� k� 1 variables is represented exactly once. Thus �k has

0B@n� 1
k � 1

1CA elements

and represents the ways of choosing the elements in the same cycle as x1. Meanwhile �

intentionally does not appear in (5.9) except as a counter, but we let x0 signify (x1; ::; xk)

and let x00 signify (xk+1; ::; xn). When k = n the righthand bracket in (5.9) is construed to

be 1. Then, reusing (5.8),Z
R(n�1)d

GT;n(x; x)dx2 � � � dxn =

nX
k=1

2664
R
R(k�1)d

P
�2�k

 P
�2Ck

c(�)(2�T )�kd=2exp
�
�kx0��x0k

2T

2
�
JT (x0; �x0)

!
dx2 : : : dxk

�
R
R(n�k)dGT;n�k(x; x)dx

3775
=

nX
k=1

c(k)
X
�2�k

X
�2Ck

(2�kT )�d=2 JkT (x1; x1)
Z
R(n�k)d

GT;n�k(x; x)dx

=
nX
k=1

c(k)j�kj jCkj (2�kT )�d=2J kT (x1; x1)

Z
R(n�k)d

GT;n�k(x; x)dx . (5.9)

But then since

j�kj jCkj =

0B@n� 1
k � 1

1CA (k � 1)! = (n� 1)!
(n� k)!

; (5.10)

the result follows.

It is notable that in view of the results proven in Section 2.3, Theorem 5.3.1 gives us, in

particular, an alternative method of collecting statistics about the nth quantum state of a

single particle with a background potential.

The case of a noninteracting pair of fermions

It follows from (5.6) that the particle density for two noninteracting fermions is given by

$(x) =
JT (x; x)

R
Rd JT (y; y)dy �

p
�TJ2T (x; x)

1
2

R
Rd

h
JT (x0; x0)

R
Rd JT (y; y)dy �

p
�TJ2T (x0; x0)

i
dx0

. (5.11)

This means that the expectation of a diagonal statistic A is found via

hAi =
Z
Rd
A(x)$(x)dx =

R
Rd JT (y; y)dy

R
Rd A(x)JT (x)dx�

p
�T
R
Rd A(x)J2T (x)dx

1
2

��R
Rd JT (x; x)dx

�2 �p�T RRd J2T (x; x)dx� .

(5.12)
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Therefore our simulation procedure has to recover estimates of 4 quantities (and an estimate

to use for the covariance matrix of the estimators); these are ZT;1;AT;1;Z2T;1;A2T;1, where

ZT;1 =

Z
Rd
JT (x; x)dx

AT;1 =

Z
Rd
A(x)JT (x; x)dx .

The most nā¬ve way to calculate �rst state statistics via (5.12) is that we separately collect

the statistics for time (ie, inverse temperature) T and for time 2T . However, clearly the

variance of the posterior for hAi can be reduced, if we can sample so as to give a positive

covariance between the estimators for time T and those for time 2T . Therefore instead we

proceed by �rst choosing an initial point x0, sampling a discretised path X1 � ewT;x00;x0
; and

creating another path X2 via a linear mapping; viz, for all t 2 [0; 2T ], we set

X2(t)� x0 =
p
2

�
X1

�
t

2

�
� x0

�
.

This linear bijection conjugates wT;x00;x0
with w2T;x00;x0

and therefore conjugates ewT;x00;x0
with ew2T;x00;x0

.

Covariance correction

In the following there is some advantage to recognising that it is the Bayesian poste-

rior distribution of the true statistics that we would like to apprehend. Owing to the fact

that we are interested in the expectation of a nonlinear function of the quantities which

we can approach via Monte Carlo, we need to introduce a small correction for covari-

ance. Suppose that we know that the approximate quantities gZT;1; gAT;1;]Z2T;1;]A2T;1 have
a posterior distribution that is multivariate Gaussian about our Monte Carlo estimators

gZT;1MC; gAT;1MC;]Z2T;1MC;]A2T;1MC. Then
E
hgZT;1gAT;1 �p�T]A2T;1i = EgZT;1EgAT;1 + Cov

�gZT;1; gAT;1��p�TE]A2T;1
= gZT;1MCgAT;1MC + Cov

�gZT;1; gAT;1��p�T]A2T;1MC
and likewisehgZT;1gZT;1 �p�T]Z2T;1i = gZT;1MCgZT;1MC + V ar

�gZT;1��p�T]Z2T;1MC .
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5.4 Numerical results from linear translation and ex-

panding paths algorithms, for 2 1D fermions

We concern ourselves, in the following, with the particle density and potential energy of

a system with 2 noninteracting fermions in a 1-dimensional space. From the result in Section

2.3 it follows that for large T , simulating this system gives a route to approximating the �rst

excited state of a single fermion with a background potential.

We shall begin by providing some graphs of approximations to this 2-fermion particle

density so as to provide a visual demonstration of the phenomena that are observed. It

Figure 5.1: Particle density using linear translation algorithm, T = 2; h = 0:1;M = 107.

is immediately obvious that the �t is poorer for the 2-particle simulation using the linear

translation algorithm than for the 1-particle simulation. Indeed, at 107 sampled paths (see

Figure 5.1), the errors are greater than those for the 1-particle simulation with 106. However

it can observed that the simulation does produce sensible results. It can immediately be seen

that the expanding algorithm is more e¢ cient than the linear translation algorithm, in that

the graph in Figure 5.2 is produced with only 106 paths. From Figure 5.3, it can be seen that
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Figure 5.2: Particle density using expanding algorithm, T = 2; h = 0:1;M = 106.

a visually good �t is obtained by using 107 paths in the expanding algorithm. In fact here

the Monte Carlo converges to a narrow range and an apparently upward bias is marginally

visible. Now if we increase T to 4 then immediately the variance is very much greater, to

the point where in Figure 5.4, a fairly poor but recognisable curve is obtained only at 108

sampled paths. Just based on visual comparisons, it seems that 109 paths, rather than just

107 paths, are needed for a good �t at T = 4, rather than T = 2 (see Figure 5.5). This

already takes about 36 hours on a 2.0 GHz machine.One would surmise from the foregoing

visual results that while it can be seen that the algorithm works, it is becoming increasingly

di¢ cult for the simulations to converge as time increases. For T=6, in Figure 5.6 it can be

seen that for the linear translation algorithm, even at 1010 paths the �t is not particularly

good; at a stretch we could claim that the curve is recognisable as being similar.

The expanding algorithm performs better (Figure 5.7), although it is already apparent

that this is considerably worse than the �t at 109 samples for T = 4. The rapid increase in

variance is due to the fermion sign problem. In both cases that we increased T by 2, we

have had to increase M by 2 orders of magnitude to achieve similar results. Simulations for
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Figure 5.3: Particle density using expanding algorithm, T = 2; h = 0:1;M = 107.

T = 8 and T = 10 were also performed and were seen to consistently require an exponentially

greater value of M .

In Table 5.1, we provide the results from estimating hV i for this system. It can again be

seen that for the expanding paths algorithm, Monte Carlo variance is lower, but still grows

very rapidly with T . It should be noted that even though ghV i is nonlinearly related to the
quantities being sampled, its variance still eventually scales inversely with the number of

trajectories. That is to say, if we calculate a "standard error" ("S.E.") by taking one side of

the credibility interval forghV i and dividing by 1.96 then the ratio between these quantities
forM = 109 andM = 1010 is close to 101=2. (The calculation is not performed for the T = 8

results since it would clearly be meaningless.)

In order to achieve a similar bias, a timestep of half the size must be used with the

Expanding algorithm, and taking account of this doubling in cost, we are able to �nd from

Table 5.1 that for the same cost, the reduction in Monte Carlo variance is by a factor of

about 2.5.
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Figure 5.4: Particle density using linear translation algorithm, T = 4; h = 0:1;M = 108.

Figure 5.5: Particle density using expanding algorithm, T = 4; h = 0:05;M = 109.
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Figure 5.6: Particle density using linear translation algorithm, T = 6; h = 0:1;M = 1010.

Figure 5.7: Particle density from expanding algorithm, T = 6; h = 0:05;M = 1010.
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Table 5.1: Potential energy of 2 noninteracting 1D fermions in a harmonic oscillator. Com-
paring results using linear translation and expanding paths algorithms.

Algorithm M h T dhV i LowghV i HighghV i "S.E."

(95%) (95%)

Linear 1E+08 0.1 2 1.096326 1.09449 1.098169 9.37E-04

Expanding 1E+08 0.05 2 1.096618 1.095799 1.097437 4.18E-04

Linear 1E+09 0.1 4 1.007462 1.001784 1.013209 1.34E-03

Expanding 1E+09 0.05 4 1.014332 1.011706 1.01697 2.91E-03

Linear 1E+09 0.1 6 1.007543 0.947482 1.076177 3.28E-02

Expanding 1E+09 0.05 6 1.039808 0.996951 1.085848 2.27E-02

Linear 1E+09 0.1 8 1.077427 0.573328 34.4002

Expanding 1E+09 0.05 8 -1.72861 -2.50015 3.82476
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Chapter 6

Solution to the fermion sign problem

in 1 dimension

In the previous chapter, we discussed the fermion sign problem which, as many authors

agree [Cep03, FH65], is a signi�cant obstacle to performing e¤ective fermion simulations.

In one dimension, it is possible to solve the problem in the sense that, as we shall see, we

can partition the path space such that for one part of space we need only to take posi-

tive contributions and in another, positive and negative contributions cancel exactly. It is

immediately evident that if the functional being sampled is nonnegative then (5.2) cannot

hold. This means that MCMC simulations can be constructed which do not su¤er from

an exponential explosion of variance as T increases. In this Chapter we shall construct the

partition, show how to sample from the positive-contribution subspace, and demonstrate

the e¤ectiveness of an algorithm based on this approach. This solution to the problem is

already known, and in the literature it normally appears as a special case of the RPIMC

method already discussed in Subsection 5.2.1. In our approach, on the other hand, the main

focus shall be the more general idea of partitioning the space of paths into subsets so that

we can make progress with cancellation between positive and negative contributions to the

estimate of an observable�s expectation. We shall see in the succeeding chapter that this

concept generalises to a somewhat di¤erent method than that of RPIMC. The importance of
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this chapter�s exposition is twofold: �rstly, we are able to discuss the solution to the 1D sign

problem mathematically, without needing to invoke concepts from physics, and secondly, it

provides us with the foundation needed for a novel, exact approach to the sign problem in

higher dimensions, advanced in the chapter that follows.

We shall begin by treating the case of two particles in a 1-dimensional space and then

explain how this is generalised to n particles in a 1-dimensional space.

6.1 The Partitioning Theorem for two fermions in 1D

Recall that we are interested in collecting a Monte Carlo estimate of IT (�) de�ned by

(2.62). In this section, we particularly consider IT ((a; b); (a; b)) where a; b 2 R are the

hypothetical positions of two fermions. We develop the idea that it is possible to construct

a partition so that we can �nd IT ((a; b); (a; b)) by taking a positive contribution on one part

of CT;(a;b)0;(a;b) and an unweighted sum of positive and negative contributions on the other. This

latter turns out to be zero, eliminating the need to collect any negative contributions in

Monte Carlo.

Note to begin with that

IT ((a; b); (a; b)) =

1

1 + exp
�
� (a�b)2

T

�  JT ((a; b); (a; b))� exp �(a� b)

T

2
!
JT ((a; b); (b; a))

!
. (6.1)

As stated, we shall show that this is equal to the integral of a particular nonnegative func-

tional. We shall begin by demonstrating the fact that the coe¢ cient exp
�
� (a�b)

T

2
�
is equal

to the probability of the two particles meeting under wT;(a;b)0;(a;b) , and then we shall see that the

cancellation of positive and negative contributions becomes possible because the measure on

�rst crossing times is the same under both wT;(b;a)0;(a;b) and under w
T;(a;b)
0;(a;b) conditioned on crossing.

We shall use vT;�T0;�0
to denote the measure on CT;�T0;�0

induced by the distribution of a di¤er-

ence of Brownian bridges. That is to say, suppose that a 2-dimensional X : 
! CT;xT0;x0
is dis-

tributed according to wT;xT0;x0
, so that X(1) : 
! CT;x

(1)
T

0;x
(1)
0

is distributed according to w
T;x

(1)
T

0;x
(1)
0

and
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X(2) : 
! CT;x
(2)
T

0;x
(2)
0

is distributed independently according to w
T;x

(2)
T

0;x
(2)
0

. Let x(1)0 �x(2)0 = �0 and

x
(1)
T �x

(2)
T = �T . Then forA 2 B(CT;4T

0;40
), vT;�T0;�0

(A) := wT;xT0;x0

�n
X 2 CT;xT0;x0

���X(2) �X(1) 2 A
o�

:

Proposition 6.1.1 (The measure of a di¤erence of Brownian Bridges) Given

�0;�T > 0,

8A 2 B(CT;4T

0;40
) : vT;�T0;�0

(A) = w2T;�T0;�0
(2A) (6.2)

where we de�ne �A = fZ� 2 C�T;4T

0;40
: Z�(�t) = Z(t)jZ 2 Ag.

Proof. We can obtain the measure vT;40;40
on CT;4T

0;40
which is induced by the distribution

of a di¤erence of bridges by considering iteratively the �nite-dimensional distributions (in

a manner originally due to P.Lévy [Lev39]), as follows. Suppose that we consider �rst the

distribution for one intermediate point-pair at T=2. According to (2.4),

X(1)(T=2) � Gaussian
�
X(1)(0)=2 +X(1)(T )=2; T=4

�
(6.3)

X(2)(T=2) � Gaussian
�
X(2)(0)=2 +X(2)(T )=2; T=4

�
(6.4)

Therefore

X(1)(T=2)�X(2)(T=2) �

Gaussian
��
X(1)(0)�X(2)(0)

�
=2 +

�
X(1)(T )�X(2)(T )

�
=2; T=2

�
. (6.5)

But let us now consider subsequent points. Suppose that we already �xed a set of points at

times hi=2r where 0 � i � 2r. By a standard result, for t = Ti=2r + T=2r+1 for i < 2r;

X(1)(t) � Gaussian
�
X(1)

�
t� T=2r+1

�
=2 +X(1)

�
t+ T=2r+1

�
=2; T=2r+2

�
,

X(2)(t) � Gaussian
�
X(2)

�
t� T=2r+1

�
=2 +X(2)

�
t+ T=2r+1

�
=2; T=2r+2

�
,

but then

X(1)(t)�X(2)(t) �

Gaussian

0B@ �
X(1) (t� T=2r+1)�X(2) (t� T=2r+1)

�
=2

+
�
X(1) (t+ T=2r+1)�X(2) (t+ T=2r+1)

�
=2

; T=2r+1

1CA .
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It follows by induction that for any r, the distribution of X(1)�X(2) at points at times hi=2r

is the same as the distribution of points at times hi=2r�1 on a Brownian bridge of length 2T .

The result follows.

It is germaine to our whole discussion to know the probability of two Brownian bridges

crossing. We have now arrived at an important point because we can proceed to calculate

such probabilities by applying a boundary-crossing theorem for the Brownian bridge.

Lemma 6.1.2 (The probability of bridges crossing) For �0;�T > 0, the probability

of two Brownian bridges crossing is given by

vT;�T0;�0

��
Z 2 CT;�T0;�0

���min
[0;T ]

Z(t) � 0
��

= exp

�
��0�T

T

�
(6.6)

Proof. From the preceding Proposition,

vT;�T0;�0

��
Z 2 CT;�T0;�0

���min
[0;h]

Z(t) � 0
��

= w2T;�T0;40

��
Z 2 C2T;4T

0;40

��� min
[0;2T ]

Z(t) � 0
��

(6.7)

However,

w2T;�T0;40

��
Z 2 C2T;4T

0;40

��� min
[0;2T ]

Z(t) � 0
��

= w2T;�T0;40

��
Z 2 C2T;�(�0��T )0;0

��� min
[0;2T ]

Z(t) � ��0

��
= w2T;�T0;40

��
Z 2 C2T;�0��T0;0

���max
[0;2T ]

Z(t) � �0

��
using the translation and symmetry properties of the conditional Wiener measure described

in Subsection 2.1.1. However, according to a Theorem stated on pages 264-265 of [KS98],

w2T;�T0;40

��
Z 2 C2T;�0��T0;0

���max
[0;2T ]

Z(t) � �0

��
= exp

�
�2�0�T

2T

�
= exp

�
��0�T

T

�
(6.8)

[in their notation �0 = � and �0 ��T = a]. Hence

vT;4T

0;40

��
Z 2 CT;4T

0;40

���min
[0;T ]

Z(t) � 0
��

= exp

�
��0�T

T

�
. (6.9)
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The event that paths coincide We shall divide CT;xT0;x0
into two classes: those bridges

where the coordinates (particle positions) coincide at least once (therefore at least twice,

and indeed an in�nite number of times) and those where they do not. Let a > b and let

E0 =
n
X 2 CT;(a;b)0;(a;b)

���X(2)(t) < X(1)(t) 8t 2 [0; T ]
o
:

Then by continuity of the paths,

Ec0 =
n
X 2 CT;(a;b)0;(a;b)

���X(2)(t) = X(1)(t), some t 2 [0; T ]
o
:

It is immediately evident that these are events because it is obvious how we might construct

a sequence of cylinders with E0 as its limit.

The �rst crossing time � 1(X) Recalling De�nition 2.1.14, we shall now let � 1 denote

the �rst crossing time � 1 : Ec0 ! [0; T ]:

� 1(X) = min
�
s 2 [0; T ] : X(1)(s) = X(2)(s)

	
We shall now compute the pdf of this random variable, which we shall variously refer to as

� 1 or � 1(X) depending on the context.

Lemma 6.1.3 (The pdf of the �rst crossing time) Let X s wT;xT0;x0
and de�ne �0;�T

as on p.127. Denote the measure induced on B([0; T ]) by the distribution of � 1(X) by �.

Then

d�

d�
=
�0

s

1
p
2�
q

2s(T�s)
T

exp

 
�((T � s)�0 + s�T )

2

4Ts(T � s)

!
:

(Note that �([0; T ]) is then the probability of crossing, exp
�
�404T

T

�
.)

Proof. We know from Proposition 6.1.1 that the �nite-dimensional distribution of a

di¤erence of bridges, with the di¤erence at the initial time �0 and the di¤erence at the

terminal time �T , over a time interval [0; T ], is identical to that of a Brownian bridge from

�0 to�T over a time interval [0; 2T ], with a linear scaling on time. We shall use the following

standard method for �nding the �rst crossing time pdf: we use the fact that where f(x; y) is
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a joint pdf, g(x) is the unconditional pdf of x and h is that of y, and f(yjx) has its standard

meaning, f(x; y) = g(x)f(yjx) = h(y)f(xjy). The equation (2.0.2) of [BS02] states that for

Brownian motion with X(0) = �0, where � is the �rst hitting time to zero,

d

ds
w0;�0(� 2 (0; s)) =

j�0jp
2�s3=2

exp

�
��

2
0

2s

�
(6.10)

and it follows that the joint pdf for � and the terminal value X(T ) is given by

@2

@s@z
w0;�0(� 2 (0; s); X(T ) � z) =

j�0jp
2�s3=2

exp

�
��

2
0

2s

�
1p

2�
p
T � s

exp

�
� z2

2(T � s)

�
(6.11)

but from this we can deduce that conditional on the terminal value, the pdf of the �rst

hitting time to zero is

d

ds
wT;z0;�0(� 2 (0; s)) =

d

ds
w0;�0(t 2 (0; s)jX(T ) = z) =

j�0jp
2�s3=2

exp

�
��

2
0

2s

�
1p

2�
p
T � s

exp

�
� z2

2(T � s)

�p
2�
p
T exp

�
+
(z ��0)

2

2T

�
=
�0

s

1
p
2�
q

s(T�s)
T

exp

�
��2

0

�
1

2s
� 1

2T

�
� z2

�
1

2(T � s)
� 1

2T

�
� 2�0z

�
1

2T

��
(6.12)

by dividing the previous formula by the unconditional density of terminal values. Now let

us consider that vT;z0;�0(t � s) = w2T;z0;�0
(t � 2s) and this means

d

ds
vT;z0;�0(t � s) =

d

ds
w2T;z0;�0

(t � 2s) = 2 d

d(2s)
w2T;z0;�0

(t � 2s) .

Thus, to get the pdf for �rst hitting time to zero of a di¤erence of Brownian bridges rather

than a Brownian bridge, we need to double all the times on the right-hand side in (6.12) and

then double the result to re�ect d(2s)
ds
, ie:

d

ds
vT;�T0;�0

(� 2 (0; s)) =

�0

s

1
p
2�
q

2s(T�s)
T

exp

�
��2

0

�
1

4s
� 1

4T

�
��2

T

�
1

4(T � s)
� 1

4T

�
� 2�0�T

�
1

4T

��

(6.13)

and the result follows.
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We shall de�ne the �rst crossing point x1(X) to be the value X(1)(� 1(X)). It is clear

that x1�X is Borel-measurable, since if we condition on � 1 then for any interval U , fx1 2 Ug

is Borel.

We are now in a position to prove the main result of this section. Recalling the notation

for measure conditioning introduced at the start of Section 2.2,

Theorem 6.1.4 (Partitioning Theorem for two 1D fermions) For a; b 2 R,

IT ((a; b); (a; b)) =
1� exp

�
� (a�b)2

T

�
1 + exp

�
� (a�b)2

T

�J E0
T ((a; b); (a; b)) (6.14)

Proof. It is immediately obvious that all bridges from (a; b) to (b; a) must have the

coordinates swap at least once, so � 1 is de�ned for X 2 CT;(b;a)0;(a;b) . Let �
�
1 signify the measure

on [0; T ] � R induced by the distribution of (� 1; x1) for X 2 Ec0 under w
T;(a;b)
0;(a;b)

���
Ec0

and let

��2 signify the measure on [0; T ] � R induced by the distribution of (� 1; x1) for X 2 CT;(b;a)0;(a;b)

under wT;(b;a)0;(a;b) : That is to say, for B1 2 B([0; T ]); B2 2 B(R) :

��1(B1 �B2) = w
T;(a;b)
0;(a;b)

���
Ec0

(fX 2 Ec0 : � 1(X) 2 B1; x1(X) 2 B2g) , (6.15)

��2(B1 �B2) = w
T;(b;a)
0;(a;b)

�n
X 2 CT;(b;a)0;(a;b) : � 1(X) 2 B1; x1(X) 2 B2

o�
. (6.16)

We shall use the notation (this matches the de�nition of E(t; x) on p.26):

E(t; x) = fX 2 Ec0 : � 1(X) = t; x1(X) = xg , (6.17)

ESW(t; x) =
n
X 2 CT;(b;a)0;(a;b) : � 1(X) = t; x1(X) = x

o
. (6.18)

Therefore we may rewrite IT ((a; b)) as follows:�
1 + exp

�
�(a� b)2

T

��
IT ((a; b); (a; b)) = w

T;(a;b)
0;(a;b) (E0)J

E0
T ((a; b); (a; b))

+ w
T;(a;b)
0;(a;b) (E

c
0)

Z
[0;T ]�R

J E(t;x)
T ((a; b); (a; b))d��1(t; x)

� exp

 
�(a� b)

T

2
!Z

[0;T ]�R
J ESW(t;x)
T ((a; b); (b; a))d��2(t; x) .
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However, recalling (2.26) it is clear that

JT ((a; b); (a; b);E(t; x)) = J E(t;x)
t ((a; b); (x; x))J E(t;x)

T�t ((x; x); (a; b))

= J E(t;x)
t ((a; b); (x; x))JT�t((x; x); (a; b))

but for the same reasons,

J ESW(t;x)
T ((a; b); (b; a)) = J E(t;x)

t ((a; b); (x; x))JT�t((x; x)(b; a)) .

However, due to permutational symmetry of the potential,

JT�t((x; x); (a; b)) = JT�t((x; x); (b; a))

Now note from Lemma 6.1.2 that the probability of independent Brownian bridges in CT;(a;b)0;(a;b)

crossing is wT;(a;b)0;(a;b) (E
c
0) = exp

�
� (a�b)

T

2
�
. Thus,

w
T;(a;b)
0;(a;b) (E

c
0)

Z
[0;T ]�R

J E(t;x)
T ((a; b); (a; b))d��1(t; x)

� exp
 
�(a� b)

T

2
!Z

[0;T ]�R
J ESW(t;x)
T ((a; b); (b; a))d��2(t; x)

= exp

 
�(a� b)

T

2
!Z

[0;T ]�R
J E(t;x)
t ((a; b); (x; x))JT�t((x; x); (a; b))d (��1 � ��2) (t; x) .

(6.19)

Now suppose � 1 = t is given and consider the conditional distribution of x1, in the case of

eitherX 2 Ec0 or X 2 CT;(b;a)0;(a;b) . As we noted in Subsection 2.1.3,
X(1)�X(2)

p
2

and X(1)+X(2)
p
2

can be

regarded as independent Brownian bridges; and indeed, X
(1)+X(2)
p
2

is in CT;(a+b)=
p
2

0;(a+b)=
p
2
whether the

terminal point of X is (a; b) or (b; a). Therefore in both cases it is clear that the distribution

of the value of X
(1)+X(2)
p
2

at t; corresponding to the usual �nite-dimensional distribution for a

Brownian bridge, is Gaussian with mean (a+ b)=
p
2 and variance t(T � t)=T . However, we

know thatX(1)(t) = X(2)(t) = 1p
2

X(1)(t)+X(2)(t)p
2

and therefore in both cases, x1(X) is Gaussian

with mean (a+ b)=2 and variance t(T � t)=(2T ). We shall let � denote the measure induced

by this distribution. We let �1 signify the measure on [0; T ] induced by the distribution

of � 1 for X 2 Ec0 under w
T;(a;b)
0;(a;b)

���
Ec0

and let �2 signify the measure on [0; T ] induced by the
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distribution of � 1 for CT;(b;a)0;(a;b) under w
T;(b;a)
0;(a;b) . We let �0 = a � b. Then we may write the

formula of (6.19) as

exp

�
��

2
0

T

�Z
[0;T ]

Z
R

h
J E(t;x)
t ((a; b); (x; x))JT�t((x; x); (a; b))

i
d�(x)d (�1 � �2) (t) . (6.20)

Hence our next step is to identify �1 and �2, and we shall then see that they are equal.

According to Lemma 6.1.3, where � is for the measure on [0; T ] induced by the distribution

of � 1 for X 2 CT;(a;b)0;(a;b) under w
T;(a;b)
0;(a;b) ,

d�

d�
=
�0

s

1
p
2�
q

2s(T�s)
T

exp

�
� T�2

0

4s(T � s)

�

and therefore, dividing by wT;(a;b)0;(a;b) (E
c
0),

d�1
d�

=
�0

s

1
p
2�
q

2s(T�s)
T

exp

�
�2
0

T
� T�2

0

4s(T � s)

�

=
�0

s

1
p
2�
q

2s(T�s)
T

exp

�
(4s(T � s)� T 2)�2

0

4Ts(T � s)

�

whereas Lemma 6.1.3 also yields that

d�2
d�

=
�0

s

1
p
2�
q

2s(T�s)
T

exp

 
�((T � 2s)�0)

2

4Ts(T � s)

!
.

However, it is then apparent that, perhaps surprisingly, d�1
d�
= d�2

d�
. Hence there is perfect

cancellation between the positive contributions to IT from paths in Ec0 and the negative

contributions from paths in CT;(b;a)0;(a;b) . Therefore�
1 + exp

�
��

2
0

T

��
IT ((a; b); (a; b)) = w

T;(a;b)
0;(a;b) (E0)J

E0
T ((a; b); (a; b)) =�

1� exp
�
��

2
0

T

��
J E0
T ((a; b); (a; b)) . (6.21)

The quantity IT;2, de�ned as per Theorem 2.3.4, is relevant to �nding the �rst excited

state for one particle, and is equal to IT for 2 particles. Therefore a similar result to Theorem

6.1.4 clearly holds w.r.t. IT;2.
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6.2 The Partitioning Theorem for n fermions in 1D

The approach of the previous section brings out the importance of the distribution of �rst

crossing times for wT;(a;b)0;(a;b) and w
T;(b;a)
0;(a;b) . However, there is an alternative, more geometrical

approach which allows us to treat an inde�nite number of particles. This shall now be

explained.

Theorem 6.2.1 (Partitioning Theorem for n 1D fermions) Let E0 � CT;�nx0;x signify

the event that there are no crossings, ie no values of t; i; j for which X(i)(t) = X(j)(t) with

i 6= j. Then

IT (x; x) = wT;�nx0;x (E0)J E0
T (x; x) (6.22)

Proof. As was noted at (2.67),

IT (x; x) =
Z
CT;�nx0;x

�
c

�
X(T )

x

�
exp

�Z T

0

�V (X(s))ds
��

dwT;�nx0;x

=

Z
E0

exp

�Z T

0

�V (X(s))ds
�
dwT;�nx0;x

+

Z
[0;T ]�Rn

Z
CT;�nx0;x

�
c

�
X(T )

x

�
exp

�Z T

0

�V (X(s))ds
��

d wT;�nx0;x

���
E(t;x])

d�0(t; x]) (6.23)

where E(t; x]) is the event that the �rst crossing of any pair of particles happens at time

t with system position x] and �0 is the measure induced by the joint distribution of the

�rst crossing time and system point, with full measure wT;�nx0;x (Ec0). However, we shall

now see that the second integral in (6.23) is zero. Let i1; i2 be the indices of the particles

that meet at t. Recall, as was noted in Chapter 1, that �n may be partitioned into pairs

which are closed under premultiplication by the pair-exchange of i1; i2; let us call the even

elements in these pairs �k and the odd elements �0k with k = 1; : : : ; n!=2. Then since
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wT;�nx0;x

���
E(t;x])

= w
t;x]
0;x

���
E(t;x])

� wT;�nxt;x]
(due to the strong Markov property for wT;�nx0;x ),

Z
CT;�nx0;x

�
c

�
X(T )

x

�
exp

Z T

0

�V (X(s))ds
�
d wT;�nx0;x

���
E(t;x])

=Pn!
k=1 'T�t (x]; �kx)Pn!
k=1 'T (x; �kx)

Z
C
t;x]
0;x

exp

�Z T

0

�V (X(s))ds
�
d w

t;x]
0;x

���
E(t;x])

�Z
CT;�nxt;x]

�
c

�
X(T )

x

�
exp

�Z T

0

�V (X(s))ds
��

dwT;�nxt;x]
;

but

Z
CT;�nxt;x]

�
c

�
X(T )

x

�
exp

Z T

0

�V (X(s))ds
�
dwT;�nxt;x]

=

1Pn!
k=1 'T�t (x]; �kx)

n!=2P
k=1

�
'T�t(x]; �kx)JT�t (x]; �kx)� 'T�t(x]; �

0
kx)JT�t (x]; �0kx)

�
= 0

since for every k, 'T�t(x]; �kx) = 'T�t(x]; �
0
kx) and JT�t (x]; �kx) = JT�t (x]; �0kx). How-

ever, it is clear thatZ
E0

exp

�Z T

0

�V (X(s))ds
�
dwT;�nx0;x =

1Pn!
k=1 'T (x; �kx)

Z
E0

exp

�Z T

0

�V (X(s))ds
�
dwT;x0;x

= wT;�nx0;x (E0)J E0
T (x; x)

and the result follows.

Remark 6.2.2 It is clear that a similar result also applies in the case of other exponential-

type functionals than exp
�
�
R T
0
V (X(s))ds

�
since the only special property of this functional

that has been used is its multiplicative property.

6.3 Simulation methods for 1-dimensional non-crossing

bridges

The preceding results mean that the fermion sign problem is solved in 1 dimension, as

long as we can perform the necessary simulations. The main task is to perform integrals with

respect to the non-crossing bridge measure w�0 = �� wT;x00;x0

���
E0
. We have already noted that
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for the case of two fermions, we can �nd the probability of a crossing in an interval under

w
tk2 ;xk2
tk1 ;xk1

; and by using the Karlin-McGregor theorem [KM59] in conjunction with Bayes Rule,

it should be straightforward to do the same for the case of n > 2 fermions. From this point it

is possible to proceed in two ways depending on the type of simulation in view. In the case

of direct path sampling, the most appealing approach is to identify the �nite-dimensional

distributions of wT;x00;x0

���
E0
explicitly; since this is a Markov measure, we can construct the

transition density; it will then remain to develop a sampling method for this density. In this

Section, we follow out the details of this approach for the case of 2 fermions. As described in

Chapter 4, we may then create an algorithm where the expectation is also taken over values

of the initial point x0 = (a; b) so that estimates of quantities such as (2.69) can be achieved.

Alternatively, if we were to construct a Markov Chain Monte Carlo simulation to imple-

ment importance sampling, taking d�
dw�0

= Y; then the problem of using non-crossing bridges

becomes substantially easier. In this case, intuition suggests that a simple rejection method

would almost certainly be adequate to sample according to w
tk2 ;xk2
tk1 ;xk1

���
E0
, given that xk1 ; xk2

will already be such that samples according to w
tk2 ;xk2
tk1 ;xk1

should already have a reasonable

probability of acceptance, especially if the number of time intervals between k1 and k2 is

su¢ ciently small. Thus, in practical applications this would be a far more e¢ cient way

to proceed. Since the probability of not crossing during each time interval, as established

using the Karlin-McGregor theorem, may be a sum involving a large number of terms which

are expensive to evaluate, some truncation based on particle proximity might be needed.

Simulations based on this MCMC approach are almost certainly more e¢ cient than the sim-

ulations performed in Section 6.5, even before the bene�t of importance sampling is taken

into account. However, understanding the details of the direct path sampling approach, out-

lined in what follows, is certainly helpful and relevant for understanding how to implement

either approach.

Using direct path sampling, we do have the option to sample discretisation points accord-

ing to a di¤erent pdf than
^
wT;x00;x0

���
E0
and apply a Radon-Nikodym reweighting - or, equiva-



137

lently, to reject paths with an appropriate probability. This latter is a distinct concept from

using a nā¬ve rejection method for sampling from the non-crossing fdd by taking wtk+1;xk+1tk;xk
as

the candidate measure. We may infer, though, from the di¢ culties encountered using that

method, that there would be similar (or worse) di¢ culties inherent in a method dependent

upon rejecting or reweighting entire Brownian bridges. It appears to be a characteristic of

an e¤ective simulation, whether using MCMC or direct path sampling, that the sampling

measure should itself be concentrated on E0.

In Subsection 6.3.1, the conditional pdf to sample one point (ie the transition density)

for
^
wT;x00;x0

���
E0
is derived explicitly. In Subsection 6.3.2 then methods of sampling from this

pdf are considered. Three methods were implemented and one of them was found to be

substantially faster than the others. Finally in Subsection 6.3.3, we discuss the initial point

distribution.

6.3.1 The pdf for a point on a non-crossing Brownian bridge

We need to know how to sample discretisations of 2-coordinate paths X =
�
X(1); X(2)

�
according to w

T;(a;b)
0;(a;b)

���
E0
. It is assumed that it is adequate to sample incrementally (ie we

collect the values in order of time) at equidistant points. That is, set tk = kh; for k =

1; : : : ; N �1, with h = T=N . Fixing k, we shall assume that the values of X(t1); : : : ; X(tk�1)

have been drawn and consider how to sample the value for X(tk). In other words, our route

to the joint pdf of X(t1); : : : ; X(tN�1) is to consider the conditional pdf for X(tk) given

X(tk�1), since as we shall see, w
T;(a;b)
0;(a;b)

���
E0
retains conditional independence. One way to do

this would be to use the Karlin-McGregor theorem [KM59] which states that to �nd the

transition density of a process where all coordinates are constrained to not cross, one must

take a particular determinant; namely, one must sum over the transition densities to each

permutation of the points in X(tk) and apply sgn(�) as the cofactor. (This makes a curious

parallel to (6.22).) However, we shall prefer a more direct approach using Bayes�Rule.

We shall use x(1)l ; x
(2)
l for the drawn values of the particle positions at time l. We can
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access the desired conditional pdf as follows.

Lemma 6.3.1 Let D be a Borel subset of ffx; yg 2 R2jx > yg and let A(D) be the event

that X(tk) 2 D. Let E0 = E1 � E2 with E1 � Ctk�10;(a;b) and E2 � CT;(a;b)tk�1 : Let �w denote the

measure for X(t) under wT;(a;b)tk�1;xk�1 :Then

w
T;(a;b)
0;(a;b)

���
E0;X(tk�1)=xk�1

(A(D))

=

R
D

�
1� exp

�
�(x

(1)�x(2))(a�b)
(N�k)h

���
1� exp

�
�
�
x
(1)
k�1�x

(2)
k�1

�
(x(1)�x(2))

h

��
d�w(x)

w
T;(a;b)
tk�1;xk�1(E2)

(6.24)

Proof. Recall that conditional independence is inherited when conditioning on a set

that is not of measure zero (cf (2.19)). Therefore

w
T;(a;b)
0;(a;b)

���
E0;X(tk�1)=xk�1

= w
tk�1;xk�1
0;(a;b)

���
E1
� w

T;(a;b)
tk�1;xk�1

���
E2

.

Then since A(D) = Ctk�10;(a;b)�A2(D) where A2(D) is the event in B
�
CT;(a;b)tk�1

�
that X(tk) 2 D,

w
T;(a;b)
0;(a;b)

���
E0;X(tk�1)=xk�1

(A(D)) = w
tk�1;xk�1
0;(a;b)

���
E1

�
Ctk�10;(a;b)

�
w
T;(a;b)
tk�1;xk�1

���
E2
(A2(D))

= w
T;(a;b)
tk�1;xk�1

���
E2
(A2(D))

Heuristically speaking, since X(tk) is conditionally independent of the values taken prior

to time tk�1; in fact any speci�ed path up to time tk�1, whether it confers membership of

E1 or not, will be associated with the same conditional distribution of X(tk). Now since

w
T;(a;b)
tk�1;xk�1 (E2) 6= 0;

w
T;(a;b)
tk�1;xk�1

���
E2
(A2(D)) =

w
T;(a;b)
tk�1;xk�1(A2(D) \ E2)
w
T;(a;b)
tk�1;xk�1(E2)

:

But,

w
T;(a;b)
tk�1;xk�1(A2(D) \ E2) =

Z
D

w
T;(a;b)
tk�1;xk�1

���
X(t)=x

(A \ E2)d�(x)

=

Z
D

w
T;(a;b)
tk�1;xk�1

���
X(t)=x

(E2)d�(x)

since membership of A2(D) will apply for any path with X(t) 2 D. However, where E2 =

E3 � E4 with E3 � Ctktk�1 ; E4 � C
T;(a:b)
tk

,

w
T;(a;b)
tk�1;xk�1

���
X(t)=x

(E2) = wtk;xtk�1;xk�1(E3)w
T;(a;b)
tk;x

(E4). (6.25)
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According to Lemma 6.1.2,

wtk;xtk�1;xk�1(E3) = 1� exp
 
�
�
x(1) � x(2)

�
(a� b)

(N � k)h

!

w
T;(a;b)
tk;x

(E4) = 1� exp

0@�
�
x
(1)
k�1 � x

(2)
k�1

� �
x(1) � x(2)

�
h

1A
and the result follows.

Figure 6.1: Schematic of how the pdf of X(tk) is determined when conditioning on E0

Considering the �nite-dimensional distributions of the conditional Wiener measure (2.4),

it can be recognised that �w is induced by the independent bivariate Gaussian distribution

with centre��
ha+ (N � k)hx

(1)
k�1

�.
(N � k + 1)h;

�
hb+ (N � k)hx

(2)
k�1

�.
(N � k + 1)h

�
(6.26)

=
��

a+ (N � k)x
(1)
k�1

�.
(N � k + 1);

�
b+ (N � k)x

(2)
k�1

�.
(N � k + 1)

�
:=
�
x(1)� ; x(2)�

�
and with the variances in both directions given by

(N � k)h2= ((N � k + 1)h) = (N � k)h=(N � k + 1): (6.27)

Hence in order to simulate according to wT;(a;b)tk�1;xk�1

���
E2
it follows from (6.24) that we need to

draw from the distribution with pdf given by

f
�
x(1); x(2)

�
= C

�
1� exp

�
�(x

(1) � x(2))(a� b)

(N � k)h

��
�0@1� exp

0@�
�
x
(1)
k�1 � x

(2)
k�1

� �
x(1) � x(2)

�
h

1A1A exp
0B@�

�
x(1) � x

(1)
�

�2
+
�
x(2) � x

(2)
�

�2
2(N � k)h=(N � k + 1)

1CA
(6.28)
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over the viable region fx(1) > x(2)g and 0 elsewhere; here C is a normalizing constant equal

to (2�(N � k)h=(N � k + 1))�1
.
w
T;(a;b)
tk�1;xk�1(E2) . Let � be the measure on R

2 induced by

this distribution. For the example parameters of Figures 6.2-6.3, this function turns out

Figure 6.2: f(x,y), unnormalized:

to still be unipolar; f itself is bipolar with f
�
x(1); x(2)

�
= f

�
x(2); x(1)

�
. Intuition suggests

that it is wise to rotate our coordinate basis for the system position, because if we choose

a basis rotated by 45 degrees then only one coordinate shall be a¤ected by the constraint

for them not to cross, and thus independence of the coordinates shall be maintained. Along

with some elementary manipulations, this allows us to �nd the following useful result. For

simplicity in stating the result we shall introduce some additional notation:

4k�1 = x
(1)
k�1 � x

(2)
k�1 ;

4T = a� b ;

T2 = (N � k + 1)h .

Lemma 6.3.2 (a more useful form of the non-crossing point pdf) Let

X � w
T;(a;b)
0;(a;b)

���
E0;X(tk�1)=xk�1

.
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Figure 6.3: unnormalized pdf for X(t) when X � w
T;(a;b)
tk�1;xk�1

���
E2
.

Then X(1)(tk)+X
(2)(tk)p

2
and X(1)(tk)�X(2)(tk)p

2
are independent and

X(1)(tk) +X(2)(tk)p
2

� Gaussian

0@(T2 � h)
�
x
(1)
k�1 + x

(2)
k�1

�
+ h (a+ b)

p
2T2

;
h(T2 � h)

T2

1A .

The pdf for X(1)(tk)�X(2)(tk)p
2

is, for y > 0,

f(y) = C�1

 
exp

 
�
(y � (T2�h)4k�1+h4Tp

2T2
)2

2h(T2 � h)=T2

!
+ exp

 
�
(y + (T�h)4k�1+h4Tp

2T2
)2

2h(T2 � h)=T2

!

� exp
�
�4k�14T

T2

� 
exp

 
�
(y � (T�h)4k�1�h4Tp

2T2
)2

2h(T2 � h)=T2

!

+exp

 
�
(y + (T�h)4k�1�h4Tp

2T2
)2

2h(T2 � h)=T2

!!!
; (6.29)

with

C =

�
1� exp

�
�4k�14T

T2

��p
2�h(T2 � h)=T2 .

Proof. First we perform some standard manipulations on our pdf formula, breaking it

down into a sum of Gaussian pdfs. Expanding and applying the equalities (N �k+1)x(1)� =
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(N � k)x
(1)
k�1 + a; (N � k + 1)x

(2)
� = (N � k)x

(2)
k�1 + b,

f(x(1); x(2)) / exp

0B@�
�
x(1) � x

(1)
�

�2
+
�
x(2) � x

(2)
�

�2
2(N � k)h=(N � k + 1)

1CA
� exp

0B@�
0B@�x(1) � x(2)

�
(a� b)

(N � k)h
+

�
x(1) � x

(1)
�

�2
+
�
x(2) � x

(2)
�

�2
2(N � k)h=(N � k + 1)

1CA
1CA+

� exp

0B@�
0B@
�
x
(1)
k�1 � x

(2)
k�1

� �
x(1) � x(2)

�
h

+

�
x(1) � x

(1)
�

�2
+
�
x(2) � x

(2)
�

�2
2(N � k)h=(N � k + 1)

1CA
1CA+

+exp

0B@�
0B@(N � k + 1)

�
x
(1)
� � x

(2)
�

� �
x(1) � x(2)

�
(N � k)h

+

�
x(1) � x

(1)
�

�2
+
�
x(2) � x

(2)
�

�2
2(N � k)h=(N � k + 1)

1CA
1CA .

(6.30)

However, notice that

�
x(1) � x(2)

�
(a� b)

(N � k)h
+

�
x(1) � x

(1)
�

�2
+
�
x(2) � x

(2)
�

�2
2(N � k)h=(N � k + 1)

=�
x(1) � x

(1)
� + a�b

N�k+1

�2
+
�
x(2) � x

(2)
� � a�b

N�k+1

�2
2(N � k)h=(N � k + 1)

+

2 a�b
N�k+1

�
x
(1)
� � x

(2)
�

�
� 2

�
a�b

N�k+1
�2

2(N � k)h=(N � k + 1)

�
x
(1)
k�1 � x

(2)
k�1

� �
x(1) � x(2)

�
h

+

�
x(1) � x

(1)
�

�2
+
�
x(2) � x

(2)
�

�2
2(N � k)h=(N � k + 1)

=�
x(1) � x

(1)
� +

(N�k)
�
x
(1)
k�1�x

(2)
k�1

�
N�k+1

�2
+

�
x(2) � x

(2)
� �

(N�k)
�
x
(1)
k�1�x

(2)
k�1

�
N�k+1

�2
2(N � k)h=(N � k + 1)

+

2
(N�k)

�
x
(1)
k�1�x

(2)
k�1

�
N�k+1

�
x
(1)
� � x

(2)
�

�
� 2

�
(N�k)

�
x
(1)
k�1�x

(2)
k�1

�
N�k+1

�2
2(N � k)h=(N � k + 1)�

x
(1)
� � x

(2)
�

� �
x(1) � x(2)

�
(N � k)h=(N � k + 1)

+

�
x(1) � x

(1)
�

�2
+
�
x(2) � x

(2)
�

�2
2(N � k)h=(N � k + 1)

=

�
x(1) � x

(2)
�

�2
+
�
x(2) � x

(1)
�

�2
2(N � k)h=(N � k + 1)

.
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Moreover, in fact we have

x(1)� � a� b

N � k + 1
=

b+ (N � k)x
(1)
k�1

N � k + 1
= x(2)� +

(N � k)
�
x
(1)
k�1 � x

(2)
k�1

�
N � k + 1

x(2)� +
a� b

N � k + 1
=

a+ (N � k)x
(2)
k�1

N � k + 1
= x(1)� �

(N � k)
�
x
(1)
k�1 � x

(2)
k�1

�
N � k + 1

so that we may rewrite (6.30) as

f
�
x(1); x(2)

�
/ exp

0B@�
�
x(1) � x

(1)
�

�2
+
�
x(2) � x

(2)
�

�2
2(N � k)h=(N � k + 1)

1CA
+exp

0B@�
�
x(1) � x

(2)
�

�2
+
�
x(2) � x

(1)
�

�2
2(N � k)h=(N � k + 1)

1CA
� exp

0@�
�
x
(1)
k�1 � y

(2)
k�1

�
(a� b)

h(N � k + 1)

1A�
0B@exp

0B@�
�
x(1) � x

(1)
� + a�b

N�k+1

�2
+
�
x(2) � x

(2)
� � a�b

N�k+1

�2
2(N � k)h=(N � k + 1)

1CA +

exp

0B@�
�
x(1) � x

(2)
� � a�b

N�k+1

�2
+
�
x(2) � x

(1)
� + a�b

N�k+1

�2
2(N � k)h=(N � k + 1)

1CA
1CA .

We are now ready to rotate the basis. Write y = x(1)�x(2)p
2

and x0 = x(1)+x(2)p
2
. Notice that for

any �1;2 2 R :

�
x(1) � �1

�2
+
�
x(2) � �2

�2
=

�
x0 � �1 + �2p

2

�2
+

�
y � �1 � �2p

2

�2
(6.31)

and therefore

�
x(1) � x(1)�

�2
+
�
x(2) � x(2)�

�2
=

 
x0 � x

(1)
� + x

(2)
�p

2

!2
+

 
y � x

(1)
� � x

(2)
�p

2

!2

�
x(1) � x(1)� +

a� b

N � k + 1

�2
+

�
x(2) � x(2)� � a� b

N � k + 1

�2
=

 
x0 � x

(1)
� + x

(2)
�p

2

!2
+

 
y �

x
(1)
� � x

(2)
� � 2 a�b

N�k+1p
2

!2



144

�
x(1) � x(2)� � a� b

N � k + 1

�2
+

�
x(2) � x(1)� +

a� b

N � k + 1

�2
=

 
x0 � x

(1)
� + x

(2)
�p

2

!2
+

 
y �

x
(2)
� � x

(1)
� + 2 a�b

N�k+1p
2

!2

�
x(1) � x(2)�

�2
+
�
x(2) � x(1)�

�2
=

 
x0 � x

(1)
� + x

(2)
�p

2

!2
+

 
y � x

(2)
� � x

(1)
�p

2

!2
The absolute value of the determinant of the Jacobian matrix for the change of coordinates

from
�
x(1); x(2)

�
to (x0; y) is 1. Thus the joint pdf for

�
X(1)(tk)+X

(2)(tk)p
2

; X
(1)(tk)�X(2)(tk)p

2

�
is

given by

g(x0; y) / exp

0B@�
�
x0 � x

(1)
� +x

(2)
�p

2

�2
2(T2 � h)h=T2

1CA f(y)

where for y > 0,

f(y) / exp
�
�
y � x

(1)
� �x(2)�p

2

�2
2(T2 � h)h=T2

+ exp
�
�
y � x

(2)
� �x(1)�p

2

�2
2(T2 � h)h=T2

�

exp

0@�
�
x
(1)
k�1 � y

(2)
k�1

�
(a� b)

h(N � k + 1)

1A�
0BBB@exp

�
�
y � x

(1)
� �x(2)� �2 a�b

N�k+1p
2

�2
2(T2 � h)h=T2

+ exp

�
�
y � x

(2)
� �x(1)� +2 a�b

N�k+1p
2

�2
2(T2 � h)h=T2

1CCCA .

To get the result as stated, we rewrite this pdf for X
(1)(tk)�X(2)(tk)p

2
using the �0;�T notation,

and �nd the normalizing constant:

C =
1

2

�
2
p
2�h(T2 � h)=T2 � 2 exp

�
�404T

T2

�p
2�h(T2 � h)=T2

�
(6.32)

=

�
1� exp

�
�404T

T2

��p
2�h(T2 � h)=T2 . (6.33)

Here the 1
2
occurs because of the cuto¤ at zero, since f would otherwise be symmetrical.

Let � denote the measure on R induced by the distribution of X
(1)(tk)�X(2)(tk)p

2
If for further
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brevity we set

K : = exp

�
�404T

T2

�
�2 : = h(T2 � h)=T2

y�1 =
(T � h)40 +h4Tp

2T

y�2 =
(T � h)40 �h4Tp

2T

then the pdf for X
(1)(tk)�X(2)(tk)p

2
is

f(y) =
1

(1�K)
p
2��

�
exp

�
�(y � y�1)

2

2�2

�
+ exp

�
�(y + y�1)

2

2�2

�
�K

�
exp

�
�(y � y�2)

2

2�2

�
+ exp

�
�(y + y�2)

2

2�2

���
. (6.34)

Thanks to Lemma 6.3.2, we are faced with sampling from a 1-dimensional distribution. It is

possible to create decomposition and rejection methods for multi-dimensional distributions,

but this 1-dimensionality makes it easier, and means that we could also apply the universal

method. It is an experimental observation that when we constrain y > 0, this distribution

is unipolar. However this has yet to be proven and seems to be analytically intractable. It

would be even more expedient to know the peak, but solving this problem appears to be

even more intractable, at least by trying to directly solve f 0(y�) = 0.

Therefore in order construct simulations, it is helpful to at least know the mean and

variance of X
(1)(tk)�X(2)(tk)p

2
, and these are given by the following result.

Proposition 6.3.3 (mean and st.dev. of distance coordinate) LetX � w
T;(a;b)
0;(a;b)

���
E0;X(tk�1)=xk�1

.

Then X(1)(tk)�X(2)(tk)p
2

has mean and variance

E
X(1)(tk)�X(2)(tk)p

2
=

1

1�K

 p
2p
�
� exp

�
�y2�1
2�2

�
+ y�1 (�(y�1=�)� �(�y�1=�))

�K
 p

2p
�
� exp

�
�y2�2
2�2

�
+ y�2 (�(y�2=�)� �(�y�2=�))

!!

V ar

�
X(1)(tk)�X(2)(tk)p

2

�
=

1

1�K

�
y2�1 + �2 �K

�
y2�2 + �2

��
�
�
E
X(1)(tk)�X(2)(tk)p

2

�2
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Proof. We perform an integration by parts: for � 2 R;

d

dy

 
��2 exp

 
� (y � �)2

2�2

!!
= (y � �) exp

 
� (y � �)2

2�2

!
=)

Z 1

0

y exp

 
� (y � �)2

2�2

!
dy =

"
��2 exp

 
� (y � �)2

2�2

!#1
0

+ �

Z 1

0

exp

 
� (y � �)2

2�2

!
dy

= �2 exp

�
��2
2�2

�
+ �

p
2���(�=�)

where �(�=�) denotes the probability that a standard normal variable would lie below �=�.

Therefore

Ey = C�1
Z 1

0

yf(y)dy =
1

(1�K)
p
2��

�
�2 exp

�
�y2�1
2�2

�
+ y�1

p
2���(y�1=�)

+ �2 exp

�
�(�y�1)2
2�2

�
� y�1

p
2���(�y�1=�)�K�2 exp

�
�y2�2
2�2

�
+ y�2

p
2���(y�2=�)

+K�2 exp

�
�(�y�2)2
2�2

�
� y�2

p
2���(�y�2=�)

�
=

1

1�K

 p
2p
�
� exp

�
�y2�1
2�2

�
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as required. Meanwhile, we can �nd
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Hence

Z 1
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�
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exp

�
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�
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�
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�
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�
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�
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exp

�
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�
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�
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�
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�y�2�p
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exp

 
� (�y�2)2
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=
1

1�K

�
y2�1 + �2 �K

�
y2�2 + �2

��
and the result follows.

6.3.2 Drawing a point on a non-crossing Brownian bridge

In view of the above alternative restatements of the joint pdf for a point X(tk) when X �

w
T;(a;b)
0;(a;b)

���
E0;X(tk�1)=xk�1

there are several ways we can approach the problem of sampling from

the distribution of X(tk). The simplest is to draw disregarding the conditioning on E0 and

then reject according to the probability of a crossing during (tk�1; T ). Alternatively, we could

make use of Lemma 6.3.2 to avoid having to take multidimensional samples at all, and instead

be left with a 1-dimensional sampling problem, ie sampling the distance coordinate. For this

case, two well-known 1D sampling methods were compared: a Decomposition method, and

a Rejection method (cf [Gen98]). Alternatively one might use the Universal method (see

[MT04, Gen98]) but an approximate solution for inversion of the cdf would be needed, and

this complication was considered to be best avoided. It was veri�ed that a transformation

method (cf [Wil01, p.249]) based on transforming a Gaussian draw is not possible. Clearly,

in principle there could be other readily sampled distributions that it might be possible to

transform and attain the desired pdf, but no such object was discovered. The details of each

attempted sampling method now follow.



148

Naïve Rejection method

As mentioned, in view of (6.24), we can draw a value x for X(tk) if we draw from

the Gaussian which is induced by the conditional Wiener measure and then reject with

probability given by (cf 6.25):

1�

0@1� exp
0@��x(1) � x(2)

� �
x
(1)
k�1 � x

(2)
k�1

�
h

1A1A 1� exp ��x(1) � x(2)
�
(a� b)

(N � k)h

!!
(6.35)

in the case that for our draw, x(1) > x(2), and with certain rejection otherwise. In the case

that we draw x(1) < x(2), we cannot re�ect the draw to save on draws, since although the

Gaussian candidate measure is symmetric, the centre is not on the line x = y.

The greatest virtue of this method is its simplicity, but it is not possible to combine it

with just a Gaussian measure for the initial points (a; b). In experiments of this kind, the

situation was soon encountered, during the �rst or second step, that points are located too

close together so that the acceptance probability for the next point is persistently less than

10�10. It is likely that some improvement may be found if a more favourable initial point

distribution is used. In this case, however, one has already reduced simplicity somewhat. It

is notable, however, that when a Markov Chain Monte Carlo approach is adopted, initial

points are no longer distinguished from the rest. This should make the naïve rejection method

viable without necessitating severe complications, since the part of discretisation space where

crossings are almost inevitable should then be accessed commensurately infrequently.

Reorientation + Decomposition

Since we established that a linear transformation of coordinates makes the new coordi-

nates independent, we could proceed by taking a Gaussian draw for X(1)(tk)+X
(2)(tk)p

2
(since

e¢ cient methods are known [MT04] for simulating a Gaussian distribution) and then, we

are left with the need to sample X(1)(tk)�X(2)(tk)p
2

. That is, as mentioned, we then need to

sample from the 1-dimensional distribution corresponding to the pdf (6.29). One generic

exact method for 1-dimensional sampling is volume decomposition.
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Volume decomposition depends on the assumption that the target distribution is unipolar,

or at least that its modes are all approximately known. It means, in principle, that we rewrite

the pdf as the in�nite linear combination of drawable pdfs, with positive coe¢ cients. (We

shall loosely call a pdf "drawable" when an e¢ cient sampling algorithm is known.) The choice

of basis functions is arbitrary as long as they are drawable pdfs. However, for simplicity let

us choose each to be the uniform distribution over an interval. Then we are decomposing

the area under the curve into boxes: for some set of Pi > 0, and some set of xi1; xi2,

f =
1X
i=1

Pi
I[xi1;xi2]
xi2 � xi1

. (6.36)

Figure 6.4: Decomposing the volume of probability under the pdf curve

The most conceptually obvious algorithm would seem to be as follows. Let f be the pdf;

we assume the distribution is unipolar.

1. Find the maximum likelihood peak of f ; call this yML. Let �0 2 (0; yML).

2. Form a subset of the area under the curve by taking (yML��0; yML)�(0; f(yML��0)).

We shall call this R1. If we are trying to sample the area beneath the curve uniformly

(cf [Wil01, p.249]) then we should attribute to this P1 = f(yML � �0)�0.
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3. Do likewise on the right-hand side of y0: take R2 = (yML; yML+�0)� (0; f(yML+�0)),

and attribute to it P2 = f(yML + �0)�0.

4. At the leftmost point so far encountered (call yLEFT ), create the next Ri = (yLEFT �

�i; yLEFT )� (0; f(yLEFT � �i)). Or, if yLEFT � �i < 0 then Ri = ?.

5. Create a further set of Ri by bisecting existing intervals.

6. At the rightmost point encountered so far (call yRIGHT ), create the next Ri =

(yRIGHT + �i; yRIGHT )� (0; f(yRIGHT + �i)).

7. Return to step 4; or, if 0 is the current leftmost point then return to step 5. Thus we

shall obtain values for Pi and xi1; xi2 in (6.36).

8. We make a uniform draw u � U [0; 1] and this can be used to index both which Ri we

lie in and what point to draw from the corresponding interval. For suppose that

k�1X
i=1

Pi � u <
kX
i=1

Pi:

Then our draw is

xk1 +

 
u�

k�1X
i=1

Pi

!
(xk2 � xk1) :

However, in practice a couple of modi�cations to this schema become necessary. Firstly,

it is notable that once u is known, we will know when we have computed k coe¢ cients such

that u <
kP
i=1

Pi and we can stop iterating. Obviously to compute an in�nite number of terms

would take an in�nite number of evaluations of f so this is just as well. So it makes sense

to draw u �rst and then check whether u <
kP
i=1

Pi after each (kth) box.

Secondly, in the case of distributions such as that of the distance coordinate for a point

on a non-crossing bridge, it is not apparently possible to identify the maximum likelihood

point analytically and so we cannot rely on knowing the sign of the derivative. However, as

long as the function is unipolar we can still use the fact that for any interval [x1; x2], min[x1;x2]

f = minfx1;x2g f . The approximation to the curve after n iterations will look like a set of
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intervals demarcated by jn points where jn+1 = 2jn+1 and j1 = 2 (so that jn = 3�2n�1�1)

where the height of the approximation curve in interval [x�1; x
�
2] is minfx�1;x�2g f .

In practice, a limitation was encountered, that the maximum number of iterations is

bounded by the amount of computer RAM. viz, to run the 25th iteration with the 24th in

storage, will probably require about 600 Mb storage if there are 4 bytes in a double precision

number, and this amount roughly doubles at each iteration. The solution used was to re-

start the procedure (with a new draw of u) if u >
j24P
i=1

Pi, introducing a small bias. This

means that, in e¤ect, the pdf actually being drawn from is a step function approximation

to the intended pdf, with j24 steps and curtailed at the rightmost point. As it happens,

j24 = 25165823.

For this reason, where � is the standard deviation of X
(1)(tk)�X(2)(tk)p

2
, the distance �=q1=2

was chosen for � in determining the new leftmost and rightmost points at iteration q, rather

than say �=q, since using q1=2 means that at the 24th iteration, we can reach 8 s.d. on the

right-hand side. A rough numerical analysis indicates the probability of the neglected tail is

of the magnitude 10�16. As a conservative estimate, it should therefore be safe to consider

the procedure unbiased if the number of samples used in a program is less than about 1017.

Although we cannot �nd the peak, it is still necessary to pick two sensible initial points to

be the endpoints of the interval in iteration 1. Since we can compute the mean and standard

deviation of the distributions that we are concerned with, the points used in simulations

were EX
(1)(tk)�X(2)(tk)p

2
� �,EX

(1)(tk)�X(2)(tk)p
2

+ �. The conclusion from the simulations using

this method was that it demonstrates one way in which an e¤ective simulation can be

achieved, but is unnecessarily expensive. The simulations are 10 times more costly than

with the following method.

Reorientation + Rejection

Again relying on Lemma 6.3.2, we may sample from the distribution given by (6.29) using

Rejection sampling, another generic exact method. Speci�cally, we draw from a drawable
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"candidate" pdf, and then reject with a probability given by the ratio of the two pdfs,

multiplied by some ��1 < 1. This e¤ectively means that there is a candidate measure

� with full measure � and � � �, and our acceptance probability is d�=d�, the Radon-

Nikodym derivative between the target measure and the candidate measure. This method,

amongst others, is discussed in [Gen98].

There are two popular approaches to Rejection sampling: the ziggurat method and adap-

tive rejection. When the modes of the distribution are assumed known, the ziggurat method

creates a "ziggurat" candidate (ie, a step function everywhere greater than the target pdf

f) using a �nite initial set of evaluations of f . The adaptive rejection method improves the

ziggurat by updating it each time the target pdf is called. Neither approach is applicable

here because parameters are di¤erent every time that a draw is made, and (6.29) is not

such that an easy transformation will turn a draw for one set of parameters into a draw for

another set of parameters.

If d�=d� > 1 at some points, then upon sampling such a point, we could apply a reweight-

ing to the contributions to the functional integral. However, this rapidly becomes compli-

cated. Amethod based on this idea was implemented and gave poor results, so it is considered

imperative for there to be no such reweighting. Therefore it is necessary to use a candidate

measure whose Radon-Nikodym derivative with respect to Lebesgue (that is, the pdf of the

distribution which induces this candidate measure, if it were to be a probability measure) is

everywhere greater than or equal to that of the target. Or at least, we need to know that

the problematic samples with d�=d� > 1 will occur with a su¢ ciently low frequency, such

as 10�15, that their in�uence can be disregarded in our simulation.

Various candidate measures were considered and most attempts encountered signi�cant

problems. The measures tested were based on the exponential distribution, the hyperbolic

distribution, the gamma distribution, and these distributions spliced with the Gaussian, and

with each other, horizontally and vertically. (Sampling from a horizontal splicing of pdfs

can be accomplished by knowing the relative weight intended for the component parts and
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choosing at the beginning from which of the parts we are to sample. Sampling from a vertical

splicing means sampling from a linear combination of pdfs, which can be similarly achieved.).

In principle, any probability measure �0 with � � �0 can be boosted by some � to the point

where � (fd�=d� > 1g) is su¢ ciently small. It is not clear how we could use any other kind

of boost than to multiply by a constant. Therefore the relevant property of a candidate

measure is, what � is needed in order for it to be evident that this point has been reached.

For most of the measures tried it was clear that this � would be of an unacceptably large

magnitude (since ��1 must of course be the acceptance ratio).

It turns out that an e¤ective candidate can be produced using a splice of two Gaussians.

Nothing useful comes of splicing about the mean. Rather, if we assume that the maximum

point of the target is known, it appears that the two parts of the target to either side of

it can then be modelled, separately, as Gaussian. (Under changing parameters, the mean

strays a variable distance from the maximum point and so a method based on splicing

around the mean will fail for some parameters.) However, it was found that estimating

yML by using a quadratic approximation to the target from a Taylor series about the mean

seems to give reasonably accurate results. That is, experimentally, where we write E� for

E
�
X(1)(tk)�X(2)(tk)

�
,

yML t dyML = �

s�
f2
f3

�2
� 2f1

f3
� f2
f3
+
E�p
2

(6.37)

where, recalling the notation de�ned following Lemma 6.3.2,
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2
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�2
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2
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�2
exp

0B@�
�
E�p
2
+ y�2

�2
2�2

1CA
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1
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+
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Obviously this approximation would give rise to some error if we were trying to model

the target exactly, but it is clear visually that it is unimportant when we are just trying

to create a candidate measure with full measure > 1. (It is only the cost of this Taylor

approximation that we have to worry about.)

Approximately speaking, the target is somewhat like a Gaussian about its peak with

one side compressed so that it meets zero at zero, and intuition of the problem makes it

plausible that this should be so. So it is safe to allow the left-hand side of the candidate to

have variance � 2 := V ar
�
�p
2

�
, ie the same as the target�s overall variance: at the very least

we know that the mean square negative deviation away from yML in the target is less than
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this, since it is less than the mean square positive deviation.

Now for the peaks of the candidate components to meet, as seems desirable, the "normal-

izing constant" on the right-hand component must be 1p
2��

as on the left. This normalizing

constant will be relevant in the acceptance probability when we draw a point on the right-

hand side. This means that choosing a higher variance than � on the right-hand side (as we

must do) implies a greater candidate measure on this side. The relative probability of the

two sides is thus controlled by the variance of the right-hand side, so a natural choice might

be

� right = �
�(yML;1)
�(0; yML)

(6.38)

so that the candidate gives the same relative probability to the two sides of the peak as

the target does. The fact that the left-hand candidate works should then mean that the

right-hand candidate must also work, since the right-hand picture is then in some sense a

re�ection of the left. Of course, we know that

�(0; yML) =
1

1�K

�
�

�
yML � y�1

�

�
� �

�
�yML � y�1

�

�
�K

�
�

�
yML � y�2

�

�
� �

�
�yML � y�2

�

���
Figures 6.5-6.8 show example curves using the candidate Radon-Nikodym derivative:

1p
2��

exp

�
�(y �dyML)

2

2� 2

�
; 0 < y 6 dyML;

1p
2��

exp

0B@ �(y �dyML)
2

2� 2
�
�(dyML;1)
�(0;dyML)

�2
1CA ; y > dyML (6.39)

There is no extra boost to the candidate.

In the candidate which was actually used so far, the formula used for the variance of

the right-hand side is instead (3(1 � �(�1; yML)) + 0:5)
2� 2:This is arbitrary, but works

empirically. (In fact given the range which �(�1; yML) actually takes, this ranges from

being a similar value to the right-hand variance above, and a somewhat greater value.)
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Figure 6.5: RN derivative of candidate measure compared with pdf of target measure. �0 =
0:001; �T = 0:001, h = 0:01, T = 0:03.

In the Gaussian cdf, the tail after 8 s.d. has probability < 10�15. It seems apparent from

graphing with di¤erent parameters that if there is a point where our candidate meets the

target then it is at least this kind of distance from the peak. Actually, modelling the curve this

way, we barely would encounter errors with no extra boost. In simulations, an extra boost

of 1:1 for the candidate was used, to ensure that there would be no problems and it seems

likely that this value is adequate for any foreseeable simulation. Because we used �(yML;1)

in the formula for our candidate, the candidate measure � is variable (but in general it is

not much more than 1). From a run of the simulation with h = 0:1; T = 8;M = 109, there

were 1197 occasions when d�=d� was greater than 1; ie a proportion of order 10�8, �but it

is expected that this would be much less using � right = � �(yML;1)
�(0;yML)

.

Because both component distributions are Gaussian, the splicing can be achieved here

by simply taking a Gaussian draw and if it is negative, changing its sign with probability� � right
�
� 1
�� � � right

�
+ 1
�
. Naturally we then multiply by the appropriate sd for the side of
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Figure 6.6: RN derivative of candidate measure compared with pdf of target measure. �0 =
0:001; �T = 0:05, h = 0:1, T = 2:0.

zero that it is on, and add our estimate of yML, and we have a draw from the candidate.

The method has not been analytically proven to work since it seems problematic to

demonstrate rigorously that the candidate selected remains greater than the target for all y

or for a set of measure 1� " with " negligibly small. However, we can console ourselves with

the fact that it has been empirically tested, and that this will be adequate to know that it

will always work in practice, because it is always the same pdf that needs to be sampled,

independent of the problem at hand. In practice this method provided an advantage in speed

of some 10 times over the Decomposition method explained above; both gave equal results.

Even though neither method could be proven to be valid analytically, the fact that the results

agree gives de�nite con�rmation that as would appear credible from the graph, d�=d� > 1

bias is not creeping in, and that the assumption of unipolarity was not signi�cantly violated.

No "variance factor" ~2=m was used but this should be unimportant as whenever such a

factor is introduced we should just adapt the candidate commensurately.

It seems that if we were to have had any concerns about the complexity or viability of
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Figure 6.7: RN derivative of candidate measure compared with pdf of target measure. �0 =
2:0; �T = 2:0, h = 0:1, T = 2:0.

sampling from the non-crossing bridge fdd pdf, in order to exploit the formulation of the

problem that arises from the Theorem 6.2.1 above, then these concerns must be laid to rest.

Sampling is not di¢ cult to program. The total cost per sample is equivalent to about 30

calls to the exponential function, but as we shall see, this was low enough for a simulation

of the harmonic oscillator to be run with success.

6.3.3 The initial point distribution

In earlier attempts, a Gaussian distribution of initial points was used. Since we collect an

approximation to wT;(a;b)0;(a;b) (E0)J
E0
T ((a; b); (a; b))at each point, this gives rise to the sampling

of many pairs of close points which have a very small contribution to the overall integral,
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Figure 6.8: RN derivative of candidate measure compared with pdf of target measure. �0 =
0:1; �T = 0:0001, h = 0:01, T = 0:02.

due to the high probability of bridges crossing. Therefore a di¤erent pdf was used:
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We make the transformation to (a0; b0) =
�
a+bp
2
; a�bp

2

�
and noting again that the modulus

of the determinant of the Jacobian is 1,
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. (6.41)

So it is clear that these coordinates are independently distributed. We can draw a0
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Gaussian and then obtain b0 from decomposition or another method. Note that

1

T=2
+

1

2�2
=
T=2 + 2�2

T�2
=

1

2T�2=(T + 4�2)
(6.42)

It turns out that for decomposition purposes, we can �nd the peaks of g(b0) and prove

that it is unipolar when we consider only positive b0, for

dg

db0
=
�b0
�2
exp

�
� b02

2�2

�
+

b0

T�2=(T + 4�2)
exp

�
� b02
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�
(6.43)

Hence
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(b00) = 0; b

0
0 6= 0

and thus

1
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1
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�
.

It is convenient, for decomposition, also to know the variance, and in order to get this

we will �nd the mean and the mean square of the distribution. Let us �rst compute the

normalizing factor C:

C =

p
2�� �

p
2�
q

T�2

T+4�2

2
=

r
�

2

 
� �

r
T�2

T + 4�2

!
(6.44)

where here the factor of 1=2 enters because of the cuto¤ at zero, about which g is symmetric.

Now the mean is given byZ 1

0

b0g(b0)db0 = C�1
Z 1

0

b0
�
exp

�
� b02

2�2

�
� exp

�
� b02

2T�2=(T + 4�2)

��
db0

= C�1
��
��2 exp

�
� b02

2�2

��1
0

�
�
� T�2

T + 4�2
exp

�
� b02

2T�2=(T + 4�2)

��1
0

�
= C�1

�
�2 � T�2

T + 4�2

�
. (6.45)
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Now notice that applying E(X2) = V ar X + (EX)2 ;Z 1

�1
b02 exp

�
� b02

2�2

�
db0 =

p
2��3 (6.46)

but the integrand is symmetric about zero so it follows thatZ 1

0

b2 exp

�
� b2

2�2

�
db =

p
�p
2
�3 . (6.47)

ThereforeZ 1

0

b2g(b)db = C�1
Z 1

0

b2
�
exp

�
� b2

2�2

�
� exp

�
� b2

2T�2=(T + 4�2)

��
db

= C�1

 p
�p
2
�3 �

p
�p
2

�
T�2

T + 4�2

�3=2!

=

 
�3 �

�
T�2

T + 4�2

�3=2!, 
� �

r
T�2

T + 4�2

!
. (6.48)

Therefore the standard deviation of b is given byvuuut�3 �
�

T�2

T+4�2

�3=2
� �

q
T�2

T+4�2

�
�
C�1

�
�2 � T�2

T + 4�2

��2
. (6.49)

A less expensive alternative is to sample (a; b)Gaussian and reject with probability exp
�
� (a�b)2

T

�
.

6.4 Simulation methods for n 1D non-crossing bridges

If we are to claim that a solution to the sign problem has been o¤ered then we must

describe how to perform the simulation when there are n particles. In other words, anal-

ogously to the situation of the preceding section, we have to demonstrate how to sample

a point on the (system) Brownian bridge, when some other points may already have been

�xed. As before it turns out that exact sampling is possible, but in general we may need to

use a rejection method in order to achieve it.
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6.5 Numerical results using non-crossing algorithm for

2 fermions in a 1D Harmonic Oscillator

A program was made to implement the method described above - viz, that we take

only bridges that do not cross and estimate formula (6.21). The program estimates ghV i, ie
the approximation to hV i obtained by applying Simpson�s Rule (3.40) to approximate S;

by using direct path sampling (4.8-4.9). The following sequence of results is given, showing

that this method is very e¤ective compared to the methods discussed previously; particularly

compare Figures 6.9-6.12 with Figures 5.1-5.7. Visually it is clear that a superpolynomial

increase in M is required in order to maintain a certain Monte Carlo Standard Error as

inverse temperature increases. However, the growth in cost is apparently similar to that

found in the case of 1 particle in Subsection 4.3.4, which is because the cost growth is due to

a lack of importance sampling, rather than to the sign problem. It seems fair to conjecture,

from these results, that we may say that we have succeeded in proving and implementing

a solution the fermion sign problem for 1-dimensional systems. The time to perform 109

Monte Carlo runs for T = 10 was about 82 hours on a 2.0 GHz machine.

Table 6.1 gives an indication of the convergence of the Monte Carlo estimate of ghV i,
when the simulations are performed with h = 0:1.

Table 6.1: Potential energy for 2 noninteracting 1D fermions in a harmonic potential; to 9
d.p. The results are based on using Simpson�s Rule for S ; h = 0:1 throughout.

T M Realisation ofdhV i LowghV i (95%) HighghV i (95%) True value hV i

2 107 1.097576066 1.096432794 1.098721173 1.096916182

4 108 1.010107205 1.009327187 1.010888017 1.009664255

6 108 1.001711376 0.999801159 1.003626313 1.001248600

8 109 1.000137100 0.998525317 1.001752307 1.000167900

10 109 1.003130673 0.998769273 1.007514820 1.000022703

It can be seen in Table 6.1 that in every case, the true value of hV i is within the interval

predicted by the program ghV i. The program used the Bivariate Gaussian contour method,
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Figure 6.9: Particle density for 2 1D fermions using Simpson�s Rule for S and non-crossing
algorithm. T = 2; h = 0:1;M = 107.

described in Chapter 4, to determine these credibility intervals forghV i.
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Figure 6.10: Particle density for 2 1D fermions using Simpson�s Rule for S and non-crossing
algorithm. T = 4; h = 0:1;M = 108.

Figure 6.11: Particle density for 2 1D fermions using Simpson�s Rule for S and non-crossing
algorithm. T = 6; h = 0:1;M = 108.
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Figure 6.12: Particle density for 2 1D fermions using Simpson�s Rule for S and non-crossing
algorithm. T = 10; h = 0:1;M = 109.
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Chapter 7

Multidimensional pairs of fermions

In this chapter, we develop and test the Iterated Subdiamonds approach to dealing with

the sign problem in the case of a pair of fermions. We begin, in Section 7.1, by discussing

what makes our approach di¤erent and explaining how we are led to the line of inquiry

which is subsequently adopted. In Section 7.2, concentrating on the 2D case, we then build

up the Iterated Subdiamonds approach and prove the main result of this chapter, Theorem

7.2.10. We proceed to explain, in Section 7.3, the rami�cations of this as regards performing

a simulation of a 2D or 3D fermion pair. In Section 7.4, results are presented of numerical

experiments to test the average sign being attained by the algorithm and how it changes

with T; the length of the time interval over which integration is performed.

7.1 A novel approach to the fermion sign problem

In the previous chapter, we succeeded in e¤ectively solving the fermion sign problem in

the 1D case by partitioning the space of paths into subsets where the contributions to the

Monte Carlo would be only positive on some, and, as it turned out, the required positive and

negative contributions would exhibit perfect cancellation on others. Although our presenta-

tion of this result may be novel, its realisation is familiar to practitioners. As mentioned,

the physical reasoning behind the 1D result is that particles are prevented from crossing
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wavefunction nodes, and the multidimensional generalization of this principle is RPIMC (cf

Subsection 5.2.1).

The approach taken here represents a radical departure from the node-avoiding approach.

We can instead view the result of the previous chapter in terms of a simultaneous sampling

approach, in which the paths sampled together are those which yield a perfect cancellation.

Endeavouring to generalise this principle mathematically gives a direction to our research

which is di¤erent from that of both RPIMC (cf Subsection 5.2.1) and MLB (cf Subsection

5.2.2), although it has commonalities with both. We aim for an exact method which does

not depend on external calculations.

As noted previously, it has been shown that the fermion sign problem is insoluble in the

sense of producing an exact solution (or one with controlled approximations) which treats

3D fermions and increases in cost polynomially as the number of fermions is increased.

The best that it is reasonable to expect is a method for which the cost to achieve a given

variance does explode, but with a relatively low exponent. We have already mentioned that

although there is a notional equivalence between an increased number of fermions and a

reduction in temperature 1=kBT , due to the converging relative likelihoods of terminal point

permutations, it is not clear that solving the sign problem for T is as hard as solving it for

n. In this chapter, it turns out that in fact, we are able to develop a method for the case of

just 2 particles where the cost scaling with T is relatively favourable.

7.1.1 Independence and dimensional crossing events

At �rst sight it might not seem immediately clear what partition of path space might

be relevant to use in 2D or 3D. In 1D, the �rst step was to recognise the events whose

probabilities are given by the Gaussian factors on the permutation summands in IT (cf

(2.62)). In 2D (or 3D), two paths may cross in the x or y (or z) coordinates, so what

combinations of crossings are important? A little consideration of the quantities at hand

reveals an intuitively likely answer. Letting a; b 2 R3, the factor 'T ((a; b); (b; a)), which
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appears in IT ((a; b); (a; b)) (cf (2.62)), may be seen to be

exp(�ka� bk2 =T ) = w
T;(a;b)
0;(a;b) (Ex)w

T;(a;b)
0;(a;b) (Ey)w

T;(a;b)
0;(a;b) (Ez) = w

T;(a;b)
0;(a;b) (Ex\Ey\Ez) = w

T;(a;b)
0;(a;b) (E

c
0) ,

(7.1)

where Ex (respectively Ey; Ez) is the set of loop-pairs with a crossing in the x (respectively

y,z) coordinate. In other words, this factor is equal to the measure of the set Ec0 of 3-

dimensional bridges from (a; b) to (a; b) such that the bridge from a to a and that from

b to b meet in every coordinate. This holds because Ex; Ey; Ez are mutually independent

events and because from the results of the previous chapter, it follows that wT;(a;b)0;(a;b) (Ex) =

exp(� (ax � bx)
2 =T ).

Obviously the set of pairs of Brownian bridges that meet in two coordinates simulta-

neously is a set of measure zero; the paths that are of interest here are those which meet

in each coordinate at a di¤erent time. For conceptual simplicity we can also interpret the

coe¢ cient (7.1) in another way: it is the probability of a longitudinal crossing. That is, if

we rotate the coordinate basis so that one "longitudinal" basis vector (corresponding to the

x coordinate, for de�niteness) has the direction (b� a)/ ka� bk and the other "transverse"

coordinates are orthogonal to this, then we see that clearly ka� bk is the distance between

the new x positions of a and b and it follows from the independence of coordinates that

exp(�ka� bk2 =T ) is the probability of a crossing in x; clearly there are crossings in the

other coordinates simultaneously at time 0. (It also seems clear that for any rotation of

coordinates, there is an analogous event of which exp(�ka� bk2 =T ) is the probability.)

The intuition here is that in view of the importance of this rearrangement in the 1D

case, regarding path space as partitioned into disjoint events so that on each of these events,

we have a set of unweighted summands1, is a comparatively logical way to proceed. In 1D,

the attempts to create a positive covariance between countersigned summands, detailed in

Section 5.3, were scuppered by the presence of the Gaussian coe¢ cients such as (7.1), and

we solved the problem by rearranging to take account of these coe¢ cients. We can regard

1Or in general, a set of weighted summands such that for each negative summand there is a positive one
with the same weight.
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a coe¢ cient on an integral as modifying the measure of integration, and any cancellation

between the contributions of di¤erent paths must surely rest on comparing paths from terms

with equal full measure over the integration domain.

7.2 Subdiamond theory for the case of two fermions in

a 2-dimensional space

In this section we begin by developing basic results based on geometrical intuition about

how to address the sign problem. We then use these to develop the Iterated Subdiamond

method, the justi�cation for which is expressed in Theorem 7.2.10, our main result in this

chapter. Although we prove results that demonstrate the required equivalences, the utility

of these is only discussed informally.

7.2.1 Diamonds

We shall mostly devote our attention to the unnormalized position density GT ((a; b); (a; b))

(cf (2.62-2.65)) and those quantities which can be derived from it, from here onwards; but

it should be borne in mind that the same logic allows us to treat expectations of other

exponential-type functionals. In this section, we develop two results which o¤er a decompo-

sition of GT ((a; b); (a; b)) into a product of integrals conditional on the �rst and last longitu-

dinal crossing times and points. Although it is not di¢ cult to appreciate how the results of

this section generalise to 3D (cf Subsection 7.3.2), we shall focus on the 2D case for ease of

exposition.

In the following proposition, we shall use the rotated coordinate basis that makes the x

coordinate longitudinal. That is to say, without loss of generality we assume that a = (ax; 0)

and b = (bx; 0) since this can always be achieved by a rotation and translation of coordinates.
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Random variables as measurable functions It is worth recalling at this stage

that we regard X as a random variable on the measurable space
�
CT0;x0 ;B

�
CT0;x0

��
. In this

chapter, in fact we shall take X to be the identity: X(t;!) = !(t) (cf De�nition 2.1.4 and the

brief discussion following it). A random variable on
�
CT0;x0 ;B

�
CT0;x0

��
is a Borel-measurable

function on CT0;x0, and expectations of random variables, with any particular conditioning,

are integrals of those random variables with respect to measures on B
�
CT0;x0

�
. In this chapter

it is usually best for clarity, and to avoid longwindedness, to write such integrals explicitly.

(Mathematically, however, to constantly rede�ne the relevant probability measure P to make�
CT0;x0 ;B

�
CT0;x0

�
; P
�
a probability space, and write expectations instead of integrals, would

of course be equivalent.)

First crossing time and point We let �(X) : Ex ! [0; T ] be given by the �rst x-

crossing time of X (ie, the �rst crossing time in the longitudinal direction (b� a)= kb� ak)

and let x1(X) denote X(�(X)). For x 2 R4 s.t. x(1)1 = x(2)1, let

E(t; x) = fX 2 Ex : �(X) = t; x1(X) = xg ;

ESW(t; x) =
n
X 2 CT ;(b;a)0;(a;b) : �(X) = t; x1(X) = x

o
Here SW stands for swap. We let Ct;x0;(a;b)jE(t;x) denote the set of paths in C

t;x
0;(a;b) with no

x-crossings before time t, so that x is the �rst x-crossing point.

The space of all continuous paths of �nite time-length We shall let C? =S
t2[0;1) Ct0. From here onwards we generalise our de�nition of the exponentiated action

Y so that for any path in C�, Y may be considered to be de�ned analogously with (1.2).

Whenever functions are de�ned on C? it should be assumed that they are also de�ned for

Cts, whenever s < t, via translating time by a shift of �s.

Concatenation operator We shall use the & binary operator to indicate the con-

catenation of two path sections, ie X[0;t]&X
0
(t;s] is given by X over [0; t] and by X 0 over

(t; s].
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Proposition 7.2.1 (First Diamond Proposition) Let f1 : C? ! C? be s.t. for any t 2

(0; T ) and x 2 R4 s.t. x(1)1 = x(2)1; we have that for X 2 Ct;x0;(a;b)jE(t;x), we shall have

f1(X) 2 Ct;x0;(b;a)jE(t;x): Moreover let f1 be s.t. for any event A 2 B
�
Ct;x0;(a;b)

�
,

wt;x0;(b;a)jE(t;x) (f1(A)) = wt;x0;(a;b)jE(t;x)(A):

Let f2 : C? ! C? be s.t. for X 2 CT;(a;b)t;x , f2(X) 2 CT;(b;a)t;x and s.t. for any event A 2

B
�
CT;(a;b)t;x

�
,

w
T;(b;a)
t;x (f2(A)) = w

T;(a;b)
t;x (A):

Then

GT ((a; b); (a; b)) =
Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)+

1

2

Z
Ex

��
Y
�
X[0;�(X)]

�
� Y

�
f1
�
X[0;�(X)]

��� �
Y (X[�(X);T ])� Y (f2(X[�(X);T ]))

��
dw

T;(a;b)
0;(a;b) ,

(7.2)

where naturally we regard f1;2 as applying in the longitudinal-transverse basis.

Proof. It follows from the de�nition (2.62-2.65) and the de�nition of JT (2.32) that

GT ((a; b) ; (a; b)) =
Z
C
T;(a;b)
0;(a;b)

Y (X)dw
T;(a;b)
0;(a;b) �exp

 
�ka� bk2

T

!Z
CT;(b;a)
0;(a;b)

Y (X)dw
T;(b;a)
0;(a;b) . (7.3)

Therefore from (7.1),

GT ((a; b) ; (a; b)) =
Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)

+

Z
Ex

Y (X)dw
T;(a;b)
0;(a;b) � w

T;(a;b)
0;(a;b) (Ex)

Z
CT;(b;a)
0;(a;b)

Y (X)dw
T;(b;a)
0;(a;b) . (7.4)

Note that the x-coordinates of X form a pair of 1-dimensional Brownian bridges, inde-

pendent from the y-coordinates. Therefore, for the x-coordinates, the same logic applies as

in the proof of Theorem 6.1.4; viz, the distribution of (� ; x1), the �rst crossing time and point

in x, is the same for wT;(b;a)0;(a;b) as for the concentration of w
T;(a;b)
0;(a;b) on Ex, so we may condition

on a �rst crossing time and point (t; x) which is identical in law for both summands. Let �
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signify the measure on [0; T ]� R induced by the distribution of (� ; x1) for the x-coordinate

of a bridge in Ex under w
T;(a;b)
0;(a;b)

���
Ex
: Then

GT ((a; b) ; (a; b)) =
Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)

+ w
T;(a;b)
0;(a;b) (Ex)J

Ex
T ((a; b); (a; b))� w

T;(a;b)
0;(a;b) (Ex)JT ((a; b); (b; a))

=

Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)

+ w
T;(a;b)
0;(a;b) (Ex)

Z
[0;T ]�R

h
J E(t;x)
T ((a; b); (a; b))� J ESW(t;x)

T ((a; b); (b; a))
i
d�(t; x)

=

Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)

+

Z
Ex

h
J E(�(X);x1(X))
T ((a; b); (a; b))� J ESW(�(X);x1(X))

T ((a; b); (b; a))
i
dw

T;(a;b)
0;(a;b) : (7.5)

In other words, intuitively speaking, since the x-crossing in the negative summand is identi-

cally distributed with that in the positive summand, we might as well use the same realisation

for both. However, notice that under wT;(a;b)0;(a;b) ,

f1
�
X[0;�(X)]

�
&X[�(X);T ] s w

T;(a;b)
0;(b;a)

X[0;�(X)]& f2
�
X[�(X);T ]

�
s w

T;(b;a)
0;(a;b)

f1
�
X[0;�(X)]

�
& f2

�
X[�(X);T ]

�
s w

T;(b;a)
0;(b;a)

���
E�x

,

where E�x � CT;(b;a)0;(b;a) is the Borel set consisting of those paths from (b; a) to (b; a) with an

x-crossing. Therefore it follows from permutational symmetry of the potential thatZ
Ex

J E(�(X);x1(X))
T ((a; b); (a; b))dw

T;(a;b)
0;(a;b) =

Z
Ex

Y (X)dw
T;(a;b)
0;(a;b)

=

Z
Ex

Y
�
f1
�
X[0;�(X)]

�
& f2

�
X[�(X);T ]

��
dw

T;(a;b)
0;(a;b)Z

Ex

J ESW(�(X);x1(X))
T ((a; b); (b; a))dw

T;(b;a)
0;(a;b) =

Z
Ex

Y
�
X[0;�(X)]& f2

�
X[�(X);T ]

��
dw

T;(b;a)
0;(a;b)

=

Z
Ex

Y
�
f1
�
X[0;�(X)]

�
&X[�(X);T ]

�
dw

T;(a;b)
0;(b;a)
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and since Y is multiplicative in the sense that Y (X) = Y (X[0;t])Y (X[t;T ]), it follows that

GT ((a; b) ; (a; b)) =
Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b) +

1

2

Z
Ex

�
Y (X)� Y

�
f1
�
X[0;�(X)]

�
&X[�(X);T ]

�
� Y (X[0;�(X)]& f2(X[�(X);T ]))

+ Y (f1
�
X[0;�(X)]

�
& f2(X[�(X);T ]))

�
dw

T;(a;b)
0;(a;b)

=

Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)

+
1

2

Z
Ex

��
Y
�
X[0;�(X)]

�
� Y

�
f1
�
X[0;�(X)]

���
�

�
Y (X[�(X);T ])� Y (f2(X[�(X);T ]))

��
dw

T;(a;b)
0;(a;b) .

Basically, f1 and f2 are measure-conjugating bijections. Proposition 7.2.1 provides a

geometrical reinterpretation of the permutation formula (2.62) for IT .

The �rst summand in the right-hand side of (7.2) is computationally unproblematic, as we

discovered in Chapter 6. Essentially we can read the problematic "diamond" part of IT (x; x)

as
R
Ex
[Y (X)� Y (X 0)] dw

T;(a;b)
0;(a;b) where X

0 2 ESW(�(X); x1(X)) is constructed from X in a

manner which for every (t; x) 2 (0; T ) � R4 conjugates wT;(a;b)0;(a;b)

���
E(t;x)

with w
T;(b;a)
0;(a;b)

���
ESW(t;x)

.

If we conceive of two di¤erent ways of doing this so that X 0 agrees with X either before

�(X) or after �(X), then we can combine them both to create two negative and two positive

contributions, as illustrated in Figure 7.1 (see a detailed explanation below).

Subdiamond schematics

Some of the �gures in this chapter are described as schematics. This means that rather

than illustrating a realisation of the paths relevant to a particular expression for GT , or even

their expectation positions, for clarity we instead simply draw the set of links (representing

path segments) showing the relationships between the paths involved. Any suitable sequence

of path segments described in a schematic may be thought of as a path which gives rise to

either a positive or negative contribution to a functional whose expectation is GT . For

example, in Figure 7.1, if we follow the blue (negative) segment of length � from b and then
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Figure 7.1: Schematic of the contributing path segments for a path in Ex, according to the
First Diamond Proposition for �nding GT ((ax; 0); (bx; 0); (ax; 0); (bx; 0)). Red is positive and
blue is negative.

follow the blue segment of length T�� back to b, this represents a path which would give rise

to a positive contribution, since the two negative signs are multiplied. On the other hand,

following the blue segment of length � from b and then following the red segment of length

T � � to a represents a path with a negative contribution. Following an odd number of blue

segments gives rise to a negative-contributing path; following an even number gives rise to

a positive-contributing path. More properly we should really say, of course, that we follow

two segments at once: if we follow the blue segment of length � from b then simultaneously

we follow the blue segment of length � from a.

In Figure 7.1, we may say that if X were sampled to be the red path segments, then

the blue path segments supply our mental image of what f1
�
X[0;�(X)]

�
& f2

�
X[�(X);T ]

�
would

look like. A similar interpretation applies in the other schematics.

We do not use di¤erent colours for links representing path segments which are uncon-

strained Brownian bridges and for links representing path segments for which crossing con-

straints are implied in the text.
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On relative magnitudes

One direction taken from (7.2) would seem to be to assess the relative magnitudes

of
R
Ecx
Y (X)dw

T;(a;b)
0;(a;b) and the remainder "diamond" part, to establish which dominates as

T ! 1. This is especially of interest knowing that, using the techniques of the previous

chapter, we can certainly simulate
R
Ecx
Y (X)dw

T;(a;b)
0;(a;b) , which is the expectation of a positive

functional, and indeed could easily extend this to the case of n 3D particles. However, the

undertaking of determining relative magnitudes via partial di¤erential equations leads to

signi�cant di¢ culties. In view of this, an empirical test was performed to see whether using

the non-crossing part would produce results converging to the correct value, for 2 noninter-

acting fermions in a coulombic potential V (x; y) = 1=
p
x2 + y2. The conclusion from this

was that the results did not seem to converge to the correct value. Therefore we shall assume

in what follows that we must take an exact approach to (7.2) and not neglect its problematic

"diamond" terms.

On vertical symmetry

Proposition 7.2.1 possesses a certain symmetry: since if we condition on � = t and

consider the distribution of the �rst crossing point X(�) = ((x1; y1); (x1; y2)), we �nd that

(y2; y1) is identical in law with (y1; y2); a natural question is, what will happen if we consider

adding contributions that arise from conditioning on a �rst crossing at ((x1; y2); (x1; y1)),

as well as those that arise from ((x1; y1); (x1; y2)) as already considered here? The answer

is that the same quantity will be restored, since exchange of (a; b) is the same as exchange

of (y1; y2), and thus the conditional expectation of Y
�
f1
�
X[0;�(X)]

��
Y (f2(X[�(X);T ])) under

crossing with (y1; y2) will be equal to the conditional expectation of Y (X) under crossing

with (y2; y1).

Remark 7.2.2 It is also valid to conclude, since we could have selected just one each of the
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positive and negative contributing terms, that we could say

GT ((a; b) ; (a; b)) =

Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b) (7.6)

+

Z
Ex

�
Y (X)� Y

�
f1
�
X[0;�(X)]

�
&X[�(X);T ]

��
dw

T;(a;b)
0;(a;b) ,

GT ((a; b) ; (a; b)) =

Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)

+

Z
Ex

�
Y (X)� Y

�
X[0;�(X)]& f2

�
X[�(X);T ]

���
dw

T;(a;b)
0;(a;b) .

These may be conceptually helpful, but seem less useful because of the lack of vertical symme-

try. In particular, comparing (7.6) with (7.2) shows that in (7.6) we are missing terms that

may nearly cancel what we have: if T is large then Y (f2
�
X[�(X);T ]

�
) may usually be relatively

close to Y
�
X[�(X);T ]

�
for a suitable choice of f2. Intuitively speaking, vertical symmetry is

important for obtaining a lower variance because without it, we face the danger that we might

be equally likely to obtain a "�ipped" sample with a close but countersigned contribution. By

contrast, an estimator of IT=2 s.t. the samples possess vertical symmetry of this kind, has

the property that we may always consider that y1 > y2; in other words, we may arbitrarily

choose that in each diamond, the leftmost point connects to the topmost point to give the

positive contributions. This is important.

Examples of measure-preserving bijections

There are a number of alternative practical expressions for IT which can be adopted since

there are various di¤erent apparent choices for f1 and f2. The most obvious are based on

coordinate exchange, linear translation, and re�ections.

Coordinate exchanges We can use an exchange of coordinates between bridges to de�ne

either f1 or f2 or both, in applying the Diamond Proposition.

We de�ne the operator :x[s1;s2] such that it has the e¤ect of reversing the x-coordinates
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on [s1; s2]. Then

GT ((a; b) ; (a; b)) =
Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)+

1

2

Z
Ex

��
Y (X[0;�(X)])� Y (:x[0;�(X)]X[0;�(X)])

� �
Y (X[�(X);T ])� Y (:x[�(X);T ]X[�(X);T ])

��
dw

T;(a;b)
0;(a;b) .

Alternatively, considering the equivalence, already noted, of exchanging y1; y2 rather than

a; b,

GT ((a; b) ; (a; b)) =
Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)+

1

2

Z
Ex

h�
Y (X[0;�(X)])� Y (:y[0;�(X)]X[0;�(X)])

��
Y (X[�(X);T ])� Y (:y[�(X);T ]X[�(X);T ])

�i
dw

T;(a;b)
0;(a;b) .

These are in fact equivalent: both are equivalent to saying that where X = (X1; Y1; X2; Y2),

the X 0 sample is found from (X1; Y2; X2; Y1): It turns out that this way of generating coun-

tersigned contributions, at �rst glance not advantageous, is by far the most �exible.

Linear translation Given �(X) = t, the conditional distribution of X[t;T ] induces w
T ;(a;b)
t;x ;

there is no constraint. Therefore on this interval we could also construct a section of X 0 2

ESW(t; x) via a linear map from the corresponding coordinates of X. (In other words, the

trajectory obtained from the corresponding Brownian bridge SDE when using the same

realisation of the Wiener process.) Viz, if we de�ne a random variable, whose values are

functions `((a; b); �(X); T ) : [0; T ]! R4 given by

`((b� a; 0; �(X); T ); t) = 1t>�(X)
t� �(X)

T � �(X)
(b� a; 0; a� b; 0)

then

GT ((a; b) ; (a; b)) =
Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)

+

Z
Ex

[Y (X)� Y (X + `((b� a; 0); �(X); T ))] dw
T;(a;b)
0;(a;b)
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and moreover, allowing f1 in Proposition 7.2.1 be supplied by coordinate exchange,

GT ((a; b) ; (a; b)) =
Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)

+
1

2

Z
Ex

��
Y
�
X[0;�(X)]

�
� Y

�
:x[0;�(X)]X[0;�(X)]

��
�

�
Y (X[�(X);T ])� Y

�
X[�(X);T ] + `((b� a; 0); �(X); T )[�(X);T ]

���
dw

T;(a;b)
0;(a;b) .

The reader should note that when (�(X); x1(X)) has been found to be (t; x), a horizontal lin-

ear map does not generate a sample from the measure induced on Ct;x0;(b;a) by concentrating on

ESW(t; x). This is immediately evident since it is possible that two bridges without crossings

on this interval, when linearly transformed horizontally, will cross. However, it is possible to

use a linear map for the y-coordinate, since so far the y coordinate is unconstrained. This

is clear because then the x-coordinate of X 0 is still sampled from the correct measure. Let

a random variable `((0; y2 � y1); 0; �(X)) : [0; T ]! R4 be given by

`((0; y2 � y1); 0; �(X); t) =
t

�(X)
(0; y2 � y1; 0; y1 � y2) ,

and let `((0; y2 � y1); T; �(X)) : [0; T ]! R4 be given by

`((0; y2 � y1); T; �(X); t) =
T � t

T � �(X)
(0; y2 � y1; 0; y1 � y2):

Then

GT ((a; b) ; (a; b)) =

Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)

+
1

2

Z
Ex

��
Y
�
X[0;�(X)]

�
� Y

�
X[0;�(X)] + `((0; y2 � y1); 0; �(X))

��
�
�
Y (X[�(X);T ])� Y

�
X[�(X);T ] + `((0; y2 � y1); T; �(X))

���
dw

T;(a;b)
0;(a;b) .

In principle, this gives some scope to proceed with the kind of favourable sampling scheme

already discussed in Subsection 5.3.1.

Re�ection Another example of a possible choice of f1 or f2 is given by re�ecting coordi-

nates. For example, if we have X = (X1; Y1; X2; Y2) with X(t) = (x; y1; x; y2) then we may
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construct the y-coordinate of X 0 on [0; t] via 2l
0;
y1+y2
2
� Y1. The viability of this is evident

as follows: suppose Y1 = l0;y1 + Z; then whereas linearly mapping Y1 by adding l0;y2�y1will

give Y 0
1 = l0;y2 + Z, in this case we instead have Y 0

1 = l0;y2 � Z. We could similarly re�ect

the x-coordinate X 0
1 from X2 via 2lxa+xb

2
;x
�X2.

Since the average distance between positive and negative contributing paths will usually

be larger, it is not intuitively obvious why re�ection confers greater advantages than coordi-

nate exchange. Unlike linear translation, however, re�ection does map non-crossing bridges

to non-crossing bridges.

Generalising the Diamond Proposition

It is expedient to prove a generalisation of the result to the case that we stipulate only

that the initial and terminal points have parallel longitudinal vectors, ie where we have x0 =

(a0; b0) and xT = (aT ; bT ); we assume that (b0 � a0) = kb0 � a0k = (bT � aT ) = kbT � aTk. As

before we shall treat the case that the initial and terminal points are both on horizontal axes,

since this always can be obtained by a rotation of coordinates. The following result shall be

useful in Subsection 7.2.2. The proof is essentially similar to that of Proposition 7.2.1. We

introduce the operator :x : R4 ! R4 given by :x ((ax; ay) ; (bx; by)) = ((bx; ay) ; (ax; by)) :

Proposition 7.2.3 (Generalised Diamond Proposition) Let

x0 = (a0; b0) = ((a0x; y0); (b0x; y0)) ,

xT = (aT ; bT ) = ((aTx; yT ); (bTx; yT )) .

For x 2 R4 s.t. x(1)1 = x(2)1, let f1 : C? ! C? be s.t. for X 2 Ct;x0;x0jE(t;x), f1(X) 2

Ct;x0;:xx0jE(t;x); and s.t. for any event A 2 B
�
Ct;x0;x0

�
, wt;x0;:xx0 jE(t;x) (f1(A)) = wt;x0;x0jE(t;x)(A). Let

f2 : C? ! C? be s.t. for X 2 CT ;xTt;x , f2(X) 2 CT ;:xxTt;x and s.t. for any event A 2 B
�
CT ;xTt;x

�
,
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wT ;:xxTt;x (f2(A)) = wT ;xTt;x (A). Then

GT (x0; xT ) =
Z
Ecx

Y (X)dwT;xT0;x0

+
1

2

Z
Ex

��
Y
�
X[0;�(X)]

�
� Y

�
f1
�
X[0;�(X)]

��� �
Y (X[�(X);T ])� Y (f2(X[�(X);T ]))

��
dwT;xT0;x0

.

(7.7)

Proof. By applying the de�nition (2.62-2.65) and (7.1), we get, analogously to (7.4):

GT (x0; xT ) =
Z
Ecx

Y (X)dwT;xT0;x0
+

Z
Ex

Y (X)dwT;xT0;x0
� wT;xT0;x0

(Ex)

Z
Eswx

Y (X)dwT;:xxT0;x0
, (7.8)

where we should recognise that quite possibly, wT;xT0;x0
(Ex) = 1 and where Eswx 2 B

�
CT;(b;a)0;(a;b)

�
is the Borel set consisting of paths with an x-crossing.

Note that the x-coordinates of X form a pair of 1-dimensional Brownian bridges, inde-

pendent from the y-coordinates. Therefore, for the x-coordinates, the same logic applies as

in the proof of Theorem 6.1.4; viz, the distribution of (� ; x1), the �rst crossing time and

point in the x direction, is the same for wT;:xxT0;x0
as for the concentration of wT;xT0;x0

on Ex, so

we may condition on a �rst crossing time and point (t; x) which is identical in law for both

summands. Let � signify the measure on [0; T ]�R induced by the distribution of (� ; x1) for

the x-coordinate of a bridge in Ex under w
T;xT
0;x0

���
Ex
: Then

GT (x0; xT ) =
Z
Ecx

Y (X)dwT;xT0;x0
+ wT;xT0;x0

(Ex)J Ex
T (x0; xT )� wT;xT0;x0

(Ex)J ESWx
T (x0;:xxT )

=

Z
Ecx

Y (X)dwT;xT0;x0

+ wT;xT0;x0
(Ex)

Z
[0;T ]�R

h
J E(t;x)
T (x0; xT )� J ESW(t;x)

T (x0;:xxT )
i
d�(t; x)

=

Z
Ecx

Y (X)dwT;xT0;x0

+

Z
Ex

h
J E(�(X);x1(X))
T (x0; xT )� J ESW(�(X);x1(X))

T (x0;:xxT )
i
dwT;xT0;x0

: (7.9)

In other words, since the x-crossing in the negative summand is identically distributed with

that in the positive summand, we might as well use the same realisation (t; x) for both.
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However, notice that

f1
�
X[0;�(X)]

�
&X[�(X);T ] s wT;xT0;:xx0

X[0;�(X)]& f2
�
X[�(X);T ]

�
s wT;:xxT0;x0

f1
�
X[0;�(X)]

�
& f2

�
X[�(X);T ]

�
s wT;:xxT0;:xx0

���
E�x

where E�x � CT;:xxT0;:xx0 is the Borel set consisting of those paths from :xx0 to :xxT with an

x-crossing. Therefore it follows from permutational symmetry of the potential thatZ
Ex

J E(�(X);x1(X))
T (x0; xT )dw

T;xT
0;x0

=

Z
Ex

Y (X)dwT;xT0;x0

=

Z
Ex

Y
�
f1
�
X[0;�(X)]

�
& f2

�
X[�(X);T ]

��
dwT;xT0;x0Z

Ex

J ESW(�(X);x1(X))
T (x0;:xxT )dwT;xT0;x0

=

Z
ESWx

Y
�
X[0;�(X)]& f2

�
X[�(X);T ]

��
dwT;:xxT0;x0

=

Z
ESWx

Y
�
f1
�
X[0;�(X)]

�
&X[�(X);T ]

�
dwT;xT0;:xx0

and since Y is multiplicative in the sense that Y (X) = Y (X[0;t])Y (X[t;T ]), it follows that

GT (x0; xT ) =
Z
Ecx

Y (X)dwT;xT0;x0
+
1

2

Z
Ex

�
Y (X)� Y

�
f1
�
X[0;�(X)]

�
&X[�(X);T ]

�
� Y (X[0;�(X)]& f2(X[�(X);T ])) + Y (f1

�
X[0;�(X)]

�
& f2(X[�(X);T ]))

�
dwT;xT0;x0

=

Z
Ecx

Y (X)dwT;xT0;x0

+
1

2

Z
Ex

��
Y
�
X[0;�(X)]

�
� Y

�
f1
�
X[0;�(X)]

���
�
�
Y (X[�(X);T ])� Y (f2(X[�(X);T ]))

��
dwT;xT0;x0

:

Remark 7.2.4 Naturally if aTx > bTx and a0x < b0x or vice versa then w
T;xT
0;x0

(Ecx) = 0.

Using �rst and last crossing times

In addition to being able to choose various ways of constructing X 0 from X, we can also

create similar formulae using other x-crossing times than the �rst crossing time �(X), as
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Figure 7.2: Schematic of the contributing path segments for a path in Ex, according to the
Generalised Diamond Proposition.

long as we choose a crossing time that is well-de�ned. For example, we might use the last

crossing time, or the crossing time which is nearest to T=2, as long as we choose bijections

which conjugate the corresponding measures. We shall use � 1 to denote the �rst crossing

time and � 01 to denote the last crossing time.

In particular, it is notable that (7.2) is not symmetric in time, even in the narrow sense

of looking at [0; T ] forwards or backwards. This seems counter-intuitive in the solution to a

problem where such a time symmetry is very evident. We can further derive an expression

which does conceptually have this symmetry, by combining the diamond for the �rst crossing

with that for the last.

Overloaded notation for crossing events To achieve greater simplicity, for the remain-

der of this chapter we shall adopt a streamlined (ie overloaded) notation about events. From

now on, we shall let E(s; x) indicate the event that the �rst x-crossing takes place at time s

and system position x, regardless of the path space relevant to the integral (for us the mean-

ing shall always be clear). We shall let E 0(s; x) indicate the event that the last x-crossing

takes place at time s and system position x.

Conditional independence when a last crossing time and point is speci�ed Con-

sider a pair of 1-dimensional Brownian bridges, X(1) and X(2). The last crossing time � 01
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is not a Markov time and so we cannot simply invoke the strong Markov property to infer

conditional independence of X[0;� 01]
and X[� 01;T ]

. However, it shall be important to recognise

that a closely related conditional independence does apply: given t 2 (0; T ) and x 2 R, we

need to be able to say that given the event that � 01 = t and given that X(t) = (x; x), X[0;t)

and X(t;T ] are independent. It is su¢ cient to show that X(s1) and X(s2) are independent

when conditioning that � 01 = t, for some t 2 (s1; s2), and that X(t) = (x; x). We now

advance three di¤erent perspectives to explain why this is so.

The most direct derivation is as follows. If we recall our de�nition of conditioning (2.17),

it is clear that the conditional pdf for X(s1); X(s2); at some point (z1; z2); given � 01 = t and

the last crossing point x2 = (x; x), is proportional to the conditional pdf for � 01; x2 given

(X(s1); X(s2)) = (z1; z2); evaluated at t; (x; x), multiplied with the unconditional pdf for

X(s1); X(s2). So our task is to show that this yields a product of functions of z1 and z2. The

joint conditional pdf of � 01; x2 may be found by taking the product of the conditional pdf for

� 01, with the pdf for x2 conditional on all of X(s1) = z1; X(s2) = z2 and � 01 = t. Recalling

the pdf for � 1, that is,
d�
d�
in (6.13), it is clear from symmetry that the pdf for � 01 is given by

evaluating this d�
d�
at s2� t+s1 rather than at t�s1. This forms a product of functions of z1

and z2 multiplied by exp
�
�
�
z
(2)
1 �z(1)1

��
z
(2)
2 �z(1)2

�
2(s2�s1)

�
: It follows that the conditional pdf for � 01

multiplied by the unconditional pdf for (X(s1); X(s2)) at (z1; z2) is a product of functions

of z1 and z2.

Meanwhile, conditioning on � 01 = t can only a¤ect the bridge component X(2)�X(1)
p
2

, as

previously explained; this means that conditioning on X(s1) = z1; X(s2) = z2; �
0
1 = t yields

the same conditional pdf for X(2)(t)+X(1)(t)p
2

as just conditioning on X(s1) = z1; X(s2) =

z2. This is of course a product of functions of
z
(2)
1 +z

(1)
1p
2

and z
(2)
2 +z

(1)
2p
2
. But given � 01 = t;

x2 =
1p
2

�
X(2)(t)+X(1)(t)p

2
; X

(2)(t)+X(1)(t)p
2

�
. It follows that the conditional pdf for � 01; x2 given

X(s1) = z1; X(s2) = z2 is a product of functions of z1 and z2, as required.

For a less explicit but more intuitive point of view, recognise that due to continuity of

paths, the event X(t) = (x; x) is �(X[s1;t))-measurable whereas the event �
0
1 = t is �(X(t;s2])-
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measurable. Therefore (cf (2.20)) joint conditioning is repeated conditioning. So consider

what happens if we condition �rst on X(t) = (x; x) and then on the fact that this is actually

the last crossing in (s1; s2). The former conditioning leads to independence of X(s1); X(s2);

the latter involves conditioning on an event which is measurable with respect to �(X(t;s2))

and so cannot introduce any dependence.

Yet another line of reasoning is based on the symmetry involved in reversing time. Recall

that where X � wT;xT0;x0
, 	 X given by 	 X(t) = X(T � t) has 	 X � wT;x00;xT

. Then for 	 X

we have conditional independence, given a �rst crossing time �	1 and point x
	
1 . But it is clear

that � 01 = T � �	1 and x2 = x	1 . Consequently, (	 X)[0;t) and (	 X)(t;T ] have independence

conditional on � 01 = T � t and x2 = x; but this is the same thing as saying that conditionally,

X[0;T�t) and X(T�t;T ] are independent.

Conditional independence with �rst and last crossings The fact that this condi-

tional independence applies in the 1-dimensional case implies that we may use it for each

component in the multidimensional case. Moreover, since joint conditioning is repeated con-

ditioning, we may conclude that when conditioning on both the �rst and last crossing times

and points, the resulting conditional measure is a product of the measures relevant to the

three sections [0; � 1); (� 1; � 01) and (�
0
1; T ].

Proposition 7.2.5 (Second Diamond Proposition) Let f1 : C� ! C� be s.t. for any

x 2 R4 with x(1)1 = x(2)1, for X 2 Ct;x0;(a;b)
���
E(t;x)

, we shall have f1(X) 2 Ct;x0;(b;a)
���
E(t;x)

; and

for any event A 2 B
�
Ct;x0;(a;b)

�
, wt;x0;(b;a)

���
E(t;x)

(f1(A)) = wt;x0;(a;b)

���
E(t;x)

(A). Meanwhile let f2 :

C� ! C� be s.t. for any x0 2 R4 with x0(1)1 = x0(2)1; for X 2 CT;(a;b)t0;x0

���
E0(t0;x0)

, we shall

have f2(X) 2 CT;(b;a)t0;x0

���
E0(t0;x0)

, and for any event A 2 B
�
Ct;x0;(a;b)

�
, wT;(b;a)t0;x0

���
E0(t0;x0)

(f2 (A)) =

w
T;(a;b)
t0;x0

���
E0(t0;x0)

(A). Then where � 1 (dependence on X unannotated) is the �rst x-crossing
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time of X and where � 2 is the last x-crossing time of X,

GT ((a; b) ; (a; b)) =
Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)

+
1

2

Z
Ex

��
Y
�
X[0;�1]

�
� Y

�
f1
�
X[0;�1]

���
Y
�
X[�1;�2]

�
�
�
Y (X[� 01;T ]

)� Y (f2(X[� 01;T ]
))
��
dw

T;(a;b)
0;(a;b) . (7.10)

Proof. The proof follows from the same logic as the Diamond Proposition. Let E�x 2

B
�
CT;(b;a)0;(b;a)

�
be the set of paths with a crossing in x. Consider as before that whenX s w

T;(a;b)
0;(a;b)

and � 1 is the �rst x-crossing time and � 2 is the last, then because w
T;(a;b)
0;(a;b)

���
Ex
; w

T;(b;a)
0;(a;b) ; w

T;(a;b)
0;(b;a) ; w

T;(b;a)
0;(b;a)

���
E�x

all give rise to the same joint measure on �rst x-crossing times and last x-crossing times,

and because of conditional independence,

f1
�
X[0;�1]

�
&X[�1;T ] s w

T;(a;b)
0;(b;a)

X[0;� 01]
& f2

�
X[� 01;T ]

�
s w

T;(b;a)
0;(a;b)

f1
�
X[0;�1]

�
&X[�1;� 01]

& f2
�
X[� 01;T ]

�
s w

T;(b;a)
0;(b;a)

���
E�x

.

Therefore

GT ((a; b) ; (a; b)) =
Z
Ecx

Y (X)dw
T;(a;b)
0;(a;b)+

1

2

Z
Ex

�
Y (X)� Y

�
f1
�
X[0;�1]

��
Y
�
X[�1;T ]

�
� Y

�
X[0;� 01]

�
Y
�
f2
�
X[� 01;T ]

��
+ Y

�
f1
�
X[0;�1]

��
Y
�
X[�1;� 01]

�
Y (f2(X[� 01;T ]

))
�
dw

T;(a;b)
0;(a;b)

and the result follows.

This result informs us that it is possible to decompose further the contributions to IT

that arise from Ex: rather than splitting out only a diamond up to the �rst x-crossing time,

we can simultaneously do the same thing for time from the last crossing onwards. This is a

logical step because there are strong reasons to expect a sign problem to occur because of

the longer part of time (� 1; T ): for since this is a diamond consisting of Brownian bridges,

for long times we shall �nd that a given value of the action Y is almost equilikely under the
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positive or negative-contributing paths. Consequently, it is logical to apply the principle of

Proposition 7.2.1 again to this section of time in order to ameliorate matters. Figure 7.3

illustrates this geometric meaning of Proposition 7.2.5.

Figure 7.3: A schematic of the decomposition of GT ((a; b); (a; b)) made available by the
Second Diamond Proposition. Blue segments are negative and red segments are positive.

Proposition 7.2.5 is the basis of the Subdiamond method described in what follows.

Informal discussion of how the fermion sign problem may resurrect after the

Second Diamond Proposition is used

We may consider the variance that will be obtained by using an algorithm based on (7.2)

or (7.10) by conditioning on the values of X at � 1 and � 01. Again it is the integral over Ex

that is of concern. According to the usual conditional variance formula (e.g. [Wil01]), we

must add the variance of the conditional expectation of GT to the conditional variance of our

collected functional. Naturally the law of X(� 1) and X(� 01) is best considered as conditional

on � 1; � 01. For T large, the distribution of �rst and last crossing times is converging to that

seen under Brownian motion. This is a long-tailed distribution with no expectation (it is

evident from Figure 7.4 that E� 1 ! 1 as T ! 1). However, for any moderate T the

distribution of � 1 is such that the bulk of probability can be thought of as close to 0. If we

tentatively form the mental picture that for long times, � 1 and (T�� 01) are small proportions
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of T , then we may think of an increase in T as basically extending the middle section of

time, [� 1; � 01] (note that this is merely an intuition - we have provided no rigorous argument

that the growth of the diamonds should not be important also).

We consider �rst the conditional variance of GT given � 1; � 01; X(� 1); X(� 01) and shall �nd

that the situation looks reasonably encouraging. In integrating the functional in the Ex

summand of (7.10), viz

F (X) =
�
Y
�
X[0;�1]

�
� Y

�
f1
�
X[0;�1]

���
Y
�
X[�1;� 01]

� �
Y (X[� 01;T ]

)� Y (f2(X[� 01;T ]
))
�
;

we are trying to �nd the expectation of a product of 3 independent random variables, since

the only dependence of X[0;�1] and X[�1;� 01]
is through X(� 1), etc). Moreover, where these are

denoted F1; F2; F3; we can see that jF1j ; jF2j ; jF3j are also clearly independent. Therefore

we may recognise that conditional on �rst and last crossings,

EF

E jF j =
EF1F2F3
E jF1F2F3j

=
EF1
E jF1j

EF2
E jF2j

EF3
E jF3j

;

so that in fact there is a sign problem for EF if and only if there is a sign problem for at

least one of the components F1; F2; F3. If the variances of the components are thought of

as small relative to expectations - then there should be no sign problem for the product.

On the middle section, clearly the variance is simply the variance of a positive functional

under a Brownian bridge; we have already mentioned that this grows with T polynomially

relative to the expectation, under the action measure. Meanwhile, we might hope that the

variance on the diamond sections [0; � 1]; [� 01; T ] is considerably improved from a more nā¬ve

formulation, for the following reasoning. The expected time length grows quite slowly with

T (see Figure 7.4). Thinking of � 1 and � 01 as �xed, we know that the x-coordinate paths

are not crossing within each diamond, and so very roughly, we might therefore visualise the

situation by pretending to ourselves that both paths lie entirely on their own side of the

meeting point x. Then before we take y-crossings within the diamond into account, it seems

that positive and negative contributions are drawn from paths which are (roughly speaking)

located in di¤erent areas; intuitively then a sign problem should not result. In reality of
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Figure 7.4: The growth of the expected �rst crossing time with T , taking the initial and
terminal distances to be 1, compared with T 1=2.

course, the paths may cross X1 = x and X2 = x as long as they do not cross each other,

and if time is projected out then we will usually see some x-crossings in the projection,

which is all that our functionals depend upon. Worse, y-crossings will create a sign problem

within the diamond: on an intermediate section of time, the distributions of the positive and

negative paths are weakly converging; this means that almost equilikely contributions will

be close in magnitude and countersigned, but may be encountered on di¤erent occasions.

(ie, on one occasion, positive paths basically occupy position 1 and negative position 2; on

another occasion negative may occupy position 1 and positive may occupy position 2.)

The natural conclusion is that it would be better to deal only with sections of time

where either there are no crossings of x or there are no crossings of y. This is possible and

is a natural development of the Subdiamond method which we shall call the Last-to-First

Subdiamond method.

Now let us consider the variance of the conditional expectation of GT , using the functional

from (7.10), given values for X(� 1); X(� 01); we shall immediately �nd it to be problematic.

Consider an inversion of one pair of y-values (for the sake of argument, the y-values at

� 01). The only thing that makes inverted coordinates less than equilikely with uninverted is

covariance between the y-values at � 1 and the y-values at � 01, ie when the values at � 1 are
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(y1; y2) with y1 > y2, if y3 > y4 then covariance makes it more likely to encounter (y3; y4)

than (y4; y3) at � 01. If we think of the middle section as growing with T then this covariance

is fading linearly and (y4; y3) is becoming equilikely with (y3; y4). But at the same time, the

expectation of Y (X(�1;� 01)
) for X from (x1; y1; x1; y2) to (x2; y3; x2; y4) is becoming very close

to that for X from (x1; y1; x1; y2) to (x2; y4; x2; y3) because when the time interval is long,

the unconditional distribution of the paths�location on an intermediate section of time is

very similar. Thus we expect to encounter a high variance of our estimate of IT because

the conditional expectation of IT given almost equilikely values of y1;2;3;4 is almost the same

but countersigned. This is addressed by the Iterated Subdiamond method, described in

the following subsection: recognising that the fermion sign problem on the middle section of

time is similar to the fermion sign problem found when estimating IT nā¬vely, we basically

proceed by iterating the Second Diamond Proposition, alternating coordinates each time.

Figure 7.5: How the sign problem may reoccur after 1 iteration of the subdiamond method.

Conceptually, the Iterated Subdiamond method does not have time symmetry in the

sense that if we look backwards from T=2 then the structure of diamonds is di¤erent than

if we look forwards from 0. Thus, having proven the Diamond Proposition and then shown

how to obtain greater time symmetry with the Second Diamond Proposition, we shall in the

next subsection prove the validity of the Iterated Subdiamond method and then show how to



190

obtain greater time symmetry using the Last-to-First method. To conclude this subsection,

we shall also need the following generalisation of the Second Diamond Proposition.

Figure 7.6: Schematic of path segments in Generalised Second Diamond Proposition.

Proposition 7.2.6 (Generalised Second Diamond Proposition) Let

x0 = (a0; b0) = ((a0x; y0); (b0x; y0)) ,

xT = (aT ; bT ) = ((aTx; yT ); (bTx; yT )) .

Let f1 : C? ! C? be s.t. for any x 2 R4 with x(1)1 = x(1)2, for X 2 Ct;x0;x0jE(t;x), we shall have

f1(X) 2 Ct;x0;:xx0jE(t;x); and for any event A 2 B
�
Ct;x0;x0

�
, wt;x0;:xx0jE(t;x) (f1(A)) = wt;x0;x0jE(t;x)(A).

Let f2 : C? ! C? be s.t. for any x0 2 R4 with x0(1)1 = x0(1)2, for X 2 CT;xTt0;x0

���
E0(t0;x0)

, we shall

have f2(X) 2 CT;:xxTt0;x0

���
E0(t0;x0)

and for any event A 2 B
�
CT;xTt0;x0

�
,wT;:xxTt0;x0

���
E0(t0;x0)

(f2(A)) =

wT;xTt0;x0

���
E0(t0;x0)

(A). Then

GT (x0; xT ) =
Z
Ecx

Y (X)dwT;xT0;x0

+
1

2

Z
Ex

264 �Y �X[0;�1]

�
� Y

�
f1
�
X[0;�1]

���
Y
�
X[�1;�2]

�
��

Y (X[�2;T ])� Y (f2(X[�2;T ]))
�

375 dwT;xT0;x0
. (7.11)

The proof is omitted, since it is not substantially di¤erent from the proof of the Second

Diamond Proposition.
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7.2.2 The iterated subdiamond approach

We have explained, in the preceding discussion, why a sign problem arises in the case of

applying an estimator based on (7.10), due to the possibility of an inversion of y-coordinates

at only one of � 1; � 01. We now come to show that the same procedure for reducing variance

can be iterated: we can decompose the problematic middle section of (7.10) in the same way

as (7.10) decomposes (7.4). We shall need to introduce the following notation.

The sequence of crossing times Let � 0 = 0; � 00 = T . As mentioned, let � 1 be the �rst

x-crossing time, and let � 01 be the last x-crossing time. Let � 2 be the �rst y-crossing time

in (� 1;� 01), and let �
0
2 be the last y-crossing time in (� 1; �

0
1). For odd i � 1, let � i; � 0i be the

�rst and last x-crossing times within (� i�1; � 0i�1), should there be any; and for even i � 1,

let � i; � 0i be the �rst and last y-crossing times within (� i�1; �
0
i�1), should there be any. If

this sequence is �nite, call the maximum index �. Thus, � is s.t. within (��; � 0�) there is

no crossing of the coordinate corresponding to � + 1. (Thus � is a random variable; its

dependence on X is unannotated.) We shall use �i to represent x for i odd, and y for i even.

Moreover, we use :i for :�i and :i for :�i :

We shall let Ei(s; x) indicate the event that the �rst �i crossing takes place at time s and

system position x, regardless of the path space relevant to the integral (again, the meaning

shall always be clear). We shall let E 0i(s; x) indicate the event that the last �i crossing takes

place at time s and system position x. We let Ei(s) indicate the event that the �rst �i

crossing takes place at time s, and E 0i(s) the event that the last �i crossing takes place at

time s.

Measure-preserving bijections We shall let fi : C� ! C� be a measure-preserving

bijection in the following sense. Let 0 � ti�1 < ti � T , s 2 [ti�1; ti] and let xi�1; xi; x 2 R4;

with x assigning equal �i coordinates to both particles. Then f shall act as a bijection from
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Cti;xiti�1;xi�1

��
Ei(s;x)

to Cti;:i�1xiti�1;xi�1

���
Ei(s;x)

, and for any event A 2 B
�
Cti;xiti�1;xi�1

�
, we require that

w
ti;:i�1xi
ti�1;xi�1

���
Ei(s;x)

(fi (A)) = wti;xiti�1;xi�1

��
Ei(s;x)

(A) :

(Of course the main the interest shall be in conditioning on Ei(ti; xi).) Meanwhile, we

shall likewise let f 0i : C� ! C� be a measure-preserving bijection in the following sense. Let

0 � t0i < t0i�1 � T; s0 2 [t0i; t0i�1] and let x0i; x0i�1; x0 2 R4; with x0 assigning equal �i coordinates

to both particles. Then f 0i shall act as a bijection from Ct
0
i�1;x

0
i�1

t0i;x
0
i

���
E0i(s

0;x0)
to Ct

0
i�1;x

0
i�1

t0i;:i�1xi

���
E0i(s

0;x0)
,

and or any event A 2 B
�
Ct

0
i�1;x

0
i�1

t0i;x
0
i

�
; we require that

w
t0i�1;x

0
i�1

t0i;:i�1xi

���
E0i(s

0;x0)
(f 0i (A)) = w

t0i�1;x
0
i�1

t0i;x
0
i

���
E0i(s

0;x0)
(A) :

(The main interest shall be in conditioning on E 0i(t
0
i; x

0
i).)

Diamond notation Furthermore, in order to avoid longwindedness we shall introduce the

notation

�i(X[� i�1;� i]) = Y (X[� i�1;� i])� Y
�
fi
�
X[� i�1;� i]

��
; (7.12)

�0i(X[� 0i;�
0
i�1]
) = Y

�
X[� 0i;�

0
i�1]

�
� Y

�
f 0i

�
X[� 0i;�

0
i�1]

��
or use �i;�0i for short.

Lemma 7.2.7 (Iterated subdiamonds) Where x0 = ((xa0; 0); (xb0; 0));

GT (x0; x0) =
Z
f�=0g

Y (X)dwT;x00;x0

+
1

2

Z
f��1g

�
1

4��1

�Q
i=1

h
�i(X[� i�1;� i])�0i(X[� 0i;�

0
i�1]
)
i
Y
�
X[��;� 0�]

��
dwT;x00;x0

, (7.13)

or equivalently,

GT (x0; x0) =
Z
CT;x00;x0

�
4�max(��

1
2
;0)

�Q
i=1

[�i�0i]Y
�
X[��;� 0�]

��
dwT;x00;x0

:
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Proof. Consider the statement, for a given k � 1, that

GT (x0; x0) =
Z
f�=0g

Y (X)dwT;x00;x0

+
1

2

Z
f��1;�<kg

�
1

4��1

�Q
i=1

h
�i(X[� i�1;� i])�0i(X[� 0i;�

0
i�1]
)
i
Y
�
X[��;� 0�]

��
dwT;x00;x0

+
1

2

Z
f��kg

�
1

4k�1

kQ
i=1

h
�i(X[� i�1;� i])�0i(X[� 0i;�

0
i�1]
)
i
Y
�
X[�k;�

0
k]

��
dwT;x00;x0

. (7.14)

It follows from the Second Diamond Proposition that the statement (7.14) holds for

k = 1. The conclusion (7.13) will hold by induction if we can establish that for k � 1; the

statement (7.14) for k implies the statement (7.14) for k+1. So let us consider the quantityZ
f��kg

�
1

4k�1

kQ
i=1

h
�i(X[� i�1;� i])�0i(X[� 0i;�

0
i�1]
)
i
Y
�
X[�k;�

0
k]

��
dwT;x00;x0

=

Z
f��kg\�ck

�
1

4k�1

kQ
i=1

h
�i(X[� i�1;� i])�0i(X[� 0i;�

0
i�1]
)
i
Y
�
X[�k;�

0
k]

��
dwT;x00;x0

+

Z
f��kg\�k

�
1

4k�1

kQ
i=1

h
�i(X[� i�1;� i])�0i(X[� 0i;�

0
i�1]
)
i
Y
�
X[�k;�

0
k]

��
dwT;x00;x0

,

where �k is de�ned as the event of a reverse of coordinate order: for k even, that where

X(� k) =
��
xk; y

(1)
k

�
;
�
xk; y

(2)
k

��
and X(� 0k) =

��
x0k; y

0(1)
k

�
;
�
x0k; y

0(2)
k

��
; that y(1)k � y

(2)
k is

of di¤erent sign to y0(1)k � y
0(2)
k ; and likewise for the x-coordinate in the case that k is odd.

However, given an obverse (ie s.t. X 2 �ck) pair of �k; �0k, it is clear that the relative likelihood

of obtaining (�k;:k�1�0k) is exp
�
�
�
�
(1)
k ��(2)k

��
�
0(1)
k ��0(2)k

�
� 0k��k

�
: Therefore, by the de�nition of GT ;

it is clear then that (using conditional independence),

Z
f��kg

�
1

4k�1

kQ
i=1

[�i�0i]Y
�
X[�k;�

0
k]

��
dwT;x00;x0

=

Z
f��kg\�ck

�
1

4k�1

kQ
i=1

[�i�0i]G� 0k��k (X(� k); X(�
0
k))

�
dwT;x00;x0

=

Z
f�=kg

�
1

4k�1

kQ
i=1

[�i�0i]J E0
� 0k��k

(X(� k); X(�
0
k))

�
dwT;x00;x0

+
1

2

Z
f�>kg\�ck

�
1

4k�1

k+1Q
i=1

[�i�0i]J� 0k+1��k+1
�
X(� k+1); X(�

0
k+1)

��
dwT;x00;x0

=

Z
f�=kg

�
1

4k�1

kQ
i=1

[�i�0i]Y
�
X[�k;�

0
k]

��
dwT;x00;x0

+
1

2

Z
f�>kg\�ck

�
1

4k�1

k+1Q
i=1

[�i�0i]Y
�
X[�k+1;�

0
k+1]

��
dwT;x00;x0

,
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where the second equality holds by applying the Generalized Second Diamond Proposition

to G� 0k��k (X(� k); X(�
0
k)). However,Z

f�>kg\�k

�
1

4k�1

k+1Q
i=1

[�i�0i]Y
�
X[�k+1;� 0k+1]

��
dwT;x00;x0

=

Z
f�>kg\�ck

�
1

4k�1

k+1Q
i=1

[�i�0i]Y
�
X[�k+1;� 0k+1]

��
dwT;x00;x0

since conditional on X(� k); X(� 0k), the distribution of X(� k+1); X(�
0
k+1) is the same under

�k; �
0
k as under �k;:k�1�0k, but �0k is antisymmetric for �0k and so is �0k+1, making the integrand

symmetric. Consequently,

Z
f��kg

�
1

4k�1

kQ
i=1

[�i�0i]Y
�
X[�k;�

0
k]

��
dwT;x00;x0

=

Z
f�=kg

�
1

4k�1

kQ
i=1

[�i�0i]Y
�
X[�k;�

0
k]

��
dwT;x00;x0

+

1

4

Z
f�>kg

�
1

4k�1

k+1Q
i=1

[�i�0i]Y
�
X[�k+1;�

0
k+1]

��
dwT;x00;x0

.

The result follows.

Figures 7.7-7.9 illustrate the principle of applying the Iterated Subdiamond Lemma to

avoid the sign problem.

Figure 7.7: Schematic of two iterations of the subdiamond method.
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Figure 7.8: How the fermion sign problem may recur if two iterations are performed.

Remark 7.2.8 Due to continuity, the subset of CT;x00;x0
for which the sequence (� i; � 0i) may

be continued inde�nitely is the set of paths with a simultaneous crossing in the x and y

directions. The net contribution to GT (x0; x0) from this set is zero because of cancellation:

paths giving positive and negative contributions share the same law under this constraint.

(However, it is well-known that this set is of measure zero anyway.)

Remark 7.2.9 It is valid to choose fi
�
X[� i�1;� i]

�
= :i�1X[� i�1;� i]; f

0
i

�
X[� 0i;�

0
i�1]

�
= :i�1X[� 0i;�

0
i�1]

in every case.

Based on the foregoing discussion about the problems that will be encountered on just one

diamond iteration, the bene�ts of partitioning path space in this way are clear. E¤ectively,

path space is partitioned here into parts enumerated by the di¤erent sequences of crossing

times. The problem described before for the middle section [� 1; � 01] does not arise here

for [��; � 0�]. If we take the point of view here that the � i; �
0
i are drawn �rst and then we

take a product of expectations, the appropriate measure for X[�n;� 0n] is now concentrated on

paths which do not cross in the coordinate corresponding to � + 1. Under this condition,

there is clearly no need to be concerned about a sign problem arising through a similar

likelihood being attributed toX(��); X(� 0�) =
�
x
(1)
� ; x

(2)
�

�
;
�
x
0(1)
� ; x

0(2)
�

�
as toX(��); X(� 0�) =
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Figure 7.9: Schematic of three iterations of the subdiamond method.

�
x
(1)
� ; x

(2)
�

�
;
�
x
0(2)
� ; x

0(1)
�

�
. This is in contrast to the former case of the Second Diamond

Proposition, where the corresponding measure for X[�1;� 01]
is simply conditional Wiener.

The Last-to-�rst method

There is something di¤erent that we can do in order to reduce the variance, which becomes

especially apparent once one considers the case of more than 2 particles. This is to only start

diamonds from the last crossing of X1 (ie, the x-coordinates) to the �rst crossing of X2 (ie,

the y-coordinates), and vice versa. This is advantageous because diamonds then take less

time and promote variance less. (Moreover, this also means that diamonds may be more

likely to fall in between two integration points, as discussed in the following section - thus,

e¢ ciently, cancelling contributions from a larger part of path space than before.)

More notation for crossing times Where � i indicates a crossing of coordinate �i, for

0 � i < �, we let & i represent the last crossing in �i before � i+1: Likewise, we let & 0i represent

the �rst crossing in �i after � 0i+1.

We shall now require fi; f 0i to satisfy further conditions: we stipulate that as well as
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preserving the �rst crossing of �i at the end of the interval, fi will now also preserve the

last crossing time of �i�1 and the system position. That is, in our new notation, when

X 2 Cti;xiti�1;xi�1 is in both Ei(s; x) and E
0
i�1(si�1; x

0); for some si�1 2 [ti�1; ti); fi(X) 2 Cti;:ixiti�1;xi�1

shall be in both Ei(s; x) and E 0i�1(si�1; x
0); and moreover, we assume that for any A 2

B
�
Cti;xiti�1;xi�1

�
;

w
ti;:i�1xi
ti�1;xi�1

���
Ei(s;x)\E0i�1(si�1;x0)

(fi (A)) = wti;xiti�1;xi�1

��
Ei(s;x)\E0i�1(si�1;x0)

(A) .

Subject to assuming that in fact ti�1 is a crossing of �i�1, one example of such an fi is,

once again, that we apply :i�1; that is, we simply exchange the �i�1 coordinate paths of the

particles. This shall be the only situation which we shall need to worry about. Meanwhile,

f 0i is assumed to satisfy similar properties with regard to Ei�1(s
0
i�1; x

0) \ E 0i(s; x).

The reader should note that the meaning of �i (cf (7.12)) is enhanced accordingly.

We are now in a position to prove the following theorem, which forms the basis of the

Last-to-�rst Subdiamonds algorithm.

Theorem 7.2.10 (Last-to-�rst Subdiamonds Theorem) Where

x0 = ((xa0; 0); (xb0; 0));

GT (x0; x0) =
Z
f�=0g

Y (X)dwT;x00;x0

+
1

2

Z
f��1g

�
1

4��1

�Q
i=1

�
Y
�
X[� i�1;&i�1]

�
�i
�
X[&i�1;� i]

�
�0i
�
X[� 0i;&

0
i�1]

�
Y
�
X[&0i�1;�

0
i�1]

�i
Y
�
X[��;� 0�]

�i
dwT;x00;x0

. (7.15)
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Proof. Due to conditional independence, it follows from Lemma 7.2.7 that

GT (x0; x0) =
Z
f�=0g

Y (X)dwT;x00;x0

+
1

2

Z
f��1g

�
1

4��1

�Q
i=1

h�
J E0i�1(&i�1;X(&i�1))\Ei(� i;X(� i))
� i�� i�1 (X(� i�1); X(� i))

�J E0i�1(&i�1;X(&i�1))\Ei(� i;:i�1X(� i))
� i�� i�1 (X(� i�1);:i�1X(� i))

�
�
�
J Ei�1(&0i�1;X(&

0
i�1))\E0i(� 0i;X(� 0i))

� 0i�1�� 0i
(X(� 0i); X(�

0
i�1))

�J Ei�1(&0i�1;X(&
0
i�1))\E0i(� 0i;:i�1X(� 0i))

� 0i�1�� 0i
(:i�1X(� 0i); X(� 0i�1)))

��
Y
�
X[��;� 0�]

��
dwT;x00;x0

. (7.16)

However, in view of the new de�nition of fi, it is evident that where

X~
[ti�1;ti]

� wti;xiti�1;xi�1

��
E0i�1(si�1;x

0)\Ei(ti;xi)
,

we have

X~
[ti�1;si�1]

& fi

�
X~
[si�1;ti]

�
� wti;:

�ixi
ti�1;xi�1

���
E0i�1(si�1;x

0)\Ei(ti;xi)
;

and likewise where

X~
[t0i;t

0
i�1]

� w
t0i�1;x

0
i�1

t0i;x
0
i

���
Ei�1(s0i�1;x

0)\E0i(t0i;x0i)
,

we have

f 0i

�
X~
[t0i;s

0
i�1]

�
& X~

[s0i�1;t
0
i�1]

� w
t0i�1;x

0
i�1

t0i;:i�1x0i

���
Ei�1(s0i�1;x

0)\E0i(t0i;:i�1x0i)
.

Consequently, for x; xi�1; xi 2 R4; and ti; ti�1; si�1 2 (0; T ];

J E0i�1(si�1;x
0)\Ei(ti;xi)

ti�ti�1 (xi�1; xi)� J
E0i�1(si�1;x

0)\Ei(ti;:i�1xi)
ti�ti�1 (xi�1;:i�1xi)

= J Eci
si�1�ti�1(xi�1; x

0)
�
J E0i�1(si�1;x

0)\Ei(ti;xi)
ti�si�1 (x0; xi)

�J E0i�1(si�1;x
0)\Ei(ti;:i�1xi)

ti�si�1 (x0;:i�1xi)
�
, (7.17)

and likewise

J Ei�1(s0i�1;x
0)\E0i(t0i;:i�1x0i)

t0i�1�t0i
(x0i; x

0
i�1)� J

Ei�1(s0i�1;x
0)\E0i(t0i;:i�1x0i)

t0i�1�t0i

�
:i�1x0i; x0i�1

�
= J Eci

s0i�1�t0i
(x0i; x

0)
�
J Ei�1(s0i�1;x

0)\E0i(t0i;:i�1x0i)
t0i�1�s0i�1

(x; xi)

�J Ei�1(s0i�1;x
0)\E0i(t0i;:i�1x0i)

ti�si�1
�
:i�1x0i; x0i�1

��
. (7.18)

By applying the relations (7.17), (7.18) in (7.16), the result follows.
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Remark 7.2.11 Despite the route that we have taken towards this result, we naturally may

now recognise that it has a geometrical meaning all its own, if we instead look at the sequence

of crossings incrementally. Suppose we continue to call the �rst crossing of x by � 1; and

continue to use � 2 for the �rst subsequent crossing of y, but carry on with this labelling until

� 2�, which is the �rst crossing of y that is not followed by a crossing in x. Likewise we may

de�ne & i as before for 0 � i < 2� as the last crossing of coordinate �i before � i+1 and de�ne

&2� = T . Then it follows immediately from (7.15) that

GT (x0; x0) =
Z
CT;x00;x0

2��1Q
i=0

�
1

2
Y (X[� i;&i))�i(X[&i;� i+1])

�
Y[�2�;&2�]dw

T;x0
0;x0

. (7.19)

7.3 The Last-to-�rst Subdiamond algorithm and its

implementation

In this section, we shall discuss the practical implications of the theory that has been

developed in the previous section. In particular, we detail exactly how the expression (7.15)

is to be utilised in performing a Monte Carlo simulation to give information about the

expectation of an observable.

7.3.1 Notes on implementation

The most simple way to construct the algorithm is based on (7.19). We �rst sample a set

of discretisation points Xk according to ewT;x00;x0
. Supposing that we intend to use Simpson�s

Rule (cf (3.40)) for S(X), we are going to need to use the values of V (X(tk)) at tk = kh
2
; k =

0; :::; 2N; so all these points need to be included in our sampled discretisation. Conceptually,

we might say that conditional on fXkg2Nk=0, we then sample the sequence of crossing times � i

and & i, where 0 � i < 2�. (We do not need to draw the crossing points; indeed, we shall see

shortly that we do not really even have to draw the times).

In essence, the idea is then to collect the approximate functionals eY (X[� i;&i)) and e�i(X[&i;� i+1]),

and multiply. We use :i�1 as fi in every case. However, it should be noted that applying
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Simpson�s Rule means that a technical point is being elided here. More accurately, we

should say that (7.19) may be regarded as giving us a linear combination of terms of the

form eY (X:) for some X: which is generated from X by some application of coordinate

exchanges at each timeslice. For each of these terms, the sequence of quadrature coe¢ cients

is the same: (�k)
2N
k=0 =

�
h
6
; 2h
3
; h
3
; 2h
3
; h
3
; : : : ; h

3
; 2h
3
; h
6

�
. This means that we can proceed by

collecting multiplicand approximations eY (X[� i;&i));
e�i(X[&i;� i+1]) and multiplying, but need

to recognise that in generating these approximations, the coe¢ cients that apply are the �k

corresponding to the timeslices involved. Corresponding to each of the component paths

X:, this means that we are collecting a product of approximate exponentiated actions,

eY (X:) =
2��1Q
i=0

h
exp

�
�eS �X:

[� i;&i)

��
exp

�
�eS �X:

[&i;� i+1]

��i
exp

�
�eS �X:

[�2�;&2�]

��
= exp

�
�

2NP
k=0

�kV (X
:
k )

�
.

(Of course, X:
[� i;&i)

= X[� i;&i) for all the paths we are designating as X
:.)

However, it should now be clear that there is no reason to actually sample the sequence

of & i and � i, even though this is possible, and indeed a version of the algorithm using the

approach of drawing & i and � i was programmed, for veri�cation purposes. (Because it is very

useful, we explain how to draw the crossing time sequence, in Subsection 7.3.4.) In order to

collect eY (X[� i;&i));
e�i(X[&i;� i+1]), we need only to know what discretisation timeslices lie within

[� i; & i) and [& i; � i+1]. For this purpose, it is su¢ cient to determine which intervals (tk; tk+1)

contain x-crossings and/or y-crossings. Moreover, in view of the cancellation property which

we shall discuss next, we do not even have to worry at all about what happens if many x

and y crossings occur within the same (tk; tk+1), making the task very straightforward.

Pseudocode for the algorithm shall be provided in Subsection 7.3.3.

Advantageous cancellation property

Using Simpson�s Rule, or any other integrator based on quadrature of V , we may recognise

that when both x and y cross between two discretisation times (for these purposes, by

a "discretisation time", we mean any point in time at which V is evaluated), the total
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contribution to our Monte Carlo for GT shall be zero. This is because this means that for

some i and k we have [& i; � i+1] � (tk�1; tk), so that e�i(X[&i;� i+1]) is zero: [& i; � i+1] contains no

discretisation timeslices, so e�i(X[&i;� i+1]) = 1� 1 = 0.

The advantage of this interaction between the integration method and the manner of

path sampling is thus considerable: on a substantial part of path space, we are able to

get a functional contribution of zero. By using the Last-to-�rst Subdiamonds method, we

identify where there are equally likely paths which would give exactly equal countersigned

contributions under the approximation used to produce the estimate of the functional. The

advantage of this cancellation grows as T increases: whereas as the situation would ordinarily

be getting worse because of the propensity for more crossings to occur, for us this can only

improve matters!

Remark 7.3.1 We note that in the program, we have no need to sample from the �nite-

dimensional distribution for wt;((x;y1);(x;y2))0;(a0;b0)

���
E(t;x)

directly. According to (2.17) this would be

possible to do. For 0 < s1 < s < s2 < T , when X(s1) and X(s2) are known, the conditional

density of X(s) may be found by conditioning on the event that no x-crossing happens within

(s1; s2), by the same kind of reasoning as for w
T;aT
0;a0

���
E0
in the 1D case. For the case that

no extra information about points between s and t is known, however, we would have to

condition on (t; x) being the �rst crossing subsequent to s, and this is a slightly more awkward

conditioning.

7.3.2 Further developments that give rise to the full algorithm

It now behoves us to introduce certain straightforward extensions to the algorithm, to

complete our discussion of this topic.

Using native coordinates

For exposition we have adopted the perspective, in the previous section, that, by using

longitudinal-transverse coordinates, it is su¢ cient to treat the case x0 = ((xa0; 0); (xb0; 0)).
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However, we can also apply the same kind of thinking without changing the coordinate

basis. This is important since as the number of particles is increased and dimension is

increased much beyond 2; it is impossible to �nd coordinate bases which have the same

special properties. In order to avoid looking at the problem with n = 2; d = 2 in the

light of tricks which apply only to this relatively simple case, it seems preferable to perform

simulations with diamonds in native coordinates. The only di¤erence is that now we do

not have an automatic y-crossing at time 0 and time T . Therefore we search for the �rst

crossing in either x or y, and this we may call our � 0; we proceed to use diamonds on the

intervals which lie between a crossing of x and a crossing of y, as before. The resulting

disposition of diamonds is illustrated in Figure 7.10; here � indicates where, given this

sequence of crossing points, a diamond is contributed to the product of expectations for the

corresponding interval, and bold lines indicate where instead, a simple positive contribution

is collected.

Figure 7.10: Diagram of how diamonds occur in the last-to-�rst method, using the native
coordinate basis.

Extending to the case of two fermions in a 3-dimensional space

In the case of a pair of fermions in a 3-dimensional space, similar logic to that of Section

7.2 leads to a method where contributions are collected from paths which are still based

on exchanging coordinates at crossing times. Now, however, we need to apply dimensional

coordinate exchange over "diamond" intervals in which we have a crossing in each coordinate:

x,y,z.

However, this means that one cannot necessarily use every possible "diamond" when
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there are 3 dimensions. This is illustrated by the following example. Suppose the sequence

of crossings is as shown in Figure 7.11. The connections marked (i), (ii) and (iii) illustrate

possible 3-way diamonds which we might choose to use. While (iii) appears inconsistent

with our methodology thus far (why would we wait until the last y-crossing to end the

diamond?), both (i) and (ii) are consistent with it. Intuitively, (i) seems the best in this

Figure 7.11: Illustration of some ideas for placing 3-way diamonds given a sequence of
crossing dimensions

case, given no information about the time distances involved. It seems clear that the more

time is left diamond-free and contains crossings, intuitively the more likely it is that a

countersigned sample of similar magnitude could exist. However, in general, when there

is a long sequence of crossings, it would be troublesome to perform a sorting to �nd out

which arrangement gave the greatest number of diamonds. Consequently, in experiments

(see Section 7.4) an algorithm was used which simply started and ended diamonds as soon

as possible, incrementally. (In the case of Figure 7.11, this means that we would be using

alternative (i).) Note that in each diamond there is still only one negative and one positive

contribution: the negative from eventually exchanging coordinates in all dimensions, the

positive from not exchanging them in any of the dimensions.
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Figure 7.12: Diagram of how diamonds occur in the Last-to-�rst method when time is a
circle.

Identifying the endpoints of time

As before it is desirable to perform a Markov Chain Monte Carlo in order to apply im-

portance sampling for X. Now that we have replaced integration against Y with integration

against the functional being integrated in the right-hand-side of (7.19), which we may call

Y �, it would make sense to set the Radon-Nikodym derivative of the sampling measure with

respect to w� equal to
��Y �(X)

��. In order to apply the Multilevel Metropolis method, we
need to regard time 0 and time T as identi�ed. This does not stop us from still recognising

the ordering of crossing times. Figure 7.12 displays how the situation of Figure 7.10 may be

understood in this case.

However, Figure 7.12 also prompts us to consider whether we should be distinguishing

time 0 by not placing a diamond over it, given that we no longer work in a coordinate basis

with transverse crossings at time 0. The answer is that we can, without di¢ culty, place a

diamond here, and contributions then also accrue to the alternative initial point. This gives

rise to an approach in which all timeslices are treated the same way, which is then a perfect

situation for performing a Markov Chain Monte Carlo simulation.
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7.3.3 The Last-to-�rst algorithm in pseudocode

For understanding, the following pseudocode describes a direct path sampling algorithm

based on (7.15), to �nd the ensemble expectation of some function of system position (e.g.

potential energy). Simpson�s Rule is used for Y , although naturally this is an inessential

detail. We apply the diamonds using native coordinates rather than longitudinal-transverse

coordinates.

void main procedure

{

Set up coe¢ cient array �, with T/halfh+1 elements, as 1,4,2,4,2,...,4,2,4,1 times

halfh/3

Loop M times:

{

Draw initial point x0, according to some predetermined measure �

Ymc = Ysamples( x0 ) / Radon-Nikodym derivative of � at x0.

Fmc = A(x0)Ymc

Store contributions to the sample averages of Ymc, Fmc, Y2mc, FmcYmc, F
2
mc

};

Compute sample estimate of Monte Carlo covariance matrix

(e.g. sample cov(Ymc,Fmc) is based on sample averages of Fmc, Ymc, and FmcYmc).

Write output to �le

}

subroutine: double Ysamples (initial point x0)

{
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Step 1. Sample a sequence of T/halfh system positions, ie points in R4, sampled as per the

�nite-dimensional distributions of a Brownian bridge: from x0 back to x0.

We shall store the x and y components in separate arrays, Xx[][] and Xy[][], where the �rst

subscript is for which particle and the second is for which timeslice.

Step 2a. Populate two arrays, to record which time intervals are considered to contain

crossings, in x and in y respectively.

Loop through timeslices with index k,

{

Set px = exp(�(Xx[0][k]-Xx[1][k])*(Xx[0][k+1]-Xx[1][k+1])/halfh);

Set py = exp(�(Xy[0][k]-Xy[1][k])*(Xy[0][k+1]-Xy[1][k+1])/halfh);

Generate a random number u �U[0,1]. I¤ u < px then record that this interval

(ie between k and k + 1) has a crossing in x:

Generate a random number u �U[0,1]. I¤ u < py then record that this interval

(ie between k and k + 1) has a crossing in y.

If the interval between k and k + 1 now has both x and y crossings, return

Y � = 0.

};

Step 2b. (If either there are no crossings in x, or no crossings in y, then we can skip this

step.) We now populate arrays to index which timeslices are at the beginning and

end of each diamond. One array stores 1 for timeslices which are the �rst within a

diamond, 0 otherwise. Another array stores 1 for timeslices which are the last within

a diamond, 0 otherwise. To begin with, we seek the timeslice before the �rst crossing

of either x or y (call it �); then we seek the �rst crossing in the other coordinate (�0);

the timeslice previous to this is the last in a diamond. We then seek backwards to �nd
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the timeslice after the last crossing of �; this is the �rst in a diamond. We then seek

the �rst crossing of � following the �rst crossing of �0 and so on.

Step 3. Collect estimate of Y �.

Y � = 1

Counting through timeslices (index k):

{

If k = 0 or k is between diamonds,

{

Ssection = 0

Count on with k until k is at the start of a diamond or k =T/halfh :

{

Add to Ssection this: �[k]*V(Xx[0][k],Xy[0][k],Xx[1][k],Xy[1][k])

};

Multiply Y � by exp (�Ssection)

};

If k is now at the start of a diamond,

{

Spositive = 0

Snegative = 0

Count through timeslices k until k reaches the end of the diamond:

{

Add to Spositive this: �[k]*V(Xx[0][k],Xy[0][k],Xx[1][k],Xy[1][k])

Add to Snegative this: �[k]*V(Xx[0][k],Xy[1][k],Xx[1][k],Xy[0][k])
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}

Multiply Y � by (exp (�Spositive)� exp (�Snegative))/ 2.

}

}

If any diamonds were encountered, now multiply Y � by 2, to compensate for fact that we

do not need 1=2 factor on �rst diamond.

return Y �

7.3.4 Drawing from the distributions of �rst and last crossing

times

Drawing �rst and last crossing times for a pair of fermions

We earlier made some discussion of exact methods of sampling draws of a random variable

when the pdf is known. We described rejection (this includes adaptive rejection, ziggurat

methods and so on), volume decomposition, and the transformation method.

In order to sample the sequence of crossing times & i; � i, we need to sample crossing times

in two distinct situations. One is where the termini are di¤erent and the other is where the

termini are equal. For an interval of length T0, once can obtain that the pdfs, respectively,

are as follows. In the case that the initial distance is �1 and the terminal distance is �2:

f(s) =
�1

(4�)1=2
T
1=2
0

s3=2(T0 � s)1=2
exp

 
��

2
1

4s
� �2

2

4(T0 � s)
+
(�1 +�2)

2

4T0

!
In the case that the termini are equal (ie �2 = 0):

f(s) =
�1

(4�)1=2
T
1=2
0

s3=2(T0 � s)1=2
exp

�
��

2
1

4s
+
�2
1

4T0

�
=

�1

(4�)1=2
T
1=2
0

s3=2(T0 � s)1=2
exp

�
��

2
1(T0 � s)

4sT0

�



209

However, it turns out that especially the former case presents substantial di¢ culties if one

attempts to use either rejection or volume decomposition. For volume decomposition, infor-

mation about the number of modes is needed; to form a candidate for rejection, at least this

information is needed, and usually one also expects to know the global maximum of the pdf,

and for this function it is not trivial to compute analytically. (It is possible to �nd it for the

other case by solving a cubic equation.) Thus it is highly fortuitous that in the more di¢ cult

case, it is possible to �nd a superior method entirely: it can be obtained via transformation

from a Gaussian draw.

A transformation method for drawing from the �rst crossing time pdf when the

points are constrained to meet at a time T0. Now where � is the �rst crossing time,

let � =
�
�21
4�
� �21

4T0

�1=2
. We can show that the pdf of S, for S > 0, is given by

d

dx
P (� < x) =

2p
�
exp

�
�x2

�
.

For if we assume this then we shall �nd that where x � x(s) =
�
�21(T0�s)
4sT0

�1=2
=
�
�21
4s
� �21

4T0

�1=2
,

a monotonic function of s,

d

ds
P (� < s) =

dx

ds

d

dx
P (� > x(s)) = �dx

ds

d

dx
P (� < x)

=
1

2x

�
�2
1

4s2

�
2p
�
exp

�
�x2

�
=

�1

4s2
2s1=2T

1=2
0

(T0 � s)1=2
1p
�
exp

�
��

2
1(T0 � s)

4sT0

�
as required. Therefore to draw samples of � , we may draw samples of �, which is easy, and

then apply s = �21
4

�
x2 +

�21
4T0

��1
. In fact it is then clear that to draw � as standard Gaussian

instead would be su¢ cient.

It was also found that this creates an extremely expedient candidate for a rejection

method in the case that the termini are not equal.

In order to produce programs based on sampling the crossing time sequence, it is some-

times also necessary to be able to draw crossing points, such as X(� i), in order to iteratively
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sample further crossing times, but it is not di¢ cult to sample X(� i) conditional on the

sampled value of � i.

Drawing �rst and last crossing times in the case n > 2

Knowing how to sample �rst and last crossing times in an interval (in fact, the sequence

of distinct crossings) becomes more important when there are more than two particles, if

we use the method suggested in Section 7.5. In order to illustrate how to proceed, we now

consider the case that n = 3: Again we are concerned with crossings between the coordinate

paths corresponding to one dimension, as we may �nd the x-crossing, y-crossing, z-crossing

sequences separately.

We shall use E3 to denote the event that X(1) > X(2) > X(3) over the whole interval

[tk�1; tk].

Writing

�1 =
X(1) +X(2) +X(3)

3
; �2 = X(2) � X(1) +X(3)

2
; �3 =

X(1) �X(3)

2

then we can see that for any t, �1;2;3(t) are pairwise independent random variables. Moreover,

X(1)(t) > X(2)(t) > X(3)(t) is equivalent to

j�2(t)j < �3(t) .

Let us set

�1 =
X(1) +X(2) +X(3)

p
3

; �2 =
X(2) � X(1)+X(3)

2p
3=2

; �3 =
X(1) �X(3)

p
2

.

Then X(1)(t) > X(2)(t) > X(3)(t) is equivalent to

�2(t) <
p
3 j�3(t)j .

The path X is determined by the path �; which also consists of three independent Brownian

bridges with the same variance as the originals. The constraint for � represented by E3 is,

however, simpler than that for X. In fact its locus at any time instant is an in�nite sector,
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of angle 60 degrees. The question therefore arises of how we shall determine, given values

for �2;3(tk�1) and �2;3(tk), the probability that � has exited this sector during [tk�1; tk], and

if so at what point it exited. This can be done using an iterative method, as follows:

1. Call �2;3(tk�1) by z0.

2. Let A1i be the locus boundary line nearer to zi and let A2i be that which is further from

zi. Find the point ri 2 A2i which minimizes the distance to zi. Find the point r0i 2 A1i

which minimizes the distance to ri. Then consider Ri to be an in�nite rectangle with

corners ri; r0i, extending away from the origin with one of its boundaries a subset of A1i

(these are blue rectangles in the Figure).

3. There are three possibilities:

(a) �2;3 leaves Ri at t < tk via A1i. This means the path sampled was not in E3. In

this case, t is the �rst exit time of X from the locus x(1)(t) > x(2)(t) > x(3)(t) and

we can also sample the exit point.

(b) �2;3 reaches �2;3(tk) without leaving Ri. This means the sampled path was in E3.

(c) �2;3 leaves Ri at t < tk via another boundary than A1i. In this case, sample the

exit point �2;3(t) and return to step 2 to continue, calling �2;3(t) = zi+1.

It is possible for us to make the determination between (a),(b) and (c) because the

problem of �rst exit from a rectangle is soluble in the case of independent Brownian bridges.

Viz, we may consider each coordinate separately and taking the minimum of interval exit

times (sampling these is discussed in [MT99]) shall give us the �rst exit time from the

rectangle; we may also sample the other coordinates at the exit time, if we are careful about

it (cf the approach taken in [MT04, MT99] for the Brownian motion case).

No claim is made that this algorithm is the optimal one of its type, and one direction of

further research in this area would be to try to ascertain an approximately optimal determi-

nation of the rectangle coordinates ri. It would also be helpful to try to discover an elegant



212

Figure 7.13: A schematic of how to sample whether a path lies in E3, in a case where 3
iterations are required.

way to solve the problem when more than 3 particles are considered together, because a

change of coordinate basis apparently only reduces the dimensionality by 1 in general. In

practice, in many simulations particles will be su¢ ciently far apart that it is safe to ne-

glect crossing events between most of them; consequently, the problem breaks down into

performing the above procedures for clusters of 2 or 3 particles.

7.4 Numerical results using the Last-to-�rst Subdia-

mond algorithm for 2 fermions in a multidimen-

sional space

In this section, we describe the results of testing the Last-to-�rst Subdiamond algorithm

on several simple examples. The results are, broadly speaking, encouraging.
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7.4.1 Additive potentials and the Correlated Oscillator

In order to be sure that the programming is correct, it is preferable to have a system for

which the action integral GT (x0; xT ) is analytically soluble.

The analytical solution for the harmonic oscillator potential It turns out that

because the harmonic oscillator potential is dimensionally additive, the solution to the ac-

tion integral for the 1-dimensional case (4.38) allows us to easily �nd the solution for the

2-dimensional case (and indeed the d-dimensional case). Recall that we use x10 and x
2
0, re-

spectively, for the x-coordinates and y-coordinates of x0 =
�
x
1(1)
0 ; x

2(1)
0 ; x

1(2)
0 ; x

2(2)
0

�
2 R4;

and x(1)0 ; x
(2)
0 for the particle coordinates; likewise for xT and other points. We observe that,

due to the independence of Brownian bridge components,

JT (x0; xT ) = JT
�
x10; x

1
T

�
JT
�
x20; x

2
T

�
.

Where xT =
�
x
(1)
T ; x

(2)
T

�
, let :xT =

�
x
(2)
T ; x

(1)
T

�
. When values for JT (x10; x1T ); JT (x10;:x1T );

JT (x20; x2T ); JT (x20;:x2T ) are known exactly, as by using (4.38) in the harmonic oscillator

case, we can of course use them to give an exact value for GT (x0; xT ):

GT (x0; xT ) = JT (x0; xT )� exp

0B@�



x(2)T � x

(1)
T




2
T

1CAJT (x0;:xT )
= JT (x10; x1T )JT (x20; x2T )� exp

0B@�



x(2)T � x

(1)
T




2
T

1CAJT (x10;:x1T )JT (x20;:x2T ) . (7.20)
The solution to the sign problem for dimensionally additive potentials However,

we can go even further than this: in the case of any dimensionally additive potential we can

avoid the fermion sign problem entirely. Recognise that based on (7.20),

GT (x0; xT ) =

JT (x20; x2T )GT
�
x10; x

1
T

�
+ exp

0B@�
�
x
(2)1
T � x

(1)1
T

�2
T

1CAJT (x10;:x1T )GT �x20; x2T � .
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Since in the 1-dimensional case, we may apply the very e¤ective simulation method for

GT that was described in Chapter 6, it is then possible to �nd GT (x0; xT ) without further

di¢ culties. So there is a way to perform simulations for d-dimensional systems which does

not su¤er from an insuperable fermion sign problem, whenever the potential is dimensionally

additive.

However, it will be apparent that this means that such potentials do not provide good

examples for testing, precisely because they exhibit this degeneracy. If we wish to test the

e¢ cacy of the Last-to-�rst Subdiamond algorithm then it seems preferable to choose an

example in which the sign problem is not so easy to remove.

The correlated oscillator

We shall now use the notation (x0; y0) for the initial point, and so on. If we stretch one

of the coordinate functions in the harmonic potential then there is only one coordinate basis

in which it remains degenerate. So that this is not the basis in which the program works,

we shall consider the following potential:

V
��
x(1); y(1)

�
;
�
x(2); y(2)

��
= V

��
x(1); y(1)

��
+ V

��
x(2); y(2)

��
(7.21)

V ((x; y)) =
x2 + y2 � xy

3=2
for x; y 2 R (7.22)

This is degenerate only when the coordinate basis is
�
x+yp
2
; x�yp

2

�
. This allows us to �nd the

solution for u and still achieve a sign problem in methods which would give no sign problem

for a degenerate potential. Writing (x0; y0) =
�
x+yp
2
; x�yp

2

�
;

V (x; y) =
1

3
x02 + y02 :
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Therefore for (7.22) we have the following single-particle action integral:

JT ((x0; y0) ; (xT ; yT )) =
Z
CT;(xT ;yT )
0;(x0;y0)

exp (�S(X)) dwT;(xT ;yT )0;(x0;y0)
(X)

=

Z
C
T;x0

T
0;x00

exp

�
�
Z T

0

1

3
X(t)2dt

�
dw

T;x0T
0;x00

(X)

Z
C
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T
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�
�
Z T

0

X(t)2dt

�
dw

T;y0T
0;x0T

(X)

= f
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!
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,

where from (4.38),

f(x0; xT ; 
)

= (
T csch (
T ))1=2 exp

�
(xT � x0)

2

2T
� 1
2


�
x20 + x2T

�
coth (
T ) + 
x0xT csch (
T )

�
:

Since the particles are noninteracting in (7.22), for 2 particles GT : R4 � R4 �! R may be

found as

GT ((x0; y0) ; (xT ; yT )) = JT
��
x
(1)
0 ; y

(1)
0

�
;
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(1)
T

��
JT
��
x
(2)
0 ; y

(2)
0

�
;
�
x
(2)
T ; y

(2)
T

��
. (7.23)

Figure 7.14 was obtained by taking
R
R2 G6 ((x; y) ; (x; y)) d(x

(2); y(2)) to give a function of

x(1); y(1).

The expression resulting from (7.23) is useful for providing exact solutions for speci�c

bridge endpoints in order to perform intermediate analyses. It is di¢ cult to perform numer-

ical integrations of G based on (7.23), but by working in the degenerate coordinates, it is
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Figure 7.14: Particle density for 2 fermions in noninteracting correlated oscillator, T=6

possible to �nd Z by decomposing the integrand:

Z =
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and the components of this expression are amenable to numerical integration in a standard

software package. This allowed it to be veri�ed that the program gave correct results.

The correlated oscillator in 3D

In 3 dimensions the potential used as the 3D correlated oscillator was

V (x; y; z) =
13

18
x2 � 5

9
xy +

13

18
y2 � 2

9
xz � 2

9
yz +

5

9
z2 .

It is possible to �nd Z for a pair of noninteracting fermions using the same method as

above, and in this way it was veri�ed that the program for 2 3D fermions gave correct results.
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7.4.2 Last-to-�rst experiments: a pair of 2D fermions

Experiments were performed with the intention of measuring the e¢ ciency of the simu-

lation, by collecting the average sign. The results for 2 noninteracting 2D fermions using the

correlated oscillator potential are given in Figure 7.15. The initial point sampling measure

was Gaussian with standard deviation 1. The credibility interval forgh�i was approximated
by using Bivariate Gaussian Monte Carlo. Clearly our familiar assumption that prior in-

formation can be neglected only holds valid as long as the interval reported is relatively

small; the results for T = 16 should be ignored completely, but are included to demonstrate

that further progress with direct path sampling is infeasible. In all of these experiments,

M = 1010. The results seem to suggest that the asymptotic value of gh�i is above 0.85,
unless there is a change in behaviour after T = 10 which we are unable to observe. Using

h = 0:2; we observe a possible increase of the average sign between T = 12 and T = 14; this

is probably due to an increased proportion of paths for which cancellation applies because of

encountering an x and a y crossing within the same discretisation interval. As T increases,

the variance is observed to increase exponentially due to the lack of importance sampling.

For T = 10; the time to run the experiment on a 2.0 GHz machine was about 14.25 days.

For comparison, a simulation using the Coulombic potential was performed. Speci�cally,

we let V : R4 ! R be given by

V (x(1); x(2)) = �min
�

1

kx(1)k ; 12
�
�min

�
1

kx(2)k ; 12
�

+
1

2 kx(1) � x(2)k +R(x(1); x(2)) + 10 , (7.24)

where R : R4 ! R applies harmonic walls to enforce a discrete spectrum of energy values

(recall that all of our results are predicated on the assumption that a discrete spectrum

exists; cf Theorem 2.2.1):

R(x(1); x(2)) =
1

2

�
1kx(1)k>10

�

x(1)

� 10�2 + 1kx(2)k>10 �

x(2)

� 10�2� .
The cuto¤ on the attractive terms in V avoids any problems with stability without substan-

tially a¤ecting the results. For T = 6, the posterior expectation of gh�i was 0:937015 (to
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Figure 7.15: Average sign using the Last-to-�rst algorithm for a pair of 2D fermions, nonin-
teracting correlated oscillator.

6 d.p.) and the 95% credibility interval was (0:926909; 0:946587). In other words, a higher

average sign was observed than for the noninteracting correlated oscillator. This is almost

certainly because repulsion in the potential decreases the contribution of paths that bring

the particles together simultaneously, and therefore increases the relative magnitude of the

contribution from the subsets of CT;x00;x0
with lower values of �. It is encouraging to note that

this does actually translate into a higher average sign using our algorithm.

For the correlated oscillator in 2D, an interesting e¤ect emerges: whenever the number

of diamonds is even (so, the last variable to cross is also the �rst to cross), only positive

contributions are collected. This is shown in Table 7.1, for the T = 10 result. Here the overall

average sign was between 0:864511 and 0:872479, with posterior expectation 0:868506 (to 6

d.p.): For brevity the results with 22 or more diamonds are omitted. The standard error on

the average sign from each subset was calculated only using the rough approximation (4.7)

and as such, is only displayed for those results where the reported value was low enough for
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us to regard this method as even giving an indicative �gure. The table row marked "Kills"

indicates the number of paths on which perfect cancellation occurred due to encountering

both x and y crossings within the same discretisation interval.

The fact that the average sign is 1 if we condition on there being an even number

of diamonds is a peculiar and unexplained artifact of the potential, which does not hold

for the Coulombic potential (7.24), and in particular implies that if longitudinal-transverse

coordinates were used, making the number of diamonds always even, then all contributions

(ie, all samples of Y � (X)) would be positive. Moreover it demonstrates incontrovertibly that

in native coordinates, the average sign cannot tend to zero, or fall much below 1=2, since for

T large, the proportion of paths with an even number of diamonds clearly will not fall much

below 1=2, and it is evident that as one might expect, the magnitude of EY � is decreasing as

the number of diamonds increases, not remaining high only when the number of diamonds

is odd! It should be noted that the number of diamonds, and anything conditional upon it,

is meaningless here in intrinsic terms: in fact, it is dependent on the initial point sampling

measure.

By way of comparison, the average sign for a completely naïve simulation at T = 10

(which we can �nd by taking the ratio of the boson partition function to the fermion partition

function) would be 0:000285 (to 3 s.f.): Thus, the average sign under our algorithm is at least

3033 times greater, and the cost saving, when using importance sampling, should therefore

be about 7 orders of magnitude.

7.4.3 Last-to-�rst experiments: a pair of 3D fermions

Figure 7.16 shows the results obtained using the Last-to-�rst algorithm for the 3D non-

interacting correlated oscillator. The results are much less conclusive than those of Figure

7.15; in particular there is nothing to immediately dispel the concern thatgh�i may decrease
more or less linearly towards T = 12, and therefore be carrying on towards 0 thereafter.

Table 7.2, which breaks down the average sign according to number of diamonds in the



220

Figure 7.16: Average sign using the Last-to-�rst algorithm for a pair of 3D fermions, nonin-
teracting correlated oscillator

same manner as Table 7.1. Again T = 10 and in this case the overall average sign was

found to be between 0:456 and 0:596. Although the estimates of average signs may well

be quite poor in tems of Monte Carlo variance, through most of the table, and there is

a somewhat decreasing trend up to 6 diamonds, it seems that the results are nonetheless

broadly inconsistent with a trend that increasing the number of diamonds would bring the

average sign towards 0. This latter would have to be the case in order for our simulation to

have a sign problem. Further experiments are required in order to determine whether or not

this is the case, however, using MCMC to simulate e¤ectively at higher values of T .

By way of comparison, the average sign for a completely naïve simulation at T = 10,

found as the ratio of the fermion partition function to the boson partition function, would

be 0:000294 (to 3 s.f.). The average sign under our algorithm is thus at least 1551 times

greater and therefore the cost saving, when using importance sampling, should be about 6

orders of magnitude. In conclusion, the empirical evidence that our algorithm is successful
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in 2D is fairly positive. The evidence as to whether it is successful in 3D is inconclusive, but

it is at least moderately e¤ective.

7.5 Extending the Subdiamond approach to n particles

In this section we provide some comments on the challenges inherent in extending our

method to n > 2 particles, and some speculative remarks about how these challenges might

be addressed.

7.5.1 Towards a general method

Having found a logical approach to dealing with the sign problem in the case of just a

pair of fermions with d > 1, it is natural to search for a generalisation to n > 2 fermions; in

other words, a method which uses the same principles to avoid the sign problem, and which

features our Last-to-�rst 2-particle method as a special case.

To extend the principle of forming sampling blocks of paths based on coordinate exchange

should be possible if one adopts the perspective that GT is found by integrating with respect

to wT;�nx00;x0
(compare the proof of Theorem 6.2.1). Considering the 2 particle case in this

light, if we condition upon a set of crossings involving crossings in both x and y, then it is

easy to recognise that the pair exchange (12) is equally likely with the identity. (Moreover,

if we condition on there being either no crossings in x or no crossings in y, then it is obvious

that the identity is the only possible permutation.) This remains true if we look at only a

section of time (using conditional independence under wT;�nx00;x0
and invoking multiplication

of permutations in the same way as discussed in Subsection 4.2.3; see also Subsection 2.1.4)

and so it is possible to re-develop the results of Chapter 7 using this perspective. Similarly, it

is not di¢ cult to see that in general, if we can identify a set of crossings then one legitimate

approach is to collect functionals for a set of paths which are equilikely under the given

crossing set2.

2Or, more generally, weighted according to their probability conditional on the given crossing set.
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It is important to note that from the de�nition of wT0;x0 ; we know that each binary

choice sequence would be equiprobable under wT0;x0 given a well-de�ned set of crossings,

and therefore it follows that under wT;�nx00;x0
, those choices which give rise to X(T ) 2 �nx0

correspond to equilikely paths. (This also applies when some of the choices give rise to the

same permutation: such permutations receive a commensurately higher weighting.)

The issue of combining �ips

However, the problem is deeper than this in two ways. Firstly, we do not have to always

collect a path for all the possible binary choices (ie choices of which crossings should be used

for particle exchange) corresponding to the sampled crossing sequence. We might choose

instead to partition this set into equivalence classes P1; :::;Pq. If our initially sampled path

belongs to Pi then we collect functionals for each of the binary choices in Pi. This concept

is quite important because, due to the fact that a permutation may have multiple di¤erent

representations as pair swaps, it could be quite di¢ cult to access certain permutations by

matching particle swaps between coordinates.

Secondly, if we choose to recognise crossings between our sampled particle loops (from

here on denoted ABx, ABy etc) then when we have n > 2 particles involved, the issue arises

that accepting or not accepting certain exchanges of coordinates may change the meaning

of other crossings. For example, while A and B are exchanged, say in the x coordinate, BCx

becomes ACx. We could avoid this by instead recognising crossings between paths indexed

not by their sampled loop but by their ordering in the relevant dimension (these crossings

being written 12x, 12y). These crossings are well-de�ned however we choose to map the

initially sampled paths to paths for which Y is to be evaluated. However, the same problem

immediately returns in that we need to map them to particle crossings in order to perform

any simulations. A way to avoid this di¢ culty would be available if we could always �nd a

decomposition into Pi so that the elements of Pi were all accessible from each other without

a reinterpretation of which particles should be involved in any crossing that is used. So



223

apparently, labelling crossings ordinally confers no advantage.

7.5.2 Illustrative examples of crossing sequences

Let us consider some examples of crossing sequences and how we might respond to them.

For simplicity we shall consider examples where we assume that the initial points A,B,C are

arranged diagonally so that both the x and the y coordinates are ordered A,B,C.

Example 1: no complications

Suppose we simply encounter ABx and then ABy: This appears straightforward: it is the

same as in the n = 2 case. The same thing applies if we encounter this sequence preceding

another one; e.g. ABx ABy BCx BCy. We may summarize the possibilities, where 1 indicates

that a crossing is used and 0 indicates that it is not, thus:

ABx ABy
0 0 +
1 1 �

Example 2: mixing the coordinate sequences together

Suppose we encounter a sequence where the same particle exchange sequence applies in

both (or all) coordinates, but without necessarily being split into separate segments of time.

This should not present signi�cant di¢ culties. The viable choices, which are all equilikely,

are tabulated as follows:

ABx BCx ABy BCy
0 0 0 0 +
0 1 0 1 �
1 0 1 0 �
1 1 1 1 +

We do not yet consider �ips whose time interval spans zero. Figure 7.17 displays the links

that are followed out. The initially sampled paths are loops and they are represented by

black curves. The blue curves represent alternative choices under exchange. Green represents

more negative curves, so that following blue and then green gives us a positive contribution,

(AB)(BC). The numbers 1,...,5 represent segments of time.
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Figure 7.17: Schematic showing a crossing sequence ABx BCx ABy BCy , with permutations
(id), (AB), (BC), (AB)(BC).

It is natural to ask how we might actually build an algorithm able to collect these

simultaneous samples e¢ ciently. We no longer simply have a product of di¤erences and

therefore it seems that some extra computational cost may be unavoidable.

At �rst it might seem that one solution, to the problem of identifying viable equivalence

classes (in e¤ect, sampling blocks), is to include paths in the same equivalence class if and

only if they are accessible from each other via �ips of coordinates (ie, exchanges over a time

interval between two crossings) which do not involve changing the meaning of any other

observed crossings. However, this turns out to be an unfortunate choice. Consider the

crossing sequence in this example: Super�cially we see that we could use {ABx, ABy} to

exchange A and B, or could use {BCx, BCy} to exchange B and C; in fact these �ips are

also compatible with each other, and we could use all four switches to get (AB)(BC). But
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according to the rule that one crossing should not a¤ect another, we would have to rule out

using any of them!

Example 3: incongenial ordering of swaps

On the other hand, if the crossing sequence is ABx BCy ABy BCx (and we shall assume

that there are many other crossings before and after this, so that it is not a simple matter

of rotating time) then {ABx, ABy} and {BCx, BCy} are incompatible: using all switches

leads to (AB)(BC) for x but (BC)(AB) for y. This is problematic because we apparently

have more negative than positive contributions of which to take account.

ABx BCy ABy BCx
0 0 0 0 +
0 1 0 1 �
1 0 1 0 �

It would certainly be preferable not to pick up two negative contributions and only one

positive. We know that under wT;�nx00;x0
, the weights of the viable choices are equal. But if

we choose to neglect, say, {BCx, BCy} then since we are using particle labels rather than

ordinal ones, we know that on another occasion we might have sampled a path X which did

feature the B,C exchange. On the face of it, this leads to a sign problem however; so let us

consider our options.

Possible algorithms for determining equivalent paths

Re�ecting on these examples, there are a number of possible strategies for constructing

the equivalence class of an observed path X, such as:

1. Reject �ips which are not compatible with those already encountered (moving clockwise

through time from 0).

2. Use all directly accessible �ips. ie, our algorithm is:

(a) Detect all �ips which are directly accessible from X;

(b) Determine a matrix of values for which �ips are pairwise compatible.
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(c) Collect those binary choices which do not include any incompatible pairs of �ips.

3. Use an algorithm to search for all possible binary choices which are viable. (This could

be very expensive.)

In each of these cases we have to bear in mind that we are also interested in using �ips

(diamonds) whose time interval spans the zero time. It is conjectured that for this reason,

one never in fact obtains a net negative number of contributions using strategy (2). However,

this still remains to be investigated.

There is also potentially an alternative approach, if it were possible to prove that one

might legitimately exchange opposite coordinates from the ones encountered. So for {ABx,

ABy} we might choose to exchange the y-coordinates of A and B at the time of an ABx

crossing and the x-coordinates at the time of ABy. Intuition suggests this is consistent with

the particles being indistinguishable, but mathematically it is not clear. If this approach

should be seen to be valid, then one has a fourth algorithm: choose to make a �ip of

coordinates only if it is possible to do so without a¤ecting an intermediate crossing. So in

the case of ABx, BCx, ABy, BCy we allow exchange of the y-coordinates of A and B between

ABx and ABy and this is then compatible with exchanging the x-coordinates of B and C

between BCx and BCy: In the case of ABx, BCy, ABy, BCx we would use x for A,B and x for

B,C. The fact that �ips never a¤ect other crossings means that they are all always mutually

compatible.

It remains to be seen how much improvement in average sign would be obtained by using

these algorithms.

Example 4: �ips contained within one another

Now consider what might happen if the order of these crossings were di¤erent, so that we

have ABx BCx BCy ABy. Note that this is still a di¤erent sequence when time is regarded

as a circle: it is qualitatively di¤erent because the x exchanges appear next to each other.
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We now have some di¢ culty in combining (AB) and (BC) because using ABx means that

we see BCx then as ACx:

ABx BCx BCy ABy
0 0 0 0 +
0 1 1 0 �
1 0 0 1 �

The answer is supplied by considering time symmetry. If we regard time as a circle, it

is immediately seen that this crossing sequence is the same as the innocuous ABy ABx BCx

BCy (see Figure 7.18). Therefore assuming that this kind of time symmetry is to be invoked,

we must treat this crossing sequence the same way regardless of our superimposed labelling

of time.

Figure 7.18: ABx BCx BCy ABy can be regarded as ABy ABx BCx BCy by moving the 0
label when 0 and T are identi�ed to make [0,T] a circle.

The most obvious way, as illustrated, is to place a diamond between ABy and ABx and

between BCx and BCy: If we think of the 0 label as lying within the �rst of these diamonds,

then we are collecting contributions both for x0 =
�
x1(1); x1(2); x1(3); x2(1); x2(2); x2(3)

�
and

for x00 =
�
x1(2); x1(1); x1(3); x2(1); x2(2); x2(3)

�
: While 2 negative choices and 1 positive choice

correspond to x0; 2 positive choices and 1 negative choice correspond to x00.

However, this choice of diamond placement does beg the question, of why we do not use

the "long" diamonds, from ABx to ABy or BCx to BCy. Intuitively this certainly seems less

desirable: by collecting paths from diamonds which take place over a shorter time interval,

we collect countersigned contributions which have a greater covariance with those from our
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originally sampled path and the other paths being collected. Whether neglecting these

diamonds, in favour of the shorter ones, leads to a severe sign problem, is a question which

requires further investigation.

Example 5: Permutations that are inaccessible by using matching swaps

It is relevant to consider an example where the fact that a permutation may have two

di¤erent representations as pair swaps becomes an issue. Taking ABx BCx ABx BCy ABy

BCy, if we seek to match permutations between x and y for a choice to be viable, we have

the following table:

ABx BCx ABx BCy ABy BCy Name
0 0 0 0 0 0 + id1
0 0 0 1 0 1 + id2
0 0 1 0 1 0 � (AB)1
0 1 0 1 0 0 � (BC)1
0 1 0 0 0 1 � (BC)2
0 1 1 1 1 0 + (BC)(AB)
1 0 0 0 1 0 � (AB)2
1 0 1 0 0 0 + id3
1 0 1 1 0 1 + id4
1 1 0 0 1 1 + (AB)(BC)
1 1 1 1 1 1 � (AC)

This seems to indicate that there are 6 positive choices but only 5 negative choices. But

how are these to be accessed? If we could access them all from each other, this would be

�ne, but to do this, without checking every combination of exchanges and holding a large

number of paths (strategy (3) above), seems to be very problematic.

Under any of our algorithms described above, from id1 we must be able to access (BC)1,

(AB)1, (BC)(AB):

ABx BCx ABx BCy ABy BCy Name
0 0 0 0 0 0 + id1
0 0 1 0 1 0 � (AB)1
0 1 0 1 0 0 � (BC)1
0 1 1 1 1 0 + (BC)(AB)

All of the other binary choices are arrived at by using either the positive �ip ABx-ABx

and/or the positive �ip BCy-BCy. Under strategy (3) we would include these, but otherwise



229

we exclude them completely. Because we are using particle labels rather than ordinal labels,

this is perfectly valid, although again it remains to be seen whether it leads to a severe sign

problem or not.

This example also suggests another intuitively appealing concept. For any algorithm to

determine path equivalence, if the juxtaposition of the x and y crossing sequences is altered,

it is preferable that the permutations sampled, ie the equivalence classes, should remain the

same, at least until diamonds across zero are taken into account.

Summary

In conclusion, further study is needed to establish how to e¢ ciently extend the Subdia-

monds approach to the case n > 2. We have explored, through simple examples, some of the

features which we might expect to characterise such a generalised approach. The examples

are suggestive that a viable method may well exist, but also indicative that as n is increased

we would expect a considerable increase in complexity. There clearly is a lot of potential for

further research into this rich subject, as we shall discuss further in Section 8.2.
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Table 7.1: Observed e¢ ciency conditional on number of diamonds, in simulating 2 noninter-
acting 2D fermions in correlated oscillator. The results are based on using Simpson�s Rule.
The statistics are only indicative of what happens with a standard Gaussian as initial point
sampling measure. The timestep h = 0:1 throughout.

No. of Frequency EY � E
��Y ��� Average sign Average sign SE

Diamonds (to 3 s.f.) (to 3 s.f.) (to 3 d.p.) (approx)

0 7152189314 1.72E-10 1.72E-10 1 0

1 684659866 1.18E-10 1.76E-10 0.671 0.00629

2 1018766626 1.56E-10 1.56E-10 1 0

3 295824297 1.19E-11 2.43E-11 0.49 0.0083

4 400287703 7.67E-12 7.67E-12 1 0

5 102143305 1.10E-13 3.08E-13 0.359 0.0169

6 128843315 4.77E-14 4.77E-14 1 0

7 29578995 1.80E-16 6.45E-16 0.28 0.0479

8 35268650 5.98E-17 5.98E-17 1 0

9 7427158 7.47E-20 3.69E-19 0.202 ?

10 8459481 4.33E-20 4.33E-20 1 0

11 1657773 2.49E-23 5.54E-23 0.45 ?

12 1811859 1.11E-24 1.11E-24 1 0

13 332489 7.94E-28 9.66E-28 0.822 0.119

14 350603 2.30E-28 2.30E-28 1 0

15 60757 5.76E-33 3.19E-32 0.18 ?

16 61935 8.07E-35 8.07E-35 1 0

17 10124 1.16E-37 1.18E-37 0.982 0.0191

18 10067 1.12E-39 1.12E-39 1 0

19 1489 1.92E-43 1.92E-43 0.9994 0.000618

20 1449 1.05E-46 1.05E-46 1 0

21 202 -5.09E-52 5.19E-52 -0.98 0.0265

22+ 283

Kills: 132252260 0.00E+00 0.00E+00
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Table 7.2: Observed e¢ ciency conditional on number of diamonds, in simulating 2 noninter-
acting 3D fermions in correlated oscillator. The results are based on using Simpson�s Rule.
The statistics are only indicative of what happens with a standard Gaussian as initial point
sampling measure. The timestep h = 0:1 throughout.

No. of Frequency EY � E
��Y ��� Average sign Average sign SE

Diamonds: (to 3 s.f.) (to 3 s.f.) (to 3 d.p.) (approx)

0 3962852300 1.02E-13 1.02E-13 1.000 0.0000

1 1326223018 4.50E-14 1.85E-13 0.243 0.0809

2 1669750130 1.05E-13 1.77E-13 0.591 0.0226

3 778183026 1.85E-14 4.93E-14 0.375 0.0408

4 582623313 4.57E-15 9.57E-15 0.478 0.0346

5 304201081 1.63E-16 6.37E-16 0.256 0.0426

6 185801119 1.08E-17 4.25E-17 0.254 0.114

7 97985958 1.73E-19 9.62E-19 0.180 ?

8 53655084 -7.34E-22 1.80E-20 -0.041 ?

9 27481788 6.02E-23 2.31E-22 0.261 ?

10 14054441 5.53E-26 1.12E-24 0.049 ?

11 6928690 4.00E-27 7.96E-27 0.503 ?

12 3366472 -6.29E-30 4.03E-29 -0.156 ?

13 1597575 -3.56E-32 8.20E-32 -0.435 ?

14 744415 -7.72E-35 9.80E-35 -0.787 ?

15 340581 7.03E-38 9.95E-38 0.706 ?

16 153821 9.70E-41 1.20E-40 0.806 ?

17 67383 -2.14E-44 2.87E-44 -0.743 ?

18 29640 -3.31E-45 3.35E-45 -0.988 0.0162

19 12476 -4.07E-51 6.37E-51 -0.640 ?

20+ 9025

Kills: 983938664 0.00E+00 0.00E+00
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Chapter 8

Conclusions and outlook

8.1 Conclusions

In this section we summarize the main conclusions from the preceding chapters.

The background to our endeavours

By developing the viewpoint of works such as [Kac57, Kac56], it is possible to explain

the relationship between conditional Wiener integrals and quantum statistical mechanics,

via the probabilistic representation of the solutions to a certain parabolic partial di¤erential

equation (e.g. [Kac51, Fre85]). This allows us to �nd the expectation of practically any

observable quantity, in principle, for a quantum system in thermal equilibrium at a nonzero

temperature. We are able to make a rigorous justi�cation for Path Integral Monte Carlo

based on Conditional Wiener integrals, as opposed to needing to employ Feynman path

integrals under a Wick rotation.

Regarding simulation of excited system states

Under suitable conditions, such as the Hamiltonian operator having a discrete spectrum,

we have established a functional integral expression whose zero-temperature limit yields a

density corresponding to the sum of the �rst k eigenstates of a quantum system. This means
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that if a suitable method of zero-temperature simulation is adopted, and the multiplicity of

eigenstates is known, then it is possible to simulate statistics corresponding to the average

of the states at each energy level.

Using the well-known Boltzmann expansion, simulation of excited states provides an

approximate simulation method for systems at su¢ ciently low nonzero temperatures.

Regarding stochastic numerical integration and Path Integral Monte Carlo

In this thesis (see also [DT10]) it has been demonstrated that a piecewise constant numer-

ical method is of second order in the time-step for a relatively general class of functionals,

when performing integration with respect to any conditional Wiener measure. In order

to prove this, a novel technique was used, applying Taylor�s theorem for functionals (our

Theorem 3.1.1) to locally expand our approximate functional about the functional being

integrated.

The equivalent result relating to Wiener integrals was already known [GM84], and our

result was already known in the special case of exponential-type functionals [MT04ii] (see also

[MT04]) and in particular had long been known in the case of the action functional [Suz86].

However, the knowledge that the result holds for a broad class of functionals is very useful,

because when an observable is �diagonal�in the momentum representation, it is often possible

to express it in the position representation using a functional that is not of exponential

type; the example of kinetic energy was treated in this respect. The result particularly

has implications for the simulation of bosonic systems, for which there is no sign problem.

Amongst other experiments o¤ering empirical con�rmation of the result, a simulation of

the kinetic energy of four bosons in a 1-dimensional space under a harmonic potential was

performed, and this illustrated the di¤erence between the second-order piecewise constant

method and the �rst-order Euler method.

In order to estimate expectations of observables it is usually necessary to �nd information

about ratios of functional integrals. This can be accomplished probabilistically using Path
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Integral Monte Carlo procedures, and it is then possible to estimate a credibility interval

for the ratio that is of interest. Importance sampling is essential to any serious simulation,

and we were able to determine the optimal path sampling measure. (Nonetheless, the most

popular choice of sampling measure is the action measure, which simpli�es the analysis by

avoiding the need to simulate a partition function.) In order to sample according to such

measures, Markov Chain Monte Carlo is used; however, we have explained that our results

concerning numerical integration error still hold true regardless of how sampling is performed,

and of the sampling measure used. This was demonstrated by performing a simulation of

the potential energy of a system of 64 boltzmannons under a Lennard-Jones potential.

It was also seen empirically that in the case of an exponential-type functional, applying

Simpson�s Rule to the exponent (a method already known to be second-order for this class

of functionals) sometimes incurs a bias that is almost 10 times smaller than that incurred by

using the Trapezoidal Rule for the exponent (which coincides with our piecewise constant

method).

On the fermion sign problem in 1-dimensional systems

The fermion sign problem, de�ned in terms of �nding an exact fermion simulation algo-

rithm with polynomial cost scaling in both the inverse temperature T and the number of

particles n, is almost certainly insoluble [TW05]. When a sampling measure is used that

removes the denominator integral, the relative cost of a simulation (to obtain the same vari-

ance) due to the presence of signs is governed by the square of the average sign, h�i2 = E ,

and we have shown that it is always more than E times greater (cf [Cep96]). This creates sig-

ni�cant obstacles to fermionic simulations since without a special scheme being constructed

to avoid it, the rate of decrease of the average sign with T or n is exponential. It was seen

that using a method based on linear translation to create covariances between countersigned

functional contributions achieves only a limited amelioration of cost. It was proven that for

a system of noninteracting fermions (not necessarily in a 1-dimensional space), it is possible
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to replace the sum over permutations with a sum over loops of di¤erent time lengths. A

translational method based on this was tested; it was seen that the bene�ts of this method,

on its own, are also limited.

For 1-dimensional systems, the fermion sign problem is soluble and in this thesis, a

rigorous proof - based on mathematics rather than on physics - has been advanced for

the solution. It is possible to prove that constraining Brownian bridges not to cross is

su¢ cient to allow only positive contributions to be sampled, avoiding any sign problem.

Moreover, it has been demonstrated that it is possible to implement exact sampling of path

discretisations subject to this constraint. In fact, we were able to calculate the pdf for one

intermediate point on a non-crossing Brownian bridge (a result closely related to the classical

Karlin-McGregor theorem [KM59]), and then we established a relatively e¢ cient method for

sampling according to this pdf. A simulation was carried out for the particle density of the

1-dimensional harmonic oscillator, and seen to give sound results.

On a geometrical approach to the general fermion sign problem in Path Integral

Monte Carlo

One existing way to extend this approach to the multidimensional case is to regard the

one-dimensional solution as meaning that paths are prevented from crossing the nodes of the

wavefunction. In this thesis, we have instead taken the point of view that it arises because

in the case of crossing paths, we are able to �nd paths whose contributions exactly cancel,

and sample them simultaneously. It has been proven that at least for the case of just two

fermions, there is a way to generalise this principle, forming sampling blocks based on the

crossings encountered for each coordinate, to achieve a powerful algorithm for carrying out

simulations at relatively low temperatures. Speci�cally, we have proved that for the action

functional, we can substitute a functional involving a product of diamonds (di¤erences of

functionals over sections of path between coordinate crossings) and positive functionals. It

was seen empirically that the average sign does not tend to zero as T tends to in�nity in the
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case of a pair of fermions in a 2-dimensional space, and there was some limited evidence to

suggest that this may also hold true for a pair of fermions in a 3-dimensional space.

We also have o¤ered some indications of how the method may generalise to the case of a

system with n > 2 fermions in a multidimensional space.

8.2 Outlook for research

In this section, we shall discuss some possible directions of future research to develop the

work of this thesis further. The most obvious is to rigorously develop a generalisation of

the Subdiamonds approach introduced in Chapter 7. However, we discuss the topics in the

order that the relevant work appears in the thesis.

Towards a zero-temperature method based on path integrals

So far the focus of our discussion has been mostly on the case of a system at a nonzero �-

nite temperature. There is probably a larger body of literature treating the zero-temperature

case; there exist multiple approaches, but probably the most popular is to use the Di¤u-

sion Monte Carlo method already mentioned in Subsection 5.2.1. This method is based on

modelling the ground state wavefunction as a positive probability density; this fact leads to

certain inherent limitations [KFS96]. Rather than simply taking a su¢ ciently large value of

T in Path Integral Monte Carlo, is it possible that an elegant method of zero-temperature

simulation using conditional Wiener integrals could be constructed?

For simplicity, we consider a system of distinguishable particles. We recall the notation of

Section 2.2 and let qt denote the unnormalized thermal density matrix at inverse temperature

t; ie qt(x1; x2) = Jt(x1; x2)'t(x1; x2). Furthermore, let

�T (x1; x2) =
qT (x1; x2)R
qT (x; x)dx

; �1(x1; x2) = lim
T!1

�T (x1; x2) .

By using asymptotic properties of Brownian bridges, it is possible to obtain that

�1(x1; x2) =

R
R2nd [qt (x1; z1) qt (x2; z2) �1 (z1; z2)] dz1dz2R
R3nd [qt (x; z1) qt (x; z2) �1 (z1; z2)] dz1dz2dx

. (8.1)
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If it is possible to let each of the real-valued ground state eigenfunctions ri solve

ri(x) /
Z
Rnd
[qt (x; z) ri(z)] dz , (8.2)

along with the usual orthonormality conditions, then this provides a solution to (8.1). If

this integral equation (8.2) can be solved approximately (using, for example, an iterative

method) by using a Path Integral Monte Carlo method to collect information about qt, then

we may fairly say that it is possible to approach zero-temperature simulations via conditional

Wiener integrals.

If this were to lead to a method which is able to �nd limT!1 IT;k (see Section 2.3) then

clearly, simulation of excited states as well as ground states is facilitated (albeit with sign

problems arising, as is the usual case). Being able to simulate excited states provides a

controlled approximation to low (non-zero) temperature systems, since at su¢ ciently low

temperatures a good approximation will come from the �rst few terms of the Boltzmann

distribution (2.51). Bounding the error from remainder terms is not di¢ cult.

Investigation of possible higher-order �random series�-based numerical method

for a broad class of functionals

As mentioned in Subsection 3.2.1, it is apparently the case that methods involving func-

tional evaluations away from the sampled path discretisation are able to attain higher orders

of convergence for action integrals [PD03, Pre04]. For the same reasons that it was desirable

to prove that our piecewise constant method is second-order on the broad class of function-

als described in Subsection 3.1.1, it would be worthwhile to �nd out whether a numerical

method analogous to that of [Pre04] could be rigorously proven to attain higher orders of

convergence on this class.

It seems that to employ the same method of proof as used for Theorem 3.2.1 might be

an expedient way to attempt this.



238

The extension of the Subdiamonds approach

As discussed in Section 7.5, it seems quite reasonable to think that it would be possible

to extend the Subdiamonds approach to systems of n > 2 fermions.

It seems unlikely, given the results of [TW05], that it is possible to create a method

which has polynomial cost scaling in both n and T . However, it might be possible, for

instance, for there to be a method involving a subroutine of nonpolynomial cost which

does not involve potential evaluations. Since these are usually thought of as representing

a heavy computational expense, in simulations of practical interest, this might allow some

progress to be made with performing exact simulations at increased T and n. There is some

reason to believe that our approach might lead to such a method, since identifying the paths

belonging to the same sampling block as the sampled path X could well require an algorithm

with nonpolynomial cost scaling in n. In default of this, it may nonetheless be possible to

seek a generalised algorithm where the cost growth is nonpolynomial in n but su¢ ciently

slow that it is computationally feasible to work with moderate n, e.g. n = 12. This would

enable simple atomic simulations to be carried out.

The �rst step in investigating the possibilities is to rigorously prove a generalisation of

Theorem 7.2.10, corresponding to the intuitive direction sketched out in Section 7.5. It shall

probably then be apparent that nonpolynomial cost growth in some part of the algorithm is

inevitable, but experiments would be needed to determine the actual rate of cost growth.

It is also notable that further research is needed to study the properties of the Last-to-

�rst method as it applies to just a pair of 2D or 3D fermions, under di¤erent potentials.

It is clear that MCMC simulations are needed, to avoid the explosion of variance that was

witnessed in the experiments of Subsection 7.4.3 when T was increased even moderately.

Other extensions of the Subdiamonds approach are also of interest:

Combining the Subdiamonds approach with zero-temperature simulations It

is notable that an analogous fermion sign problem is encountered when performing zero-
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temperature simulations of fermion systems, using DMC or any other method. Therefore,

given a zero-temperature simulation method, it would be of interest to know whether a

coordinate crossing-based blocking strategy for avoiding the sign problem exists, by analogy

with our Subdiamond approach in the nonzero temperature case.

Besides the �xed-node and release-node methods, other methods to address the fermion

sign problem in DMC exist; for example see [Mis06] or [And95]. It is of interest to try

to recognise whether these exhibit commonalities with the Subdiamond approach and to

investigate the relative performance under di¤erent conditions, should a generalisation of

the Subdiamond approach to zero-temperature be possible.

Nonequilibrium problems / quantum dynamics Application of path integrals to non-

equilibrium problems is an active area of research (e.g. [BSKF03, MR07, Mak09]) in which

a sign problem is apparently encountered in nearly all cases, that may be even more severe

than that of fermion PIMC [Cep96]. It seems an exciting possibility that parallels to the

work of Chapter 7 may exist that relate to such simulations. It is also notable that some dy-

namical quantities can be accessed via the o¤-diagonal values of the thermal density matrix

[Cep96]; our method is perfectly adequate for �nding these values.
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