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Abstract

On Conditional Wiener Integrals and a Novel Approach to the Fermion Sign Problem
by

Warwick Michael Dumas
Doctor of Philosophy in Applied Mathematics

The path-integral formulation of nonrelativistic quantum mechanics was introduced by Feyn-
man in 1948. The use of Path Integral Monte Carlo can be put on a rigorous footing using
conditional Wiener integrals. This thesis addresses the topics both of numerical error and
of Monte Carlo error.

A piecewise constant numerical method which is of second order of accuracy for comput-
ing conditional Wiener integrals for a rather general class of sufficiently smooth functional
is proposed. The method is based on simulation of Brownian bridges via the corresponding
stochastic differential equations (SDEs) and on ideas of the weak-sense numerical integra-
tion of SDEs. A convergence theorem is proved. Special attention is paid to integral-type
functionals. Results of some numerical experiments are presented.

In a further part of the research, the goal is to develop Monte Carlo methods for fermion
simulations that are resistant to the explosion of variance which happens due to the fermion
sign problem. A novel approach is developed which represents a radical departure from the
current approaches. This is based on the principle of using a geometrical interpretation of the
problem in order to find ways to maximize the negative covariance between the countersigned
functional contributions. The fundamental connection between quantum exchange and the
fermion sign problem is exploited. It is shown that this leads to a mathematical proof of the
well-known exact solution to the sign problem for 1-dimensional fermion systems, and also

to a novel exact solution in the case of a pair of 2-dimensional fermions.
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A selection of the notation used

General
Notation Formula Description
w.r.t. with respect to
s.t. such that
pdf probability density function
cdf cumulative distribution function
SDE stochastic differential equation
ii.d. independent and identically distributed
fdd finite-dimensional distribution
XA indicator function for A

0.2 R” SR L exp (_(Ilw*yHQ)

Gaussian pdf, for any dimension r € N

(2m02) 202
®(2)

standard Gaussian cdf

m a permutation

the ratio between the circumference of
" a circle and its diameter
sgn() —1 for 7 odd; 1 for 7 even | signature of the permutation
IT,, group of permutations of order n
X ~p the law of the r.v. X induces the measure pu.
dy Dirac delta probability measure with J,({y}) = 1.
5(z.y) Kronecker delta a real-valued function:

d(z,y) = 1if x = y; 0 otherwise.
A Lebesgue measure on B(R"?) or B(R).
E—ij B; a countable union of disjoint sets

A2+ V

Hamiltonian operator




Parameters
Notation | Formula | Description
n number of particles in the system
d dimension of the space which the particles inhabit
N T/h number of time intervals in discretisation
T Inverse temperature: ie, temperature is 1/kgT
h discretisation timestep
M number of Monte Carlo draws

Space and measure etc

Notation Formula Description

c {X :[0,T] — R, X continuous}

Ci o {Xecl:X(0)=umx}

Com {(XecCl:X(T)=uzp}

i {X ecl:X(0) =}

ComraT {X :[0,T] - R"/1IL,, X(0) = Iz, X(T) = 27}

Co {Xecl:X(0)=X(T)}

C {Xecl:X(0)ell,X(T)}

W 4, Wiener measure on Cg .

w({ e Wa o | X(T)=zg Conditional Wiener measure on Cg: e

w({ ng W o | X(T)elnze Wiener measure conditioned on X (T') € I, xp
Ty ”Conditional Wiener measure" corresponding to
- process with state space R™ / 11,

w* A x wOT’ Y

w A x afy)wg, " where a(y) = 3,y r(y, 7y)

w Brownian motion

Xiap):X(ap) etc for 0 < a < b < T, the restriction of X to [a,b)

E, the event of a crossing in the x-coordinate

T a first (or last) crossing time

Ui

measure corresponding to first crossing time and point




Functionals and integrals

Notation Formula Description

V:R"Y >R potential (scalar field)
F:Cf,, —R a functional

U JF(X )dwa " a conditional Wiener integral

sgn (m) [ for fermions |

1 [ for bosons |

S Cla, fOT V(x(t))dt action functional for a path x

Stz dsS =V(X(t)), S(0)=0

Y :Cf,, — R | exp(—=S(x)) exponentiated action functional

ur(t, x,y) fCTy exp (ftT V(s ds> dwt b action integral

JIr(zo, x7) I Cg“’,xon (X)dwg 27 (X) action integral

Zr(zo, x7) fCOT,tTinIT c (%) Y(X)dwgg”w (X) | action integral

Gr(xo, x7) (Y rem, @T(xo, rar)) Ir(zo, v7) action integral

A or Ap Jana J. CTy dwo Yy configurational integral

A Jana . o oy F(x)dw;; by ey gy configurational integral
partition function

Zor Zp 2 Jgna 07y, 9) Ir(y, y)dy

(distinguishable particles)

partition function

z L fons Cren, 000 m) Ir(y,p)dy | © '
(indistinguishable particles)

Subdiamond notations

Notation | Description

0; for i odd, x ; for i even, y.

TiyTh for i > 0, first and last crossing times of 6; within (7;_1,7}_;) ; (70, 74) = (0, 7).
% maximum crossing index: within (7, 7/ ) there is no crossing of 0.

Si for 0 <i < x, last crossing of #; before 7,.

Sl for 0 <1 < x, first crossing of 0; after 7;_;

fi, I a measure-preserving bijection (of some description given in the text)

Oy [in Lemma 7.2.7) Y (X7, , ) — Y (fZ (X[Ti—lﬂ'i]))

04 [from p.197 onwards] Y (X, , 1) =Y (fZ (X[gi_lm.]))




Simulation-related

Notation Formula Description
X" Piecewise constant approximation to X
F(X) = F(X") Piecewise constant approximation to F'(X)
U Jers F(X)duwy )
A Jana fCOT,yy F(x)dwg Y dy
F (X) either unspecified approximation to F’
approximation to F' based on
. using Simpson’s Rule for §
u Jers F(X)dwg )
A Jana fcg“,yy f(m)dwa’;"dy
AMC Monte carlo estimator for A
ZMC Monte carlo estimator for Z
v:B(Co) — R | see (4.14) action measure
v:B(Cn) — R | see (4.24) action measure
v:BRY) - R (discretised) action measure

System description

Notation Formula | Description

(A) expectation of observable A

(’1\4J> an approximation to (A)

(/A\> Monte Carlo estimator for @T}
unnormalized thermal density matrix

on (distinguishable particles)

q unnormalized thermal density matrix

p:R™ - R system position density

w:RT =R particle density

Ey, Eq, ... energy level

rn(T) real eigenfunction of H

(1 wavefunction (for distinguishable)

b, wavefunction (for indistinguishable)




Chapter 1

Introduction

1.1 Principles and aims of this thesis

Since R.P. Feynman introduced his path integral formulation of quantum physics [Fey48|,
inspired by some earlier work of P.A.M. Dirac [Dir33], there has been interest in using
functional integrals to calculate statistics of quantum systems. The aim of this thesis is to
address certain issues that arise in performing Monte Carlo evaluations of these functional
integrals.

We are going to be concerned with statistics of finite-temperature quantum systems with
n identical particles inhabiting a d-dimensional space, in a potential V : R" — R, at inverse
temperature 7. Using the insights of M. Kac, described in works such as [Kac56, Kach7,
Fre85|, it is possible to rigorously provide expressions for the expectations of observables
in terms of conditional Wiener integrals [MT04] (this is done in Chapter 2). For example,
in order to find the thermal average of the potential energy for a system of distinguishable
particles ("boltzmannons"), we may take
Jana fcagﬁo V(x)y(x)dwaff(x)d/\@o)

Java S0 Y (2)duwg 53 (2)dA (o)

(V) = : (L.1)

T,zo

where Cy

C (R”d)[O’T] is the space of continuous functions x : [0, 7] — R™ with z(0) = g

and z(T) = xy, where w(r‘; o denotes the conditional Wiener measure (defined on p.16), and



where the exponentiated action functional Y : C — R is given by

Y(2) = exp (— /0 : V(x(s))ds) | (1.2)

(Note that our definition of the action shall differ from that which applies in Lagrangian
mechanics, especially in that the kinetic energy term is for us, in effect, supplied by the
conditional Wiener measure itself and does not need to be included.) In order to estimate
the conditional Wiener integrals in (1.1), it is most expedient to use Monte Carlo methods.
Any approach to calculating quantum statistics based on these ideas is referred to as Path
Integral Monte Carlo; some applied examples are [CM00, HR05, BMNRO1, LN04, She05].
The probabilistic approach to numerically evaluating integrals consists in regarding the
desired integral as the expectation of a random variable. We shall see that it is possible to
construct an evaluatable weak approximation F to any functional F' from a broad class FA

(see p.51). We are able to use Monte Carlo to estimate the expectation of such an F, since

we write
U=F, 1 F(X)~E,_ 1oy F(X)=U=FU""
NwO,.‘CO ~ 0,zq
where
MC 1 M
77V Rl . T,z
U :M F(XZ), X,L'lld., XzN'U)OxOT

so that in fact, due to the standard Central Limit Theorem (e.g. [Wil01]),

Y

U ~ Gaussian (EF(X),Var (F(X))M™).

Inference about functional integrals

We shall adopt a Bayesian perspective, which, in order to provide clarity for the unfamiliar
reader, we set out in detail. We shall model EF and UMC via continuous random variables
0,79 defined over a probability space (Q°, F°, P) with a joint pdf over R%. The marginal
distribution of 6 shall be called the prior distribution for EF. The conditional distribution
of ¥, given a value of 6, shall naturally be chosen to be exactly the conditional distribution

of U given a hypothetical value of EF. When a realization of 0 = 1is obtained, the



posterior distribution for EF is the name given to the conditional distribution of @, given
that ¥ is equal to z. Intuitively, it is the posterior for EF that describes the information
about EF that is known a posteriori, ie after performing the experiment. Meanwhile, the
prior for EF describes our information about it beforehand. Although EF is a deterministic
quantity, because it is unknown we describe our information about it, both before and after
the experiment, in the form of the distribution of a random variable. Given the prior and
the conditional distribution of ZjMC, the posterior may be found directly using Bayes’ Rule
(see e.g. [HF04]). It is proportional to the product of the prior pdf and the likelihood, the
latter being defined as the function of y formed by the conditional pdf of ¥ given that § =y
being evaluated at the realized value x. Note that in our framework, the prior pdf and the
posterior pdf are both Radon-Nikodym derivatives of probability measures, whereas if the
likelihood is regarded as the Radon-Nikodym derivative of a measure then in general, this
likelihood measure does not have full measure 1.

The usual situation, loosely speaking, is that it is desirable to be able to claim a posterior:
that the information contained in the prior did not exert much influence on the posterior
obtained, giving the posterior the quality of objective information. When reasonable changes
to the prior do not affect the conclusions of an analysis as described by the posterior, this is
called a robust analysis (see [HF04]). For us, this issue shall be substantially circumvented
by the fact that it is reasonable to assume that a Monte Carlo represents a large amount
of information, as we shall now explain. (For a general discussion of the issues involved
in objective inference, see e.g. [Ber06].) We make several assumptions about the prior for
EF. We have already assumed that a joint pdf for #,1) exists. We further assume that the
marginal pdf for # (that is, the prior pdf for EF) has a bounded derivative. Moreover, we
assume that the prior pdf is nonzero except outside the range of F'.

As mentioned, when M is sufficiently large, we may regard the distribution of 7' as
Gaussian about (the hypothetical value of) EF', with variance Var(F(X))M~!. This means

that we think of the likelihood as near-zero outside of a ball about the observed HMC, of



diameter, say, 8Var(F(X))2M =2, If M is sufficiently large, the diameter of this region
will be small compared to the maximum gradient of the prior pdf, and consequently, we may
think of the prior pdf as constant over this region. (See also the point of view in [Wil01].)

It follows that approximately, the posterior for EF is then Gaussian about the observed

realization of I{ ~ with variance Var(F(X))M™.

The goals of this thesis

In such a schema there are then two separate errors which may be involved in making
inferences about the true value of a functional integral, and hence about a system statis-
tic: there is the numerical error, or bias, |EF(X) — EF(X)|, and the Monte Carlo error,
7' — BT Tt is our goal to make contributions to the study of both of these errors and
how to control them.

One achievement of the research in this thesis shall be to prove that for a certain piecewise
constant numerical method, the bias is of second order in the discretisation timestep, when
Fis in FA. This was already known only for exponential-type functionals [MT04ii, MT04,
Suz91]; ie, those of the form F(z(-)) = exp <— fOTf(t, x(t))dt). The numerical method is
based on simulation of the Brownian bridge via stochastic differential equations. Our result
is important in applications, because in many cases, the functionals that are relevant to
finding statistics are not of exponential type.

In the case of distinguishable particles, the Monte Carlo error is not usually problematic.
However, in practice all quantum particles are either bosons or fermions, indistinguishable
particles. In this thesis we conceptually approach indistinguishability through the idea of
conditioning the Wiener measure on a finite set of terminal points, calling this measure

wp, Aok} et us call to mind the following:

Definition 1.1.1 A permutation of a finite set {1,...,n} is a bijection = : {1,...,n} —
{1,...,n}. We may use m as an operator over any n-fold product space: where x =

{1, oan}, o ={2rq), . T}



The permutations of {1,...,n} are said to be permutations of order n, and these form a
group. We shall use the notation II,, to denote the group of permutations of order n. Note
that for any 41,4 € {1,...,n}, I, may be partitioned into pairs which are closed under

premultiplication by the pair-exchange of i1, is.

Definition 1.1.2 When the irreducible representation of a permutation 7 takes the form of
an odd number of pair exchanges, we say that w is odd and otherwise we say that 7 is even.

We define the signature of 7, sgn(w), to be 1 when 7 is even and —1 when 7 is odd.

In order to find statistics for systems of bosons, rather than performing integrals with

T I,z

we need to perform essentially the same integrals with respect to wy .,

T
respect to wp ",

Again, in this case, ways of managing the Monte Carlo error are already well-understood.

T,Hn.’L'T

If instead the particles are fermions, then we must still integrate with respect to wg """,

but must also introduce a factor in the integrand that is equal to sgn(), where the terminal
point X (7T") = wmxy. The phenomenon of particles exchanging places between the initial and
terminal points is called quantum exchange [Cep92]. For fermions, a greater propensity for
quantum exchange means that the magnitude of negative contributions to the integral is
becoming similar to the magnitude of the positive contributions, and this gives rise to the
so-called fermion sign problem (see e.g. [Cep96]), which is the subject of the second half of
this thesis.

In this further part of the research, the goal is to develop Monte Carlo methods for
fermions that are resistant to the explosion of variance which happens due to the fermion
sign problem. We explore the idea of generating a negative covariance between functional
samples (ie, a positive covariance of the magnitudes of samples with opposite signs) by
choosing sample paths which are close to each other in space. Focusing on exponential-type
functionals, we consider a novel approach, the chief virtue of which is that it is based on
taking account of the event that fermion coordinates coincide, which is in some sense the root
cause of the problem, since it is what enables quantum exchange to take place. Examining

first the 1-dimensional case, we see that it is possible to reexpress the functional integrals as
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sums of integrals over disjoint events described in terms of particle coincidences. This gives
rise to a mathematical proof of the well-known 1-dimensional exact solution that involves
concentrating the integration measure on those paths where particles never meet. The same
logic is then extended to the case of multidimensional fermion systems, and an exact solution
is found for case of a 2-dimensional fermion pair, in the sense that as T  increases the efficiency
of the simulation does not tend to zero. It seems very doubtful that it is possible to avoid
the sign problem as n grows (cf [TWO05]); that is, it must be assumed that the complexity

of the simulation grows exponentially with n.

1.2 Overview of chapters

Let us now provide a synopsis of the thesis chapters that are to follow.

Chapter 2 introduces the conditional Wiener measure and its properties, and develops
the idea that indistinguishability results in conditioning on a set of terminal points. We then
explain how conditional Wiener integrals may be related to functional statistics of quantum
systems at finite temperature, using the Kolmogorov equations for a conditional Wiener
integral (see also [DT82, DT82ii]). We prove a result which expresses the density matrix
in a state of definite energy in terms of the zero-temperature limit of a functional integral
expression.

In Chapter 3, we propose a probabilistic numerical method of second order of accuracy
for computing conditional Wiener integrals of sufficiently smooth functionals. This method
exploits a Markovian representation of the Brownian bridge. We begin by recalling the
Fréchet derivative of a functional, and the Taylor Theorem for functionals, which is a key
building block for the proof of the main result. This chapter is based on our paper [DT10].

In Chapter 4, we then proceed to offer a discussion of simulation procedures, concentrating
on the cases of boltzmannons and bosons. It is seen that the conclusions of Chapter 3 also
apply in the case of the Markov Chain Monte Carlo methods (sampling according to the

action measure) which are popular in this area. Some simulation results are then presented,
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illustrating the result of Chapter 3 and some further points.

Chapter 5 explains the fermion sign problem which is the main difficulty involved in
performing path integral simulations of fermion systems. The way in which the problem
emerges is discussed, and a brief overview is given of two extant methods. To illustrate the
difficulty of the problem, results from some simple algorithms are reported.

Chapter 6 explores the solution to the fermion sign problem in 1 dimension, which is
a very important case to understand before embarking upon the more general case. It is
seen that when two fermions first meet on a path, this gives rise to a measure-preserving
bijection between positive and negative contributing paths from that point, such that the
value of the functional is also preserved, leading to complete cancellation. This leads to the
well-known conclusion that in 1 dimension the solution is to prevent fermion paths from
crossing. We then explain how this is to be achieved. Some numerical results are presented
which illustrate the solution.

In Chapter 7, an approach, based upon the same principles that yielded the 1-dimensional
solution, is developed for the case of 2 fermions in a multidimensional space. This allows
the sign problem to be avoided, at least in the 2-dimensional case, in the sense that if T, the
path length, is increased, then the average sign of contributions apparently does not tend
to 0. This is in contrast to some existing approaches which, rather, are more effective for a
large number of particles at sufficiently high temperatures. The efficacy of the approach is
tested empirically.

In Chapter 8, we summarize the conclusions of the thesis and provide some remarks about

possible directions of further research.
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Chapter 2

Preliminaries

In this Chapter we shall begin by giving a treatment of some relatively well-known ma-
terial based on sources such as [KS98, Shi89, Fre85, RW94], introducing essential concepts
such as measure conditioning, the Wiener measure and the Markov property. The reader is
advised that we have intentionally avoided directly repeating the "standard" presentation
given in other works, and concentrated mainly on facts that are required for the endeavours
of this thesis. Our treatment does, however, bear some commonalities with that of [Fre85].
Following works such as [Kach7, Kach6, Fre85], we then explain the relationship between
conditional Wiener integrals and quantum statistical mechanics, via the probabilistic repre-
sentation of the solutions to a certain parabolic partial differential equation. The connection
with finding expectations of observables is briefly explained.

In Section 2.3, we then prove a novel result, which establishes a functional integral
expression whose zero-temperature limit yields a density corresponding to the sum of the
first k eigenstates. A closely related result in the special case of a system of noninteracting
particles was demonstrated in Section 5.6 of [Iva05]; see also [GIV9S8]; but here the more

general case is considered.
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2.1 Conditioning and the conditional Wiener measure

For convenience, let us recall some well-known facts about measure conditioning. Let
(Q, F, P) be a probability space. Suppose 6 to be a random variable on (2, F, P) with
codomain R?. Tt has been demonstrated (see e.g. [Shi89] p.229) that it is possible to
define the regular conditional probability with respect to the o-algebra generated by 6, with
uniqueness up to different versions. This has the implication that we may define conditional
measures (see [Shi89] p.226). That is, given A € o(f), we may define the conditional measure
P|4 to be given by P|a(B) = P(BJA) for B € F. Naturally this means that in order
for P|4 to be well-defined when P(A) = 0, a canonical version of conditional probability
P(B|o(#)) must first be assumed for every event B. (Fortunately, for us this shall generally

be straightforward to do, at least in the cases of interest in this work.)

2.1.1 The conditional Wiener measure
The Wiener measure and Brownian motion

For any dimension r € N and s > 0, we shall use the notation, ¢, : R* — R to indicate

the independent Gaussian pdf with variance s in all dimensions, viz

2
@s(‘%!/) = (271'8) /2 exp <_%> .

We shall use Cj,,, to mean {:r;() € (RY) 011 z(+) continuous and z(0) = xo}, the set of con-

tinuous paths over [0, 7] with initial point xg. The reader should make themselves familiar

T

0.09> Which is known to be generated by the collection of simple

with the Borel o-algebra on C,

sets (also known as cylinders) - that is, those of the form
B={zeCy, z(t;) €Gi=1,... K} (2.1)

for some set of t; with 0 < t; < ... < t,, < T and some products of intervals G; C R¢, referred
to as gates. (This is described thoroughly in [Fre85] for the 1-dimensional case, which is

essentially the same.) It is clear that measures on B (C({ - 0) are specified fully by the measure
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which they assign to simple sets. Moreover, it follows from the Caratheodory Extension
Theorem that given a measure over the algebra of simple sets, there exists an extension to
B (C{,,)- For us, the measure ascribed to simple sets shall be called the finite-dimensional
distribution; note that this is different from the standard usage, but more convenient for

our purposes’. Since, as mentioned, we are able to consider a measure on B (CT ) to be

0,z0

well-defined through the measure ascribed to simple sets, we are able to make the following

definition.

Definition 2.1.1 The Wiener measure, denoted ng o0 18 that measure on B (COT’ xo) such

that for any simple set B given by (2.1),

rk—1
wamo(B) = //G I gotm_ti(x,-,xiﬂ)dxl codx,, . (2.2)

1XGax-xGx 1=0
The Wiener measure, introduced in [Wie24|, is discussed thoroughly in works such as

[KS98, Fres5, IM74, RW94].

Definition 2.1.2 A random process X is a family of random variables parametrized by a
time variable t; that is, either X = {X(t)}ejor) for some T > 0, or X = {X(t)}s»0.2 The
codomain of the random variables, together with the co-o-algebra with respect to which they

are measurable, is called the state space of the process.

Definition 2.1.3 The function of t, for a fized w € §, given by X(w;t) = X(t) shall be

called a tragectory of the process X.

In general, we may therefore regard a random process with state space R? as a random

[O’T}, the space of R%valued functions. However, if the trajec-

variable with codomain (R?)
tories of the process are all continuous then we may regard it as a random variable with

codomain CI. Further, if X (0) = zy € R? for every w then we may consider the codomain

of X to be CI' : and so on.

0,z0°

'Tf we used the standard definition of finite-dimensional distribution then we would need to require
certain consistency conditions in order for the corresponding measure on simple sets to be well-defined; in
this case the Daniell-Kolmogorov Extension Theorem would provide the extension from finite-dimensional
distributions to measures on B (Cf,,); see e.g. [KS98, p.50].

2We shall usually be interested only in the case that ¢ € [0, 7.
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Definition 2.1.4 (¢f [IM7}] p.16) A random process W : Q@ — COTm, defined on any proba-
bility space (Q, F, P), shall be called Brownian motion, or a Wiener process, when its law

. . T T
induces the Wiener measure wg ,, on B (CO@O).

It is explained in [KS98] (p.71) that for W to be a Wiener process, one possible choice of

(Q,F,P) and W is given by Q =Cf, , F = B (C

0,z0

20> ), P =w,, with W(t;w) = w(t) for all
t € [0,T],w € Q. The authors of that work consider this to be the "canonical" probability
space on which to define the Wiener process. For an heuristic discussion of the Wiener

process and its properties, see e.g. [Ein26] or [RW94]. We make three further definitions

relevant to random processes (see e.g. [RY99] p.41-2):

Definition 2.1.5 A filtration on a measurable space (2, F) is an increasing family (F;) of
sub-c-algebras of F. That is, for each t € [0,T], we have a sub-o-algebra F; C F and when
s <t, Fs C Fi. A random process X on (2, F) such that X (t) is measurable w.r.t. F; for

all t € [0,T] is said to be adapted to the filtration (F).

Definition 2.1.6 A measurable space endowed with a filtration is said to be a filtered space,
and to say that a random process is defined on a particular filtered space (2, F, Fy, P) implies

that it is Fi-adapted.

Definition 2.1.7 The natural filtration of a random process X is the minimal filtration

to which X is adapted, ie it is given by F; = o(Xs, s € [0,1]).

We therefore may, for instance, consider the process W to be defined on the filtered

probability space (CT

0,z0°

B(ct

0,z9

) , F, wg: J:O) where (F;) is simply the natural filtration of W.

T

Remark 2.1.8 The existence of the Wiener process implies that for any measure wo,xo‘ N

obtained from w({ o through conditioning, there erists a process defined on the same ), and

T

adapted to the same filtration, whose distribution induces the conditional measure wO,xo‘ 4

For we may take the same X and take P to be this conditional measure. This also applies

iteratively when further conditioning is applied.
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Definition of the conditional Wiener measure

We shall be interested in conditioning the Wiener measure with respect to the event
that W (T') takes a particular value. Our definition must be in agreement with the required
definition of conditioning on the event that W (T') lies in a certain interval. As indicated
at the beginning of this section, defining conditional measures is equivalent to choosing a
version of conditional probability, for every event in B (CO wo) ; ie, to define P|, we must
define P(B|A) for each B € B(C{,,). However, it is clear that it is sufficient to consider
only simple events B, given by (2.1); in fact we temporarily make the further restriction that
t. < T. A natural choice of canonical version is then given if we consider the probability
density function (pdf) corresponding to the finite dimensional distribution of the Wiener

process and apply the usual elementary interpretation of conditional probability. Viz,

Wo.a0 (BIW(T)

1
Ti, T; Ty, )———dxy---dx,, (2.3
/ /G1><G2>< XGy ZI:I (ptlﬂ t( +1)90T e ( )QOT(:EOax) ' ( )

This then allows the definition of the conditional measure wy x0| for any A = {w € Q:

W(T) € T'}, both for a product of intervals I'; and hence also for I' the countable union
of some products of intervals. The following proposition allows us to be flexible with the
domain of definition of such conditional measures. We shall use the notation wg’ o for the

so-called conditional Wiener measure wq, |
»L0 {X —xT}

Proposition 2.1.9 Let F be a o-algebra over a non-empty set A and let G be a o-algebra
over a non-empty set BeF s.t. GCF, and assume that G is sufficiently rich that every
A € F\G contains at least one element of A\B. Then if p is a probability measure defined
on (B,G) then u' : F — R defined by 1/ (A) = p(ANB) for A € F is a probability measure

n (A, F). Moreover, if u' is any probability measure on (A, F) s.t. p/'(A\B) = 0 then

G — R defined by p(B) = i/(B) for B € G is a probability measure on (B,G).

Proof. To prove the first direction amounts to noting firstly that ANB € G due to our

assumptions, and then that y/(@) = 0, that countable additivity is inherited from p, and
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that ¢/(A) = u(B) = 1. To prove the second direction, note that (@) = 0, that countable
additivity is inherited from g/, and that u(B) = ¢/(B) = p/(A) =1. m

Thus it is obvious that the conditional Wiener measure may equally well be regarded as

T.xr

0.0 ) = 1, or as a probability measure on

a probability measure on B (Cg N ) since wg " o (C
CT

0.2, Which happens to assign full measure to the wép’ z-nullset COT7 . We shall usually have

in mind the latter situation, although the former is perhaps more standard in the literature.
It is notable that we could define wy, Fer 1y simply ascribing to it the finite-dimensional

distributions inducing, for B given by (2.1) with ¢, < T, (cf (2.3))

1
TxT
W Ti T Ty, T7)————dTy...dT, .
Oaco //GleZX G i 1;[ Spterl t( iy H—l)ng tn( K9 T)(PT<5E07$T) 1 K

(2.4)
Since this is a consistent family of finite-dimensional distributions with the same boundedness
properties as wg,, (cf [Fre85] p.27), we could proceed to use the same techniques to prove the
existence of a corresponding process as are demonstrated in [KS98, Fre85, IM74] in the case
of Wiener measure. However, it shall become clear that the concept of measure conditioning

is rather important in what follows.

2.1.2 The Markov property and conditioning

Definition 2.1.10 (see e.g. [Shi89] p.248) We shall consider a random process X, or the
corresponding measure on a path space, to have the Markov property when it is such that

if we define the family of transition measures Q(s,x;t) by
VG € B(RY) : Vs, t € [0,T] with s < t:Q(s,z1;t)(G) = P(X(t) € G| X(s) = 1)
then the Kolmogorov-Chapman equation is satisfied:
Vr s, t €0, T) withr < s <t:Q(r,x1;t)(G) = » Q(s, ; t)(G)dQ(r1, x1; 8)(x) . (2.5)

Equivalently, by applying the above equality repeatedly, we could say that for a simple

set B given by (2.1),

P(X € B) /01 /02 /RdQ w1, Tyt ) () -+ - dQ(ty, 15 12) (22)dQ(0, wos 1) (1) (2.6)
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This implies that when the transition measures () are absolutely continuous and thus there
is a corresponding family of probability densities p(s, x1;t, z2), we could write more straight-

forwardly:

X = B / / H p(tla L, tz+17 xz—i—l)dxl dl’,i . (27)
G1XGa X xXGYy 1=

It is not difficult to prove that our definition here is equivalent to the definition used in
[KS98] (p.74), which defines a Markov process as s.t. almost surely, for s,¢ € [0,7] and

I' € B(R?), where (F,) is the natural filtration of X,
P(X(t+s)el|F,)=P(X(t+s)elo(X(s))) . (2.8)

Moreover, this specifically means that for X (s)-almost all y € R, whenever some B € F,

with P(B) > 0 and {X(s) =y} C B,
P(X(t+s)el|XeB, X(s)=y)=P(X(t+s)el|X(s)=y). (2.9)
This may in turn be recognised to be equivalent to: for 0 <r < s <t <T,
P(X(t)el|X(r)eG,X(s)=y)=P(X(t)el'|X(s)=vy) . (2.10)

Definition 2.1.11 We shall say that a Markov process (or measure) is time-homogeneous
in the case that for si,ss € [0,T], for all x € R, and for all t > 0 such that both measures
are defined:

Q(s1,7; 81 +t) = Q(s2, ;82 + 1) (2.11)

It follows that there is then truly only one transition measure Q(¢ — s;x) and if this is
absolutely continuous then we have one transition density for the process, p(t — s;x1, z2).

Thus for any simple set B we shall have (see e.g. [RY99] p.36.):

P(X € B) // H P(tivr — tis T4, Tipr )day - - - dxy (2.12)
G

1XGaX.. xGyx 1=

Considering (2.2), it is immediately evident that the Wiener process is Markov and also
is time-homogeneous. Meanwhile, we can clearly see that (2.7) is satisfied by (2.4) under
t, < T, and hence it follows that (2.6) is satisfied for any simple set B. On the other hand,

(2.12) is not satisfied by (2.4).
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The Strong Markov property

For us, a random time shall be a random variable with values in [0, 7.

Definition 2.1.12 A random time 7 defined on a filtered probability space
(¢

0,20

B(cl

0,z0

) , Fi, waxo) shall be called a Markov time when it has the property that for

te0,T], {r <t} e F.

Definition 2.1.13 (c¢f [KS98] p.81, [Shi89] p.127) We shall say that a random process X,
or the corresponding measure on a path space, has the strong Markov property when it is

such that for any Markov time T, almost surely, whenever some B € F, with P(B) > 0 and

{X(r)=y}nB#02,
P(X(t+7)eT|Xe€B,X(r)=y)=P(X(t+71)eD|X(r)=y). (2.13)

In other words, when a process is strong Markov, conditioning on even the value at
a Markov time still makes the subsequent process independent from what has historically
occurred up to that point. It is proven in works such as [KS98] that the Wiener process is

strong Markov.

Conditioning on sets of non-zero measure

Let P be a Markov measure on B (Ca xo). Recall that when P(A) > 0, for any simple set

B we must have

(AN B)

Pl (B) = PP(A) (2.14)

We now develop the idea of defining measures conditional on nullsets, in specific cases.

Conditioning on simple sets

Firstly let us suppose that A consists of the event that X passes through a gate A =

{zecl,, :x(s) €T}, and P(A) > 0, and for simplicity let us also assume B also consists

0,z0

of just one gate, B = {z € C{,, :x(t) € G}. (From this point onwards, "z € CJ, " or

0,z9 0,29
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equivalent shall sometimes be taken as read, and we shall simply write {z(s) € I'}.) Then

clearly,

foGdQ 0 »Los S )( )d ( 8, T1; )( )
()

case s < t:P|,(B)=

deQ (0, zo; s)
d 0 , Lo, t7{]j ;
case s > t: P|,(B)= fGXF QdeQ ())(xj, C)géy) s)(y)

Joar AQ(0, w03 5)(y)
JrdQ(0, zo; 5)(y)

case s = t: P|,(B)=

In general, if B = {x ecl, xt)eGi=1,... ,li} then, for instance, in the case that

0,z0

€ (ti,tiv1),

Pl,(B) =
fG1><~-~><Gi><F><Gi+1><~-~><G,<, dQ(Ov Lo, tl)(xl) o 'dQ(ti7 Ti; 8)(y)dQ(S, Y; tz’+1) T dQ(tm—b Tr—1; t)(l’,ﬁ)

Jr dQ(0, zo; 5) ()
For events such as A = {z(s) = y} we shall use the notation P| , to indicate P|,. We now
consider the particular case that the transition measures Q(-,-; s) are absolutely continuous
at y € R? and we consider transition densities p(-,-;s,y) (that is, continuous versions of
the Radon-Nikodym derivatives with respect to Lebesgue measure). Then it is clear that we

may choose a canonical version of conditional probability such that

-
p(0, 0, 5)(y)

—dQ(ti1, i1 t) (2:)dQ(ti, w43 5) (y)dQ(s, ys tia) (Tig1) - - - dQ(te—1, T1; te) (T4)  (2.15)

P| s ( ) p(tz7xlaSay)dQ(Oaantl)(xl)
( y) G1>< XGN

since it is not difficult to verify that this leads to, for A = {z(s) € '},

Pl (B) = / Pl (B)IQ(O, 70: 5)(y)

as required. Moreover, this is the version familiar from elementary probability, in the case
that X has absolutely continuous transition measures. For, suppose we consider the case
s > t. We may say that the joint density for X (¢), X(s) is p(0, zo;t, x)p(t, x; s,y) and then
consider that the conditional density for X () given X (s) is the ratio of this joint density to

the marginal density for X (s).
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We may use (2.15) in a more convenient form: for a suitable choice of (s, y),

;. =Py x Pl (2.16)

0,20 }(5731) 0,20

In the case that P is strong Markov, then for any Markov time 7, (2.16) also holds condi-
tionally given that 7 = s.

Moreover, we may generalise to the case that A is some simple set

A= {:z;EC :x(si)GFi,izl,...,%}.

0,z9

Note that since for any (sq, o, . . ., S,.), clearly X (s1), X(s2), ..., X (s,,) jointly form a Euclidean-
valued random variable, we are entitled to construct conditional measures based on

X(s1),X(s2),...,X(s,). We consider the conditional measure of a simple set B =

{xEC

0m S T(ti) €Gii=1,.. .,Ii}, whose gates all occur at different times to those of

A. Suppose that all s; and ¢; (other than sy = t; = 0 ) are relabelled as t; so that

0<t) <<t

%+ and correspondingly, the G; and I'; are renamed as C;. Moreover,

suppose (for simplicity) that X has absolutely continuous transition measures. Then it is

clearly consistent to further define:

Kt+x—1
ff01><02>< X Clrgse 1:[ p( » Lis H'l’le)d’ul(xl) d'uc+q(x”+")
Ply(B) = —
f frergX"'XF% 1:{) p<87«7 I“ Si+17 ‘,’U'L"Fl)d/“’tl(xl) T dl’b%<x%)

where for any gate of B, i, is Lebesgue measure and for any gate of A it is given as follows.
Suppose this gate I' has a decomposition over dimensions as I' = ') x I'® x ... x ' then

;= ugl) X - X ug ) s.t. whenever I'®) = = {y}, y € R, the measure u( ) is the Dirac delta

(k)

d,, and otherwise p; ~ is Lebesgue.

Bayes’ Rule

Now that P(A|X(t;) = z1,...,X(tx) = z,) has been defined (except in pathological
cases), we may deduce from (2.14) a Bayes’ Rule (cf [HF04]), which applies when P(A) > 0.

Let Q be the measure on R*? induced by X (¢;),i = 1,...,x under P. Then when B =
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{a:ECT

0,z0

:x(ti)GGi,izl,...,/ﬁ},

Pl (B) = T Jaiwne, PAIX (L) = 2i5i=1,...,k)dQ(x)
A [ fea PAIX () =250 =1,...,k)dQ(z)

With this in mind, we make a further choice of definition. Let Y be a random variable
with codomain R%, so that the remarks at the beginning of Section 2.1 apply. Let P* be
the measure induced by the distribution of Y, and let P*|  be the measure induced by
the distribution of Y conditional on X (¢;) = #1,...,X(t;) = 2, and suppose that P*|_is
absolutely continuous in a neighbourhood of y € R%; let p* (-|X(t1) = z1,..., X (tx) = z,)

be the corresponding density. Then we shall write

[ Jone, P WX () = z5i =1, £)dQ()
[ Joa P WX () = 230 = 1,..., k)dQ(x)

Ply_,, (B) = (2.17)

and this is clearly a valid definition in the sense that it satisfies
PLA(B) = [ Ply_y (BYIP (o)

Using finite sets in place of gates

Now let us consider the situation that A = {x € COT@O cx(s) € F} st. I'={y,y2,.. ., yn
and define the measure of a simple set B = {:U ect o 2(ti) €Gi=1,.. ., K}}, again for

simplicity in the case that the transition measures are absolutely continuous and s € (¢;,t;11).

It is clearly consistent with our other definitions to write:

Ply(B) =

|

> fGlX...XGK p(0, w05 t1, 1) - p (s 35 8,45) P (8, Ygi tints Tigr) -+ - D1, Tro1 i, T )d
j=1

T|
Z p(07 Zo; S, y])
j=1
(2.18)

In the light of (2.17), we may envisage a similar definition in the case of conditioning on

{Y € {y1,v2,...,y0}} for a Euclidean-valued random variable Y.
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Joint conditioning is repeated conditioning

Let A = A; N As be an event with P(A) > 0. Then we may immediately write, for any

BGB(C[{EO),
P(ANB)  P(ANAyNB)

P(B|A) P(A) ~  P(ANnAy
P4, (AenB)  P(AiNA;NB) [/ P(A1NA,)
Ply,l,, (B) = ;‘Al (A) P(Ay) / P(A))

and so clearly P|, = P|, |, in the case that P(A) > 0. It is relevant to explore to what

L,
extent this property holds in the cases of conditioning on nullsets as defined above.

When X is a random variable with values in C{', and I is an interval subset of [0, 7], we
shall define the notation X; to indicate the restriction of X to I; that is, X; is a random
variable whose values are functions over I, and which agrees with X, ie X;(w;s) = X (w;s)
for s € 1.

Consider the case that A = A; N Ay with A; measurable with respect to Xy (or in

other words, A; € F;) and with A, measurable w.r.t. X(,); it is clear that every Borel set

has a decomposition of this kind. Then if P|, , (4) > 0, we may already note that

. o t,x T o t,x T
P’(t,x) A P’(t,x) Ay, - <P0,I0‘A1 X Pt,x) Ay - Pﬂ,xo‘Al X Ptvx‘Ag
t,x T T T
P|A|(t,x) = ‘P|A1|A2 (t,7) = <P|A1|A2)07x0 X (P|A1’A2)t7$ = (P|A1)t07zo X (P|A2)t’m
— Rzl x Pl - 219

Now let us consider some random variable Y = (Y7, Y2) where Y] is measurable with respect
to o (X[OJ)) and Y, is measurable w.r.t. o (X(t,T]). Note then that P|(t7$) (Y1 e T, Y, €
Iy) = Pl (Y1 €T) P, (Y2 € I'z). Hence if the induced measure for Y under P|,  has
a density at a particular point y = (y1, y2) then this density is the product of those for Y; and
for Ys. Let us call these p] and p5. Suppose B is a simple set and let B = B; N B, where B is
Xo,r)-measurable and B, is X(; rj-measurable, and let B; consist of gates Gy, ..., G and let
By consist of gates G/ 11, ...,G,. Then let @1 be the measure on X (¢1),..., X(t.) induced
under P, ., and let Q5 be the measure on X (ts+1), ..., X(t:) induced under P| . Then

we may use (2.17) to see that:
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(B) = T Jaise, Prunl X (t) = 2 Vi)ps(yo] X (t:) = 23 Vi)d (Q1 X Q2) ()
{y=y} I Jra i (nl X (1) = 23 Vi)ps (ya| X (t:) = 2; Vi)d (Q1 X Q2) (2)
o Jeiee, PRIX (8) = @ Vi)dQu(2) [ -+ [o v, PRI X (1) = @i Vi)dQs ()
a [ Jewa P X (4) = 2 Vi)dQ1(2) [+ faoewna P5(y2] X (1) = 33 Vi)dQo(2)

_ ptx T
- PO,IO}{YI:yl} X Ptvw‘{yziyz} ) (

P| (t,2)

2.20)

2.1.3 Properties of the conditional Wiener measure

As we mentioned in Chapter 1, we shall be concerned with systems of n particles, each
with d coordinates, so that the "dimension of the system" is nd. The discussion given thus
far, in Subsections 2.1.1 and 2.1.2, applies wholly when considering the full nd-dimensional
system however, since our d in the above may be taken to be nd when we wish to describe
the whole system. When X has state space R™, we shall let X? indicate the ith coordinate
of X if the trajectories of X represent system trajectories then we shall use X @) to represent
the d-dimensional coordinate vector for the jth particle, and we shall let X @) represent the

1th coordinate of the jth particle.

Brownian bridge SDE and incremental simulation procedure Let a,b & R". Let
us consider the F;-adapted stochastic process X given by the following stochastic differential
equation (SDE from here onwards) and initial and terminal conditions: for 0 <t < T and

fori=1,...,nd,

bi—X*
T—t

dX' = dt + dW'(t); X'(0)=da"; XY(T)="b", (2.21)

where by W'(t) we understand an independent Wiener process for each coordinate. By
a standard result (see [IW81, RW94, KS98|), for any measurable A C COT7 ? the limiting
proportion of trajectories within A is equal to wg: ?(A). The solution of (2.21) can be written

as

X' =ad(T—t)+bt+ (T —1t) /t AVi(s) (2.22)

o 1T'—s
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Hence, it is clear that for any 0 < A < T — ¢,

X(t+A>:X(t)+Ab;—f§t)+(T—t—A)/tt+AdTW—_(?, (2.23)

where f A dW ) is interpreted as a vector of stochastic integrals. Therefore we have

E [(T —t—A) /t . C;W_i) X(t)] = 0; (2.24)

((T—t—A)/tHAdTW—_(?)Q X(t)] _ (1—%) A.

It follows that we can exactly simulate the solution of (2.21) by a simple recurrent procedure

E

based on the formula

b= X()  p [T--A

A)=X A
X(t+A) (t) + T4 T 1

g, t<T, (2.25)

where ¢ is a random vector of which the components are independent Gaussian random

variables with zero mean and unit variance, and which are independent of X ().

Ty(xgyo) _ , To(xp)

Dimensional independence Where yp,y, € R" and z¢, 2 € R, Wo (o) 0.(z) ¥

T, (vp)
07(:’/0) ’

Moreover, a similar fact holds true when coordinates are rotated, because of the rotational

symmetry of the Gaussian transition density. Where (x1,zs,...,2,) € R" is represented
as (21,29,...,2) in a particular coordinate basis, and where (2,...,z!) is represented as
(24,...,2), then wl™ Lto we ™ xwp ™ x...x wi® and is al Lto wa 4 xwi 22
21y s en wy’, isequa owO Wo s wy " and is also equa ow0 we

T7 T . .
CX Wy er where components correspond to the new basis vectors. In particular, note that

for a 2-dimensional Brownian bridge X representing two 1-dimensional particles, we have

that X(l)(t)\;iX(z)(t) and X(l)(t)\%xe)(t) are independent Brownian bridges. This is evident from

considering the finite-dimensional distributions.

Conditioning on passing through a point It follows from the discussion above that the

conditional Wiener measure has conditional independence: where z € R™ and ¢ € (0,7),

Txp _ tx T,xr
0,x0 - Y0,x9 X wt T
(t,z)
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(n)

Joint conditioning Suppose for simplicity that d = 1, suppose x(()l) > .- > 1z,  and

(1) (n)

xyp’ > -+ > xp’, and consider conditioning on a set such as Ey = {X € Ca fOT XM >

X@ > ... > XM} Then where Fy = Fy N Ey, s.t. By is o (X[Oﬁt))—measurable and Fj is

o (X (t7T])—measurable,

2

Definition 2.1.14 The first crossing time is defined as the first exit time of X from
D= {x(l) >a@ . > x(”)}, where if necessary the particles are relabelled so that X (0) >

X@(0) > --- > XM(0). In other words, since our attention is restricted to continuous paths

X, it is the minimum t s.t. X (t) = XU (t) for some i # j.

The first crossing time is a Markov time and we denote it by 7. Let E(t,z) = {17 =
t, X(7) = x} be the event that the first crossing time is at ¢ and at system position . Then

it follows from (2.13) that

T,xT _ t,x T,xr _ t,x Txr
Wo o B wO,zo|E(t,x) X w; sy wo,m‘E(m) Xwp " (2.26)
Linear translation Where [, : [0,7] — R%is given by l,,(t) = £b+%=a, wéf(lmb—l—B) =

wOT”é)(B)) where for any event B, [,;, + B denotes the event {X + [, : X € B}.

We can view this in another way. If we consider two processes XM, X such that X®
satisfies (2.21) with endpoints a™™), b() whereas X satisfies (2.21) with endpoints a(®, b®,

but with the same Wiener process W, then X® = XU [ o) ) 40 _p0)-

2.1.4 Conditioning the Wiener measure on a finite set of terminal
points

We have noted that the choice of a canonical version of conditional probability, with
respect to the o-algebra generated by a real-valued random vector, such as X (7'), allows us

to choose a suitable definition for measures such as w{ , [x(rer when T' € o(X(T)) is a finite
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set, I'={y1,...,y}. Let B={x ¢ Cony :x(ti) €Gii=1,..., k} . According to (2.18),

k K—1
Z:l fG1><“'><GK 1_[0 (pti_;'_l—ti (‘CI:Z? xi“rl)(pT—tﬁ ('CUK7 y])d'x
j= i=

k
Z (IOT("E(L y])
j=1
From this definition it is evident that the finite-dimensional distributions of wg X(T)er
induce a mixing measure between the conditional Wiener measures corresponding to the k

T
0,z0°

termini, with coefficients representing the relative probabilities of the termini under w
That is,

0.0
Wo,zo X (T)er

(B) _ i @T(woﬁyj) wT7yj (B) .

~ & 0,0
! @T(*TO? yj')
j'=1

When the coordinates of X represent sets of coordinates describing positions of separate par-

ticles, we may be especially interested in allowing that the terminal value is any permutation

T?{xlw'ka}}

of the point positions in some system position z7 € RY. We shall use the notation Wo no

and in the case that {z1, ..., 2} = {mixp, moxy, .., mpxr} for a set of permutations m; which

. THzT T,{le,...,a:k}
form a group II, then we shall write wy~" for wg . .

T I, xp
0,z0

We can see that w is Markov; especially, it is evident that for z € R t € (0,T),

TIl,xp t,x T Iz
Wo,z, - ; :

Moreover, we may consider what happens if we take the state space to be the identification
space R™ / II,, , ie the quotient space given by applying to R" the equivalence relation
x = mr,m € II, (see e.g. [BM99]). We shall now see that we can create a measure on
continuous R™ /II,-valued functions with endpoints X(0) = Iz, X(T) = I, and we
shall call this measure wg: g:foT. In order to show that our definition (2.27) makes this well-
defined, we shall first need to prove a preliminary fact.

It is notable that for v € II,,, if we fix ¢ € (0,7") then the law for X (¢) under X ~ ng’:g””

and that under X ~ ng 711*3” are conjugated by «. That is, for B € B(R"), where we define
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vB = {y € R" : yx = y some x € B},

T .1'77'33 T
WP (X (1) eB}—ZZ 0TT) e (v (y) ¢ BY

DA D ey

90(7170 7T7£T> T7r'ymT {
= : w0 {X(t) € 7B}
Tl'enn ZW’EHn SO(WI’O;R-/’Y:L‘T) 0 e

= > S SO(WO’MT), wo Trl {X(t) € B}

my—lell, “m v e, go(vxojr mT)

p(yzo,maT) - -
- Z Z 90(7% 7T’1‘T) gV;OT(VB) wOv - {X( ) S WB},
7T€Hn ﬂ-,enn )

where here we have used the self-evident fact that postmultiplication by v~! maps II, to
itself. But then if we fix ¢t € (0,7") and consider the law of X(¢), a random variable with

codomain R™ /I, , under X ~ wa ’g:fOT, clearly it makes sense when B € B(R"™), to define

g T {%(t) € IL,BY i= we ™" {X(t) € I1,B} = wg ;};5” {X(t) € II,B} (2.27)

0,z0

where here, obviously II,B takes on two different meanings according to whether it sig-
nifies a set in B(R™) or its equivalent in B(R"?/II,). Since we therefore have defined the
finite-dimensional distribution, and hence the transition measure, corresponding to a Markov
process X with state space R"™ / IT,,, it follows that wa ’I%ZLQZJOT is well-defined as a (Markov)

measure on the Borel o-algebra generated by cylinders over R / I1,,.

2.1.5 Definition of functional integration

Naturally, when we are able to define a measure P on B (COT7 xo) , it follows immediately that
functional integrals with respect to this measure are already defined, via the usual Lebesgue
integration formula (see for example [KF57, Coh80]). Let F': Cj, — R be measurable with

respect to P. Then for instance, if for some constants y < F < ¢/, then where we shall

L
K>

[ Fatnap = pim 3=y (F (yk S %))

0,z

loosely write y; for y + (v — y)

However, it is possible to find a sufficient condition to make this equivalent to the popular

working definition of [, F(x(t))dP, as used in [FH65, GY56, Cep95], as follows. Let us

0,zq
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write h for T/N. Let P be a measure defined on B (C{ ), and let 11,y be the measure induced
on B (RN") by the distribution of z(h),z(2h),...,2(T) under P. Given any vector z =
{x1,...,2n} € RN let it serve as the parameter for a function £({zy,...,zx}) : [0,7] — R"
to be given by linear interpolation. That is to say, letting t, = kh for £k = 0,1,..., N, we

have that for k =0,1,..., N — 1, for t € [t, txs1) :

t—1 t —1
g({xl)ax]\f}7t): h kxk+ k+1h Th+1 -

It is immediately evident that for each coordinate we have
T

lim [¢({z'(h),z"(2h), ..., 2" (T)};t) — 2'()] dt = 0

N—oo 0

so clearly, if we assume F' to be continuous in the sense that whenever x (-) is the L; limit
of a sequence (z) (-)) over C,, we have that F(x(-)) is the limit of (F (29 (-))), then it

shall follow that for all z € CT

0,z0°?

lim F((({z(h),2(2h),...,2(T)})) = F(z (). (2.28)

N—oo

But then

/CT F(z(t))dP(z) = lim Fe({a(h), x(2h),. ... o(T)}))dP(z)

0,z¢

This means in particular that the conditional Wiener integral of F is given by (see [GY56]):

N—1
T, Ty
F( o 21;[0 <Ph( +1)
w(-))dwy = lim [ - F(l(zy,...,27)) dry...dzy_q .
chb RNT

0. N—o0 §0T<x07 IT)

(2.29)
In the special case that F' is the action functional F'(x) = Y (z) (cf (1.2)), for an alternative
derivation see [Kach7, p.165]; this relates to the Wiener integral but it is clear that it could

be easily generalised to apply for any Markov measure P.
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2.2 The relationship between path integrals and quan-

tum statistical mechanics

In this section, we prove a theorem based on spectral decomposition of solutions to
the backward and forward Kolmogorov equations for the conditional Wiener integral of the
action functional (cf [Kry99]). The following exposition is largely based on the work of Kac;
see, for example, [Kac51, Kach6] and [Kac57, pp.168-173]. Theorem 2.2.1 is an analogue of
the Feynman-Kac Theorem which applies in the case of the unconditional Wiener measure.
We shall see in Subsection 2.2.2 that this allows us to introduce the connection between

quantum statistical mechanics and functional integrals (see also [DT82ii]).

Notation for action integrals Let VV : R" — R be a Borel-measurable function, which
in physical terms shall represent the potential field for the system. We shall let w : [0, T] x
R" x R™ — R be given by, for t € [0,T) and z;, zr € R™,

T
u(t, g, x1) = /T exp </ —V(a:(s))ds) dw,?:g’ch (2.30)
c, T t

t, g
and for zp, 2/, € R,

w(T,xp,xp) =1 . (2.31)

Moreover, define

T
exp (/ —V(x(s))ds) dwg’fOT = / Y(a:)dwg’ff :
cT,acT 0 ’ CT’xT )

Jr(xo, x7) = u(0, zo, x7) = /
h (2.32)

0,z(

Such an integral Jr is called an action integral. Further, where E is an event in B (Cg: ;COT>

such that wg, w'| has been defined in Section 2.1, we shall use the notation
"0 e

o = [, oo ([ Vi) aufr (2.33)

) E
CO,&L'O
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Time translation invariance

Note that because V' is not time-dependent,

T
Lo ([ =vaopas) aufizr = grontonoan) - (230

T
T Ty 1

2.2.1 Using the Kolmogorov equations for a conditional Wiener
integral

In this subection, we prove a Theorem which provides an expansion of the functional
integral u (and hence Jr) in terms of the real-valued eigenfunctions of the Hamiltonian
operator. This shall then allow us, in what follows, to rigorously explain how functional

integration can be used to find information about quantum statistics.

Theorem 2.2.1 Let z,y € R™ and let V : R™ — R be continuous, bounded from below and
have the property that V(x) — oo as ||z|| — oco. Then there is a countable set of orthonormal

(ie, normalized and orthogonal) solutions to the eigenvalue problem

nd 2’/’
! %(z)—‘/(m)r(m) =—FEr(z) . (2.35)

Let the solutions be labelled r,, with corresponding eigenvalues E,,, with E,, < E,,.1. Then

where u is as defined in (2.30), we shall have

u(t, z,y) = Z exp(— —))rm(@)rm(y) . (2.36)

Proof. In works such as [Kach6, Dyn65, Fre85], it has been shown, via the probabilistic

representation
u(t,z,y) = E [exp (S:.(T))] (2.37)

where X is given by (2.21):

i— X
dX; = 9"tds 4+ AWy t<s<T; X,(t) =, (2.38)
S

T _
and S; , is given by

dS = -V (X(t))dt ; Si.(t) =0 (2.39)
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that u satisfies the Cauchy problem with the backward Kolmogorov equation:

Vt<T:VzeR"™: Lu—V(zx)u=0; (2.40)

Vo € R™: (T, x,y) =1,

where

d d
L=— — 4 = —. 2.41
8t+;T—taxi+2;8xf (241)
However, a transformation of u also gives us the forward Kolmogorov equation, or Fokker-

Planck equation: let v : [0, 7] x R™ x R"™ — R be given by

’U(tax’y) = Spt(xagﬁu(T - t,l’,y) (2'42)

and we will have, instead of (2.40),

v 1¢L 5%
t D= = = — — 24
Vit >0 o =32 922 V(z)v , (2.43)
fimo(t,2,9) = S o) (2.4

where in this last, 0 is understood to signify the Dirac delta. (We have exchanged the
singularity in operator L for singularity in the initial condition.) It is proven in works such
as [Fri64] that the Cauchy problem (2.43)-(2.44) has a classical solution (cf Theorem 16 of
[Fri64]; the conditions of this theorem are satisfied because we assumed V' to be bounded

below). We shall attempt to find this solution via separation of variables, writing

v(t, z,y) = v(t; y)r(z) (2.45)

with 7 : R"™ — R and v (+;y) : [0, 7] — R. The solutions are characterised by the eigenvalue

problem, for E' € R (cf (2.35)):

v(tiy) = Aly)exp(—Et) (2.46)
= w(x)—‘/(x)r(x) = —FEr(z) (2.47)

By a result proven in [Tit58, Fri73], we have that since we assumed V' — oo as ||z|| — oo, the

spectrum of solutions to (2.35) is discrete; in fact, in general when V' is greater than some
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value f for all sufficiently large ||z||, the spectrum is discrete for £ < 3 (cf Theorem 16.5 of
[Tit58]). We shall apply an index m € {0,1,2,...} to the eigenfunctions and corresponding
eigenvalues, with F,, < E,, 1. For our purposes in the following we shall choose the r,, to

be normalized. Now for ¢t > 0, v is given by

v(t,z,y) ZA y) exp(—Ept)rm,(z) (2.48)

and we may determine the coefficients A,,(y) from the initial condition as follows. Firstly,

rewrite (2.48), for ¢ € (0,77, as

txy ZUmtmi

and notice that

Um(t;y) = i v(t; y)r(x)ry, (z)de = /Rnd v(t, z, y)rm(x)dx .

Rnd [=0

However, we know from our initial condition that for any measurable function f : R™ — R,

lim v(t,z,y) f(x)de = f(y)

tl0 Rnd

and so it is apparent that limg o v, (t) = 7, (y), where we write ¢ | 0 to indicate the limit

from above. Therefore, clearly A,,(y) = r,,(y). Hence for ¢t € [0, T], we may write

v(t,x,y) = Z exp(—Ent)rm(z)rm(y) . (2.49)
Therefore
1 o0
u(t,z,y) = m;exp(—Em(T — 1)) (@) (y) - (2.50)

In the case of a Coulombic potential, the spectrum is discrete up to a certain threshold,
and in physical terms the essential spectrum at higher energies corresponds to the escape of
the electron from the atom. However, to avoid this issue we shall always deal with potentials
where the condition V' — oo as ||z|| — oo is imposed, and hence where Theorem 2.2.1

applies.
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2.2.2 Physical interpretation of the conditional Wiener integral

In this subsection, we seek to explain the ramifications of Theorem 2.2.1, in terms of the
physical significance of the action integral. We reflect on the relationship between (2.35), as
considered hitherto, and the time-independent Schrodinger equation, in order to conclude
that functional integrals can be used to represent the so-called thermal density matrix for a

canonical system.

Position density in the case of distinguishable particles

It will be recognised that if in the place of real-valued r, we consider a complex-valued
spatial wavefunction v, neglecting spin, then (2.35) is the stationary Schrodinger equation
(e.g. [AF97, LMRI7]), which describes wavefunctions v, corresponding to states of definite
energies F,,; for the left-hand side is H¢ where H is the Hamiltonian operator. However,
it is then clear that any solution ¢ must be given by some combination r; + irs where 7,
and 7o are real-valued functions solving (2.35) which share the same eigenvalue. It is also
clear that any linear combination of ry,7, with these conditions is an eigenfunction; we
restrict our attention to normalized wavefunctions. In summary, then, the complex-valued
solutions to (2.35) with eigenvalue F; are given by Zi]‘ill oy;r; where rp; are the M) real-valued
orthonormal eigenfunctions corresponding to £; and ay; € C have Zi]\ﬁl logs|* = 1.

It is a well-known fact in statistical mechanics (see e.g. [Fey72, p.60]) that for a system
of n identical particles which is at a fixed temperature 1/kgT, we have the Boltzmann
distribution over the states of definite energy, and this means that the normalized density

for system position p(z) can be found via

qp(zo,or) = Y exp(=EnT),, (x0)5, (or) (2.51)
Z = 3 exp(-BuT) = /R ap(e,a)da (2.52)
p(z) = QD(Zﬂ (2.53)

Usually ¢p is called the unnormalized thermal density matrix and Z is called the partition



35

function. Since the physically relevant eigenstates will be orthonormal (see e.g. [AF97,
LMRI7]), they must have the same multiplicity M, as the r;. This justifies retaining the
same index m in (2.51) as in (2.36).

It is usually assumed in the physics literature (as in, for example, the treatment given in
[Fey72]) that in general where v, is any choice of orthonormal basis for span({r;}), at any

pair of system points zg, v € R™,

> viaa)vi(er) = Y rileo)ri(ar). (2.5

This is not difficult to verify in the case of multiplicity 2.

If we adopt this assumption, it implies in particular that any choice of orthonormal basis
1,; for the space spanned by the r; will have the same sum of squared moduli of the basis
functions when evaluated at any system point. That is, for any z € R"™, if ¢, are an
orthonormal basis for span(ry),

Zexp —BT) [¢(2)* =) exp(—=ET)rii(z) .
i=1

(For example, in the case that the eigenfunctions have multiplicity 1, in fact any solution
W, with eigenvalue E,, is r,,e?" for some phase 6,,. The value of #,, will then in fact
be determined by the time-dependent Schréodinger equation, but we shall not discuss this
further since the phases have no impact on (2.51).)

Thus in fact, it now follows from (2.36) that

o M oo M
qp(z,x) = ZZexp(—ElT) by ()2 —ZZGXP —ET)r}(x Zexp —E,T) (r},(z))
1=0 i=1 1=0 i=1

= @T(ma $)._7T(33, l’)

and therefore

Rnd

Z = wT(I,I)JT(w,w)dx—And er(y,y /T7 exp{ / Vi(z dt} dwy Y (x)dy

(2.55)

_ qp(x,x) _ Jr(z, )
Jana Tr(x, x)dx
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In other words, we can find p(x) in terms of functional integrals. Moreover, considering

(2.54),
oo M;
ap(xo,7) = > Y exp(—E/T)vy(zo) v (zr) ZGXP —EnT)rm(w0)rm ()
=0 =1 m=0
= op(xo, v7)Ir(T0, T1) (2.56)

which is important for the following discussion.

Position density in the case of indistinguishable particles

We shall let 11, indicate the permutation group of order n, and write 7z for (:Uﬂ(l), Tr(2)) - xw(n)).
We note from p.61 and p.64 of [Fey72] that for indistinguishable particles, the unnormal-
ized density may be found via
ale,a) = = Y e(map(e, o) (2.57)
n! e,
where for bosons, ¢(7) is always 1, and for fermions, ¢(7) represents sgn (), the signature of
the permutation 7. Here we consider only a system described by either a symmetric or anti-
symmetric spatial wavefunction; the spin wavefunction is not considered. The corresponding

partition function is then

zZ = /Rnd q(z,x)dr = 1 > ce(m)gp(z, mx)de

n‘ R"d 7T€HTL

_ L S e(m)ep(z, 7x) Ir(x, ma)de . (2.58)

n‘ Rnd ﬂ'EHn
This is sometimes called the trace of the (unnormalized) density matrix q. Therefore we

should conclude that for indistinguishable particles,

_ Q(xo,ﬁo) B (m WGZHH SOi’ﬂ(a’,(bﬂ-xo)) IT(£C(),$O)
S N (2.59)

Jwa alw, )l (L > @T(x,m)> Ir(x,x)dx

7T€Hn

— (5.2 wrlon o)) ) (2.60

n: mell,
1 Gr(xo,20) _ Grlxo, 2o)
nl Z Jgna Gr (@, x)dx

(2.61)
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where
Tr(wo,r) 1 5> c(m)er(zo, ar)Tr(wo, mr) (262)
T\ Lo, TT = Cc\ T QOT To, TXT T\ Lo, TXT .
To,TLT) rell,
7r;Hn‘PT( 0,7TT) ret
! 2.63
- Z SOT(SC(],WI‘T)Q(mO’xT) ( . )
7T€Hn
= exp(—E,,T) () (xo)rm(me , (2.64
Sl P ET) 5 enratran) (@260
7T€Hn
gT(ZEo,ZL'T) = ( Z QOT(JJO,W:ET)) IT(ZE(),[L'T) . (265)
mell,

The reader is invited to compare (2.63) with (2.56). As we shall see, (2.59) enables p(x) and
associated quantities to be calculated quite efficiently for bosons. For fermions, computations
are made more challenging by the so-called fermion sign problem, which is the subject of
Chapters 5-7. Lastly, note that it follows that where ¢ is used for the wavefunctions that
apply in the indistinguishable case,

O (T0)Or () :l' > e(m)rm(xe)rm(mar) . (2.66)

n: ﬂEHn

2.2.3 Indistinguishability in terms of measure conditioning

Considering (2.62), it will be apparent that we can write it as one functional integral,

using a different conditional measure. When X (7") = 7z, let ¢ (@) mean ¢(m). Then

TIr(z,x) = /C - ¢ <¥) exp ( /0 ' —V(X(s))ds> dwg ™" (2.67)

This suggests an alternative heuristic for the finding of the previous subsection, that Zr(x, x)
represents the position density of the system at inverse temperature 7'. For if it is accepted
that for distinguishable particles, p(z) = Jr(,2) / [gos Jr(z, z)dz, then for indistinguish-
able particles the only change necessary is to allow all possible particle permutations at
the terminal point. (The introduction of sgn (@) for fermions is unexplained in such an
heuristic.)

Note that we may, of course, regard V' as a function defined on R"™ / II,, since it is neces-

sarily independent of any permutation of the particles. Consequently ¥ may be viewed as a
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functional defined on continuous paths with values in R / IL,,. Then, recalling Subsection

2.1.4, since wOTl%:f (I1,B) = wOT,’f”I (I, B) for any B € B (C{),

X(T
Ir(z,z) = /TH c< (x )> Y (X) dwaﬁj‘; = Zp(Il,z, I,x) . (2.68)
cliin®

0,IInx
The fact that this holds provides another intuition regarding the nature of Zr, and is often
a helpful perspective to recall when thinking about results involving Zr. It is especially
useful for understanding how to implement permutation sampling (cf Subsection 4.2.3). In

a similar spirit to that of (2.68), we may note that

X(T T
-,Z’—T(lh? 'CET) = / C ( ( )) exp (/ _V(X(S))ds) dwg:g(l)nxT
CTaHnIT -TT 0

0,z
X(T) TIl,x
- CT,anT ¢ ( T ) Y(X) dwO,’anOT = IT(an()y Hn«IT) .
0,IIpzq

2.2.4 Finding expectations of observables

For the expectation of an observable whose corresponding operator is diagonal in the

position representation [Kle95],

= [ @i 2.69)
fR"d Az) < > @T(maﬂx)) Ip(x,x)dx

well,

(5 e e o

well,

More generally, according to Chapter 2 of [Fey72], if an observable corresponds to an operator

A then we may write the expectation of this observable as (see also [Kle95] p.108):

(A) = / /R Al x')q<x;')dxdx' (2.71)

where ¢ is the unnormalized density, defined by (2.57). (Our A(z,2’) here is referred to as

(x| Alz') in some texts.)
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Potential energy

One observable which obeys (2.69) is potential energy, as mentioned in Chapter 1:

Jeos Vi) (5 orlns)) Zrla, 0o

well,

(V) = . ( S e m) Tr (o, x)dz

well,

Two-point correlation function

For d = 1, a two-point correlation function I'(¢), 0 < @ < T, has the form (see [Lob96]):

[(0) = (x(0)z(9)) (2.72)

_ % / Z /C OO (— /0 Vi) dt) ¥ (x)dy
_ % /_ Z /C Ve (— /O Vita) dt) T (x)dy,

Correlation functions contain important information about quantum-mechanical systems and

they are observable in scattering experiments (see, e.g. [Kle95]).

Kinetic energy

In order to discuss kinetic energy we need to take account of mass. Let us consider a

more general definition of Jr :

Jr(xz,mx) = Eexp (—S (ngm))

where we let X(f T (t) solve the nd-dimensional system of SDEs

mr— X 1
d Tl (), 05t <T, X(0) =a (2.73)

where m here represents the mass of one particle, taken in our customary definition of Jr

to be 1. Taking account of mass, the partition function for a system of bosons has the form:

Zz = /Rnd Z@T/m(x,wx)]T(x,wx)dx (2.74)

well,

= <Z¢T/m(x,7rx)> /RMI(az,x)dx. (2.75)

ﬂ'EHn
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It can be shown to follow from (2.71) that the kinetic energy is given by (see also [TI84]):

(K) = m 02
 TZom’

We have, in the case of bosons,

0Z
om /Rnd Z@T/m(l',mﬂ)

welln
OJr(x, mx) nd |z — mz|)?
X [T + jT(ZE, 7TZE) % T dx

and

OJr(x, mx)

om

— 8 [ept= [ vz [ Vo) xie ol

Let Q(t) = %ng TE(t), that is, the derivative of the solution to (2.73) w.r.t. the parameter

m. This process satisfies the SDE (see [GST72])

dQ = —ﬁdt —

1
—=d < =0.
T3 Wi w(t), 0<t<T, Q0)=0

Clearly,

Q) = —Xgg(t)/(2m)

X ™
— =t

= — (X (t) — (T — 1) /(2m).
(xir 0 - -0 -F)

Thus one obtains (see also [DT10)):

(K) = =K. (2.76)

where
K= /W LG o1, 72)E [exp <_ /OT % (X({;”x(t)) dt) (2.77)
X (% - % + % /OT vV (ngf(t)) . (Xg;cﬂw(t) . %(T - %t) dt)” dz.

Here VV is an nd-dimensional vector. We note that this expression for the kinetic energy
is different to the ones exploited in [Cep95, TI84]. (As was pointed out in [Cep95], it is

desirable for computational purposes to have various representations of the kinetic energy.)
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2.3 Using noninteracting copies to approximate states

of definite energy

We shall now devote further attention to the subject matter of Subsection 2.2.2, in order
to demonstrate a result which, in effect, permits simulations of a quantum system that
is in a state of definite energy. The problem of simulating excited states has previously
been addressed by at least two different methods, known as Correlation Function Monte
Carlo [CB88, Cep96ii] and Thermo Field Monte Carlo [Suz86]. Given a suitable method
for performing zero-temperature simulations, the results of this section give rise to a new,
alternative approach to simulating excited states.

Recalling (2.64)-(2.66), it is clear that

o

Y exp(=EnT)$,(x0)dr(21) -

n!
pr(zo,mT) £~

IT(JUO,CUT) = Z

mell,

In fact, we may obtain the densities ¢,,¢;, as limits of expressions involving Zr(x, z), and
this shall now be discussed. It is immediately obvious that as T tends to oo, the terms with
eigenvalues equal to Fj dominate and thus gr converges weakly to ¢y¢, as long as Ey # Ej.
By implication, in particular if we wish to find a statistic such as the expected value in the

ground state of an observable A, then

(= [ Aot = pim [ A@arte, e = g S ADTED 5 7

T—00 Jpna T—o0  [ona Tr(x, x)de
At temperature zero, the system is effectively confined to the ground state(s) (see [FH65,
Fey72]). As shall be explained in Chapter 4, Formula (2.78) effectively tells us how to collect
approximate ground state statistics using Path Integral Monte Carlo, if a sufficiently large T’
can be used that adequate convergence is achieved, because the integrals and indeed Z7(z, z),
for a given x, are quantities which can be obtained as the limiting values from simulations.
As is explained in [Fey72], the average over ground states will be obtained in the case of
ground state degeneracy.

However, it is also possible to construct a controlled approximation to the densities for
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the excited states of the system. We shall now prove several results which indicate a way
to express the sum of the first k eigenstates in terms of functional integrals, with the caveat
that there is a specific type of averaging over eigenstates if 1,. .., k should happen to include
only some of the eigenstates corresponding to Ej. The approach taken here is to consider
first the case of distinguishable particles, and then to proceed to considering bosons and

fermions.

2.3.1 Results on how to obtain sums of eigenstates

Let us consider what happens when we have k noninteracting copies of the system of
n distinguishable particles inhabiting a d-dimensional space. Since the copies are nonin-
teracting, we think of the potential for the knd-dimensional coordinates as being the sum
of the potentials at each copy system position. We shall use x for the full system coor-
dinate vector x = (x1,..,7;) € R4 We shall overload V : R — R to be given by

V(z) = V(x1, 29, ..,x) = V(x1) + V(22) + .. + V(x)). This means then that, e.g.

exp (/OT —V(xl(t),a:Q(t))dt> — exp (/OT —V(:cl(t))dt) exp (/OT —V(azg(t))dt) (2.79)

and hence where copies have sources (z1,...,x;) and destinations (y1,...,yx), and X; are

for the paths followed by each system copy,

Trle,y) = /TyHexp(/ - <X<>>dt)dw

Oz j=1
T
_ H/T exp (/ —V(Xj(t))dt> dwy
=1/ o) 0
= Jr(v1,y1)Ir(22,92) - . . Ir(Tk, Yk) (2.80)

Remark 2.3.1 In this case (2.35) becomes

1L g2 k
522 922 Z;V ;)T = —Frm(x) (2.81)
=1 =

and then the eigenstates for the joint system with the k independent copies, which we shall

(k)

denote my,’ : R — R, are given by ordered products of k elements from the r,,, with
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replacement. Clearly 1y, Tm, - .. Tm, has eigenvalue E,,, + E,,, + ...+ E,,, . The fact that
these are the only eigenfunctions follows from (2.80). Then for x,y € R there is a

sequence of eitgenvalues F,, and corresponding eigenfunctions ) st
)i (@)riR) (y)

_ Z Z [exp (—ZEij> Hrm] T )T, (Y;) ] (2.82)

®
I er(ryy)m=o =0

jT(a::y) =

For example, with k = 2, we have, where F,, = E,,, + E, form =0,1,...:

Tr(z,y) = )r (@)rE (y)

= or (0, 0007 (T2, 1) Z Z exp(—(Emy + Emy) 1)y (21) Ty (22) 7, (1) T (Y2)
T )

m1=0mo=0
Theorem 2.3.2 (sum to kth state of densities for distinguishable particles) Let Jry :
Rknd R be given by

Jr(x Z sgn(Q)er(w, (x)Ir(, ()

Celly

where (x indicates that systems are permuted (with particle indexing maintained within). Let
the sequence of multiplicities for (2.81) be My, My,... Let M* = Mo+ My + ...+ M,_;, and

let k = M* + k* with k* < M,,. Then

M*—1 M*+Mp,—1
k* Y f k—1)nd JTk(x)de"’dek
(1) + re =k h RO 2.83
T;] ( 1) Mp mzjw* ( ) TS0 kand JTk( )dl’l . dﬂ?k ( )
=k lim Z, —F,T) (k) (k) 984
TEI‘}O Tk /(kl)nd [CEZHk sgn(C Zexp )T’ (@) (C) ( )

with ZT,k: = kand JTJC(J?)dl‘l cee d{L’k

Proof. Recognise from (2.82) that

Zexp —F, T) e (2)rl (o) = Z Z [eXp <_ZEsz> Hrmj@j)rmj(xdj))]

(2.85)
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Recall that we numbered the eigenstates so that F,, < E,,.1. The proof is based on the idea
that in the limit as 7" — oo, the dominant terms in (2.84) will be those with the minimum
sum of eigenvalues.

We need to start by showing that all the terms containing repeated choices of eigenstates
m; = my, j # l, are zero. So suppose that we pick any term with m; = my, some j < [.
It is clear that II; can be partitioned into disjoint subsets, each of two elements which are
bijective under the exchange of elements j and [. This is clear because given any ( € I,
applying this operation will yield a different (, but this operation is self-inverse. However, if
we exchange the order of summations, we shall have

Jri(z Zexp —F,T) ngn )r®(Cx)

Cell},
and then we may note that each sum ) cem, here is given by the sum of the added contri-
butions from each of these pairs of permutations. However, for our chosen term, the added
contributions from each pair is zero because for all x, the permutations in each pair give
equal values to 7 (:E)rgf)(c.r) but they have opposite signs for sgn(¢). (Note that this is
regardless of whether £; = E;.) Therefore the only terms which have a nonzero contribution
to Jry are indeed those where m; # m, for j # L.

To find the contribution to fR(k,l)nd Jr(x)dzy - - - dry from these terms, consider what

will happen for permutations other than the identity. Firstly note that
k
rin(Ce) = [ [ s, (25) (2.86)
j=1

and suppose that for some system copy x; we have (*(I) # [ for some [ > 1. Then notice

that
n
/R(kl)nd 31211 iy ()T ;) ()2 - da,

can be separated; ie let us consider the integral w.r.t. dx; to be performed last, treating
the result from integrating over the other variables as constant. Due to the orthogonality of

the r,, it then follows, however, that the result must be zero. Therefore in (2.84) the only
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contribution to any term with no repeated eigenstate indices is from ( = ¢d. Thus,

/ JT,k(x)deQ C dxn =
R(k=1)nd

k k
/R(kl)nd dxsy . ..dx, Z Z exp (_ZE"LJT) H Tznj (z,)] =

m;€{0,1,..} for j={1,..k}; J=1
mj7F#my for j7#

9] k k
Z exp (—Ep, T) 12, (1) Z Z exp <—ZEmJT> / o H Tfnj (xj)dxy ... dx,
N —1)n n
m1=0 m;€{0,1,..} for j€{2,...k}; =2 R(E=1) Jj=2

mi#my for j#lle{l,... .k}

9] k
= Z exp (—Em, T) 12, (1) Z Z exp <—2Eij> (2.87)
m1=0 m;€{0,1,..} for je{2,...k}; =2

mj#my for jALIe{l,... .k}

If we consider that the summands are equal for reorderings of {my,..,m;} then counting

through all ¢ € II;_; we shall find

/R(kl)nd Jri(z)dzy ... dx, = (k—1)! Z Z Z exp (—ZEij> rfnl(xl)

mM1=0 ) >mp_1>..>ma>0;
m;#m1,5€{2,....k}

(2.88)

and meanwhile

Jrp(x)dey . .. dx, = (k—1)! i Y exp <—ZEij> (2.89)

m1=0 1) S>myp_1>...>ma>0;
mj#ma,j€{2,....k}

=k > ) exp (—ZEij> : (2.90)

mg>mp_1>...>m1>0

REnd

k
Now let us ask what terms in (2.88) give the minimum value to ) E,,,. Clearly these consist
=1

of choosing all the values up to M* — 1, and also k* values from {M*, ..., M* + M, — 1}.
Thus if we consider the full unordered set of m; to be sampled without replacement over
{1,....M* + M, — 1} with {1,...,M* — 1} fully populated, we are then allowing m; to
range over this set, in order to count all the dominant terms in (2.88). (This also counts the

dominant terms in (2.90), of which there are then (}#)k.) Thus, there are (}) choices which

M,—1

k*—l) choices which make m;

put m; equal to any particular value in {0,..., M* — 1} but (
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equal to any particular value in {M*,..., M* + M, — 1}, and (]L{”__ll)/ (],\f”) = k/ M, so

. —1)n J xYdxo -+ - dzx 1 M*—1 o M*+M,—1
LS ¥ s = k <Z ra(z1) + M, > (@)

T—o0 kand JT,k (Jﬁ)dl'l s dxk; 0 Sy
as required. m

In particular, this means that if the sequence of multiplicities is known then we are able

to find the average over eigenstates up to a certain energy level:

Corollary 2.3.3 Let Jr; : R*? — R be given by

Jri(z) =Y sgn(Q)er(z, () Tr(z, Cx)

Celly

where (x indicates that systems are permuted (with particle indexing maintained within). Let

the sequence of multiplicities be My, My, .. and let k = Mo + My + ...+ M,. Then

3 r2 — %k lim Sty Jrp(x)das - - - day

T—oo kand Jr(x)dy - - - day,

(2.91)

m=0

Proof. Follows immediately with this choice of k. m
Since we therefore know how to approximate S %! 72 (1) for any k (without introducing

m=0"'m

any additional bias) such that exactly the first p + 1 energy levels are populated, we can
take M%] (Z];;lo r2 (zy) — SO M r;(x1)> to find the average of the set of eigenstates that
share the (p + 1)th eigenvalue.

We shall now consider the case of indistinguishable particles and see that while there is

not a similarly elegant expression, we can nonetheless still achieve an analogous result via

quantities defined in terms of functional integrals.

Theorem 2.3.4 (approximation to nth state for indistinguishable particles) Let I :

R R be given by

k
Irp(x) = > sen(Q) [ [ azs weiy) = D sen(O) [ = o Ir(zj, 2¢(5))
j=1 j '

Celly

Then

M*—1 . M*+Mp—1

Z |¢m|2 <I1> + Z |¢m|2 (.I' ) — L 11 fR(k 1)nd ITk(l')dl'Q .. dl’k . (292)
m=0

m=M* o f]Rknd Irp(x)dzy - - - day,
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Proof. We shall work backwards using the logic of the proof of the previous theorem:
we shall seek an Irj(x) giving (2.92); it shall turn out to be as claimed.

Firstly consider that if we can achieve the equivalent of (2.87), ie

/ Irp(x)dzy ... dx, =
R(k—1)nd

k k
/R(kl)’ dxry...dx, Z Z exp (—ZEij> H ¢m]_ (xj)qﬁ:‘nj (z;)| (2.93)
nd = ey

m;€{0,1,..} for je{1,...k};
mj#my for j#l

then the same logic as given above will lead to the desired conclusion. In order to achieve
(2.93), however, it shall be seen that it is sufficient to have
k k
Irp(e) =) sen(C) D> D exp <—2Em,-T> [0, (@), (xcy)  (2:94)
Celly m;€{0,1,..} for jE{1,...k} Jj=1 j=1
because then the same reasoning will apply as before, first to get rid of terms with repeated
energy indices and to then get rid of contributions from non-identity permutations in the

remaining terms. However, (2.94) clearly means that

as claimed. m

It should be noted that there are therefore marked differences between the way that the
copied system must be treated, and the way that a system of fermions is treated in order to
get the density. Some permutations of particles will occur with an opposite sign in I, for n
fermions, from what they would have for Z; with kn fermions, and others that occur in Zp
with kn fermions will not occur at all in Irj with n fermions. For the reader to recognise
this immediately, Figure 2.1 shows what paths are collected for I for a system of 2 1D

fermions (the particles in x; are marked in green and those in z5 are marked in pink).

Remark 2.3.5 We have presented Theorem 2.3.4 as useful in conjunction with an asymp-
totic approximation to system ground states via Path Integral Monte Carlo. However, it

could well also apply when using a zero-temperature simulation method, provided that it is
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Figure 2.1: Contributions to Ir s for 2 1D fermions

possible to use such a method to make an estimate of imp_.o I ,(x), and this would be a

promising direction of further inquiry.
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Chapter 3

On numerical integration methods for

conditional Wiener integrals

In the preceding chapters, we have discussed at length some of the reasons why we would

like to simulate conditional Wiener integrals, which we shall write as

U= /  F(x)dwyyr (v) = EF(X) (3.1)
Cong.
for some F' : COT7 v — R, where X ~ wOT7 v Consequently, as mentioned in Chapter 1,

it is desirable to find a random variable for which draws can be made, whose expectation
U is close to Y. In particular, in our work we shall focus on the case that this random
variable is F'(X"), for another random variable X" with the same codomain as X, measurable
with respect to a set of discretization points X(tg), ..., X (ty) whose maximum spacing is
h :=maxo<p<n_1 (tpr1 — tr)-
Definition 3.0.6 In these conditions, when

U —U| = |[EF(X) — EF(X")| < Kh?
for a constant K independent of h, we say that the method U has weak order of conver-
gence p.

The key result of this chapter is that a particular piecewise constant method has weak

order of convergence 2 in the case of integration w.r.t. the conditional Wiener measure, for
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a rather general class of functionals. It is immediately clear that the same must then hold

T,HnIT

true when the integration measure is wy

We shall begin, in Section 3.1, by recalling the Fréchet derivative and Taylor’s Theorem
for functionals; this shall be the main tool in proving Theorem 3.2.1. We shall then specify
precisely a set of assumptions on the functional being integrated which are sufficient to make
the result valid, and then proceed to state and briefly discuss the result; this constitutes

Section 3.2. The proof of Theorem 3.2.1 has its own section devoted to it.

3.1 Fréchet derivatives and Taylor’s Theorem

In this section we begin by recalling necessary background concepts, namely the Fréchet
derivative and Taylor’s theorem for functionals. We shall also specify the class of functionals
for which the corresponding convergence theorem shall shortly be proved. This is done via
the formal assumptions listed in Subsection 3.1.1. Then in Subsection 3.1.2, we give some

examples from this class of functionals.

Fréchet Derivatives

Let A[0,T] be the space of right-continuous functions z : [0,7] — R? which have no
essential discontinuities. Suppose F' : A[0,T] — R. Then if it exists, the first Fréchet

derivative of F' at = in the direction 6 € A[0, 7] is given by (see [KF57]):

PO ) 5) — tim £EC) +280) = F(a()

e—0 g

(3.2)

and further Fréchet derivatives are defined according to the necessary pattern, that the
(n + 1)th derivative in the directions (01, ds, ..., 0n, dpe1) is simply the derivative of the nth
derivative in direction (dy,...,d,), in the direction ;1.

Taylor’s theorem

The following result is proven in works such as [KF57].
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Theorem 3.1.1 (Taylor’s theorem for functionals) For any n € N, we can expand

F(z 4+ 0) about F(z) and have an expression for the remainder term:

F(z+6) = F(z) + FO(@)(6) + -+ %FW(I)@, 6) (3.3)

+ﬁF‘"*”<x+A6><é,...,5>, 0<A<l.

3.1.1 The class of functionals to be considered

Let us consider functionals F'(x) defined on the space A[0,T] of right-continuous d-
dimensional vector-functions z(t) on the interval [0, 7] without discontinuities of the second
kind, i.e., consider functionals on a larger space than C’OT’ f We impose the following assump-

tions on F.

(FA) Assumptions.

1. Let 0 < 0y < --- < 0; < --- < 0, <T. Introduce the measure v, on [0,T]" which is
the sum of r-dimensional Lebesgue measure on [0,T]", (r — 1)-dimensional Lebesque
measure on the hyperplanes {(s1,...,s,) € [0,T]" :s; =6;}, i=1,...,n,j=1,...,r,
and on the diagonal hyperplanes {(s1,...,s,) € [0,T]" : s; = s;}, (r — 2)-dimensional
Lebesgue measure on (r — 2)-dimensional hyperplanes {(s1,...,s,) € [0,T]" : s = 0;
and s; = 05, k # 1} and {(s1,...,s,) € [0,T]" : s; = s; and s = s}, and so
on, including the one-dimensional Lebesque measure on the lines {s1 = 0;,,...,8_1 =
0., .}, i; €{1,...,n}, and on the diagonal {s1 = sy = - - - = s, } plus the unit measures

concentrated on the points (0,,,...,0;), i; € {1,...,n}.

2. We assume that the functional F(x) is six times Fréchet differentiable and that its r-th

derivative has the following form:

F(T)(I)<517"‘a57’) - / U(T)<xa 817"‘)87‘)51(81)'”57‘(87‘)V'r(d81"'d87‘>’ (34)
[0,7]"

r=1,...,6,
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where §; € A[0,T] and the vector-functions v\ (x;s1,...,5s,) are symmetric in the

arguments si, ..., s, and uniformly bounded for x € A[0,T], s; € [0,T].

3. For any function x € A[0,T] constant on a semi-interval [co,c®) C [0,T], there are

continuous derivatives

d 0 d
Ev(l)(ﬂ s); 8_511}(2)(:[; 81,52), S1 7 S2, 85 # 03 %0(2)(95;573);

— v (z;5,0;), i=1,...,m;
dS,U (.flf,s, Z)> G ’ y 1Y

which are bounded by a constant independent of [co, °) and z € A[0,T].

We recall (see, e.g. [KF57]) that F((2)(6y,...,0,) are r-linear functionals. Under
Assumptions (FA) we prove a convergence theorem (Theorem 3.2.1) for the method proposed
in Section 3.2.2. We emphasize that the method is applicable much more widely. The reason
we need to treat up to the sixth Fréchet derivative is that we are going to need to ensure
that the local error is third-order in the timestep, and for the sixth derivative it is possible
to show that the remainder, when applying Taylor’s Theorem is third-order, as we shall see.

Roughly speaking, one might say that we consider functionals of the general form on
A[0,T] which satisfy some conditions on smoothness and boundedness. As is usual for any
numerical methods, if we weaken the assumptions about the smoothness then, as a rule, the
convergence order of the considered method becomes lower than the optimal one. In phys-
ical applications, the smoothness part of Assumptions (FA) is not particularly restrictive
since it is usually satisfied. The assumption on boundedness of derivatives of functionals can
be, to some extent, weakened without loss of convergence order but this would significantly
complicate the proof of the convergence theorem. At the same time, the common computa-
tional practice in quantum statistical mechanics is to curtail potentials so that they and their
derivatives remain bounded which usually implies boundedness of derivatives of functionals.
Alternatively, the concept of rejecting exploding trajectories from [MTO05] could be exploited

here. That is, we might choose not to take into account those trajectories which leave a
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bounded domain S during the time 7. The domain S is chosen so that the boundedness

condition is satisfied when z(-) € S.

3.1.2 Examples of functionals

To illustrate the class of functionals satisfying Assumptions (FA), we give two particular

examples here, although many more can be immediately constructed.

1. We start with the integral-type functionals (see the functional needed to compute the

correlation function (2.72)):

Fz()=¢ (x(@),/o f(t,x(t)) dt) , 0<SO<T, v€Cf,ry - (3.5)

One can check that if the functions f(¢,z) and ¢(z, z) have continuous and bounded deriva-
tives up to a sufficiently high order then Assumptions (FA) hold. In particular, the Fréchet

derivatives (3.4) have the form here:

F(l)(x)((Sl)—/[Oﬂ W (25 51)01(s1)v1(dsy)

with

0
v (@3 51)61(s1) = a—fvmf(sbaf(%)) -01(s1), 81 # 0

v (2:0)0,(0) = V- 61(6);

and the measure v; being the sum of the Lebesgue measure on [0,7] and the unit measure

concentrated at the point 6,

F(2) ({Z‘) (51, 52) == / ?J(2) (ZL’, S1, 82)51<81)52(82>V2(d51d52>

(0,77



o4

with
o (a1, 50)01 (50)0a(52) = 22T, sy (50)) - B4(s1) Vi (s 2(52) - D5,
S1 # So, S; £ 0,
o (a5, 0)61 (5)02(8) = 3 aaa V. (s,2()) - 61()55(0). 5 £ 0,
0@ (255, 5)61(5)5a(5) — a—@z ;w] (NS ()(s), 5 £ 65
@) (2;0,0)5,(0 Z o Zaxj 51(0)55(0);

ij=1
and the measure v, being the sum of the two-dimensional Lebesgue measure on [0, T]?, the
one-dimensional Lebesgue measures on the lines {s; = 0} and {s; = 0} and on the diagonal
{s1 = s}, and the unit measure concentrated at the point (6,6); the other derivatives can
be written analogously. In the above formulas the derivatives of the function ¢ are taken at

the point (x(ﬁ), fOT ft,z(t)) dt) and the dot - means the usual scalar product of vectors.

2. Let functions f(t,z), g(t,x), and ¢(z) have continuous and bounded derivatives up

to a sufficiently high order. Then the functional

., (/OT /Otf(s,x(s)) ot 2(0)) dsdt)

satisfies Assumptions (FA).

3.2 The piecewise constant method

In this Section, first, in Subsection 3.2.1, some background details are offered. Then, in

Subsection 3.2.2, the precise statement of the main result of this chapter is made.

3.2.1 Background: orders of convergence

When a functional F' is given by F(z(-)) = exp <fOT f(t, x(t))dt), we say that F' is an

exponential-type functional. A case of particular interest is when F’ is the exponentiated
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action functional (cf (1.2)):

Vi) =ew (- [ Vis)ar) = (-5

In [GM84, VGMS84] (see also [MT04]), the probabilistic approach was used for computing
Wiener integrals with respect to the unconditional Wiener measure, and it was shown that
a piecewise constant method gives rise to a bias that is O(h?) where h is the timestep of
the method, for a relatively general class of functionals. In [MTO04ii] (see also [MT04]) the
same approach was exploited to compute conditional Wiener integrals of exponential-type
functionals. We may also note that there are a large number of methods and results (see,
e.g. [MT04] and references therein) for approximating simple functionals f(X(7")), where f
is a function from a sufficiently wide class and X (t), to < t < T, is a solution of SDEs. But
not much attention (except, e.g. [Mac97, MT04, VGMS84]) has been paid to approximating
general functionals depending on trajectories of the SDE solution.

There is a body of work in the physics literature that is concerned with the special case
of integrating the exponentiated action functional. The Markov property of the conditional
Wiener measure appears there as the fact that the thermal density matrix may be regarded as
the product of "high-temperature" density matrices. One possible way to approximate this
product is to treat the commutator of the kinetic and potential energy operators as zero, and
this is called the primitive approximation to the action, or the primitive action [Cep95]. This
is essentially equivalent to the piecewise constant method that is to be considered in what
follows, and comes down to using the trapezoidal rule for S(z). In [Tro59] it was proven that
if the Hamiltonian operator is self-adjoint then in the limit of a small timestep, convergence
to (2.69) is achieved. The fact that the trapezoidal rule is of order h?, in the special case of
the action functional, has been addressed in works such as [Suz91, Suz94, IT01].

Thus, it has not to date been proven that for the fairly general class of functionals satis-
fying (FA), the piecewise constant method has bias of order 2? when using the conditional
Wiener measure. It is readily seen that in applications it can be important to be able to deal

with functionals which are not exponential-type, however. As in the case of (2.77), they may
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arise naturally in the ‘diagonalization’ of functional integrals corresponding to observables

whose corresponding operators are diagonal in the momentum representation.

Higher order methods

Results from [Suz91] state that no method based on quadrature of S(z) can be of higher
order than 2 even for the action functional. For exponential-type functionals generally, an
explicit Runge-Kutta method of order 4 is described in [MT04]. However, in experiments
with the order 4 method, it was found to be rather unstable for longer times 7. Specifically,
there is a tendency for the Runge-Kutta multiplicand to take values greater than 1, and
subsequently, the estimator of exp (— fot V(X (3))ds) will head for +o0o. Apparently, if we
consider evaluating V' at points which are not on the sampled trajectory X(s) then it is
possible to attain a higher-order numerical method for the action functional in this way
[PDO03, Pre04]; in these works only the local error is discussed.

An alternative, which has been used for most of the simulation work in this thesis, is to
use Simpson’s Rule for S(X), which has bias of order h%, but such that the constant on the

h? term is considerably less than that encountered using the Trapezoidal Rule.

3.2.2 Definition of the piecewise constant method

Here, on the one hand, we deal with a more complicated system than in [GM84, VGM84],
since the SDEs involved in the method are singular. On the other hand, we consider a much
wider class of functionals than in [MTO04ii]. The proposed method is new in comparison with
the ones available in [MTO04ii] and it is analogous to the one used in the case of the usual
Wiener measure [VGM84].

We introduce a discretization of the time interval [0, 7]

O=ty<ti <---<tny=T
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so that the points 6;, i = 1,...,n, belong to the set {tg,t1,...,tx}. Let

h:= Ogll?gajsf(—l (tk+1 — f}k> .
and tyy1/2 := (tpy1 +tx) /2, k =0,..., N —1. Let us introduce a piecewise constant function
X"(t), t € 0,T], given by:
X"(t) :=a, t €[0,t1)9); (3.6)

X"(t) = X(t), t € (th-1/2,thgry2), k=1,...,N —1;

XM(t) ==, t € [tn_1/2,T).

Clearly, trajectories X"(w) belong to the space A0, T).
We define the piecewise constant approximation of the conditional Wiener integral U as

follows:

U=EF(X)~U=EFX"). (3.7)

avr
W

«—h——

t, Lt

Figure 3.1: Illustration of piecewise constant method X".

This method is analogous to the one used in the case of the usual (unconditional) Wiener

measure [VGMS84| (see also [MT04]). The key result of this chapter is that the method
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(3.7), (3.6) applied to evaluation of the conditional Wiener integral (3.1) is of second order
of accuracy, i.e.,

U —U| = |EF(X) —EF(X")| < Kh?, (3.8)
where the constant K is independent of h (although naturally it may vary depending on the
structure of timesteps used and depending upon F').

We prove the following convergence theorem.

Theorem 3.2.1 Assume that Assumptions (F'A) hold. The method (3.7),(3.6) applied to

evaluation of the Wiener integral (3.1) is of second order of accuracy, i.e.,
U —U| = |EF(X) —EF(X")| < Kh?, (3.9)
where the constant K is independent of h.

The proof of the theorem is given in the next section. In Section 4.3, some numerical

experiment results are provided which provide some illustration of (3.9).

Remark 3.2.2 The method (3.7),(3.6) is exact (i.e., there is no integration error) on the
class of functionals which depend only on the value of the function x(t) at a finite number

of points 6;, 1 =1,...,n.

The method (3.7), (3.6) together with the Monte Carlo technique gives an effective algo-
rithm for computing conditional Wiener integrals, which is very simple to realize in practice.
The method (3.7), (3.6) can be interpreted as a trapezoidal scheme. This interpretation

becomes obvious in the case of integral-type functionals (see (3.38), (3.39)).

Now consider the Euler method, i.e., introduce the piecewise constant function X[ (t),

tel0,7]:
XE(t) == X(t), t € [testhyr), k=0,...,N—1; XHT):=b. (3.10)

Theorem 3.2.3 Assume that Assumptions (FA).1 and (FA).3 hold and (FA).2 holds with

r=1,2,3,4in (3.4). Then

EULER

U =EF(XP) (3.11)
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approzimates U with the first order of accuracy.

The proof of this theorem is easier than that of Theorem 3.2.1 and it is omitted here.

3.3 Proof of the convergence theorem

Here we exploit some constructions from [VGM84], although the singularity of the drift in
(2.21) as t approaches T' causes additional difficulties, which are overcome by adopting ideas
from [MTO04ii]. For simplicity and legibility, let us prove the theorem in the one-dimensional
case d = 1. No additional ideas are required to carry it over to an arbitrary dimension d
(see however Remark 3.3.2 at the end of this section). Note that in this section we shall use

the letter K to denote various constants which are independent of k£ and h.

We would like to break down the global error EF(X)—EF(X") into a sum of contributions
from so-called local errors. With a view to this, we shall now introduce an auxiliary processes

Xk(t),k:O,...,N:

N-1

Xi(t) == X ()Xo (1) + X () Xty (B) + Z AjX Xty 0 (E): (3.12)
ik

AGX = X(tj) — X(15);

We shall need to make a careful choice of path to use as an expansion point when applying
Taylor’s Theorem, and this is supplied by introducing a further auxiliary process, which we

shall call X;(t), k=0,...,N —1:

Xi(t) == X ()X (0. (1) + X (t) X g, 17 (1) (3.13)
+ 2 (At [T )

j=k+1 b
We note that Xj(t) = X(t;) for t € [tg, tri3/2) N[0,T7], ie., the random function X(¢) is
constant on the interval [t;, ti43/2) N[0, 7.

One can see that Xy(t) = X(¢) and X,(t) = X"(t). We rewrite the global error in the
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form:

EF(X) - EF(X") = EF(Xy) — EF(X,) (3.14)

=

= . [EF(Xg1) — EF(Xy)].

il

Thus, we need to analyze the difference

p = EF(Xy1) — EF(X},). (3.15)

Consider the Taylor formula for functionals (3.3) applied with n = 6:

F(z+6) = F(x) + FO(2)(6) + --- + éF@(:v)(é, .., 0)

1
+EF(6)(x +A0)(5,...,8), 0<A <1

We expand F(X;,,) and F(X}) at X}

F(Xii) = F(Xy) +/

U(l) (Xk, 81)5k,i(81)l/1(d81) —+ .
(0,77

(3.16)

1 _
+ g U(5)(Xk, Sl S5>(sk,i(81) s 5k?i<85)y5(d81 e d85)
. [07T}5

+ = U(ﬁ)(Xk + Ailki; 81, 86)0k,i(51) + + - Oni(S6)ve(dsy - - - ds),
6! 6
[0,7]
O< A\ <1, 1=0,1,

where

. et dW (s') R
Oro(s) = Xi(s) = Xu(s) = A XXy, ,, , () — / T D (Ee1 = )Xty 1 0m1 (5)
b j=k+1

(3.17)

T—tk T—¢
et dW (') R
- [ Y - )
t -5

k

= X ya)(5) {(tkﬂ PR A, SO B /ttm dW(s')]

k

=2
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Or1(8) = Xis1(s) = Xi(s) = (X() = X (1)) Xy 0,1 (8) + DX, 11(5)

1 dW (")
- [T Y - ) n®
tk j=k+1
b— X (t) AW ()
= Xtp.tesn) (5) [(5 - tkz)ﬁ + (T —s) /tk T o
b— X(t) B Q1 (o)
FX [t 0,77(S) {(tkﬂ - tk)ﬁ + (T — tyt1) /tk T o
e dW (') R~
[T Y e - )
tk j=k+1

It is clear that 0 0(s) = dra(s) for s & (tg,tg1). It can also be seen that the measure

Ve, 7 =1,...,6, of the set S,(f) on which the difference [ 65.1(s;)—[] dx0(s;) is different from
=1 =1

J J=

zero has order O(h). Indeed, S = (J {(s1,...,5,) : ; € (tx, ter1)} and hence v, (S,(f)> <
=1

rvy ({(s1,...,8) : 51 € (ty,tk+1)}), which is of order O(h). Further, it is not difficult to
dW (s')
T—5s

o

verify that the integral / .ty < 5 <tpy1, and X}, are independent by showing that
tg

_ Sd /
Ele(t)/ ;,/V_(Z/)} =0forany 0 <t < T and t; < s < try1. In what follows these
tg

properties are used in analysis of the parts of p,. We shall also exploit the inequality (see,

e.g. [MTO04ii, Lemma A.4]) for any p > 1
Elb— X(t)|? < K (T —t;,)". (3.18)

We have from (3.15) and (3.16):

Pr = E/ ’U(l)(Xk, Sl) [(5k71(81> — 5]@0(81)] l/l(dsl) (319)
(0,77
1 _
+ §E/ v (X; 81, 82) [01,1(51)05,1(52) — O0(51)0k0(s2)] va(dsidsy) + - -
[0,7]°
1 ~ 5 5
+ EE/ ) ’U(5)<Xk, S1y... ,35) H(Sk,l(sj) — H5k70<8j) V5(d$1 s d85)
[0,7] ey ey
1 . 6
"‘gE/ [U(6)<Xk+)\16k’1;81,...,Sﬁ)H(Sk’l(Sj)
H [O7T]6 j:1

6
—0® (Xk + /\05k70; S1, ... ,86) H 5k,0(5j)]V6(d81 .. 'dSG).

J=1

Before we start with analysis of p,, we state the lemma which will be used in estimating the

second term of (3.19) and which is proved at the end of this section.
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Lemma 3.3.1 Let U,(x) := v®(z;s,5). The following estimate holds

(b— X (tp))” 1

(T - tk)2 T — tk

EU;, (Xk)

K
<—
|— VT =1

where K > 0 is a constant independent of k and h.

Now we analyze the terms forming p,, in (3.19). Introduce the indicator I}, = Iy, .. 9,3 (tx)-

We obtain for the first term in (3.19):

rV .= E / v (Xy: 51) [0 (1) — Oro(s1)] v1(dsy)
[0,7]

tht1 _
— E/ v (Xs 51) [0, (51) = do(s1)] dsy
tg

=5 [ O T e | P

ty T =ty o T
tit _ b— X(t Pett qW (s
— E/ U(l)(Xk; 81) |:(tk+1 - tk>T—ik) + (T - tk+1)/ T ( /):| d81
tht1/2 Tk b -0
b— X(t [ fteia _ bt —
_ EJ / v W (Xy;81) (81 — tp)dsy — (tgyr — tk)/ v (Xy; 51)ds,
T —ty | tht1/2
b— X(t,) [ [t _ b1 >
— ET—W) / v (Xys 81) (81 — ty)dst — / VW (X; 51) (brer — s1)dsa | -
— 1y B tet1/2

Integrating by parts, we get

_ _ _ 2 lkt1/2 d _ ( t )2
1) _ Eb X(tk> W (X,-t (tk+1 tk) _/ ELIPNCOI 51 k d
Tk —T—tk v ( k> k+1/2)—8 ) dslv ( k,Sl) 5 S1
. b1 — t)? 1 . b1 — 51)°
—U(l)(Xk;tk+1/z)M _/ UNCIS S S Sk IV
8 tk+1/2 31 2
b— X(ty) [ [z d NG
S i U2 LW (X ) g
Tt [/t g5V (ki s1) = —dsy
tea1 d B t _ 2
tk+1/2 dS]_ 2
It follows from here and the inequality (3.18) that
Kh3
V] < k=0,...,N—1. (3.20)

VT =1
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Now consider the second term in (3.19). We obtain

1 _
r® = e / v (X 51, 52) [061(51)0k1(52) — Oro(51)0k0(s2)] va(dsidsy)  (3.21)
0,772

1

:—E/ o (X 51, 52)
2 [O,TP

(b — X(tk))2 T — S1 V So
X { [(Sl tk)(SQ tk> (T — tk>2 + (81 N S tk) T _ t
X X[tk,tk+1)(Sl)X[tk,tk+1)<S2)
b— X (1))’ T — t,
+ 2 | (fesr — ) (51 — tk)ﬁ (s1— tk)ﬁ] Xt tir) (51Xt y0,71(52)
(b _ X(tk))2 T —tpn

+ | (b1 — tr)—— + (b1 — b)) ———

(ths1 — tr) T — 1) (terr = te) = — 7

X (X[tkH:T](Sl)X[tHLT}(S?) o X[tkH/Q,T](SI)X[tk+1/2,T}(S2)>

X (51— X (51) = (Bt = 00X ) (1) va(dsidsa).

We decompose the integral from (3.21) and estimate each part separately. We have

Alk = E/ ’U(2)<Xk, S1, 82) (322)
0,77

(b— X (1)

T—5Vs
T t)’ +(51/\52—tk)#]
— g

X [(81 —t1)(s2 — ) T —t

X Xitgtnrn) SOX [t tesr) (52)V2(ds1d52)

b+t . (b— X (t))? T—s
=E v (X s,8) (s —t)——— + (s — t ds
| >k O ety
tr41 tet1 _
[
ti tr
(b— X (t))? T — 51V sy
X (81— tk)(s2 — tp) ——————5— + (51 A 59 — tp) ———— | ds1dso,
[<1 o2 = 1) S+ (o1 A — ) | dsids,

where the last integral is estimated by Kh® by observing that sup [v(?| is bounded (see

Assumptions (FA)) and using (3.18) to get

E(b_X(t’“))2< K K
(T —t,)> ~T—t,~ h
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Also note that in (3.22) we omit the integrals over the measure concentrated on the lines
s =t and s = t,1 and over the unit measures since it is obvious that they are equal to
zero. Further, since v (Xy; s, 5) = v® (X ty, t) + ft Ly (Xy; s, s')ds', the first integral

in the right-hand side of (3.22) can be written as

b+t . (b— X (t))? T—s
E v (X s,8) (s —t)——— + (s —t ds
L >[< O Gty
B b—X(tk))2 tht1 tht1 T _ s
— Fo@ (Xt t (—/ s—t 2ds—|—/ s—t ds
(Xs th, i) Tt ) (s = tx) A (s = te)
bt b— X(t))* T —
+E/ / Ko ) [(S_tm%ﬂs_tk)if—; ds'ds,
— Uk

where the second integral is estimated by Kh* using the same arguments as in (3.22). So,

Ay = Bo® (Rt ty) | LX) (s =10 (s = 0 T =t + (Foss = tk>/3]

(T — ti)° 3 2 T —ty

+ O(h?)

with |O(h?)| < Kh®. The next part of (3.21) can be written as

\ b—X(tk))Q T — tpyq
N /[QTP R [( S R I

X Xty tk+1)(51)X[tk+1 1] (s2)vo(dsidss)

tht1 (b— ( ))2
- QE/ / Xka 51, 82) (tk 1 tk)(Sl — tk)—

tet1 * (T — tk)
T—1
+(s1 — tk)ﬁ} dsidss
s b— X (1)) T+
+ 219 >t / v®(X; 51, 6;) [(tk+1 — k) (51— tk)ﬁ + (51— tk)—T _]Zl] ds

_oE (ters —t)? (0= X(t))? | (teps — te)2 T — tren
2 (T —t;,)? 2 T — t;

T
Xl/ v® (X th, 52) d82+219>tk (Xt 0:) | +O(R3).

lkt1

The third part of (3.21) is

b— X(t))? T—t _
Ay = E [(tk+1 - tk)Qﬁ i tk)ﬁ] /[OT] VO X1, 52

X Xtn 151 Xt021(52) = X1 (51Xt 1 11 (52)] V21 l52).



We have for the integral in Agy :

75152 (1) 52) ~ X (1) (50)] 2l

T T
:/ 0(2)(Xk;s,s)ds—/ v (X s, 5)ds

tht1 lkt1/2

T
+ 2 Z Ip, >+, [/ (2)(Xk; s, Hi)ds — / v(z)(Xk; S, ei)dsl

tht1 tkt1/2

T T
+/ / 0(2)()_(k;31,32)d31d32—/ / 0(2)()_(k;31,32)d31d32
let1 Jtkq lgy1/2 Yigy1/2

tepr —t .
— MU@)(XM b ti) — (trs1 — Tk) Z Iy, 0@ (Xis ., 0:) + O(h?)

trt1 tk+1 tet1
— 2/ / Xk,Sl,Sg)d81d82+/ / Xk,81782>d81d82
lkt1/2

tk+1/2 tk+1/2 tk+1/2

tk+1 — tr) %
2 (2)(Xk7tk7tk) tk+1 —tk ZIG >tk Xk7tk70 )

T
- (tk—I—l — tk) / ’U(Q)(Xk; tk, SQ)dSQ + O(hQ)

tet+1

Then

Agk =-E [(U(2) (Xk, tk, tk) + 2 Z Iei>tkv(2) (Xka tka 92))

=1

y <(tk+1 — 1) (b= X(8:)° | (e —tk>2T—tkH>]
2 (T — t)° 2 T —t

(b— X ()’

(7 tk)Z + (thr — t)

T—1
h [(t’““ o W]
— Uk

T
/ v ( Xy ty, 52)dso

tet1

+ O(R?).

The last part of (3.21) is

N-1

2 9, G
A4k = —T — tkE/[;),T]2 'U( )(Xk, S1, S2) Z (tj+1 — tj)X[tj+1/2,T](52)

j=k+1

X (51 = 80Xt (51) = (1 = 00Xy (51) | v2(ds1dis2)

N—1
2 _
A tkE/[OT]z VB (Xy; 51, 99) Z (tjr1 — tj)X[tj+1/2,T}(S2)

j=k+1

X [(51 = U)X (1t o) (1) — (g1 — Sl)X[tk+1/2,tk+1)(Sl):| va(dsidss)
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_tk

N-1
/ Z (thFl - tj)X[th/Q’T](Sz)
lp+3/2

j=k+1

let1/2 ) lg+1 N o
X / ( )(Xk, S1, 82)<81 — tk>d81 — / U( )(Xk, S1, 82)(tk+1 — 31)d31 d82

173 tet1/2

+ ZIQ >tk+1 tk-l—l)

tht1/2 o\, o tht1 ) o
X / o )(Xk; s1,0;)(s1 — tg)dsy — / o )(Xk; s1,0;) (tks1 — s1)dsy | | -
125 tpt1/2

Exploiting arguments similar to the ones used before, it is not difficult to get that Ay =
O(h3).

As a result, we obtain

1
rl(f) =5 (Arg + Aop + Asp + Aur) (3.23)
(i1 — 1)’ o () 5 (b— X (1)) 1
=" Y Eo®(X g, t — O(h?).
12 v ( ky Uk, k) (T — tk)Z T — tk + ( )
Applying Lemma 3.3.1, we get
3
Pl (3.24)
— U

Now we estimate the remaining terms in (3.19). We obtain from (3.17):

N-1

b— X(ty) b1 dV (')
Ok0(5) = Xty 1o, (8) s = t) =5 — = + / T 2 G = 5Nty (9)-
Uk j=k-+1
Then
3
Eo® (Xk§ S1, 52, 83) H Or,0(s:)
i=1
- E,U(3) (Xk; S1, 52, 83)
3 tet N-1
b — X(tx) dW (s)
1:[ (s =t ﬁx[tkﬂ/?’T](Si) + / T—¢ j=zk;r1(t]+1 £ )X[thrl/? ta+1/2)<8i)

(22

] b— X(t) (b— X (b— X(8)
= Ev® (Xy; 51, 52, 53) (try1 — tk)Qm (thtr — th)—— ” HX[tk+1/2 5i)

X[tk+1/2
+ Z H Z b1 — X[tkﬂ/z tj+1/2)< l) :

T—1
i=1 RL 0 =k
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From here, we get the estimate

3

_ Kh2
E['U(?’)(Xk;ShSQ;SB)Hék@(sj)] S \/T—it
— Uk

J=1

Analogously, we obtain

Kh?

3
E[U(3)(Xk;31732753>Hak,l(sj)] S ﬁ
— Uk

J=1

Then, also taking into account that the measure v3 of the set S,Sg) on which the difference

3 3
H‘ ) dka(sj) — H . dk0(s;) is different from zero has order O(h), we arrive at
= i=

3 3
1 _
EE/ 0(3) (Xk, S1, S92, 83) [H 5k,1(3j) — H 5k,0(8j)] V3(d81d82d83) (325)
[0.77? j=1 j=1
1 B 3 3
= EE/ [S](€3)(81,82,83)U(3)(Xk;81,82,53) [H 6k,1(5j) — H(Sk,O(Sj)] V3(d$1d82d83)
0,17° j=1 j=1
1 3
< = / IS<3>(81, S92, 83) |EU(3)(Xk; S1, 52, 53) H 5k,1<3j)|
6 [0,T]3 k =1

Kh?

3
+|Ev(3)()_(k;51,52,53)H5k,0(5j)|] vs(dsidsadss) < VT —

j=1

Since we have for the terms in (3.17)

E(AX) < KR, E(X(s) = X (1) Xrpi () < KW,

4
trt1 dW(S/) N-1
¢ </ T—-5 Z (Fj41 = tj)X[tHl/sz](S) < KRW?,
b j=k+1

and the measure v, of the set S'*) on which the difference H4 dka(s;) — H4 dro(s;) is
k =1 RN =1 0\2j

different from zero has order O(h), we obtain

1

4 4
i / v (X s1,. .., 84) [H Srals)) — I 1 5k,o(sj)] va(dsy - - - dsy) (3.26)
- /T j=1 =1

1
< —ysup [0
4. [O,T]‘l

4 4
Ly (st 54) (Ey [Toxa(spI+EIT] 5k,0(sj)y> va(dsy -+ - dsy)
j=1 j=1

< Kh3.
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By analogous arguments, we get

5 5
1 _
EE/ 5U(5)(Xk;81,...,85) [H 5k 1(Sj) — Hék,()(sj)] V5(d51“'d85) (327)
(0,7 e e
1 5
< o sup j0®)] / E - H dko(sj)|vs(dsy - - dss)
5. [O,TP jil
< Kh'2,
Since EH 10k.i(s;)| < Kh?, the last term in (3.19) is estimated as
1 6
—E/ [’U(G)(Xk + >\15k,i§ S1y.nn 786) H 5k,1(5j) (328)
6! 6 ,
[0,7] ey
) 6
—U(6)<Xk + )\05]“'; S1y.vey 86) H (5k70(8j)]y6(d51 e d86)
j=1
1 6 6
< g1 SuP |0(®) E [H |0k1(s5)| + H |5k70(sj)|] ve(dsy - - dsg)
: [o, j=1 j=1

< Kh3.

Substituting (3.20), (3.24)-(3.28) in (3.19), we get

3
ol < —_
N

which together with (3.14)-(3.15) implies (3.9). Theorem 3.2.1 is proved. B

k=0,...,N—1,

Proof of Lemma 3.3.1.  Assumptions (FA) ensure that for a fixed 7 € [0,7] the

functional U, (z) = v®(z; 7, 7) is Fréchet differentiable and its derivative has the form:

U (z)(0) = /OT uM (2;5)8(s)ds 4 u'! )+ Zu D(z;6;)

where u()(x; s) is uniformly bounded for z € A[0,T], s € [0, 7.
We also note [MT04ii, Corollary A.1] that

(b- X)) _ 1

Y= e Ty T T

is a martingale.
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Introduce the auxiliary processes X ,go)(t), k=0,...,N—1:

X0 () = X)X 0. (1) + X1 (8).
Using the Taylor formula for functionals, we get
— — T — —
Uy, (X)) = Uy, (X) + / DX 4+ 78: 5)0(s)ds + (X0 + AS: )8 (tr)
0
+ 3 uO (X + A5 0,)0(6;),
where
5(s) = Xi(s) = X{"(s)

N-1 tht1 dW(SI>
[ )+ Z (A X+ (tjp1 — tj)/ T_ o > X[tj+1/2,T](5> —b X[tk,T](S)
J=k+ !

1 k

and 0 < A < 1.

We have
T (0
EU, (X)0 (4 ‘EUtk )w(tk)‘ n ’Ew(tk) / uD(X© + A6 5) (3.29)
tk
— L W (')
X X(tk) + Z (AJX + (tj+1 - tj)/ T_ ¢ ) X[tj+1/2,T}(S) —b| ds
j=k+1 b

+\E¢ £ (XQ 4 A8 1) (X (8) —b] mek B (1) u® (X + 26:0,)5(0,)] .

It is not difficult to see that the second term in the right-hand side of (3.29) is bounded by

a constant and the third and fourth terms are bounded by K/v/T — t;. Thus,

K

|EUs, (X5) 0 (t ‘EUtk DN(te)| + N

(3.30)

Now introduce the auxiliary processes X(j)( t),j=1,....k k=0,...,N—1:

We have
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where
5(s) = X7V (s) = X (5) = (X(5) = ) Xptu_ o) (5)-
Then (as before, I}, = Iy, . 0,3 (tr)) :

. . th—j+1 .
U, (X9 = U, (X9) + / (XY 4 A6y 5) [X(s) — b ds (3.31)

tkfj

4 L uM (X 4 X85 t3) [X (hey) — B

Recalling that ¢(¢;), l =0,..., N — 1, is a martingale and observing that U;, ()_(,gj)) is Fp,_ -

measurable, we get that
U (X)) = [BU ()0 t)] (3.32)
It follows from (3.31)-(3.32) that

Bz (X)) | < [BUL (X)) (3.33)

th—j+1 .
+ Bt / WD (XD A5 5) [X(s) — b] ds

tp—j

+ I

Bty ) u® (X0 + 253 t4 ) [X (t15) — b]].
The second term in the right-hand side of (3.33) is estimated as

th—j+1 .
B (te_s11) / WD (XD 4 A5 5) [X(5) — b] ds

tr—j

the—j4+1
<suplu®] [ B b E DY) - s
tkfj

K te—j+1
< —/ VT — s ds
T —trj1
K

— (tp_ii] — Tr_s).
m(k3+1 k])

The third term in the right-hand side of (3.33) is estimated as KIj_;/\/T — t;_;j+1. Then

tk_]'

<

K

- t_. _t_,
/—T—tk,jﬂ ( k—j+1 k J)

+ (3.34)

‘EUtk (Xlgj_l)>1/}<tk—j+1)

< [EUL (R (tey)

K} o

— .
VT —thjn

+ k.
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It follows from (3.30), (3.34), and the evident inequality ‘EUtk (X® )1/)(0)( < K that

k k

. K toeig1 — Lhes I

|EU,, (X0 (t)] < —+K§ (s = bey) +K§ b
j=1

VT =1, VT = th—jn VT —tij

Recalling that the number of points 6; is equal to the fixed n, we get Z?Zl I—; < n. Finally,

we obtain

k

, K K K &
}EUtk (Xkﬁ/}(tk)‘ < \/T — + \/T — Z (tk—j—i—l - tk_j) + \/ﬁ ]Zl Ik—j

j=1

K
< —.
VT =t

Lemma 3.3.1 is proved. B

Remark 3.3.2 It is notable that in the multidimensional case (d > 1), the integrand of
(3.21) contains cross-terms in all coordinate pairs i,j, viz 5271(31)5%1(52) - 5270(51)5{;70(52).
The terms corresponding to 1 = j are estimated in the same way as in the considered one-
dimensional case. For i # j, the contribution from all stochastic integral terms is zero
and the right-hand side of (3.21) has terms with (b' — X' (t1,)) (V) — X7 (tx)) /(T — t1)?, which
are martingales [MT04ii, Corollary A.1] and their further estimation yields O(h3/\/T — t,)

again. In (3.23) it should be understood that the term 1/(T — ti) only appears for i = j.

3.4 Integral-type functionals

In this section we consider conditional Wiener integrals of integral-type functionals:
T
F(z(:) = (:1:((9),/ flt,z(t)) dt) , 0<0<T, x¢€ Cg{a;T’b. (3.35)
0
Introduce the scalar process Z(t) satisfying the equation
dz = f(t, X(t))dt, Z(0) =0, (3.36)

where X (¢) is the solution of (2.21). Clearly, the conditional Wiener integral U from (3.1)

of the functional (3.35) is equal to the expectation

U=Ep(X(0),2(T)). (3.37)
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The approximation (3.7), (3.6) applied to (3.1), (3.35) results in the trapezoidal method for
Z

UnU=Ep(X(0),Zy), (3.38)

where

Zy =0, (3.39)

t —t
Zior = Zi + % [F(te, X (60)) + f(trsr, X (trs1)], k=0,...,N—1.

Recall that the time discretization used here is so that 0 € {to,t1,...,tn}.

If we assume that ¢(x, z) and f(¢,x) have bounded derivatives up to a sufficiently high
order, it follows from the general Theorem 3.2.1 that the method (3.38), (3.39) for (3.1),
(3.35) has the second order of accuracy; i.e., the estimate (3.9) is valid for it. The other
set of assumptions under which the theorem is valid are that f(¢,z) and its derivatives up
to a sufficiently high order are bounded and ¢(x, z) is sufficiently smooth. We note that in
the case of integral-type functionals, the convergence theorem can be proved more simply,
exploiting a more standard technique used in the weak-sense approximation of SDEs [MT04]
(see its application in the case of conditional Wiener integrals of exponential-type functionals
in [MTO04ii] and in the case of usual Wiener integrals in [VGMS84]). It is interesting that no
method of the form

3
Zi1 = Zi + (trp1 — te) Zaif(tk + B, X(te + 8;)), a; €R, B; € [0,th1 — ti]

=1

has order of accuracy higher than two (in the case of usual Wiener integrals, see a similar
comment in [VGM84]). At the same time, in the case of integral-type functionals of a
particular form — the exponential-type functionals F'(z(-)) = exp[} f(t,z(t))dt], a fourth-
0

order Runge-Kutta method was constructed in [MTO04ii].

We made a computational comparison between (3.39) and the fourth-order Runge-Kutta
method in computing the potential energy of one particle in a 1D harmonic oscillator. De-
spite being of lower order, the method (3.39) turns out to be preferable due to its stabil-

ity properties. These follow from preservation by (3.39) of such structural properties of
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exponential-type functionals as positivity and monotonicity, which can be broken down in
the case of the fourth-order Runge-Kutta method from [MTO04ii] (see similar observations
although in a different context in [MT09]). Further, instead of the trapezoidal rule (3.39),

we can use Simpson’s rule:

Zo =0, (3.40)
- Ter1 — Tk
Zyy1 = L+ 6 [f(tk, X(tr)) +4f (tesr/2, X (tegay2)) + f(trgrs X(tk+1))} ;
k=0,... N—1

Although both methods (3.39) and (3.40) are of order two, the method (3.40) had much
smaller bias in our experiments than the method (3.39) and thus was computationally more
effective. The methods (3.38), (3.39) and (3.38), (3.40) extend the arsenal of numerical tools

considered in [MT04ii, MT04] for computing action integrals given by (2.32).
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Chapter 4

Simulations of Boltzmann and bosonic

statistics

In Chapter 1, we explained why it was important to develop a weak approximation to
our functional integral, in order to then apply the Monte Carlo technique. In the previous
chapter, we introduced such a weak approximation method. In this chapter, we shall begin by
offering a discussion of simulation methods, in Sections 4.1 and 4.2. In Section 4.3, we then
provide some illustrative experimental results, which are in agreement with the theoretical
predictions of the previous chapter. The reader should understand that no particularly novel
ideas are introduced in this Chapter; rather, it is included to provide a sound platform for

what follows.

4.1 The probabilistic approach to finding expectations

of observables

In Chapter 1, we already introduced the Monte Carlo method for finding information

about conditional Wiener integrals (cf (3.1)):

— Txr
U= /CTva F(z)dwy

0,z¢
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but in order to find expectations of observables, we must make use of (2.69) or (2.71), and
both of these take the form of one functional integral divided by another, this latter being
the partition function Z, given by (2.55). Considering (2.77) and (2.72), it is clear that when
(2.71) leads to an expression suitable for practical implementation, the denominator Z is
often retained and the numerator still involves integration with respect to ng’yy or we. yn Y
or another conditional Wiener measure. Consequently it is of interest to consider how to

simulate a ratio of two "functional integrals" A/ Z where for some functional F' and for the

action functional Y,

A = (m) | / (. 7y) P () dul (a)dy (4.1)
‘TI'EHn Rnd Tﬂy

Z - dwy ;" (x)dy. 4.2
n' 7r€l‘[n /Rnd /Tﬂ'y y7ﬂ-y ( ) Wo ( ) Yy ( )

Here for concision we define ¢(m) for the case of distinguishable particles to be n! for the
identity and 0 otherwise. We still let ¢(m) = 1 for bosons and ¢(r) = sgn(w) for fermions.
There are a number of rearrangements of (4.1)-(4.2) based on exchanging the sequence of
the sum and integrals, and this shall be discussed further in Subsection 4.2.3.

We should also note that if rather than (4.1), (2.71) were to lead to an expression with

numerator

A= wem [ e mn @) @ dnds
Rnd x Rnd Y2

n!
n. WEH'n 071

then it should be clear how to extend the discussion of this chapter to that case.

4.1.1 Integrating in the space of loops

Let us first consider how information about quantities such as A (including Z) may be
obtained. We refer to these as functional integrals because we may regard them as integrals
in the space of loops Co = {z € ClOT" - 2(0) = x(T)}, as follows. Let {(y, 7y) : [0, T] — R"
be given by ¢, »,(s) = (1 — —) Y+ 77y. Let us use the notation A x wy’; 'Y for the measure on

Co induced by the law of 2+ ¢, , when (y, z) ~ A x wa ’(?, ie the product of Lebesgue measure
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with the conditional Wiener measure wg ’(?. Then using the linear translation property of the

conditional Wiener measure, which was outlined in Subsection 2.1.3,

A = / / m)or(y, 7y) F(z + Eymy)dng’(?(z)dy
Rnd 0.0 TI'GHn

= E Z ( ><)0T<y7 Wy)F(fL' - gy,y + gyﬂry)d <A X U)g:’yy) (y,ﬂf)

Co mell,

— [ Gz)d (A X wgg) (y,2) . (4.3)

Co
To facilitate exposition, for the remainder of this section and up until Subsection 4.2.3, we
shall discuss how to estimate Ap and Zp, the functional integrals relevant for distinguishable

particles (boltzmannons). Discarding ¢, (y,y),

Ap = /c F(az)d(A X w({»yy) (y,z) . (4.4)

The reader is asked to bear in mind, however, that the following discussion applies readily

to the case of integrating G rather than F' and that thus, as we explain in Subsection 4.2.3,
it is relevant to at least two ways of approximating A/Z.

Clearly A x wa ’00 is not a probability measure, but using the Radon-Nikodym theorem (see

g. [Coh80]) we may nonetheless rewrite (4.4) in a form that is accessible for probabilistic

methods. Where y is a Lebesgue-equivalent probability measure over B(R") and f : R —

R is a measurable function,

F@aAa) = [ 5 (@du(a)

Rnd Rnd ,U/
Consequently, for any Lebesgue-equivalent probability measure p over B(R"),

%@)}

X~ wO.E d/l,

Ap = Ee., [E e [F(X)]

and we should keep in mind that a similar fact holds with regard to ,zlvD, ie the approximation
to Ap that arises from substituting an approximating functional F for F; and also with
regard to Z). Then if we proceed to define a set of i.i.d. random variables {;{ }f\il with

& ~ p, and let ;X ¢ be a set of i.i.d. random variables with codomain RW+Dnd and the
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law of ;X,¢ induced from wa f, and (recognising that F, although defined on A[0,T], is

measurable w.r.t. X (h), X(2h),..., X(T)) we define a random variable
~ 1 M [~ dA
AMC = — FG;X )—
P2 |Pxo 36
then it is clear that according to the perspective advanced in Chapter 1, if the drawn value of
AMC is 7 then the posterior distribution of .2173 is approximately Gaussian <a:, Var(jlwc)).
The question arises of what choice of 1 is expedient; basic intuition tells us that we would

e [F'(X¢)] is near zero, and to

like 11 not to ascribe a high measure to regions where Engw
0.6

ascribe adequate measure to regions where it is not. This is complemented by recalling the

standard conditional variance formula (e.g. [Wil01]), which yields

g~ ~ dA
Var s (F(Xg)d—(g)) =
Xe ~wy§ :

/Rnd Var (ﬁ(&,)%(?ﬁ) du(y) + Vare B {ﬁ()@%(@}
/R Var (ﬁ(Xy)) %@)2 dy — Ap" + /R %(;,)2] du(y)

E {ﬁ(Xy)
= /Rnd (Var (ﬁ()@)) +E [ﬁZ(Xy)D %(y)Qd?J - ;G)Q

Therefore where we set p = g—/’{, optimal choice of p (and hence ;1) makes the function of y

given by

1) = 0 ((Var (Fx)) + B [F(x,)]) /50

a constant function; that is to say, 1(y1) = (y2) for all y;,7, € R™. It follows that for the
optimal f,

Z—K@) x (Var (F(X,)) +E [ﬁ(xy)Z])” .
If we guess that Var (f (Xy)> may be somewhat proportional to EF (X,) then one good
choice of i would be to make g/% proportional to (E]:; (Xy)>a for some optimal o € (1/2,1).
It seems conceivable that E [}%(Xy)} often dominates; for example if the conditional distri-

bution of ﬁ(Xy) were Uniform[s,¢] for some 0 < s < ¢t < 1 then E [ﬁ(Xy)Q] = @ + ts

whereas Var (ﬁ (Xy)> = % Thus we may imagine that the optimal « is towards 1.
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In simple experiments, using the Gibbs measure for V, ie, 3—1‘{(1;) x exp (=TV (y)), may
achieve similar effects to optimizing for Zp, as long as T’ is sufficiently small; in some cases
may be possible to sample according to this p directly. In most of the simulations performed
in this chapter, we simply use a Gaussian p, with the covariance matrix optimized by trial

and error in order to achieve a lower variance for AMC ZMC  and hence for the posterior

distributions of ;lvD ,Z).

Estimation of the ratio of functional integrals

We drop the D on Ap since the following discussion carries over with no significant
changes for indistinguishable particles.

We have already assumed that we cannot compute quantities such as A and Z directly,
and instead use numerical methods A ~ A and Z ~ Z. Let us denote the biases by e1,e0 € R
so that A = A+ €1, Z=2Z+ €. The question immediately arises of in what sense the
posterior distribution of ./2(, Z gives rise to information about A/ Z. If we are content to
use the simple heuristic of considering a Taylor expansion of the function =1 about Z for

(Z +&,)"" then in fact this yields a most fortuitous result:

N:£:é<

(A=%=3 1—2+2+H.0.T.) (4.5)

zZ A

where H.0.T. indicates terms of order 2 and above in ;,e5. Therefore we may note in
passing that if it happens that e, /e, is close to A/ Z, then it appears that this will have a
favourable effect on the bias for the ratio. More generally, it is clear that the ratio bias is
the same order in the time-step h as £, &5.

Recalling the Bayesian framework of Chapter 1, if we think of A, Z and AMC, ZMC ag
modelled by random variables 01, 65 and v, ¥5 respectively, with a joint pdf, then we speak
of the (marginal) joint pdf of (61, 6) as the prior pdf for (.Z, 2) , and given a realisation of
(.ZMC, ZNMC> = (z1,x2), we speak of the conditional pdf of (61, 6,) given (¥,795) = (z1, z2)
as the posterior pdf for (.Z, z ) ; likewise for A / Z. If we collect enough information that the

posterior distribution of (.Z, 2) is (approximately) bivariate Gaussian about <./Z(MC, 2“10> ,
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with A4 = AMC 4 51,Z~ — ZMC 4 &, then writing

L SN SR &
ZMC &, ZMC ZVNICQ §Mc3

+ ...

it follows that conditional on (ﬂ“’lc,gMC), where we use Eﬁz to indicate the posterior

expectation of é , neglecting the contribution from priors we have

j AMC 000(51752) i AMCVar (&2)
Z  ZvC Zume? Zuc?

+ H.0.T.

where H.0.T. indicates expectations of terms of order 3 and above in &, ,/ ZMC_If all the

other terms can be safely neglected then we shall think that

B~ 2 — . (4.6)

Neglecting the contribution from priors, the posterior variance of is approximately equal to
Var (%) (we shall further discuss the posterior distribution of 4 shortly) By expanding
ZMeT! g before, roughly speaking we have:
~ ~ ~ ~ ~ 12 ~
Avc Var (AMC) E [AMC} Cov <AMC, ZMC) E [.AMC} Var (ZMC)
Var R 5 —2 3 + 7
E [21\/10] E [ZVI\/IC} E [ZVMC}

(4.7)

so clearly, sampling .,Z(MC, ZMC independently would be inefficient. It is advantageous to
obtain as high a covariance between AMC and ZMC a5 possible. A simple approach is to use

the same Brownian bridges for both, and let the initial points be perfectly correlated:

e = S X)) 49
Z2M0 = = % [ (X(z))j;\? <Z—j zﬁﬂ (4.9)

where {;¢}, is a set of 1.i.d. r.v.’s with ;¢ ~ Gaussian(0, 03), and {i Xa }Z is a set of i.i.d.

r.v.’s with codomain RV+1nd,

s.t. the law of ;X () induces wo and where ; X9y = ; X(1)—
&+ g—f £. (In the case of indistinguishable particles, one approach would be, for example, to

replace F with G, cf (4.3), and likewise for Y .)
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Discretisation sampling methods

Some works, such as [Cep95], describe sampling Brownian bridges using the Bisection
method due to Lévy [Lev39]. However, it is sometimes more convenient to apply the in-
cremental construction of the Brownian bridge as introduced at (2.25). The cost to achieve
particular Monte Carlo errors should be identical to that obtained from using the Lévy con-
struction, or indeed from using any other method of sampling the Gaussian finite-dimensional
distribution of the discretised path points. In Chapter 3, we used the concept of incremental
sampling in order to prove Theorem 3.2.1. However, it is clear that the method of sampling
the discretisation has no impact on the properties of a numerical method for which the

sampled discretisation serves as input; this shall be emphasised again in Subsection 4.2.4.

4.1.2 Making interval estimates for a ratio of bivariate (Gaussian

variables

Clearly it is desirable to be able to report a credibility interval for A / Z , given a bivariate
Gaussian posterior density for .Z, Z. We could simply employ (4.7), assuming that we shall
use the sample covariance matrix of /TI\”IC, ZMC g if it were the actual covariance matrix.
We then proceed to approximate the distribution of A / Z as Gaussian and voilal However,
there is no guarantee that the interval thus obtained genuinely has probability at least p.
Approximating the ratio distribution as Gaussian is unjustified; in fact the ratio distribution
is not symmetric, and indeed for some parameters is not unipolar. A better alternative in

this direction would be to exploit an approximation result such as [Hin69].

Bivariate Gaussian contour method

It is usually preferable to find an interval (rq,r2) guaranteed to be such that a posteriori,
P <.Z / Ze (rq, r2)> > p. One approach is to consider the contour of likelihood bounding
a set of measure p, and form a sector from 0 bounded by rays which are tangent to this

ellipse. Solving equations yields four candidate points which must be checked for low and
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high extreme values of 2/y. Where the sampled value for (./TMC, 2MC> is (w9, 90), and where
we let Var <.,ZMC> = o2, Var (Z~MC> = 03 and denote the correlation by p, and where we

set

2 2
x ZoYo Y
R
oz g0y Oy

K= =21 ((1-p)V1-77)

the possible solutions (points that may extremise z/y) have

K K 0-2 y2
=11—-— +4/K([1—-— y __ 20
Y ( K0> . \/ ( KO) (1—P2 Ko>

and for each of these values,

T =10+ 0y <pwi\/K_M(l_p2))_

2
oy o,

Ko =

The main limitation of this procedure is that it delivers intervals which become increasingly

wide relative to the true ones as p gets close to 1.

Bivariate Gaussian Monte Carlo method

If one wishes to find a more accurate interval, happily this may be accomplished by a
straightforward expedient: run a post-process Monte Carlo. We let {Bl}fv;l* be a partition
of some interval (a,b) such that we are happy to assume a priori that A / Z lies within
(a,b). (For example, we might choose, say, Nyowes = 10%.) We could obtain (a,b) using one
of the above methods, or by trial and error. Then by making a large number M,,;, (say, 10°)
of bivariate Gaussian draws (again, treating the collected sample covariance matrix as the
true covariance matrix) we may store an array with the sampled frequencies that the ratio
lies within each B;. A collection of the B; which form a Highest Probability Density (HPD)
interval can then be ascertained from the array of frequencies. To get a satisfactory estimate
this way is not instant, but typically takes less than 10 minutes using a 2.0 GHz machine.
The question of exactly how the observed HPD interval differs from the true HPD interval

depends on the posterior distribution of A / Z , and is not addressed here.
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4.2 Importance sampling and Markov Chain Monte

Carlo

In this section we discuss importance sampling, explain that Markov Chain Monte Carlo
(MCMCO) is used in order to achieve this, discuss optimal sampling, and introduce the action
measure, which has a derivative w.r.t. A x wa ;’ that is proportional to Y (x). We also explain
how we may extend our MCMC to include sampling of initial points and permutations. The
MCMC approach [Met53] is well-known and was first introduced in the path integral context
in [FC81]; a comprehensive and modern explanation is offered in [Cep95, Cep03]. This
section draws on material from [Cep95], and in particular, Section 5F of that work explains
the Multilevel Metropolis method as it applies to bosons. However, our focus is on showing
that MCMC is the logical development of the approach discussed in the previous section. A
paper which explains a related idea and also makes some other interesting points is [GM98].

A good resource on the general topic of MCMC is [GRS96]; see also [Mur07, Nea93].

4.2.1 Importance sampling and the action measure

In some cases it will be undesirable to use the conditional Wiener measure to sample
paths. Intuitively, if there are, for instance, many repelling particles, then most Brownian
bridges will have a near-zero contribution to .ZMC, ZMC, Consequently, it is desirable to
reduce the Monte Carlo variance by using importance sampling (cf [MT04, p.123]); that is,
by using a different sampling measure and applying the Radon-Nikodym theorem. (See also
[HF04, p.253] for a discussion of importance sampling and Monte Carlo in a slightly different
context.)

To simplify the discussion, we shall consider the finite-dimensional object that is actually
evaluated. Let w* = A X wa’yy. Let us write B = B(X(0), X (h), X(2h),..., X(T)) and let
@* be the measure on B induced by the finite-dimensional distribution corresponding to w*.

Rather than using (4.8)-(4.9), let us consider sampling ;X with respect to some v which is
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equivalent with @* and using this same ;X for both AMC and ZMC:

A = LS 02 (x) (4.10)
M= B 72 '
~ 1 M [~ dw*
ZMNC = S Y (X X)| 4.11
2 [P0 >] (a11)
This has the advantage that we may decide to let ;= be proportional to any function

f : RV _ R, without needing to know the integral of f with respect to w* in order to

write

'“ij

evaluate contributions, if we are interested only in the ratio AMC / 2“’10, because we may
L M
AMce M 2. [

> [F0 7k

== (4.12)
> [V ]

=1
Again employing the rough approximation (4.7) and noting that under (4.10)-(4.11),

.
—_

ZMC

Sis

var (25) = 5 ([ e @ }dm z)
Varld) = 5 ( /RN :17“(96)2 w (x)j da(:p)—,@)
i

Cov (A€, 24¢) = ( /R » :ﬁ(x)f/(x) dg(x)g} d;(x)—ﬂé)

we find that

~ ~\ 2
AMC 1 ~ ~ A\ dur, 2
Var (gMc> ~ /R » (F@) - Y(x)g) ) | dota) - K

where K € R is a constant. We assumed v to be equivalent with w*, so let us write p for

v _ dv do” o function from RV to Rt. Then subject to
dA — dur dh

/ p(z)dr =1
RNnd
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we may proceed by trying to minimize

/R » <ﬁ(a;)—?(x)§> dg(x) dii () =

dp(x)

- N2
but then it is clear that the optimum is to make —%~ ((F(x) — Y(x)4> i (x)Q/p(x))

equal at all x € RV, Tt follows that

(ﬁ(x) - 17(@&) ‘Z‘f\* (z)

p(x) o

and thus that 9Z(z) is proportional to ‘ﬁ (x) — Y(x)gi‘ Since % is not known a priori (in
fact it is what we are trying to find), we would have to guess a value T for this in order to
get a reasonable measure with respect to which we might integrate; perhaps a suitable value

would be furnished by information from a short non-optimized simulation. We may then use

(4.12):

gl
M=

s
Il
-

[ 1
e {FQX )m}

ZMC

v 1
{Y(ZX) |ﬁ(iX)—T37(iX)’:|

gl
Mz

s
Il
—_

and no error is introduced here. Using a suboptimal measure (inaccurate T') affects only the
variance obtained.

In the work [Cep96], the case is discussed of a quantity that is diagonal in the position
representation, so that F' = AY and an intuitive discussion of the optimal sampling measure

in that case is offered.



85

Using the action measure gets rid of the need for a normalizing constant

The author of [Cep96] then argues that it is preferable to instead let 92 (z) be proportional
to ‘?(z) ‘ In the case of boltzmannons (and bosons), we shall then find that the denominator

integral disappears completely in (4.12):

ch 1 M
MC M 2
Z

i=1

F(;X)
Y(:X)

(4.13)

and in particular if ' = AY then the contributions are just E(ZX ). Since we usually think
of F(x) as being positively correlated with Y (z) under w*, it seems that in general, this
(discretized) action measure v makes a sensible choice of measure. In [Cep96, p.5] several
other arguments against using the optimal sampling measure are advanced.

In fact we could have performed all of the above discussion using the space of loops,
although being able to utilize Lebesgue measure was clearly more convenient here. If we
now introduce the (true) action measure v, defined on B (Co) via -2 (z) o Y (2); ie, to spell
it out, for any B € B (Co),

[z Y (x)d (A X w({’j) (y, )

- Jo, Y(z)d (A X wOTj) (y,x)

then it is already evident that v is the measure induced by the finite-dimensional distribution

v(B)

(4.14)

of v. We shall loosely refer to either v or v as the action measure, in the case of distinguishable

particles, without much cause for confusion. It is clear that

(4) = . V() dv(x)

and we have introduced an approximation,

(A) = M v(x
(A) = /RNnd ?(x)d (x). (4.15)

4.2.2 Sampling according to the action measure via Markov Chain

Monte Carlo

The question is then begged, however, of how sampling according to the action measure

is to be performed. The answer is that since we know the relative probability of two points
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in the sample space (ie, two discretisations), we may use Metropolis Markov Chain Monte
Carlo [Met53, FC81, Cep03]. We form a Markov chain with a transition density such that
when ergodicity is attained, the invariant measure is the measure that we seek. In order to
obtain the correct transition density, we use a two-step algorithm consisting of (1) drawing
a "proposal" or "candidate" move; (2) accepting or rejecting this move. Sampling according
to the action measure and sampling via Markov Chain Monte Carlo (MCMC) are separate
concepts which should not be intellectually confounded, although in practice it is necessary
to run an MCMC in order to sample according to the action measure. The MCMC can-
didate move could in principle follow any distribution conditional on the current point in
(discretised) path space.

In Path Integral Monte Carlo, a popular strategy for proposing candidate moves is known
as the Multilevel Metropolis method [Cep95, Cep03] (note that despite the name, there is no
connection with hierarchical modelling). In order to create a candidate for the MCMC step,
first a subset A of the particles and a subset {, . ..,i+2’ —1}, with counting modulo N, of the
time-slices are sampled, according to whatever law we see fit. Outside of Ax {7, ..., i+2/—1},
the candidate will be left equal to the current position. Within A x {4,...,i + 2/ — 1},
we sample "free-particle" moves, i.e. Brownian bridges with altered variance, to be the
candidate moves. We now use Eq. (5.32) from [Cep95]. We shall use p for the pdf that
corresponds to the finite-dimensional distribution of the conditional Wiener measure. Let

(21 the candidate position, and

s € R -1 represent the current position and s’ € R™
let s, € R™2*~1) denote the first k levels of s; likewise s}. Let pj, : R™2" 1) — R denote
likelihood in the target (that is, the pdf of the finite-dimensional distribution of 7) for the
first k& levels. Meanwhile let g : R™(2"~D — R denote likelihood in the candidate for the

first k levels. Then

pr(s) = u(skp)Y (sk). (4.16)
The acceptance probability for level k is then given by

Qk<5k|5k—1>pk(3;g)pk—l (Sk—l)
qk<8§€|8;c—l)pk(8k)pkfl (52;—1)

Py(s},) = min |1, (4.17)
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Therefore if g, is taken equal to p, we have

qr (sk)pr (s )pe—1(s) _ pu(sklse—1) p(sh—1) (k] sk—1) p(sk-1) ?(SZ)Y(Sk—l) (4.18)
G (S3)Pk(8)Pr-1(8")  p(shlsioy) pse—1)pu(sklsk-1) 1(s) 1) Y (s} )Y (s '
_ Y(sp)Y(s6-1) (4.19)

Y(s_1)Y (sk)
Thus, distributing the candidate via Brownian bridge and then not introducing any com-
pensating factors for this gives a correct formula. In effect if we take the candidate as per
the Brownian bridge then we can accept or reject based on Y. This then yields sampling
according to v. The Multilevel approach involves the additional steps to spread the chance
of rejection over the levels, ie to include a rejection step at each iteration of the bisection
method, since computing Y for the candidate path is assumed to be the most expensive part
of the algorithm. In practice, when a section of the path is being resampled, often a cheap
approximation to Y may be used for the earlier steps. It is possible to then weight back for

this as further candidate path points {x(tx)} are chosen.

4.2.3 Including permutations in the random sampling

We have deliberately treated the case of distinguishable particles first but let us now

reconsider how to treat bosons (and by extension, fermions). Recalling (4.3),

A = %ﬂgn c(ﬂ)/c or(y, my)F(x)d (A X wéf’) (y, ) (4.20)
= /co G(x)d (A X w€f> (y,x) (4.21)
= [ d@erlnm)F@d (U x A xwf}) (x.0.2) (4.22)

L, xCo

where U indicates the discrete uniform measure on the finite set II,,. Furthermore, if we set

Cn={X el :X(T)=nX(0) for some 7 € II,,} and define w*' = A x a(y)w{{f”y where

(y) = Xren, Pr(y: 1Y),
A= [ ¢ (@) F(x)dw™ (y, z) (4.23)

Cn Yy

In general, collecting all n! summands in (4.20) is inefficient, since they do not provide

equally important contributions to the integral, and sampling within II,, is desirable. To
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T\ I,y

0.y s 1€ to use a mixing measure where permutations

sample according to a normalised w
receive Gaussian weightings, would also be inefficient.

As already discussed, the popular approach to the problem is to avoid having to estimate a
denominator integral separately (cf (4.12)), which here means that we sample within I1,, x Co
so that |c¢(m)pr(y, 7)Y (2)| = ¢r(y, 7y)Y (2) is the Radon-Nikodym derivative between the
sampling measure and U x A X w;{ ;’ To look at this another way, we could say that we are
sampling X within Cp so that Y (x) is the Radon-Nikodym derivative between the sampling
measure and w*. We then shall find that (4.13) again applies. Let us therefore define, now

for indistinguishable particles, the action measure v, defined on the Borel o-algebra 5 (Cr)

and given by
Jp Y (@)dw(y, z)
Je Y (@)dw ! (y, z)

It is immediately evident from the definition of v that for bosons,

v(B) = (4.24)

In particular, if F'(z) = A(z)Y (x) then

(A) = / A(x)dv(z). (4.25)
Cn

In order to perform the sampling according to the action measure via the Multilevel
Metropolis approach in the case of bosons, we proceed much as described in Subsection 4.2.2,
except that during our MC step we allow the possibility that some particles are permuted
between the first and last time-slices of the move. (In [Cep95] the suggested method involves
including cyclic permutations in each candidate move.) To justify this procedure, intuitively
it is sufficient to recognise that if we consider times 0 and T to be identified, then by
symmetry we might as well allow the permutation to happen at any time-slice. (In fact, it is
partly in this that the elegance of using the action measure lies: the initial system position,
once identified with the terminal system position, is robbed of any special significance and

is treated the same way to the position at any other time-slice.)
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We can, more rigorously, regard the problem from the perspective of using the state space
R" /1I,. Let us use C" for the set of loops {X : [0,7] — R"/II, s.t. X(0) = X(T)}.

Then as long as F' has permutational symmetry, we have for bosons (cf (2.68))

A= E /CH F(x)d (A X a(y)w&?"i) (y,x) . (4.26)

n!

Imagine that we intended to sample (in C) according to A x wa r?:j , ie the projection of

w* on to C™. Let us resample intermediate discretisation points in R"™ / IT,;; say that in

7+2] Jnxo

projection, X; 1 = Il z, and X;,9 = II,z,. We have said that we can obtain w, "7y

,an . . . . . . .
via wt”fjm - (see Subsection 2.1.4), so it follows that it is valid to generate points in R™?

tipoiln®2

Tz, and then consider the equivalent points in R™ / II,, to have been

according to w;;
sampled.
Again, to develop an intuitive understanding of this, consider what happens if we are

trying to integrate with respect to wo " and we resample the section of the path over (0, ),

but according to wh"* where x is the X (¢) already obtained. It is a fact that the points IT,x

0,z0

T I, xp
07““0

tI,z,

have the same relative likelihood under w 0y

as their relative probability under w

Txr ”YmT

this is clear if one considers that the measures for X () supplied by wy, " and w, " are
conjugated by 7. Meanwhile X(; 7} has been sampled according to w ;, T2m hut in projection
to paths with state space R"™ / IT,, this is the same as wt; "7 for any v € II,. Thus the
projection of the resampled path is being sampled according to wa ﬁ:;g.

What this really means is that in effect we have a procedure, involving allowing permu-
tations at intermediate times, for sampling in Cy; according to w*. But we may therefore
employ the usual Metropolis approach, using this type of sampling in w* for the candidate
at each step, to create samples according to v.

An alternative procedure is to also consider permutations between each step of the resam-
pled section, as they are generated. This could be advantageous both from the perspective

of consistency and from the perspective of being congenial to good progress through the full

space of paths.
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Permutation sampling for fermions Although our main discussion of fermions is in the
next chapter, it is pertinent to note at this point why exactly the same sampling procedure
is valid in the fermion case, if one wishes to attain the action measure. The difference is
then that we are no longer integrating a functional which is measurable with respect to the
projection of X into C™. Rather, we integrate such a functional multiplied by the sign of the
overall permutation (ie, that permutation which is obtained by travelling along the path X
through a full circumference of time from any ¢ back to itself). However, it is easily seen that
where m = w79, sgn(m) = sgn(m) sgn(ms) and consequently if we multiply our functional by
the signature of the permutation obtained every time that we perform a resampling, then

the overall sign will be maintained equal to the signature of the overall permutation.

4.2.4 Numerical results still apply under importance sampling

It should be emphasised that to this point, there can be no interaction between the
effectiveness of numerical and simulation methods. In Chapter 1, we assumed that we
would try to find a weak approximation U to a functional integral U, and then estimate the
value of U via Monte Carlo; the sampling measure and other aspects of the Monte Carlo
method cannot affect the relationship between U and U. In this Chapter, in Subsection
4.1.1, we have introduced the same idea for estimating (A); in particular, we identified
a weak approximation to (A4) ( cf (4.5),(4.15)), and have also discussed how to best use
Monte Carlo to provide information about this @T} To show that the method defined in
Subsection 3.2.2 is of second order when using the action measure, as it is for direct path
sampling, amounts only to observing that the expectation of the Monte Carlo estimator of

(A) is the same in both cases. Consequently, we should write

(A) = /C Alz)dv ().

To say that there is no interaction at all between the numerical method and the simulation
method is to elide a subtle point: the efficiency of the Monte Carlo may of course be different

for a different value of the time-step h, since every h gives rise to a different simulation. This
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shall actually become important later on, but for bosons probably does not matter at all.

The piecewise constant method as "primitive action"

Interestingly, it was anticipated in [Cep95] that for many so-called ’static’ quantities, the
numerical method introduced in Subsection 3.2.2 should be second-order. In the physics
literature, using this method to estimate the action functional (which then gives rise to
sampling via the action measure) is referred to as using the symmetrized primitive action.

The author of [Cep95] writes:

We have symmetrized ... with respect to R,, and R,,_; [system positions at
the end and start of the time interval| since one knows the exact density matrix
is symmetric and thus the symmetrized form is more accurate.

(The reader should note that more generally, our 7 is not universally taken to be implied
by the ’primitive action’; e.g. as in [Sim05] this term may refer to using the Euler method
(3.11).) As mentioned, it was already known for the action functional itself [Suz91] that
the method of Subsection 3.2.2 is second-order. Our result expands on this in a way which

apparently vindicates the intuition held by physicists.

4.3 Numerical results for boltzmannons and bosons

In this section we present some experiment results intended to provide illustrations of
various facts. Firstly we demonstrate the simulation of a correlation function, for a 1-
dimensional system containing 1 particle, both for the harmonic potential and an quartic
potential, using the piecewise constant method from Subsection 3.2.2 in conjunction with
direct path sampling. We then compare this method with the Euler method in an example
where the two are different, finding the kinetic energy of four bosons in a 1-dimensional
system. The use of the action measure is then demonstrated, in an experiment which recre-

ates that of [CP84]. We then return to considering the case of a 1-dimensional harmonic



92

oscillator system with one particle, to graph the simulated position density and to compare

with using the numerical method given by applying Simpson’s Rule to the action, S.

4.3.1 Experiment results: Correlation function

Let d =1,n =1 and consider the correlation function I'(f), 0 < 6 < T' (see (2.72)):

I'(0) = (x(0)z(0)) (4.27)
R T (0 & AT () ey — Jo Ry, y)dy
~zm [, 7O SOy @i =
where
R(y,y) = /CT-,y x(O)x(@)Y(m)dw&f(m) (4.28)

Using (4.8-4.9), (calling our numerator ﬁMC) we evaluate (4.27) for the harmonic potential

V(z) = - (4.29)
and for the quartic potential
w2
V(z) = 7:54. (4.30)

In the case of the harmonic potential (4.29), the correlation function is equal to [Kle95,

Chapter 3]:

1 coshw(§ —T/2)
Lo =35 sinh(wT/2)

, 0<0<LT. (4.31)
Recall (see Section 3.2.2) that the discretization of the time interval [0, 7] should be such
that the point € belongs to the set of discretization points {to,t1,...,tn}-

The results of the experiments are presented in Table 4.1 and in Fig. 4.1. In (4.8-4.9), 1 is
taken to be Gaussian and the parameters o, and o are taken to be 1.2 and 0.8, respectively,
in order to give low variance to ﬁMC,gMc. As above, in Table 4.1 the values before “+”
are estimates of the bias, computed as the difference between the exact I'(1) and its sampled
approximations, while the values after “+” give half of the size of the confidence interval

for the corresponding estimator with probability 0.95. To compute the bias, the exact value

['(1) = 0.1840098 obtained from (4.31) was used. The number of Monte Carlo runs M is



93

tha wescd soilioh —
o spprodmation -s---

0.2

0.1

014

Figure 4.1: Correlation function. The dependence of the correlation function I'(d) from
(4.27) on 6 simulated with h = 0.2 and M = 10® for T = 10. The left figure corresponds
to the harmonic potential (4.29) and the right figure — to the anharmonic potential (4.30),
both with w = 1.

chosen here so that the Monte Carlo error is small in comparison with the bias. It is not
difficult to see that the experiment illustrates second-order convergence of the method. We
note that weighted least squares fitting of C'h? to the data of 4.1 yields C' = 0.015, with the
maximum absolute value of the residuals being equal to 3 x 107°.

Table 4.1: Correlation function. The error in evaluating the correlation function I'(0) from
(4.27) in the case of the harmonic potential (4.29) with w =1, 7= 10 and 0 = 1.

h M error

0.250 10° 9.78 x 1074 £0.72 x 10~*
0.200 10° 6.18 x 1074 £0.72 x 10~*
0.125 101 245 x 1074 +£0.23 x 1074

0.100 5x 10 1.46 x 107*40.10 x 1074

In Fig. 4.1 (left) the results of simulation of I'(f) with h = 0.2 are compared with the
exact curve from (4.31). Thanks to the second-order of accuracy of the proposed numerical
method, these curves visually coincide even for this relatively large time step. Figure 4.1
(right) demonstrates behaviour of the correlation function in the case of the quartic potential
(4.30). The presented curve is obtained with the time step h = 0.2 and it visually coincides

with the one simulated with A = 0.05. These experiments give further confirmation of our
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theoretical results.

4.3.2 Experiment results: Kinetic energy of 4 1D bosons

We now consider a system of 4 bosons in a 1-dimensional space, (n = 4,d = 1) with mass

m = 1 in the harmonic potential

2 2
V(wl,...,xn):%—i—---—l—% (4.32)

at inverse temperature 7' = 1.2. It is known (see, e.g. [TI84]) that in the case that d = 1,

the kinetic energy is equal to

1« [T n(n —1)
__2: hi=—)_2"~/
4[1100t (2) 8

and therefore for these parameters, the exact value of the kinetic energy is (K) = 1.3740081.
Again we use (4.8-4.9) in conjunction with the approximation scheme (3.7). We take p to
be Gaussian about zero, with o, = 09 = 2.

Since the particles are noninteracting, we can decompose U (z, 7x) and Z(x, mx) to perma-
nents as follows (see a similar idea in [TI84]). Let U : R — R be such that V(z) = >, U(x;)

and let

Fiwn ;) = (2T fm) 2 exp C%) E [exp (_ /OT " (XOT,XJ( )) dt)

« (L It A Sy A (X)) (X () — 2T - 1) — 1) dt)] ,

2m 2T 2m J,

Tolan, 1) = (2T fm) "2 exp G%) E exp (_ /OTU (X&%( )) dt>

It is not difficult to show that

Uly.my) = > Zjl w,m)) [T Rl (o)), Ty, 7y) = > HJz Yk (TY))

well, =1 ke{l,..n}\ {1} well, k=1

(4.33)
and that consequently a similar statement holds for I/, 7 and indeed YFVLER TEULER
We remark that although we illustrate the above decomposition into permanents in order

to compute K and Z for the case of particles in a 1-dimensional space, its generalization for

noninteracting particles in any real space is straightforward.
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Table 4.2: Kinetic energy of bosons. The errors in evaluating the kinetic energy Fy;, of
the system of four bosons (2.76) in the case of the harmonic potential (4.32) with 7" = 1.2,
n =4, and m = 1. The number of Monte Carlo runs M = 10°.

h Euler method Method (3.7), (3.6)

0.20 0.236 4+ 0.55 x 107*  0.533 x 10724+ 0.75 x 1074

0.15 0.1754+0.61 x 107*  0.300 x 1072 £ 0.75 x 10~*

0.10 0.116 +0.66 x 107* 0.128 x 10724+ 0.76 x 10~*

0.05 0.0574+0.71 x 107*  0.035 x 1072+ 0.75 x 1074

We analyze two methods: the method (3.7), (3.6) and the Euler method (3.11), (3.10).
The results are presented in Table 4.3, which gives the errors of the two methods. As in
the previous examples, the Monte Carlo error was made relatively small in order to be able
to analyze the bias. It is clearly seen from the data that the method (3.7), (3.6) converges
with order two while the Euler method exhibits the first order convergence as expected (see

Theorems 3.2.1 and 3.2.3).

4.3.3 Experiment results: Potential energy of 64 boltzmannons

To illustrate that the result of Section (3.2) applies equally when performing an MCMC,
we shall present an example involving the potential energy of a system of many distinguish-
able particles. The experiment here recreates that of [CP84]. We consider 64 particles

interacting via the Lennard-Jones potential

_45 4e

V(r)= e (4.34)

where the value used for well depth ¢ was 10.22. In all experiments, 7" = 0.195695, so that
eT = 2.0, but the variance of Brownian bridges was inflated by a factor of 1.856 ~ 0.1816¢
relative to the standard conditional Wiener measure. This corresponds to the choice of
parameters in [CP84], that one unit of length represents 2.556 A and 2}% = 6.0596.

The simulation uses a periodic boundary condition such that the particles inhabit a cube

about 0 with side length L. = 5.6. To generate candidate moves, first a candidate move is



96

generated in R?®", then by identifying the boundaries of the cube, this is mapped to a point
in [—L/2,L/2]3N. To evaluate the interaction potential between any pair of particles, we
consider the shortest distance between them on the cube with identified boundaries, which
means that V' is set to zero for r > L /2.

The initial configuration was generated by taking a uniform grid of particles fixed in place
for all t € [0,7], and running a burn-in of 10° attempted MCMC moves. The number of
points used in each candidate move was between 2 and 12, with a lower number more likely.
We sample uniformly a start position i for the set of time-slices in which the path for these
points is to be resampled, and an index j is sampled uniformly between 1 and 6. Then the

time-slices used are {i + 1,..,i + 2/ — 1}, with modular counting on {1,..., N}.

Variance estimation

A windowing method was used in order to gather sampling variances. The windows are

non-overlapping but results are autocorrelated due to the fact that they are part of the

—_ —_

same MCMC chain. We let (V) signify the estimate of (V') obtained using the average of

—

V' samples over the Markov Chain, and let (V'), represent the average value of V' samples

over the nth window. Due to autocorrelation, to obtain a credibility interval for (V'), the

following formula, which follows from Eq. (5.6) of [Cep95], was used: where 0% denotes the

—

true sampling variance of the average over windows of (V'), oo; denotes the covariance of

—_—

(V),, with (V') ., and Ny is a sufficiently large number of windows,

1 Ny —1
2 o (goo+2 X_; aOi) (4.35)

The number of attempted MCMC moves per sample of V' was 100 and the number of

n—’

Q
X

samples of V' per window was 1000. The number of windows was 10000 for M = 512
and greater in the other experiments. Between windows, there was a burn-on of 10000
attempted MCMC moves with no sampling of V. A depth of 5 autocovariances was used in
approximating (4.35), as autocovariance was observed to diminish over this interval and to

be negligible thereafter.
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Results of MCMC

The results of the experiments are given in Table 4.3. For M up to 256, the bias is here
estimated by comparison with the reference value obtained with M = 512. The variance
for the posterior distribution of the “bias” is then taken to be the sum of the relevant (/V\)
variances, and the covariance between biases is then the variance of the M = 512 result.
Equal-tails 95% credibility intervals for the ratios of bias were obtained by Monte Carlo with
108 BVN draws. The entry in the table for M = 16 represents the ratio of bias between
M = 16 and M = 32, and so on; clearly it is only possible to report this up to the ratio

between M = 128 and M = 256 so the remaining cells are left blank.

Table 4.3: Results of Markov Chain Monte Carlo to simulate 64 distinguishable particles
interacting via Lennard-Jones potential and collect an estimate of potential energy.

M (/V\> s.d. “Bias” s.d. Ratio | Low(95%) | High(95%)
16 | -1.9373086 | 9.531E-05 | -7.918E-02 | 3.103E-04 | 2.690037 | 2.652768 2.728818
32 | -1.8875645 | 9.673E-05 | -2.943E-02 | 3.107E-04 | 3.167031 | 3.023195 3.33071
64 | -1.8674245 | 1.039E-04 | -9.294E-03 | 3.130E-04 | 3.899932 3.2325 5.0453
128 | -1.8605138 | 1.427E-04 | -2.383E-03 | 3.280E-04 | 2.928521 1.388 10.165
256 | -1.8589445 | 2.292E-04 | -8.137E-04 | 3.738E-04

512 | -1.8581307 | 2.953E-04

The remarkable learning from these results is that for this simulation it takes a very

small value of the time-step h for the quadratic decrease of the bias to become evident, even
in this example which ostensibly should lend itself to a nice result. Convergence towards a
quadratic decrease is observed here only as the number of time steps is increased past 128
and this simulation already has a very long running time (the last experiment here took over

39 days on a 2.0 GHz machine) in order for this quadratic decrease to be distinguished.

4.3.4 Experiment results: 1D harmonic oscillator with 1 particle

Theoretically it has been established that the method (3.7) has bias of order h?, and it

has been pointed out that if we let Z be found by using Simpson’s Rule (3.40) for S(z),
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rather than the Trapezoidal Rule (3.39), then this also has bias of order h%. However, there
is reason to believe that the bias using Simpson’s Rule should be smaller, and this is tested

in the following example.

Analytical solution

Consider the one-dimensional harmonic oscillator with force constant 1, ie let 1 particle

1

2&:2. For convenience, let the mass

be subject to a potential V' : R — R given by V(z) =
of the particle be h?. We recall the analytical solution for this system in order to make

comparisons with simulation results. It is well-known (see [AF97]) that the eigenstates of

the Hamiltonian are given by
1 - 1
E,=m+ 3 Y (z) = (2"m! 7r1/2) H,(z)e 2" | (4.36)

where H,, denotes the mth Hermite polynomial, given by Hy(z) = 1, H;(z) = 2z and the

recurrence relation

Hm+1 = 2$Hm - QmHm,l.

Therefore

J(z,2) = ;ioexp <— (m + %) T) () exp (—a7) (4.37)

pr(z, ) £= 2mm) wl/2

However, the solution to the functional integral can also be found analytically in closed form.
Considering the equation (1.9.7) of [BS02], where W ~ w{, is a 1-dimensional Brownian
motion, and where y signifies the measure on B(R) induced by the law of W (7)),

E {exp (—%Z/OT W(s)2d5> ’ W(T) = xT} Z—K(:w) =

Y 1z e [ (22 + 22) v cosh (Ty) — 2vwoxr
27 sinh (7) P 2sinh (7)

and it therefore follows that

E [exp (—7;/: W(s)2d5> ’ W(T) = ;UT} =

rr — $0)2

1
(yT esch (7T))? exp (( 57— 37 (2§ + 27) coth (YT') + yzozr csch (fyT)) . (4.38)

Clearly E [eXp (—% fOT W(s)2ds> ) W(T) = xT} = J(xo, x7).
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Results

To visually illustrate how well the simulations reproduce the actual system, we graph
the position density p(x). We take a partition of R into intervals B; and approximate Elp,
for each ¢, simultaneously and being careful to keep an eye on the covariance matrix. We
use the approximation P(B;)/A(B;) =~ 9£(z;) for z; the midpoint of B; in order to provide
comparison with the pdf p(z). Here A(B;) = 0.04. The results are displayed in Figures
4.2-4.4. The error bars in these figures show 95% credibility intervals for the simulation

values. For these simulations, Simpson’s Rule (cf (3.40)) was used to approximate S in order

to apply (4.8)-(4.9). It can immediately be seen that there is a very good fit between the

Exact

u Approximate

Figure 4.2: Simulated density, for 1 particle in HO., T = 2,h = 0.05, M = 105, against
solution

points generated by simulation and the true density, so we may have some confidence that
our algorithm is converging to the correct density (as M — oo and h — 0) and that we may
proceed to discuss it accordingly. We can see that our reported Monte Carlo error easily

accounts for the difference between our experimental results and the true answer. It appears
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0.6

Exact

u Approwimate

Figure 4.3: Simulated density for 1 particle in H.O. with T'= 6, h = 0.1, M = 10°, against
solution

that in these examples bias is negligible by comparison with Monte Carlo error. It can be
seen that at T' = 10, we can still obtain a very close visual fit to the position density using

10® paths.

We let (V) indicate the approximation to the average potential energy (V') given by

—

using Simpson’s Rule for S. Setting F' = V()Y (x), the value of (V') was estimated using

(4.8-4.9). We use (V) to denote L—, and realisations of this are tabulated in Table 4.4.

ZMC?

The correct value is (V) = 0.3282588. A credibility interval for (V') is provided using the
Bivariate Gaussian contour method.
It can be seen that the variance of </V\) diminishes approximately linearly as the number

of trajectories is increased, which is consistent with (4.7). It can also be seen that the results

exhibit the expected convergence, and that bias begins to surface at 10° trajectories.
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Figure 4.4: Simulated density for 1 particle in H.O., T = 10,h = 0.2, M = 108, against
solution

Table 4.4: Potential energy of 1 particle in a harmonic potential; to 9 d.p. The results were
created by using Simpson’s Rule for S and direct path sampling. The reference value is
0.3282588.

Method T h M (V) Min (V) (95%) Max (V) (95%)
Simpson’s Rule 2 0.1 10° 0.328675017 0.327607571  0.329744697
Simpson’s Rule 2 0.1 107 0.328157911 0.327820619  0.328495426
Simpson’s Rule 2 0.1 10° 0.328336051 0.328220332  0.328442793
Simpson’s Rule 2 0.1 10° 0.328322286 0.328288539  0.328356036

Comparison of Simpson’s Rule with Trapezoidal Rule

As mentioned, for integral-type functionals the piecewise constant numerical integration
method described in Section 3.2 becomes the Trapezoidal Rule. Setting F' = V(z¢)Y (z), the
average potential energy (V') was estimated using (4.8)-(4.9) in conjunction with, variously,
the Trapezoidal Rule or Simpson’s Rule for S, which from theory we believe to both have
bias of order h%. Throughout this experiment, we took 7' = 4 and M = 10'°. The results are

shown in Table 4.5. The correct value of the average potential energy is (V) = 0.259328680.
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—_—

A credibility interval for (V'), or (V) in the case of the Trapezoidal Rule, is calculated using

the Bivariate Gaussian contour method.

Table 4.5: Potential energy for 1 particle in a harmonic potential; to 6 d.p. The results show
a comparison between using Simpson’s Rule or the Trapezoidal Rule for S. The reference
value is 0.259328680. For all results, 7' = 4 and M = 10'°.

— —_— J—

Method h (V) (V) [or (V) ] (V) = (V) Std. Diff
Min (95%) Max (95%) [to 2 d.p.]
Simpson’s Rule 0.1  0.259365 0.259354 0.259377 0.000036507 6.3
Simpson’s Rule 0.2 0.259498 0.259486 0.259509 0.00016883 29.1
Simpson’s Rule 0.4 0.259967 0.259955 0.259978 0.000637902 109.47
Trapezoid Rule 0.1 0.259026 0.259015 0.259038 0.000302438 52.32
Trapezoid Rule 0.2 0.258110 0.258099 0.258121 0.00121844  212.11
Trapezoid Rule 0.4 0.254532 0.254521 0.254543 0.00479634  855.55

The figures for "Std. Dift", which appear in the last column, are calculated by dividing
(V) — Min by 1.96 to obtain a "standard error" and then dividing (/V\> — (V') by this number.
This gives a flavour of how certain we can be about the exact extent of bias (as opposed to
Monte Carlo error) in contributing to </V\) — (V).

We can, loosely speaking, observe from the results given in Table 4.5 for T = 4 that as
determined theoretically in Chapter 3, both methods are of order 2 in h. If we consider the
posterior distribution for the ratio of bias between h = 0.1 and h = 0.2, it is clear that 4 is
a very plausible value. The same thing is even more evident for the ratio of bias between
h = 0.2 and h = 0.4. It is remarkable that the bias for Simpson’s Rule is positive while that
for the Trapezoidal Rule is negative, for this potential.

Let <T//> = (V) + £0.1 indicate the limit of (/V\> with h = 0.1. It would be possible to get
the joint posterior distribution of the ratios €g.4/€0.2,€0.2/€0.1 by performing a Monte Carlo,
making draws from the posterior distribution of fT, Z for h = 0.1,0.2,0.4 simultaneously,
recording the corresponding values of €g.4/€¢.2,€0.2/€0.1. However, we can form a very rough

">95%" bound on the ratios of bias by simply taking the ratios of the extreme values of the

bias corresponding to the intervals given in Table 4.5. This is shown in Table 4.6.
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Table 4.6: Credibility itervals for ratios between biases incurred using Simpson’s Rule and
Trapezoidal Rule; to 6 d.p. Calculated simply by comparing extreme values from intervals
for biases.

Method Min (95%) ratio of bias Max (95%) ratio of bias
Simpson’s  from h=0.2 to h=0.1 3.289627 7.165374
Simpson’s  from h=0.4 to h=0.2 3.476549 4.123792
Trapezoid from h=0.2 to h=0.1 3.847378 4.224209
Trapezoid from h=0.4 to h=0.2 3.891472 3.982261

Since these will be overestimates of the true intervals, it is clear that for the Trapezoidal
Rule, convergence to a ratio of 4 has not taken place at h = 0.4, but does thereafter; for
Simpson’s Rule the most plausible value of the ratio is also 4. It is evident that both
methods display results consistent with a bias of order h?, but that nonetheless, the gain
from using Simpson’s Rule rather than the Trapezoidal Rule to approximate fOT V(X (t))dt
is considerable. In fact the impact, for this particular potential, is comparable to (but less
than) the impact on Monte Carlo error of increasing the number of trajectories by a factor
of 10. Considering results for different T, it can be seen that the bias is at the 4th place for
h = 0.2, for all these times, and is < 0.0002. So we may conclude that using A = 0.1 will

yield a bias at the 5th place.
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Chapter 5

Fermionic simulations and the

fermion sign problem

5.1 Simulating systems of fermions

5.1.1 Functional integrals for fermion systems
Direct path sampling

Recalling (?7), for fermions

(4) = A Jo, sen <fc((€))> F(a)dw™ (z)

vt an sgn (ig;) Y (z)dw™ (z)

z(T)
z(0)

We have a choice about how to incorporate the sign sgn ( >: we can either suppose that
we have the integral of a positive functional with respect to a signed measure, or the integral
of a signed functional with respect to a positive measure. For the time being we take the
latter point of view.

The alternative ways of writing the functional integrals (4.20)-(?7?) lead to several differ-
ent ways of performing direct path sampling. The most naive is that corresponding to (4.20)

or (4.22); meanwhile, (4.21) corresponds to using linear translation to generate permuted

paths, which is somewhat more beneficial here because of the negative covariance between
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the countersigned summands thus created.

Using the action measure

Direct path sampling simulations of fermions are useful for simple experiments, but fail
rapidly for the same reasons as direct path sampling simulations of bosons (cf [Cep95,
Cep96]). Therefore the action measure is again often used. Recalling (4.10)-(4.12) and
letting diuiin(x) be proportional to ?(m), which is the absolute value of the denominator

functional, we see that where X ~ 7, we must take
M , o
XUT) | F(XY)
— X [Sg“ (m) ?(xw}

= M Xi(T
e (9]

=1

(5.1)

It is impossible to avoid incurring a denominator term when the particles are fermions, since
we cannot sample according to a signed measure. The h — 0 limit (ie, the limit obtained
with an indefinitely fine discretisation of time) of the expectation of the denominator in (5.1)
is called the average sign and shall sometimes be designated (+):
J. sgn 2@y (2)dw ™ (z)
(+) = ZrERMI _ JCn SO
Znos Jeu ¥ (2)duT(z)

_ e Zsen@erly my) I (. 7y)dy (D)
a2 (y, ) T (y, y)dy _/cn & (JI(O))d

While this is the average sign in a simulation which relies on using the action functional

directly, in other simulations the average sign may be different, as we describe below.

5.1.2 Introduction to the fermion sign problem

In this subsection we shall endeavour to define the fermion sign problem and to superfi-

cially explain how it arises.

Definition 5.1.1 An integral with (real or integer) parameter 0 is said to have a sign

problem (for 0) in the case that

Fyd
lim S Fodpy 0 (5.2)
600 [ |Fy| dpy
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Remark 5.1.2 It is obvious from this definition that for Fy > 0, no sign problem can occur.

1D real example Let a family of real-valued random variables Xy be defined on some
(Q,F, P) and have pdf given by fy(z) = ¢,(3,2). Then [ XydP has a sign problem for 6.

We shall casually say that [ Fydp "has a sign problem" in the case that 6 is T'.

The reason for the fermion sign problem

Recall from (2.62) that for fermions,

( > (,OT(.T,W.T>> Ir(z,z) = Y. sgu(m)op(z, 7x)Jr(x, mz). (5.3)

7T€Hn TI'EHn

Let us imagine first of all that we had to independently estimate the integrals Jr(x, 7z).
The variance of the estimate of the unnormalized density given by (5.3) must then be the
same as if sgn(7) were not present, but the presence of sgn(m) means that the quantity being
estimated is much smaller than otherwise. This explains how the problem arises in the case
of direct path sampling based on (4.20). It shall be observed that the variance increases
relative to the expectation, as 7' is increased - much more rapidly than in the boltzmannon

or boson case.

The efficiency of a simulation

—

We shall now consider the variance of (A) given by a formula similar to (5.1) using a
measure which makes the denominator equal to the observed average sign. We restrict our
attention to observables that are diagonal (although by setting A= % an extension is not
difficult). However, we shall consider a more general case where we have some functional [

(rather than, hitherto, Y) such that we take

where A (and hence A) is assumed to be a positive functional and C is a functional which

dv

Tz o for a positive

takes values in {—1,1}, and sampling is with respect to v with
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functional I. Here we call E,C the average sign corresponding to I, noting that

_ Jo,, Ca)I(z)dw*"
an T(x)dw*n '

E,,C:/ C(z)dv
Cn

It is particularly of interest to discuss the relationship between the variance of this quantity
and the equivalent that is found in the unsigned case, ie by assuming that C' = 1 always. (In
the case that I =Y and C(X*) = ¢ (%) this means that we are comparing the variance
obtained in simulating fermions using (5.1) with that obtained in simulating bosons the same
way.) Recalling (4.7), discarding terms in ;5> yields that (where all moments are taken under

v and where we suspend the argument ; X)

_ N E|CA _ E[cil)’
Var ((A)) ~ ;CDQ Var (CA) - 2%@@ (CA, 0) + %V&r (©)

But
Var (0A) =& [22] - (& [cd])"
and since C? = 1 everywhere,

Cov (CZ, 0) ~ E [C?Z] — (E[C])E [cﬁ]

Then

E|CA _ L E|CcA oy
E[[C]] Cov (C’A,C) =K [A] % - (E [C’A]) 7
and
(E [021])2 (E [021]>2 .
€y = T wy (B ]c4])
Consequently,

o ) = s - S G

Q
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In the case of the action-based simulation with I = Y, the term inside the squared paren-
theses in (5.4) is the difference between (71/> for bosons and @ for fermions; meanwhile the
variance for bosons is Var <Av> /M. Tt is clear from (5.4) that if we now introduce, following
[Cep96], the efficiency &, defined to be the square of the average sign, then the relative
cost of a simulation (to obtain the same variance) due to the presence of signs is governed
by £ and is always more than £ times greater.

Thus, in the case of sampling according to the action measure and using (5.1), the
simulation cost to achieve a particular Monte Carlo error threshold scales with &, relative
to the corresponding cost for bosons plus the square of the difference of the observable’s
expectations. Since (£) — 0 both as 7" — 0, and as n — oo, this gives rise to the fermion
sign problem: although the cost scaling for bosons is polynomial, the cost scaling for
fermions is exponential in 7" and in n, if we use the methods introduced in Chapter 4. In
the words of [Cep96] (p. 4), there is "an exponentially vanishing signal-to-noise ratio".

The fact that (&) — 0 is immediately evident in a simple case, such as a pair of particles

starting from (a,b) € R?. The relative likelihood that they will arrive at (a,b) or (b, a)

under the Wiener measure on paths is becoming close to 1.

(a —b)? X(T) T, (a,b)
(1 + exp <_—T o) sgn (@.b) Y(X)dwo,(a,b)

0,(a,b)
(a—b)

= rl(a 0 0) = e (<70 ) (e ta)

Meanwhile, intuitively it appears that for large T', Jr((a, b), (a, b)) is close to Jr((a, b), (b, a))
because paths which visit the same parts of space have a similar likelihood under the two
measures. This very rough intuition shall be developed into something much more meaningful
in Chapter 7. Meanwhile, in general there are n! negative and positive terms in Z; and
as T' increases these terms are all becoming closer together in value. This leads to an
exponential decrease in the efficiency. Using (4.38), it is not difficult to find numerically
that for two noninteracting fermions in a 1-dimensional harmonic oscillator, the efficiency is

exactly £ = exp (—27).
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The sign problem is also discussed in [FH65, Cep92, LL70], amongst other works.

To summarise the conclusions from this and the previous chapter, then, for direct path
sampling, the observed behaviour, even without a sign problem, will usually be an exponen-
tial increase in the cost to achieve a particular variance, as T' is increased. However, using
the action measure will, in the absence of a sign problem, allow a polynomial increase of cost
[Cep95], whereas in the presence of a sign problem, the increase of cost is exponential. When
a sign problem exists, the cost increase under direct path sampling is also exponential, but

with a much higher exponent than in the unsigned case.

5.1.3 The fermion sign problem is insoluble

A very instructive contribution to the study of the fermion sign problem was made in
[TWO05], which essentially demonstrates that the problem is insoluble. It is shown that any
exact algorithm (ie, one without uncontrolled approximations) has to scale exponentially
with n, unless the so-called "P=NP" condition (see e.g. [Sip92]) holds, and this is generally
thought to not be the case. That the fermion sign problem should turn out to be insoluble, on
a computer using classical logic, is redolent of Feynman’s earlier scepticism about the ability
of such computers to perform quantum simulations effectively - precisely for the reason that
in quantum mechanics "negative probabilities" occur (see [Fey83, p.480]). In [Cep95ii], an

heuristic suggestion is made for why the Troyer-Wiese theorem should hold:

Suppose we have a system which has a probability p of having a positive
contribution and a probability ¢ = 1 — p of having a negative contribution. Now
the efficiency, or signal-to-noise ratio is simply the integral divided by the total
number of samplings: (p—q)/(p+¢q). Now put N of these systems together. Using
the binomial theorem, the signal-to-noise ratio is now: (p—q)V/(p+q)N = eV
where ¢ = —In (1 — 2¢) & 2¢. Thus no matter how small ¢ may be, one gets
exponential scaling.

Works such as [TWO05, Cep96] frequently refer to a notional equivalence between increas-
ing the number of particles and decreasing the temperature, because the relevant variable,

where the sign problem is concerned, is the propensity for fermion exchanges to take place.



110

Consequently it is common to loosely define the sign problem as being the manifestation of
exponential cost scaling with 7" and n. The result we are going to prove in Subsection 5.3.2
also suggests that for noninteracting particles there is some connection between being able
to simulate for larger T and for larger n. But as we shall see, there are reasons to be careful
about taking the equivalence at face value. While the case of large n has been addressed
through a variety of approximate techniques in physics, an exact method is not available,
and until the advent of quantum computers, probably never will be. On the other hand, it is
possible to perform zero-temperature simulations of few-body systems of fermions without
having to use a special strategy to avoid the sign problem, using other Quantum Monte
Carlo methods. So in particular, it is not necessary to believe that solving the sign problem

w.r.t. T, for fixed n, is impossible, just because it is impossible to solve it w.r.t. n with fixed

T.

5.2 Extant practical approaches to fermion simulations

The very notoriety of the fermion sign problem seems to have stimulated a variety of
research activity in the area over the last 20 years. In this section, we shall give some
brief explanation of several particular popular approaches. There is not room to offer either
in-depth analysis or an exhaustive catalogue of attempted solutions; the intention is to
give some broad indications of the present state of research on this topic. With this aim
in view, we now offer brief descriptions of two notable methods, Restricted Path Integral
Monte Carlo and the Multilevel Blocking approach. Other well-known approaches, which,
like these, would be best described as partially effective, include Gaussian Quantum Monte
Carlo [CD04, Cor08] and the high-temperature "Direct" Path Integral Monte Carlo [ZNF77,
She05]. A recent combinatoric approach based on using the Slater determinant formalism is

treated in [AT05, AT06].
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5.2.1 Restricted Path Integral Monte Carlo

As we shall see in Chapter 6, in the special case of d = 1, the fermion sign problem
has a solution, which consists in restricting the simulation to the set of paths such that the
particles do not ever collide (see Theorem 6.2.1). Using the Restricted Path Integral Monte
Carlo (RPIMC) method, described in e.g. [Cep95ii, Cep92, Cep96] (see also [Cep91]), this
solution appears as a special case; the general principle is that the nodes of the thermal
density matrix (ie the surfaces where it is 0) are avoided. A justification for the method
appears in works such as [Cep95ii, Cep96]. It rests upon the idea that, to quote from [Cep96],

The flux of positive paths at any spot on the nodal surface exactly cancels the
flux of negative paths because the gradient of the density matrix is continuous
across the node.

This is therefore apparently an exact method, if the nodes are known, in that restricting
the simulated paths to not cross any of these nodal surfaces should give the correct estimate
of Zr. However, since knowing the location of the nodes is tantamount to knowing the
solution, it is necessary to use an approximation, or expert knowledge, in order to determine
their probable location. This is the main problem for the RPIMC method: an imperfect
choice of inputted wavefunction nodes results in an imperfect output. The bias incurred is
usually described as uncontrolled below a certain temperature threshold, known as the Fermi
temperature (see e.g. [Cep00]), but the sign problem is, at any rate, avoided. Wavefunction
node estimates may be obtained approximately by using so-called Variational Monte Carlo,
and this was used in [CM00, Mil00] to perform an RPIMC calculation for the Hydrogen
hugoniot (shock wave). RPIMC has also been used to analyse nuclear fusion [PMO04].

RPIMC is analogous to the fixed-node Diffusion Monte Carlo (DMC) method which
applies in the zero-temperature case [And76, CA80, NKPTRO02]; see also [CJLO6]. As the
‘fixed-node’ moniker suggests, in the zero-temperature case a method exists which allows
nodes to be adapted while more information about the solution is computed, and this is
called the release-node method [CA84]. Is it inconceivable that a similar exact approach

could exist in the case of finite-temperature PIMC? However, release-node DMC has costs
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that scale exponentially with n (see e.g. [Tow06]); in view of [TWO05] this is of course
unsurprising.

A relatively recent theoretical contribution to RPIMC was made by [Ste99].

5.2.2 Multilevel Blocking

Antisymmetrizing on each time slice

Using (2.68), it is clear, from the comparison with using the state space R"™ / I1,,, that
we may consider particle exchange at intermediate times. Taking account of positive and
negative contributions from this at each time-slice leads to a different measure on discreti-
sations in which there is some amount of sign cancellation, compared with taking account
of exchange only over the whole path, as we do if we use ng f"m

This idea is well-known [TI84, NK92| and in the physics literature this is described
as "antisymmetrizing" on every time slice. The benefits of doing only this were further
investigated numerically in [Lyu05] and it is seen that on its own, this improvement does

not make extensive headway against the sign problem. It is apparently incompatible with

the Restricted Path Integral Monte Carlo (cf [Cep95ii]).

Multilevel blocking

The Multilevel Blocking approach is defined in [EMWG98], building on other work such
as [Mak92, GS89]. It is an exact approach. It relies on a sampling strategy which creates
"blocks’ of paths which are, apparently, in effect sampled together. This basic principle (but
not the Multilevel Blocking approach itself) can be applied to directly give the exact solution
in 1 dimension, as shall be seen in the following chapter.

The authors of [EMWGYS8] begin by stating their preference for ’antisymmetrizing on
each time-slice’. The Multilevel Blocking technique is a way of taking the sign cancellations
of that approach further. It involves constructing a sequence of levels (as with the Multilevel

Metropolis method discussed in Section 4.2.2) so that the first consists of 1,3,5,7.. ; the
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second consists of 2,6, 10, ... and so on to L levels where N = 2° + 1. Within each of these
levels, working upwards, they create K samples of moves according to the antisymmetrized
action measure. Each of these moves carries either a positive or negative sign, but by taking
them all into account in forming the next level of moves, the average sign from the K samples
is used. The claim is made in [EMWG98] that a complete solution to the sign problem is
achieved by this expedient, although with caveats such as that there is a systematic error
dependent on K.

In works such as [DMO1], numerical experiments have been presented with the principal
intention of demonstrating that the required K grows relatively slowly. It turns out that
even for small systems, K must be taken to be more than about 200. It seems that the cost
scaling of the algorithm relative to straightforward PIMC must be at least K, and the extra
systematic error that is introduced apparently scales with & /2 [DMO01]. Given the Troyer-
Wiese theorem, unless P=NP then the conclusion that the necessary value of K explodes
with n is unavoidable. The algorithm is said to work best at low temperatures [DMO1].

The MLB approach was originally developed in connection with so-called real-time path
integrals; that is, in the context of quantum dynamics. Although sadly beyond the scope of
this thesis, this is an important application; see works such as [MH&9] for an introductory

treatment.

5.3 Two simple algorithms: linear translation and ex-

pansion

In this section, we introduce two more straightforward approaches which help to develop

intuition about the sign problem and illustrate its resilience.
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5.3.1 Linear translation

Let us recall from (2.62) that

or(xo, mT)

T = .

T(xo’ l‘T) Wenn C(Tr) Z SDT ('foyﬂle) \7’11('1‘0’ TrxT)
' ell,

If we think of the Jr (o, mx7) as being the subject of separate simulations, then it is clear that

to reduce the variance of our Monte Carlo, it is desirable to increase the covariance between

T,by

their estimators. We have already noted that linear translation, as a bijection between C;

T7b1
0,a1

T, b2

with wy >,

b :
and C,,*, conjugates w

and that in terms of SDEs this simply corresponds to
using the same realisation of W (t) for both bridges. Therefore this gives rise to a method

for generating covariances between estimators of the Jr(xq, mxr). Write

> op(wom vr) I (20, 1) :/T > e(m)er(xo, mr) exp(—S(X—i—Exo,mT))dwg”g (5.5)
Coo

' €lly, o m€lly
Of course, this different functional integral then gives rise to a different importance sampling
which could be implemented via an MCMC. An alternative way of describing the situation

(5.5) is that a set of n! processes X are specified by X (0) = x5 and the SDEs

T, XT — X

, (@)
dX® = T+ dW (t)

for the same nd-dimensional Brownian motion W, where 7; is a labelling of the members of
IL,.
Clearly the covariances between positive and negative contributions will grow when T

increases. We shall call this the linear translation algorithm.

Favourable sampling

We can take the same line of thinking further. Noting that the difference between paths
is deterministic, we may consider sampling paths according to a measure other than the
integration measure in which paths are actually brought closer together, away from the
endpoints, in a covariance-enhancing swoop. This requires us to invoke only the Radon-

Nikodym theorem; we may regard it as applying in the space of paths, or indeed merely in
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finite-dimensional real space since it is sufficient to think about methods for A. Being forced
to include the Radon-Nikodym derivative will increase the Monte Carlo variance, but the
pain of this is related to the rate of change of the path difference. Therefore for large T it is
clear that the optimum is to bring the paths close together for most of time, since the gain
in covariance should eventually outweigh the extra cost.

This approach was not highly developed since this kind of thinking does not lead to a
solution to the sign problem. But in some basic tests it was seen that a covariance swoop

brought about a moderate improvement on linear translation.

5.3.2 Rearranging to use expanded paths, for noninteracting par-

ticles

It is possible to improve on the linear translation algorithm by altering the expression
for 7 so that we regard its summands (positive and negative) as arising from looping paths
with the same endpoints but of different lengths. This potentially allows a greater amount of
covariance to be achieved in their estimation. In this subsection we shall need to introduce
some extra notation: Gr, shall indicate Gr for a system with n noninteracting fermions.
We again let d be the dimension of the system space. A partial description of the position
density of the system is given by the particle density @ : R? — R, the marginal density

(with full measure n) obtained by integrating out the positions of all but one particle:

w(r)) = /R( o p(x)dxy - - - dx,

fR("*l)d gT('Tv l’)dl‘g T dajn
Jana Gr (@', 2')da’

The particle density is enough to tell us about statistics which are diagonal in the position
representation and not dependent on the relative positions of particles, such as the potential

energy.
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Theorem 5.3.1 (Expanding Paths Theorem)

Cr QT = c (n—l) T d/2 X, T x,x)dx
/R Gl day = el s QRAT) ™ Ty ) / Gr sz, 2)d

R(n—k)d
(5.6)

where c(k) =1 for k odd, —1 for k even and where we set [4,.Gro(x, ) dz = 1.

Proof. Considering the finite-dimensional distributions of the Brownian bridge, we may
break down a looping path of length nT" into n segments. Where we let xy and z, denote

the same point:

7 B (27 nT)"/? T d .,
wr(21, 1) = R(HMW@( 2TZH% i’ ng ()1, ;) dxs -
(5.7)

Moreover, where 7 is any cyclic permutation of the n particle coordinate vectors, since none

of the variables with respect to which we integrate are distinguished from one another, we

may write
(27T nT)d/2 1 n ) n
" ’ - o _\nd/2 Yl j — Ly iy Tr(s dxro -+ -d n
jT(fEI Il) /R(nl)d (27TT)nd/2 exp 2TJ21H=TJ T (J)H j]IjT(xj X (])) To T
(2m nT)" |z — e
B o2 o dzs .. dz, . 5.8
/R(nl)d (2nT)" 2 exp 5T Jr(z,mr)dey ... dx (5.8)

Categorise the elements of II,, according to the length of the cycle in which is found the
distinguished coordinate, viz z;. Also name C} the cyclic permutation group of order k.

Then
/ Grn(x,x)dey - - - dx)y =
R(n—1)d

2
/ Z )(27T) —nd/2 exp —M Jr(x,mx)dxy - - dx,
(n—1)d 2T

well,
/
2 T —kd/2 ||I T || / / «
-/ z;(z Y A
k ™ k

"o |2
> e(m)@aT) " exp (—w >JT(:U”,m") dzy - - dw,

71'El_lnfkr

where ¢ signifies a relabelling of the n particles excluding x1, and ®, signifies a particular

set of such relabellings, so constituted that each possible partition into the first £ —1 and the
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n—1
succeeding n — k — 1 variables is represented exactly once. Thus @ has elements

k—1

and represents the ways of choosing the elements in the same cycle as x;. Meanwhile ¢
intentionally does not appear in (5.9) except as a counter, but we let 2" signify (z1, .., zx)
and let x” signify (241, ..,2,). When k = n the righthand bracket in (5.9) is construed to

be 1. Then, reusing (5.8),

/ Grn(x,x)dey - - - dx, =
R(n—1)d

n o feeene 2 |2 o(m)2nT) ™ eap <—%2> Jr(x',wx’) | dxs . .. dzy
Z PED, TeCy

k=1 XfR(n—k)dgT n—k<x7 :E)dZE

ZZ (2wkT) 4/ jkT(xbih)/ Grn—k(®, v)dw

n—k)d
k=1 Ppe®LmeC) R( )

n

=Y (k)P |Cyl (2ﬂkT)_d/2jkT(x1,x1)/ Gran—i(x,x)dx . (5.9)

1 R(n—k)d

But then since

n - .
|Dk| |Ck| = (k—1)! = — (5.10)

the result follows. =
It is notable that in view of the results proven in Section 2.3, Theorem 5.3.1 gives us, in
particular, an alternative method of collecting statistics about the nth quantum state of a

single particle with a background potential.

The case of a noninteracting pair of fermions

It follows from (5.6) that the particle density for two noninteracting fermions is given by

= $> f]Rd jT<yv y)dy - \/W_Tj2T<£L‘, 33)
% fRd [jT(I/7 ZE') fRd jT(ﬁ% y)dy — MJQT(ZL‘/, x’)} dz!

(5.11)

This means that the expectation of a diagonal statistic A is found via

Jua Ty, 1)y fpa A@) Tr(2)da — V7T [0 Alx) For(a)da
3 ((f]Rd jT(x>$)d$) - \/W_TfRd Jor( $,$)dm>

(A) — /R Ay ()i =

(5.12)
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Therefore our simulation procedure has to recover estimates of 4 quantities (and an estimate

to use for the covariance matrix of the estimators); these are Zr1, Ar 1, Zor1, Asr 1, where

ZT,l = jT(I,I')dI'

Rd
Ar; = /Rd A(x)Jr(x,x)dx .
The most naive way to calculate first state statistics via (5.12) is that we separately collect
the statistics for time (ie, inverse temperature) 7" and for time 27". However, clearly the
variance of the posterior for (A) can be reduced, if we can sample so as to give a positive
covariance between the estimators for time 7" and those for time 27". Therefore instead we
~T 20

proceed by first choosing an initial point zo, sampling a discretised path X; ~ wy} ', and

creating another path X, via a linear mapping; viz, for all ¢ € [0, 27, we set

Xo(t) — 20 = V2 (X1 (é) _ xo) |

. . .. . . T,xo . 2T, x9 . ~T xo . ~2T,xo
This linear bijection conjugates wy, with wg = and therefore conjugates wy " with wy .

Covariance correction

In the following there is some advantage to recognising that it is the Bayesian poste-
rior distribution of the true statistics that we would like to apprehend. Owing to the fact
that we are interested in the expectation of a nonlinear function of the quantities which
we can approach via Monte Carlo, we need to introduce a small correction for covari-
ance. Suppose that we know that the approximate quantities ZT;,Z\T;, 22?1,22\;1 have

a posterior distribution that is multivariate Gaussian about our Monte Carlo estimators

—~MC —~—MC —~—MC ——MC

1 At ,Zorn ,Aorn . Then
E é';T/l./zl\T/l — VWTJZ;J = EZVTlE;l\T/l + Cov <§;/1,.;4—;/1> — VWTEvZQ\T/,l

——MC — MC

. ——~—MC
= Zpp Arp +Cov <ZT,1aAT,1> — VT Ay

and likewise

——MC — MC ——MC

2{12;71 — V7TT‘§2T\_7/1] = ZTJ ZTJ + Var (2;;) — VWTZQTJ



119

5.4 Numerical results from linear translation and ex-

panding paths algorithms, for 2 1D fermions

We concern ourselves, in the following, with the particle density and potential energy of
a system with 2 noninteracting fermions in a 1-dimensional space. From the result in Section
2.3 it follows that for large T', simulating this system gives a route to approximating the first
excited state of a single fermion with a background potential.

We shall begin by providing some graphs of approximations to this 2-fermion particle

density so as to provide a visual demonstration of the phenomena that are observed. It

Z-particle density
for T=2 (=eries)

Linear translation alzorithm
T=2, h=0.1, M=10"7

Figure 5.1: Particle density using linear translation algorithm, 7’ = 2,h = 0.1, M = 107.

is immediately obvious that the fit is poorer for the 2-particle simulation using the linear
translation algorithm than for the 1-particle simulation. Indeed, at 107 sampled paths (see
Figure 5.1), the errors are greater than those for the 1-particle simulation with 10°. However
it can observed that the simulation does produce sensible results. It can immediately be seen
that the expanding algorithm is more efficient than the linear translation algorithm, in that

the graph in Figure 5.2 is produced with only 10° paths. From Figure 5.3, it can be seen that
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z-particle density
for T=2 (series)

Expanding al gorithm:
T=2, h=0.1l, M=10"E

Figure 5.2: Particle density using expanding algorithm, 7' = 2, h = 0.1, M = 106.

a visually good fit is obtained by using 107 paths in the expanding algorithm. In fact here
the Monte Carlo converges to a narrow range and an apparently upward bias is marginally
visible. Now if we increase T' to 4 then immediately the variance is very much greater, to
the point where in Figure 5.4, a fairly poor but recognisable curve is obtained only at 10®
sampled paths. Just based on visual comparisons, it seems that 10° paths, rather than just
107 paths, are needed for a good fit at T = 4, rather than T = 2 (see Figure 5.5). This
already takes about 36 hours on a 2.0 GHz machine.One would surmise from the foregoing
visual results that while it can be seen that the algorithm works, it is becoming increasingly
difficult for the simulations to converge as time increases. For T=6, in Figure 5.6 it can be
seen that for the linear translation algorithm, even at 10'° paths the fit is not particularly
good; at a stretch we could claim that the curve is recognisable as being similar.

The expanding algorithm performs better (Figure 5.7), although it is already apparent
that this is considerably worse than the fit at 10° samples for 7' = 4. The rapid increase in
variance is due to the fermion sign problem. In both cases that we increased T by 2, we

have had to increase M by 2 orders of magnitude to achieve similar results. Simulations for
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Z-particle density
for T=2 (series 3

Expanding algorithm:
T=Z, h=0.1, M=10"7

Figure 5.3: Particle density using expanding algorithm, T'= 2, h = 0.1, M = 107.

T = 8 and T = 10 were also performed and were seen to consistently require an exponentially
greater value of M.

In Table 5.1, we provide the results from estimating (V') for this system. It can again be
seen that for the expanding paths algorithm, Monte Carlo variance is lower, but still grows
very rapidly with 7. It should be noted that even though (f\\//) is nonlinearly related to the
quantities being sampled, its variance still eventually scales inversely with the number of
trajectories. That is to say, if we calculate a "standard error" ("S.E.") by taking one side of
the credibility interval for </‘\/J> and dividing by 1.96 then the ratio between these quantities
for M = 10° and M = 10'° is close to 10*/2. (The calculation is not performed for the 7' = 8
results since it would clearly be meaningless.)

In order to achieve a similar bias, a timestep of half the size must be used with the
Expanding algorithm, and taking account of this doubling in cost, we are able to find from

Table 5.1 that for the same cost, the reduction in Monte Carlo variance is by a factor of

about 2.5.
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Z-particle density
for T=4 (sezies)

Linear translation algorithm
T=4, h=0.1, M=10"%

Figure 5.4: Particle density using linear translation algorithm, 7= 4,h = 0.1, M = 108,

Z-particle density
for T=4 (series)

Expanding algorithm
T=4. h=0.05, M=10"9

Figure 5.5: Particle density using expanding algorithm, 7' = 4, h = 0.05, M = 10°.
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Z-particle density
for T=f (=erie=)

Linear translation algorithm
T=E, h=0.1, M=10"10

Figure 5.6: Particle density using linear translation algorithm, T'= 6, h = 0.1, M = 10'°.

z-particle density

for T=f (=eries)

Expanding algezithm:
T=6, h=0.05, M=10"10

Figure 5.7: Particle density from expanding algorithm, 7" = 6, h = 0.05, M = 10%°.
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Table 5.1: Potential energy of 2 noninteracting 1D fermions in a harmonic oscillator. Com-
paring results using linear translation and expanding paths algorithms.

—_— —_—

Algorithm M h T (V)  Low (V) High (V) "S.E."
(95%)  (95%)

Linear  1E+08 0.1 1.096326  1.09449  1.098169 9.37E-04

Expanding 1E+08 0.05 2 1.096618 1.095799 1.097437 4.18E-04

\)

Linear 1E4+09 0.1 4 1.007462 1.001784 1.013209 1.34E-03
Expanding 1E409 0.05 4 1.014332 1.011706 1.01697 2.91E-03

Linear 1E4+09 0.1 6 1.007543 0.947482 1.076177 3.28E-02
Expanding 1E409 0.05 6 1.039808 0.996951 1.085848 2.27E-02

Linear 1E4+09 0.1 8 1.077427 0.573328  34.4002
Expanding 1E409 0.056 8 -1.72861 -2.50015  3.82476
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Chapter 6

Solution to the fermion sign problem

in 1 dimension

In the previous chapter, we discussed the fermion sign problem which, as many authors
agree [Cep03, FH65], is a significant obstacle to performing effective fermion simulations.
In one dimension, it is possible to solve the problem in the sense that, as we shall see, we
can partition the path space such that for one part of space we need only to take posi-
tive contributions and in another, positive and negative contributions cancel exactly. It is
immediately evident that if the functional being sampled is nonnegative then (5.2) cannot
hold. This means that MCMC simulations can be constructed which do not suffer from
an exponential explosion of variance as 7" increases. In this Chapter we shall construct the
partition, show how to sample from the positive-contribution subspace, and demonstrate
the effectiveness of an algorithm based on this approach. This solution to the problem is
already known, and in the literature it normally appears as a special case of the RPIMC
method already discussed in Subsection 5.2.1. In our approach, on the other hand, the main
focus shall be the more general idea of partitioning the space of paths into subsets so that
we can make progress with cancellation between positive and negative contributions to the
estimate of an observable’s expectation. We shall see in the succeeding chapter that this

concept generalises to a somewhat different method than that of RPIMC. The importance of
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this chapter’s exposition is twofold: firstly, we are able to discuss the solution to the 1D sign
problem mathematically, without needing to invoke concepts from physics, and secondly, it
provides us with the foundation needed for a novel, exact approach to the sign problem in
higher dimensions, advanced in the chapter that follows.

We shall begin by treating the case of two particles in a 1-dimensional space and then

explain how this is generalised to n particles in a 1-dimensional space.

6.1 The Partitioning Theorem for two fermions in 1D

Recall that we are interested in collecting a Monte Carlo estimate of Zr(-) defined by
(2.62). In this section, we particularly consider Zr((a,b), (a,b)) where a,b € R are the
hypothetical positions of two fermions. We develop the idea that it is possible to construct
a partition so that we can find Zr((a, b), (a, b)) by taking a positive contribution on one part
of Cg ((;bb)) and an unweighted sum of positive and negative contributions on the other. This
latter turns out to be zero, eliminating the need to collect any negative contributions in
Monte Carlo.

Note to begin with that

IT((a7 b)? <a7 b)) =

! (wb)?) (jT((a,b), (a,b)) — exp (— (&; ) ) Jr((a,b), (b, a))) . (6.1)

1 +exp (_T

As stated, we shall show that this is equal to the integral of a particular nonnegative func-

2
tional. We shall begin by demonstrating the fact that the coefficient exp <—(a%b) ) is equal

I'(@b) "and then we shall see that the

to the probability of the two particles meeting under w, ()

cancellation of positive and negative contributions becomes possible because the measure on

first crossing times is the same under both wg’((f’g)) and under w(:)r ’((;’bb)) conditioned on crossing.

We shall use Ua ’AAOT to denote the measure on COT’ fOT induced by the distribution of a differ-

ence of Brownian bridges. That is to say, suppose that a 2-dimensional X : 2 — COT, fOT is dis-

1)

C e . T,
is distributed according to w, "T(f) and
Lo

. . T,xr (1) T,azgﬂl)
tributed according to wy}, ", so that X% : Q@ — C " 1)
sT0 0710
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50(2) 1(2
X@.0 - CT’ (’:g) is distributed independently according to wT’ oy Let a:é ) 1:0 = Ap and

@XM ¢ A}) :

Proposition 6.1.1 (The measure of a difference of Brownian Bridges) Given

0,z9 0,z0

xg})—xT = Ar. Thenfor A € B(CTAT), va’AAOT(A) = w7 ({X €Ciim| X

Ao, Ar >0,
VA € B(CyRT) : vgal (A) = wh 57 (2A) (6.2)
where we define N\A = {Z* € C(’J\QOAT L ZF(A) = Z(H)|Z € A}

Proof. We can obtain the measure vgj ’AAO on Cg fOT which is induced by the distribution
of a difference of bridges by considering iteratively the finite-dimensional distributions (in
a manner originally due to P.Lévy [Lev39]), as follows. Suppose that we consider first the
distribution for one intermediate point-pair at 7'/2. According to (2.4),

W(T/2) ~ Gaussian (XV(0)/2 + X(T)/2,T/4) (6.3)

@(T/2) ~ Gaussian (X®(0)/2 + X®(T)/2,T/4) (6.4)
Therefore
XO(1/2) = XD(T/2) ~
Gaussian ((XM(0) — X®(0)) /2 + (XI(T) — XO(T)) /2,T/2) . (6.5)

But let us now consider subsequent points. Suppose that we already fixed a set of points at
times hi/2" where 0 < i < 2". By a standard result, for t = T%4/2" + T/2"+! for i < 2",
XVt ~ Gaussian (XU (¢t —T/27) /2 + XW (¢ + T/27FY) /2,T/272) |

X®@#) ~ Gaussian (X@ (¢t —T/27) /2 + X®) (¢ + T/27%Y) j2,T/27%2) |
but then

X(l)(t) —x® (t) ~

XO(t —T/2r+) — X@ (+ — T/27+1)) /2
Gaussian ( ) ,T/2r

+ (XD (t+T/2r1) — X (t 4+ T /27 ) /2
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It follows by induction that for any r, the distribution of X — X(2) at points at times hi/2"
is the same as the distribution of points at times hi/2"~! on a Brownian bridge of length 27
The result follows. m

It is germaine to our whole discussion to know the probability of two Brownian bridges
crossing. We have now arrived at an important point because we can proceed to calculate

such probabilities by applying a boundary-crossing theorem for the Brownian bridge.

Lemma 6.1.2 (The probability of bridges crossing) For Ay, Ar > 0, the probability

of two Brownian bridges crossing is given by

vgff ({Z € ng’AAOT min Z(t) < 0}) = exp (—A?TAT) (6.6)

[0,7]

Proof. From the preceding Proposition,

T,Arp T,Ar
Vo Ag ({Z € CO,AO

: 27,A 27,1
I[glhI}lZ(t) < 0}) = wy A" ({Z €Co i, "

win Z0 <0f) (67

0,27

However,

win 20 <o} )

2T, At PANAYY
wy A, Z € C07 Aq
[0,27

9T A 2T, —(Ag—Ar)
—wOAOT ({ZEC&O T

min 2() <~ |

(0,277

= waTA’?T ({ Z e ng’AofAT :[%151% Z(t) > A0}>

using the translation and symmetry properties of the conditional Wiener measure described

in Subsection 2.1.1. However, according to a Theorem stated on pages 264-265 of [KS98],

QAOAT 0T
> — _ - _BoA .
%712&% Z(t) > AO}) exp ( 5T ) exp ( T ) (6.8)

[in their notation Ay = 8 and Ay — Ay = a]. Hence

min Z(t) < o}) — exp (— AOTAT> . (6.9)

[0,7]

2T, A 2T, Ap—Ar
’w07A0 ({ Z E 6070

T,AT T,AT
Vo g <{Z € CO,AO
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The event that paths coincide We shall divide C v into two classes: those bridges
where the coordinates (particle positions) coincide at least once (therefore at least twice,

and indeed an infinite number of times) and those where they do not. Let a > b and let
Eo={Xe cgk(;f;)’;)’ X () < XO(t) vt € [0,7]}
Then by continuity of the paths,
Egz{Xec (X X(l)(t),sometE[O,T]}.

It is immediately evident that these are events because it is obvious how we might construct

a sequence of cylinders with Fy as its limit.

The first crossing time 7,(X) Recalling Definition 2.1.14, we shall now let 7; denote

the first crossing time 7, : £§ — [0, 7]:
71(X) =min{s € [0,7] : XV (s) = X (s)}

We shall now compute the pdf of this random variable, which we shall variously refer to as

71 or 71(X) depending on the context.

Lemma 6.1.3 (The pdf of the first crossing time) Let X ~ w, xxT and define Ao, Ap
as on p.127. Denote the measure induced on B([0,T]) by the distribution of T1(X) by n.

Then

dn A (_((T — 8)Ag + SAT)2> |

dN s \/—\/7 ATs(T — s)

(Note that n([0,T1) is then the probability of crossing, exp (— AOAT) .)

Proof. We know from Proposition 6.1.1 that the finite-dimensional distribution of a
difference of bridges, with the difference at the initial time A, and the difference at the
terminal time A7, over a time interval [0, T, is identical to that of a Brownian bridge from
Ag to Ar over a time interval [0, 27, with a linear scaling on time. We shall use the following

standard method for finding the first crossing time pdf: we use the fact that where f(x,y) is
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a joint pdf, g(z) is the unconditional pdf of x and h is that of y, and f(y|x) has its standard
meaning, f(z,y) = g(x)f(y|z) = h(y)f(z|y). The equation (2.0.2) of [BS02] states that for

Brownian motion with X (0) = Ay, where 7 is the first hitting time to zero,

d _ 1Al A
dswo,Ao(T €(0,s)) = mexp (_Z (6.10)

and it follows that the joint pdf for 7 and the terminal value X (T') is given by

0? 1A

950z 007 € (0:9), X(T) < 2) = o Xp( Az) mm ( ﬁ)
(6.11)

but from this we can deduce that conditional on the terminal value, the pdf of the first

hitting time to zero is

d . d
Rl € 0,9) = oa(t € 0,91 (T) =) =

é‘iiw (A) mme"p( T >)“_ﬁe"p< %>

A

(k) () e () e

by dividing the previous formula by the unconditional density of terminal values. Now let

us consider that Uo a (L < 8) = ngAz (t < 2s) and this means

d 7. d o, d .
TUo A, (t < 8) = —wg (< 2s) = 2mwgﬁo(f <2s) .

Thus, to get the pdf for first hitting time to zero of a difference of Brownian bridges rather

than a Brownian bridge, we need to double all the times on the right-hand side in (6.12) and

then double the result to reflect d(dzss), ie:

d
Lr(r e 0.5) -

g (2 w) 2 Gy ) e (i)
(6.13)

and the result follows. =
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We shall define the first crossing point z;(X) to be the value X (7;(X)). Tt is clear
that x; 0 X is Borel-measurable, since if we condition on 7; then for any interval U, {z; € U}
is Borel.

We are now in a position to prove the main result of this section. Recalling the notation

for measure conditioning introduced at the start of Section 2.2,

Theorem 6.1.4 (Partitioning Theorem for two 1D fermions) For a,b € R,

1 exp( U b)>
Ir((a,b),(a,b)) = 1+eXp< (a_b>~7 *((a,b), (a,b)) (6.14)

Proof. It is immediately obvious that all bridges from (a,b) to (b,a) must have the

coordinates swap at least once, so 7; is defined for X € COT ((:;)) Let 77 signify the measure

on [0,7] x R induced by the distribution of (71,z;) for X € E§ under wg ((;bb)) and let
? ) Eg

5 signify the measure on [0,7] x R induced by the distribution of (71, ;) for X € Cép ((f;))

under wOT(( )) That is to say, for By € B([0,7]), B2 € B(R) :
Ni(Bix By) = wll b)( (X € ES: mi(X) € By, (X) € By}) (6.15)
n3(Byix By) = wp ({X e L) 1y (X) € Brai(X) € Bz}) . (6.16)

We shall use the notation (this matches the definition of E(t, x) on p.26):

E(t,z) = {Xe€Ej:1(X)=t,z1(X) =2z}, (6.17)
EV(t,z) = {Xeco(;,?. 71(X) :t,xl(X)::c} . (6.18)

Therefore we may rewrite Zr((a, b)) as follows:

(1 (~7) ) Zat(o.0) 00) = e EDTE () 0.0)

cue ) [ T (b b))
[0,TTxR

—b 2 SW (¢ 2 .
- (—(“T >> [ . 6.t
[0,T)xR
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However, recalling (2.26) it is clear that

Jr((a,b), (a,b); E(t,2)) = F""((a,b), (2,2)) T (2, 2), (a,b))

— th(t’w)((a, b), (z,2))Ir—i((z,x), (a,b))

but for the same reasons,

ES w

Tr (), (b,0) = T (@, ), (2, 2) Tri((,2)(b,0) -

However, due to permutational symmetry of the potential,
jT—t((x7 x)u (CL, b)) = jT—t((l‘a JI), (bv a))

Now note from Lemma 6.1.2 that the probability of independent Brownian bridges in COT ’((aa}g)

2
crossing is wg ((;,f))(ES) = exp (—@ ) Thus,

wl e () [ TE((a,5), (a, )dni (¢, )

—b 2 SW (¢ o .
— €Xp <_ (aT ) > / \71{3 (v )((a>b)a(b7 a))dn2(t>$)
[0,T]xR

~ exp (— Y ) L ), ) T2 o)A ) 1.9)

(6.19)
Now suppose 71 = t is given and consider the conditional distribution of x;, in the case of

cither X € E§or X € C, ((f;)) As we noted in Subsection 2.1.3, % and % can be

. . . . . XWpx@ . . ST(at+b)/vV2
regarded as independent Brownian bridges; and indeed, S5 isin Co7 (a1b)/v/2 whether the

terminal point of X is (a, b) or (b, a). Therefore in both cases it is clear that the distribution

of the value of % at t, corresponding to the usual finite-dimensional distribution for a

Brownian bridge, is Gaussian with mean (a 4 b)/v/2 and variance ¢(T' — t)/T. However, we

know that XV (t) = X®)(¢) = %w and therefore in both cases, z1(X) is Gaussian

with mean (a + b)/2 and variance t(7 —t)/(27"). We shall let 11 denote the measure induced

by this distribution. We let 7, signify the measure on [0,7] induced by the distribution

»(a,b)

of 71 for X € E§ under wg (@)
7 ) ES

and let 7, signify the measure on [0, 7] induced by the
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distribution of 7, for C ((b; ) under w, ((b g)) We let Ag = a — b. Then we may write the

formula of (6.19) as

(<) [ [ 7@ ) 1), )] dua =)0 (620

Hence our next step is to identify n; and 7,, and we shall then see that they are equal.
According to Lemma 6.1.3, where 7 is for the measure on [0, 7] induced by the distribution

of 71 for X € C under wg(( :))

dp Ao 1 ( TA2
d\ s T ) T s) 4s(T — 5)
and therefore, dividing by w0T7 ((;If)) (ES),
dn - _ Ao (Aj TAG
dA s \/— o [as(1—s) 4s(T — s)
(45(T — s) = T?) A%)

SWW ( ATS(T — )

whereas Lemma 6.1.3 also yields that

dny, Ay 1 (_((T - 28>A0>2>

— = exp
dA S /ar /2s(TT—s) ATs(T — s)
However, it is then apparent that, perhaps surprisingly, % = C;LA?. Hence there is perfect

cancellation between the positive contributions to Zp from paths in Ef and the negative

contributions from paths in C )) Therefore

(1+exp<—%3))1T<<a,b>,<a,b>>: T () TE (a,b), (a,1)) =

(l—exp (—%3)) o ((a,b), (a,b)) . (6.21)

The quantity /72, defined as per Theorem 2.3.4, is relevant to finding the first excited
state for one particle, and is equal to Z; for 2 particles. Therefore a similar result to Theorem

6.1.4 clearly holds w.r.t. Irs.
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6.2 The Partitioning Theorem for n fermions in 1D

The approach of the previous section brings out the importance of the distribution of first

T,(a,b) T,(b,a)

crossing times for w, (a.b) and w, () - However, there is an alternative, more geometrical

approach which allows us to treat an indefinite number of particles. This shall now be

explained.

Theorem 6.2.1 (Partitioning Theorem for n 1D fermions) Let Ey C Cg Z,H"x signify

the event that there are no crossings, ie no values of t,i,j for which X9 (t) = XU (t) with
1# j. Then

Ir(z,z) = wa’f"x (Eo) T (x, x) (6.22)
Proof. As was noted at (2.67),

Trloz) = /C (T )ew ([ ' V(s )| duf e

T
:/ exp< —V(X(s))ds) dw({fnx
FEo 0
T

! /[O,T}an /c({fnw {C <¥) exp </0 _V(X(S))ds)} dwy "

where E(t,x4) is the event that the first crossing of any pair of particles happens at time

dn'(t,zy) (6.23)

E(t,xu)

t with system position z; and 1’ is the measure induced by the joint distribution of the

first crossing time and system point, with full measure wg’ Hn

LU (ES). However, we shall

now see that the second integral in (6.23) is zero. Let i1,iy be the indices of the particles
that meet at t. Recall, as was noted in Chapter 1, that II,, may be partitioned into pairs
which are closed under premultiplication by the pair-exchange of iy, is; let us call the even

elements in these pairs 7 and the odd elements 7} with & = 1,...,n!/2. Then since
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TI,x
0,z

_ b

T,an T7Hﬂ,x
- wO,z )7

X Wy g, (due to the strong Markov property for wy,

E(t,mﬁ)

/c&nw {c (XECT)) exp /OT _V(X<S))ds] 4wl

n! T
Zkzl Pr—¢ (xtia ﬂ-km) /Cwrﬁ exp (/0 —V(X(S))d5> d w[t)v;ﬁ
0,z

n!
Zk:l Pr (%, ka)

E(t,xﬁ)

E(t,mﬁ)

X
E(tzxﬁ)

/CT?HW {c <X§:T)) exp (/OT —V(X(s))ds)} dwi "

t,zu

but

Lo [ (FE ) e [ vt aufies =

tﬁmﬁ

n!/2
[r s maa)Trs (a3, ma) = oo, 7h) Tt (a3, m4a)] = 0
je1 P (T4, TRT) k=1

since for every k, op_,(xy, mpx) = @p_,(xy, mx) and Jr—y (zg, mpx) = Jr—i (x4, mx). How-

ever, it is clear that

/EO exp (/OT —V(X(S))ds> dwg ™" = S @;(x,ﬂkm) /EO exp </0T —V(X(s))d3> T

= wy " (Eo) JE° (v, )

and the result follows. =

Remark 6.2.2 [t is clear that a similar result also applies in the case of other exponential-
type functionals than exp <— fOT V(X (s))ds) since the only special property of this functional

that has been used is its multiplicative property.

6.3 Simulation methods for 1-dimensional non-crossing
bridges

The preceding results mean that the fermion sign problem is solved in 1 dimension, as

long as we can perform the necessary simulations. The main task is to perform integrals with

Tny

respect to the non-crossing bridge measure wy = A x wy

. We have already noted that

0
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for the case of two fermions, we can find the probability of a crossing in an interval under

Lo Thy
tkl »Thq ’

and by using the Karlin-McGregor theorem [KM59] in conjunction with Bayes Rule,
it should be straightforward to do the same for the case of n > 2 fermions. From this point it
is possible to proceed in two ways depending on the type of simulation in view. In the case
of direct path sampling, the most appealing approach is to identify the finite-dimensional
distributions of wa v . explicitly; since this is a Markov measure, we can construct the
transition density; it will then remain to develop a sampling method for this density. In this
Section, we follow out the details of this approach for the case of 2 fermions. As described in
Chapter 4, we may then create an algorithm where the expectation is also taken over values

of the initial point 2o = (a, b) so that estimates of quantities such as (2.69) can be achieved.

Alternatively, if we were to construct a Markov Chain Monte Carlo simulation to imple-

ment importance sampling, taking ddlj* =Y, then the problem of using non-crossing bridges
0
becomes substantially easier. In this case, intuition suggests that a simple rejection method

Lk Tho

would almost certainly be adequate to sample according to W2 o | given that xy,, g,
i EO

ko Tko

will already be such that samples according to w;lymkl

should already have a reasonable
probability of acceptance, especially if the number of time intervals between k; and ks is
sufficiently small. Thus, in practical applications this would be a far more efficient way
to proceed. Since the probability of not crossing during each time interval, as established
using the Karlin-McGregor theorem, may be a sum involving a large number of terms which
are expensive to evaluate, some truncation based on particle proximity might be needed.
Simulations based on this MCMC approach are almost certainly more efficient than the sim-
ulations performed in Section 6.5, even before the benefit of importance sampling is taken
into account. However, understanding the details of the direct path sampling approach, out-
lined in what follows, is certainly helpful and relevant for understanding how to implement

either approach.

Using direct path sampling, we do have the option to sample discretisation points accord-

ing to a different pdf than w(:)p, ) . and apply a Radon-Nikodym reweighting - or, equiva-

0
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lently, to reject paths with an appropriate probability. This latter is a distinct concept from

using a naive rejection method for sampling from the non-crossing fdd by taking wfi}lk’x’““ as

the candidate measure. We may infer, though, from the difficulties encountered using that
method, that there would be similar (or worse) difficulties inherent in a method dependent
upon rejecting or reweighting entire Brownian bridges. It appears to be a characteristic of
an effective simulation, whether using MCMC or direct path sampling, that the sampling
measure should itself be concentrated on Ej.

In Subsection 6.3.1, the conditional pdf to sample one point (ie the transition density)

——
T,xo

for wy 7,

is derived explicitly. In Subsection 6.3.2 then methods of sampling from this
0
pdf are considered. Three methods were implemented and one of them was found to be

substantially faster than the others. Finally in Subsection 6.3.3, we discuss the initial point

distribution.

6.3.1 The pdf for a point on a non-crossing Brownian bridge

We need to know how to sample discretisations of 2-coordinate paths X = (X N (2))

T,(a,b)

0.(b) | . - It is assumed that it is adequate to sample incrementally (ie we

according to w
Eo

collect the values in order of time) at equidistant points. That is, set t = kh, for k =
1,...,N—1, with h = T/N. Fixing k, we shall assume that the values of X (¢1),..., X (tx_1)
have been drawn and consider how to sample the value for X (¢;). In other words, our route
to the joint pdf of X(¢1),...,X(ty_1) is to consider the conditional pdf for X (tz) given
X(ty_1), since as we shall see, wg: ’((:’bb)) . retains conditional independence. One way to do
this would be to use the Karlin-McGregor theorem [KM59] which states that to find the
transition density of a process where all coordinates are constrained to not cross, one must
take a particular determinant; namely, one must sum over the transition densities to each
permutation of the points in X (¢;) and apply sgn(7) as the cofactor. (This makes a curious

parallel to (6.22).) However, we shall prefer a more direct approach using Bayes’ Rule.

We shall use xl(l), x§2) for the drawn values of the particle positions at time [. We can
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access the desired conditional pdf as follows.

Lemma 6.3.1 Let D be a Borel subset of {{z,y} € R*|z > y} and let A(D) be the event

that X (ty) € D. Let Ey = E1 X Ey with E; C Cé’“(;lb) and Ey C CtTk’E?’b). Let p,, denote the

measure for X (t) under wi’fﬁ’?k_l.Then

T,(a,b)
Wo, (a,b)

‘EO,X(tkl):xkl (A<D))

(e () (e

T,(a,b) (Eg)

Wy, 1,1

Proof. Recall that conditional independence is inherited when conditioning on a set
that is not of measure zero (cf (2.19)). Therefore

T,(a,b)
Wo,(a,b)

Eo, X (tg—1)=%r_1 e

Then since A(D) = Cé’f(;fb) x As(D) where Ay(D) is the event in B (Cti’f’b)> that X (tx) € D,

T,(a,b) _ le—1,Tk—1 lp—1 T,(a,b)
Uo.tah) | g xenryeme s AN = oy (Co,(m)) Wy s |, (A2(D))
T,(a,b
= tk£1»17)k—1 By (AZ(D))

Heuristically speaking, since X (t;) is conditionally independent of the values taken prior
to time t;_q, in fact any specified path up to time t;_;, whether it confers membership of

E, or not, will be associated with the same conditional distribution of X (#;). Now since

wi ™ (By) #0,

l—1,Tk—1
T,(a,b)
T,(a,b) Ao (D)) = wtk_1,$k_1<A2(D) N E2)
th—1,Tk—1 ( 2( )) - T (a b) .
E2 wtk7_17,l‘k_1 (E2)
But,
T,(a,b T,(a,b
WSO D) NE) = [l | (AN Eduta)
_ T',(a,b)
= [ O] )

since membership of Ay(D) will apply for any path with X (¢) € D. However, where Fy =

FE3 x E4 with E3 C cf:_ﬁ B, C Cti;,(a.b),

Wl () =l (B (B, (6:25)

th—1,Tk—1 ()= = Wy x4
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According to Lemma 6.1.2,

1) _ (2 _
b (x T ) (a —b)
wt:—hﬂfk—l(ES) = 1- CXp (_ (N — k))h

1 2
<§U](<;_)1 - :U](C—)1> (:U(l) - .T(Q))
h

wP (B = 1—exp | -

tE,T

and the result follows. =

independent of X(t; )
/T : i
a ! ia
| 1
[ |
| 1
b AT b
[ :
L :
0 t i T

Figure 6.1: Schematic of how the pdf of X (¢;) is determined when conditioning on E,

Considering the finite-dimensional distributions of the conditional Wiener measure (2.4),
it can be recognised that p,, is induced by the independent bivariate Gaussian distribution
with centre

(Qm+«N—wwm$J/uv—k+nm(m+mN—kmﬁ2>/uv—k+1m>mz@
_ (@+«N—knﬂJ/UV—k+n,@+«N—kmﬁg/uv—k+m):4¢ﬂx9)
and with the variances in both directions given by

(N —k)h?/ (N —k+1)h) = (N —k)h/(N —k+1). (6.27)

. . . T,(ab
Hence in order to simulate according to wtkf ,x)kfl

it follows from (6.24) that we need to

2

draw from the distribution with pdf given by

M — 2@ (q —
7 (x(1)7$(2)) - C (1 — exp <_ (z (NLZI_ ;gz b))) X
() (o0 =)

h

2 2
(x(l) _ xf})> n (xw _ xf))

o(N — k)h/(N —k+ 1)

1 —exp exp | —

(6.28)
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over the viable region {#(!) > 2(®} and 0 elsewhere; here C' is a normalizing constant equal

o (2r(N —k)h/(N —k+1 /wT (®5 " (F,). Let v be the measure on R? induced by

th—1,Tk—1

this distribution. For the example parameters of Figures 6.2-6.3, this function turns out

Figure 6.2: f(x,y), unnormalized.

to still be unipolar; f itself is bipolar with f ( ), 2 ) =f ( ), 2™ ) Intuition suggests
that it is wise to rotate our coordinate basis for the system position, because if we choose
a basis rotated by 45 degrees then only one coordinate shall be affected by the constraint
for them not to cross, and thus independence of the coordinates shall be maintained. Along
with some elementary manipulations, this allows us to find the following useful result. For

simplicity in stating the result we shall introduce some additional notation:
DNy = 1’1(21 - 1‘22,)1 ;
Ar = a—0b ;
T, = (N—k+1)h
Lemma 6.3.2 (a more useful form of the non-crossing point pdf) Let

X ~ T\(a,b)
o (a.b) Eo, X (tg—1)=7k—1
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T,(a,b)
th—1,Tk—1

Figure 6.3: unnormalized pdf for X (¢) when X ~ w o
2

Then X(l)(t’“)\g((z)(t’“) and X(l)(t’“)\g(@)(t’“) are independent and

XD () + XO(t) s (T3 = h) (xl(cl—)l + ) +h(a+0) pqy - p)
\/§ aussSlan \/§T2 ) T2

The pdf for w 18, fory >0,

(y _ (a=h)Ag_1+hAr N2 (Tfh)Ak,1+hAT)2

1 V2T
Jly) =0 | exp (T —h)T, ) TP h(Ty — h) /T
(T—h) A1 —hA
~ex — Ak—l AT ox _ (y - #)2
P T P 21(Ts — h)/Ts
(y + (T—h)f/%—;;—’wy
6.29
+exp (Do — )/ T ; ( )
with

C= <1 — exp (%‘;AT)) V2rh(Ts — b)) Ty

Proof. First we perform some standard manipulations on our pdf formula, breaking it

down into a sum of Gaussian pdfs. Expanding and applying the equalities (N — k + 1):5&1) =
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(N =k, +a,(N—k+ 1Dz = (N - k)z?, +0,

2
<:c(1) — xﬁl)) + <a:(2) — xf))

20 2@ x ex _
@) o< exp 2(N —k)h/(N —k+1)

B i h TN SN R+ ) +
2 2
(N—k+1) <:c,(}) — :L',(f)) (2 — z®) (:c(l) —z) + (SC(Q) — a:f))
Texp (N —k)h TN R (N k1)
(6.30)

However, notice that

(20 — 2®) (a - b) (1>—x8)2+(:p —x#)
(N—Bh 2N kh(N—k+1)

(1), _a 2 @ _ _a 2
(x(l) — T+ Ny 1) ( - N—k:l-)i-l) N
2(N — k)h/(N — k + 1)

a— 2
2kai1 (95/(}) - xf?) —2 ( k+1)
2(N —k)h/(N —k+1)

2 2
(961(:)1 B m,(f) > (2 — 2) (xu) B :pf})) i (x@) B mf))

h v RRICEE
(N—k $(1)1—$(2)1 N—k) x(l)l_x(Z)l
<:c(1) N a:',(}) + )]<V kk+1 - ) + (2@ - x;(f) = ( kk+1 : )
3(N —k)h/(N —k+ 1) *
(N—E) x(lz fx({) (1) ) (N—k) (= 1 _ @
2 Jgfkil k 1) (l,” - xp ) . 2 ]{[kkil k— 1)

o5(N — k)h/(N —k+1)

2 2 2 2
(95;(}) B x&z)) (zV) — 2) (x(l) B $£Ll)) I (x(2) B xgz)) (xa) B x&z)) I (x(z) B xg))

(N—h/(N—k+1) | 2N—RhJ(N—k+1)  2(N—RA(N —k+1)
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Moreover, in fact we have

1 _ ())
L) a-b b+(N—k)a:l(€_)1:x(2)+(N k)<$k1 T
i N—-k+1 N—-k+1 K N—-k+1
(1) (2)
@) a—b B a+(N—k)x,(€2_)1_ ) (N = k) (xk 17 g 1)
P NTEY1 T N—kt1 N—k+1

so that we may rewrite (6.30) as

(a0 )+ (2@ —2?)”
1) .2 _
f(@?,219) o exp 2(N —k)h/(N —k+1)

(20 =)+ (2@ 2M)
TP TN R (N —E+ 1)
~ (o = y) (@)
— X
P h(N —k+1)
2 2
(20 — il + 55t5) o+ (o - ol? - 25)
L 2(N — k)h/(N —k+1)
2
(5’7(1) - x,(f) - k+1) (x@ NZL)
exp | —

2(N —k)h/(N —k + 1)

We are now ready to rotate the basis. Write y = Lﬂx@) and 2’ = &\/53(2) Notice that for

any k12 € R:

2 1 2 a— 2
\/5 V2
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a—>b 2 a—>b 2
n_,__ =27 @_,0y__=2"7
(‘T T N—k+1) +(x T +N—k+1)
2 2
— m,_xgl)—kxff) n y_a:,(f)—:c,(})—kQNﬁkL
V2 V2

W, @)\?2 @ ()
1) _ .2)? @) _ .(1))? ;T g T — Xy
x € + (z X = |y - — + _
( ) +) ( V2 Y V2

The absolute value of the determinant of the Jacobian matrix for the change of coordinates

from (a:(l),x(2)) to (x/’y) is 1. Thus the joint pdf for <X(1)(tk)\}'§X(2)(tk)7 X(l)(tk)\;ix(z)(tk)> is

given by

o e
V2

“Sm - | W

g(z',y) o< exp

where for y > 0,

o Chnti ) IO Ul 9

f(y) ocexp 2Ty = /T + exp 2T )h/T2 -
<‘rl(c 1 yl(c2)1> (a—1D)
P h(N —k+1)

1 2 2
(o ah—aPoagest
Yy 2

2(T> — Wh/Ts

2
— _ G M ey e
y V3

2Ty — W/ Ty

exp + exp

To get the result as stated, we rewrite this pdf for XW(t)-XOtk) yging the Ag, A7 notation,
72 g

and find the normalizing constant:

<2\/27rh(T2 —h) /Ty — 2exp (#) V2rh(Ty — h) /TQ) (6.32)

_ <1 ~exp (%02&”)) V2Rh(Ts = I)/T . (6.33)

C:

N =

Here the % occurs because of the cutoff at zero, since f would otherwise be symmetrical. m

Let v denote the measure on R induced by the distribution of w If for further
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brevity we set

o =hTy—h)/T;

(T —h) Do +hirg
Y1 = \/§T

(T —h) Do~
Yo = \/ET

then the pdf for W is

I(y) = m (eXp (_%) 4o (_(y Zfz”)Z)
(o (<0528 o (O 2Y)) o

Thanks to Lemma 6.3.2, we are faced with sampling from a 1-dimensional distribution. It is
possible to create decomposition and rejection methods for multi-dimensional distributions,
but this 1-dimensionality makes it easier, and means that we could also apply the universal
method. It is an experimental observation that when we constrain y > 0, this distribution
is unipolar. However this has yet to be proven and seems to be analytically intractable. It
would be even more expedient to know the peak, but solving this problem appears to be
even more intractable, at least by trying to directly solve f’(y.) = 0.

Therefore in order construct simulations, it is helpful to at least know the mean and

variance of W, and these are given by the following result.

Proposition 6.3.3 (mean and st.dev. of distance coordinate) Let X ~ wg ’((;’bb)) _ .
N B, X (tk—1)=Tk -1

XM ()= X @) (¢ .
Then % has mean and variance

XD (1) — X@ (1) 1 (V2 —Vin
E i NG LA 1K (ﬁUeXp <W> + Y1 (P(Yu1/0) — P(—y1/0))

\/§ —932
-K (ﬁa exp ( 52 ) + Y2 (P(yu2/0) — (I)(_yVQ/U))))

Var (X W(ty) - X (tk)> =L o - K (1t 0?) - (EX(1)<tk)\;§X(2) (tk))




146

Proof. We perform an integration by parts: for a € R,

d% (—02 exXp (%)) = (y—a)exp (—_ (%;a) ) =
/OOO?JGXP <%> dy = [—02 exp (%) + a/ooo exp (—_ (%;Q) ) dy

= o2exp <_—Of) + oV 210®(a/0)

20

where ®(a/o) denotes the probability that a standard normal variable would lie below a/o.

Therefore
E 0—1/00 f(y)d L < 2 <_y31) + YV 210D(y1 /o)
= =——— | o%ex v ToP(Y,1/0
y , Wl = P35 ) Tum Y1
2 _(_yu1)2 2 _932
+ o“exp Top2 — Yy V2ro®(—y,1/0) — Ko“exp 502 + Yo V2mo®(y,2/0)

+Ko?exp (_<_—y”2)2) —~ y:&mo—@(_yrﬂ/o—))

202

VT 202

-K (%a exp (;g’?) + Y2 (P(yu2/0) — q)(_yVZ/J)))>

as required. Meanwhile, we can find [;° y?f(y)dy. Notice that

d%; (—02yexp <%>> =y(y — o) exp (%) _ g2 (%) .
/OOOZJ?eXp <%) dy = |—o%yexp (%)]
+a/oooyexp <%> dy + o /Oooexp (%) dy

=0+ ao?exp (—0‘2> + (a® + 0%) oV212(a/0)

_ 1 (ﬁaexp (—y> ot (D)) — D= /o))

202
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and the result follows. =

6.3.2 Drawing a point on a non-crossing Brownian bridge

In view of the above alternative restatements of the joint pdf for a point X (¢;) when X ~

T,(a,b)

Wo (a.) there are several ways we can approach the problem of sampling from

Eo,X (ty—1)=2k_1

the distribution of X (#;). The simplest is to draw disregarding the conditioning on Fy and
then reject according to the probability of a crossing during (t5_1,7"). Alternatively, we could
make use of Lemma 6.3.2 to avoid having to take multidimensional samples at all, and instead
be left with a 1-dimensional sampling problem, ie sampling the distance coordinate. For this
case, two well-known 1D sampling methods were compared: a Decomposition method, and
a Rejection method (cf [Gen98]). Alternatively one might use the Universal method (see
[MT04, Gen98]) but an approximate solution for inversion of the cdf would be needed, and
this complication was considered to be best avoided. It was verified that a transformation
method (cf [Wil01, p.249]) based on transforming a Gaussian draw is not possible. Clearly,
in principle there could be other readily sampled distributions that it might be possible to

transform and attain the desired pdf, but no such object was discovered. The details of each

attempted sampling method now follow.
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Naive Rejection method

As mentioned, in view of (6.24), we can draw a value z for X(t;) if we draw from
the Gaussian which is induced by the conditional Wiener measure and then reject with

probability given by (cf 6.25):

h (N — k)h

1—|1—exp| —

(6.35)

in the case that for our draw, ™) > 2(®), and with certain rejection otherwise. In the case

that we draw 2 < z(®, we cannot reflect the draw to save on draws, since although the
Gaussian candidate measure is symmetric, the centre is not on the line = = y.

The greatest virtue of this method is its simplicity, but it is not possible to combine it
with just a Gaussian measure for the initial points (a,b). In experiments of this kind, the
situation was soon encountered, during the first or second step, that points are located too
close together so that the acceptance probability for the next point is persistently less than
10710, Tt is likely that some improvement may be found if a more favourable initial point
distribution is used. In this case, however, one has already reduced simplicity somewhat. It
is notable, however, that when a Markov Chain Monte Carlo approach is adopted, initial
points are no longer distinguished from the rest. This should make the naive rejection method
viable without necessitating severe complications, since the part of discretisation space where

crossings are almost inevitable should then be accessed commensurately infrequently.

Reorientation 4+ Decomposition

Since we established that a linear transformation of coordinates makes the new coordi-

nates independent, we could proceed by taking a Gaussian draw for w (since

efficient methods are known [MT04] for simulating a Gaussian distribution) and then, we

X ()X (ts)

7 That is, as mentioned, we then need to

are left with the need to sample
sample from the 1-dimensional distribution corresponding to the pdf (6.29). One generic

exact method for 1-dimensional sampling is volume decomposition.
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Volume decomposition depends on the assumption that the target distribution is unipolar,
or at least that its modes are all approximately known. It means, in principle, that we rewrite
the pdf as the infinite linear combination of drawable pdfs, with positive coefficients. (We
shall loosely call a pdf "drawable" when an efficient sampling algorithm is known.) The choice
of basis functions is arbitrary as long as they are drawable pdfs. However, for simplicity let
us choose each to be the uniform distribution over an interval. Then we are decomposing
the area under the curve into boxes: for some set of P; > 0, and some set of x;1, T;2,

— 5 Lzl
— PZ 11,032 . 636
f Z Ti2 — Ti1 ( )

i=1

H N

Figure 6.4: Decomposing the volume of probability under the pdf curve

The most conceptually obvious algorithm would seem to be as follows. Let f be the pdf;

we assume the distribution is unipolar.

1. Find the maximum likelihood peak of f; call this yysr. Let ko € (0, yarz)-

2. Form a subset of the area under the curve by taking (yar — ko, Yarr) X (0, f(yarr — Ko))-
We shall call this R;. If we are trying to sample the area beneath the curve uniformly

(cf [Wil01, p.249]) then we should attribute to this P, = f(yyr — Ko)Ko-
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3. Do likewise on the right-hand side of yo: take Ry = (yarr, yarr + ko) X (0, f(yarr + ko)),

and attribute to it P = f(ynmr + Ko)ko-

4. At the leftmost point so far encountered (call y;gprr), create the next R; = (yrprr —

ki, yrerr) X (0, f(yrerr — £i)). Or, if ypprr — ki < 0 then R; = &
5. Create a further set of R; by bisecting existing intervals.

6. At the rightmost point encountered so far (call yr;our), create the next R; =

(yricuT + KisYricur) X (0, f(Yricur + Ki))-

7. Return to step 4; or, if 0 is the current leftmost point then return to step 5. Thus we

shall obtain values for P; and x;1, x;5 in (6.36).

8. We make a uniform draw u ~ U[0, 1] and this can be used to index both which R; we

lie in and what point to draw from the corresponding interval. For suppose that

k—1 k

Y P<u<) P

i=1 i=1

Then our draw is
k—1
Tr1 + <u - Z Pi) (The — k1) -
i=1

However, in practice a couple of modifications to this schema become necessary. Firstly,
it is notable that once u is known, we will know when we have computed k coefficients such

k
that u < Y P; and we can stop iterating. Obviously to compute an infinite number of terms

i=1
would take an infinite number of evaluations of f so this is just as well. So it makes sense
to draw w first and then check whether u < Zk:lPi after each (kth) box.

Secondly, in the case of distributions suchias that of the distance coordinate for a point
on a non-crossing bridge, it is not apparently possible to identify the maximum likelihood
point analytically and so we cannot rely on knowing the sign of the derivative. However, as

long as the function is unipolar we can still use the fact that for any interval [z1, 2], ming, 4,

f = ming,, 4,3 f. The approximation to the curve after n iterations will look like a set of
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intervals demarcated by j, points where j, 11 = 2j, +1 and j; = 2 (so that j, = 3x2""1 —1)
where the height of the approximation curve in interval [z7, 23] is ming: .sy f.

In practice, a limitation was encountered, that the maximum number of iterations is
bounded by the amount of computer RAM. viz, to run the 25th iteration with the 24th in
storage, will probably require about 600 Mb storage if there are 4 bytes in a double precision
number, and this amount roughly doubles at each iteration. The solution used was to re-
start the procedure (with a new draw of u) if v > iﬂ, introducing a small bias. This
means that, in effect, the pdf actually being drawn fr_om is a step function approximation
to the intended pdf, with jos4 steps and curtailed at the rightmost point. As it happens,
Joa = 25165823.

f W, the distance o /q'/?

For this reason, where o is the standard deviation o
was chosen for x in determining the new leftmost and rightmost points at iteration ¢, rather
than say o/q, since using ¢'/? means that at the 24th iteration, we can reach 8 s.d. on the
right-hand side. A rough numerical analysis indicates the probability of the neglected tail is
of the magnitude 10716, As a conservative estimate, it should therefore be safe to consider
the procedure unbiased if the number of samples used in a program is less than about 10'7.

Although we cannot find the peak, it is still necessary to pick two sensible initial points to
be the endpoints of the interval in iteration 1. Since we can compute the mean and standard
deviation of the distributions that we are concerned with, the points used in simulations

W — J,EW + 0. The conclusion from the simulations using

were B
this method was that it demonstrates one way in which an effective simulation can be

achieved, but is unnecessarily expensive. The simulations are 10 times more costly than

with the following method.

Reorientation + Rejection

Again relying on Lemma 6.3.2, we may sample from the distribution given by (6.29) using

Rejection sampling, another generic exact method. Specifically, we draw from a drawable
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"candidate" pdf, and then reject with a probability given by the ratio of the two pdfs,
multiplied by some o~ < 1. This effectively means that there is a candidate measure
p with full measure o and v < pu, and our acceptance probability is dv/du, the Radon-
Nikodym derivative between the target measure and the candidate measure. This method,
amongst others, is discussed in [Gen98|.

There are two popular approaches to Rejection sampling: the ziggurat method and adap-
tive rejection. When the modes of the distribution are assumed known, the ziggurat method
creates a "ziggurat" candidate (ie, a step function everywhere greater than the target pdf
f) using a finite initial set of evaluations of f. The adaptive rejection method improves the
ziggurat by updating it each time the target pdf is called. Neither approach is applicable
here because parameters are different every time that a draw is made, and (6.29) is not
such that an easy transformation will turn a draw for one set of parameters into a draw for
another set of parameters.

If dv/dp > 1 at some points, then upon sampling such a point, we could apply a reweight-
ing to the contributions to the functional integral. However, this rapidly becomes compli-
cated. A method based on this idea was implemented and gave poor results, so it is considered
imperative for there to be no such reweighting. Therefore it is necessary to use a candidate
measure whose Radon-Nikodym derivative with respect to Lebesgue (that is, the pdf of the
distribution which induces this candidate measure, if it were to be a probability measure) is
everywhere greater than or equal to that of the target. Or at least, we need to know that
the problematic samples with dv/dp > 1 will occur with a sufficiently low frequency, such
as 1071%, that their influence can be disregarded in our simulation.

Various candidate measures were considered and most attempts encountered significant
problems. The measures tested were based on the exponential distribution, the hyperbolic
distribution, the gamma distribution, and these distributions spliced with the Gaussian, and
with each other, horizontally and vertically. (Sampling from a horizontal splicing of pdfs

can be accomplished by knowing the relative weight intended for the component parts and
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choosing at the beginning from which of the parts we are to sample. Sampling from a vertical
splicing means sampling from a linear combination of pdfs, which can be similarly achieved.).
In principle, any probability measure p/ with v < p/ can be boosted by some « to the point
where p ({dv/du > 1}) is sufficiently small. It is not clear how we could use any other kind
of boost than to multiply by a constant. Therefore the relevant property of a candidate
measure is, what « is needed in order for it to be evident that this point has been reached.
For most of the measures tried it was clear that this o would be of an unacceptably large

! must of course be the acceptance ratio).

magnitude (since o~

It turns out that an effective candidate can be produced using a splice of two Gaussians.
Nothing useful comes of splicing about the mean. Rather, if we assume that the maximum
point of the target is known, it appears that the two parts of the target to either side of
it can then be modelled, separately, as Gaussian. (Under changing parameters, the mean
strays a variable distance from the maximum point and so a method based on splicing
around the mean will fail for some parameters.) However, it was found that estimating
Yy by using a quadratic approximation to the target from a Taylor series about the mean

seems to give reasonably accurate results. That is, experimentally, where we write EA for

E [ X® (1) — X@(t)],

i (Y _h_f EA
Ymr = Ymr = ( ) 2f3 f3+\/§ (6.37)

where, recalling the notation defined following Lemma 6.3.2,

2 2
EA EA
1 Vm (5-91) ) B+w (5 + )
Aol R =l =t I P
EA EA EA EA 2
+K V2 exp | — V2 V2 exp | — V2
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2 2
EA EA
f 1 1 N <E - yul) (E - yul>
T o2 ot P 202
(% +3) (5 +3a)
+ _i n NG Y1 ox B V2 Yu1
02 o4 P 202
Ba _, \’ A _ .\’
o2 ot P 202
(5 + o) (5 +1a)
n i _ NG Y2 ox _ NG Yo
o2 o4 P 202
A 3 EA 2
F -3f1 N 1 <W - yu1> (W yu1>
= — | - exp | —
3 o2 C ob P 202
(B+w) [ (Brw)
_ \/5 vl ox B \/5 vl
o6 P 202
(B-w) [ (B-wa)
\/5 Y2 \/5 Y2
+ K G exp | — 552
<%+y2)3 <%+y )2
+ \@ v exp _ \/5 v2
o6 202

Obviously this approximation would give rise to some error if we were trying to model
the target exactly, but it is clear visually that it is unimportant when we are just trying
to create a candidate measure with full measure > 1. (It is only the cost of this Taylor
approximation that we have to worry about.)

Approximately speaking, the target is somewhat like a Gaussian about its peak with
one side compressed so that it meets zero at zero, and intuition of the problem makes it
plausible that this should be so. So it is safe to allow the left-hand side of the candidate to
have variance 72 := Var (\%), ie the same as the target’s overall variance: at the very least

we know that the mean square negative deviation away from ¥, in the target is less than
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this, since it is less than the mean square positive deviation.

Now for the peaks of the candidate components to meet, as seems desirable, the "normal-
izing constant" on the right-hand component must be ﬁ as on the left. This normalizing
constant will be relevant in the acceptance probability when we draw a point on the right-
hand side. This means that choosing a higher variance than 7 on the right-hand side (as we
must do) implies a greater candidate measure on this side. The relative probability of the
two sides is thus controlled by the variance of the right-hand side, so a natural choice might

be

V(yML> OO)

(0, yarz) (6.38)

Tright = T

so that the candidate gives the same relative probability to the two sides of the peak as
the target does. The fact that the left-hand candidate works should then mean that the
right-hand candidate must also work, since the right-hand picture is then in some sense a

reflection of the left. Of course, we know that

1 - Yv - - Yv
V(O’yML):l_K<(I)<yMLJ yl)_®< yMLU 91)

(o (e ) e () ))

Figures 6.5-6.8 show example curves using the candidate Radon-Nikodym derivative:

1 —(y — i)’ .
exp<M),O < y < Ymr;

VonT 272
1 —(y — ynrz)? —
——— exp Y >y 6.39
varT o\ 22 <u<ym,oo>>2 " (639
v(0,9m1)

There is no extra boost to the candidate.

In the candidate which was actually used so far, the formula used for the variance of
the right-hand side is instead (3(1 — v(—o0,yaz)) + 0.5)*r7%.This is arbitrary, but works
empirically. (In fact given the range which v(—o0,yy) actually takes, this ranges from

being a similar value to the right-hand variance above, and a somewhat greater value.)
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Ao=0.001,Ar=0.001,h=0.01,T=0.03

S Candidate

— Target

0.4 0.5

Figure 6.5: RN derivative of candidate measure compared with pdf of target measure. Ay =
0.001, Az = 0.001, h = 0.01, T"= 0.03.

In the Gaussian cdf, the tail after 8 s.d. has probability < 107'°. It seems apparent from
graphing with different parameters that if there is a point where our candidate meets the
target then it is at least this kind of distance from the peak. Actually, modelling the curve this
way, we barely would encounter errors with no extra boost. In simulations, an extra boost
of 1.1 for the candidate was used, to ensure that there would be no problems and it seems
likely that this value is adequate for any foreseeable simulation. Because we used v(yyr., 00)
in the formula for our candidate, the candidate measure « is variable (but in general it is
not much more than 1). From a run of the simulation with A = 0.1,7 = 8, M = 10°, there

were 1197 occasions when dv/du was greater than 1, ie a proportion of order 1078, — but it

v(ymr,00)

is expected that this would be much less using 7yigne = 7 S09in)

Because both component distributions are Gaussian, the splicing can be achieved here
by simply taking a Gaussian draw and if it is negative, changing its sign with probability

(Tﬂ — 1) / (% + 1). Naturally we then multiply by the appropriate sd for the side of

T
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An=0.001,A1=0.05.h=0.1.T=2.0

Candidate

Target

14

Figure 6.6: RN derivative of candidate measure compared with pdf of target measure. Ay =
0.001, Ar =0.05, h=0.1, T = 2.0.
zero that it is on, and add our estimate of ¥y, and we have a draw from the candidate.
The method has not been analytically proven to work since it seems problematic to
demonstrate rigorously that the candidate selected remains greater than the target for all y
or for a set of measure 1 — ¢ with € negligibly small. However, we can console ourselves with
the fact that it has been empirically tested, and that this will be adequate to know that it
will always work in practice, because it is always the same pdf that needs to be sampled,
independent of the problem at hand. In practice this method provided an advantage in speed
of some 10 times over the Decomposition method explained above; both gave equal results.
Even though neither method could be proven to be valid analytically, the fact that the results
agree gives definite confirmation that as would appear credible from the graph, dv/du > 1
bias is not creeping in, and that the assumption of unipolarity was not significantly violated.
No "variance factor" h%/m was used but this should be unimportant as whenever such a
factor is introduced we should just adapt the candidate commensurately.

It seems that if we were to have had any concerns about the complexity or viability of
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Ao=2,Ar=2h=0.1T=2.0

1.0+
Candidate

0.8} Target

0.6

04+

Figure 6.7: RN derivative of candidate measure compared with pdf of target measure. Ay =
2.0, Ay = 2.0, h = 0.1, T = 2.0.

sampling from the non-crossing bridge fdd pdf, in order to exploit the formulation of the
problem that arises from the Theorem 6.2.1 above, then these concerns must be laid to rest.
Sampling is not difficult to program. The total cost per sample is equivalent to about 30
calls to the exponential function, but as we shall see, this was low enough for a simulation

of the harmonic oscillator to be run with success.

6.3.3 The initial point distribution

In earlier attempts, a Gaussian distribution of initial points was used. Since we collect an

approximation to ng ,(((Z,l)z))) (E0)JL°((a,b), (a,b))at each point, this gives rise to the sampling

of many pairs of close points which have a very small contribution to the overall integral,



159

Ao=0.1,Ar=0.0001,h=0.01,T=0.02

S Candidate

— Target

0.4

Figure 6.8: RN derivative of candidate measure compared with pdf of target measure. Ay =
0.1, A7 = 0.0001, h = 0.01, T'= 0.02.

due to the high probability of bridges crossing. Therefore a different pdf was used:

R L ).

a’ +b? a?+ b (a—10)?
= exp <— 557 )—exp (— 557 —( T )) . (6.40)

We make the transformation to (a’,b') = (“—jib, “—\;%’) and noting again that the modulus

of the determinant of the Jacobian is 1,

a® + b a’?+b*  (a—0b)?
g(d', b)) = exp(— g )—exp(— 52 T T )

2 2 2
a—b a-+b a—>b
W) (58) + (%) @-wp
202 T
a/2 + b/2 a/2 + b/2 b/2
( )—GXP( -~ T)
a b2 1 1
= — — 2 — + — . A1
exp(zaz)( P(-z) oo (7 (77 5m) ) @)

So it is clear that these coordinates are independently distributed. We can draw a’
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Gaussian and then obtain b’ from decomposition or another method. Note that

1 1 T/2 + 202 1
L L _T2+207 (6.42)
T/2 202 To? 2702 /(T + 40?)

It turns out that for decomposition purposes, we can find the peaks of g(b') and prove

that it is unipolar when we consider only positive ', for

dg =l b2 b b2
Q- o P (_202) T 702 (T 1 402) P (_2T02/(T n 402)) (6.43)
Hence
D 1) = 0.6, # 0
and thus
1 b2 1 b2
o2 P (_20—2) T T /(T +40%) 7 <_2Ta2/(T n 40—2)) ‘
Therefore
T b'? b'?
T+d02 0P (_ 2T02 /(T + 40?) * 202) '
Therefore

p? = (1 - T
B T + 40? 2702 /(T +40%)  20%2)

It is convenient, for decomposition, also to know the variance, and in order to get this
we will find the mean and the mean square of the distribution. Let us first compute the
normalizing factor C"

2mo — /214 / T"22 2
C = 5 T+4o0 _ \/g <O’ _ To ) (644)

T + 402

where here the factor of 1/2 enters because of the cutoff at zero, about which ¢ is symmetric.

Now the mean is given by

o) o) b/2 b/2
/ / /o -1 / _ _ _ /
/0 bg(b)db = C /0 b (exp ( 202) exp ( o /(T + 402)>) db
= C ' |-c%exp | — AT - —T—02 exp | — v N
- o exp a2 )], T + 402 P 2T02 /(T + 40?) 0

2
To?

= C'(o?— ) 6.45

(U T+ 402> (6.45)
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Now notice that applying F(X?) = Var X 4+ (EX)?,

0o b/2
/ b? exp (— )db' V2ro® (6.46)

o 202

but the integrand is symmetric about zero so it follows that

> v N3
A b2 exp (—@> db = %03 . (647)

Therefore

[ o = o [T (oo 26_)‘ (s i) )

= Cl<ﬁ 3_ﬁ 3/2)
V2 \/_ T—i—402

() ) e

Therefore the standard deviation of b is given by

o3 _ (1o 3/2 To2 2
(T+4a ) (o1 (o2— g ) (6.49)
TO'2 T + 402
0 =\ Tx4o?

A less expensive alternative is to sample (a, b) Gaussian and reject with probability exp (— %) .

6.4 Simulation methods for n 1D non-crossing bridges

If we are to claim that a solution to the sign problem has been offered then we must
describe how to perform the simulation when there are n particles. In other words, anal-
ogously to the situation of the preceding section, we have to demonstrate how to sample
a point on the (system) Brownian bridge, when some other points may already have been
fixed. As before it turns out that exact sampling is possible, but in general we may need to

use a rejection method in order to achieve it.
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6.5 Numerical results using non-crossing algorithm for
2 fermions in a 1D Harmonic Oscillator

A program was made to implement the method described above - viz, that we take
only bridges that do not cross and estimate formula (6.21). The program estimates (f‘\//), ie
the approximation to (V') obtained by applying Simpson’s Rule (3.40) to approximate S,
by using direct path sampling (4.8-4.9). The following sequence of results is given, showing
that this method is very effective compared to the methods discussed previously; particularly
compare Figures 6.9-6.12 with Figures 5.1-5.7. Visually it is clear that a superpolynomial
increase in M is required in order to maintain a certain Monte Carlo Standard Error as
inverse temperature increases. However, the growth in cost is apparently similar to that
found in the case of 1 particle in Subsection 4.3.4, which is because the cost growth is due to
a lack of importance sampling, rather than to the sign problem. It seems fair to conjecture,
from these results, that we may say that we have succeeded in proving and implementing
a solution the fermion sign problem for 1-dimensional systems. The time to perform 10°
Monte Carlo runs for T'= 10 was about 82 hours on a 2.0 GHz machine.

Table 6.1 gives an indication of the convergence of the Monte Carlo estimate of (/\\//>,

when the simulations are performed with h = 0.1.

Table 6.1: Potential energy for 2 noninteracting 1D fermions in a harmonic potential; to 9
d.p. The results are based on using Simpson’s Rule for S ; h = 0.1 throughout.

T M  Realisation of </V\> Low (175 (95%) High (T//> (95%)  True value (V)
2 107 1.097576066 1.096432794 1.098721173 1.096916182
4 108 1.010107205 1.009327187 1.010888017 1.009664255
6 108 1.001711376 0.999801159 1.003626313 1.001248600
8 10° 1.000137100 0.998525317 1.001752307 1.000167900
10 10° 1.003130673 0.998769273 1.007514820 1.000022703

It can be seen in Table 6.1 that in every case, the true value of (V') is within the interval

—_—

predicted by the program (V). The program used the Bivariate Gaussian contour method,
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0.8
2—particle density
for T=2 (series)
No-crossing algorithm
T=2, h=0.1, M=10"7
0dr
0.2
—4 -2 4

Figure 6.9: Particle density for 2 1D fermions using Simpson’s Rule for S and non-crossing
algorithm. T'=2,h = 0.1, M = 107.

described in Chapter 4, to determine these credibility intervals for (V).



164

0.8

2—particle density

for T=4 (series)

No-crossing algorithm
T=4, h=0.1, M=10"8

0.4}

—4 -
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-

Figure 6.10: Particle density for 2 1D fermions using Simpson’s Rule for S and non-crossing
algorithm. T'=4,h = 0.1, M = 108.

0.8

2—particle density
for T=6 (geries)

No-crossing algorithm
T=¢,h=0.1, M=10"8

—

(]
-

Figure 6.11: Particle density for 2 1D fermions using Simpson’s Rule for S and non-crossing
algorithm. T'=6,h = 0.1, M = 108.
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0.8

2—particle density
for T=10 (eries)

No-crossing alzorithm
T=10, h=0.1, M=10"2

Figure 6.12: Particle density for 2 1D fermions using Simpson’s Rule for S and non-crossing
algorithm. 7" = 10, h = 0.1, M = 10°.
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Chapter 7

Multidimensional pairs of fermions

In this chapter, we develop and test the Iterated Subdiamonds approach to dealing with
the sign problem in the case of a pair of fermions. We begin, in Section 7.1, by discussing
what makes our approach different and explaining how we are led to the line of inquiry
which is subsequently adopted. In Section 7.2, concentrating on the 2D case, we then build
up the Iterated Subdiamonds approach and prove the main result of this chapter, Theorem
7.2.10. We proceed to explain, in Section 7.3, the ramifications of this as regards performing
a simulation of a 2D or 3D fermion pair. In Section 7.4, results are presented of numerical
experiments to test the average sign being attained by the algorithm and how it changes

with T, the length of the time interval over which integration is performed.

7.1 A novel approach to the fermion sign problem

In the previous chapter, we succeeded in effectively solving the fermion sign problem in
the 1D case by partitioning the space of paths into subsets where the contributions to the
Monte Carlo would be only positive on some, and, as it turned out, the required positive and
negative contributions would exhibit perfect cancellation on others. Although our presenta-
tion of this result may be novel, its realisation is familiar to practitioners. As mentioned,

the physical reasoning behind the 1D result is that particles are prevented from crossing
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wavefunction nodes, and the multidimensional generalization of this principle is RPIMC (cf
Subsection 5.2.1).

The approach taken here represents a radical departure from the node-avoiding approach.
We can instead view the result of the previous chapter in terms of a simultaneous sampling
approach, in which the paths sampled together are those which yield a perfect cancellation.
Endeavouring to generalise this principle mathematically gives a direction to our research
which is different from that of both RPIMC (cf Subsection 5.2.1) and MLB (cf Subsection
5.2.2), although it has commonalities with both. We aim for an exact method which does
not depend on external calculations.

As noted previously, it has been shown that the fermion sign problem is insoluble in the
sense of producing an exact solution (or one with controlled approximations) which treats
3D fermions and increases in cost polynomially as the number of fermions is increased.
The best that it is reasonable to expect is a method for which the cost to achieve a given
variance does explode, but with a relatively low exponent. We have already mentioned that
although there is a notional equivalence between an increased number of fermions and a
reduction in temperature 1/kgT, due to the converging relative likelihoods of terminal point
permutations, it is not clear that solving the sign problem for T is as hard as solving it for
n. In this chapter, it turns out that in fact, we are able to develop a method for the case of

just 2 particles where the cost scaling with 7' is relatively favourable.

7.1.1 Independence and dimensional crossing events

At first sight it might not seem immediately clear what partition of path space might
be relevant to use in 2D or 3D. In 1D, the first step was to recognise the events whose
probabilities are given by the Gaussian factors on the permutation summands in Zr (cf
(2.62)). In 2D (or 3D), two paths may cross in the x or y (or z) coordinates, so what
combinations of crossings are important? A little consideration of the quantities at hand

reveals an intuitively likely answer. Letting a,b € R?, the factor ¢((a,b), (b,a)), which
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appears in Zr((a, b), (a,b)) (cf (2.62)), may be seen to be

exp(— [la— b|[* /T) = wq 3] (B ) (B ) (E2) = wo ) (BaNEyNE:) = w5 (E5)
(7.1)
where E, (respectively E,, E,) is the set of loop-pairs with a crossing in the x (respectively
y,z) coordinate. In other words, this factor is equal to the measure of the set ES of 3-
dimensional bridges from (a,b) to (a,b) such that the bridge from a to a and that from
b to b meet in every coordinate. This holds because E,, E,, E, are mutually independent
events and because from the results of the previous chapter, it follows that wg’((;;%)(Ez) =
exp(— (ag — by)* /T).

Obviously the set of pairs of Brownian bridges that meet in two coordinates simulta-
neously is a set of measure zero; the paths that are of interest here are those which meet
in each coordinate at a different time. For conceptual simplicity we can also interpret the
coefficient (7.1) in another way: it is the probability of a longitudinal crossing. That is, if
we rotate the coordinate basis so that one "longitudinal" basis vector (corresponding to the
x coordinate, for definiteness) has the direction (b — a)/||la — b|| and the other "transverse"
coordinates are orthogonal to this, then we see that clearly ||a — b|| is the distance between
the new x positions of a and b and it follows from the independence of coordinates that
exp(— |la — b||> /T) is the probability of a crossing in x; clearly there are crossings in the
other coordinates simultaneously at time 0. (It also seems clear that for any rotation of
coordinates, there is an analogous event of which exp(— |la — b||* /T) is the probability.)

The intuition here is that in view of the importance of this rearrangement in the 1D
case, regarding path space as partitioned into disjoint events so that on each of these events,
we have a set of unweighted summands', is a comparatively logical way to proceed. In 1D,
the attempts to create a positive covariance between countersigned summands, detailed in
Section 5.3, were scuppered by the presence of the Gaussian coefficients such as (7.1), and

we solved the problem by rearranging to take account of these coefficients. We can regard

LOr in general, a set of weighted summands such that for each negative summand there is a positive one
with the same weight.
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a coefficient on an integral as modifying the measure of integration, and any cancellation
between the contributions of different paths must surely rest on comparing paths from terms

with equal full measure over the integration domain.

7.2 Subdiamond theory for the case of two fermions in

a 2-dimensional space

In this section we begin by developing basic results based on geometrical intuition about
how to address the sign problem. We then use these to develop the Iterated Subdiamond
method, the justification for which is expressed in Theorem 7.2.10, our main result in this
chapter. Although we prove results that demonstrate the required equivalences, the utility

of these is only discussed informally.

7.2.1 Diamonds

We shall mostly devote our attention to the unnormalized position density Gr((a, b), (a, b))
(cf (2.62-2.65)) and those quantities which can be derived from it, from here onwards; but
it should be borne in mind that the same logic allows us to treat expectations of other
exponential-type functionals. In this section, we develop two results which offer a decompo-
sition of Gr((a,b), (a,b)) into a product of integrals conditional on the first and last longitu-
dinal crossing times and points. Although it is not difficult to appreciate how the results of
this section generalise to 3D (cf Subsection 7.3.2), we shall focus on the 2D case for ease of
exposition.

In the following proposition, we shall use the rotated coordinate basis that makes the x
coordinate longitudinal. That is to say, without loss of generality we assume that a = (a,, 0)

and b = (b,, 0) since this can always be achieved by a rotation and translation of coordinates.
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Random variables as measurable functions It is worth recalling at this stage
that we regard X as a random variable on the measurable space (CE{ w0 B (Cép’ 2,))- In this

chapter, in fact we shall take X to be the identity: X (t;w) = w(t) (cf Definition 2.1.4 and the

brief discussion following it). A random variable on (COT7 w00 B (Cg: »,)) i a Borel-measurable

T

0.29> and expectations of random variables, with any particular conditioning,

function on C,
are integrals of those random variables with respect to measures on B (ng = 0). In this chapter
it is usually best for clarity, and to avoid longwindedness, to write such integrals explicitly.
(Mathematically, however, to constantly redefine the relevant probability measure P to make
(CT B (CT ) ,P) a probability space, and write expectations instead of integrals, would

0,z0° 0,z0

of course be equivalent.)

First crossing time and point We let 7(X) : E, — [0,7] be given by the first x-
crossing time of X (ie, the first crossing time in the longitudinal direction (b —a)/ ||b — a||)

and let z1(X) denote X (7(X)). For z € R* s.t. (V1 = 721 et

E(t,z) = {X€E,:7(X)=t,n,(X) =1} ;

BV (t,z) = {X € Cll  7(X) = t,a1(X) = x}

Here SV stands for swap. We let Cé’g(”a b)| E(t,z) denote the set of paths in Cé’“{a ) with no

x-crossings before time ¢, so that z is the first x-crossing point.

The space of all continuous paths of finite time-length We shall let C* =
UtG[O,oo) Cs. From here onwards we generalise our definition of the exponentiated action
Y so that for any path in C*, Y may be considered to be defined analogously with (1.2).
Whenever functions are defined on C* it should be assumed that they are also defined for

C!, whenever s < t, via translating time by a shift of —s.

Concatenation operator We shall use the & binary operator to indicate the con-
catenation of two path sections, ie Xjo4 & X, ; is given by X over [0,¢] and by X’ over

(t,s].
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Proposition 7.2.1 (First Diamond Proposition) Let f; : C* — C* be s.t. for anyt €
(0,T) and x € R* s.t. W' = 231 we have that for X € Cé’g(ca,b)‘E(t,w% we shall have

fi(X) € Cé;g(”b’a)|E(t7x). Moreover let fi be s.t. for any event A € B (Cé’fa’b)),

Wo )| Bty (FL(A)) = w5 B (A).

Let fo : C* — C* be s.t. for X € Cgé(a’b), f2(X) € Cg;t(b’a) and s.t. for any event A €

B (cl™),

Then

Gr((a,b), (a,b)) :/ Y(X)dng’((;’bb))—l—

[&
T

1 T,(a
5 / [V (Xproon) =Y (A (Kiorn))) (Y Kirom) =Y (X)) dug )

T

(7.2)

where naturally we regard fi 2 as applying in the longitudinal-transverse basis.

Proof. It follows from the definition (2.62-2.65) and the definition of Jr (2.32) that

T,(ab la — b||2 T,(b,a
gr ((a,b), (a,b)) = /CT,(a,b) Y(X)dwo,((a,b)) —eXp <_T 70 Y<X)dw0,((a,b)) - (7.3)
0,(a,b) 0,(a,b)

Therefore from (7.1),

Gr ((a,8). (a,B)) / Y (X)dwl )

c
x

T,(a,b T,(a,b T,(b,a
+ / Y (X)duwl @D — Wl () / YKl ()
b CO,’(a,’b)
Note that the x-coordinates of X form a pair of 1-dimensional Brownian bridges, inde-

pendent from the y-coordinates. Therefore, for the x-coordinates, the same logic applies as

in the proof of Theorem 6.1.4; viz, the distribution of (7, z1), the first crossing time and point

. . T,(b . T,(ab o
in x, is the same for w), ((a 71?)) as for the concentration of w, ((;b)) on E,, so we may condition

on a first crossing time and point (¢, x) which is identical in law for both summands. Let 7
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signify the measure on [0, 7] x R induced by the distribution of (7, ;) for the x-coordinate

of a bridge in £, under w, ((a;’)) . Then

r (a.0). (a.8) = [ Y(X)dug(s)
g ) () T ((,0), (a,0)) — w3 (B2) Te((a, ), (b, 0))
= [ vy
+ wg o) (Ee) /[O - TF (@), (0,0) = TE (0, b), (b,0))] dn(t, @)
:/CY(X)dwO(“,S)

+/ [jf(T(X)’xl(X))((a,b), (a,b)) — j:,?sw( T(X),x1(X)) ((a,b), (b, a))] dw? (;lbb)) (7.5)

In other words, intuitively speaking, since the x-crossing in the negative summand is identi-
cally distributed with that in the positive summand, we might as well use the same realisation

for both. However, notice that under wg’(f’bb)),

T7(a7b)

fi (Xorxon) & Xpoom ~ Wyl
T?(b7a)

0 & fo (Xprx)m1)  ~ Wo o)

i (Xorxy) & fo (Xpeom) ~ wo e :

where E7 C Cg ((bb ) is the Borel set consisting of those paths from (b,a) to (b,a) with an

x-crossing. Therefore it follows from permutational symmetry of the potential that

T T (a,b), (a,0))dwy ) = / Y (X)duwg (o)

By x

Y (£ (Xppren) & fo (Xproymy) ) duwg o)

x

SW T X a a
/ Jy TnN (a,0), (b, a))dwy 1) = / Y (Xor0) & fo (Xirx),m)) dug ()
/ Y fl X[O‘r )&XT(X )dw

O(ba)
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and since Y is multiplicative in the sense that Y (X) = Y (Xj04)Y (Xp,17), it follows that

Gr((a,b), (a,b)) = / CY(X)WQ%M% / Y ) =Y (i (Koron) & Xpeom)

— Y (Xprx0) & fo(Xrx),17))
Y(f1 (Xjorxy) & fo(Xr(x).17))] dwy) (;f))

— /CY(X)dwO(a:))
% / (Y (Xpprxn) = Y (i (X)) *

x

+

(Y (X)) = Y (B(Xpeom)] dwg )

Basically, f; and f, are measure-conjugating bijections. Proposition 7.2.1 provides a
geometrical reinterpretation of the permutation formula (2.62) for Zr.

The first summand in the right-hand side of (7.2) is computationally unproblematic, as we
discovered in Chapter 6. Essentially we can read the problematic "diamond" part of Zr(x, z)
as [ [Y(X)—Y(X')] dwg’((i’bb)) where X' € ESV(7(X),2,(X)) is constructed from X in a

T,(a,b)

manner which for every (¢,z) € (0,7) x R* conjugates Wo (ab) Bt

) T,(b,a)
with w07(a,b) ESW(t,:p)'

If we conceive of two different ways of doing this so that X’ agrees with X either before
7(X) or after 7(X), then we can combine them both to create two negative and two positive

contributions, as illustrated in Figure 7.1 (see a detailed explanation below).

Subdiamond schematics

Some of the figures in this chapter are described as schematics. This means that rather
than illustrating a realisation of the paths relevant to a particular expression for G, or even
their expectation positions, for clarity we instead simply draw the set of links (representing
path segments) showing the relationships between the paths involved. Any suitable sequence
of path segments described in a schematic may be thought of as a path which gives rise to
either a positive or negative contribution to a functional whose expectation is Gr. For

example, in Figure 7.1, if we follow the blue (negative) segment of length 7 from b and then
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(b.,0)

T- T T— _—

Figure 7.1: Schematic of the contributing path segments for a path in F,, according to the
First Diamond Proposition for finding Gr((a,,0), (b, 0), (@, 0), (b, 0)). Red is positive and
blue is negative.

follow the blue segment of length T'— 7 back to b, this represents a path which would give rise
to a positive contribution, since the two negative signs are multiplied. On the other hand,
following the blue segment of length 7 from b and then following the red segment of length
T — 7 to a represents a path with a negative contribution. Following an odd number of blue
segments gives rise to a negative-contributing path; following an even number gives rise to
a positive-contributing path. More properly we should really say, of course, that we follow
two segments at once: if we follow the blue segment of length 7 from b then simultaneously
we follow the blue segment of length 7 from a.

In Figure 7.1, we may say that if X were sampled to be the red path segments, then
the blue path segments supply our mental image of what f; (X [0,7( X)]) & fo (X [r( X),T]) would
look like. A similar interpretation applies in the other schematics.

We do not use different colours for links representing path segments which are uncon-
strained Brownian bridges and for links representing path segments for which crossing con-

straints are implied in the text.
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On relative magnitudes

One direction taken from (7.2) would seem to be to assess the relative magnitudes
of [ B Y(X )dwa 7((;’;)) and the remainder "diamond" part, to establish which dominates as
T — oo. This is especially of interest knowing that, using the techniques of the previous
chapter, we can certainly simulate | B Y (X )dwOT;((;’bb)), which is the expectation of a positive
functional, and indeed could easily extend this to the case of n 3D particles. However, the
undertaking of determining relative magnitudes via partial differential equations leads to
significant difficulties. In view of this, an empirical test was performed to see whether using
the non-crossing part would produce results converging to the correct value, for 2 noninter-
acting fermions in a coulombic potential V(x,y) = 1/1/2% + 2. The conclusion from this
was that the results did not seem to converge to the correct value. Therefore we shall assume
in what follows that we must take an exact approach to (7.2) and not neglect its problematic

"diamond" terms.

On vertical symmetry

Proposition 7.2.1 possesses a certain symmetry: since if we condition on 7 = ¢ and
consider the distribution of the first crossing point X (7) = ((x1,v1), (z1,¥2)), we find that
(y2,y1) is identical in law with (y1,y2), a natural question is, what will happen if we consider
adding contributions that arise from conditioning on a first crossing at ((x1,v2), (z1,¥1)),
as well as those that arise from ((z1,91), (x1,%2)) as already considered here? The answer
is that the same quantity will be restored, since exchange of (a,b) is the same as exchange
of (y1,¥2), and thus the conditional expectation of Y (fl (X[O,T(X)])) Y (fo(Xpr(x),17)) under

crossing with (y1,y2) will be equal to the conditional expectation of Y (X) under crossing

with (yz, y1)-

Remark 7.2.2 It is also valid to conclude, since we could have selected just one each of the
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positive and negative contributing terms, that we could say

Gr((a,b), (a,b)) = / C Y (X)duwy o) (7.6)

T

+ / [Y(X) =Y (fi (Xprxy) & Xpreom)] duwg oy

Gr ((a,b),(a,b) = [ Y(X)duwg )

EC

T

+ / [Y(X) =V (X & fo (X)) ] duwg o)

These may be conceptually helpful, but seem less useful because of the lack of vertical symme-
try. In particular, comparing (7.6) with (7.2) shows that in (7.6) we are missing terms that
may nearly cancel what we have: if T is large then Y (fs (X [r( X),T])) may usually be relatively
close to'Y (X[T(X%T]) for a suitable choice of fo. Intuitively speaking, vertical symmetry is
important for obtaining a lower variance because without it, we face the danger that we might
be equally likely to obtain a "flipped"” sample with a close but countersigned contribution. By
contrast, an estimator of I/, s.t. the samples possess vertical symmetry of this kind, has
the property that we may always consider that y; > ys; tn other words, we may arbitrarily
choose that in each diamond, the leftmost point connects to the topmost point to give the

positive contributions. This is important.

Examples of measure-preserving bijections

There are a number of alternative practical expressions for Zr which can be adopted since
there are various different apparent choices for f; and f;. The most obvious are based on

coordinate exchange, linear translation, and reflections.

Coordinate exchanges We can use an exchange of coordinates between bridges to define
either f; or fy or both, in applying the Diamond Proposition.

We define the operator Ts1,0] such that it has the effect of reversing the x-coordinates
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on [sq, s2]. Then

Gr ((a.b), (a,)) = / Y(X)dul 0+

c
T

1

x x T,(a,b)
5 / LY (Xor000) = Y (Hfo.r 0 Xior00)) (Y (X, 11) = Y (5o Xreo,m1) ] dwg )

x

Alternatively, considering the equivalence, already noted, of exchanging ¥, y» rather than
a,b,

Gr ((a.0). (a0) = [ Y(X)duf{ih)+

c
T

1 T,(a.b)
5 / [(Y(X[O,T(X)]) - Y(_'[yO,T(X)}X[OuT(X)})> (Y(X[T(Xm) - Y(_'Z[/T(X),T]X[T(XLT]))] dwy i, p) -

These are in fact equivalent: both are equivalent to saying that where X = (X, Y], X5, Y2),
the X’ sample is found from (X7, Y3, X5,Y7). It turns out that this way of generating coun-

tersigned contributions, at first glance not advantageous, is by far the most flexible.

Linear translation Given 7(X) = ¢, the conditional distribution of X} 7 induces ngt(a’b);

there is no constraint. Therefore on this interval we could also construct a section of X’ €
ESW(t,x) via a linear map from the corresponding coordinates of X. (In other words, the
trajectory obtained from the corresponding Brownian bridge SDE when using the same
realisation of the Wiener process.) Viz, if we define a random variable, whose values are
functions £((a,b),7(X),T) : [0,T] — R* given by

t—7(X)

Ub=a,0,7(X), 1) t) = Leroo =7 %5

(b—a,0,a —0,0)
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and moreover, allowing f; in Proposition 7.2.1 be supplied by coordinate exchange,

Gr ((a,8), (a,B)) / Y (X)dwl )

c
T

1 xr
45 [ 10 Koronn) =Y (SarerXascn))

x

T,(a,b
(Y (X)) = Y (X + (b = a,0), 7(X), T) iy 1) )] dg o)

The reader should note that when (7(X), z1(X)) has been found to be (¢, x), a horizontal lin-
ear map does not generate a sample from the measure induced on Cé::fb,a) by concentrating on
ESW(t,x). This is immediately evident since it is possible that two bridges without crossings
on this interval, when linearly transformed horizontally, will cross. However, it is possible to
use a linear map for the y-coordinate, since so far the y coordinate is unconstrained. This

is clear because then the x-coordinate of X’ is still sampled from the correct measure. Let

a random variable £((0,y2 — 1),0,7(X)) : [0, 7] — R* be given by

t
0((0,y2 — 41),0,7(X);t) = m(O,yz —y1,0,01 —y2)

and let £((0,yo — y1), T, 7(X)) : [0, T] — R* be given by

Tt
00,92 —y1), T, 7(X)5t) = T——T(X)(O’yQ —v1,0,y1 — o).
Then
Gr((a,b),(a,b) = . Y(X)dw&(:vbb))
1
+§[E (Y (Xpren) =Y (Xpprey + 60,92 = 1), 0, 7(X))) )

x (Y (X)) = Y (X + 000,32 — 1), T, 7(X))))] dug ) -

In principle, this gives some scope to proceed with the kind of favourable sampling scheme

already discussed in Subsection 5.3.1.

Reflection Another example of a possible choice of f; or f5 is given by reflecting coordi-

nates. For example, if we have X = (X1,Y7, X5, Ys) with X (¢) = (z, 91, z,y2) then we may
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construct the y-coordinate of X’ on [0, ] via 2, e Y;. The viability of this is evident
as follows: suppose Y; = ly,, + Z; then whereas linearly mapping Y; by adding [y ,,—,, will
give Y| = ly,, + Z, in this case we instead have Y| = ly,, — Z. We could similarly reflect
the x-coordinate X7 from X, via QZ%@ — X.

Since the average distance between positive and negative contributing paths will usually
be larger, it is not intuitively obvious why reflection confers greater advantages than coordi-
nate exchange. Unlike linear translation, however, reflection does map non-crossing bridges

to non-crossing bridges.

Generalising the Diamond Proposition

It is expedient to prove a generalisation of the result to the case that we stipulate only
that the initial and terminal points have parallel longitudinal vectors, ie where we have xy =
(ag,bo) and xr = (ar, br), we assume that (by — ag) / ||bo — ao|| = (br — ar) / ||br — ar||. As
before we shall treat the case that the initial and terminal points are both on horizontal axes,
since this always can be obtained by a rotation of coordinates. The following result shall be
useful in Subsection 7.2.2. The proof is essentially similar to that of Proposition 7.2.1. We

introduce the operator —, : R* — R* given by —, ((as,ay), (bs, b)) = ((bs, ay) , (az, b)) .
Proposition 7.2.3 (Generalised Diamond Proposition) Let

To = (ao,bo)Z((CLOz,yo),(bOx,yO)) s

Trr = (aT7bT) = ((aTxayT>a (bT:c;yT))

For v € R* s.t. oWl = a@ et £, : C* — C* be s.t. for X € COx0|E ), f1(X) €
CO ﬂwo| E(tz), and s.t. for any event A € B (CO mo) wé’imxow(m) (f1(A)) = wé’fso|E(t7x) (A). Let

fo:C* — C* be s.t. for X € CTIT, f2(X) € Cgf”T and s.t. for any event A € B (CT IT)
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w;ﬂ’;z” (f2(A)) = wng (A). Then

gT(ZL‘(),ZL'T) = / Y(X)dngfOT

c
T

+ %/E (Y (Xprx) =Y (fr (X)) Y (Xpeorm) = Y ((Xpeom)))] dwgar .
(7.7)

Proof. By applying the definition (2.62-2.65) and (7.1), we get, analogously to (7.4):

Gr(xo, 27) = [E cY(X)dw§§OT+ / Y (X)dwy 7 — wy o7 (E,) [E S“'Y(X)dwa’;)m, (7.8)

T

where we should recognise that quite possibly, ng vl (E;) = 1 and where E}Y € B (COT (S’;)))

is the Borel set consisting of paths with an x-crossing.

Note that the x-coordinates of X form a pair of 1-dimensional Brownian bridges, inde-
pendent from the y-coordinates. Therefore, for the x-coordinates, the same logic applies as
in the proof of Theorem 6.1.4; viz, the distribution of (7, ), the first crossing time and

: T
T as for the concentration of wy ;" on £, so

point in the x direction, is the same for w({ o
we may condition on a first crossing time and point (¢, ) which is identical in law for both
summands. Let 7 signify the measure on [0, 7] x R induced by the distribution of (7, z;) for

. Then

T

: o T
the x-coordinate of a bridge in £, under w "

SW
Gr (vo, 1) = / Y (X)dwg s + wy 2T (E,) T (w0, 21) — ngfoT(Ex)jfz (w0, ~e2T)

c
x

- / Y (X)dwg 27

T

T SW(¢,x
+ wg:fOT (Ex) / |:‘-7TE(t, )(33'0, xT) - \.77? (- )<:C07 _|wa>:| d77(t, ZC)
[0,T]xR

— / Y (X)dwg 2"
E

c
x

_|_/ [jf(T(X)7x1(X))($O7$T)_jjf?sw(T(X)ym(X))(xO?_\xl,T)] don,fOT. (7.9)

In other words, since the x-crossing in the negative summand is identically distributed with

that in the positive summand, we might as well use the same realisation (¢,z) for both.
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However, notice that

T,x
fi (Xprxy) & Xy ~ wolly,

T,—gx
Xioroon& fo (X)) ~ woie™

i (Xore) & f2 (Xpeom) ~ wollay |

where E} C Cg :;;;T is the Borel set consisting of those paths from —,xq to —,x7 with an

x-crossing. Therefore it follows from permutational symmetry of the potential that

/jz?(T(X)yZl(X))(xO’xT)dwg:fOT _ /Y(X)dwg:foT
= / Y (fi (Xorx) & fo (Xpom)) dwo st
SW(r(X),z1 z T
/ N R T / Y (Koo e fo (Xprx)17)) duwg ™™
E; ESW

= / Y (fr (X)) & Xpxmy) duwg 7
ESW

and since Y is multiplicative in the sense that Y (X) = Y (X[ )Y (X}17), it follows that

1
Gr (o, v7) = / Y(X)dw it + = / YV (X) =Y (fi (Xpprxn) & Xprx) 1)

Ee 2 /e,
— Y (Xpprex) & fo( X)) + Y (A (Xorx)) & fo(Xprex) )] duwg !
= / Y (X)dwg 2"

T

+

%/ [(Y (X[O,T(X)D —Y(fl (X[O,T(X)})))

x

X (Y (Xpxm1) = Y (fa (X)) ] duwg

Remark 7.2.4 Naturally if ar, > by, and ag, < bo, or vice versa then wafoT (ES) =0.

Using first and last crossing times

In addition to being able to choose various ways of constructing X’ from X, we can also

create similar formulae using other x-crossing times than the first crossing time 7(X), as
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Figure 7.2: Schematic of the contributing path segments for a path in E,, according to the
Generalised Diamond Proposition.

long as we choose a crossing time that is well-defined. For example, we might use the last
crossing time, or the crossing time which is nearest to 7/2, as long as we choose bijections
which conjugate the corresponding measures. We shall use 71 to denote the first crossing
time and 7/ to denote the last crossing time.

In particular, it is notable that (7.2) is not symmetric in time, even in the narrow sense
of looking at [0, 7] forwards or backwards. This seems counter-intuitive in the solution to a
problem where such a time symmetry is very evident. We can further derive an expression
which does conceptually have this symmetry, by combining the diamond for the first crossing

with that for the last.

Overloaded notation for crossing events To achieve greater simplicity, for the remain-
der of this chapter we shall adopt a streamlined (ie overloaded) notation about events. From
now on, we shall let E(s, x) indicate the event that the first x-crossing takes place at time s
and system position z, regardless of the path space relevant to the integral (for us the mean-
ing shall always be clear). We shall let E’(s,x) indicate the event that the last x-crossing

takes place at time s and system position z.

Conditional independence when a last crossing time and point is specified Con-

sider a pair of 1-dimensional Brownian bridges, X(!) and X®. The last crossing time 7/



183

is not a Markov time and so we cannot simply invoke the strong Markov property to infer
conditional independence of X 0,7] and X+ 7. However, it shall be important to recognise
that a closely related conditional independence does apply: given ¢t € (0,7) and = € R, we
need to be able to say that given the event that 7} =t and given that X (t) = (x,x), X[y
and X 7 are independent. It is sufficient to show that X(s;) and X(s;) are independent
when conditioning that 7 = t, for some ¢t € (s1,$2), and that X(¢) = (z,z). We now
advance three different perspectives to explain why this is so.

The most direct derivation is as follows. If we recall our definition of conditioning (2.17),
it is clear that the conditional pdf for X (s;), X(s2), at some point (21, 22), given 77 = t and
the last crossing point x5 = (x, ), is proportional to the conditional pdf for 7, xs given
(X (s1),X(s2)) = (21, 22), evaluated at t, (z,x), multiplied with the unconditional pdf for
X (s1), X (s2). So our task is to show that this yields a product of functions of z; and 2. The
joint conditional pdf of 7|, zo may be found by taking the product of the conditional pdf for
71, with the pdf for xs conditional on all of X (s1) = 21, X(s2) = 22 and 7] = t. Recalling
the pdf for 71, that is, 2% in (6.13), it is clear from symmetry that the pdf for 7 is given by

> dA

evaluating this j—} at sy —t+ s; rather than at ¢t — s;. This forms a product of functions of z;

2 2 1
(-0 (=87
2(s2—s1)

and zo multiplied by exp <— )> . It follows that the conditional pdf for 7}
multiplied by the unconditional pdf for (X (s1), X(s2)) at (z1, 22) is a product of functions
of z; and 2.

Meanwhile, conditioning on 77 = ¢ can only affect the bridge component %, as

previously explained; this means that conditioning on X (s1) = z1, X(s2) = 29,7 = t yields

the same conditional pdf for W as just conditioning on X (s;) = 21, X(s2) =
[ . z§2)+z§1) z£2)+zél) . /

zo. This is of course a product of functions of 7 and N But given 77 = t,

Ty = \/Li (X(Q)(t)\;%X(l)(t), X(z)(t)j;(l)(t)) It follows that the conditional pdf for 79,z given

X(s1) = 21, X(s2) = 2 is a product of functions of z; and 29, as required.
For a less explicit but more intuitive point of view, recognise that due to continuity of

paths, the event X (t) = (x, ) is 0(XJ;, 4))-measurable whereas the event 77 =t is 0(X(¢,4,])-
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measurable. Therefore (cf (2.20)) joint conditioning is repeated conditioning. So consider
what happens if we condition first on X (¢) = (x,z) and then on the fact that this is actually
the last crossing in (s1, s2). The former conditioning leads to independence of X (s1), X (s2);
the latter involves conditioning on an event which is measurable with respect to (X))
and so cannot introduce any dependence.

Yet another line of reasoning is based on the symmetry involved in reversing time. Recall
that where X ~ wg 27, O X given by O X(t) = X(T —t) has O X ~ wy2°. Then for () X
we have conditional independence, given a first crossing time 75 and point 2. But it is clear
that 7/ = T — 77 and 2, = 7. Consequently, (9 X )jo.n) @and (O X), 7 have independence
conditional on 7) =T —t and x5 = z; but this is the same thing as saying that conditionally,

Xio,r—1) and X(7_; 1) are independent.

Conditional independence with first and last crossings The fact that this condi-
tional independence applies in the 1-dimensional case implies that we may use it for each
component in the multidimensional case. Moreover, since joint conditioning is repeated con-
ditioning, we may conclude that when conditioning on both the first and last crossing times
and points, the resulting conditional measure is a product of the measures relevant to the

three sections [0, 71), (71, 7}) and (79, T.

Proposition 7.2.5 (Second Diamond Proposition) Let f; : C* — C* be s.t. for any

z € R* with :W' = @1 for X € Ct , we shall have f1(X) € Ct’g(cba) and

(ab)‘E(t,x) 0:0:9) | g )’

(fl( )) - wOf{l b) ( x) (A) Meanwhfl’le l@t f2 N

for any event A € B( ab)) wéx

C* — C* be s.t. for any ' € R* wzth WV = /@ for X € CZ’S’IJ)

, we shall
E'(t ")

(f2(A)) =

h X) e eyl
ave fa(X) P o

, and for any event A € B (Ct " b)) th, (ba)

Bt ')

th,’i‘f’b) ( )(A). Then where 11 (dependence on X wunannotated) is the first x-crossing
S Vo
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time of X and where T4 s the last z-crossing time of X,

Gr ((a,8), (a,B)) / Y (X)dwl )

c
T

+%/ (Y (X)) =Y (fr (X)) Y (Xir )

x

X (Y (X m) = Y(f(Xprp 1)) dwi’(ﬁfi’)’ . (7.10)

Proof. The proof follows from the same logic as the Diamond Proposition. Let E €
B (COT ’((bb;la))) be the set of paths with a crossing in z. Consider as before that when X ~ wg’((;’bb))

and 7 is the first x-crossing time and 7 is the last, then because wOT’((f’bb)) , wg ’(f’g)), wg ’((; ;lb)), wg ,((bb,;))
b b Ez b b b K b b E:)E‘(

all give rise to the same joint measure on first x-crossing times and last x-crossing times,

and because of conditional independence,

T,(a,b
A (Xor) &Xirozy ~ wy )

T,(b,a)
Xiory & fo (Xirp )~ Wo i)

Fr (X)) & Xt & o (Xpm) ~ won)|

Therefore

Gr ((a,b), (a,b)) —/ Y(X>don,’(((Z},b))+

: / Y () =Y (A (X)) Y (Kirim)

x

—Y (X)) Y (o (X)) +Y (1t (Xo.r)) Y (X)) YV (£ (X 1)) dug o)

and the result follows. m

This result informs us that it is possible to decompose further the contributions to Zr
that arise from FE,: rather than splitting out only a diamond up to the first x-crossing time,
we can simultaneously do the same thing for time from the last crossing onwards. This is a
logical step because there are strong reasons to expect a sign problem to occur because of
the longer part of time (71,7): for since this is a diamond consisting of Brownian bridges,

for long times we shall find that a given value of the action Y is almost equilikely under the
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positive or negative-contributing paths. Consequently, it is logical to apply the principle of
Proposition 7.2.1 again to this section of time in order to ameliorate matters. Figure 7.3

illustrates this geometric meaning of Proposition 7.2.5.

Figure 7.3: A schematic of the decomposition of Gr((a,b),(a,b)) made available by the
Second Diamond Proposition. Blue segments are negative and red segments are positive.

Proposition 7.2.5 is the basis of the Subdiamond method described in what follows.

Informal discussion of how the fermion sign problem may resurrect after the

Second Diamond Proposition is used

We may consider the variance that will be obtained by using an algorithm based on (7.2)
or (7.10) by conditioning on the values of X at 7; and 7}. Again it is the integral over E,
that is of concern. According to the usual conditional variance formula (e.g. [Wil01]), we
must add the variance of the conditional expectation of Gr to the conditional variance of our
collected functional. Naturally the law of X (71) and X (7)) is best considered as conditional
on 71, 7}. For T large, the distribution of first and last crossing times is converging to that
seen under Brownian motion. This is a long-tailed distribution with no expectation (it is
evident from Figure 7.4 that Er; — oo as T' — o0). However, for any moderate T the
distribution of 7, is such that the bulk of probability can be thought of as close to 0. If we

tentatively form the mental picture that for long times, 71 and (7'— 7)) are small proportions
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of T', then we may think of an increase in T' as basically extending the middle section of
time, [71, 7]] (note that this is merely an intuition - we have provided no rigorous argument
that the growth of the diamonds should not be important also).

We consider first the conditional variance of Gr given 71,77, X(71), X (7)) and shall find
that the situation looks reasonably encouraging. In integrating the functional in the F,

summand of (7.10), viz

F(X) = (Y (Xor) =Y (fi (X0.2))) Y (Xpriry)) (Y (Xprp 1) = Y (£2( Xy 1))

we are trying to find the expectation of a product of 3 independent random variables, since
the only dependence of Xjor,j and X, .1} is through X(71), etc). Moreover, where these are
denoted Fi, Fy, F3, we can see that |Fi|,|Fs|,|F3| are also clearly independent. Therefore

we may recognise that conditional on first and last crossings,

EF EF1 FyFy EFy EF, EF;

E|F| E|REF| E|R|E[LE|R

so that in fact there is a sign problem for EF' if and only if there is a sign problem for at
least one of the components F}, Fy, F5. If the variances of the components are thought of
as small relative to expectations - then there should be no sign problem for the product.
On the middle section, clearly the variance is simply the variance of a positive functional
under a Brownian bridge; we have already mentioned that this grows with T polynomially
relative to the expectation, under the action measure. Meanwhile, we might hope that the
variance on the diamond sections [0, 71], [T}, T] is considerably improved from a more naive
formulation, for the following reasoning. The expected time length grows quite slowly with
T (see Figure 7.4). Thinking of 7y and 7} as fixed, we know that the x-coordinate paths
are not crossing within each diamond, and so very roughly, we might therefore visualise the
situation by pretending to ourselves that both paths lie entirely on their own side of the
meeting point z. Then before we take y-crossings within the diamond into account, it seems
that positive and negative contributions are drawn from paths which are (roughly speaking)

located in different areas; intuitively then a sign problem should not result. In reality of
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Figure 7.4: The growth of the expected first crossing time with 7', taking the initial and
terminal distances to be 1, compared with T/

course, the paths may cross X; = x and Xy = z as long as they do not cross each other,
and if time is projected out then we will usually see some x-crossings in the projection,
which is all that our functionals depend upon. Worse, y-crossings will create a sign problem
within the diamond: on an intermediate section of time, the distributions of the positive and
negative paths are weakly converging; this means that almost equilikely contributions will
be close in magnitude and countersigned, but may be encountered on different occasions.
(ie, on one occasion, positive paths basically occupy position 1 and negative position 2; on
another occasion negative may occupy position 1 and positive may occupy position 2.)

The natural conclusion is that it would be better to deal only with sections of time
where either there are no crossings of x or there are no crossings of y. This is possible and
is a natural development of the Subdiamond method which we shall call the Last-to-First
Subdiamond method.

Now let us consider the variance of the conditional expectation of Gr, using the functional
from (7.10), given values for X (71), X (7]); we shall immediately find it to be problematic.

Consider an inversion of one pair of y-values (for the sake of argument, the y-values at
71). The only thing that makes inverted coordinates less than equilikely with uninverted is

covariance between the y-values at 7, and the y-values at 7/, ie when the values at 7, are
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(y1,y2) with y; > v, if y3 > y4 then covariance makes it more likely to encounter (ys,ya4)
than (y4,ys3) at 7). If we think of the middle section as growing with 7" then this covariance
is fading linearly and (y4, y3) is becoming equilikely with (ys,y4). But at the same time, the
expectation of Y (X, ) for X from (x1,y1, 71, 42) to (z2,y3, 72, ¥4) is becoming very close
to that for X from (zq,y1,z1,y2) to (za,ys, 2, y3) because when the time interval is long,
the unconditional distribution of the paths’ location on an intermediate section of time is
very similar. Thus we expect to encounter a high variance of our estimate of Zr because
the conditional expectation of Z; given almost equilikely values of y; 2 34 is almost the same
but countersigned. This is addressed by the Iterated Subdiamond method, described in
the following subsection: recognising that the fermion sign problem on the middle section of
time is similar to the fermion sign problem found when estimating Iy naively, we basically

proceed by iterating the Second Diamond Proposition, alternating coordinates each time.

Figure 7.5: How the sign problem may reoccur after 1 iteration of the subdiamond method.

Conceptually, the Iterated Subdiamond method does not have time symmetry in the
sense that if we look backwards from 7'/2 then the structure of diamonds is different than
if we look forwards from 0. Thus, having proven the Diamond Proposition and then shown
how to obtain greater time symmetry with the Second Diamond Proposition, we shall in the

next subsection prove the validity of the Iterated Subdiamond method and then show how to
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obtain greater time symmetry using the Last-to-First method. To conclude this subsection,

we shall also need the following generalisation of the Second Diamond Proposition.

Figure 7.6: Schematic of path segments in Generalised Second Diamond Proposition.

Proposition 7.2.6 (Generalised Second Diamond Proposition) Let

zo = (ao,bo) = ((aox; %), (boz, Y0))
vr = (ar,br) = ((are, yr), (bray Y1) -
Let fi : C* — C* be s.t. for any x € R* with W' = 22, for X € CSZ§O|E(LI)7 we shall have

f[i(X) e ch® |E(t2), and for any event A € B (Ct’x ), wé’fizxo]E(t,x) (f1(A)) = wé’io’E(t,w)(A)-

0,~z%o 0,z¢

Let fy : C* — C* be s.t. for any o' € R* with 'MW = 2/M2 for X € CtT/’x,T , we shall
B W 2
have fo(X) € Co ™" ) and for any event A € B(C}f),w??” ) f2(A)) =
» E't 2 ’ ’ E'(t' 2!
Lo A). Th
wt , T B (¢ 2! ( ) en

Gr (20, 27) = / Y (X)duler

c
T

dwg ™™ . (7.11)

0,0

+1/ (Y (Xjor1) =Y (f1 (X0.141))) Y (Xpra ) %
‘ (Y (X)) = Y (f2(Xirp1)))

2
The proof is omitted, since it is not substantially different from the proof of the Second

Diamond Proposition.
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7.2.2 The iterated subdiamond approach

We have explained, in the preceding discussion, why a sign problem arises in the case of
applying an estimator based on (7.10), due to the possibility of an inversion of y-coordinates
at only one of 71, 7). We now come to show that the same procedure for reducing variance
can be iterated: we can decompose the problematic middle section of (7.10) in the same way

as (7.10) decomposes (7.4). We shall need to introduce the following notation.

The sequence of crossing times Let 7o = 0,7 = 7. As mentioned, let 7, be the first
x-crossing time, and let 7 be the last x-crossing time. Let 75 be the first y-crossing time
in (71,7)), and let 7 be the last y-crossing time in (74, 7). For odd i > 1, let 7;, 7, be the
first and last x-crossing times within (7;_1,7_;), should there be any; and for even i > 1,
let 7;, 7, be the first and last y-crossing times within (7,_1,7;_;), should there be any. If
this sequence is finite, call the maximum index x. Thus, x is s.t. within (7,7 ) there is
no crossing of the coordinate corresponding to x + 1. (Thus x is a random variable; its
dependence on X is unannotated.) We shall use 6; to represent x for i odd, and y for ¢ even.
Moreover, we use —; for =y, and —* for i,

We shall let E;(s, z) indicate the event that the first 6; crossing takes place at time s and
system position x, regardless of the path space relevant to the integral (again, the meaning
shall always be clear). We shall let E!(s, x) indicate the event that the last 6; crossing takes
place at time s and system position . We let F;(s) indicate the event that the first 6;

crossing takes place at time s, and E!(s) the event that the last ; crossing takes place at

time s.

Measure-preserving bijections We shall let f; : C* — C* be a measure-preserving
bijection in the following sense. Let 0 < t;, y < t; <T, s € [t;_1,t;] and let z;_1,x;, v € R},

with = assigning equal 6; coordinates to both particles. Then f shall act as a bijection from
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t:ox ti,m. T toox .
A Buea) PO Ci. ) o’ and for any event A € B (C;"", ), we require that
’ /L 871.
Liy o1 Ti o biT
ti—1,Ti—1 Fi(s,7) (fl (A)) = Wy, | ziq Ei(s,z) (A) :
K2 b

(Of course the main the interest shall be in conditioning on E;(t;, z;).) Meanwhile, we
shall likewise let f/ : C* — C* be a measure-preserving bijection in the following sense. Let

0<ti<tl,<T se€lt,t, _,]andlet 2} !\ , 2’ € R? with 2’ assigning equal ; coordinates

! !
ti_1:Ti_1
! !
ti,x;

th_
toC, !
El(s'x") b i1 El(s’ x’)’
7 ’ 7 ’

to both particles. Then f/ shall act as a bijection from C

and or any event A € B (Cti’l’mi’1> , we require that

!
t;,x;

A =
(X

(A).

El(s'x')

!
ti, i1

El(s" ")

(The main interest shall be in conditioning on E(t}, z%).)

Diamond notation Furthermore, in order to avoid longwindedness we shall introduce the

notation

Oi(X[Tz‘—hﬂ‘}) = Y(X[Ti—lﬂ'i]) -Y (fl (X[Ti—lﬂ'i])) ) (7‘12)

CiXjmm ) = Y <X[T;,T;_11> -Y (f{ (X[T;,T;_l]»
or use ¢;, ¢} for short.

Lemma 7.2.7 (Iterated subdiamonds) Where xg = ((x40,0), (240, 0)),

1 1 X )
+ —/{ y [ — H |:<>z'(X[Tiﬂ,n‘])O;(XH’TLJ)] Y <X[TX,T;<])} dng’r(? s (713)
x>1

or equivalently,

Gr(z0, o) = / {4_max(x—;,o) [<>i<>;]Y<X[TX,T;<]>}dw§§;.
CT,.?:O ’

0,20 =1
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Proof. Consider the statement, for a given k£ > 1, that

gT(ﬂfowo):/ Y (X)dwg e
{x=0}

1 X "
+ 5 / |:4X H [ (‘)(['7'1'71777])<> (X[Tl T,L 1 )i| Y (X[TX,TX >:| dngoo
{x>1,x<k} =1

1 1 k ,Z0
+ _/ k—1 H [Oi<X[Ti—1,7'i])<> (X[T Th_ 1]):| Y (X[Tk 7] ) dwgzo . (714)
2 Jizny 14

i=1
It follows from the Second Diamond Proposition that the statement (7.14) holds for
k = 1. The conclusion (7.13) will hold by induction if we can establish that for £ > 1, the

statement (7.14) for k implies the statement (7.14) for k£ + 1. So let us consider the quantity

k
Il
/{x>k} Lk =1

k
= / [ — 11 [Qi(X[nfl,n])OQ(X[T; o 1})] Y (Xprprt )] dwg
ke L4771 is

[Oz( i ri])OQ(X[T;,T;,l])] Y (Xirery) )] dwy 2’

1_ : O X O (X T,x
/{ >k}INX [4k b [ Z( [TH’T"]) ;( [Téﬂ—l])] Y (X[Tkﬂ—;c]):| dwy mo )
X k 1=

where X, is defined as the event of a reverse of coordinate order: for k£ even, that where

X(1y) = ((a:k,y,il)> , (ajk,y,(f))> and X(77,) = ((xg,y;(l)) , <x§§,y;§(2)>) , that y,g) — y,g)

of different sign to y, 1) yk(Q), and likewise for the x-coordinate in the case that k is odd.

However, given an obverse (ie s.t. X € X{) pair of 6y, 0}, it is clear that the relative likelihood
(921)_0562)) <0;c(1)_9;c(2)>

!
T4~ Tk

of obtaining (0, —x_16},) is exp (— > . Therefore, by the definition of Gr,

it is clear then that (using conditional independence),

: k T,x
[ i oy ] o

1 k , .
= /{ >k}n®c |:4k—1 . [<>Z<>z] T;g_Tk (X(Tk), X( ))‘| dngo
Xz —

- [ [ oo, e x|tz

i=1

_|_

1 k£l x
/{ k}NK [4k_1 1 [<>i<>;] jT;C-H_Tk-H (X<Tk+1>7X(T;c+1)):| dngoo
x> e

=1

1k 20
- [ | 000y ()|l
{x=Fk} 1

* 1/ {—1 T110:0) v (x )1 o T0
2 Vi ThH1Th g1 w ,:7: ’
2 {x>k}INRG 4Rt [Tkt 1 o] 0,20

N | =
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where the second equality holds by applying the Generalized Second Diamond Proposition

to Gy 7, (X(71), X(7})). However,

1 k+1<><>’YX o Tto
pekynm, L4571 '—1[ o < [Tk+1’7§c+1]> 0.2

_ 1 k1 -
R /{X>k}m®i {4 B H [0:0:]Y ( [Tk+1»7;c+1]>:| dwy; 0

since conditional on X (7;), X(7},), the distribution of X (7441), X(7},,1) is the same under
O, 0, as under 0, =16}, but O, is antisymmetric for 0}, and so is ¢ ;, making the integrand

symmetric. Consequently,
Xireory)) | dwozy
o B
1 b / T,xo
=)o |7 = [LOOY (Xpriry) | duio g+
X=

1 1 k+l , -
4 ok} g1 1L [OiOi]Y(X[Tk+1,T;C+1]) dwg .

The result follows. m
Figures 7.7-7.9 illustrate the principle of applying the Iterated Subdiamond Lemma to

avoid the sign problem.

X(t,) XY

Xt X))

Figure 7.7: Schematic of two iterations of the subdiamond method.
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Figure 7.8: How the fermion sign problem may recur if two iterations are performed.

/
(2

Remark 7.2.8 Due to continuity, the subset of C({ v for which the sequence (7;,7;) may
be continued indefinitely is the set of paths with a simultaneous crossing in the x and y
directions. The net contribution to Gr(xo,xo) from this set is zero because of cancellation:
paths giving positive and negative contributions share the same law under this constraint.

(Howewver, it is well-known that this set is of measure zero anyway.)

Remark 7.2.9 It is valid to choose f; (Xir, , ) = =" " Xiri_y i), [} <X[Tf,

(3

— -1
,T;_1}> =" Xy

1M every case.

Based on the foregoing discussion about the problems that will be encountered on just one
diamond iteration, the benefits of partitioning path space in this way are clear. Effectively,
path space is partitioned here into parts enumerated by the different sequences of crossing
times. The problem described before for the middle section [r1,7)] does not arise here
for [r,,7]. If we take the point of view here that the 7;, 7} are drawn first and then we
take a product of expectations, the appropriate measure for X, .; is now concentrated on
paths which do not cross in the coordinate corresponding to x + 1. Under this condition,
there is clearly no need to be concerned about a sign problem arising through a similar

likelihood being attributed to X (7,), X (7)) = (:vg), ng)) : (at;(l), :c;£2)) asto X(7y), X(7)) =
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Figure 7.9: Schematic of three iterations of the subdiamond method.

(m&l),xg)) , (:E;EZ),xggl)). This is in contrast to the former case of the Second Diamond

Proposition, where the corresponding measure for X{;, /) is simply conditional Wiener.

The Last-to-first method

There is something different that we can do in order to reduce the variance, which becomes
especially apparent once one considers the case of more than 2 particles. This is to only start
diamonds from the last crossing of X! (ie, the x-coordinates) to the first crossing of X? (ie,
the y-coordinates), and vice versa. This is advantageous because diamonds then take less
time and promote variance less. (Moreover, this also means that diamonds may be more
likely to fall in between two integration points, as discussed in the following section - thus,

efficiently, cancelling contributions from a larger part of path space than before.)

More notation for crossing times Where 7; indicates a crossing of coordinate 6;, for
0 <i < x, we let ¢; represent the last crossing in 6; before 7,,4. Likewise, we let ¢ represent
the first crossing in ¢; after 7/ ;.

We shall now require f;, f/ to satisfy further conditions: we stipulate that as well as
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preserving the first crossing of ; at the end of the interval, f; will now also preserve the
last crossing time of #;_; and the system position. That is, in our new notation, when

X e gl

i—1,Li—1

is in both E;(s,z) and E!_,(s;_1,2'), for some s;_1 € [t;_1,t;), f;(X) € C %

i—1,Ti—1

shall be in both E;(s,z) and E!_;(s;—1,2'); and moreover, we assume that for any A €

B(Ciay) s

ti—1,Ti—1

ti, -1
ti—1,Ti—1

(i (A)) = wfe [(4)

Ei(sz)NE;_ (si—1,2') LTLLE, (s,2) 0By (si-1,2

Subject to assuming that in fact ¢;,_; is a crossing of #; 1, one example of such an f; is,
once again, that we apply —~!; that is, we simply exchange the 6;_; coordinate paths of the
particles. This shall be the only situation which we shall need to worry about. Meanwhile,
f! is assumed to satisfy similar properties with regard to E;_i(s,_,,2") N El(s, z).

The reader should note that the meaning of ; (cf (7.12)) is enhanced accordingly.

We are now in a position to prove the following theorem, which forms the basis of the

Last-to-first Subdiamonds algorithm.
Theorem 7.2.10 (Last-to-first Subdiamonds Theorem) Where

Lo = (($a07 0)7 (xb0> O)),

=1

]_ 1 X
+ 5 /{X>1} [F H [Y (X[Ti—lygif]_}) Oi (X[§i7177_”)

0 (Xptt) Y (Xisri) | Y (Kt ) | dwize . (7.15)
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Proof. Due to conditional independence, it follows from Lemma 7.2.7 that
gT(IL‘(),I‘()) = / Y(X)dwa’fo"
{x=0}

]. ]. X E! i— 7)( i— Ei TZ‘,X T4
+3 / [—_JI (ol XA X (7, X (7))
pe1y L4X

2 i=1
TR RO X (X (1), X (7))
(S ) (. x )
SRRSO ), X ) )| Y (Xe) | ez 0

However, in view of the new definition of f;, it is evident that where

v ~ wtiﬂ'i |
[ti-1,t:] tict @it B! (sim1,2)NEi(tizs)

we have

X & fz <‘< ) ~ W ‘
. . . . ti— i—
[ti—1,8i—1] [si—1,ti] i—1,Ti—1 E; 1(8i7171’/)ﬂEi(ti7$i) ’

and likewise where

!
XQ? | ~ W i—1Ti—1
-1

! 4/ / !
[t],t! t !

Ei_1(s;_ " )NE(t],x})

we have

© 0 ti 1
fi (X[t;s'_ll) RN R

’ ’
S5 Si ti, -1

Ei,1(Sgil,xl)ﬁEz{(tfi,ﬁiflx;)

Consequently, for z,z; 1, z; € R*, and t;,t;_1,s;,_1 € (0,7,

E;il(si_hwl)ﬁEi (ti,l‘i) E1{71(Sj_l,$,)ﬂEi(ti7—\i_1$i)

\774‘2'7%',1 (xi—IJ xz) T Jti—ti 1 (.Ti_l, _‘i—lxi)
E°¢ / Efil(si_l,xl)ﬂEi(ti,LEi) /
= siilftifl (xiflv 'T) (\-712151;1 (LC 7371')
B! (si—1,2")OEi(ti,i—12:)
~ T ey ST i) ), (7.17)

and likewise

EZ',l(Sgil,xl)ﬁEZ{(t;,—\iflx;) El‘,l(Séil,m/)r‘lE;(tg,—w,lx;)

ror ro
jt;_l_t; (@5, Tioq) — ‘Z;_l—t; (W’fll’m wi—l)
. E¢ ’ ’ Ez‘,l(S;_l,xl)ﬂEl{(t;,‘!iflx(i)
- *75211—152 (xm x ) (*715;_1—32_1 ($, 331)

E”*l(sl'_ ,CC’)ﬂE’-/(ﬂ,‘!',lx':) / /
—Jp §(t,mi1; (ﬁi_lmi,xi_l) . (7.18)

By applying the relations (7.17), (7.18) in (7.16), the result follows. m
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Remark 7.2.11 Despite the route that we have taken towards this result, we naturally may
now recognise that it has a geometrical meaning all its own, if we instead look at the sequence
of crossings incrementally. Suppose we continue to call the first crossing of x by 71, and
continue to use Ty for the first subsequent crossing of y, but carry on with this labelling until
Tay, Which is the first crossing of y that is not followed by a crossing in x. Likewise we may
define ¢; as before for 0 <1 < 2x as the last crossing of coordinate 0; before 7,11 and define

Soy =T'. Then it follows immediately from (7.15) that

2x—1 1 -
Gr(rocan) = [, 1T [5Y X)) Vosgals . (719
0,z¢ =

)

7.3 The Last-to-first Subdiamond algorithm and its

implementation

In this section, we shall discuss the practical implications of the theory that has been
developed in the previous section. In particular, we detail exactly how the expression (7.15)
is to be utilised in performing a Monte Carlo simulation to give information about the

expectation of an observable.

7.3.1 Notes on implementation

The most simple way to construct the algorithm is based on (7.19). We first sample a set

. . . . . ~T,IL'()
of discretisation points X}, according to wy’, .

Supposing that we intend to use Simpson’s
Rule (cf (3.40)) for S(X), we are going to need to use the values of V(X (t;)) at tj, = 2 k =
0,...,2N, so all these points need to be included in our sampled discretisation. Conceptually,
we might say that conditional on {X}}#Y,, we then sample the sequence of crossing times 7;
and ¢;, where 0 <17 < 2y. (We do not need to draw the crossing points; indeed, we shall see
shortly that we do not really even have to draw the times).

In essence, the idea is then to collect the approximate functionals Y (X, ¢,y) and Oi(X(c, r.,11)s

-1

and multiply. We use =1 as f; in every case. However, it should be noted that applying
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Simpson’s Rule means that a technical point is being elided here. More accurately, we
should say that (7.19) may be regarded as giving us a linear combination of terms of the
form ?(X 7) for some X~ which is generated from X by some application of coordinate
exchanges at each timeslice. For each of these terms, the sequence of quadrature coefficients

2N _ (h 2h h 2h h '7%7%7h

is the same: (ax)i_o = (5 353> 55, g). This means that we can proceed by

collecting multiplicand approximations ?(X [risi))s &(X [ ) and multiplying, but need

SiyTit1]
to recognise that in generating these approximations, the coefficients that apply are the «y

corresponding to the timeslices involved. Corresponding to each of the component paths

X7, this means that we are collecting a product of approximate exponentiated actions,

2x—1 ~ ~

Y(X7) = Zl;[o [eXp <—§ (X[:ZM))) exp <—S (X[;,nﬂ]))] exp (—S (X[ﬁmxmx]))
2N
= exp (— > osz(X,;))
k=0
(Of course, X ic) = X[ris;) for all the paths we are designating as X ™)

However, it should now be clear that there is no reason to actually sample the sequence
of ¢; and 7;, even though this is possible, and indeed a version of the algorithm using the
approach of drawing ¢; and 7; was programmed, for verification purposes. (Because it is very
useful, we explain how to draw the crossing time sequence, in Subsection 7.3.4.) In order to
collect Y (X (roi))s Oi(X lcs,7i11])> We need only to know what discretisation timeslices lie within
[7i,6:) and [;, T;41]. For this purpose, it is sufficient to determine which intervals (¢, tx+1)
contain x-crossings and/or y-crossings. Moreover, in view of the cancellation property which
we shall discuss next, we do not even have to worry at all about what happens if many x

and y crossings occur within the same (t,?;11), making the task very straightforward.

Pseudocode for the algorithm shall be provided in Subsection 7.3.3.

Advantageous cancellation property

Using Simpson’s Rule, or any other integrator based on quadrature of V', we may recognise
that when both x and y cross between two discretisation times (for these purposes, by

a "discretisation time", we mean any point in time at which V' is evaluated), the total
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contribution to our Monte Carlo for G shall be zero. This is because this means that for
some i and k we have [¢;, 7;41] C (tr_1, k), so that &;(X[gimﬂ]) is zero: [¢;, T;41] contains no
discretisation timeslices, so &(X[gz.mﬂ]) =1-1=0.

The advantage of this interaction between the integration method and the manner of
path sampling is thus considerable: on a substantial part of path space, we are able to
get a functional contribution of zero. By using the Last-to-first Subdiamonds method, we
identify where there are equally likely paths which would give exactly equal countersigned
contributions under the approximation used to produce the estimate of the functional. The
advantage of this cancellation grows as T' increases: whereas as the situation would ordinarily
be getting worse because of the propensity for more crossings to occur, for us this can only

improve matters!

Remark 7.3.1 We note that in the program, we have no need to sample from the finite-

t7((xvy1)7(mvy2))
0,(ao,bo)

dimensional distribution for w directly. According to (2.17) this would be

E(t,z)

possible to do. For 0 < s; < s < sg <T, when X(s1) and X(s2) are known, the conditional

density of X(s) may be found by conditioning on the event that no x-crossing happens within

T,ar
0,a0

in the 1D case. For the case that

0

(s1,82), by the same kind of reasoning as for w

no extra information about points between s and t is known, however, we would have to
condition on (t, ) being the first crossing subsequent to s, and this is a slightly more awkward

conditioning.

7.3.2 Further developments that give rise to the full algorithm

It now behoves us to introduce certain straightforward extensions to the algorithm, to
complete our discussion of this topic.
Using native coordinates

For exposition we have adopted the perspective, in the previous section, that, by using

longitudinal-transverse coordinates, it is sufficient to treat the case xo = ((a0,0), (0, 0)).
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However, we can also apply the same kind of thinking without changing the coordinate
basis. This is important since as the number of particles is increased and dimension is
increased much beyond 2, it is impossible to find coordinate bases which have the same
special properties. In order to avoid looking at the problem with n = 2,d = 2 in the
light of tricks which apply only to this relatively simple case, it seems preferable to perform
simulations with diamonds in native coordinates. The only difference is that now we do
not have an automatic y-crossing at time 0 and time 7. Therefore we search for the first
crossing in either z or y, and this we may call our 7¢; we proceed to use diamonds on the
intervals which lie between a crossing of x and a crossing of y, as before. The resulting
disposition of diamonds is illustrated in Figure 7.10; here ¢ indicates where, given this
sequence of crossing points, a diamond is contributed to the product of expectations for the
corresponding interval, and bold lines indicate where instead, a simple positive contribution

is collected.

S U ) A B W ¥ A I T

first x 4%0 \ first y crossin_é after first x

last x betore [first y after first x]

Figure 7.10: Diagram of how diamonds occur in the last-to-first method, using the native
coordinate basis.

Extending to the case of two fermions in a 3-dimensional space

In the case of a pair of fermions in a 3-dimensional space, similar logic to that of Section
7.2 leads to a method where contributions are collected from paths which are still based
on exchanging coordinates at crossing times. Now, however, we need to apply dimensional
coordinate exchange over "diamond" intervals in which we have a crossing in each coordinate:
X,Y,Z.

However, this means that one cannot necessarily use every possible "diamond" when
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there are 3 dimensions. This is illustrated by the following example. Suppose the sequence
of crossings is as shown in Figure 7.11. The connections marked (i), (ii) and (iii) illustrate
possible 3-way diamonds which we might choose to use. While (iii) appears inconsistent
with our methodology thus far (why would we wait until the last y-crossing to end the

diamond?), both (i) and (ii) are consistent with it. Intuitively, (i) seems the best in this

—
—
R

(ii) (iii)

~

CrossIngs

X

1.4

i

_/

et

Figure 7.11: TIllustration of some ideas for placing 3-way diamonds given a sequence of
crossing dimensions

case, given no information about the time distances involved. It seems clear that the more
time is left diamond-free and contains crossings, intuitively the more likely it is that a
countersigned sample of similar magnitude could exist. However, in general, when there
is a long sequence of crossings, it would be troublesome to perform a sorting to find out
which arrangement gave the greatest number of diamonds. Consequently, in experiments
(see Section 7.4) an algorithm was used which simply started and ended diamonds as soon
as possible, incrementally. (In the case of Figure 7.11, this means that we would be using
alternative (i).) Note that in each diamond there is still only one negative and one positive
contribution: the negative from eventually exchanging coordinates in all dimensions, the

positive from not exchanging them in any of the dimensions.
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last x before ftirst v
first y after first x after first x|

first x

last y before
first x
0

first y after
last x

last y before last x last x

Figure 7.12: Diagram of how diamonds occur in the Last-to-first method when time is a
circle.

Identifying the endpoints of time

As before it is desirable to perform a Markov Chain Monte Carlo in order to apply im-
portance sampling for X. Now that we have replaced integration against ¥ with integration
against the functional being integrated in the right-hand-side of (7.19), which we may call
Y ¥, it would make sense to set the Radon-Nikodym derivative of the sampling measure with
respect to w* equal to ‘YO (X )| In order to apply the Multilevel Metropolis method, we
need to regard time 0 and time 7" as identified. This does not stop us from still recognising
the ordering of crossing times. Figure 7.12 displays how the situation of Figure 7.10 may be
understood in this case.

However, Figure 7.12 also prompts us to consider whether we should be distinguishing
time 0 by not placing a diamond over it, given that we no longer work in a coordinate basis
with transverse crossings at time 0. The answer is that we can, without difficulty, place a
diamond here, and contributions then also accrue to the alternative initial point. This gives
rise to an approach in which all timeslices are treated the same way, which is then a perfect

situation for performing a Markov Chain Monte Carlo simulation.
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7.3.3 The Last-to-first algorithm in pseudocode

For understanding, the following pseudocode describes a direct path sampling algorithm
based on (7.15), to find the ensemble expectation of some function of system position (e.g.
potential energy). Simpson’s Rule is used for Y, although naturally this is an inessential
detail. We apply the diamonds using native coordinates rather than longitudinal-transverse

coordinates.

void main procedure

Set up coefficient array «, with T/halth+1 elements, as 1,4,2/4,2,....4,24,1 times

halfh /3
Loop M times:

{

Draw initial point z(, according to some predetermined measure p
Y = Ysamples( zp ) / Radon-Nikodym derivative of p at x.
ch = A(xO)Ymc

Store contributions to the sample averages of Yic, Fie, Y20, Fie Yime, F2.

};
Compute sample estimate of Monte Carlo covariance matrix
(e.g. sample cov(Yye,Fie) is based on sample averages of Fp., Yy, and Fie Yine).

Write output to file

subroutine: double Ysamples (initial point xq)
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Step 1. Sample a sequence of T/halfh system positions, ie points in R*, sampled as per the

finite-dimensional distributions of a Brownian bridge: from xq back to xy.

We shall store the x and y components in separate arrays, Xx[|[] and Xy/[][], where the first

subscript is for which particle and the second is for which timeslice.

Step 2a. Populate two arrays, to record which time intervals are considered to contain

crossings, in x and in y respectively.

Loop through timeslices with index £,

{
Set py = exp(—(Xx[0] [k]-Xx[1][k]) *(Xx[0] [k-+1]-Xx[1][k+1]) /halfh);
Set py = exp(—(Xy[0][k]-Xy[1][k])* (Xy[0][k+1]-Xy[1] [k+1]) /halth);
Generate a random number u ~UJ[0,1]. Iff u < p, then record that this interval

(ie between k and k + 1) has a crossing in x.

Generate a random number u ~U[0,1]. Iff u < p, then record that this interval

(ie between k and k + 1) has a crossing in y.

If the interval between k and k 4+ 1 now has both x and y crossings, return

YO =0.

%

Step 2b. (If either there are no crossings in x, or no crossings in y, then we can skip this
step.) We now populate arrays to index which timeslices are at the beginning and
end of each diamond. One array stores 1 for timeslices which are the first within a
diamond, 0 otherwise. Another array stores 1 for timeslices which are the last within
a diamond, 0 otherwise. To begin with, we seek the timeslice before the first crossing
of either x or y (call it #); then we seek the first crossing in the other coordinate (6');

the timeslice previous to this is the last in a diamond. We then seek backwards to find
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the timeslice after the last crossing of 6; this is the first in a diamond. We then seek

the first crossing of 6 following the first crossing of §' and so on.
Step 3. Collect estimate of Y©.
Yo =1

Counting through timeslices (index k):

If kK =0 or k is between diamonds,

{
Ssection = 0
Count on with & until £ is at the start of a diamond or k& =T /halfh :
{
Add to Sgection this: a[k]*V(Xx[0][k],Xy[0][k],Xx[1][k],Xy[1][k])
b
Multiply Y0 by exp (—Sscction)
b

If £ is now at the start of a diamond,

{
Spositive = 0
Shegative = 0
Count through timeslices k until k reaches the end of the diamond:
{
Add to Spesitive this: alk]*V(Xx[0][k],Xy[0][k],Xx[1][k],Xy[1][k])

Add 0 Spegarive this: a[k]*V(Xx[0][k],Xy[1] k], Xx[1][k], Xy [0][k])
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}

MU1t1p1y YO by (eXp (_Spositive) — €XpP (_Snegative))/ 2.

If any diamonds were encountered, now multiply Y by 2, to compensate for fact that we

do not need 1/2 factor on first diamond.

return Y?

7.3.4 Drawing from the distributions of first and last crossing
times
Drawing first and last crossing times for a pair of fermions

We earlier made some discussion of exact methods of sampling draws of a random variable
when the pdf is known. We described rejection (this includes adaptive rejection, ziggurat
methods and so on), volume decomposition, and the transformation method.

In order to sample the sequence of crossing times ¢;, 7;, we need to sample crossing times
in two distinct situations. One is where the termini are different and the other is where the
termini are equal. For an interval of length 7§, once can obtain that the pdfs, respectively,

are as follows. In the case that the initial distance is A; and the terminal distance is As:

Fs) = A T, "? A2 A2 . (Ay 4 Ay)?
T @ ST, — 52 P T as T AT, — ) AT,

In the case that the termini are equal (ie Ay = 0):

A Ty A7 | AT
f(s) = (4%)1/2 53/2(T0 _ 5)1/2 P 4s + m
Ay " Ai(Th = s)
_ exp | —————
(47T)1/2 53/2(T0 _ 5)1/2 P 45T
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However, it turns out that especially the former case presents substantial difficulties if one
attempts to use either rejection or volume decomposition. For volume decomposition, infor-
mation about the number of modes is needed; to form a candidate for rejection, at least this
information is needed, and usually one also expects to know the global maximum of the pdf,
and for this function it is not trivial to compute analytically. (It is possible to find it for the
other case by solving a cubic equation.) Thus it is highly fortuitous that in the more difficult
case, it is possible to find a superior method entirely: it can be obtained via transformation

from a Gaussian draw.

A transformation method for drawing from the first crossing time pdf when the

points are constrained to meet at a time 7;. Now where 7 is the first crossing time,

_ (& a2 o o
let T= (31— Vs . We can show that the pdf of S, for S > 0, is given by
d 2
%P (T < LU) = ﬁexp (—,TQ)

o\ 1/2 1/2
For if we assume this then we shall find that where z = z(s) = (A%g:(;o )> - (i_j - %) ’

a monotonic function of s,

d dz d dz d
<

P(r < )= P(Y>a(s) =~ —P(Y <)
1 (A2 2 )
= o (4—82> ﬁeXp (—2?)

Ay 2812707 1 ( Af(To—s)>
exp| ———=

452 (Ty — s)\2 /7 45Ty

as required. Therefore to draw samples of 7, we may draw samples of T, which is easy, and
then apply s = AT% (xz + %) _1. In fact it is then clear that to draw T as standard Gaussian
instead would be sufficient.

It was also found that this creates an extremely expedient candidate for a rejection
method in the case that the termini are not equal.

In order to produce programs based on sampling the crossing time sequence, it is some-

times also necessary to be able to draw crossing points, such as X (7;), in order to iteratively
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sample further crossing times, but it is not difficult to sample X (7;) conditional on the

sampled value of 7;.

Drawing first and last crossing times in the case n > 2

Knowing how to sample first and last crossing times in an interval (in fact, the sequence
of distinct crossings) becomes more important when there are more than two particles, if
we use the method suggested in Section 7.5. In order to illustrate how to proceed, we now
consider the case that n = 3. Again we are concerned with crossings between the coordinate
paths corresponding to one dimension, as we may find the x-crossing, y-crossing, z-crossing
sequences separately.

We shall use E3 to denote the event that X > X® > X©) gyer the whole interval
[th—1,tk]-

Writing

XO 4 x@ 4 x6) xO L x®) x@O _ xG)
= =X TS g =SS

then we can see that for any ¢, 6 2 3(¢) are pairwise independent random variables. Moreover,

X)) > XO(t) > XO)(¢) is equivalent to
|62(t)] < 05(t) -

Let us set

XM 4 x@ L x6 X@ _ M X _ x3

Then XM (¢) > X@(¢) > XO)(¢) is equivalent to

&(t) < V3I&5(0)].

The path X is determined by the path &, which also consists of three independent Brownian
bridges with the same variance as the originals. The constraint for ¢ represented by FEj is,

however, simpler than that for X. In fact its locus at any time instant is an infinite sector,
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of angle 60 degrees. The question therefore arises of how we shall determine, given values
for £, 5(tk—1) and &, 5(tx), the probability that ¢ has exited this sector during [t_1, 4], and

if so at what point it exited. This can be done using an iterative method, as follows:

2. Let Ay; be the locus boundary line nearer to z; and let Ay; be that which is further from
z;. Find the point r; € As; which minimizes the distance to z;. Find the point 7} € Ay;
which minimizes the distance to r;. Then consider R; to be an infinite rectangle with
corners 7y, 7%, extending away from the origin with one of its boundaries a subset of Ajy;

(these are blue rectangles in the Figure).

3. There are three possibilities:

(a) &y 3 leaves R; at t < t; via Ay;. This means the path sampled was not in Ej. In
this case, t is the first exit time of X from the locus (M (¢) > 2@ (¢) > z)(¢) and

we can also sample the exit point.
(b) &, 5 reaches &, 5(tx) without leaving R;. This means the sampled path was in Es.

(c) &3 leaves R; at t < t; via another boundary than Aj;. In this case, sample the

exit point &, 3(t) and return to step 2 to continue, calling &, 3(t) = 211

It is possible for us to make the determination between (a),(b) and (c) because the
problem of first exit from a rectangle is soluble in the case of independent Brownian bridges.
Viz, we may consider each coordinate separately and taking the minimum of interval exit
times (sampling these is discussed in [MT99]) shall give us the first exit time from the
rectangle; we may also sample the other coordinates at the exit time, if we are careful about
it (cf the approach taken in [MT04, MT99] for the Brownian motion case).

No claim is made that this algorithm is the optimal one of its type, and one direction of
further research in this area would be to try to ascertain an approximately optimal determi-

nation of the rectangle coordinates r;. It would also be helpful to try to discover an elegant
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Figure 7.13: A schematic of how to sample whether a path lies in Fj3, in a case where 3
iterations are required.

way to solve the problem when more than 3 particles are considered together, because a
change of coordinate basis apparently only reduces the dimensionality by 1 in general. In
practice, in many simulations particles will be sufficiently far apart that it is safe to ne-
glect crossing events between most of them; consequently, the problem breaks down into

performing the above procedures for clusters of 2 or 3 particles.

7.4 Numerical results using the Last-to-first Subdia-
mond algorithm for 2 fermions in a multidimen-

sional space

In this section, we describe the results of testing the Last-to-first Subdiamond algorithm

on several simple examples. The results are, broadly speaking, encouraging.
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7.4.1 Additive potentials and the Correlated Oscillator

In order to be sure that the programming is correct, it is preferable to have a system for

which the action integral Gr(zg, x7) is analytically soluble.

The analytical solution for the harmonic oscillator potential It turns out that
because the harmonic oscillator potential is dimensionally additive, the solution to the ac-
tion integral for the 1-dimensional case (4.38) allows us to easily find the solution for the

2-dimensional case (and indeed the d-dimensional case). Recall that we use z{ and z2, re-

1) 20 10 x§(2)) c R

spectively, for the x-coordinates and y-coordinates of xq = (:c[l)
and x(()l), :L'EJQ) for the particle coordinates; likewise for z7 and other points. We observe that,

due to the independence of Brownian bridge components,
Ir (xo, x7) = Tr (vg, xp) Tr (23, 27) .

Where xp = <x¥),x§?)>, let ~zp = (:cgg),a:(Tl)). When values for Jr(xd, 1), Jr(x, ~2k),
JIr(z2, 22%), Jr(z2, —2%) are known exactly, as by using (4.38) in the harmonic oscillator

case, we can of course use them to give an exact value for Gr (g, z7):

2

o2 — ot
T T
Gr (o, z7) = Jr(xo, 1) — €Xp B T— JIr(zo, x7)
2
o
= Jr(xg, 7)) Ir(xy, ©7) — exp R T— Ir(xg, ~wp) Ir(xd, ~aF) . (7.20)

The solution to the sign problem for dimensionally additive potentials However,
we can go even further than this: in the case of any dimensionally additive potential we can

avoid the fermion sign problem entirely. Recognise that based on (7.20),

Gr (2o, 1) =

Tp' — Tp

( (2)1 (1)1>2
Jr (@5, 27)9r (29, 27) +exp | — 7 Jr(xg, ~o7)Gr (25, 27) -
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Since in the 1-dimensional case, we may apply the very effective simulation method for
Gr that was described in Chapter 6, it is then possible to find Gr (xg, z7) without further
difficulties. So there is a way to perform simulations for d-dimensional systems which does
not suffer from an insuperable fermion sign problem, whenever the potential is dimensionally
additive.

However, it will be apparent that this means that such potentials do not provide good
examples for testing, precisely because they exhibit this degeneracy. If we wish to test the
efficacy of the Last-to-first Subdiamond algorithm then it seems preferable to choose an

example in which the sign problem is not so easy to remove.

The correlated oscillator

We shall now use the notation (z,yo) for the initial point, and so on. If we stretch one
of the coordinate functions in the harmonic potential then there is only one coordinate basis
in which it remains degenerate. So that this is not the basis in which the program works,

we shall consider the following potential:

V(0) (O)) = V() V(@) e
V((z,y) = Wforx,yél& (7.22)

This is degenerate only when the coordinate basis is (I—\J/r;, x—\g) This allows us to find the

solution for u and still achieve a sign problem in methods which would give no sign problem

for a degenerate potential. Writing (z/,y’) = (%, %) ,

1
Vz,y) = gxa +y? .
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Therefore for (7.22) we have the following single-particle action integral:

TIr (x0,90) » (@, yr)) = exp (—S(X)) dwg v (X)

CTv(szyT) ;(%0,Y0)
0,(z0,v0)

= /T ., exp < / —X(t dt> TxT (X) /COTjé/T exp (— /OTX(t)2dt) dwg:’xy,j (X)
=/ (méaw’m \/g) f (yé,y’T, \/§>

_ o[ ®otyo rrtyr |2 To— Yo TT —Yr
_f<\/§’ ﬁ’a)f(ﬁ 7).

where from (4.38),

f(a:Oa I, 7)

_ 2 1
= (yT csch (vT))"? exp (% — 357 (2§ + 2%) coth (YT') + yzoxr csch (’yT)) :

Since the particles are noninteracting in (7.22), for 2 particles Gr : R* x R?* — R may be

found as

Gr (x0,30) , r.yr)) = Tr (a6 967) « (a2 987) ) T (=867 (8. 67))

(2 = 27) (o = o) + (7 = ") (87 = )

T

() () 2 (7). (287 -

Figure 7.14 was obtained by taking [i. Gs ((z,), (z,y)) d(z®,y®@) to give a function of
20y

— exp

The expression resulting from (7.23) is useful for providing exact solutions for specific
bridge endpoints in order to perform intermediate analyses. It is difficult to perform numer-

ical integrations of G based on (7.23), but by working in the degenerate coordinates, it is
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Figure 7.14: Particle density for 2 fermions in noninteracting correlated oscillator, T=6

possible to find Z by decomposing the integrand:

Z / £ (20,20, /2) £ (50,50, v2) £ (5,23, /2) £ (52,52, v2)
= 22—z (4@ _y ()2 2 9
L (_( ) ;(y ) ) f (x(l),x(z), %) f (y(l),y(Z), \/§)

(L)) (Lrema)
A
o (FEEE) s ()|

and the components of this expression are amenable to numerical integration in a standard

d(%, yo)

software package. This allowed it to be verified that the program gave correct results.

The correlated oscillator in 3D

In 3 dimensions the potential used as the 3D correlated oscillator was

13 5 13 2 2 5
Vi(z,y,z) = 1—8562 ~ + 1—8y2 gt T VA + §z2 .

It is possible to find Z for a pair of noninteracting fermions using the same method as

above, and in this way it was verified that the program for 2 3D fermions gave correct results.
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7.4.2 Last-to-first experiments: a pair of 2D fermions

Experiments were performed with the intention of measuring the efficiency of the simu-
lation, by collecting the average sign. The results for 2 noninteracting 2D fermions using the
correlated oscillator potential are given in Figure 7.15. The initial point sampling measure
was Gaussian with standard deviation 1. The credibility interval for (/j\:/> was approximated
by using Bivariate Gaussian Monte Carlo. Clearly our familiar assumption that prior in-
formation can be neglected only holds valid as long as the interval reported is relatively
small; the results for 7" = 16 should be ignored completely, but are included to demonstrate
that further progress with direct path sampling is infeasible. In all of these experiments,
M = 10'°. The results seem to suggest that the asymptotic value of </:T:/> is above 0.85,
unless there is a change in behaviour after 7' = 10 which we are unable to observe. Using
h = 0.2, we observe a possible increase of the average sign between 7' = 12 and T = 14; this
is probably due to an increased proportion of paths for which cancellation applies because of
encountering an = and a y crossing within the same discretisation interval. As T increases,
the variance is observed to increase exponentially due to the lack of importance sampling.
For T' = 10, the time to run the experiment on a 2.0 GHz machine was about 14.25 days.

For comparison, a simulation using the Coulombic potential was performed. Specifically,

we let V : R* — R be given by

1 1
™ @Y= _mind — —mind ——
V('™ 2'¥) = mm{||x(1)||’12} mln{||x(2)||,12}

1

T Je® =0

+ R(zW, )+ 10, (7.24)

where R : R* — R applies harmonic walls to enforce a discrete spectrum of energy values
(recall that all of our results are predicated on the assumption that a discrete spectrum

exists; cf Theorem 2.2.1):

1 2 2
R(x(l)’x@)) 9 <1H:p(1)H>10 (qu)” o 10) + 1||x(2)||>10 (Hx(Z)H - 10) ) :

The cutoff on the attractive terms in V' avoids any problems with stability without substan-

tially affecting the results. For 7' = 6, the posterior expectation of (£) was 0.937015 (to
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Figure 7.15: Average sign using the Last-to-first algorithm for a pair of 2D fermions, nonin-
teracting correlated oscillator.

6 d.p.) and the 95% credibility interval was (0.926909,0.946587). In other words, a higher
average sign was observed than for the noninteracting correlated oscillator. This is almost
certainly because repulsion in the potential decreases the contribution of paths that bring
the particles together simultaneously, and therefore increases the relative magnitude of the
contribution from the subsets of Cg: ) with lower values of x. It is encouraging to note that
this does actually translate into a higher average sign using our algorithm.

For the correlated oscillator in 2D, an interesting effect emerges: whenever the number
of diamonds is even (so, the last variable to cross is also the first to cross), only positive
contributions are collected. This is shown in Table 7.1, for the T" = 10 result. Here the overall
average sign was between 0.864511 and 0.872479, with posterior expectation 0.868506 (to 6
d.p.). For brevity the results with 22 or more diamonds are omitted. The standard error on

the average sign from each subset was calculated only using the rough approximation (4.7)

and as such, is only displayed for those results where the reported value was low enough for
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us to regard this method as even giving an indicative figure. The table row marked "Kills"
indicates the number of paths on which perfect cancellation occurred due to encountering
both x and y crossings within the same discretisation interval.

The fact that the average sign is 1 if we condition on there being an even number
of diamonds is a peculiar and unexplained artifact of the potential, which does not hold
for the Coulombic potential (7.24), and in particular implies that if longitudinal-transverse
coordinates were used, making the number of diamonds always even, then all contributions
(ie, all samples of Y (X)) would be positive. Moreover it demonstrates incontrovertibly that
in native coordinates, the average sign cannot tend to zero, or fall much below 1/2, since for
T large, the proportion of paths with an even number of diamonds clearly will not fall much
below 1/2, and it is evident that as one might expect, the magnitude of EY? is decreasing as
the number of diamonds increases, not remaining high only when the number of diamonds
is odd! It should be noted that the number of diamonds, and anything conditional upon it,
is meaningless here in intrinsic terms: in fact, it is dependent on the initial point sampling
measure.

By way of comparison, the average sign for a completely naive simulation at 7" = 10
(which we can find by taking the ratio of the boson partition function to the fermion partition
function) would be 0.000285 (to 3 s.f.). Thus, the average sign under our algorithm is at least
3033 times greater, and the cost saving, when using importance sampling, should therefore

be about 7 orders of magnitude.

7.4.3 Last-to-first experiments: a pair of 3D fermions

Figure 7.16 shows the results obtained using the Last-to-first algorithm for the 3D non-
interacting correlated oscillator. The results are much less conclusive than those of Figure
7.15; in particular there is nothing to immediately dispel the concern that <’:\|:J) may decrease

more or less linearly towards 7' = 12, and therefore be carrying on towards 0 thereafter.

Table 7.2, which breaks down the average sign according to number of diamonds in the
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Figure 7.16: Average sign using the Last-to-first algorithm for a pair of 3D fermions, nonin-
teracting correlated oscillator

same manner as Table 7.1. Again 7" = 10 and in this case the overall average sign was
found to be between 0.456 and 0.596. Although the estimates of average signs may well
be quite poor in tems of Monte Carlo variance, through most of the table, and there is
a somewhat decreasing trend up to 6 diamonds, it seems that the results are nonetheless
broadly inconsistent with a trend that increasing the number of diamonds would bring the
average sign towards 0. This latter would have to be the case in order for our simulation to
have a sign problem. Further experiments are required in order to determine whether or not
this is the case, however, using MCMC to simulate effectively at higher values of T

By way of comparison, the average sign for a completely naive simulation at 7" = 10,
found as the ratio of the fermion partition function to the boson partition function, would
be 0.000294 (to 3 s.f.). The average sign under our algorithm is thus at least 1551 times
greater and therefore the cost saving, when using importance sampling, should be about 6

orders of magnitude. In conclusion, the empirical evidence that our algorithm is successful
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in 2D is fairly positive. The evidence as to whether it is successful in 3D is inconclusive, but

it is at least moderately effective.

7.5 Extending the Subdiamond approach to n particles

In this section we provide some comments on the challenges inherent in extending our

method to n > 2 particles, and some speculative remarks about how these challenges might

be addressed.

7.5.1 Towards a general method

Having found a logical approach to dealing with the sign problem in the case of just a
pair of fermions with d > 1, it is natural to search for a generalisation to n > 2 fermions; in
other words, a method which uses the same principles to avoid the sign problem, and which
features our Last-to-first 2-particle method as a special case.

To extend the principle of forming sampling blocks of paths based on coordinate exchange
should be possible if one adopts the perspective that Gr is found by integrating with respect
to wa gwo (compare the proof of Theorem 6.2.1). Considering the 2 particle case in this
light, if we condition upon a set of crossings involving crossings in both x and y, then it is
easy to recognise that the pair exchange (12) is equally likely with the identity. (Moreover,

if we condition on there being either no crossings in x or no crossings in y, then it is obvious

that the identity is the only possible permutation.) This remains true if we look at only a

T, I1,x0

section of time (using conditional independence under wy ),

and invoking multiplication
of permutations in the same way as discussed in Subsection 4.2.3; see also Subsection 2.1.4)
and so it is possible to re-develop the results of Chapter 7 using this perspective. Similarly, it
is not difficult to see that in general, if we can identify a set of crossings then one legitimate

approach is to collect functionals for a set of paths which are equilikely under the given

crossing set?.

20r, more generally, weighted according to their probability conditional on the given crossing set.
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It is important to note that from the definition of ng z» We know that each binary

choice sequence would be equiprobable under wOT’ = given a well-defined set of crossings,

T7Hnﬂ»’0

and therefore it follows that under wy

, those choices which give rise to X(7T') € I,z
correspond to equilikely paths. (This also applies when some of the choices give rise to the

same permutation: such permutations receive a commensurately higher weighting.)

The issue of combining flips

However, the problem is deeper than this in two ways. Firstly, we do not have to always
collect a path for all the possible binary choices (ie choices of which crossings should be used
for particle exchange) corresponding to the sampled crossing sequence. We might choose
instead to partition this set into equivalence classes P, ..., P,. If our initially sampled path
belongs to P; then we collect functionals for each of the binary choices in P;. This concept
is quite important because, due to the fact that a permutation may have multiple different
representations as pair swaps, it could be quite difficult to access certain permutations by
matching particle swaps between coordinates.

Secondly, if we choose to recognise crossings between our sampled particle loops (from
here on denoted AB,, AB, etc) then when we have n > 2 particles involved, the issue arises
that accepting or not accepting certain exchanges of coordinates may change the meaning
of other crossings. For example, while A and B are exchanged, say in the x coordinate, BCy
becomes AC,. We could avoid this by instead recognising crossings between paths indexed
not by their sampled loop but by their ordering in the relevant dimension (these crossings
being written 12y, 12,). These crossings are well-defined however we choose to map the
initially sampled paths to paths for which Y is to be evaluated. However, the same problem
immediately returns in that we need to map them to particle crossings in order to perform
any simulations. A way to avoid this difficulty would be available if we could always find a
decomposition into P; so that the elements of P; were all accessible from each other without

a reinterpretation of which particles should be involved in any crossing that is used. So
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apparently, labelling crossings ordinally confers no advantage.

7.5.2 Illustrative examples of crossing sequences

Let us consider some examples of crossing sequences and how we might respond to them.
For simplicity we shall consider examples where we assume that the initial points A,B,C are

arranged diagonally so that both the x and the y coordinates are ordered A,B,C.

Example 1: no complications

Suppose we simply encounter AB, and then AB,. This appears straightforward: it is the
same as in the n = 2 case. The same thing applies if we encounter this sequence preceding
another one; e.g. AB, AB; BC, BC,;. We may summarize the possibilities, where 1 indicates

that a crossing is used and 0 indicates that it is not, thus:

AB, AB,
0o 0 4
11 -

Example 2: mixing the coordinate sequences together

Suppose we encounter a sequence where the same particle exchange sequence applies in
both (or all) coordinates, but without necessarily being split into separate segments of time.
This should not present significant difficulties. The viable choices, which are all equilikely,

are tabulated as follows:

AB, BC, AB, BC,
o 0 0 0 4

0 1 0 1
1 0 1 0 —
1 1 1 1 +

We do not yet consider flips whose time interval spans zero. Figure 7.17 displays the links
that are followed out. The initially sampled paths are loops and they are represented by
black curves. The blue curves represent alternative choices under exchange. Green represents

more negative curves, so that following blue and then green gives us a positive contribution,

(AB)(BC). The numbers 1,...,5 represent segments of time.
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Figure 7.17: Schematic showing a crossing sequence AB, BC, AB, BC, , with permutations
(id), (AB), (BC), (AB)(BC).

It is natural to ask how we might actually build an algorithm able to collect these
simultaneous samples efficiently. We no longer simply have a product of differences and
therefore it seems that some extra computational cost may be unavoidable.

At first it might seem that one solution, to the problem of identifying viable equivalence
classes (in effect, sampling blocks), is to include paths in the same equivalence class if and
only if they are accessible from each other via flips of coordinates (ie, exchanges over a time
interval between two crossings) which do not involve changing the meaning of any other
observed crossings. However, this turns out to be an unfortunate choice. Consider the
crossing sequence in this example. Superficially we see that we could use {ABy, AB,;} to
exchange A and B, or could use {BCy, BC,} to exchange B and C; in fact these flips are

also compatible with each other, and we could use all four switches to get (AB)(BC). But
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according to the rule that one crossing should not affect another, we would have to rule out

using any of them!

Example 3: incongenial ordering of swaps

On the other hand, if the crossing sequence is AB, BC, AB, BC; (and we shall assume
that there are many other crossings before and after this, so that it is not a simple matter
of rotating time) then {ABy, AB,} and {BCy, BC,} are incompatible: using all switches
leads to (AB)(BC) for x but (BC)(AB) for y. This is problematic because we apparently

have more negative than positive contributions of which to take account.

AB, BC, AB, BC,

o 0 0 0 4+
o 1 0o 1 -
1 0 1 0 -

It would certainly be preferable not to pick up two negative contributions and only one

T,II

o5 the weights of the viable choices are equal. But if

positive. We know that under w
we choose to neglect, say, {BCx, BC,;} then since we are using particle labels rather than
ordinal ones, we know that on another occasion we might have sampled a path X which did
feature the B,C exchange. On the face of it, this leads to a sign problem however; so let us

consider our options.

Possible algorithms for determining equivalent paths

Reflecting on these examples, there are a number of possible strategies for constructing

the equivalence class of an observed path X, such as:

1. Reject flips which are not compatible with those already encountered (moving clockwise

through time from 0).

2. Use all directly accessible flips. ie, our algorithm is:

(a) Detect all flips which are directly accessible from X;

(b) Determine a matrix of values for which flips are pairwise compatible.
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(c) Collect those binary choices which do not include any incompatible pairs of flips.

3. Use an algorithm to search for all possible binary choices which are viable. (This could

be very expensive.)

In each of these cases we have to bear in mind that we are also interested in using flips
(diamonds) whose time interval spans the zero time. It is conjectured that for this reason,
one never in fact obtains a net negative number of contributions using strategy (2). However,
this still remains to be investigated.

There is also potentially an alternative approach, if it were possible to prove that one
might legitimately exchange opposite coordinates from the ones encountered. So for {AB,
AB,} we might choose to exchange the y-coordinates of A and B at the time of an ABy
crossing and the x-coordinates at the time of ABy. Intuition suggests this is consistent with
the particles being indistinguishable, but mathematically it is not clear. If this approach
should be seen to be valid, then one has a fourth algorithm: choose to make a flip of
coordinates only if it is possible to do so without affecting an intermediate crossing. So in
the case of ABy, BC,, ABy, BC, we allow exchange of the y-coordinates of A and B between
AB; and ABy and this is then compatible with exchanging the x-coordinates of B and C
between BC, and BCy. In the case of ABy, BCy, AB, BC, we would use x for A,B and x for
B,C. The fact that flips never affect other crossings means that they are all always mutually
compatible.

It remains to be seen how much improvement in average sign would be obtained by using

these algorithms.

Example 4: flips contained within one another

Now consider what might happen if the order of these crossings were different, so that we
have AB, BC, BC; AB,. Note that this is still a different sequence when time is regarded

as a circle: it is qualitatively different because the x exchanges appear next to each other.
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We now have some difficulty in combining (AB) and (BC) because using AB, means that
we see BCy then as AC,.

AB, BC, BC, AB,
o 0 0 0 +
o 1 1 0 -
1 0 0o 1 -

The answer is supplied by considering time symmetry. If we regard time as a circle, it
is immediately seen that this crossing sequence is the same as the innocuous AB, AB, BC,
BC, (see Figure 7.18). Therefore assuming that this kind of time symmetry is to be invoked,
we must treat this crossing sequence the same way regardless of our superimposed labelling

of time.

Figure 7.18: AB, BC, BC; ABy can be regarded as AB, AB, BC; BC, by moving the 0
label when 0 and T are identified to make [0,T] a circle.

The most obvious way, as illustrated, is to place a diamond between AB, and AB, and
between BCy and BC,. If we think of the 0 label as lying within the first of these diamonds,
then we are collecting contributions both for zo = (2!, 2! 21®) 221 32?) 226)) and
for zf = (2'®,2'® 210) 22 22@) 22()) While 2 negative choices and 1 positive choice
correspond to zg, 2 positive choices and 1 negative choice correspond to .

However, this choice of diamond placement does beg the question, of why we do not use
the "long" diamonds, from ABy to AB, or BC to BC,. Intuitively this certainly seems less
desirable: by collecting paths from diamonds which take place over a shorter time interval,

we collect countersigned contributions which have a greater covariance with those from our
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originally sampled path and the other paths being collected. Whether neglecting these
diamonds, in favour of the shorter ones, leads to a severe sign problem, is a question which

requires further investigation.

Example 5: Permutations that are inaccessible by using matching swaps

It is relevant to consider an example where the fact that a permutation may have two
different representations as pair swaps becomes an issue. Taking AB, BC, AB, BC, AB,
BCy, if we seek to match permutations between x and y for a choice to be viable, we have

the following table:

AB, BC, AB, BC, AB, BC, Name

0 0 0 0 0 0 + idl

0 0 0 1 0 1 + id2

0 0 1 0 1 0 — (AB)1

0 1 0 1 0 0 — (BO)1

0 1 0 0 0 1 — (BC)2

0 1 1 1 1 0 + (BC)(AB)
1 0 0 0 1 0 — (AB)2

1 0 1 0 0 0 + id3

1 0 1 1 0 1 + id4

1 1 0 0 1 1 + (AB)(BC)
1 1 1 1 1 1 - (AQ)

This seems to indicate that there are 6 positive choices but only 5 negative choices. But
how are these to be accessed? If we could access them all from each other, this would be
fine, but to do this, without checking every combination of exchanges and holding a large
number of paths (strategy (3) above), seems to be very problematic.

Under any of our algorithms described above, from id1 we must be able to access (BC)1,

(AB)1, (BC)(AB):

AB, BC, AB, BC, AB, BC, Name

0 0 0 0 0 0 + idl

0 0 1 0 1 0 — (AB)1

0 1 0 1 0 0 — (BO)1

o 1 1 1 1 0 + (BC)AB)

All of the other binary choices are arrived at by using either the positive flip AB.-AB,

and/or the positive flip BC;-BC,. Under strategy (3) we would include these, but otherwise
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we exclude them completely. Because we are using particle labels rather than ordinal labels,
this is perfectly valid, although again it remains to be seen whether it leads to a severe sign
problem or not.

This example also suggests another intuitively appealing concept. For any algorithm to
determine path equivalence, if the juxtaposition of the x and y crossing sequences is altered,
it is preferable that the permutations sampled, ie the equivalence classes, should remain the

same, at least until diamonds across zero are taken into account.

Summary

In conclusion, further study is needed to establish how to efficiently extend the Subdia-
monds approach to the case n > 2. We have explored, through simple examples, some of the
features which we might expect to characterise such a generalised approach. The examples
are suggestive that a viable method may well exist, but also indicative that as n is increased
we would expect a considerable increase in complexity. There clearly is a lot of potential for

further research into this rich subject, as we shall discuss further in Section 8.2.
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Table 7.1: Observed efficiency conditional on number of diamonds, in simulating 2 noninter-
acting 2D fermions in correlated oscillator. The results are based on using Simpson’s Rule.
The statistics are only indicative of what happens with a standard Gaussian as initial point

sampling measure. The timestep A = 0.1 throughout.

No. of Frequency EY?¢ E‘Yo} Average sign  Average sign SE
Diamonds (to 8 s.f.) (to 3 s.f.) (to 3 d.p.) (approzx)
0 7152189314 1.72E-10 1.72E-10 1 0

1 684659866  1.18E-10  1.76E-10 0.671 0.00629

2 1018766626  1.56E-10  1.56E-10 1 0

3 295824297 1.19E-11 2.43E-11 0.49 0.0083

4 400287703  7.67TE-12  7.67E-12 1 0

5 102143305 1.10E-13  3.08E-13 0.359 0.0169

6 128843315  4.77E-14  4.77E-14 1 0

7 29578995  1.80E-16  6.45E-16 0.28 0.0479

8 35268650  5.98E-17  5.98E-17 1 0

9 7427158  T.4TE-20  3.69E-19 0.202 ?

10 8459481  4.33E-20  4.33E-20 1 0

11 1657773  2.49E-23  5.54E-23 0.45 ?

12 1811859 1.11E-24 1.11E-24 1 0

13 332489  7.94E-28  9.66E-28 0.822 0.119

14 350603  2.30E-28  2.30E-28 1 0

15 60757  5.76E-33  3.19E-32 0.18 ?

16 61935 8.07TE-35  8.07E-35 1 0

17 10124 1.16E-37 1.18E-37 0.982 0.0191

18 10067  1.12E-39  1.12E-39 1 0

19 1489  1.92E-43  1.92E-43 0.9994 0.000618

20 1449 1.05E-46 1.05E-46 1 0

21 202 -5.09E-52 5.19E-52 -0.98 0.0265

22+ 283
Kills: 132252260 0.00E4-00 0.00E4-00
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Table 7.2: Observed efficiency conditional on number of diamonds, in simulating 2 noninter-
acting 3D fermions in correlated oscillator. The results are based on using Simpson’s Rule.
The statistics are only indicative of what happens with a standard Gaussian as initial point
sampling measure. The timestep A = 0.1 throughout.

No. of Frequency EY?¢ E!YO‘ Average sign  Average sign SE
Diamonds: (to 8 s.f.) (to 3 s.f.) (to 3 d.p.) (approzx)
0 3962852300 1.02E-13  1.02E-13 1.000 0.0000

1 1326223018 4.50E-14 1.85E-13 0.243 0.0809

2 1669750130  1.05E-13  1.77E-13 0.591 0.0226

3 778183026  1.85E-14  4.93E-14 0.375 0.0408

4 582623313  4.57E-15  9.57E-15 0.478 0.0346

5 304201081 1.63E-16  6.37E-16 0.256 0.0426

6 185801119  1.08E-17  4.25E-17 0.254 0.114

7 97985958  1.73E-19  9.62E-19 0.180 ?

8 53655084 -7.34E-22  1.80E-20 -0.041 ?

9 27481788  6.02E-23  2.31E-22 0.261 ?

10 14054441 5.53E-26 1.12E-24 0.049 ?

11 6928690  4.00E-27  7.96E-27 0.503 ?

12 3366472 -6.29E-30  4.03E-29 -0.156 ?

13 1597575  -3.56E-32  8.20E-32 -0.435 ?

14 744415 -7.72E-35  9.80E-35 -0.787 ?

15 340581  T7.03E-38  9.95E-38 0.706 ?

16 153821 9.70E-41 1.20E-40 0.806 ?

17 67383 -2.14E-44  2.8TE-44 -0.743 ?

18 29640 -3.31E-45  3.35E-45 -0.988 0.0162

19 12476 -4.07E-51 6.37E-51 -0.640 ?

20+ 9025
Kills: 983938664 0.00E-+00 0.00E-+00
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Chapter 8

Conclusions and outlook

8.1 Conclusions

In this section we summarize the main conclusions from the preceding chapters.

The background to our endeavours

By developing the viewpoint of works such as [Kach7, Kach6], it is possible to explain
the relationship between conditional Wiener integrals and quantum statistical mechanics,
via the probabilistic representation of the solutions to a certain parabolic partial differential
equation (e.g. [Kacbl, Fre85]). This allows us to find the expectation of practically any
observable quantity, in principle, for a quantum system in thermal equilibrium at a nonzero
temperature. We are able to make a rigorous justification for Path Integral Monte Carlo
based on Conditional Wiener integrals, as opposed to needing to employ Feynman path

integrals under a Wick rotation.

Regarding simulation of excited system states

Under suitable conditions, such as the Hamiltonian operator having a discrete spectrum,
we have established a functional integral expression whose zero-temperature limit yields a

density corresponding to the sum of the first £ eigenstates of a quantum system. This means
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that if a suitable method of zero-temperature simulation is adopted, and the multiplicity of
eigenstates is known, then it is possible to simulate statistics corresponding to the average
of the states at each energy level.

Using the well-known Boltzmann expansion, simulation of excited states provides an

approximate simulation method for systems at sufficiently low nonzero temperatures.

Regarding stochastic numerical integration and Path Integral Monte Carlo

In this thesis (see also [DT10]) it has been demonstrated that a piecewise constant numer-
ical method is of second order in the time-step for a relatively general class of functionals,
when performing integration with respect to any conditional Wiener measure. In order
to prove this, a novel technique was used, applying Taylor’s theorem for functionals (our
Theorem 3.1.1) to locally expand our approximate functional about the functional being
integrated.

The equivalent result relating to Wiener integrals was already known [GM84], and our
result was already known in the special case of exponential-type functionals [MT04ii] (see also
[MT04]) and in particular had long been known in the case of the action functional [Suz86].
However, the knowledge that the result holds for a broad class of functionals is very useful,
because when an observable is ‘diagonal’ in the momentum representation, it is often possible
to express it in the position representation using a functional that is not of exponential
type; the example of kinetic energy was treated in this respect. The result particularly
has implications for the simulation of bosonic systems, for which there is no sign problem.
Amongst other experiments offering empirical confirmation of the result, a simulation of
the kinetic energy of four bosons in a 1-dimensional space under a harmonic potential was
performed, and this illustrated the difference between the second-order piecewise constant
method and the first-order Euler method.

In order to estimate expectations of observables it is usually necessary to find information

about ratios of functional integrals. This can be accomplished probabilistically using Path
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Integral Monte Carlo procedures, and it is then possible to estimate a credibility interval
for the ratio that is of interest. Importance sampling is essential to any serious simulation,
and we were able to determine the optimal path sampling measure. (Nonetheless, the most
popular choice of sampling measure is the action measure, which simplifies the analysis by
avoiding the need to simulate a partition function.) In order to sample according to such
measures, Markov Chain Monte Carlo is used; however, we have explained that our results
concerning numerical integration error still hold true regardless of how sampling is performed,
and of the sampling measure used. This was demonstrated by performing a simulation of
the potential energy of a system of 64 boltzmannons under a Lennard-Jones potential.

It was also seen empirically that in the case of an exponential-type functional, applying
Simpson’s Rule to the exponent (a method already known to be second-order for this class
of functionals) sometimes incurs a bias that is almost 10 times smaller than that incurred by

using the Trapezoidal Rule for the exponent (which coincides with our piecewise constant

method).

On the fermion sign problem in 1-dimensional systems

The fermion sign problem, defined in terms of finding an exact fermion simulation algo-
rithm with polynomial cost scaling in both the inverse temperature 7" and the number of
particles n, is almost certainly insoluble [TWO05]. When a sampling measure is used that
removes the denominator integral, the relative cost of a simulation (to obtain the same vari-
ance) due to the presence of signs is governed by the square of the average sign, (+)° = &,
and we have shown that it is always more than £ times greater (cf [Cep96]). This creates sig-
nificant obstacles to fermionic simulations since without a special scheme being constructed
to avoid it, the rate of decrease of the average sign with 7" or n is exponential. It was seen
that using a method based on linear translation to create covariances between countersigned
functional contributions achieves only a limited amelioration of cost. It was proven that for

a system of noninteracting fermions (not necessarily in a 1-dimensional space), it is possible
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to replace the sum over permutations with a sum over loops of different time lengths. A
translational method based on this was tested; it was seen that the benefits of this method,
on its own, are also limited.

For 1-dimensional systems, the fermion sign problem is soluble and in this thesis, a
rigorous proof - based on mathematics rather than on physics - has been advanced for
the solution. It is possible to prove that constraining Brownian bridges not to cross is
sufficient to allow only positive contributions to be sampled, avoiding any sign problem.
Moreover, it has been demonstrated that it is possible to implement exact sampling of path
discretisations subject to this constraint. In fact, we were able to calculate the pdf for one
intermediate point on a non-crossing Brownian bridge (a result closely related to the classical
Karlin-McGregor theorem [KM59]), and then we established a relatively efficient method for
sampling according to this pdf. A simulation was carried out for the particle density of the

1-dimensional harmonic oscillator, and seen to give sound results.

On a geometrical approach to the general fermion sign problem in Path Integral

Monte Carlo

One existing way to extend this approach to the multidimensional case is to regard the
one-dimensional solution as meaning that paths are prevented from crossing the nodes of the
wavefunction. In this thesis, we have instead taken the point of view that it arises because
in the case of crossing paths, we are able to find paths whose contributions exactly cancel,
and sample them simultaneously. It has been proven that at least for the case of just two
fermions, there is a way to generalise this principle, forming sampling blocks based on the
crossings encountered for each coordinate, to achieve a powerful algorithm for carrying out
simulations at relatively low temperatures. Specifically, we have proved that for the action
functional, we can substitute a functional involving a product of diamonds (differences of
functionals over sections of path between coordinate crossings) and positive functionals. It

was seen empirically that the average sign does not tend to zero as T" tends to infinity in the
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case of a pair of fermions in a 2-dimensional space, and there was some limited evidence to
suggest that this may also hold true for a pair of fermions in a 3-dimensional space.
We also have offered some indications of how the method may generalise to the case of a

system with n > 2 fermions in a multidimensional space.

8.2 Outlook for research

In this section, we shall discuss some possible directions of future research to develop the
work of this thesis further. The most obvious is to rigorously develop a generalisation of
the Subdiamonds approach introduced in Chapter 7. However, we discuss the topics in the

order that the relevant work appears in the thesis.

Towards a zero-temperature method based on path integrals

So far the focus of our discussion has been mostly on the case of a system at a nonzero fi-
nite temperature. There is probably a larger body of literature treating the zero-temperature
case; there exist multiple approaches, but probably the most popular is to use the Diffu-
sion Monte Carlo method already mentioned in Subsection 5.2.1. This method is based on
modelling the ground state wavefunction as a positive probability density; this fact leads to
certain inherent limitations [KFS96]. Rather than simply taking a sufficiently large value of
T in Path Integral Monte Carlo, is it possible that an elegant method of zero-temperature
simulation using conditional Wiener integrals could be constructed?

For simplicity, we consider a system of distinguishable particles. We recall the notation of
Section 2.2 and let ¢; denote the unnormalized thermal density matrix at inverse temperature
t; ie q(x1, x2) = Ji(1, x2) @, (21, 22). Furthermore, let

_ qr(z1, 2) . s
PT($17372) = qu(x’@dz ; poo(xth)_jlgI;opT (x17952) .

By using asymptotic properties of Brownian bridges, it is possible to obtain that

o (,79) = Jgona [0 (@1, 21) @ (2, 22) pog (21, 22)] dz1d 2 ' 8.1)
fRBnd G (2, 21) @1 (7, 22) po (21, 22)] d21d22d
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If it is possible to let each of the real-valued ground state eigenfunctions r; solve

ri(z) ox /R oo ) de (8.2)

along with the usual orthonormality conditions, then this provides a solution to (8.1). If
this integral equation (8.2) can be solved approximately (using, for example, an iterative
method) by using a Path Integral Monte Carlo method to collect information about ¢, then
we may fairly say that it is possible to approach zero-temperature simulations via conditional
Wiener integrals.

If this were to lead to a method which is able to find limy_.o Iy (see Section 2.3) then
clearly, simulation of excited states as well as ground states is facilitated (albeit with sign
problems arising, as is the usual case). Being able to simulate excited states provides a
controlled approximation to low (non-zero) temperature systems, since at sufficiently low
temperatures a good approximation will come from the first few terms of the Boltzmann

distribution (2.51). Bounding the error from remainder terms is not difficult.

Investigation of possible higher-order ‘random series’-based numerical method

for a broad class of functionals

As mentioned in Subsection 3.2.1, it is apparently the case that methods involving func-
tional evaluations away from the sampled path discretisation are able to attain higher orders
of convergence for action integrals [PD03, Pre04]. For the same reasons that it was desirable
to prove that our piecewise constant method is second-order on the broad class of function-
als described in Subsection 3.1.1, it would be worthwhile to find out whether a numerical
method analogous to that of [Pre04] could be rigorously proven to attain higher orders of
convergence on this class.

It seems that to employ the same method of proof as used for Theorem 3.2.1 might be

an expedient way to attempt this.
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The extension of the Subdiamonds approach

As discussed in Section 7.5, it seems quite reasonable to think that it would be possible
to extend the Subdiamonds approach to systems of n > 2 fermions.

It seems unlikely, given the results of [TWO05], that it is possible to create a method
which has polynomial cost scaling in both n and 7. However, it might be possible, for
instance, for there to be a method involving a subroutine of nonpolynomial cost which
does not involve potential evaluations. Since these are usually thought of as representing
a heavy computational expense, in simulations of practical interest, this might allow some
progress to be made with performing exact simulations at increased T" and n. There is some
reason to believe that our approach might lead to such a method, since identifying the paths
belonging to the same sampling block as the sampled path X could well require an algorithm
with nonpolynomial cost scaling in n. In default of this, it may nonetheless be possible to
seek a generalised algorithm where the cost growth is nonpolynomial in n but sufficiently
slow that it is computationally feasible to work with moderate n, e.g. n = 12. This would
enable simple atomic simulations to be carried out.

The first step in investigating the possibilities is to rigorously prove a generalisation of
Theorem 7.2.10, corresponding to the intuitive direction sketched out in Section 7.5. It shall
probably then be apparent that nonpolynomial cost growth in some part of the algorithm is
inevitable, but experiments would be needed to determine the actual rate of cost growth.

It is also notable that further research is needed to study the properties of the Last-to-
first method as it applies to just a pair of 2D or 3D fermions, under different potentials.
It is clear that MCMC simulations are needed, to avoid the explosion of variance that was
witnessed in the experiments of Subsection 7.4.3 when 1" was increased even moderately.

Other extensions of the Subdiamonds approach are also of interest:

Combining the Subdiamonds approach with zero-temperature simulations It

is notable that an analogous fermion sign problem is encountered when performing zero-
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temperature simulations of fermion systems, using DMC or any other method. Therefore,
given a zero-temperature simulation method, it would be of interest to know whether a
coordinate crossing-based blocking strategy for avoiding the sign problem exists, by analogy
with our Subdiamond approach in the nonzero temperature case.

Besides the fixed-node and release-node methods, other methods to address the fermion
sign problem in DMC exist; for example see [Mis06] or [And95]. It is of interest to try
to recognise whether these exhibit commonalities with the Subdiamond approach and to
investigate the relative performance under different conditions, should a generalisation of

the Subdiamond approach to zero-temperature be possible.

Nonequilibrium problems / quantum dynamics Application of path integrals to non-
equilibrium problems is an active area of research (e.g. [BSKF03, MR07, Mak09]) in which
a sign problem is apparently encountered in nearly all cases, that may be even more severe
than that of fermion PIMC [Cep96]. It seems an exciting possibility that parallels to the
work of Chapter 7 may exist that relate to such simulations. It is also notable that some dy-
namical quantities can be accessed via the off-diagonal values of the thermal density matrix

[Cep96]; our method is perfectly adequate for finding these values.
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