Fig. 1 Micrograph of a typical (a) dendritic microstructure in an as-cast sample and
(b) globular microstructure in a semisolid alloy sample.

Fig. 2 A photographic sequence illustrating the thixotropic behaviour of semisolid
alloy slugs (courtesy University of Sheffield)
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Fig. 3 Automotive components produced by STAMPAL for the Alfa Romeo car
(@) Multi-link, rear suspension support 8.5kg, A357, T5;
(b) Steering knuckle A357, T5 substitution of cast iron part.
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Fig. 4 “New MIT” process (courtesy Prof. M. C. Flemings, MIT)
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Fig. 5 Continuous rheocaster (after [29])
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Fig. 6 Schematic diagram of the New Rheocasting (NRC) process. The inversion
procedure causes the oxide skin on the exposed surface to run into the runner and
biscuit.
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-

1, Heating elements; 2, crucible; 3, stopping rod; 4, barrel; 5, heating
elements; 6, cooling channels; 7, barrel liner; 8, transfer valve; 9, die;
10, rmould cavity; 11, beating elements; 12, shot sleeve; 13, twin-screw;
14, piston; 15, end cup; 16, driving system.

Fig. 8 Schematic diagram of a Rheomolder using a twin screw process
[34]. Liquid metal is used instead of the solid chips used in the Thixomolder™ (see
Fig. 9)
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Fig.11 Schematic illustration of different routes for semisolid metal processing [40]
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Fig. 12 Shear stress versus shear rate and associated viscosity versus shear rate curves
for a variety of types of rheological behaviour
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Fig. 13 Shear-stress ramp experiments after different rest times (tr) for Sn-15%Pb

[66]. (a) Shear stress versus deformation angle. (b) Shear stress versus rest time.

Temperature 195°C, fraction solid 0.5, globular structure prepared by shearing at
100s™ at a cooling rate of 1°C/min.
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Fig. 14 Cross Model fitted to apparent viscosities obtained from various works on
Sn15%pPb alloys [71]
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Fig. 15 Response of an inelastic thixotropic material to firstly a step-change up in
shear rate and then a step-change down (after [64]).
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Fig. 16 Flow curves of a flocculated suspension (after [65])
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Fig. 17 Schematic illustration of evolution of structure during solidification with
vigorous agitation

(a) initial dendritic fragment; (b) dendritic growth; (c) rosette; (d) ripened rosette; (e)
spheroid [45]
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Fig.18 Schematic model describing the fast and slow processes in a semi-solid
material’s structure after shear rate up and down jumps (taken from ref. [47])



T 100
2000 A
Shear rate
80 .
@
2 1500 Shear stress 2
2 (after 5 hrs rest) g
E 60 &
z s
S 1000 Shear stress 2
5 (after 2 hrs rest) 40 @
Shear stress
(after 1 hr rest) Shear stress
500 q
(after 0 hr rest) 20
0- ‘ : ‘ ‘ : ‘ 0
0 0.2 04 0.6 0.8 1 12 14

Time (secs)

Fig. 19. Shear rate jumps from 0 to 100 s after different rest times for Sn 15%Pb
alloy at fraction solid 0.36 [86].
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Fig.20 Microstructures of Sn 15%Pb alloy ( f, = 0.36) at various rest times: (a) 0 h
(b) 1 hand (c) 2 h [86].
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Fig. 21 (a) Series of step changes in shear rate to obtain (b) isostructural flow
curve [66]. The isostructural shear stress Sis, Is measured immediately after each
step up in shear rate. In between each experiment, the material was sheared at the
equilibrium shear rate y, of 100s™. (Sn-15%Pb, 198°C, f, =0.41). The exponent

for the fit to (b) is 2.07 and hence the isostructural behaviour is termed shear

thickening.
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Fig. 22 Schematic of the drop forge viscometer [90].
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Fig. 23 Typical signal response to rapid compression of a semisolid alloy slug [91].
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Fig. 24 Load signals and microstructures at different temperatures for Alusuisse A356
aluminium alloy in rapid compression tests (ram speed 500 mm/s, zero soak time)
[91].
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Fig. 26 Numerical simulation of die filling [93]. (a) Partial filling of die.
(b) Modelling simulation of (a) where white corresponds to dark on (a).
(c) Modelling simulation with improved die design showing smoother filling.
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Fig. 27 Comparison between simulation of flow into a cavity with a round
obstacle assuming Newtonian behaviour and assuming thixotropic behaviour [84].
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Fig. 28 Shear rate jump from 1-100 s™ in SnPb alloy ( f, =0.36), showing repeats of
the same experiment and modelled fits using a spreadsheet and FLOW-3D [98].
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Fig. 30 Flow patterns found by modelling [107].
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Fig. 31 Map showing flow patterns in Fig. 30 as a function of Reynolds number
Re and the ration of the Bingham number to the Reynolds number (Bi/Re) [105].
Curves (a) and (b) represent simplified analyses.



Fig. 32 Flow instability of the “toothpaste’ type in semisolid processing. The metal
is filling from the right to the left [114].
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Fig. 33 Comparison between experimental and simulated filling of a cavity (initial
ram velocity 0.8 ms™, diameter of tube 25mm) [115]. (a) Fraction solid 0.52. (b)
Fraction solid 0.58. (c) Fraction solid 0.73. In each figure, the upper part is the
simulation and the lower part the experimental result obtained with interrupted

filling.
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Fig. 34 (a) Cross-section through the semisolid material solidified in a tube in a
Poiseuille-type experiment. The eutectic-rich concentric rings are due to veins of
liquid formed in the shot sleeve. (b) shows such a vein formed at the limit of the

dead zone in the shot sleeve (see inset). [115].
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Fig. 35 Map of types of flow [124]. a) Laminar, b) Transient, c) Turbulent. Bi is
the Bingham number, K. a rheological number, C; , C, geometric constant and Re
the Reynolds number. K, C; and C; are not specified in the paper.
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Fig. 36 Three dimensional process window for aluminium alloy A356 [124].
Mechanical properties are given in the two top boxes. The smaller boxes
summarise the process parameter windows to obtain those mechanical properties
(AT is the temperature window, Af, the solid fraction window, Al the wall
thickness and Avy,). The higher the required mechanical properties, the smaller

the three-dimensional process window (compare the right hand diagram with the
left).



Solid bonds

Fig. 37 Schematic representation of the semisolid microstructure with inclusions

of solid and entrapped liquid surrounded by liquid and solid bonds [125].
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Fig. 38 Filling by Sn-12%Pb of a T-shaped cavity with a glass side showing the
effect of piston velocity on the shape of the flow front [150]. Piston velocity
(@) 10 mm/s (b) 50 mm/s (c) 100 mm/s.
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Fig. 39 Effect of obstacle size and shape on meeting of split flow fronts, Sn 15%Pb, 189°C, 0.25 ms™, splayed die entrance [98]. Left to right:
obstacle 30mm diameter; obstacle 20 mm diameter; experimental &, standard ‘spiders’ for extruding PVC pipes. Note how broader obstacle
leads to flow fronts meeting with the die more full. Far right: experimental spider at 1 ms™.

Fig. 40 Shots from filmed die filling with Al A357 [98]. Left to right: 576°C, 0.25 ms™, parallel entrance; 576°C 1ms™, parallel entrance;
1ms'splayed entrance; 0.25 ms™ splayed entrance with the experimental “spider’ and the same at 1ms™, all at 577°C.



