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Abstract

This paper studies a mechanism design model where the players and the

designer are nodes in a communication network. We characterize the com-

munication networks (directed graphs) for which, in any environment (utilities

and beliefs), every incentive compatible social choice function is partially im-

plementable. We show that any incentive compatible social choice function is

implementable on a given communication network, in all environments with ei-

ther common independent beliefs and private values or a worst outcome, if and

only if the network is strongly connected and weakly 2-connected. A network

is strongly connected if for each player, there exists a directed path to the de-

signer. It is weakly 2-connected if each player is either directly connected to the

designer or indirectly connected to the designer through two disjoint paths, not

necessarily directed. We couple encryption techniques together with appropriate

incentives to secure the transmission of each player’s private information to the

designer.

Keywords: Mechanism design, incentives, Bayesian equilibrium, communi-

cation networks, encryption, secure transmission.
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1 Introduction

The revelation principle is the cornerstone of mechanism design and its applications.

It asserts that the outcome of any communication system can be replicated by a di-

rect revelation mechanism, in which agents directly and privately communicate with

a designer, and truthfully report all their information (Gibbard (1973), Dasgupta,

Hammond and Maskin (1979), Myerson (1979), Harris and Townsend (1981), Myer-

son (1982)). As a technical result, the revelation principle is a blessing. It allows to

abstract away from the very details of communication systems and to focus on the

social choice functions to be implemented. At the same time, it is slightly disturbing,

as it implies that no decentralized communication system, however sophisticated, can

dominate the centralized (direct) communication system. Yet, real-world organizations

(firms, administrations, armies, terrorist networks, organized crime) seldom take the

form of centralized communication systems. The aim of this paper is to characterize

the communication systems which replicate the incentive properties of centralized com-

munication and, thus, to show that incentive considerations alone can already explain

the existence of a large variety of real-world organizations.1

Communication systems are naturally modeled as networks (graphs), in which the

nodes represent the players and the designer. A player can directly communicate with

another player if there exists an edge from that player to the other. We then associate

communication networks with social environments representing the preferences and

beliefs of the players, and characterize the topology of communication networks for

which, in any environment, every incentive compatible social choice function is partially

implementable. In the paper, we first focus on acyclic directed networks and then

show how our results extend to any network.

The connectivity of communication networks is at the center of our analysis. A

directed network is strongly 1-connected if for each player, there exists a directed path

from this player to the designer. This is a minimal requirement that ensures that the

designer may receive information from each player. A directed network is weakly 2-

1There is a recent literature labeled as algorithmic mechanism design, that focuses on communica-

tion complexity and mechanism design (see Nisan et al. (2007) for an excellent exposition and Nisan

and Segal (2006) and Van Zandt (2007) for economic applications.) Unlike this literature, we abstract

from complexity considerations and entirely focus on incentives.

3



connected if each player is either directly connected to the designer or has two disjoint

paths to the designer in the associated undirected graph. Figure 1 gives two examples of

weakly 2-connected networks. Our analysis shows that in a large class of environments,

both networks have the very same incentive properties.2
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Figure 1: Two communication networks

Our main results state that any incentive compatible social choice function is par-

tially implementable on a given communication network, in all environments with

either common independent beliefs and private values or a worst outcome, if and only

if the network is weakly 2-connected and strongly 1-connected. (In the sequel, we

omit the condition of strong 1-connectedness.) The intuition for this result is as fol-

lows.3 A social choice function is incentive compatible if no player has an incentive

to lie about his own private information when he expects the others to tell the truth.

Importantly, players use their prior beliefs to form their expectations. However, in

a general communication network, players receive messages from their neighbors and

thus, their incentives to tell the truth may be altered (since their posterior beliefs

may differ from their prior beliefs). To circumvent this problem, we couple encryption

techniques and incentives to transfer “securely” each player’s private information to

the designer through the network. Our encoding technique guarantees that no player

learns anything about the types of the other players and therefore, posterior beliefs are

equal to prior beliefs. To illustrate, assume that the network is strongly 2-connected,

that is, each player is either directly connected to the designer or has two disjoint

directed paths of communication to the designer. A player can thus send a private

2Other features are therefore needed to discriminate among these networks, e.g., their span of

control (Williamson (1967) and Calvo and Wellisz (1978)) or their associated cost of communication

(Bolton and Dewatripont (1994) or Radner (1993)).
3See the example in section 2 for an illustration.
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“encoding” key to the designer through one path and his type encoded with the key,

a “cypher-type,” through the other (disjoint) path. However, this is not sufficient:

players must also have an incentive to truthfully forward the messages they receive.

Our technique precisely guarantees this. Lastly, incentive compatibility ensures that

players also have an incentive to truthfully report their own private information. Our

connectivity conditions are necessary. If the network is not strongly 1-connected, then

there exists at least one player who has no outgoing edges, i.e., this player cannot send

information. It is thus impossible to implement a social choice function that depends on

this player’s type. Alternatively, if the network is not weakly 2-connected, then there

exists pair of players (i, i∗) such that all paths from player i to the designer go through

player i∗, who has thus the ability to manipulate all the information transmitted by i.

We now offer some motivations for our study. Firstly, as in Bolton and Dewa-

tripont (1994), we implicitly assume that the communication network (the internal

organization of the firm) is established in a prior stage and that it is relatively costly

to modify. Consequently, if the designer is uncertain about which incentive compati-

ble social choice functions he will actually have to implement, it is optimal to choose

a network in the class of weakly 2-connected networks. Alternatively, we can think

of our study as a worst-case analysis: If the communication network is not weakly

2-connected, there exist incentive compatible social choice functions that cannot be

implemented on that network. Secondly, the previous discussion suggests that the cost

of forming a link between any two agents is an important determinant in choosing

among different networks (organizations). How costly is it to form such a link? To

answer this question, we need to carefully interpret what a link is in our model. A

link between two agents is a perfectly secure channel of communication, i.e., no other

agent can eavesdrop, alter or intercept messages sent over the link, and any message

sent is received with certainty. Private face-to-face communication is probably the

closest instance of such perfectly secure communication in real life.4 Such links are

relatively costly to establish as argued by computer scientists, see e.g., Beimel and

Franklin (1999). Furthermore, Friebel and Raith (2004) argue that even if it were

4E-mails, phone calls or text messages are not examples of perfectly secure and reliable channels

of communication as the recent scandal News of the World demonstrates (Guardian, 14 July 2009).

In fact, if they were, there would be no need for encryption devices.
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possible to create at no cost such perfectly secure communication links between each

agent and the designer in an organization, it may not be optimal to do so. In their

words, “requiring intra-firm communication to pass through a “chain of command” can

be an effective way of securing the incentives for superiors to recruit and develop the

best possible subordinates.”

Related literature. The computer science literature on secure transmission of

messages is closely related to this paper. Section 4.3 provides an in-depth discussion

of this literature and its relationships to our study. The use of coded messages in

games of information transmission is common in the cheap talk literature (see Forges,

1990, Bàràny, 1992, Ben-Porath, 2003 and Gerardi, 2004) and our techniques are akin

to the ones found there. The paper most closely related to our work is Monderer

and Tennenholtz (1999), who study a similar problem to ours. Our paper substantially

generalizes their results in several dimensions. Firstly, these authors consider undirected

networks and environments with a worst outcome, common independent beliefs and

private values. They show that 2-connectedness of the network is a sufficient condition

for the implementation of all incentive compatible social choice functions. Crucially,

in their model, edges are not directed and thus can be used to communicate in both

directions. It follows that the 2-connectedness of the undirected network guarantees

the existence of directed sub-networks that are strongly 2-connected. Their protocol

(mechanisms and strategies) heavily exploits this fact and indeed breaks down if the

undirected network does not have an underlying strongly 2-connected network. We

show that in environments with common independent beliefs and private values, weak

2-connectedness, a substantially weaker requirement than strong 2-connectedness, is a

necessary and sufficient condition (the assumption of a worst outcome is superfluous).

Secondly, we show that in environments with a worst outcome, weak 2-connectedness

is again a necessary and sufficient condition; no further assumption on the environment

is needed. In particular, there is no need for independent beliefs or private values. We

need to resort to different encryption techniques than the ones used in Monderer and

Tennenholtz (1999), which would fail without common independent beliefs even on

strongly 2-connected networks. Furthermore, with the very same techniques, we show

that strong 2-connectedness and weak 3-connectedness is a sufficient condition for the

implementation of all incentive compatible social choice functions in all environments.

Again, the techniques of Monderer and Tennenholtz (1999) would fail here.
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2 A simple example

We now illustrate our main results within the context of a simple example. There are

three players, labeled 1, 2 and 3, two types for player 2, labeled θ and θ′, and two

alternatives a and b. Player 2’s preferences over these alternatives depend on his type

(in all examples, preferences are strict). Player 2 prefers a to b if his type is θ and

prefers b to a if his type is θ′. Player 1 always prefers a to b, while player 3 always

prefers b to a. Note that this is a private values environment, the preferences of

players 1 and 3 do not depend on player 2’s type. The designer aims at implementing

the social choice function f ∗ that selects the preferred alternative of player 2 for each

of his type: player 2 is dictatorial.

If player 2 can securely and directly communicate with the designer, f ∗ is clearly

implementable: the designer can simply ask player 2 to directly report his preferred

alternative. Suppose now that player 2 cannot directly communicate with the designer

and consider the communication network N2 in Figure 2 (player 0 is the designer).

0

1

2

3

Figure 2: Communication network N2

With the communication network N2, player 2 can indirectly communicate with the

designer through player 1. Moreover, player 3 has two disjoint paths of communication

to the designer with player 2 on one of them. Consequently, player 2 has two disjoint

paths to the designer, but one of them is not directed. The network N2 is thus weakly

2-connected. The idea is then to use the two disjoint paths from 3 to 0 to secure the

communication of player 2’s type to the designer, without revealing information to the

other players. So, suppose that players 1 and 3 believe that player 2’s type is θ with

probability 1/3, independently of their own types. The goal is to design a mechanism

and an equilibrium such that the designer implements a in state θ and b in state θ′.

The mechanism allows player 3 to send a real number in [0, 1) to player 2 and

another real number in [0, 1) to player 0. Similarly, player 2 (resp., player 1) can
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send a real number in [0, 1) to player 1 (resp., player 0). An informal description of

the strategies is as follows. Independently of his type, player 3 draws an “encoding

key” y uniformly on [0, 1) and sends it to both players 0 and 2. Player 2 of type θ

(resp., θ′) draws a “pseudo-type” x̃ uniformly on [0, 1/3) (resp., [1/3, 1)). The pseudo-

type thus “reveals” θ, but its unconditional distribution is uniform on [0, 1).5 Then,

player 2 encodes his pseudo-type x̃ with the encoding key y received from player 3 to

obtain the “cypher-type” x = (x̃ + y)mod0,1.
6 Player 2 sends x to player 1. Player

1 has to correctly forward the message of player 2 to the designer. Let (x̂, ŷ) be a

pair of messages received by the designer. The allocation rule is the following: If

(x̂− ŷ)mod0,1 ∈ [0, 1/3), the designer implements a and implements b, otherwise.

If the players follow the prescribed strategies, ŷ = y, x̂ = x and (x̂− ŷ)mod0,1 = x̃.

Thus, the designer correctly learns player 2’s type and implements the desired social

choice function f ∗. In particular, players 1 and 3 expect the designer to implement

a with probability 1/3 and b with probability 2/3. We now show that the players do

not have an incentive to deviate from the prescribed strategies. Suppose that player 1

deviates and sends a message x̂ to the designer instead of x. The designer implements

the alternative a if (x̂ − y)mod0,1 ∈ [0, 1/3) and b, otherwise. Since y is uniformly

distributed, so is (x̂ − y)mod0,1 (see Lemma 2 in Appendix). Accordingly, player 1

expects the designer to implement a with probability 1/3 and b with probability 2/3:

Player 1’s expected payoff does not depend on the message x̂ he sends. Player 1 has

therefore no incentive to deviate. A similar argument applies to player 3. As for player

2, he has no incentive to deviate since f ∗ is incentive compatible.

It is worth stressing that the essential feature of the network is its weak 2-connectedness.

For instance, if in addition to the links shown in Figure 2, player 3 has a link to player

1, the result remains valid (the network remains weakly 2-connected). Indeed, we can

construct a “babbling equilibrium” in which player 3 sends an uninformative message

to player 1, and player 1 plays independently of player 3’s message. Alternatively, and

more simply, we may let the message space from player 3 to player 1 be a singleton.

In effect, we show that the weak 2-connectedness of the network is a necessary and

sufficient condition for the implementation of any incentive compatible social choice

5More precisely, denote U[0,1/3) (resp., U[1/3,1)) the uniform distribution on [0, 1/3) (resp., [1/3, 1)).

The unconditional distribution of x̃ is 1
3U[0,1/3) +

2
3U[1/3,1) = U[0,1), the uniform distribution on [0, 1).

6For a real number r, rmod0,1 = r − ⌊r⌋, with ⌊r⌋ the highest integer less or equal to r.
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functions in environments with independent common beliefs and private values.

A further and important feature of the proposed mechanism and strategies is that

players 1 and 3 learn nothing about player 2’s type. This is clearly true for player 3 as

he does not receive a message from player 2. As for player 1, we prove that the message

x (the cypher-type) he receives is uniformly distributed on [0, 1) and independent of

player 2’s type. This feature is crucial for the implementation of incentive compatible

social choice functions which depend on the private information of all players. It

guarantees that posterior beliefs are equal to prior beliefs and, consequently, that

players’ incentives to truthfully reveal their own private information are not altered.

Another important aspect is that the mechanism and strategies are tailored to

environments with common independent beliefs and private values. Firstly, let us

consider the assumption of common independent beliefs. For concreteness, suppose

that player 3’s belief remains as above, but that player 1 believes that player 2’s type

is θ with probability 2/3. Players 1 and 3 have thus different beliefs. In the construction

above, the partition of [0, 1) into {[0, 1/3), [1/3, 1)} is such that the Lebesgue measure

of each subset exactly matches the prior beliefs of player 3, but differs now from player

1’s prior beliefs. Consider a deviation for player 1, whereby he sends the same message,

regardless of the message received from player 2. With this deviation, player 1 expects

the designer to decode player 2’s type as being θ with probability 1/3, which is different

from his prior belief 2/3. Consequently, player 1’s incentive to truthfully report his

private information might be altered and this player may profitable deviate.7 Note that

different (interim) beliefs of players 1 and 3 may derive from a common correlated prior

on type profiles. Thus, the importance of the common independent belief assumption

is that it allows to tune the mechanism simultaneously to the beliefs of all players.

Secondly, to understand the importance of the private value assumption, suppose

that player 1 prefers b to a when player 2’s type is θ and a to b when player 2’s type

is θ′ (interdependent values). If player 1 truthfully forwards the message x he received

from player 2, the alternative a is implemented if and only if player 2’s type is θ and

7For instance, take Θ1 = Θ2 = {θ, θ′}, three alternatives a, b, c, and u1(a, θ) = 3/2, u1(b, θ) = 1

and u1(c, θ) = 0. Consider the social choice function f which depends only on players 1 and 2’s types

with f(θ, θ) = a, f(θ′, θ) = f(θ, θ′) = c and f(θ′, θ′) = b. This is incentive compatible for player 1 at

state θ when he believes that player 2’s type is θ with probability 2/3, but not when he believes that

player 2’s type is θ with probability 1/3.
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the alternative b is implemented if and only if player 2’s type is θ′. However, if he sends

a message x̂ independently of the message received from 2, both alternatives a and b

are implemented with positive probability, regardless of player 2’s type, a profitable

deviation for player 1. In sum, the problem with more general environments is not only

to guarantee that no information is revealed, but to provide players with incentives to

truthfully communicate their private information and the messages they receive.

With more elaborated encryption techniques, our result remain valid in environ-

ments with a worst alternative (Theorem 2). The intuition is as follows. Consider

again the network N2. Player 3 draws a large number of independent encoding keys

y1, . . . , yη and send them to players 0 and 2. Player 2 privately chooses one of these keys

(with equiprobability) and uses it to encrypt his type. He then sends to player 1 the

encrypted type and the unused keys, without telling him which key was used for cod-

ing. Player 1 has to correctly forward player 2’s message to the designer. The designer

compares the two vectors he receives. If these vectors differ in exactly one component

η∗, he infers that the key yη∗ transmitted by player 3 was used for coding, and decodes

player 2’s type accordingly. Otherwise, the designer implements the worst alternative.

This encoding technique guarantees that players 1 and 3 learn nothing about player

2’s type and allows the designer to detect unilateral deviations with arbitrarily high

probability, since the index η∗ is the private information of player 2. In turn, the threat

to implement the worst alternative upon detection of a deviation deters players from

deviating.

3 Definitions

The primitives of the model consist of two essential ingredients: social environments

(players, outcomes and preferences) and communication networks.

A social environment E is a tuple 〈N,A, (Θi, Pi, ui)i∈N〉 where N := {1, . . . , n}

is the set of players, A the finite set of alternatives, and Θi the finite set of types of

player i ∈ N .8 Let Θ := ×i∈NΘi and Θ−i := ×j∈N\{i}Θj , with generic elements θ

and θ−i, respectively. Each player knows his own type and player i of type θi holds a

probabilistic belief Pi(·|θi) over Θ−i. Throughout the paper, we assume Pi(θ−i|θi) > 0

8In Section 5, we extend our analysis to environments with infinite type spaces.
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for all (θi, θ−i) ∈ Θ and for all i ∈ N . Each player has a preference relation over

alternatives, which is representable by the type-dependent utility function ui : A×Θ→

R. Players are expected utility maximizers. Three properties of an environment are of

particular importance to our analysis:

• The environment has a common prior if there exists a probability distribution P

on Θ such that Pi(θ−i|θi) is the conditional distribution of θ−i given θi derived

from P . The common prior is independent if P is the product of its marginal

distributions.

• The environment has private values if for each player i, his utility function does

not depend on the types θ−i of his opponents.

• The environment has a worst outcome if there exists an alternative a ∈ A such

that for each player i, each type profile θ and each alternative a ∈ A \ {a},

ui(a, θ) < ui(a, θ).

A social choice function f : Θ→ A associates with each type profile θ an alternative

f(θ) ∈ A. A social choice function is incentive compatible if for each player i ∈ N , for

each pair of types (θi, θ
′
i) of player i, we have

∑

θ−i

ui(f(θi, θ−i), θi, θ−i)Pi(θ−i|θi) ≥
∑

θ−i

ui(f(θ
′
i, θ−i), θi, θ−i)Pi(θ−i|θi).

Note that our definition of a worst outcome is stronger than actually required; it

would be enough to consider an alternative worse than any alternative in the range

of the social choice function we aim to implement. Exchange economies with free

disposal are examples of environments with worst outcome: the zero allocation is a

worst outcome if preferences are strictly monotonic and the social choice function selects

positive vectors of goods. Similarly, in quasi-linear environments, the assumption of a

worst outcome is natural.

A communication network captures the possibilities of communication between

the players and the designer. A communication network is a directed graph with n+1

vertices representing the n players and the designer (henceforth, player 0). There is

a directed edge from player i to player j, denoted ij, if i can send a message to j.

Formally, the network, denoted by N , is defined as a set of edges N ⊆ (N ∪ {0}) ×
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(N ∪{0}). We denote C(i) = {j ∈ N ∪{0} : ij ∈ N} the set of players to whom player

i can directly send a message. Similarly, we denote D(i) = {j ∈ N ∪ {0} : ji ∈ N} the

set of players who can directly send a message to player i. A directed path in N is a

finite sequence of vertices (i1, . . . , im) such that ikik+1 ∈ N for each k = 1, . . . , m− 1.

A communication network N is strongly m-connected if for each player i ∈ N \D(0),

there exist m disjoint directed paths (i.e., having no common vertex except i and 0)

from player i to the designer. By convention, the communication network is strongly

n-connected if N \D(0) = ∅. A network of particular importance is the star network

N ⋆ with the designer as the center and D(i) = ∅, C(i) = {0} for all player i ∈ N . With

the star network, each player communicates directly and privately with the designer;

the star network is n-connected.

We make the following assumptions on the network. Firstly, we assume that net-

works are strongly 1-connected: for each player i ∈ N , there exists a directed path

from i to 0. This assumption ensures that the designer may receive information from

each player.

Secondly, we assume for the time being that the graph is acyclic, that is, for each i ∈

N ∪{0}, there is no path from i to himself. In particular, these two assumptions imply

that C(0) = ∅, i.e., the designer cannot send messages to the players. In other words,

as in the classical model of mechanism design, the designer does not communicate with

the players: he merely collects information and implements outcomes accordingly.

Now, we describe the interaction between a social environment and a communi-

cation network. The important feature of our model is that players can only send

messages to players they are directly connected to. The interaction (the extensive-

form) unfolds as follows.

• Each player i “reads” the messages he receives from players in D(i). Then, he

sends messages to players in C(i) (he may send different messages to different

players).

• The designer “reads” the messages he receives from players in D(0) and selects

an alternative.

Note that if N = N ⋆, this corresponds to the classical model where each player com-

municates directly and privately with the designer.
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Acyclicity and strong 1-connectedness of the graph implies that the interaction as

described above gives rise to a simple extensive-form. With acyclicity, the commu-

nication rule stating that “a player sends his messages after having received all his

messages” generates a well-defined timing structure, where each player i is assigned

a stage t(i) at which he sends his messages. This statement is proved in Appendix,

Lemma 1. For instance, in Figure 3, player 3 can directly communicate with player

1, but not with player 2 and the designer. In the associated extensive-form, player

3 communicates first with player 1, and after observing player 3’s message, player 1

communicates with the designer.

0

1 2

3

3

1 1

2

N3 GN3

Figure 3: Network N3 and a consistent extensive-form GN3

The assumption of directed and acyclic networks makes our problem of implementa-

tion the hardest (the designer is silent, players speak only once and receive no feedback

on the messages they send). Yet, the methods we develop for acyclic directed networks

extend to any network. More specifically, section 5.1 drops the assumption of acyclicity

and shows how to adapt our results to networks with cycles or to undirected networks,

i.e., two-way networks where linked players can converse.

A mechanism is a pair 〈(Mij)ij∈N , g〉 where for each edge ij, Mij is the set of

messages that player i can send to player j, and g : ×i∈D(0)Mi0 → A is the allocation

rule. Note that the allocation rule depends only on the messages the designer can

receive. The next step is to define the Bayesian game induced by a mechanism, a

13



communication network and an environment.

Fix an environment 〈N,A, (Θi, Pi, ui)i∈N 〉, a communication networkN and a mech-

anism 〈(Mij)ij∈N , g〉. Define MD(i) := ×j∈D(i)Mji as the set of messages that player i

can receive and MC(i) := ×j∈C(i)Mij as the set of messages that player i can send. A

pure strategy si for player i is a mapping from MD(i) × Θi to MC(i). We denote by Si

the set of player i’s pure strategies and by sij(mD(i), θi) the message player i sends to

player j ∈ C(i) conditional on receiving the messages mD(i) and being of type θi. A

behavioral strategy σi for player i maps MD(i) ×Θi to ∆(MC(i)), the set of probability

distributions over MC(i).
9 We denote by Pσ,θ the probability distribution over profiles

of messages (i.e., over ×ij∈NMij) induced by the strategy profile σ = (σi)i∈N at state

θ. The Bayesian game GN induced by an environment, a mechanism and a network is

defined as follows:

• The set of players is N , the set of player i’s types is Θi and his beliefs are given

by Pi.

• The set of strategies of player i is Si.

• The payoff of player i is his expected utility conditional on his type and given

that the outcomes are selected by the allocation rule g.

Definition 1 The social choice function f is partially implementable on the commu-

nication network N if there exist a mechanism 〈(Mij)ij∈N , g〉 and a Bayesian-Nash

equilibrium σ∗ of GN such that for all θ ∈ Θ, g((m∗
i0)i∈D(0)) = f(θ) for all profiles of

messages (m∗
i0)i∈D(0) received by the designer in the support of Pσ∗,θ.

Denote FN (E) the set of social choice functions partially implementable on the

communication network N when the environment is E . From the revelation principle,

FN (E) ⊆ FN ⋆(E) for every environment E , and FN ⋆(E) is precisely the set of incen-

tive compatible social choice functions. The aim of this paper is to characterize the

communication networks N for which FN (E) = FN ⋆(E) for every environment E .

Before presenting our main results, a final remark is in order. We present our results

for the solution concept of Bayesian equilibrium. Yet, all our results remain valid with

9We also find it convenient to view a behavioral strategy as a measurable mapping from MD(i) ×

Θi × Yi to MC(i), where (Yi,Yi, µi) is a probability space independent of types and messages, i.e., a

private randomization device.
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the solution concept of perfect Bayesian equilibrium. Indeed, as will be apparent below

(see also the introductory example), the Bayesian equilibria we construct are such that

every profile of messages a player can receive is in the support of the equilibrium

strategies. Moreover, equilibrium strategies are such that we can apply a continuous

version of Bayes’ rule at every profile of messages a player can receive. We have chosen

to present our results for the concept of Bayesian equilibrium, so as to avoid specifying

the belief systems, namely the beliefs a player has about the types of his opponents

and the messages they have received, at each of his information sets.

4 The main results

This section presents our main results regarding the partial implementation of social

choice functions on communication networks. We introduce our main connectivity

condition. Recall that we consider strongly 1-connected and acyclic networks. An

undirected path in N is a finite sequence of vertices (i1, . . . , im) such that for each

k = 1, . . . , m− 1, either ikik+1 ∈ N or ik+1ik ∈ N .

Definition 2 The communication network N is weakly 2-connected if for each player

i ∈ N \D(0), there exist two disjoint undirected paths from player i to the designer.

In words, a network is weakly 2-connected if for each player not directly connected to

the designer, there exist two disjoint paths, directed or undirected, from this player to

the designer. For instance, in Figure 4, the network N4 is weakly 2-connected while

the network N ′
4 is not. Note that in both networks, player 2 has a unique directed path

to the designer and therefore, neither network is strongly 2-connected.

Importantly, if a network is not weakly 2-connected, there exists two players, i

and i∗, such that all paths, directed or undirected, from player i to the designer go

through player i∗. As a consequence, for each player j 6= i, who has a path (directed or

undirected) to i, all paths (directed or undirected) from j to the designer go through

player i∗. Player i∗ thus “controls” all the possible messages that player i can use

to communicate his private information. Player i∗ even controls the messages of all

players which are connected, directly or indirectly, to player i. For instance, on the

network N ′
4, player 1 controls all messages that players 2 and 3 can send. These simple

observations suggest that there is no hope to implement all incentive compatible social
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choice functions on a network which is not weakly 2-connected. We show that it is

indeed the case.

0

1

2

3
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1

2

3

N4 N ′
4

Figure 4: N4 is weakly 2-connected, N ′
4 is not

4.1 Common independent beliefs and private values

We first consider environments with common independent beliefs and private values.

This assumption is common in several applications of the theory of mechanism design,

e.g., auction theory (Krishna (2002)) or contract theory (Salanie (2000)). Our first

result states that any incentive compatible social choice function is implementable on

a network N for all such environments if and only if N is weakly 2-connected.

Theorem 1 Consider an acyclic network N . For all environments E with common

independent beliefs and private values, FN (E) = FN ⋆(E) if and only if N is weakly

2-connected.

Theorem 1 extends the work of Monderer and Tennenholtz (1999) in several dimen-

sions. Monderer and Tennenholtz consider environments and communication networks

with the following properties: 1) types are independently and identically distributed, 2)

a player’s payoff does not depend on the private information of others (private values),

3) there exists a worst outcome (to abort the protocol) and 4) networks are undirected

and repeated communication is allowed, so that each edge is directed in both ways and

players may get feedback on the messages they sent. With these assumptions, they

show that the 2-connectedness of the communication network is a sufficient condition

for the implementation of any incentive compatible social choice function. Firstly, we
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show that their result extends to weakly 2-connected directed networks and that this

condition is necessary. This result requires the construction of a substantially more

elaborated protocol (mechanisms and strategies) than the one in Monderer and Ten-

nenholtz (1999). Indeed, their construction relies on the existence of an underlying

directed subgraph that is strongly 2-connected, so that a player can send his encrypted

type on one directed path and the encryption key on the other disjoint directed path.

Unlike Monderer and Tennenholtz, our assumption of weakly 2-connected networks

does not guarantee the existence of two disjoint directed paths from each player to

the designer. Secondly, we show that the crucial assumptions to extend their result

are common independent beliefs and private values. Neither the existence of a worst

outcome nor the possibility of multiple rounds of messages is essential. By contrast,

Theorem 2 below shows that in environments with a worst outcome, there is no need to

assume common and independent beliefs and private values. Moreover, it is important

to note that the mechanism and strategies for Theorem 2 are quite different from the

ones for Theorem 1. Indeed, the mechanism and strategies for Theorem 1 do not work

in more general environments.

The intuition for Theorem 1 is as follows. We consider the network N5 in Figure

5 and show how to implement the dictatorial social choice function of player 2. Note

that player 2 has a directed path of communication to the designer (through player 1)

and two disjoint undirected paths of communication to the designer. However, unlike

the network N2 in Figure 2, there is no player with a directed path to player 2 and two

disjoint directed paths to the designer. This feature is essential and makes the proof of

Theorem 1 quite involved for general weakly 2-connected networks (see the appendix

for the general case).

0
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2

3

4

5

Figure 5: Communication network N5
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As in Section 2, there are two alternatives a and b and two types θ and θ′ for

player 2. Player 2 prefers a to b if his type is θ and b to a if his type is θ′. Suppose

that players 1, 3, 4 and 5 share a common prior and believes that player 2’s type is θ

with probability 1/3. The designer aims at implementing the dictatorial social choice

function f ∗ of player 2.

An informal description of the strategies to implement f ∗ is as follows. Player 3

draws an encoding key y uniformly on [0, 1) and sends it to players 2 and 4. Simul-

taneously, player 5 draws another encoding key z uniformly on [0, 1) and sends it to

the designer (player 0) and player 4. Then, player 4 encrypts the key y received from

player 3 with the key z received from player 5 to obtain w = (z + y)mod0,1 and sends

w to player 1. Player 2 of type θ (resp., θ′) draws a pseudo-type x̃ uniformly in [0, 1/3)

(resp., [1/3, 1)) and sends the encrypted type x = (x̃ + y)mod0,1 to player 1. Thus,

player 1 receives the encrypted type x from player 2 and the modified key w from

player 4. Lastly, player 1 transfers u = (w − x)mod0,1 to the designer. Let (û, ẑ) be

a pair of messages received by the designer. The allocation rule is the following: If

(ẑ − û)mod0,1 ∈ [0, 1/3), the designer implements a and otherwise, implements b.

If the players follow the prescribed strategies, then w = (z + y)mod0,1 and u =

(w−x)mod0,1 = ((z+y)mod0,1− (x̃+y)mod0,1)mod0,1 = (z− x̃)mod0,1. The designer

thus receives û = u = (z − x̃)mod0,1 from player 1 and ẑ = z from player 5. It follows

that (ẑ−û)mod0,1 = x̃ and the designer correctly learns player 2’s type and implements

the desired social choice function f ∗. In particular, all players but player 2 expect the

designer to implement a with probability 1/3 and b with probability 2/3.

We now show that players do not have an incentive to deviate from the prescribed

strategies and focus on player 1. From the point of view of player 1, x̃, y and z are

mutually independent and uniformly distributed. It follows that the two messages

(z + y)mod0,1 and (x̃ + y)mod0,1 received by player 1 are independent and uniformly

distributed (see Lemma 2 in Appendix) and convey no information about z and x̃.

Suppose that player 1 deviates and sends the message û to the designer instead of

u = (z − x̃)mod0,1. The designer implements the alternative a if (z − û)mod0,1 ∈

[0, 1/3) and b otherwise. Since, conditionally on player 1’s information, z is uniformly

distributed, so is (z− û)mod0,1 (see again Lemma 2 in Appendix). Accordingly, player

1 expects the designer to implement a with probability 1/3 and b with probability 2/3.

It follows that player 1’s expected payoff does not depend on the message û he sends
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and that player 1 has no incentive to deviate. Similar arguments apply to players 3, 4

and 5. As for player 2, he has no incentive to deviate since f ∗ is incentive compatible.

The essential difference with the simpler example of Section 2 is that player 3 does

not have two disjoint directed paths of communication to the designer. Thus, player 3

cannot give an encryption key to player 2 and send this key to the designer, without

player 1 learning both the encryption key and player 2’s encrypted type. This is

precisely at this point that the protocol of Monderer and Tennenholtz fails. The novel

idea is then to let player 4 encrypt the encryption key that player 3 sends to player

2, with the key received from player 5. Accordingly, player 1 receives an encrypted

encryption key from player 4 and therefore, learns nothing about the type of player 2.

The proof of Theorem 1 extends these arguments to any weakly 2-connected net-

work10 (all proofs are relegated in Appendix). In particular, we show that if the network

is strongly 1-connected and weakly 2-connected, then there exists a protocol such that

if all players abide by the protocol, the designer correctly learns the players’ types and

no player gets additional information about the types of his opponents. In the language

of computer science, we construct a protocol for the secret transmission of messages.

We then show that the existence of such protocol guarantees the existence of mecha-

nism and strategies such that players are indifferent between correctly forwarding the

messages they receive or lying. Thus, they indeed have an incentive to abide by the

protocol. In the language of computer science, our protocol is reliable.

Theorem 1 also states that the weak 2-connectedness is a necessary condition to

implement all incentive compatible social choice functions. To get some intuition for

this result, let us consider a simple example. There are two players, 1 and 2, two

alternatives, a and b, and two types, θ and θ′ for each player. Regardless of his type,

player 1 prefers a over b, player 2 of type θ prefers a over b, while player 2 of type θ′

prefers b over a. Consider the social choice function f for which player 2 is dictatorial

and the communication network N6 in Figure 6. The issue with this network, and

more generally with any communication network that is not weakly 2-connected, is

that player 1 controls all the information sent by player 2, and there is no way for the

designer to detect a false report by player 1.

10Note that the protocol (mechanism and strategies) of Monderer and Tennenholtz (1999) for undi-

rected networks do not work in general; there is a need for encrypting encryption keys. Their protocol

works only if the directed network is strongly 2-connected.
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0 1 2

Figure 6: Communication network N6 is strongly 1-connected

Clearly, f is implementable on the star network N ⋆, but not on N6. By contra-

diction, suppose that f is implementable on N6 by the mechanism 〈M1,M2, g〉. There

must exist an equilibrium message m1 ∈M1 such that g(m1) = b. However, regardless

of his type and message received, player 1 has no incentives to send any message m1

with g(m1) = b, so that f cannot be implemented. The proof of Theorem 1 generalizes

this argument to any network that is not weakly 2-connected.

Two further remarks are worth making. Firstly, our encoding technique extends to

environments with continuous type spaces (see Subsection 5.4). Secondly, the strategies

we consider are behavioral strategies. In Subsection 5.5, we prove that our result does

not hold if we restrict ourself to pure equilibria, a frequently used solution concept in

the mechanism design literature.

Before going further, it is worth stressing again that the encoding technique used in

the proof of Theorem 1 is tailored to environments with common independent beliefs

and does not apply to more general environments (even with private values). See

the example in Section 2 for some intuition. With general beliefs, different encoding

techniques have to be used: this is the object of the next section.

4.2 Worst outcome

In many concrete applications of the theory of mechanism design, players hold different

and correlated beliefs about states of the world either because they have received

different signals (information) or on purely subjective grounds. Moreover, the payoff

of a player often depends on the private information of others. For instance, in auction

models, bidders often have different information about the value of the goods for sale

(e.g., mineral or oil rights) and the private information of all players influence the

valuation for the good of each player. To handle these more general beliefs and payoff

functions, we resort to a different encoding technique. Our new technique consists in

coding the type of each player such that no information is revealed to the other players,
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and if a player does not truthfully forward the messages he receives, the designer detects

it with arbitrarily high probability.

Theorem 2 Consider an acyclic network N . For all environments E with a worst

outcome, FN (E) = FN ⋆(E) if and only if N is weakly 2-connected.

The main insight provided by Theorem 2 is that assuming a worst outcome allows

to dispense with the assumptions of common independent beliefs and private values.

The intuition for Theorem 2 is as follows. We construct a mechanism such that the

true type of player i is transmitted to the designer, no player j 6= i gets information

about the type of player i and a false report by player j is detected with arbitrarily high

probability. Consider again the network N5 and the dictatorial social choice function

of player 2.

An informal description of the strategies is the following. Player 3 sends a large

number of encoding keys, all uniformly and independently drawn from [0, 1) to players

2 and 4. Simultaneously, player 5 sends another large number of encoding keys all

uniformly and independently drawn from [0, 1) to player 4 and the designer. Player 4

thus receives a large number of keys both from player 3 and from player 5. He adds

them one-by-one (addition is modulo [0, 1)) and sends the resulting vector of keys to

player 1. Simultaneously, player 2 selects at random one of the keys received from

player 3 and encrypts his type with this key. He then substitutes the selected key by

the cypher-type and sends it to player 1 along with all the other keys (without telling

player 1 which key was used to encrypt his type). Lastly, player 1 received a large

vector of encrypted encryption keys from player 4 and a large vector of encryption

keys and the encrypted type from player 2. Player 1 then subtracts these two vectors

(subtraction is component-wise modulo [0, 1)) and forwards the resulting vector to the

designer. The designer can then detect a false report by comparing the two vectors

of messages received from players 1 and 3. Namely, if player 1 truthfully forwards

the message he receives, the two vectors should differ by exactly one component. In

such a case, the designer decodes the type of player 2 according to this component and

implements the appropriate outcome. Otherwise, the designer implements the worst

outcome. By construction, only player 2 knows the key selected to encrypt his type.

Thus, any deviation by players 1, 3, 4 and 5 induces the worst outcome with arbitrarily

high probability: this deters them from lying.

21



An essential feature of Theorem 2 is the possibility to punish a detected deviation

with a worst outcome. It is worth stressing, however, that our definition of a worst

outcome is stronger than necessary since it does not depend on the social choice function

we aim to implement. It would be enough to find an outcome worse than any outcome

in the range of the social choice function.11

If such a worst outcome does not exist, the main difficulty for the designer is the

choice of an appropriate alternative to implement whenever a false report is detected.

A characterization of networks that allow to implement all incentive compatible social

choice functions in all environments is left as an open problem. Yet, we provide suffi-

cient conditions in Section 5.3. Naturally, weak 2-connectedness remains a necessary

condition.

4.3 Connections with computer science

An essential feature of our results is the use of encryption techniques to secure the

transmission of messages from players to the designer. As already alluded in the

introduction, our work is closely related to the computer science literature on secure

transmission of messages, which we now review. We first discuss two important notions

of security, commonly found in the computer science literature.

Message security. Informally, the transmission of a message from a sender A to

a receiver B is reliable if A can communicate with B and no adversary, i.e., a potentially

malicious third party (a hacker), can tamper with the content of the message. The

transmission of a message is secret if no adversary can find out the content of the

message sent. Information transmission is said to be secure if it is both reliable and

secret. To discuss more precisely the notion of secrecy, let us assume that A and B

have a reliable channel of communication. There are two main approaches to message

security in computer science: cryptographic and information-theoretic security.

A message transmission is cryptographically secure if it is computationally very

hard (typically NP-hard) for an adversary to find out the content of the message. This

approach assumes that the adversary is computationally limited, that is, has no more

11It is also worth noting that Theorem 2 remains true if we consider environments with a bad

outcome, i.e., an outcome a such that ui(f(θ), θ) ≥ ui(a, θ) for all i ∈ N , for all θ ∈ Θ. For

completeness, the proof is in the appendix, Corollary 3.
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computational power than a Turing Machine. The reader is referred to the seminal

papers of Diffie and Hellman (1976) and Rivest et al., RSA, (1978). In particular,

classical encryption techniques with public and private keys adopt this notion of se-

curity. For instance, the RSA encryption scheme with public keys rests on the idea

that computing two large prime numbers p and q knowing their product n = pq is

computationally very hard.

By contrast, information-theoretic security considers adversaries with unbounded

computational power and requires pieces of communication between A and B, which

may be eavesdropped, to be probabilistically independent of the content of the message.

This concept was originally introduced by Shannon (1949) (see also among others, Shafi

and Goldwasser, 1984, Dolev et al. 1993). A simple method to achieve information-

theoretic security is to map the message m to be sent to a number in, say, {1, . . . , n},

and to add (modulo n) a uniformly distributed random key X . The encrypted message

(X+m) mod n is then uniformly distributed and independent of m: it can be publicly

disclosed without harming security. The probability of guessing m correctly is 1/n and

thus can be made arbitrarily small. Our encryption method (Lemma 2) is a continuous

version of this method such that the probability of guessing correctly is zero.

As a game-theoretic model, our work follows the latter approach: the agents we

consider are unboundedly rational players. These are very similar to the Byzantine

adversaries considered in computer science, i.e., malicious players with unbounded

computational power. The key difference, however, is that rational players respond to

incentives: they do not behave maliciously if it is not optimal for them to do so.

Security in networks. Assume now that the sender A and the receiver B are

some distant nodes in a network, so that there is no secure channel of communication

between them. The natural question is then to characterize the networks, which guar-

antee the secure transmission of messages from A to B in the presence of Byzantine

adversaries. This is the object of the computer science literature on secure transmission

of messages. A seminal contribution is Dolev et al. (1993), who show that if the adver-

sary controls at most t nodes, then (2t+1)-connectedness of the network is a necessary

and sufficient condition for the secure transmission of messages from A to B. Dolev

et al. assume unicast communication, i.e., a node can send different messages to its

neighbors. Alternatively, Franklin and Wright (2000) study broadcast communication:

any message sent by a node is automatically sent to all his neighbors. They show that
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(2t+ 1)-connectedness is again a necessary and sufficient for perfect security.12

Unlike our approach, all these results assume undirected graphs and crucially use

the possibility of messages going back and forth from the sender to the receiver (re-

peated communication). Dolev et al. (1993) show that in 1-way problems, i.e., if the

information flows only from the sender to the receiver, a necessary and sufficient condi-

tion for the secure transmission of messages is the (3t+1)-connectedness of the network.

Considering directed networks, Desmedt and Wang (2002) show how this bound can

be lowered if there are channels of communication from the receiver to the sender.

Namely, they show that if for u ≤ t, there are 2t + 1 − u disjoint directed paths from

the sender to the receiver and u disjoint directed paths from the receiver to the sender

(these u paths are also disjoint from the 2t+ 1 paths from the sender to the receiver),

then secure transmission of messages is possible.

Our contribution to information security. The above discussion suggests

a reinterpretation of our results in the language of computer science. Starting from

a communication network, a social environment and an incentive compatible social

choice function f , we construct a mechanism, which implements f as a Bayesian-Nash

equilibrium of the induced game. A necessary condition for this result is the possibility

to construct a communication protocol with the following properties: i) the designer

correctly learns the profile of types, ii) no player gets information beyond his own type,

and iii) no player has an incentive to mis-execute the communication protocol. Part

(ii) corresponds to the computer science requirement of secrecy, while parts (i) and (iii)

are the counterparts of reliability.

Before proceeding, it is worth emphasizing that the concept of Bayesian-Nash equi-

librium implies that the adversary is a single potential deviant player. Such adversary

has unbounded computational power, responds to incentives and controls at most one

node (t = 1). Our main results are then reinterpreted as information transmission

against this class of adversaries.

In Theorem 1, we assume common independent belief and private values, and con-

struct a mechanism such that each player forwards the messages he receives, gets the

12Franklin and Wright (2000) also consider a weaker notion of security: security is almost perfect

when the adversary has an arbitrarily small probability of modifying the message content and to

learn the content of the message. They show that (t+1)-connectedness is necessary and sufficient for

almost-perfect security (see also Renault and Tomala, 2008).
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same expected payoff regardless of the messages he forwards (see Section 2 and the

proof of Theorem 1). With this in mind, our implementation problem is rephrased as

the following problem of information transmission:

P1: Characterize the networks for which there exists a communication protocol such

that if all players abide by the protocol, the designer correctly learns the entire profile

of types and no player gets additional information.

In the presence of a worst outcome, the designer has the possibility to punish all

players if he detects a deviation and we construct a protocol such that any tampering

with a message is detected with arbitrarily high probability by the designer (see Section

2 and the proof of Theorem 2). The implementation problem gives thus rise to the

following problem of information transmission:

P2: Characterize the networks for which there exists a communication protocol such

that no player gets additional information and if all but at most one player abide by the

protocol, then the designer either correctly learns the entire profile of types or detects

a deviation with arbitrarily high probability.

Our main contribution to the literature on secure transmission of messages in net-

works is thus to solve problems P1 and P2 for directed graphs and 1-way problems:

the solutions are the weakly-2-connected graphs. Compared with the computer science

literature cited above, our approach through incentives allows to get a much weaker

connectivity requirement. This statement is a by-product of the proofs of our main

results, which are structured as follows. We first show that on any weakly-2-connected

graph, there exists a communication protocol such that if all players abide by the

protocol, the designer correctly learns the entire profile of types and no player gets ad-

ditional information. Theorem 1 then easily follows: we use the common prior to make

players indifferent between all the messages they may forward. The proof of Theorem

2 uses a multiple key technique, akin to authentication schemes (see, e.g., Rabin and

Ben-Or (1989)), but requires no prior knowledge of any public or private key. To the

best of our knowledge, this technique is new.

Finally, let us remark that the use of continuous message spaces, while consistent

with mechanism design theory, is unappealing from a computer science perspective.

Theorem 1 remains valid with finite message spaces, provided that prior beliefs are

rational numbers: encoding keys are then chosen in the integers modulo n, with n

25



large. Theorem 2 extends to finite messages spaces without restrictions on priors.

5 Extensions and Robustness

This section discusses various aspects of our problem and offers some generalizations.

5.1 Active designer and two-way networks

A salient feature of our model is that the designer is not active in the communication.

However, in some situations, it is natural to assume that the designer can communicate

with the players. For instance, a CEO has the possibility to communicate with his

employees either publicly or privately.

So, let us assume that the designer can communicate with some players, so that

C(0) 6= ∅. An important consequence of assuming an active designer is that the network

may then contain cycles. We therefore need to relax the assumption of acyclicity.

Clearly, the conditions of strong 1-connectedness and weak 2-connectedness remain

necessary for the implementation of all incentive compatible social choice functions.

The main insight is that these conditions are also sufficient. In other words, our results

extend naturally to networks with cycles.

Theorem 3 For all environments E with common independent beliefs and private val-

ues or with a worst outcome, FN (E) = FN ⋆(E) if and only if N is weakly 2-connected.

To get an intuition for this result, consider the network N7 in Figure 7.

The idea is simply to let the designer play the role of a provider of keys, as in the

proof of Theorem 1 or Theorem 2. To be more specific, let us consider the transmission

of player 3’s private information in the network N7, when there is a worst outcome.

The designer draws a large number of encoding keys and sends them to player 2. Player

2 forwards the encoding keys to player 3, who selects one key at random and uses it to

encode his type. He then sends the unused keys and the encoded type to player 1, who

should forward this message to the designer. Lastly, the designer compares the vector

of keys he sent to player 2 and the vector of keys he receives from 1, and decodes the

type of player 3 accordingly. As in the proof of Theorem 2, any deviation by player 1
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Figure 7: Communication network N7

or player 2 is detected with arbitrarily large probability, no information about player

3’s type is revealed and the designer correctly learns the type of player 3.

Theorem 3 admits as a special case two-way communication networks where players

can exchange messages back and forth along each edge. Such networks are naturally

represented by undirected graphs where there is an edge between i and j whenever i

and j can converse privately. For this class of networks, strong 2-connectedness and

weak 2-connectedness coincide, since one can choose any orientation of the edges. We

obtain thus the following.

Corollary 1 For all environments E with common independent beliefs and private

values or with a worst outcome, FN (E) = FN ⋆(E) if and only if the two-way network

N is 2-connected.

Finally, let us mention that the assumption of an active designer is important in

generalized principal-agents models (Myerson (1982)), where players also have to take

an action, thus creating a moral hazard problem in addition to the adverse selection

problem. In such models, the designer has to “securely recommend” an action to each

player. We believe that our results extend to this more general framework. Indeed,

if the designer has two disjoint paths of communication to each player (directed or

undirected), then he can follow our protocols to privately and reliably make a recom-

mendation to each player. A careful analysis of this issue awaits future research.
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5.2 Direct mechanisms

Another central feature of our results is the use of encryption techniques to secure the

transmission of messages from the players to the designer. This is largely inescapable

if we want to implement all incentive compatible social choice functions (in section 5.5,

we show that implementing all such functions in pure strategy equilibria is not possible

except on N ∗).

However, “direct” mechanisms –where players simply announce their types to their

neighbors and forward messages– might suffice if we restrict attention to specific en-

vironments or to some specific incentive compatible social choice functions. For in-

stance, consider the set of ex-post incentive compatible social choice functions. A

social choice function f is ex-post incentive compatible if for all i ∈ N and θ ∈ Θ,

ui(f(θ), θ) ≥ ui(f(θ
′
i, θ−i), θ) for all θ

′
i ∈ Θi.

13

Proposition 1 If the communication network N is strongly 3-connected, then any

ex-post incentive compatible social choice function is implementable on N by a direct

mechanism.

The intuition for Proposition 1 is simple. If a social choice function f is ex-post

incentive compatible, then every player has an incentive to truthfully reveal his private

information, even if he were to know the private information of some other players

(e.g., his neighbors). There is therefore no particular need for encryption techniques:

players can simply truthfully report their types on all paths to the designer. In the

computer science terminology, secrecy is not an issue. Yet, it remains the issue of

reliability: players must have the incentive to truthfully forward the messages they

receive. However, with three disjoint directed paths of communication from each player

i ∈ N \ D(0) to the designer, a simple majority argument guarantees that no player

has an incentive to misreport the messages he receives.

Furthermore, it is clear that not all ex-post incentive compatible social choice func-

tions are implementable by direct mechanisms on weakly 2-connected networks, even

in environments with common independent beliefs and private values or a worst out-

come. For a counter-example, we refer the reader to the example in Section 2. So,

weak 2-connectedness is not a sufficient condition.

13Bergemann and Morris (2005) show that a social choice function is implementable on all type

spaces if and only if it is ex-post incentive compatible.
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In some environments, however, some ex-post incentive compatible social choice

functions can be implemented by direct mechanisms, even on strongly 2-connected

networks. We illustrate this possibility with the help of two important economic ex-

amples: a second-price auction and the provision of a public good.

Consider an auction with three bidders, labeled 1, 2, and 3. There is a single object

to be allocated, bidder i values the object at θi, and bidder i’s payoff is θi − xi if he is

allocated the object at price xi and zero, otherwise. Consider the strongly 2-connected

network N8 in Figure 8.

0

1 2

3

Figure 8: Communication network N8

The designer aims at allocating the object to the bidder with the highest valuation

(if there are several such bidders, choose one randomly). A simple and direct mech-

anism to implement the social choice function is as follows. Bidder 3 is required to

truthfully report his valuation θ3 to both bidders 1 and 2. Bidder 1 (resp., bidder 2)

has to truthfully report his valuation θ1 (resp., θ2) along with bidder 3’s valuation θ3

to the designer. Let ((θ̂1, θ̂
1
3), (θ̂2, θ̂

2
3)) be a profile of messages received by the designer.

The designer computes the bid-profile (θ̂1, θ̂2,max(θ̂13, θ̂
2
3)) and allocates the object to

the highest bidder and charges a price equal to the second-highest bid: a second-price

auction.

Since a second-price auction implements the efficient allocation in weakly dominant

strategies (on the star network), no bidder has an incentive to misreport his own

valuation, regardless of the reports of the other bidders. We now argue that bidder 1

has no incentive to misreport bidder 3’s valuation. (A symmetric reasoning holds for

bidder 2.) Clearly, if bidder 1 reports θ̂13 < θ3, he does not affect the outcome since
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max(θ̂13, θ3) = θ3. Alternatively, if bidder 1 reports θ̂13 > θ3, he does affect the outcome

of the auction. However, this is not a profitable deviation: it not only decreases his

likelihood of winning the object, but also increases the price paid if he wins.

The second example is about the provision of a public good and is adapted from

Bergemann and Morris (2009). Assume that there are three players and that Θi ⊆

[0, 1) for each player i ∈ {1, 2, 3}. The utility to player i is (θi + γ
∑

j 6=i θj)x0 + xi,

where x0 is the level of public good provided and xi the monetary transfer to player i

(γ ≥ 0). The cost of providing the level of public good x0 is (1/2)(x0)
2. The designer

aims at implementing the efficient level of public good, i.e., (1 + 2γ)(θ1 + θ2 + θ3), at

the type profile (θ1, θ2, θ3). Again, consider the network N8 in Figure 8. As in the

previous example, the players are required to truthfully report their types along with

any message they might have received. Let ((θ̂1, θ̂
1
3), (θ̂2, θ̂

2
3)) be a profile of messages

received by the designer. The designer then computes the type-profile (θ̂1, θ̂2, θ̂3) with

θ̂3 := min(θ̂13, θ̂
2
3), produces the level x0 = (1 + 2γ)(θ̂1 + θ̂2 + θ̂3) of public good and

establishes the transfer xi = −(1 + 2γ)[γθ̂i
∑

j 6=i θ̂j + (1/2)θ̂2i − 2γ
∑

j 6=i θ̂j ] to each

player i. Note that up to the term (1+2γ)2γ
∑

j 6=i θ̂j independent of player i’s type, the

transfers are identical to the generalized Vickrey-Clarke-Groves transfers of Bergemann

and Morris (2009). In particular, they guarantee that the social choice function is ex-

post incentive compatible (on the star network). However, and unlike the first example,

the mechanism does not implement the social choice function in dominant strategies,

even on the star network (unless γ = 0). Player 1 (resp., player 2) might therefore have

an incentive to misreport his own type, whenever his report of player 3’s type leads

to θ̂3 being different from player 3’s true type.14 We argue nonetheless that no player

has an incentive to misreport in that example. To do so, we compute the difference

δ1((θ̂1, θ̂
1
3)|θ) in player 1’s ex-post payoff between a truthful report (θ1, θ3) and the

report (θ̂1, θ̂
1
3) at the type profile θ:

δ1((θ̂1, θ̂
1
3)|θ) =

1

2
(θ1 − θ̂1)

2 + [θ1 + γ(θ2 + θ3 − θ̂1) + 2γ](θ3 − θ̂3),

with θ̂3 := min(θ̂13, θ3), the minimum between player 1’s report about player 3’s type

14Remember that ex-post incentive compatibility guarantees that no player has an incentive to

misreport his own type for all truthful reports of his opponents (but not necessarily for all reports of

his opponents).
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and player 2’s (true) report about player 3’s type. Since θ̂3 ≤ θ3 and θ ∈ [0, 1)3,

δ1((θ̂1, θ̂
1
3)|θ) ≥ 0 for all θ, and thus player 1 has no profitable deviation. A similar

reasoning applies to player 2. As for player 3, he clearly has no profitable deviation

since the social choice function is ex-post incentive compatible.

Both examples generalize to any number of players provided that the communi-

cation network is strongly 2-connected. Lastly, note that a common feature of both

examples is the existence of a “sufficient statistic” to aggregate conflicting reports

about player 3’s type, with the additional property that this aggregate statistic deters

players 1 and 2 from lying about player 3’s type. We suspect that this property can

be generalized and leave it as an open issue.

5.3 All environments

We give sufficient conditions on the network for implementing all incentive compatible

social choice functions, regardless of the environments.

Recall that a network is strongly m-connected if for each player i ∈ N \D(0), there

exist m disjoint directed paths from player i to the designer. Likewise, a network is

weakly m-connected if for each player i ∈ N \D(0), there exist m disjoint undirected

paths from player i to the designer.

Theorem 4 If the communication network N is strongly 2-connected and weakly 3-

connected then, FN (E) = FN ⋆(E) for all environments E .

The intuition is the following. We first prove that for each strongly 1-connected

and weakly 2-connected network, there exists a mechanism such that any false report

of messages is detected with probability 1 and no additional information about the

types is revealed (the construction is in the appendix, Lemma 8).

Next, consider a strongly 2-connected and weakly 3-connected network and fix a

player i ∈ N \ D(0) who wants to transfer his type to the designer. Notice that for

each player j 6= i, j 6= 0, the sub-network N \ {j} (obtained from N by deleting

j) is strongly 1-connected and weakly 2-connected. From the above, there exists a

“sub-mechanism” on this sub-network that detects deviations with probability 1. A

simple “majority” argument then ensures that no player has an incentive to lie. More

precisely, any unilateral deviation of player j 6= i is almost surely detected, while the
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sub-mechanism on N \ {j} is truthfully executed and allows the designer to correctly

decode the type of player i.15

5.4 A continuum of types and alternatives

Many applications of mechanism design theory e.g., contract theory and auction theory,

assume a continuum of types and alternatives. While we have casted our results in finite

settings, they naturally extend to environments with continuous type and alternative

sets.16

We now explain how to extend Theorem 1. A key feature of the proof of Theorem 1

is that player i transforms his type θi into a pseudo-type x̃i, which reveals his type and

is unconditionally uniformly distributed in [0, 1). The pseudo-type is then transmitted

through the network by a communication protocol. It is thus enough to show how to

construct the pseudo-type in the continuous setup. Let each player’s type space Θi be a

subset of [0, 1) and let types be independently distributed. Let P be the common prior

andGi be the cumulative distribution function of the marginal P i over Θi. Assume that

Gi is continuous. The key observation to make is that Gi(θi) is uniformly distributed

on [0, 1) and therefore, can be used as a “pseudo-type.” If Gi has atoms, let θ∗i be an

atom of Gi, i.e., limθi↑θ∗i
Gi(θi) := G−

i (θ
∗
i ) < G+

i (θ
∗
i ) =: limθi↓θ∗i

Gi(θi). Let Ĝi(θ
∗
i ) be

the realization of a uniform draw on [G−
i (θ

∗
i ), G

+
i (θ

∗
i )). Let Ĝi(θi) = Gi(θi) if θi is not

an atom. Then, Ĝi(θi) is uniformly distributed (unconditionally on θi) and reveals the

value of θi, thus is a valid pseudo-type. The mechanism construction of Theorem 1

then extends verbatim.

As for Theorem 2, it extends straightforwardly to a continuum of types and alter-

natives. In sum, all our constructions naturally extend to the continuous case.

5.5 Pure equilibria

With the notable exception of Serrano and Vohra (2009), the literature on implemen-

tation in Bayesian environments has entirely focused on the implementation of social

choice functions in pure equilibria (see Jackson (2001) for a survey). By contrast, the

recourse to equilibria in mixed strategies is essential for our results. In effect, to trans-

15We thank Thomas Voice for suggesting this argument to us.
16Appropriate measurability and integrability assumptions have to be made.
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mit securely their types to the designer, it is essential for the players to encrypt their

types with randomly generated keys (mixing). Although the use of randomly gener-

ated keys seems natural in our context, and indeed used in daily life (internet banking,

online shopping, etc.), we might legitimately wonder whether similar results hold in

environments where only pure equilibria are considered. The next theorem states that

the set of social choice functions partially implementable on N in pure equilibria co-

incides with the set of incentive compatible social choice functions, irrespective of the

utility functions, if and only if every player is directly connected to the designer. There

is a sharp divide between implementation in pure equilibria and mixed equilibria. De-

note F pure
N (E) the set of social choice functions (partially) implementable on N in pure

equilibria when the environment is E .

Theorem 5 F pure
N (E) = F pure

N ⋆ (E) for all environments E with common independent

beliefs and private values or a worst outcome if and only if each player is directly

connected to the designer i.e., D(0) = N .

The intuition is simple.17 If player i is not directly connected to the designer and

if the social choice function depends on his type, then he must send an informative

message to at least one other player, say player j. Given his updated beliefs, player

j might then have no incentive to truthfully report his own private information. This

reasoning is valid regardless of how many disjoint paths there are from player i to the

designer.

While intuitive, Theorem 5 has remarkable implications for the topology of com-

munication networks and implementation in pure equilibria. All but one player, say

player 1, might be directly connected to the designer, player 1 might have n−1 disjoint

paths of communication to the designer and yet, there exist incentive compatible so-

cial choice functions, which are not implementable on that network in pure equilibria.

While some theorists might feel uncomfortable with equilibria in mixed strategies, the

mixing through encoding techniques, as considered in this paper, seems quite natural.

17See the working paper for a formal proof.
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6 Conclusion

This paper completely characterizes the communication networks for which, in any

environments (utilities and beliefs) with either common independent priors and pri-

vate values, or with a worst outcome, every incentive compatible social choice function

is (partially) implementable. We show that any weakly 2-connected communication

network can replicate the incentive properties of the direct revelation mechanism. Im-

portantly, our constructions couple encryption techniques together with incentives to

secure the transmission of each player’s private information to the designer.

7 Appendix

7.1 Timing Structure

In this section, we prove that the communication rule stating that “a player sends

his messages after having received all his messages” generates a well-defined timing

structure.

Lemma 1 Let N be a strongly 1-connected and acyclic network. There exists an

integer T and a timing function t : N → {1, . . . , T} such that t(i) is the stage at

which player i sends his messages. Moreover, ij ∈ N ⇒ t(i) < t(j).

Proof Let V1 = {i ∈ N : D(i) = ∅} be the set of players who cannot receive

messages. This set is clearly non-empty. For otherwise, there exists a cycle in N . If

V1 = N , then N = N ∗ and the proof is complete. If V1 6= N , let V2 = {i : i /∈

V1 andD(i) ⊆ V1}.

Claim 1 If V1 6= N , V2 is non-empty.

Proof. Define W1 = ∪i∈V1
C(i) as the set of players the players in V1 can communicate

to. By construction, if j is in W1, D(j) is non-empty and therefore, j /∈ V1. Consider

then a directed path π of maximal length among the directed paths from a player inW1

to the designer (such a path exists by strong 1-connectedness). Let j be the starting

point of this directed path. We claim that j is in V2. By contradiction, suppose that

there exists k ∈ D(j) with k /∈ V1. There exists then a directed path from some point
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m in V1 to k, denoted τ = m → l → · · · k → j. It follows that l is in W1 and τπ

contradicts the maximality of π. •

If V1 ∪ V2 = N , the construction ends. If V1 ∪ V2 6= N , let

V3 = {i : i /∈ V1 ∪ V2 andD(i) ⊆ V1 ∪ V2}.

We continue this construction by induction. Assume that for some k ≥ 2, the set Vs

has been defined, s ≤ k. If ∪s≤kVs = N , the construction ends. If ∪s≤kVs 6= N , let,

Vk+1 = {i : i /∈ ∪s≤kVs andD(i) ⊆ ∪s≤kVs}.

Claim 2 If ∪s≤kVs 6= N , Vk+1 is non-empty.

Proof. Let Wk+1 = {j /∈ ∪s≤kVs : ∃i ∈ ∪s≤kVs, j ∈ C(i)}. Since ∪s≤kVs 6= N ,

Wk+1 is non-empty. Consider then a directed path π of maximal length among the

directed paths from a player in Wk+1 to the designer (such a path exists by strong 1-

connectedness). The starting point j of this path is in Vk+1. By contradiction, suppose

that there exists k ∈ D(j), k /∈ ∪s≤kVs. There exists then a directed path from some

point m in ∪s≤kVs to k. The follower of m on this path is in Wk+1 and this contradicts

the maximality of π. •

The sequence (∪s≤kVs)k is a weakly increasing sequence of sets and is strictly in-

creasing as long as ∪s≤kVs 6= N . Since N is finite, there exists k such that ∪s≤kVs = N .

The timing function is then defined as t(i) = s if i ∈ Vs. �

7.2 Probabilistic encryption

We present three important properties about the modular manipulations of real num-

bers in [0, 1). For a real number x, we denote ⌊x⌋ the greatest integer less than or

equal to x, and xmod0,1 = x− ⌊x⌋, the fractional part of x. For (x, y) ∈ [0, 1)× [0, 1),

we denote x⊕ y = (x+ y)mod0,1 and x⊖ y = (x− y)mod0,1.

Lemma 2 1. For each (x, y) ∈ [0, 1)× [0, 1), (x⊕y)⊖y = x. More generally, [0, 1)

is a commutative group for ⊕.

2. Let Y be a random variable in [0, 1) and x ∈ [0, 1). If Y is uniformly distributed,

then so are x⊕ Y and x⊖ Y .
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3. Let X, Y be independent random variables in [0, 1). If Y is uniformly distributed,

then so are Z = X ⊕ Y and W = X ⊖ Y . Furthermore, (X, Y, Z) (resp.,

(X, Y,W )) are pairwise-independent.

Proof of Lemma 2. (1) Consider any pair (x, y) ∈ [0, 1)× [0, 1). If x+ y ≤ 1 the

statement is clear. If x+y > 1, (x+y)mod0,1 = x+y−1. Thus (x+y)mod0,1−y = x−1

and (x− 1)mod0,1 = x.

(2) For each z ∈ [0, 1), we have

P(x⊕ Y ≤ z) = P((x+ Y ) ≤ z, Y ∈ [0, 1− x]) +

P(x+ Y − 1 ≤ z, Y ∈ (1− x, 1])

=







z − x+ x if z ≥ x

z + 1− x− (1− x) if z < x

= z

Thus, X ⊕ Y is uniformly distributed. Similarly, for each z ∈ [0, 1),

P(x⊖ Y ≤ z) = P(x− Y ≤ z, Y ∈ [0, x]) +

P(x− Y + 1 ≤ z, Y ∈ (x, 1])

=







x+ 1− (x+ 1− z) if z ≥ x

z + 0 if z < x

= z

Thus, x⊖ Y is uniformly distributed.

(3) We only show that X and Z are independent, the rest being similar. For each

z ∈ [0, 1), P(Z ≤ z | X = x) = P(x⊕ Y ≤ z) = z from (2). �

7.3 Information transmission in weakly 2-connected network

In this section, we describe the structure of directed paths in weakly 2-connected

networks and deduce that messages can be secretly transmitted from each player to the

designer. These results are building blocks for the proofs of our main theorems.

Throughout, all networks (directed graphs) are assumed to be acyclic, strongly 1-

connected and weakly 2-connected. Given a (directed) network N , we denote N u the

associated undirected network: ij ∈ N u if and only if ij ∈ N or ji ∈ N .
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Our definition of weakly 2-connected networks is closely related to the definition of

2-connectedness for undirected graphs. An undirected graph is 2-connected if for each

pair of distinct vertices i and j, there are two disjoint paths from i to j. There are

several equivalent statements for 2-connectedness of undirected graphs and the reader

is referred to Bollobàs (1998, Chap. III.2). For instance, define a cut-vertex as a

vertex i such that deleting i and all its adjacent edges yields a disconnected graph.

The graph is 2-connected if and only if there is no cut-vertex. Equivalently, for each

distinct vertices i, j and k, there is a path from i to j that does not contain k.

In our model, the designer (player 0) plays a special role, so that the network N is

weakly 2-connected if and only if no player i ∈ N is a cut-vertex of N u. The designer,

however, can be a cut-vertex. In such case, let a block be a maximal 2-connected

subgraph of N u. The undirected network N u is a collection of blocks attached at 0.

See Figure 9 for an example. In the sequel, we assume for simplicity that N u is the

only block, so that N u is 2-connected. (If there are several blocks, all our arguments

remain valid block-by-block.)

0

Figure 9: Blocks attached at 0

In the sequel, we use the letters a, b, etc. to denote nodes (players) in the network.

This must not be confused with alternatives.

We define a loop, denoted L(a, b), in N as a pair of directed paths with same origin

a and end-point b, and no vertex in common except for the origin a and the end-point

b. The loop L(a2, b2) is a successor of the loop L(a1, b1) if a2 /∈ L(a1, b1), b2 /∈ L(a1, b1)

and the intersection L(a1, b1)∩L(a2, b2) is a path which contains at least one edge and

the vertex b1. See Figure 10 for an example.

We use the following notation: we write i→ k for a directed path (i0 = i, i2, . . . , iR =

k) from player i to player k and i → k → l for a directed path from i to l through
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a1

a2

b1

b2

Figure 10: L(a2, b2) is a successor of L(a1, b1)

k, etc. We say that two directed paths (i0 = i, i2, . . . , iR) and (j0 = i, j2, . . . , jQ) cross

each other if there exist r∗ and q∗ such that jq∗ = ir∗ .

To prove our main results, we use the following decomposition of directed graphs

into successive loops. We assume that there are at least three player (if n = 2, the only

strongly 1-connected and weakly 2-connected network is such that D(0) = N).

Proposition 2 Let n ≥ 3. For each i ∈ N\D(0) and each j ∈ C(i), there exists a

finite sequence of loops L(a1, b1), . . . , L(aM , bM) such that:

1. the edge ij belongs to L(a1, b1),

2. for each m = 1, . . . ,M−1, L(am+1, bm+1) is a successor of L(am, bm) and am+1 /∈

∪q≤mL(aq, bq), and

3. bM = 0.

Proof This is trivially true if n = 3. Assume that n ≥ 4. The proof rests on several

lemmas.

Lemma 3 Let N u be a 2-connected undirected graph. Let A be a non-empty set of

vertices and let b and c two distinct vertices that do not belong to A. There exists

a∗ ∈ A and a path from a∗ to c that has no vertex in (A\{a∗}) ∪ {b}.

Proof. Since N u is 2-connected, for each a ∈ A, there exists a path from a to c that

does not contain b (otherwise, b would be a cut-vertex). This path must leave the set

A to reach c, thus the last point a∗ in A on this path has the desired properties. •
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a1

i

a2

a3 b1

b2

a4

b4 = 0

b3

Figure 11: A sequence of loops

Lemma 4 Let i ∈ N\D(0) and j ∈ C(i), there exists a loop that contains the edge ij.

Proof. Remember that for each player k ∈ N , there exists a directed path from k to

0 by strong 1-connectedness and thus, C(k) 6= ∅. Consider a player i ∈ N\D(0) and

j ∈ C(i).

• Case 1. If C(i) contains another player k 6= j, then there exists a directed path

from i to 0 through the edge ij and a directed path from i to 0 through the edge

ik. These paths must cross each other (possibly at 0), thus we have found the

desired loop.

• Case 2. If C(i) = {j}, denote D∞(i) the set of players who have a directed

path to i. From Lemma 3, there exists k ∈ D∞(i) and an undirected path

(k0 = k, k1, . . . , kR = 0) from k to 0 such that no player kr is in D∞(i) ∪ {i}

for r > 0. It follows that edge kk1 is directed from k to k1. We choose then a

directed path from k1 to 0 to obtain the directed path k → k1 → 0 one the one

hand and the directed path k → i→ j → 0 on the other hand. These paths must

cross each other and therefore, define a loop with origin k. (The first crossing
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point defines the end-point of the loop.) The end-point of the loop cannot be in

D∞(i) ∪ {i} since k1 /∈ D∞(i). It follows that the edge ij is contained in this

loop.

We now construct the desired sequence of loops. We start with i ∈ N\D(0) and

j ∈ C(i).

First step. Let L(a1, b1) be a loop containing ij and such that t(b1) is maximal

among all loops that contain ij (t(·) is the timing function constructed in Lemma 1).

(Such a loop exists by the above lemma.) If b1 = 0, the construction ends. If b1 6= 0, let

c1 ∈ C(b1) and denote d1 and e1 the two predecessors of b1 on each path of L(a1, b1).

The construction then proceeds inductively. Assume that L(a1, b1), . . . , L(aM , bM ) have

been constructed for some M ≥ 1. If bM = 0, the construction ends. If bM 6= 0, let

cM ∈ C(bM) and denote dM and eM the two predecessors of bM on each of the two

disjoint directed paths of L(aM , bM).

For each subset of players N ′, let us denote D∞(N ′) the set of players j for whom

there exists a directed path from j to some player in N ′. Clearly, D∞(N ′ ∪ N ′′) =

D∞(N ′) ∪D∞(N ′′) and D∞(D∞(N ′)) = D∞(N ′).

Lemma 5 There exists a loop L(aM+1, bM+1) such that aM+1 /∈ ∪q≤ML(aq, bq)∪D∞(i)

and which contains either the path dM → bM → cM or the path eM → bM → cM .

Furthermore, this loop is disjoint from ∪q≤M−1D∞(L(aq, bq)) ∪D∞(i).

Proof. From Lemma 3, there exists uM ∈ ∪q≤MD∞(L(aq, bq))∪D∞(i) and an undirected

path (λ0 = uM , λ1, . . . , λS = 0) from uM to 0 disjoint from (∪q≤MD∞(L(aq, bq)) ∪

D∞(i) ∪ {bM})\{uM}. Assume that uM ∈ D∞(L(aM , bM)). There exists a directed

path from uM to bM which goes either through dM or through eM . Without loss of

generality, assume that this path goes through dM . As before, the edge uMλ1 is directed

from uM to λ1, and we choose a directed path from λ1 to 0 to obtain the directed path

uM → λ1 → 0 on one hand and the directed path uM → dM → bM → cM → 0

on the other hand. These paths must cross each other and therefore, define a loop

with origin uM . Since λ1 /∈ ∪q≤MD∞(L(aq, bq)) ∪ D∞(i), the path λ1 → 0 cannot

go through ∪q≤MD∞(L(aq, bq)) ∪ D∞(i), and thus the end-point of the loop is not in

∪q≤MD∞(L(aq, bq))∪D∞(i) either. The path dM → bM → cM is thus contained in the

new loop.
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Finally, uM cannot be in ∪q≤M−1D∞(L(aq, bq))∪D∞(i). Otherwise, the construction

above provides a loop that would contradict the maximality property of bm, for some

m < M . That is, since t(bM+1) > t(bm), the newly constructed loop would have been

used at an earlier stage of the induction. Similarly, the origin aM+1 of the new loop

cannot be in ∪q≤MD∞(L(aq, bq)) ∪D∞(i). •

Inductive step. Let L(aM+1, bM+1) be a loop containing dM → bM → cM or eM →

bM → cM and such that t(bM+1) is maximal among all loops that contain dM → bM →

cM or eM → bM → cM . If bM+1 = 0, the construction ends and otherwise, continues

inductively.

By construction, there is a directed path from bm to bm+1, thus t(bm) < t(bm+1)

from the definition of the timing structure. It follows that the construction stops after

a finite number of iterations. This completes the proof. �

Proposition 2 is a building block for the construction of a protocol (mechanism

and strategies) that allows player i to secretly send a message to the designer. Let us

summarize our findings. Proposition 2 has the following implications: For each player

i ∈ N \D(0) and j ∈ C(i), there exists a finite sequence of loops (L(am, bm))
M
m=1 such

that (i) ij ∈ L(a1, b1), (ii) bM = 0 and (iii) the loop L(am+1, bm+1) is a successor of

the loop L(am, bm), m = 1, . . . ,M − 1, with the additional property that there exists

um ∈ L(am, bm)∩L(am+1, bm+1) such that the directed path from um to bm in L(am, bm)

is part of the directed path from um to bm+1 in L(am+1, bm+1). Moreover, the sequence

of loops defines a directed path from player i to the designer through all players b1 to

bM−1. To see this, note that player i belongs to the loop L(a1, b1) from player a1 to

player b1 and thus, belongs to one directed path to b1. Similarly, b1 belongs to the loop

L(a2, b2) and thus, has a directed path to b2. Iterating this argument, we construct a

directed path from i to the designer through the players b1 to bM−1. We will use this

directed path to secretly transfer the private information of player i to the designer.

Proposition 3 Let v be a random variable in [0, 1) privately known to player i. There

exists a protocol Mi (i.e., a mechanism and a profile of strategies) on N such that

whenever all players follow the prescribed strategies, the designer correctly learns the

value of v. Moreover, the messages received by any player j 6= i are probabilistically

independent from v.
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Proof If i ∈ D(0), this is straightforward. Fix i ∈ N\D(0) and consider the sequence

of loops constructed in Proposition 2. We divide players into several categories.

- A player who belongs to one loop is active. All other players are inactive. Inactive

players do not send or receive messages (their message sets are singletons). Let us focus

now on active players.

- A player am who is the origin of a loop is a provider.

- A player bm who is the end-point of a loop is a lock-opener.

- The player um who is the first point on the intersection of the two successive loops

L(am, bm) and L(am+1, bm+1) is a lock-closer.

- Other active players are transmitters.

By construction, note that a provider has no active predecessor and exactly two

active successors. A lock-opener, or a lock-closer, has two active predecessors and

one active successor. Transmitters have exactly one active predecessor and one active

successor. Finally, player i is either a transmitter or a provider. For each loop, we label

Left (L) the path that contains the lock-closer and Right (R) the other. The strategies

for active players other than player i are as follows:

• Each transmitter truthfully forwards the message received from his active prede-

cessor to his active successor.

• Each provider am draws an encryption key Xm uniformly in [0, 1) and sends it to

its two active successors.

• Each lock-closer um receives two numbers xm and xm+1 from his two predecessors.

He computes zm = xm⊕xm+1 and sends zm to his active successor. Remark that

there is no lock-closer uM+1 in the last loop L(aM , bM).

• Each lock-opener bm (with m < M) receives two numbers xL
m and xR

m from his

left and right predecessors. He computes wm = xL
m ⊖ xR

m and sends wm to his

active successor.

Player i’s strategy is as follows:

• If he is a transmitter, player i receives x1 from his active predecessor and sends

x1 ⊕ v to his active successor.
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• If he is a provider, player i sends X1 ⊕ v to his active successor on the left path

and X1 to his active successor on the right path.

See Figure 12 for a heuristic illustration of the strategies.

a1 draws X1

a2 draws X2

a3 draws X3 ⊖ b1

⊖ b2

a4 draws X4

0 = b4

⊖b3

i: X1 ⊕ v

⊕ u1

⊕

⊕u4

⊖

Figure 12: Providers, lock-closers ⊕ and lock-openers ⊖

Firstly, we show that this protocol allows the designer to correctly learn the value

of v. To this end, let us assume that these strategies are effectively played and compute

the messages wm sent by the lock-openers.

The sequence of loops defines a directed path from player i to the designer. This

path contains all lock-openers (bm) and some lock-closers (um) and is uniquely defined

if player i is a transmitter. If player i is a provider, we choose the only such path

that begins with the left path of the first loop. Along this path, let us attach labels to

players. All lock-openers and player i are labeled ⊖ and the lock-closers are labeled ⊕.

For instance, in Figure 12, we have

i⊖ → u⊕
1 → b⊖1 → b⊖2 → u⊕

4 → b⊖3 → b⊖4 = 0.

This induces a sequence in the alphabet {⊖,⊕}. Let ν(bm) be the number of occurrence

of two consecutive ⊖ appearing in the sequence before bm (including bm). For instance,

in the example above, ν(b1) = 0, ν(b2) = ν(b3) = 1, ν(b4) = 2.
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Lemma 6 If the players follow the above strategies, for each m = 1, . . . ,M − 1, we

have

wm = (−1)ν(bm)v ⊕Xm+1.

The two messages received by the designer are XM and wM−1.

Consequently, the designer can compute the value v of the private information of player

i, which is XM ⊖ wM−1 if ν(bM−1) is odd and wM−1 ⊖XM if ν(bM−1) is even.

Proof. We first compute w1 and then proceed by induction. Consider the loop L(a1, b1).

Player i is either on the left path of the loop L(a1, b1) or on the right path of L(a1, b1).

In the former case, the left path from i to b1 is i⊖ → u⊕
1 → b⊖1 and the right path is

i → b1. Player b1 thus receives X2 ⊕ X1 ⊕ v from the left and X1 from the right. It

follows that w1 = (X2 ⊕X1 ⊕ v)⊖X1 = X2 ⊕ v. Note that in this case ν(b1) = 0. See

Figure 13 for an illustration.

In the latter case, the left path is a1 → u1 → b1 and the right path is i⊖ → b⊖1 .

Player b1 thus receives X2 ⊕X1 from the left and X1 ⊕ v from the right. Thus w1 =

(X2⊕X1)⊖ (X1⊕ v) = X2⊖ v. Note that in this case ν(b1) = 1. See Figure 14 for an

illustration. We have thus proved the lemma for m = 1.

⊖i : X1 ⊕ v

a1 : X1

⊖⊕X2

X2 ⊕X1 ⊕ v

X2 ⊕X1 ⊕ v ⊖X1

Figure 13: w1 with player i on the left path.

We proceed now by induction. Let us assume that for some m ≤ M − 1, wm−1 =

(−1)ν(bm−1)v ⊕ Xm and compute wm. Consider the loop L(am, bm). By construction,

this loop contains bm−1 and um and the left path is the one that contains um. Thus,

bm−1 is either on the left path or on the right path. In the former case, the left

path of this loop is am → b⊖m−1 → u⊕
m → b⊖m and the right path is am → bm. Since

44



⊖ i : X1 ⊕ v

a1 : X1

⊖⊕X2

X2 ⊕X1

X2 ⊕X1 ⊖X1 ⊖ v

Figure 14: w1 with player i on the right path.

there is also the path am+1 → um → bm, the message received by bm from the left is

Xm+1 ⊕ (−1)ν(bm−1)v ⊕Xm and the message received from the right is Xm. Thus,

wm = (Xm+1 ⊕ (−1)ν(bm−1)v ⊕Xm)⊖Xm = Xm+1 ⊕ (−1)ν(bm−1)v.

Remark that in this case ν(bm) = ν(bm−1). See Figure 15 for an illustration.

b⊖m−1 : wm−1am : Xm

am+1 : Xm+1u⊕m

b⊖m

b⊖m+1

Figure 15: wm with player bm−1 on the left path

In the former case, the left path is am → um → bm and the right path is am →

b⊖m−1 → b⊖m. Since there is also the path am+1 → um → bm, the message received from

the left is Xm+1 ⊕Xm and the message received from the right is (−1)ν(bm−1)v ⊕Xm.

Thus wm = (Xm+1 ⊕ Xm) ⊖ ((−1)ν(bm−1)v) = Xm+1 ⊖ (−1)ν(bm−1)v. Remark that in

this case ν(bm) = ν(bm−1) + 1. See Figure 16 for an illustration.

Finally, consider the last loop L(aM , bM), where bM = 0 is the designer. By con-

struction, this loop does not contain a lock-closer uM+1. One path of this loop goes

through bM−1, i.e., we have aM → bM−1 → bM , and the other is aM → bM . Other

45



b⊖m−1 : wm−1am : Xm

am+1 : Xm+1

um

b⊖m

b⊖m+1

Figure 16: wm with player bm−1 on the right path

players on this loop are transmitters. The designer thus receives wM−1 from the first

path and XM from the other. The proof of the Lemma is thus complete. •

To complete the proof of Proposition 3, we argue that the message received by each

player j 6= i is probabilistically independent from v. This is clearly true for inactive

players and for providers. More generally, the only messages that depend on v are

those on the directed path from player i to the designer as constructed above, so the

statement clearly holds for players outside of this path. Transmitters on this path

receive messages of the type X⊕v where X is some random variable independent from

v and uniformly distributed. From Lemma 2 (iii), this is independent from v. The very

same reasoning holds for lock-closers. For lock-openers, this is a consequence of the

above computation: since Xm and Xm+1 are independent and uniformly distributed,

so are the two messages received by bm. �

Corollary 2 Let (vi)i∈N be independent random variables such that vi is known to

player i only. There exists a protocolM on N such that, whenever all players abide by

the protocol, the designer correctly learns the value of each vi. Moreover, the messages

received by any player j are probabilistically independent from (vi)i 6=j.

Proof From Proposition 3, for each player i, there exists a protocol (mechanism and

strategies) Mi such that player i can secretly transfer his private information vi to

the designer without revealing information to the other players. The idea is then to

concatenate all these protocols “in parallel.” That is, each player j plays a role in each

Mi (inactive, provider, lock-closer, lock-opener or transmitter), and should play all the
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corresponding roles simultaneously. For instance, if he is transmitter in several Mi’s,

he should forward the corresponding messages on the corresponding links. Moreover,

if a player is a provider in one or several Mi’s, the random draws must be mutually

independent and independent of messages received. �

7.4 Proof of Theorem 1: sufficiency

From Corollary 2, there exists a mechanism and a profile of strategies such that if

all players follow the prescribed strategies, the designer correctly learns the private

information of each player. We now show that, in an environment with common inde-

pendent beliefs and private values, we can indeed provide the players with appropriate

incentives to follow the prescribed strategies. Roughly speaking, we make sure that

each player is indifferent between all the messages he may send. This is done as follows.

Fix an environment E with common independent beliefs and private values and an

incentive compatible social choice function f . Denote P i the marginal distribution of

the common belief P on Θi, i.e., this is the common belief of any player j 6= i on

Θi. Without loss of generality, assume that Θi := {1, . . . , ti, . . . , Ti} for each player

i ∈ N and denote P
i
(ti) =

∑

θi≤t P
i(θi), the cumulative distribution function of P i.

Define a partition Πi = {Πi(1), . . . ,Πi(Ti)} of [0, 1) into Ti subsets with Πi(ti) =

[P
i
(ti − 1), P

i
(ti)) (with P

i
(0) = 0). Note that if X is uniformly distributed on [0, 1),

the event {X ∈ Πi(ti)} has probability P i(ti).

Part I. We first consider the problem of implementing the social choice function f ∗
i

for which player i is dictatorial, i.e., for any θi, define f
∗
i (θi) ∈ argmaxa∈A ui(a, θi) and

let f ∗
i (θi, θ−i) = f ∗

i (θi) for all θ−i. If i ∈ D(0), f ∗
i is clearly implementable. Assume

that i /∈ D(0). We claim that the protocol Mi implies the existence of a mechanism

and strategies such that player i has an incentive to truthfully reveal his type and no

other active player has an incentive to manipulate the transmission of information from

player i to the designer.

The mechanism and strategies are as follows:

• Player i of type ti draws a random number vi uniformly in Πi(ti) and transmits

it to the designer by the protocolMi.

• All other active players follow the strategies constructed inMi.
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• Let v̂i be the message decoded by the designer and denote θ̂i = ti if v̂i ∈ Πi(ti).

(See Lemma 6.) The designer implements the alternative f ∗
i (θ̂i) .

Firstly, observe that the protocol Mi implies that each active player sends a real

number in [0, 1). Secondly, observe that the unconditional distribution of vi is the

uniform distribution on [0, 1). To see this, denote X ti
i a random variable uniformly

distributed on Πi(ti) and observe that vi =
∑Ti

ti=1 1{θi=ti}X
ti
i . From Proposition 3, it

follows that the designer correctly learns the type of player i if all players abide by

the protocolMi, while no player gets additional information about the type of player

i (posterior beliefs are equal to prior beliefs). So, the expected payoff of any active

player j 6= i of type θj is
∑

θi
uj(f

∗
i (θi), θj)P

i(θi).

Thirdly, we show that no active player has an incentive to deviate. This is clearly

true for player i as f ∗
i is incentive compatible. Consider player j 6= i and suppose that

j is a transmitter in the loop L(am, bm) for m = 2, . . . ,M − 1. There are several cases

to consider.

Case 1. Player j is on the right path of the loop L(am, bm) from player am to player

bm and moves before the lock-closer um−1. Under Mi, he receives the message xm.

Suppose that he deviates and sends the message x′
m. It follows that the designer will

receive the messages (−1)ν(bM−1)(v ⊕ x′
m ⊖ xm)⊕XM and XM under the deviation, so

that the decoded message is v ⊕ x′
m ⊖ xm. Since v is uniformly distributed on [0, 1),

it follows that the probability that v ⊕ x′
m ⊖ xm is in Πi(ti) is P

i(ti), regardless of x
′
m

(see Lemma 2(ii)). Player j is thus indifferent between sending xm and x′
m.

Case 2. Player j is on the right path of the loop L(am, bm) from player am to player

bm and moves after the lock-closer um−1, but before the lock-opener bm−1. Under

Mi, player j receives the message xm ⊕ xm−1 from the lock-closer um−1. Suppose

that he deviates and sends the message x′
m. It follows that the designer will receive

the messages (−1)ν(bM−1)(v ⊕ x′
m ⊖ xm ⊖ xm−1) ⊕ XM and XM under the deviation.

Since all random variable are uniformly distributed on [0, 1), so are their addition ⊕

or subtraction ⊖ (this follows from Lemma 2) and consequently, player j is indifferent

between sending xm ⊕ xm−1 and x′
m.

Case 3. Player j is on the right path of the loop L(am, bm) from player am to player

bm and moves after the lock-closer um−1 and the lock-opener bm−1. UnderMi, player j

receives the message (−1)ν(bm−1)v⊕xm. Note that j does not learn the value of xm and

believes that it is a realization of Xm. Suppose that he deviates and sends the message
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x′
m. It follows that the designer will receive the messages (−1)ν(bM−1)(x′

m ⊖ xm)⊕XM

and XM under the deviation. Since Xm and XM are uniformly distributed on [0, 1), it

follows yet again that player j evaluates the probability of v̂i = x′
m⊖xm ∈ Πi(ti) to be

P i(ti) and thus, is again indifferent between reporting the truth and deviating.

Case 4. Player j is on the left path of the loop L(am, bm) from player am to player

bm and moves before the lock-closer um. This case is similar to case 1.

Case 5. Player j is on the left path of the loop L(am, bm) from player am to player

bm and moves after the lock-closer um. In that case, player j also belongs to the right

path of the loop L(am+1, bm+1) and the same arguments as in case 1 apply.

Lastly, a similar reasoning applies if player j is a transmitter in the first or last loop.

For instance, if player j is on the right path of the last loop L(aM , bM) and moves before

the lock-closer uM , the same reasoning as in case 1 applies since the designer receives

the message (−1)ν(bM−1)v ⊕ x′
M and XM .

Now, suppose that player j is the provider am in the loop L(am, bm) (m < M) and

suppose that he sends the message xL
m on the left path of the loop and the message

xR
m on the right path. If all other players abide by the strategies, it follows that the

designer receives the messages (−1)ν(bM−1)(v⊕xR
m⊖x

L
m)⊕XM and XM . Since v and XM

are uniformly and independently distributed on [0, 1), it follows that the probability

that the decoded type v̂i is in Πi(ti) is P
i(ti) and thus, player j is indifferent between

following the prescribed strategy or deviating.

Similar arguments apply to the lock-closers or lock-openers, so that the prescribed

strategies indeed form a Bayesian equilibrium. To summarize, incentive compatibility

of the social choice function implies that player i has indeed an incentive to abide by

the protocolMi, while all other active players have no incentive to deviate, since the

protocol guarantees the same expected payoff to each active player other than player

i, regardless of the message he sends.

Part II. Let f be a social choice function implementable on N ⋆, i.e., f is incentive

compatible. To implement f , consider the mechanism and strategies implied by the

protocolM: each player i /∈ D(0) of type ti draws a random number vi uniformly in

Πi(ti) and transmits it to the designer according to the protocolMi, while in his role

of an active player in a protocolMj (j 6= i), he follows the prescribed strategy.

From Corollary 2, it follows that the designer learns the true profile of types if all

players abide by this protocol, while no player gets additional information about the
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type of his opponents. To complete the proof, note that as in part I, no player has an

incentive to deviate. The expected payoff of a player i is independent of the messages he

sends about his opponents (since the assumption of independent beliefs imply that we

can consider each deviation as above). Incentive compatibility guarantees that player i

has indeed an incentive to abide by the sub-protocolMi. The proof of the sufficiency

part of Theorem 1 is thus complete.

7.5 Proof of Theorem 1: necessity

Now, we prove the “only if” part of Theorem 1. The proof proceeds by contradiction.

We assume that N is not weakly 2-connected and construct an environment with

common independent belief and private values and an incentive compatible social choice

function, which is not implementable on N .

IfN is not weakly 2 connected, there exists two distinct players i and i∗ such that all

paths, directed or undirected, from i to the designer go through i∗. As a consequence,

for each player k that has a path to i, directed or undirected, all paths from k to 0 also

go through i∗. This implies that player i∗ is a cut-vertex in the network. In particular,

all information regarding the players k who have a path to i, is controlled by i∗.

Let us now construct the environment and the social choice function. Assume that

all players but player i have a single type and that player i has two types θi and θ′i.

Let a and b be two alternatives. The utilities are as follows: ui(a, θi) = ui∗(a, ·) = 1,

ui(b, θi) = ui∗(b, ·) = 0; ui(a, θ
′
i) = 0, ui(b, θ

′
i) = 1. All other players are indifferent (get

a utility of 0) between a and b. Any other alternative gives a utility of −1 to players

i and i∗ regardless of their types. The common prior is the uniform distribution on

the set of types. The social choice function is the dictatorial social choice function of

player i.

We claim that for every mechanism on N , there is no equilibrium that implements

this social choice function. By contradiction, assume that there exists such an equi-

librium σ. Fix a profile of messages m̄i∗ ∈ MD(i∗) for player i
∗ in the support of Pθi,σ,

i.e., this is a message compatible with θi and the equilibrium strategies. Consider the

deviation σ′
i∗ for player i∗ which consists in playing σi∗(m̄i∗) regardless of his type and

messages received.

By construction of the deviation, σi∗(m̄i∗) is compatible with the messages sent by
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players who have no path to player i, i.e.,

suppPθ,σ′

i∗
,σ

−i∗
⊆ suppPθi,σ ∀θ ∈ {θi, θ

′
i}.

Since the strategies are assumed to implement f , it follows that the outcome is almost

surely a under the deviation, regardless of the type of player i. Since player i∗ prefers

a to any other alternative, this deviation is profitable for player i∗.

It is worthwhile to note that weak 2-connectedness is also a necessary condition for

Proposition 3 to hold. Indeed, if i∗ is a cut-vertex, and if the designer learns the type

of player i, then i∗ must learn it as well.

7.6 Proof of Theorem 2

The proof of the “only if part” is identical to the previous one and is omitted. We

turn to the “if” part and fix an environment with a worst outcome and an incentive

compatible social choice function f . Without loss of generality, let us assume that

f does constantly select the worst outcome (if so, the designer just has to choose the

worst outcome irrespectively of the messages received). Also, without loss of generality,

assume that Θi is a finite subset of the open interval (0, 1) for each player i ∈ N . In the

proof of Theorem 1, we took advantage of the environment to make players indifferent

between any message they can send. This is not longer possible in environments with

correlated beliefs and/or common values. We thus modify the protocol in such a way

that deviations are detected with arbitrarily high probability by the designer. The

threat of the worst outcome then deters the players from deviating.

Let η be a large integer. We take up the terminology and notations from Proposition

3 and modify the protocolMi as follows.

• Each transmitter forwards the message received from his active predecessor to

his active successor.

• Each provider am draws an η-vector of keys ~Xm = (X1
m, . . . , X

η
m) whose compo-

nents are independently and uniformly distributed in [0, 1) and sends it to its two

active successors.

• Each lock-closer um receives two vectors ~xm, ~xm+1 from his predecessors. He

computes ~zm = ~xm~⊕~xm+1 and sends it to his active successor, where ~⊕ denotes

component-wise addition.
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• Each lock-opener bm receives two vectors ~xL
m, ~xR

m from his predecessors. He

computes ~wm = ~xL
m
~⊖~xR

m and sends it to his active successor.

Player i behaves as follows (recall that by construction, player i is either a transmitter

or a provider):

• If he is a transmitter, player i who receives ~x1 from his active predecessor draws

uniformly a random integer η∗ in {1, . . . , η}, and encodes his type θi with the

encoding key xη∗

1 to obtain the cypher-type yη
∗

1 (i) = θi⊕xη∗

1 . Player i then sends

the vector (x1
1, . . . , x

η∗−1
1 , yη

∗

1 (i), xη∗+1
1 , . . . , xη

1) to his active successor.

• If he is a provider, player i draws (uniformly) a random vector ~X1 and a random

integer η∗ in {1, . . . , η} and computes Y η∗

1 (i) = θi⊕Xη∗

1 . Player i then sends the

vector (X1
1 , . . . , X

η∗−1
1 , Y η∗

1 (i), Xη∗+1
1 , . . . , Xη

1 ) to his Left active successor and ~X1

to his Right active successor.

The decision rule of the designer is the following. The designer receives a message

~xR
M from the path aM → bM−1 → bM = 0, and a message ~xL

M from the other path of

the last loop aM → bM = 0.

• If the vectors ~xL
M , ~xR

M differ by exactly one component η∗, the designer decodes

θ̂i = xη∗,R
M ⊖ xη∗,L

M if ν(bM−1) is even and θ̂i = xη∗,L
M ⊖ xη∗,R

M if ν(bM−1) is odd.

• Otherwise, the designer concludes that there was a deviation.

Note that no player j 6= i gains information about θi by this modified mechanism.

Indeed, player j only observes vectors of uniformly distributed numbers. If all players

abide by the mechanism, then the two vectors received by the designer differ only in the

component η∗, and the designer decodes correctly the type of player i from Lemma 6.

The key argument is that η∗ is the private information of player i. Thus, any deviation

by an active player is bound to change another component with probability at least

1− 1/η.

Finally the mechanism for implementing f is the following:

• Each player i transmits his type to the designer using the modified protocol.

• If the designer concludes that there was no deviation, he implements f(θ̂1, . . . , θ̂n),

where θ̂i is the decoded type of player i.
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• Otherwise, the designer implements the worst outcome.

Let us check the equilibrium condition. The expected payoff of j under the mech-

anism is:
∑

θ−j

uj(f(θj, θ−j), θj, θ−j)Pj(θ−j | θj) := C.

Assume that player j deviates in at least one sub-mechanism. His expected payoff is

at most,
1

η
W + (1−

1

η
)
∑

θ−j

uj(a, θj, θ−j)Pj(θ−j | θj) := D,

where W is an upper bound on player j’s payoff. We have,

C −D =
1

η
(C −W ) + (1−

1

η
)
∑

θ−j

(uj(f(θj, θ−j), θj , θ−j)− uj(a, θj , θ−j))Pj(θ−j | θj).

Since a is a worst outcome, uj(f(θj, θ−j), θj, θ−j)− uj(a, θj, θ−j) is non-negative for all

type profiles, and strictly positive for at least one type profile, as f is not constantly

equal to a. Recall that we assumed throughout that beliefs have full support, i.e.

Pj(θ−j | θj) > 0 for all type profiles. As a consequence, C −D is positive for η large

enough, and player j has no incentive to deviate. Lastly, each player i has an incentive

to transmit his true type since f is incentive compatible.

7.7 Proof of Theorem 3

The proof is very similar to the proofs of Theorems 1 and 2. The proof that the con-

dition is necessary is the same. For sufficiency, the main task is to extend Proposition

3 to weakly 2-connected networks with cycles. Once this is established, Theorem 3

follows, similarly as for Theorems 1 and 2 and this part of the proof is omitted.

We now explain how to extend Proposition 3. A important remark is the follow-

ing. Since the network has cycles, the existence of the timing structure is no longer

guaranteed, in fact it simply fails. To define a mechanism, one has to specify a timing

structure, i.e., who speaks first, who speaks second, and so on. To avoid this diffi-

culty, we associate to the network N , an augmented network NA, which is strongly

1-connected, weakly 2-connected and acyclic. Thus, Proposition 3 holds true on NA.

Then, we show how the protocol on NA induces the desired protocol on N .
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Let us fix a strongly 1-connected and weakly 2-connected network N (but not

necessarily acyclic). Recall that a network is a set of edges. A sub-network is thus a

subset of edges.

Lemma 7 There exists an acyclic and strongly 1-connected sub-network N a of N .

Proof. For each i ∈ N , consider a shortest directed path from i to 0 in N . Such a

shortest directed path exists since N is strongly 1-connected. Let N a be the collection

of all these paths. We claim that N a has the required properties. By construction, it

is strongly 1-connected. Let us show that it is acyclic. By contradiction, assume that

N a contains the cycle i1 → i2 → . . . → iK → i1. By construction, N a is such that

C(0) = ∅, i.e., there is no edge 0i for some i ∈ N in N a. It follows that the cycle does

not contain the designer (player 0). It then follows that there exists k ∈ {2, . . . , K}

such that the shortest path from ik to 0 does not follow the cycle (otherwise, 0 cannot

be reached, a contradiction with 1-strong connectedness). Thus, the edge ikik+1 is not

on a shortest path from any player j to 0, contradicting the construction of N a. •

With a slight abuse of notation, let N a be a maximal acyclic and strongly 1-

connected sub-network of N (it exists by the preceding lemma) and let C = N\N a be

the set of edges of N that do not belong to N a. Note that every edge of C belongs to

a cycle of N and that every cycle of N contains an edge in C. Let NA be the network

obtain from N by replacing each edge ij in C by two edges: i(j)i and i(j)j, where i(j)

is a fictitious player who is a duplicate of player i. That is, if ij in C:

i→ j is replaced by i← i(j)→ j.

The edges of N a are unchanged. See Figure 17 for an example.

Claim 3 NA is strongly 1-connected, weakly 2-connected and acyclic.

Proof. Each “regular” player i has a directed path to 0 in N a by construction. Since

the fictitious player i(j) is directly connected to i, he also has a path to the designer

by strong 1-connectedness of N . Weak 2-connectedness is clearly preserved by the

transformation. Let us show that NA is acyclic. Assume that NA contains a cycle. By

our construction, each fictitious player has only out-going edges, thus cannot belong to

a cycle. This implies that the cycle was already a cycle in N and therefore, it should
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Figure 17: A cyclic network N and the associated acyclic NA

contain an edge which belongs to C. This is a contradiction because edges in C no

longer appear in NA. •

Now, we claim that Proposition 3 extends to strongly 1-connected, weakly 2-

connected networks with cycles. First, on the network NA, for each player i, there

exists a protocol with the desired property by Proposition 3. We assume that each

fictitious player has no type and a constant payoff function. Second, on the network

N , the players can replicate this protocol. The timing of the protocol is the one given

by the timing structure of NA, which is well-defined since NA is acyclic and strongly

1-connected. In particular, each duplicated player i plays only twice: he plays as the

fictitious player i(j) the first time and as player i the second time.

Thus, Proposition 3 extends and Theorem 3 follows, similarly as for Theorems 1

and 2.

7.8 Detection with probability one

Lemma 8 Let v be a random variable privately known by player i. If the network

is weakly 2-connected, there exists a mechanism Mi on N such that, if all players

abide by the mechanism, then the designer learns the value of v, whereas each player

j 6= i receives messages that are probabilistically independent from v. Furthermore, the

designer detects deviations with probability one.

The intuition is as follows. For each integer η, we can devise a test such that any

deviation is detected with probability at least 1−1/η. We may thus ask the players to
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pass all such tests.18 There are several ways to construct such a test and we provide a

relatively simple one. We modify our protocol Mi as follows. For simplicity, we assume

that player i is not a provider.

Providers. Each provider am draws two independent infinite sequences (Xm,H
η , Xm,T

η )η≥1

of independently and identically (i.i.d.) distributed random variables, with uniform

distribution on [0, 1) and sends these sequences.

Player i. Independently of his type and of the message he receives, player i draws an

infinite sequence of i.i.d. fair coins cη ∈ {H, T}. Define (Y H
η , Y T

η )η≥1 as (Y H
η , Y T

η ) =

(X1,H
η ⊕ θi, X

1,T
η ) if cη = H , and (Y H

η , Y T
η ) = (X1,H

η , X1,T
η ⊕ θi) if cη = T . In words, for

each η, player i chooses according to the toss of a fair coin whether to encode his type

θi with X1,H
η or with X1,T

η . Player i then sends the pair of sequences (Y H
η , Y T

η )η≥1 to

his active successor.

Other players. The other active players (transmitters, lock-closers and lock-openers)

behave as in the proof of Theorem 2, except that now, vectors are sequences.

The designer. The designer receives two pairs of sequences (xL,H
η , xL,T

η )η≥1 and (xL,H
η , xR,T

η )η≥1.

If for each η, it holds true that (xL,H
η = xR,H

η and xL,T
η 6= xR,T

η ) or (xL,H
η 6= xR,H

η and

xL,T
η = xR,T

η ), the designer concludes that phase 1 of the test succeeds. Then, if xL,T
η 6=

xR,T
η , he computes θ̂i = xη∗,R,T

M ⊖ xη∗ ,L,T
M if ν(bM−1) is even and θ̂i = xη∗,L,T

M ⊖ xη∗,R,T
M

if ν(bM−1) is odd. If xL,H
η 6= xR,H

η , he computes θ̂i = xη∗,R,H
M ⊖ xη∗,L,H

M if ν(bM−1) is

even and θ̂i = xη∗ ,L,H
M ⊖ xη∗,R,H

M if ν(bM−1) is odd. If all θ̂
η
i have the same value θ̂i, the

designer concludes that phase 2 of the test succeeds, and regards θ̂i as the correct type

of player i. If the test does not succeed, either in phase 1 or in phase 2, the designer

concludes that there was a deviation.

Under these strategies, the decoded type clearly coincides with the true type. It is

also clear that no player gets information about the message of player i. The sequence

of coins being privately known to player i, each other active player only observes

sequences of i.i.d. uniformly distributed variables. Now, we claim that any deviation

is detected almost surely. Indeed, if some active player j 6= i modifies the sequence,

to pass the test in phase 2 he must modify an entry of the double sequence for each

η. But then, to succeed in phase 1, he should modify only the component selected by

18We thank Sylvain Sorin for suggesting this argument.
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player i. Consequently, the probability of passing the test while changing the message

is at most the probability of guessing correctly an infinite sequence of fair coins, which

is 0. Any deviation is thus detected with probability 1.

Corollary 3 If the network is weakly 2-connected and if the environment has a bad

outcome, i.e. an outcome a such that ui(a, θ) ≥ ui(a, θ) for all i ∈ N , for all a ∈ A,

for all θ ∈ Θ, then FN (E) = FN ⋆(E).

The proof consists in adapting the construction of Theorem 2. Using the above lemma,

any deviation brings the bad outcome almost surely and is therefore not profitable.
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