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Abstract

This paper studies a mechanism design model where the players and the
designer are nodes in a communication network. We characterize the com-
munication networks (directed graphs) for which, in any environment (utilities
and beliefs), every incentive compatible social choice function is partially im-
plementable. We show that any incentive compatible social choice function is
implementable on a given communication network, in all environments with ei-
ther common independent beliefs and private values or a worst outcome, if and
only if the network is strongly connected and weakly 2-connected. A network
is strongly connected if for each player, there exists a directed path to the de-
signer. It is weakly 2-connected if each player is either directly connected to the
designer or indirectly connected to the designer through two disjoint paths, not
necessarily directed. We couple encryption techniques together with appropriate
incentives to secure the transmission of each player’s private information to the

designer.

Keywords: Mechanism design, incentives, Bayesian equilibrium, communi-

cation networks, encryption, secure transmission.
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1 Introduction

The revelation principle is the cornerstone of mechanism design and its applications.
It asserts that the outcome of any communication system can be replicated by a di-
rect revelation mechanism, in which agents directly and privately communicate with
a designer, and truthfully report all their information (Gibbard (1973), Dasgupta,
Hammond and Maskin (1979), Myerson (1979), Harris and Townsend (1981), Myer-
son (1982)). As a technical result, the revelation principle is a blessing. It allows to
abstract away from the very details of communication systems and to focus on the
social choice functions to be implemented. At the same time, it is slightly disturbing,
as it implies that no decentralized communication system, however sophisticated, can
dominate the centralized (direct) communication system. Yet, real-world organizations
(firms, administrations, armies, terrorist networks, organized crime) seldom take the
form of centralized communication systems. The aim of this paper is to characterize
the communication systems which replicate the incentive properties of centralized com-
munication and, thus, to show that incentive considerations alone can already explain

the existence of a large variety of real-world organizations.!

Communication systems are naturally modeled as networks (graphs), in which the
nodes represent the players and the designer. A player can directly communicate with
another player if there exists an edge from that player to the other. We then associate
communication networks with social environments representing the preferences and
beliefs of the players, and characterize the topology of communication networks for
which, in any environment, every incentive compatible social choice function is partially
implementable.  In the paper, we first focus on acyclic directed networks and then

show how our results extend to any network.

The connectivity of communication networks is at the center of our analysis. A
directed network is strongly 1-connected if for each player, there exists a directed path
from this player to the designer. This is a minimal requirement that ensures that the

designer may receive information from each player. A directed network is weakly 2-

IThere is a recent literature labeled as algorithmic mechanism design, that focuses on communica-
tion complexity and mechanism design (see Nisan et al. (2007) for an excellent exposition and Nisan
and Segal (2006) and Van Zandt (2007) for economic applications.) Unlike this literature, we abstract

from complexity considerations and entirely focus on incentives.



connected if each player is either directly connected to the designer or has two disjoint
paths to the designer in the associated undirected graph. Figure 1 gives two examples of
weakly 2-connected networks. Our analysis shows that in a large class of environments,

both networks have the very same incentive properties.?

Figure 1: Two communication networks

Our main results state that any incentive compatible social choice function is par-
tially implementable on a given communication network, in all environments with
either common independent beliefs and private values or a worst outcome, if and only
if the network is weakly 2-connected and strongly 1-connected. (In the sequel, we
omit the condition of strong 1-connectedness.) The intuition for this result is as fol-
lows.®> A social choice function is incentive compatible if no player has an incentive
to lie about his own private information when he expects the others to tell the truth.
Importantly, players use their prior beliefs to form their expectations. However, in
a general communication network, players receive messages from their neighbors and
thus, their incentives to tell the truth may be altered (since their posterior beliefs
may differ from their prior beliefs). To circumvent this problem, we couple encryption
techniques and incentives to transfer “securely” each player’s private information to
the designer through the network. Our encoding technique guarantees that no player
learns anything about the types of the other players and therefore, posterior beliefs are
equal to prior beliefs. To illustrate, assume that the network is strongly 2-connected,
that is, each player is either directly connected to the designer or has two disjoint

directed paths of communication to the designer. A player can thus send a private

2Qther features are therefore needed to discriminate among these networks, e.g., their span of
control (Williamson (1967) and Calvo and Wellisz (1978)) or their associated cost of communication

(Bolton and Dewatripont (1994) or Radner (1993)).
3See the example in section 2 for an illustration.
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“encoding” key to the designer through one path and his type encoded with the key,
a “cypher-type,” through the other (disjoint) path. However, this is not sufficient:
players must also have an incentive to truthfully forward the messages they receive.
Our technique precisely guarantees this. Lastly, incentive compatibility ensures that
players also have an incentive to truthfully report their own private information. Our
connectivity conditions are necessary. If the network is not strongly 1-connected, then
there exists at least one player who has no outgoing edges, i.e., this player cannot send
information. It is thus impossible to implement a social choice function that depends on
this player’s type. Alternatively, if the network is not weakly 2-connected, then there
exists pair of players (i,7*) such that all paths from player i to the designer go through

player ¢*, who has thus the ability to manipulate all the information transmitted by 4.

We now offer some motivations for our study. Firstly, as in Bolton and Dewa-
tripont (1994), we implicitly assume that the communication network (the internal
organization of the firm) is established in a prior stage and that it is relatively costly
to modify. Consequently, if the designer is uncertain about which incentive compati-
ble social choice functions he will actually have to implement, it is optimal to choose
a network in the class of weakly 2-connected networks. Alternatively, we can think
of our study as a worst-case analysis: If the communication network is not weakly
2-connected, there exist incentive compatible social choice functions that cannot be
implemented on that network. Secondly, the previous discussion suggests that the cost
of forming a link between any two agents is an important determinant in choosing
among different networks (organizations). How costly is it to form such a link? To
answer this question, we need to carefully interpret what a link is in our model. A
link between two agents is a perfectly secure channel of communication, i.e., no other
agent can eavesdrop, alter or intercept messages sent over the link, and any message
sent is received with certainty. Private face-to-face communication is probably the
closest instance of such perfectly secure communication in real life.* Such links are
relatively costly to establish as argued by computer scientists, see e.g., Beimel and
Franklin (1999). Furthermore, Friebel and Raith (2004) argue that even if it were

4E-mails, phone calls or text messages are not examples of perfectly secure and reliable channels
of communication as the recent scandal News of the World demonstrates (Guardian, 14 July 2009).

In fact, if they were, there would be no need for encryption devices.



possible to create at no cost such perfectly secure communication links between each
agent and the designer in an organization, it may not be optimal to do so. In their
words, “requiring intra-firm communication to pass through a “chain of command” can
be an effective way of securing the incentives for superiors to recruit and develop the

best possible subordinates.”

Related literature. The computer science literature on secure transmission of
messages is closely related to this paper. Section 4.3 provides an in-depth discussion
of this literature and its relationships to our study. The use of coded messages in
games of information transmission is common in the cheap talk literature (see Forges,
1990, Barany, 1992, Ben-Porath, 2003 and Gerardi, 2004) and our techniques are akin
to the ones found there. The paper most closely related to our work is Monderer
and Tennenholtz (1999), who study a similar problem to ours. Our paper substantially
generalizes their results in several dimensions. Firstly, these authors consider undirected
networks and environments with a worst outcome, common independent beliefs and
private values. They show that 2-connectedness of the network is a sufficient condition
for the implementation of all incentive compatible social choice functions. Crucially,
in their model, edges are not directed and thus can be used to communicate in both
directions. It follows that the 2-connectedness of the undirected network guarantees
the existence of directed sub-networks that are strongly 2-connected. Their protocol
(mechanisms and strategies) heavily exploits this fact and indeed breaks down if the
undirected network does not have an underlying strongly 2-connected network. We
show that in environments with common independent beliefs and private values, weak
2-connectedness, a substantially weaker requirement than strong 2-connectedness, is a
necessary and sufficient condition (the assumption of a worst outcome is superfluous).
Secondly, we show that in environments with a worst outcome, weak 2-connectedness
is again a necessary and sufficient condition; no further assumption on the environment
is needed. In particular, there is no need for independent beliefs or private values. We
need to resort to different encryption techniques than the ones used in Monderer and
Tennenholtz (1999), which would fail without common independent beliefs even on
strongly 2-connected networks. Furthermore, with the very same techniques, we show
that strong 2-connectedness and weak 3-connectedness is a sufficient condition for the
implementation of all incentive compatible social choice functions in all environments.

Again, the techniques of Monderer and Tennenholtz (1999) would fail here.



2 A simple example

We now illustrate our main results within the context of a simple example. There are
three players, labeled 1, 2 and 3, two types for player 2, labeled 6 and ¢, and two
alternatives a and b. Player 2’s preferences over these alternatives depend on his type
(in all examples, preferences are strict). Player 2 prefers a to b if his type is 6 and
prefers b to a if his type is #'. Player 1 always prefers a to b, while player 3 always
prefers b to a.  Note that this is a private values environment, the preferences of
players 1 and 3 do not depend on player 2’s type. The designer aims at implementing
the social choice function f* that selects the preferred alternative of player 2 for each
of his type: player 2 is dictatorial.

If player 2 can securely and directly communicate with the designer, f* is clearly
implementable: the designer can simply ask player 2 to directly report his preferred
alternative. Suppose now that player 2 cannot directly communicate with the designer

and consider the communication network N3 in Figure 2 (player 0 is the designer).

Figure 2: Communication network N

With the communication network N5, player 2 can indirectly communicate with the
designer through player 1. Moreover, player 3 has two disjoint paths of communication
to the designer with player 2 on one of them. Consequently, player 2 has two disjoint
paths to the designer, but one of them is not directed. The network N, is thus weakly
2-connected. The idea is then to use the two disjoint paths from 3 to 0 to secure the
communication of player 2’s type to the designer, without revealing information to the
other players. So, suppose that players 1 and 3 believe that player 2’s type is 6 with
probability 1/3, independently of their own types. The goal is to design a mechanism

and an equilibrium such that the designer implements a in state 6 and b in state 6.

The mechanism allows player 3 to send a real number in [0,1) to player 2 and

another real number in [0,1) to player 0. Similarly, player 2 (resp., player 1) can
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send a real number in [0,1) to player 1 (resp., player 0). An informal description of
the strategies is as follows. Independently of his type, player 3 draws an “encoding
key” y uniformly on [0,1) and sends it to both players 0 and 2. Player 2 of type 6
(resp., 0) draws a “pseudo-type” & uniformly on [0,1/3) (resp., [1/3,1)). The pseudo-
type thus “reveals” 6, but its unconditional distribution is uniform on [0,1).> Then,
player 2 encodes his pseudo-type & with the encoding key y received from player 3 to
obtain the “cypher-type” = (Z + y) modg1.° Player 2 sends x to player 1. Player
1 has to correctly forward the message of player 2 to the designer. Let (Z,7) be a
pair of messages received by the designer. The allocation rule is the following: If
(z —g)modg € [0,1/3), the designer implements @ and implements b, otherwise.

If the players follow the prescribed strategies, § = y, £ = x and (Z — §) modg 1 = 7.
Thus, the designer correctly learns player 2’s type and implements the desired social
choice function f*. In particular, players 1 and 3 expect the designer to implement
a with probability 1/3 and b with probability 2/3. We now show that the players do
not have an incentive to deviate from the prescribed strategies. Suppose that player 1
deviates and sends a message = to the designer instead of x. The designer implements
the alternative a if (z — y)modg; € [0,1/3) and b, otherwise. Since y is uniformly
distributed, so is (Z — y) modg; (see Lemma 2 in Appendix). Accordingly, player 1
expects the designer to implement a with probability 1/3 and b with probability 2/3:
Player 1’s expected payoff does not depend on the message & he sends. Player 1 has
therefore no incentive to deviate. A similar argument applies to player 3. As for player
2, he has no incentive to deviate since f* is incentive compatible.

It is worth stressing that the essential feature of the network is its weak 2-connectedness.
For instance, if in addition to the links shown in Figure 2, player 3 has a link to player
1, the result remains valid (the network remains weakly 2-connected). Indeed, we can
construct a “babbling equilibrium” in which player 3 sends an uninformative message
to player 1, and player 1 plays independently of player 3’s message. Alternatively, and
more simply, we may let the message space from player 3 to player 1 be a singleton.
In effect, we show that the weak 2-connectedness of the network is a necessary and

sufficient condition for the implementation of any incentive compatible social choice

®More precisely, denote Upo,1/3) (tesp., Uj1/3,1)) the uniform distribution on [0,1/3) (resp., [1/3,1)).
The unconditional distribution of Z is %U[OJ/3) + %Z/{[l/g’l) = Upp,1), the uniform distribution on [0, 1).
6For a real number r, rmodg 1 = r — |r], with |r] the highest integer less or equal to 7.



functions in environments with independent common beliefs and private values.

A further and important feature of the proposed mechanism and strategies is that
players 1 and 3 learn nothing about player 2’s type. This is clearly true for player 3 as
he does not receive a message from player 2. As for player 1, we prove that the message
x (the cypher-type) he receives is uniformly distributed on [0,1) and independent of
player 2’s type. This feature is crucial for the implementation of incentive compatible
social choice functions which depend on the private information of all players. It
guarantees that posterior beliefs are equal to prior beliefs and, consequently, that
players’ incentives to truthfully reveal their own private information are not altered.

Another important aspect is that the mechanism and strategies are tailored to
environments with common independent beliefs and private values. Firstly, let us
consider the assumption of common independent beliefs. For concreteness, suppose
that player 3’s belief remains as above, but that player 1 believes that player 2’s type
is @ with probability 2/3. Players 1 and 3 have thus different beliefs. In the construction
above, the partition of [0,1) into {[0,1/3),[1/3,1)} is such that the Lebesgue measure
of each subset exactly matches the prior beliefs of player 3, but differs now from player
1’s prior beliefs. Consider a deviation for player 1, whereby he sends the same message,
regardless of the message received from player 2. With this deviation, player 1 expects
the designer to decode player 2’s type as being 6 with probability 1/3, which is different
from his prior belief 2/3. Consequently, player 1’s incentive to truthfully report his
private information might be altered and this player may profitable deviate.” Note that
different (interim) beliefs of players 1 and 3 may derive from a common correlated prior
on type profiles. Thus, the importance of the common independent belief assumption
is that it allows to tune the mechanism simultaneously to the beliefs of all players.

Secondly, to understand the importance of the private value assumption, suppose
that player 1 prefers b to a when player 2’s type is # and a to b when player 2’s type
is 0 (interdependent values). If player 1 truthfully forwards the message = he received

from player 2, the alternative a is implemented if and only if player 2’s type is 6 and

"For instance, take ©; = Oy = {0, 0'}, three alternatives a, b, ¢, and u1(a,6) = 3/2, uy(b,0) = 1
and u1(c,d) = 0. Consider the social choice function f which depends only on players 1 and 2’s types
with f(0,0) = a, f(0',0) = f(0,6") = c and f(#',6") = b. This is incentive compatible for player 1 at
state 6 when he believes that player 2’s type is 6 with probability 2/3, but not when he believes that
player 2’s type is 6 with probability 1/3.



the alternative b is implemented if and only if player 2’s type is #’. However, if he sends
a message T independently of the message received from 2, both alternatives a and b
are implemented with positive probability, regardless of player 2’s type, a profitable
deviation for player 1. In sum, the problem with more general environments is not only
to guarantee that no information is revealed, but to provide players with incentives to

truthfully communicate their private information and the messages they receive.

With more elaborated encryption techniques, our result remain valid in environ-
ments with a worst alternative (Theorem 2). The intuition is as follows. Consider
again the network A5,. Player 3 draws a large number of independent encoding keys
Y1, ..., Y, and send them to players 0 and 2. Player 2 privately chooses one of these keys
(with equiprobability) and uses it to encrypt his type. He then sends to player 1 the
encrypted type and the unused keys, without telling him which key was used for cod-
ing. Player 1 has to correctly forward player 2’s message to the designer. The designer
compares the two vectors he receives. If these vectors differ in exactly one component
n*, he infers that the key y,- transmitted by player 3 was used for coding, and decodes
player 2’s type accordingly. Otherwise, the designer implements the worst alternative.
This encoding technique guarantees that players 1 and 3 learn nothing about player
2’s type and allows the designer to detect unilateral deviations with arbitrarily high
probability, since the index n* is the private information of player 2. In turn, the threat
to implement the worst alternative upon detection of a deviation deters players from

deviating.

3 Definitions

The primitives of the model consist of two essential ingredients: social environments
(players, outcomes and preferences) and communication networks.

A social environment &£ is a tuple (N, A, (0, P, u;)ien) where N := {1,...,n}
is the set of players, A the finite set of alternatives, and ©; the finite set of types of
player i € N8 Let © := X;cy0; and O_; = Xjen\{i}©;, with generic elements ¢
and 6_;, respectively. Each player knows his own type and player ¢ of type 6#; holds a
probabilistic belief P;(-|0;) over ©_;. Throughout the paper, we assume P;(6_;|0;) > 0

8In Section 5, we extend our analysis to environments with infinite type spaces.

10



for all (6;,0_;) € © and for all i € N. Each player has a preference relation over
alternatives, which is representable by the type-dependent utility function u; : Ax© —
R. Players are expected utility maximizers. Three properties of an environment are of

particular importance to our analysis:

e The environment has a common prior if there exists a probability distribution P
on O such that P;(6_;]0;) is the conditional distribution of 6_; given 6; derived
from P. The common prior is independent if P is the product of its marginal

distributions.

e The environment has private values if for each player ¢, his utility function does

not depend on the types 6_; of his opponents.

e The environment has a worst outcome if there exists an alternative a € A such
that for each player i, each type profile § and each alternative a € A\ {a},
u;(a,0) < ui(a,0).

A social choice function f : © — A associates with each type profile 6 an alternative
f(0) € A. A social choice function is incentive compatible if for each player i € N, for

each pair of types (6;, ;) of player i, we have
Zuz £(05,0-5),0i,0-3) Pi(0-10;) > Zul i), 0i,0-3) P(0-]0;).

Note that our definition of a worst outcome is stronger than actually required; it
would be enough to consider an alternative worse than any alternative in the range
of the social choice function we aim to implement. Exchange economies with free
disposal are examples of environments with worst outcome: the zero allocation is a
worst outcome if preferences are strictly monotonic and the social choice function selects
positive vectors of goods. Similarly, in quasi-linear environments, the assumption of a

worst outcome is natural.

A communication network captures the possibilities of communication between
the players and the designer. A communication network is a directed graph with n+ 1
vertices representing the n players and the designer (henceforth, player 0). There is
a directed edge from player i to player j, denoted ij, if i can send a message to j.
Formally, the network, denoted by N, is defined as a set of edges N' C (N U {0}) x

11



(NU{0}). We denote C(i) = {j € NU{0} : ij € N'} the set of players to whom player
i can directly send a message. Similarly, we denote D(i) = {j € NU{0}: ji € N'} the
set of players who can directly send a message to player i. A directed path in N is a
finite sequence of vertices (i1, ..., %,) such that iziry € N for each k=1,...,m — 1.
A communication network N is strongly m-connected if for each player i € N \ D(0),
there exist m disjoint directed paths (i.e., having no common vertex except ¢ and 0)
from player ¢ to the designer. By convention, the communication network is strongly
n-connected if N\ D(0) = (). A network of particular importance is the star network
N* with the designer as the center and D(i) = 0, C'(i) = {0} for all player i € N. With
the star network, each player communicates directly and privately with the designer;
the star network is n-connected.

We make the following assumptions on the network. Firstly, we assume that net-
works are strongly 1-connected: for each player ¢ € N, there exists a directed path
from ¢ to 0. This assumption ensures that the designer may receive information from
each player.

Secondly, we assume for the time being that the graph is acyclic, that is, for each ¢ €
N U{0}, there is no path from i to himself. In particular, these two assumptions imply
that C(0) = 0, i.e., the designer cannot send messages to the players. In other words,
as in the classical model of mechanism design, the designer does not communicate with
the players: he merely collects information and implements outcomes accordingly.

Now, we describe the interaction between a social environment and a communi-
cation network. The important feature of our model is that players can only send
messages to players they are directly connected to. The interaction (the extensive-

form) unfolds as follows.

e Each player i “reads” the messages he receives from players in D(i). Then, he

sends messages to players in C'(i) (he may send different messages to different

players).

e The designer “reads” the messages he receives from players in D(0) and selects

an alternative.

Note that if N' = N*, this corresponds to the classical model where each player com-

municates directly and privately with the designer.
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Acyclicity and strong 1-connectedness of the graph implies that the interaction as
described above gives rise to a simple extensive-form. With acyclicity, the commu-
nication rule stating that “a player sends his messages after having received all his
messages’ generates a well-defined timing structure, where each player 7 is assigned
a stage t(i) at which he sends his messages. This statement is proved in Appendix,
Lemma 1. For instance, in Figure 3, player 3 can directly communicate with player
1, but not with player 2 and the designer. In the associated extensive-form, player
3 communicates first with player 1, and after observing player 3’s message, player 1

communicates with the designer.

N3 G/\f3

Figure 3: Network N3 and a consistent extensive-form G,

The assumption of directed and acyclic networks makes our problem of implementa-
tion the hardest (the designer is silent, players speak only once and receive no feedback
on the messages they send). Yet, the methods we develop for acyclic directed networks
extend to any network. More specifically, section 5.1 drops the assumption of acyclicity
and shows how to adapt our results to networks with cycles or to undirected networks,

i.e., two-way networks where linked players can converse.

A mechanism is a pair ((M;;)ijen, g) where for each edge ij, M;; is the set of
messages that player ¢ can send to player j, and g : X;ep)Mio — A is the allocation
rule. Note that the allocation rule depends only on the messages the designer can

receive. The next step is to define the Bayesian game induced by a mechanism, a
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communication network and an environment.

Fix an environment (N, A, (0;, P;, u;);en), a communication network A/ and a mech-
anism ((M;;)ijen, g). Define Mpy := XjepuMj; as the set of messages that player i
can receive and Me;) 1= Xjec@)yM;; as the set of messages that player i can send. A
pure strategy s; for player i is a mapping from Mp) X ©; to Mc;). We denote by S;
the set of player i’s pure strategies and by s;;(mp(), 0;) the message player i sends to
player j € C(i) conditional on receiving the messages mp(; and being of type ;. A
behavioral strategy o; for player i maps Mp) x ©; to A(Mc)), the set of probability
distributions over M¢(;).” We denote by P,y the probability distribution over profiles
of messages (i.e., over X;jenM;;) induced by the strategy profile o = (0;);en at state
. The Bayesian game G, induced by an environment, a mechanism and a network is

defined as follows:

e The set of players is N, the set of player ¢’s types is ©; and his beliefs are given
by P;.

e The set of strategies of player ¢ is S;.

e The payoff of player 7 is his expected utility conditional on his type and given

that the outcomes are selected by the allocation rule g.

Definition 1 The social choice function f is partially implementable on the commu-
nication network N if there exist a mechanism ((M;)ijen,g) and a Bayesian-Nash
equilibrium o of G such that for all & € ©, g((my)icp)) = f(0) for all profiles of

messages (Mjy)icp(o) received by the designer in the support of Py« .

Denote Fj(£) the set of social choice functions partially implementable on the
communication network N when the environment is £. From the revelation principle,
Fyx(E) C Fn+(€) for every environment &£, and Fy+(E) is precisely the set of incen-
tive compatible social choice functions. The aim of this paper is to characterize the

communication networks N for which Fy/(€) = Fy+(&) for every environment &.

Before presenting our main results, a final remark is in order. We present our results

for the solution concept of Bayesian equilibrium. Yet, all our results remain valid with

9We also find it convenient to view a behavioral strategy as a measurable mapping from M D(i) X
©; x Y; to M¢(;), where (Y;, Vi, j1;) is a probability space independent of types and messages, i.e., a

private randomization device.
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the solution concept of perfect Bayesian equilibrium. Indeed, as will be apparent below
(see also the introductory example), the Bayesian equilibria we construct are such that
every profile of messages a player can receive is in the support of the equilibrium
strategies. Moreover, equilibrium strategies are such that we can apply a continuous
version of Bayes’ rule at every profile of messages a player can receive. We have chosen
to present our results for the concept of Bayesian equilibrium, so as to avoid specifying
the belief systems, namely the beliefs a player has about the types of his opponents

and the messages they have received, at each of his information sets.

4 The main results

This section presents our main results regarding the partial implementation of social
choice functions on communication networks. We introduce our main connectivity
condition. Recall that we consider strongly 1-connected and acyclic networks. An
undirected path in N is a finite sequence of vertices (iy,...,%,) such that for each

k= 1,...,m— 1, either ’ik’ik+1 ENOI‘ ’ik+1ik EN.

Definition 2 The communication network N is weakly 2-connected if for each player

i€ N\ D(0), there exist two disjoint undirected paths from player i to the designer.

In words, a network is weakly 2-connected if for each player not directly connected to
the designer, there exist two disjoint paths, directed or undirected, from this player to
the designer. For instance, in Figure 4, the network N is weakly 2-connected while
the network N} is not. Note that in both networks, player 2 has a unique directed path
to the designer and therefore, neither network is strongly 2-connected.

Importantly, if a network is not weakly 2-connected, there exists two players, @
and ¢*, such that all paths, directed or undirected, from player ¢ to the designer go
through player i*. As a consequence, for each player j # i, who has a path (directed or
undirected) to 4, all paths (directed or undirected) from j to the designer go through
player *. Player ¢* thus “controls” all the possible messages that player ¢« can use
to communicate his private information. Player ¢* even controls the messages of all
players which are connected, directly or indirectly, to player . For instance, on the
network A/}, player 1 controls all messages that players 2 and 3 can send. These simple

observations suggest that there is no hope to implement all incentive compatible social
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choice functions on a network which is not weakly 2-connected. We show that it is

indeed the case.

Ni Ni

Figure 4: N is weakly 2-connected, N is not

4.1 Common independent beliefs and private values

We first consider environments with common independent beliefs and private values.
This assumption is common in several applications of the theory of mechanism design,
e.g., auction theory (Krishna (2002)) or contract theory (Salanie (2000)). Our first
result states that any incentive compatible social choice function is implementable on

a network N for all such environments if and only if N is weakly 2-connected.

Theorem 1 Consider an acyclic network N'. For all environments £ with common
independent beliefs and private values, Fyr(E) = Fy+(E) if and only if N is weakly

2-connected.

Theorem 1 extends the work of Monderer and Tennenholtz (1999) in several dimen-
sions. Monderer and Tennenholtz consider environments and communication networks
with the following properties: 1) types are independently and identically distributed, 2)
a player’s payoff does not depend on the private information of others (private values),
3) there exists a worst outcome (to abort the protocol) and 4) networks are undirected
and repeated communication is allowed, so that each edge is directed in both ways and
players may get feedback on the messages they sent. With these assumptions, they
show that the 2-connectedness of the communication network is a sufficient condition

for the implementation of any incentive compatible social choice function. Firstly, we
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show that their result extends to weakly 2-connected directed networks and that this
condition is necessary. This result requires the construction of a substantially more
elaborated protocol (mechanisms and strategies) than the one in Monderer and Ten-
nenholtz (1999). Indeed, their construction relies on the existence of an underlying
directed subgraph that is strongly 2-connected, so that a player can send his encrypted
type on one directed path and the encryption key on the other disjoint directed path.
Unlike Monderer and Tennenholtz, our assumption of weakly 2-connected networks
does not guarantee the existence of two disjoint directed paths from each player to
the designer. Secondly, we show that the crucial assumptions to extend their result
are common independent beliefs and private values. Neither the existence of a worst
outcome nor the possibility of multiple rounds of messages is essential. By contrast,
Theorem 2 below shows that in environments with a worst outcome, there is no need to
assume common and independent beliefs and private values. Moreover, it is important
to note that the mechanism and strategies for Theorem 2 are quite different from the
ones for Theorem 1. Indeed, the mechanism and strategies for Theorem 1 do not work

in more general environments.

The intuition for Theorem 1 is as follows. We consider the network Nj in Figure
5 and show how to implement the dictatorial social choice function of player 2. Note
that player 2 has a directed path of communication to the designer (through player 1)
and two disjoint undirected paths of communication to the designer. However, unlike
the network N5 in Figure 2, there is no player with a directed path to player 2 and two
disjoint directed paths to the designer. This feature is essential and makes the proof of
Theorem 1 quite involved for general weakly 2-connected networks (see the appendix

for the general case).

Figure 5: Communication network N5
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As in Section 2, there are two alternatives a and b and two types 6 and 6" for
player 2. Player 2 prefers a to b if his type is 6 and b to a if his type is #’. Suppose
that players 1, 3, 4 and 5 share a common prior and believes that player 2’s type is 0
with probability 1/3. The designer aims at implementing the dictatorial social choice
function f* of player 2.

An informal description of the strategies to implement f* is as follows. Player 3
draws an encoding key y uniformly on [0,1) and sends it to players 2 and 4. Simul-
taneously, player 5 draws another encoding key z uniformly on [0,1) and sends it to
the designer (player 0) and player 4. Then, player 4 encrypts the key y received from
player 3 with the key z received from player 5 to obtain w = (z + y) modg; and sends
w to player 1. Player 2 of type @ (resp., 8’) draws a pseudo-type & uniformly in [0, 1/3)
(resp., [1/3,1)) and sends the encrypted type z = (Z + y) modo; to player 1. Thus,
player 1 receives the encrypted type x from player 2 and the modified key w from
player 4. Lastly, player 1 transfers « = (w — x) modg; to the designer. Let (4, 2) be
a pair of messages received by the designer. The allocation rule is the following: If
(2 —4)modo € [0,1/3), the designer implements a and otherwise, implements b.

If the players follow the prescribed strategies, then w = (z + y) modg; and u =
(w—x)modg1 = ((2+y) modg 1 — (Z+y) modg 1) modg 1 = (2 —Z) modg ;. The designer
thus receives @ = u = (2 — Z) modg; from player 1 and 2 = z from player 5. It follows
that (£—u) modg; = % and the designer correctly learns player 2’s type and implements
the desired social choice function f*. In particular, all players but player 2 expect the
designer to implement a with probability 1/3 and b with probability 2/3.

We now show that players do not have an incentive to deviate from the prescribed
strategies and focus on player 1. From the point of view of player 1, z, y and z are
mutually independent and uniformly distributed. It follows that the two messages
(z 4+ y) modg; and (Z + y) modg 1 received by player 1 are independent and uniformly
distributed (see Lemma 2 in Appendix) and convey no information about z and Z.
Suppose that player 1 deviates and sends the message 4 to the designer instead of
u = (2 — Z)modg;. The designer implements the alternative a if (z — u)modg; €
[0,1/3) and b otherwise. Since, conditionally on player 1’s information, z is uniformly
distributed, so is (z — @) modg 1 (see again Lemma 2 in Appendix). Accordingly, player
1 expects the designer to implement a with probability 1/3 and b with probability 2/3.
It follows that player 1’s expected payoff does not depend on the message u he sends
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and that player 1 has no incentive to deviate. Similar arguments apply to players 3, 4
and 5. As for player 2, he has no incentive to deviate since f* is incentive compatible.

The essential difference with the simpler example of Section 2 is that player 3 does
not have two disjoint directed paths of communication to the designer. Thus, player 3
cannot give an encryption key to player 2 and send this key to the designer, without
player 1 learning both the encryption key and player 2’s encrypted type. This is
precisely at this point that the protocol of Monderer and Tennenholtz fails. The novel
idea is then to let player 4 encrypt the encryption key that player 3 sends to player
2, with the key received from player 5. Accordingly, player 1 receives an encrypted
encryption key from player 4 and therefore, learns nothing about the type of player 2.

The proof of Theorem 1 extends these arguments to any weakly 2-connected net-
work!? (all proofs are relegated in Appendix). In particular, we show that if the network
is strongly 1-connected and weakly 2-connected, then there exists a protocol such that
if all players abide by the protocol, the designer correctly learns the players’ types and
no player gets additional information about the types of his opponents. In the language
of computer science, we construct a protocol for the secret transmission of messages.
We then show that the existence of such protocol guarantees the existence of mecha-
nism and strategies such that players are indifferent between correctly forwarding the
messages they receive or lying. Thus, they indeed have an incentive to abide by the
protocol. In the language of computer science, our protocol is reliable.

Theorem 1 also states that the weak 2-connectedness is a necessary condition to
implement all incentive compatible social choice functions. To get some intuition for
this result, let us consider a simple example. There are two players, 1 and 2, two
alternatives, a and b, and two types, 6 and 6 for each player. Regardless of his type,
player 1 prefers a over b, player 2 of type @ prefers a over b, while player 2 of type ¢’
prefers b over a. Consider the social choice function f for which player 2 is dictatorial
and the communication network Nj in Figure 6. The issue with this network, and
more generally with any communication network that is not weakly 2-connected, is
that player 1 controls all the information sent by player 2, and there is no way for the

designer to detect a false report by player 1.

10Note that the protocol (mechanism and strategies) of Monderer and Tennenholtz (1999) for undi-
rected networks do not work in general; there is a need for encrypting encryption keys. Their protocol

works only if the directed network is strongly 2-connected.
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Figure 6: Communication network Njg is strongly 1-connected

Clearly, f is implementable on the star network N*, but not on Ns. By contra-
diction, suppose that f is implementable on Ny by the mechanism (M, My, g). There
must exist an equilibrium message m; € M; such that g(m;) = b. However, regardless
of his type and message received, player 1 has no incentives to send any message my
with g(my) = b, so that f cannot be implemented. The proof of Theorem 1 generalizes
this argument to any network that is not weakly 2-connected.

Two further remarks are worth making. Firstly, our encoding technique extends to
environments with continuous type spaces (see Subsection 5.4). Secondly, the strategies
we consider are behavioral strategies. In Subsection 5.5, we prove that our result does
not hold if we restrict ourself to pure equilibria, a frequently used solution concept in
the mechanism design literature.

Before going further, it is worth stressing again that the encoding technique used in
the proof of Theorem 1 is tailored to environments with common independent beliefs
and does not apply to more general environments (even with private values). See
the example in Section 2 for some intuition. With general beliefs, different encoding

techniques have to be used: this is the object of the next section.

4.2 Worst outcome

In many concrete applications of the theory of mechanism design, players hold different
and correlated beliefs about states of the world either because they have received
different signals (information) or on purely subjective grounds. Moreover, the payoff
of a player often depends on the private information of others. For instance, in auction
models, bidders often have different information about the value of the goods for sale
(e.g., mineral or oil rights) and the private information of all players influence the
valuation for the good of each player. To handle these more general beliefs and payoff
functions, we resort to a different encoding technique. Our new technique consists in

coding the type of each player such that no information is revealed to the other players,
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and if a player does not truthfully forward the messages he receives, the designer detects

it with arbitrarily high probability.

Theorem 2 Consider an acyclic network N'. For all environments € with a worst
outcome, Fn(E) = Fn+(E) if and only if N is weakly 2-connected.

The main insight provided by Theorem 2 is that assuming a worst outcome allows
to dispense with the assumptions of common independent beliefs and private values.

The intuition for Theorem 2 is as follows. We construct a mechanism such that the
true type of player ¢ is transmitted to the designer, no player j # ¢ gets information
about the type of player i and a false report by player j is detected with arbitrarily high
probability. Consider again the network N5 and the dictatorial social choice function
of player 2.

An informal description of the strategies is the following. Player 3 sends a large
number of encoding keys, all uniformly and independently drawn from [0, 1) to players
2 and 4. Simultaneously, player 5 sends another large number of encoding keys all
uniformly and independently drawn from [0, 1) to player 4 and the designer. Player 4
thus receives a large number of keys both from player 3 and from player 5. He adds
them one-by-one (addition is modulo [0, 1)) and sends the resulting vector of keys to
player 1. Simultaneously, player 2 selects at random one of the keys received from
player 3 and encrypts his type with this key. He then substitutes the selected key by
the cypher-type and sends it to player 1 along with all the other keys (without telling
player 1 which key was used to encrypt his type). Lastly, player 1 received a large
vector of encrypted encryption keys from player 4 and a large vector of encryption
keys and the encrypted type from player 2. Player 1 then subtracts these two vectors
(subtraction is component-wise modulo [0, 1)) and forwards the resulting vector to the
designer. The designer can then detect a false report by comparing the two vectors
of messages received from players 1 and 3. Namely, if player 1 truthfully forwards
the message he receives, the two vectors should differ by exactly one component. In
such a case, the designer decodes the type of player 2 according to this component and
implements the appropriate outcome. Otherwise, the designer implements the worst
outcome. By construction, only player 2 knows the key selected to encrypt his type.
Thus, any deviation by players 1, 3, 4 and 5 induces the worst outcome with arbitrarily

high probability: this deters them from lying.
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An essential feature of Theorem 2 is the possibility to punish a detected deviation
with a worst outcome. It is worth stressing, however, that our definition of a worst
outcome is stronger than necessary since it does not depend on the social choice function
we aim to implement. It would be enough to find an outcome worse than any outcome
in the range of the social choice function.!

If such a worst outcome does not exist, the main difficulty for the designer is the
choice of an appropriate alternative to implement whenever a false report is detected.
A characterization of networks that allow to implement all incentive compatible social
choice functions in all environments is left as an open problem. Yet, we provide suffi-
cient conditions in Section 5.3. Naturally, weak 2-connectedness remains a necessary

condition.

4.3 Connections with computer science

An essential feature of our results is the use of encryption techniques to secure the
transmission of messages from players to the designer. As already alluded in the
introduction, our work is closely related to the computer science literature on secure
transmission of messages, which we now review. We first discuss two important notions

of security, commonly found in the computer science literature.

Message security. Informally, the transmission of a message from a sender A to
a receiver B is reliable if A can communicate with B and no adversary, i.e., a potentially
malicious third party (a hacker), can tamper with the content of the message. The
transmission of a message is secret if no adversary can find out the content of the
message sent. Information transmission is said to be secure if it is both reliable and
secret. To discuss more precisely the notion of secrecy, let us assume that A and B
have a reliable channel of communication. There are two main approaches to message
security in computer science: cryptographic and information-theoretic security.

A message transmission is cryptographically secure if it is computationally very
hard (typically NP-hard) for an adversary to find out the content of the message. This

approach assumes that the adversary is computationally limited, that is, has no more

1Tt is also worth noting that Theorem 2 remains true if we consider environments with a bad
outcome, i.e., an outcome g such that w;(f(6),0) > wu;(a,0) for all i € N, for all § € ©. For

completeness, the proof is in the appendix, Corollary 3.
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computational power than a Turing Machine. The reader is referred to the seminal
papers of Diffie and Hellman (1976) and Rivest et al., RSA, (1978). In particular,
classical encryption techniques with public and private keys adopt this notion of se-
curity. For instance, the RSA encryption scheme with public keys rests on the idea
that computing two large prime numbers p and ¢ knowing their product n = pq is
computationally very hard.

By contrast, information-theoretic security considers adversaries with unbounded
computational power and requires pieces of communication between A and B, which
may be eavesdropped, to be probabilistically independent of the content of the message.
This concept was originally introduced by Shannon (1949) (see also among others, Shafi
and Goldwasser, 1984, Dolev et al. 1993). A simple method to achieve information-
theoretic security is to map the message m to be sent to a number in, say, {1,...,n},
and to add (modulo n) a uniformly distributed random key X. The encrypted message
(X +m) mod n is then uniformly distributed and independent of m: it can be publicly
disclosed without harming security. The probability of guessing m correctly is 1/n and
thus can be made arbitrarily small. Our encryption method (Lemma 2) is a continuous
version of this method such that the probability of guessing correctly is zero.

As a game-theoretic model, our work follows the latter approach: the agents we
consider are unboundedly rational players. These are very similar to the Byzantine
adversaries considered in computer science, i.e., malicious players with unbounded
computational power. The key difference, however, is that rational players respond to

incentives: they do not behave maliciously if it is not optimal for them to do so.

Security in networks. Assume now that the sender A and the receiver B are
some distant nodes in a network, so that there is no secure channel of communication
between them. The natural question is then to characterize the networks, which guar-
antee the secure transmission of messages from A to B in the presence of Byzantine
adversaries. This is the object of the computer science literature on secure transmission
of messages. A seminal contribution is Dolev et al. (1993), who show that if the adver-
sary controls at most ¢ nodes, then (2¢+ 1)-connectedness of the network is a necessary
and sufficient condition for the secure transmission of messages from A to B. Dolev
et al. assume unicast communication, i.e., a node can send different messages to its
neighbors. Alternatively, Franklin and Wright (2000) study broadcast communication:

any message sent by a node is automatically sent to all his neighbors. They show that
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(2t 4+ 1)-connectedness is again a necessary and sufficient for perfect security.!?

Unlike our approach, all these results assume undirected graphs and crucially use
the possibility of messages going back and forth from the sender to the receiver (re-
peated communication). Dolev et al. (1993) show that in 1-way problems, i.e., if the
information flows only from the sender to the receiver, a necessary and sufficient condi-
tion for the secure transmission of messages is the (3¢t+1)-connectedness of the network.
Considering directed networks, Desmedt and Wang (2002) show how this bound can
be lowered if there are channels of communication from the receiver to the sender.
Namely, they show that if for v < t, there are 2t + 1 — u disjoint directed paths from
the sender to the receiver and u disjoint directed paths from the receiver to the sender
(these u paths are also disjoint from the 2t 4+ 1 paths from the sender to the receiver),

then secure transmission of messages is possible.

Our contribution to information security. The above discussion suggests
a reinterpretation of our results in the language of computer science. Starting from
a communication network, a social environment and an incentive compatible social
choice function f, we construct a mechanism, which implements f as a Bayesian-Nash
equilibrium of the induced game. A necessary condition for this result is the possibility
to construct a communication protocol with the following properties: i) the designer
correctly learns the profile of types, ii) no player gets information beyond his own type,
and iii) no player has an incentive to mis-execute the communication protocol. Part
(ii) corresponds to the computer science requirement of secrecy, while parts (i) and (iii)
are the counterparts of reliability.

Before proceeding, it is worth emphasizing that the concept of Bayesian-Nash equi-
librium implies that the adversary is a single potential deviant player. Such adversary
has unbounded computational power, responds to incentives and controls at most one
node (¢ = 1). Our main results are then reinterpreted as information transmission
against this class of adversaries.

In Theorem 1, we assume common independent belief and private values, and con-

struct a mechanism such that each player forwards the messages he receives, gets the

12Franklin and Wright (2000) also consider a weaker notion of security: security is almost perfect
when the adversary has an arbitrarily small probability of modifying the message content and to
learn the content of the message. They show that (¢ + 1)-connectedness is necessary and sufficient for

almost-perfect security (see also Renault and Tomala, 2008).
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same expected payoff regardless of the messages he forwards (see Section 2 and the
proof of Theorem 1). With this in mind, our implementation problem is rephrased as

the following problem of information transmission:

P1: Characterize the networks for which there exists a communication protocol such
that if all players abide by the protocol, the designer correctly learns the entire profile

of types and no player gets additional information.

In the presence of a worst outcome, the designer has the possibility to punish all
players if he detects a deviation and we construct a protocol such that any tampering
with a message is detected with arbitrarily high probability by the designer (see Section
2 and the proof of Theorem 2). The implementation problem gives thus rise to the

following problem of information transmission:

P2: Characterize the networks for which there exists a communication protocol such
that no player gets additional information and if all but at most one player abide by the
protocol, then the designer either correctly learns the entire profile of types or detects

a deviation with arbitrarily high probability.

Our main contribution to the literature on secure transmission of messages in net-
works is thus to solve problems P1 and P2 for directed graphs and 1-way problems:
the solutions are the weakly-2-connected graphs. Compared with the computer science
literature cited above, our approach through incentives allows to get a much weaker
connectivity requirement. This statement is a by-product of the proofs of our main
results, which are structured as follows. We first show that on any weakly-2-connected
graph, there exists a communication protocol such that if all players abide by the
protocol, the designer correctly learns the entire profile of types and no player gets ad-
ditional information. Theorem 1 then easily follows: we use the common prior to make
players indifferent between all the messages they may forward. The proof of Theorem
2 uses a multiple key technique, akin to authentication schemes (see, e.g., Rabin and
Ben-Or (1989)), but requires no prior knowledge of any public or private key. To the

best of our knowledge, this technique is new.

Finally, let us remark that the use of continuous message spaces, while consistent
with mechanism design theory, is unappealing from a computer science perspective.
Theorem 1 remains valid with finite message spaces, provided that prior beliefs are

rational numbers: encoding keys are then chosen in the integers modulo n, with n
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large. Theorem 2 extends to finite messages spaces without restrictions on priors.

5 Extensions and Robustness

This section discusses various aspects of our problem and offers some generalizations.

5.1 Active designer and two-way networks

A salient feature of our model is that the designer is not active in the communication.
However, in some situations, it is natural to assume that the designer can communicate
with the players. For instance, a CEO has the possibility to communicate with his
employees either publicly or privately.

So, let us assume that the designer can communicate with some players, so that
C(0) # 0. An important consequence of assuming an active designer is that the network
may then contain cycles. We therefore need to relax the assumption of acyclicity.
Clearly, the conditions of strong 1-connectedness and weak 2-connectedness remain
necessary for the implementation of all incentive compatible social choice functions.
The main insight is that these conditions are also sufficient. In other words, our results

extend naturally to networks with cycles.

Theorem 3 For all environments £ with common independent beliefs and private val-

ues or with a worst outcome, Fx(E) = Fyn+(E) if and only if N is weakly 2-connected.

To get an intuition for this result, consider the network A7 in Figure 7.

The idea is simply to let the designer play the role of a provider of keys, as in the
proof of Theorem 1 or Theorem 2. To be more specific, let us consider the transmission
of player 3’s private information in the network A7, when there is a worst outcome.
The designer draws a large number of encoding keys and sends them to player 2. Player
2 forwards the encoding keys to player 3, who selects one key at random and uses it to
encode his type. He then sends the unused keys and the encoded type to player 1, who
should forward this message to the designer. Lastly, the designer compares the vector
of keys he sent to player 2 and the vector of keys he receives from 1, and decodes the

type of player 3 accordingly. As in the proof of Theorem 2, any deviation by player 1
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Figure 7: Communication network N7

or player 2 is detected with arbitrarily large probability, no information about player

3’s type is revealed and the designer correctly learns the type of player 3.

Theorem 3 admits as a special case two-way communication networks where players
can exchange messages back and forth along each edge. Such networks are naturally
represented by undirected graphs where there is an edge between ¢ and j whenever ¢
and j can converse privately. For this class of networks, strong 2-connectedness and
weak 2-connectedness coincide, since one can choose any orientation of the edges. We

obtain thus the following.

Corollary 1 For all environments €& with common independent beliefs and private
values or with a worst outcome, Fy(E) = Fy«(E) if and only if the two-way network

N is 2-connected.

Finally, let us mention that the assumption of an active designer is important in
generalized principal-agents models (Myerson (1982)), where players also have to take
an action, thus creating a moral hazard problem in addition to the adverse selection
problem. In such models, the designer has to “securely recommend” an action to each
player. We believe that our results extend to this more general framework. Indeed,
if the designer has two disjoint paths of communication to each player (directed or
undirected), then he can follow our protocols to privately and reliably make a recom-

mendation to each player. A careful analysis of this issue awaits future research.
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5.2 Direct mechanisms

Another central feature of our results is the use of encryption techniques to secure the
transmission of messages from the players to the designer. This is largely inescapable
if we want to implement all incentive compatible social choice functions (in section 5.5,
we show that implementing all such functions in pure strategy equilibria is not possible
except on N'*).

However, “direct” mechanisms —where players simply announce their types to their
neighbors and forward messages— might suffice if we restrict attention to specific en-
vironments or to some specific incentive compatible social choice functions. For in-
stance, consider the set of ez-post incentive compatible social choice functions. A

social choice function f is ex-post incentive compatible if for all : € N and 0 € O,

wi(£(0),0) > u;(f(0,0_;),0) for all ¥, € ©,.13

Proposition 1 If the communication network N is strongly 3-connected, then any
ex-post incentive compatible social choice function is implementable on N by a direct

mechanism.

The intuition for Proposition 1 is simple. If a social choice function f is ex-post
incentive compatible, then every player has an incentive to truthfully reveal his private
information, even if he were to know the private information of some other players
(e.g., his neighbors). There is therefore no particular need for encryption techniques:
players can simply truthfully report their types on all paths to the designer. In the
computer science terminology, secrecy is not an issue. Yet, it remains the issue of
reliability: players must have the incentive to truthfully forward the messages they
receive. However, with three disjoint directed paths of communication from each player
i € N\ D(0) to the designer, a simple majority argument guarantees that no player
has an incentive to misreport the messages he receives.

Furthermore, it is clear that not all ex-post incentive compatible social choice func-
tions are implementable by direct mechanisms on weakly 2-connected networks, even
in environments with common independent beliefs and private values or a worst out-
come. For a counter-example, we refer the reader to the example in Section 2. So,

weak 2-connectedness is not a sufficient condition.

13Bergemann and Morris (2005) show that a social choice function is implementable on all type

spaces if and only if it is ex-post incentive compatible.
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In some environments, however, some ex-post incentive compatible social choice
functions can be implemented by direct mechanisms, even on strongly 2-connected
networks. We illustrate this possibility with the help of two important economic ex-
amples: a second-price auction and the provision of a public good.

Consider an auction with three bidders, labeled 1, 2, and 3. There is a single object
to be allocated, bidder i values the object at 6;, and bidder ¢’s payoff is 0; — z; if he is
allocated the object at price x; and zero, otherwise. Consider the strongly 2-connected

network AN in Figure 8.

Figure 8: Communication network N

The designer aims at allocating the object to the bidder with the highest valuation
(if there are several such bidders, choose one randomly). A simple and direct mech-
anism to implement the social choice function is as follows. Bidder 3 is required to
truthfully report his valuation 63 to both bidders 1 and 2. Bidder 1 (resp., bidder 2)
has to truthfully report his valuation 6; (resp., 65) along with bidder 3’s valuation 63
to the designer. Let ((fy,61), (65, 62)) be a profile of messages received by the designer.
The designer computes the bid-profile (6;, 6,, max(63,62)) and allocates the object to
the highest bidder and charges a price equal to the second-highest bid: a second-price
auction.

Since a second-price auction implements the efficient allocation in weakly dominant
strategies (on the star network), no bidder has an incentive to misreport his own
valuation, regardless of the reports of the other bidders. We now argue that bidder 1
has no incentive to misreport bidder 3’s valuation. (A symmetric reasoning holds for

bidder 2.) Clearly, if bidder 1 reports é§ < 03, he does not affect the outcome since
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max(é§, 05) = 03. Alternatively, if bidder 1 reports é§ > f3, he does affect the outcome
of the auction. However, this is not a profitable deviation: it not only decreases his

likelihood of winning the object, but also increases the price paid if he wins.

The second example is about the provision of a public good and is adapted from
Bergemann and Morris (2009). Assume that there are three players and that ©; C
[0,1) for each player i € {1,2,3}. The utility to player i is (0; + v >_;;0;)x0 + i,
where 1z is the level of public good provided and x; the monetary transfer to player ¢
(v > 0). The cost of providing the level of public good x¢ is (1/2)(x)?. The designer
aims at implementing the efficient level of public good, i.e., (1 + 27v)(0; + 05 + 63), at
the type profile (01, 6s,63). Again, consider the network Ag in Figure 8. As in the
previous example, the players are required to truthfully report their types along with
any message they might have received. Let ((fy,61), (65,62)) be a profile of messages
received by the designer. The designer then computes the type-profile (él, 0, ég) with
05 := min(61,62), produces the level 29 = (1 4 27)(f; + 65 + 05) of public good and
establishes the transfer z; = —(1 + 27v)[v0; > i 0, + (1/2)82 — 2y > i 0,] to each
player i. Note that up to the term (1427)2y Z#i 6; independent of player ¢’s type, the
transfers are identical to the generalized Vickrey-Clarke-Groves transfers of Bergemann
and Morris (2009). In particular, they guarantee that the social choice function is ex-
post incentive compatible (on the star network). However, and unlike the first example,
the mechanism does not implement the social choice function in dominant strategies,
even on the star network (unless v = 0). Player 1 (resp., player 2) might therefore have
an incentive to misreport his own type, whenever his report of player 3’s type leads
to ég being different from player 3’s true type.!* We argue nonetheless that no player
has an incentive to misreport in that example. To do so, we compute the difference
51((01,61)]0) in player 1’s ex-post payoff between a truthful report (f;,65) and the
report (él, 9}) at the type profile 6:

o 1 . ) .
51((6:,05)]0) = 5(91 —01)? + [0 + 7 (0g + 03 — 01) + 27](05 — 05),

with 63 = min(é’g, 05), the minimum between player 1’s report about player 3’s type

l4Remember that ex-post incentive compatibility guarantees that no player has an incentive to
misreport his own type for all truthful reports of his opponents (but not necessarily for all reports of

his opponents).
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and player 2’s (true) report about player 3’s type. Since s < 65 and 6 € [0,1)3,
51((A1,01)]0) > 0 for all 4, and thus player 1 has no profitable deviation. A similar
reasoning applies to player 2. As for player 3, he clearly has no profitable deviation

since the social choice function is ex-post incentive compatible.

Both examples generalize to any number of players provided that the communi-
cation network is strongly 2-connected. Lastly, note that a common feature of both
examples is the existence of a “sufficient statistic” to aggregate conflicting reports
about player 3’s type, with the additional property that this aggregate statistic deters
players 1 and 2 from lying about player 3’s type. We suspect that this property can

be generalized and leave it as an open issue.

5.3 All environments

We give sufficient conditions on the network for implementing all incentive compatible
social choice functions, regardless of the environments.

Recall that a network is strongly m-connected if for each player i € N\ D(0), there
exist m disjoint directed paths from player ¢ to the designer. Likewise, a network is
weakly m-connected if for each player i € N\ D(0), there exist m disjoint undirected
paths from player ¢ to the designer.

Theorem 4 If the communication network N is strongly 2-connected and weakly 3-

connected then, Fy(E) = Fx+(E) for all environments E.

The intuition is the following. We first prove that for each strongly 1-connected
and weakly 2-connected network, there exists a mechanism such that any false report
of messages is detected with probability 1 and no additional information about the
types is revealed (the construction is in the appendix, Lemma 8).

Next, consider a strongly 2-connected and weakly 3-connected network and fix a
player i € N \ D(0) who wants to transfer his type to the designer. Notice that for
each player j # i, j # 0, the sub-network N \ {j} (obtained from N by deleting
Jj) is strongly 1-connected and weakly 2-connected. From the above, there exists a
“sub-mechanism” on this sub-network that detects deviations with probability 1. A
simple “majority” argument then ensures that no player has an incentive to lie. More

precisely, any unilateral deviation of player j # ¢ is almost surely detected, while the
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sub-mechanism on N\ {j} is truthfully executed and allows the designer to correctly

decode the type of player .15

5.4 A continuum of types and alternatives

Many applications of mechanism design theory e.g., contract theory and auction theory,
assume a continuum of types and alternatives. While we have casted our results in finite
settings, they naturally extend to environments with continuous type and alternative
sets.16

We now explain how to extend Theorem 1. A key feature of the proof of Theorem 1
is that player ¢ transforms his type 6; into a pseudo-type z;, which reveals his type and
is unconditionally uniformly distributed in [0, 1). The pseudo-type is then transmitted
through the network by a communication protocol. It is thus enough to show how to
construct the pseudo-type in the continuous setup. Let each player’s type space ©; be a
subset of [0, 1) and let types be independently distributed. Let P be the common prior
and G; be the cumulative distribution function of the marginal P’ over ©;. Assume that
G, is continuous. The key observation to make is that G;(6;) is uniformly distributed
on [0,1) and therefore, can be used as a “pseudo-type.” If G; has atoms, let 7 be an
atom of G, i.e., limgqer Gi(60;) := G7 (6;) < G (07) =: limg, 6= Gi(6;). Let G5(67) be
the realization of a uniform draw on [G7 (67), G5 (07)). Let G;(6;) = G;(6;) if 6; is not
an atom. Then, G;(6;) is uniformly distributed (unconditionally on 6;) and reveals the
value of 6;, thus is a valid pseudo-type. The mechanism construction of Theorem 1
then extends verbatim.

As for Theorem 2, it extends straightforwardly to a continuum of types and alter-

natives. In sum, all our constructions naturally extend to the continuous case.

5.5 Pure equilibria

With the notable exception of Serrano and Vohra (2009), the literature on implemen-
tation in Bayesian environments has entirely focused on the implementation of social
choice functions in pure equilibria (see Jackson (2001) for a survey). By contrast, the

recourse to equilibria in mixed strategies is essential for our results. In effect, to trans-

15We thank Thomas Voice for suggesting this argument to us.
16 Appropriate measurability and integrability assumptions have to be made.
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mit securely their types to the designer, it is essential for the players to encrypt their
types with randomly generated keys (mixing). Although the use of randomly gener-
ated keys seems natural in our context, and indeed used in daily life (internet banking,
online shopping, etc.), we might legitimately wonder whether similar results hold in
environments where only pure equilibria are considered. The next theorem states that
the set of social choice functions partially implementable on N in pure equilibria co-
incides with the set of incentive compatible social choice functions, irrespective of the
utility functions, if and only if every player is directly connected to the designer. There
is a sharp divide between implementation in pure equilibria and mixed equilibria. De-
note F;"(€) the set of social choice functions (partially) implementable on N in pure

equilibria when the environment is £.

Theorem 5 FY"°(€) = Fu°(E) for all environments € with common independent
beliefs and private values or a worst outcome if and only if each player is directly

connected to the designer i.e., D(0) = N.

The intuition is simple.!” If player 7 is not directly connected to the designer and
if the social choice function depends on his type, then he must send an informative
message to at least one other player, say player j. Given his updated beliefs, player
J might then have no incentive to truthfully report his own private information. This
reasoning is valid regardless of how many disjoint paths there are from player i to the
designer.

While intuitive, Theorem 5 has remarkable implications for the topology of com-
munication networks and implementation in pure equilibria. All but one player, say
player 1, might be directly connected to the designer, player 1 might have n—1 disjoint
paths of communication to the designer and yet, there exist incentive compatible so-
cial choice functions, which are not implementable on that network in pure equilibria.
While some theorists might feel uncomfortable with equilibria in mixed strategies, the

mixing through encoding techniques, as considered in this paper, seems quite natural.

17See the working paper for a formal proof.
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6 Conclusion

This paper completely characterizes the communication networks for which, in any
environments (utilities and beliefs) with either common independent priors and pri-
vate values, or with a worst outcome, every incentive compatible social choice function
is (partially) implementable. We show that any weakly 2-connected communication
network can replicate the incentive properties of the direct revelation mechanism. Im-
portantly, our constructions couple encryption techniques together with incentives to

secure the transmission of each player’s private information to the designer.

7 Appendix

7.1 Timing Structure

In this section, we prove that the communication rule stating that “a player sends
his messages after having received all his messages” generates a well-defined timing

structure.

Lemma 1 Let N be a strongly 1-connected and acyclic network. There exists an
integer T and a timing function t : N — {1,...,T} such that t(i) is the stage at
which player i sends his messages. Moreover, ij € N = t(i) < t(j).

Proof Let Vi = {i € N : D(i) = 0} be the set of players who cannot receive
messages. This set is clearly non-empty. For otherwise, there exists a cycle in N. If
Vi = N, then N = N* and the proof is complete. If V; # N, let Vo, = {i : i ¢
Viand D(i) C V3 }.

Claim 1 If V] # N, Vs is non-empty.

Proof. Define W = Uy, C(i) as the set of players the players in V; can communicate
to. By construction, if j is in Wy, D(j) is non-empty and therefore, j ¢ V. Consider
then a directed path 7 of maximal length among the directed paths from a player in W,
to the designer (such a path exists by strong 1-connectedness). Let j be the starting
point of this directed path. We claim that j is in V5. By contradiction, suppose that
there exists k € D(j) with k ¢ Vi. There exists then a directed path from some point
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m in Vi to k, denoted 7 = m — | — ---k — 7. It follows that [ is in W; and 7

contradicts the maximality of 7. °
If VUV, = N, the construction ends. If V3 UV, # N, let

Va={i:i¢ ViUVyand D(i) C Vs UVa}.

We continue this construction by induction. Assume that for some k£ > 2, the set V;

has been defined, s < k. If Us<; Vs = N, the construction ends. If Us<xVs # N, let,
VkJrl = {Z 1 ¢ Usgk‘/; and D(Z) Q Usgkv:e}-

Claim 2 If Us<xVs # N, Vi1 is non-empty.

Proof. Let Wii1 = {J & Us<iVs + Fi € Us<iVi, 7 € C(i)}. Since Us< Vs # N,
Wii1 is non-empty. Consider then a directed path 7 of maximal length among the
directed paths from a player in Wy, to the designer (such a path exists by strong 1-
connectedness). The starting point j of this path is in V}.;. By contradiction, suppose
that there exists k € D(j), k ¢ Us<iVs. There exists then a directed path from some
point m in U< V5 to k. The follower of m on this path is in W}, and this contradicts
the maximality of 7. °

The sequence (Us<x V)i is a weakly increasing sequence of sets and is strictly in-
creasing as long as Us<; Vs # N. Since N is finite, there exists k such that Us<;V, = N.
The timing function is then defined as t(i) = s if i € V. O

7.2 Probabilistic encryption

We present three important properties about the modular manipulations of real num-
bers in [0,1). For a real number x, we denote |z] the greatest integer less than or
equal to x, and xmodg; = = — [z, the fractional part of z. For (z,y) € [0,1) x [0, 1),
we denote @y = (v +y)modg; and z &y = (z — y) mody 1.

Lemma 2 1. For each (z,y) € [0,1) x[0,1), (z®y) Sy = x. More generally, [0,1)

1s a commutative group for &.

2. LetY be a random variable in [0,1) and x € [0,1). IfY is uniformly distributed,
then so aret®Y andx oY
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3. Let XY be independent random variables in [0,1). If Y is uniformly distributed,
then so are Z = X @Y and W = X ©Y. Furthermore, (X,Y,Z) (resp.,

(X,Y,W)) are pairwise-independent.

Proof of Lemma 2. (1) Consider any pair (x,y) € [0,1) x [0,1). If x + y < 1 the
statement is clear. If z+y > 1, (z+y) modp; = z+y—1. Thus (x+y) modg1—y = z—1
and (z — 1) modg; = x.
(2) For each z € [0, 1), we have
PxaY <z) = P(za+Y)<zYe[0,1—2z])+
Pe+Y —-1<zYe(l—-unl])
z—x+x ifz>ux
z4+1—x—(1—-2) ifz<z
= z
Thus, X @Y is uniformly distributed. Similarly, for each z € [0, 1),

PzoY <z) = Pla-Y <zYel0z])+
Plx—Y +1<2Y € (z,1])
r+1l—(r+1—-2) ifz>x
240 if z<x
= z
Thus, x ©Y is uniformly distributed.

(3) We only show that X and Z are independent, the rest being similar. For each
2€[0,1),P(Z<z|X=2)=PxdY <z) ==z from (2). O

7.3 Information transmission in weakly 2-connected network

In this section, we describe the structure of directed paths in weakly 2-connected
networks and deduce that messages can be secretly transmitted from each player to the
designer. These results are building blocks for the proofs of our main theorems.
Throughout, all networks (directed graphs) are assumed to be acyclic, strongly 1-
connected and weakly 2-connected. Given a (directed) network N, we denote N'* the

associated undirected network: ij € N if and only if ij € N or ji € N.
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Our definition of weakly 2-connected networks is closely related to the definition of
2-connectedness for undirected graphs. An undirected graph is 2-connected if for each
pair of distinct vertices ¢ and 7, there are two disjoint paths from 7 to j. There are
several equivalent statements for 2-connectedness of undirected graphs and the reader
is referred to Bollobas (1998, Chap. III.2). For instance, define a cut-vertex as a
vertex ¢ such that deleting ¢ and all its adjacent edges yields a disconnected graph.
The graph is 2-connected if and only if there is no cut-vertex. Equivalently, for each
distinct vertices 7, 7 and k, there is a path from ¢ to j that does not contain k.

In our model, the designer (player 0) plays a special role, so that the network N is
weakly 2-connected if and only if no player ¢ € N is a cut-vertex of N'*. The designer,
however, can be a cut-vertex. In such case, let a block be a maximal 2-connected
subgraph of N'*. The undirected network N is a collection of blocks attached at 0.
See Figure 9 for an example. In the sequel, we assume for simplicity that N'* is the
only block, so that N* is 2-connected. (If there are several blocks, all our arguments

remain valid block-by-block.)

Figure 9: Blocks attached at 0

In the sequel, we use the letters a, b, etc. to denote nodes (players) in the network.
This must not be confused with alternatives.

We define a loop, denoted L(a,b), in N as a pair of directed paths with same origin
a and end-point b, and no vertex in common except for the origin @ and the end-point
b. The loop L(as, by) is a successor of the loop L(ay,by) if ay ¢ L(ay,by), by ¢ L(ay,by)
and the intersection L(aq, by) N L(az, by) is a path which contains at least one edge and
the vertex b;. See Figure 10 for an example.

We use the following notation: we write i — k for a directed path (ig = 4,149, ...,ig =

k) from player i to player k and i — k — [ for a directed path from ¢ to [ through
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by
b

a2

a1

Figure 10: L(ag, be) is a successor of L(ay,b;)

k, etc. We say that two directed paths (ig = 4,42, ...,ig) and (jo =1, ja, ..., Jg) cross
each other if there exist r* and ¢* such that j, = i,«.

To prove our main results, we use the following decomposition of directed graphs
into successive loops. We assume that there are at least three player (if n = 2, the only

strongly 1-connected and weakly 2-connected network is such that D(0) = N).

Proposition 2 Let n > 3. For each i € N\D(0) and each j € C(i), there erists a
finite sequence of loops L(ay,by), ..., L(ay,byr) such that:

1. the edge ij belongs to L(ay,b),

2. foreachm=1,...,M—1, L(ams1,bms1) 15 a successor of L(ay,, by) and a1 ¢

Ug<mL(aq, by), and
3. by = 0.

Proof This is trivially true if n = 3. Assume that n > 4. The proof rests on several

lemmas.

Lemma 3 Let N* be a 2-connected undirected graph. Let A be a mon-empty set of
vertices and let b and ¢ two distinct vertices that do not belong to A. There exists

a* € A and a path from a* to c that has no vertex in (A\{a*}) U {b}.

Proof. Since N'* is 2-connected, for each a € A, there exists a path from a to ¢ that
does not contain b (otherwise, b would be a cut-vertex). This path must leave the set

A to reach ¢, thus the last point a* in A on this path has the desired properties. .
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Figure 11: A sequence of loops

Lemma 4 Leti € N\D(0) and j € C(i), there exists a loop that contains the edge ij.

Proof. Remember that for each player £ € NN, there exists a directed path from k to
0 by strong 1-connectedness and thus, C'(k) # 0. Consider a player i € N\D(0) and
JjeC(®).

e Case 1. If C(i) contains another player k # j, then there exists a directed path
from 7 to 0 through the edge ij and a directed path from ¢ to 0 through the edge
ik. These paths must cross each other (possibly at 0), thus we have found the

desired loop.

e Case 2. If C(i) = {j}, denote Dy (i) the set of players who have a directed
path to i. From Lemma 3, there exists k& € D, (i) and an undirected path
(ko = k,k1,...,kr = 0) from k to 0 such that no player k, is in D (i) U {i}
for r > 0. It follows that edge kk; is directed from k to k;. We choose then a
directed path from k; to 0 to obtain the directed path k& — k; — 0 one the one
hand and the directed path k& — i — 7 — 0 on the other hand. These paths must

cross each other and therefore, define a loop with origin k. (The first crossing
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point defines the end-point of the loop.) The end-point of the loop cannot be in
Do (i) U {i} since k1 ¢ Dy (i). It follows that the edge ij is contained in this
loop.

We now construct the desired sequence of loops. We start with i € N\D(0) and
Jje ().

First step. Let L(ay,b1) be a loop containing ij and such that t(by) is mazimal
among all loops that contain ij (t() is the timing function constructed in Lemma 1).
(Such a loop ezists by the above lemma.) If by = 0, the construction ends. If by # 0, let
c1 € C(by) and denote dy and ey the two predecessors of by on each path of L(ay,by).

The construction then proceeds inductively. Assume that L(ay,b1), ..., L(aa, bar) have
been constructed for some M > 1. If by, = 0, the construction ends. If by, # 0, let
cy € C(by) and denote dyy and ey the two predecessors of by, on each of the two
disjoint directed paths of L(ans, byr).

For each subset of players V', let us denote D, (NN') the set of players j for whom
there exists a directed path from j to some player in N’. Clearly, D(N' U N") =
Doo(N") U Do (N") and Do (Doo(N')) = Doo(N').

Lemma 5 There exists a loop L(anr+1,bnr41) such that apri1 & Ug<arL(ag, by) U Doo(7)
and which contains either the path dy; — by — cpr or the path ey — by — ¢
Furthermore, this loop is disjoint from Uy<p—1Doso(L(ay, b)) U Doo(4).

Proof. From Lemma 3, there exists uy € Uy<yrDoo(L(ay, by))UDo () and an undirected
path (Ao = uar, A1,...,As = 0) from uy, to 0 disjoint from (Uy<prDoo(L(agy, by)) U
Doo(i) U {bp})\{unr}. Assume that ups € Doo(L(aps, byr)). There exists a directed
path from uy; to by, which goes either through d;; or through e;;. Without loss of
generality, assume that this path goes through d;;. As before, the edge u ;A1 is directed
from wuys to A1, and we choose a directed path from A; to 0 to obtain the directed path
upr — A — 0 on one hand and the directed path uy;, — dyr — by — cpr — 0
on the other hand. These paths must cross each other and therefore, define a loop
with origin wps. Since A\ ¢ Uy<prDoo(L(agq, by)) U Doo(4), the path Ay — 0 cannot
go through U<y Doo(L(ay, by)) U D (7), and thus the end-point of the loop is not in
Ug<mr Doo(L(ag, by)) U Do (@) either. The path dyy — by — ¢y is thus contained in the

new loop.
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Finally, up; cannot be in Uy<pr—1 Doo(L(ay, by))UDoo (7). Otherwise, the construction
above provides a loop that would contradict the maximality property of b,,, for some
m < M. That is, since ¢(bar41) > t(by), the newly constructed loop would have been
used at an earlier stage of the induction. Similarly, the origin ay;y; of the new loop

cannot be in U< Doo(L(ay, by)) U Doo(4). .

Inductive step. Let L(api1,bpv1) be a loop containing dyy — by — ¢y or epyr —
by — ey and such that t(by11) is mazimal among all loops that contain dy; — by —
ey or ey — by — cyr. If byrpr = 0, the construction ends and otherwise, continues

inductively.

By construction, there is a directed path from b, to by,41, thus t(b,) < t(byi1)
from the definition of the timing structure. It follows that the construction stops after

a finite number of iterations. This completes the proof. U

Proposition 2 is a building block for the construction of a protocol (mechanism
and strategies) that allows player ¢ to secretly send a message to the designer. Let us
summarize our findings. Proposition 2 has the following implications: For each player
i€ N\ D(0) and j € C(i), there exists a finite sequence of loops (L(ay,, by,))Y_, such
that (i) ¢j € L(ay,by), (ii) byy = 0 and (iii) the loop L(a@mi1,bmy1) is a successor of
the loop L(am,bn), m =1,..., M — 1, with the additional property that there exists
U, € L(@p, by ) VL(Gp 41, bmy1) such that the directed path from w,, to b, in L(ay,, by,)
is part of the directed path from w,, to b,,+1 in L(am1,bme1). Moreover, the sequence
of loops defines a directed path from player ¢ to the designer through all players b; to
bar—1. To see this, note that player ¢ belongs to the loop L(ay,b;) from player a; to
player b; and thus, belongs to one directed path to b;. Similarly, b; belongs to the loop
L(az, be) and thus, has a directed path to be. Iterating this argument, we construct a
directed path from ¢ to the designer through the players b; to by,—1. We will use this

directed path to secretly transfer the private information of player ¢ to the designer.

Proposition 3 Let v be a random variable in [0, 1) privately known to playeri. There
exists a protocol M; (i.e., a mechanism and a profile of strategies) on N such that
whenever all players follow the prescribed strategies, the designer correctly learns the
value of v. Moreover, the messages received by any player j # i are probabilistically

independent from v.
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Proof 1Ifi € D(0), this is straightforward. Fixi € N\D(0) and consider the sequence
of loops constructed in Proposition 2. We divide players into several categories.

- A player who belongs to one loop is active. All other players are inactive. Inactive
players do not send or receive messages (their message sets are singletons). Let us focus
now on active players.

- A player a,, who is the origin of a loop is a provider.

- A player b,, who is the end-point of a loop is a lock-opener.

- The player u,,, who is the first point on the intersection of the two successive loops
L(am, by) and L(api1,bmi1) is a lock-closer.

- Other active players are transmitters.

By construction, note that a provider has no active predecessor and exactly two
active successors. A lock-opener, or a lock-closer, has two active predecessors and
one active successor. Transmitters have exactly one active predecessor and one active
successor. Finally, player ¢ is either a transmitter or a provider. For each loop, we label
Left (L) the path that contains the lock-closer and Right (R) the other. The strategies

for active players other than player i are as follows:

e Each transmitter truthfully forwards the message received from his active prede-

cessor to his active successor.

e Each provider a,, draws an encryption key X,, uniformly in [0, 1) and sends it to

its two active successors.

e Each lock-closer u,, receives two numbers x,, and x,, 1 from his two predecessors.
He computes z,, = x,,, ® x,,,11 and sends z,, to his active successor. Remark that

there is no lock-closer w41 in the last loop L(ays, bas).

e Each lock-opener b, (with m < M) receives two numbers z% and xf from his
left and right predecessors. He computes w,, = £ & 22 and sends w,, to his

active successor.

Player 7’s strategy is as follows:

e If he is a transmitter, player i receives x; from his active predecessor and sends

z1 @D v to his active successor.
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e If he is a provider, player ¢ sends X; @ v to his active successor on the left path

and X; to his active successor on the right path.

See Figure 12 for a heuristic illustration of the strategies.
O = b4

by £

Usd ay draws Xy

as draws X3

ay draws X,

ap draws X3

Figure 12: Providers, lock-closers & and lock-openers &

Firstly, we show that this protocol allows the designer to correctly learn the value
of v. To this end, let us assume that these strategies are effectively played and compute
the messages w,, sent by the lock-openers.

The sequence of loops defines a directed path from player ¢ to the designer. This
path contains all lock-openers (b,,) and some lock-closers (u,,) and is uniquely defined
if player ¢ is a transmitter. If player ¢ is a provider, we choose the only such path
that begins with the left path of the first loop. Along this path, let us attach labels to
players. All lock-openers and player ¢ are labeled & and the lock-closers are labeled ®.

For instance, in Figure 12, we have
i = uf = bY = b5 — uf — 05 — by = 0.

This induces a sequence in the alphabet {&, ®}. Let v(b,,) be the number of occurrence
of two consecutive © appearing in the sequence before b, (including b,,). For instance,

in the example above, v(by) =0, v(by) = v(bs) =1, v(by) = 2.
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Lemma 6 If the players follow the above strategies, for each m = 1,..., M — 1, we
have
Wy, = (=1)"Co @ X041

The two messages received by the designer are X and wyr_q.

Consequently, the designer can compute the value v of the private information of player

i, which is Xy © wyy_q if v(bpr—1) is odd and wyr—1 © Xy if v(bpr—1) is even.

Proof. We first compute w; and then proceed by induction. Consider the loop L(ay, by).
Player i is either on the left path of the loop L(ay, b;) or on the right path of L(ay, b;).
In the former case, the left path from ¢ to b; is i® — uf — b7 and the right path is
1 — by. Player b; thus receives Xo @ X; @ v from the left and X; from the right. It
follows that w; = (X, ® X7 & v) © X7 = Xy @ v. Note that in this case v(b;) = 0. See
Figure 13 for an illustration.

In the latter case, the left path is a; — u; — b; and the right path is i© — b7.
Player b, thus receives Xy ® X; from the left and X; @& v from the right. Thus w; =
(X2® X1) & (X1 8ev) = Xo6wv. Note that in this case v(by) = 1. See Figure 14 for an

illustration. We have thus proved the lemma for m = 1.

XooXi0ve Xy

Xo® X1 ®v
X5 >

i: X100

a1:X1

Figure 13: w; with player ¢ on the left path.

We proceed now by induction. Let us assume that for some m < M — 1, w,,_1 =
(—1)*®m-1)y @ X,, and compute w,,. Consider the loop L(ay,,by,). By construction,
this loop contains b,, 1 and u,, and the left path is the one that contains w,,. Thus,
by—1 is either on the left path or on the right path. In the former case, the left

path of this loop is a, — b5 _; — u® — b5 and the right path is a,, — b,,. Since
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XopXi6X16v

Xo® Xy
(T
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@i:Xl@v

a1:X1

Figure 14: w; with player 7 on the right path.

there is also the path a,,,1 — u,, — b,,, the message received by b,, from the left is

X1 @ (=1)Ytrm-1)y @ X, and the message received from the right is X,,. Thus,
Wy, = (Xpny1 @ (_1)u(bm—1)v B Xn) O X=X @ (_1)1/(bm_1),0.

Remark that in this case v(b,,) = v(by,—1). See Figure 15 for an illustration.

!

1
am : Xm bren_l P Wm—1

Figure 15: w,, with player b,,_1 on the left path

In the former case, the left path is a,, — w,, — b,, and the right path is a,, —
bg_l — b5, Since there is also the path a,,. 1 — 4, — by, the message received from
the left is X,,41 ® X, and the message received from the right is (—1)"¢m-y @ X,,.
Thus wy, = (X1 @ Xn) © ((=1)"0n-1)0) = X011 © (—1)"®»-1)y. Remark that in
this case v(by,) = v(by—1) + 1. See Figure 16 for an illustration.

Finally, consider the last loop L(aas,bar), where by, = 0 is the designer. By con-
struction, this loop does not contain a lock-closer u,;,1. One path of this loop goes

through by;_1, i.e., we have ay; — by;_1 — by, and the other is ay; — by,. Other
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Figure 16: w,, with player b,,_; on the right path

players on this loop are transmitters. The designer thus receives wy;_; from the first

path and X,; from the other. The proof of the Lemma is thus complete. .

To complete the proof of Proposition 3, we argue that the message received by each
player j # i is probabilistically independent from v. This is clearly true for inactive
players and for providers. More generally, the only messages that depend on v are
those on the directed path from player i to the designer as constructed above, so the
statement clearly holds for players outside of this path. Transmitters on this path
receive messages of the type X @& v where X is some random variable independent from
v and uniformly distributed. From Lemma 2 (iii), this is independent from v. The very
same reasoning holds for lock-closers. For lock-openers, this is a consequence of the
above computation: since X,, and X, are independent and uniformly distributed,

so are the two messages received by b,,. U

Corollary 2 Let (v;);en be independent random wvariables such that v; is known to
player i only. There exists a protocol M on N such that, whenever all players abide by
the protocol, the designer correctly learns the value of each v;. Moreover, the messages

recetved by any player j are probabilistically independent from (v;)iz;.

Proof From Proposition 3, for each player i, there exists a protocol (mechanism and
strategies) M, such that player i can secretly transfer his private information v; to
the designer without revealing information to the other players. The idea is then to
concatenate all these protocols “in parallel.” That is, each player j plays a role in each

M, (inactive, provider, lock-closer, lock-opener or transmitter), and should play all the
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corresponding roles simultaneously. For instance, if he is transmitter in several M,’s,
he should forward the corresponding messages on the corresponding links. Moreover,
if a player is a provider in one or several M,’s, the random draws must be mutually

independent and independent of messages received. O

7.4 Proof of Theorem 1: sufficiency

From Corollary 2, there exists a mechanism and a profile of strategies such that if
all players follow the prescribed strategies, the designer correctly learns the private
information of each player. We now show that, in an environment with common inde-
pendent beliefs and private values, we can indeed provide the players with appropriate
incentives to follow the prescribed strategies. Roughly speaking, we make sure that
each player is indifferent between all the messages he may send. This is done as follows.

Fix an environment £ with common independent beliefs and private values and an
incentive compatible social choice function f. Denote P! the marginal distribution of
the common belief P on ©;, i.e., this is the common belief of any player j # ¢ on
©;. Without loss of generality, assume that ©; := {1,...,t;,...,T;} for each player
i € N and denote Fi(tl-) = Y.<t P'(63), the cumulative distribution function of P".
Define a partition II; = {II;(1),...,1;(T;)} of [0,1) into T; subsets with II;(t;) =
[Fi(ti - 1),Fi(tz~)) (with Fi(O) = 0). Note that if X is uniformly distributed on [0, 1),
the event {X € II;(¢;)} has probability P*(t;).

Part I. We first consider the problem of implementing the social choice function f;
for which player i is dictatorial, i.e., for any 6;, define f7(6;) € arg max,ec4 u;(a,6;) and
let f7(0;,0-;) = f(0;) for all 6_;. If i € D(0), f7 is clearly implementable. Assume
that ¢ ¢ D(0). We claim that the protocol M; implies the existence of a mechanism
and strategies such that player ¢ has an incentive to truthfully reveal his type and no
other active player has an incentive to manipulate the transmission of information from
player ¢ to the designer.

The mechanism and strategies are as follows:

e Player i of type ¢; draws a random number v; uniformly in II;(¢;) and transmits

it to the designer by the protocol M.

e All other active players follow the strategies constructed in M;.
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e Let ©; be the message decoded by the designer and denote éz = t; if 0; € TL;(¢;).

(See Lemma 6.) The designer implements the alternative f(6;) .

Firstly, observe that the protocol M; implies that each active player sends a real
number in [0,1). Secondly, observe that the unconditional distribution of v; is the
uniform distribution on [0,1). To see this, denote X* a random variable uniformly
distributed on II;(¢;) and observe that v; = Ztszl 1p,—1,3X}". From Proposition 3, it
follows that the designer correctly learns the type of player ¢ if all players abide by
the protocol M;, while no player gets additional information about the type of player
i (posterior beliefs are equal to prior beliefs). So, the expected payoff of any active
player j # i of type 6; is Yo u;(fi(6:),60;) P*(6;).

Thirdly, we show that no active player has an incentive to deviate. This is clearly
true for player i as f; is incentive compatible. Consider player j # ¢ and suppose that
Jj is a transmitter in the loop L(a,, by,) for m =2,..., M — 1. There are several cases
to consider.

Case 1. Player j is on the right path of the loop L(ay,, b,,) from player a,, to player
b, and moves before the lock-closer u,, ;. Under M;, he receives the message x,,.
Suppose that he deviates and sends the message x] . It follows that the designer will
receive the messages (—1)"®v-1(v @ 2/ © 1,,) ® Xj and X, under the deviation, so
that the decoded message is v @ z/, © x,,,. Since v is uniformly distributed on [0, 1),
it follows that the probability that v @ @/, © x,, is in IL;(¢;) is P'(¢;), regardless of z/,
(see Lemma 2(ii)). Player j is thus indifferent between sending z,, and /.

Case 2. Player j is on the right path of the loop L(a,,,b,,) from player a,, to player
b, and moves after the lock-closer u,,_1, but before the lock-opener b,,_;. Under
M, player j receives the message x,, ® x,,_1 from the lock-closer u,, 1. Suppose
that he deviates and sends the message 2/,. It follows that the designer will receive
the messages (—1)"®v-1)(v @ 2! © 1, © Ty_1) ® Xy and Xy, under the deviation.
Since all random variable are uniformly distributed on [0, 1), so are their addition @
or subtraction © (this follows from Lemma 2) and consequently, player j is indifferent
between sending z,,, & z,,—1 and 2/, .

Case 3. Player j is on the right path of the loop L(ay,, b,,) from player a,, to player
b, and moves after the lock-closer u,,_; and the lock-opener b,, ;. Under M;, player j
receives the message (—1)"®»-1)y @ z,,. Note that j does not learn the value of x,, and

believes that it is a realization of X,,. Suppose that he deviates and sends the message
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x! . It follows that the designer will receive the messages (—1)"®¥-1) (2! © x,,) © Xy
and X, under the deviation. Since X,,, and X}, are uniformly distributed on [0, 1), it
follows yet again that player j evaluates the probability of v; = z/, © x,, € I1;(¢;) to be
Pi(t;) and thus, is again indifferent between reporting the truth and deviating.

Case 4. Player j is on the left path of the loop L(ap,, b,,) from player a,, to player
b, and moves before the lock-closer u,,. This case is similar to case 1.

Case 5. Player j is on the left path of the loop L(a,,by,) from player a,, to player
b,, and moves after the lock-closer u,,. In that case, player j also belongs to the right
path of the loop L(am11,bm+1) and the same arguments as in case 1 apply.

Lastly, a similar reasoning applies if player j is a transmitter in the first or last loop.
For instance, if player j is on the right path of the last loop L(ays, bys) and moves before
the lock-closer uys, the same reasoning as in case 1 applies since the designer receives
the message (—1)"®»-1y @ 2y, and X,;.

Now, suppose that player j is the provider a,, in the loop L(a,,by,) (m < M) and
suppose that he sends the message % on the left path of the loop and the message
z2 on the right path. If all other players abide by the strategies, it follows that the
designer receives the messages (—1)"®-V(v@zf cal )@ X, and Xy, Since v and Xy
are uniformly and independently distributed on [0, 1), it follows that the probability
that the decoded type ©; is in II;(¢;) is P*(¢;) and thus, player j is indifferent between
following the prescribed strategy or deviating.

Similar arguments apply to the lock-closers or lock-openers, so that the prescribed
strategies indeed form a Bayesian equilibrium. To summarize, incentive compatibility
of the social choice function implies that player ¢ has indeed an incentive to abide by
the protocol M, while all other active players have no incentive to deviate, since the
protocol guarantees the same expected payoff to each active player other than player

1, regardless of the message he sends.

Part II. Let f be a social choice function implementable on N*, i.e., f is incentive
compatible. To implement f, consider the mechanism and strategies implied by the
protocol M: each player i ¢ D(0) of type t; draws a random number v; uniformly in
I1;(¢;) and transmits it to the designer according to the protocol M;, while in his role
of an active player in a protocol M (j # i), he follows the prescribed strategy.

From Corollary 2, it follows that the designer learns the true profile of types if all
players abide by this protocol, while no player gets additional information about the

49



type of his opponents. To complete the proof, note that as in part I, no player has an
incentive to deviate. The expected payoff of a player ¢ is independent of the messages he
sends about his opponents (since the assumption of independent beliefs imply that we
can consider each deviation as above). Incentive compatibility guarantees that player i
has indeed an incentive to abide by the sub-protocol M;. The proof of the sufficiency

part of Theorem 1 is thus complete.

7.5 Proof of Theorem 1: necessity

Now, we prove the “only if” part of Theorem 1. The proof proceeds by contradiction.
We assume that N is not weakly 2-connected and construct an environment with
common independent belief and private values and an incentive compatible social choice
function, which is not implementable on N .

If AV is not weakly 2 connected, there exists two distinct players 7 and ¢* such that all
paths, directed or undirected, from 7 to the designer go through i*. As a consequence,
for each player k£ that has a path to ¢, directed or undirected, all paths from & to 0 also
go through ¢*. This implies that player ¢* is a cut-vertex in the network. In particular,
all information regarding the players £ who have a path to i, is controlled by ¢*.

Let us now construct the environment and the social choice function. Assume that
all players but player i have a single type and that player i has two types 6; and ..
Let a and b be two alternatives. The utilities are as follows: u;(a, ;) = un(a,-) = 1,
u;(b,0;) = u;=(b,-) = 0; u;(a,0;) =0, u;(b,0;) = 1. All other players are indifferent (get
a utility of 0) between a and b. Any other alternative gives a utility of —1 to players
1 and ¢* regardless of their types. The common prior is the uniform distribution on
the set of types. The social choice function is the dictatorial social choice function of
player .

We claim that for every mechanism on N, there is no equilibrium that implements
this social choice function. By contradiction, assume that there exists such an equi-
librium 0. Fix a profile of messages m~ € Mp«) for player i* in the support of Py, ,,
i.e., this is a message compatible with 6; and the equilibrium strategies. Consider the
deviation o/, for player ¢* which consists in playing o;«(m;+) regardless of his type and
messages received.

By construction of the deviation, oy (7m;+) is compatible with the messages sent by
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players who have no path to player i, i.e.,
supp Py, o, Csupp Py, V0 € {0;,0;}.

Since the strategies are assumed to implement f, it follows that the outcome is almost
surely a under the deviation, regardless of the type of player 7. Since player ¢* prefers
a to any other alternative, this deviation is profitable for player i*.

It is worthwhile to note that weak 2-connectedness is also a necessary condition for
Proposition 3 to hold. Indeed, if ¢* is a cut-vertex, and if the designer learns the type

of player i, then ¢* must learn it as well.

7.6 Proof of Theorem 2

The proof of the “only if part” is identical to the previous one and is omitted. We
turn to the “if” part and fix an environment with a worst outcome and an incentive
compatible social choice function f. Without loss of generality, let us assume that
f does constantly select the worst outcome (if so, the designer just has to choose the
worst outcome irrespectively of the messages received). Also, without loss of generality,
assume that ©; is a finite subset of the open interval (0, 1) for each player i € N. In the
proof of Theorem 1, we took advantage of the environment to make players indifferent
between any message they can send. This is not longer possible in environments with
correlated beliefs and/or common values. We thus modify the protocol in such a way
that deviations are detected with arbitrarily high probability by the designer. The
threat of the worst outcome then deters the players from deviating.

Let n be a large integer. We take up the terminology and notations from Proposition

3 and modify the protocol M; as follows.

e FEach transmitter forwards the message received from his active predecessor to

his active successor.

e Each provider a,, draws an n-vector of keys X,, = (X1 ..., X") whose compo-
nents are independently and uniformly distributed in [0, 1) and sends it to its two

active successors.

e Each lock-closer u,, receives two vectors T,,, T,+1 from his predecessors. He
computes z,, = ¥,,DTn+1 and sends it to his active successor, where @ denotes

component-wise addition.
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e Each lock-opener b,, receives two vectors ZZ, #E from his predecessors. He

computes w,, = £X ST and sends it to his active successor.

Player i behaves as follows (recall that by construction, player i is either a transmitter

or a provider):

e If he is a transmitter, player ¢ who receives &7 from his active predecessor draws
uniformly a random integer n* in {1,...,n}, and encodes his type 6; with the
encoding key 27 to obtain the cypher-type y7 (i) = ;@7 . Player i then sends

*_1 * * 41 . .
the vector (zl,...,27 'yl (4),27 *', ..., 27) to his active successor.

e If he is a provider, player ¢ draws (uniformly) a random vector X and a random
integer n* in {1,...,7n} and computes Y (i) = ;& X} . Player i then sends the
vector (X1,..., X771 V7 (4), X7 ., X7) to his Left active successor and X,

to his Right active successor.

The decision rule of the designer is the following. The designer receives a message
fﬁ[ from the path ap; — by;—1 — by = 0, and a message fﬁ/l from the other path of

the last loop ays — by = 0.

o If the vectors 7%, 7%, differ by exactly one component 7*, the designer decodes

~

0, = x?\;’R o x?\;’L if v(bpr—1) is even and 0, = xﬂ’L S x?\;’R if v(byr—1) is odd.
e Otherwise, the designer concludes that there was a deviation.

Note that no player j # i gains information about 6; by this modified mechanism.
Indeed, player 7 only observes vectors of uniformly distributed numbers. If all players
abide by the mechanism, then the two vectors received by the designer differ only in the
component n*, and the designer decodes correctly the type of player ¢ from Lemma 6.
The key argument is that n* is the private information of player i. Thus, any deviation
by an active player is bound to change another component with probability at least
1—1/n.

Finally the mechanism for implementing f is the following:

e Each player ¢ transmits his type to the designer using the modified protocol.

~

o [f the designer concludes that there was no deviation, he implements f (él, ooy On),

where 6; is the decoded type of player .
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e Otherwise, the designer implements the worst outcome.

Let us check the equilibrium condition. The expected payoff of j under the mech-
anism is:
> ui(f(6;,60-5),6;,0-5)P;(0-; | 6;) == C.
0—j
Assume that player j deviates in at least one sub-mechanism. His expected payoff is

at most,

—W+ 1—— )Y ui(a,0;,0-;)P;(0-; | 0;) =D,
6—]

where W is an upper bound on player j’s payoff. We have,
1 1
C—-D= 5(0 - W)+ (1- 5)92(%(]“(%%)79179]') u;(a,0;,0-;))F; (05 | 0;).
Since a is a worst outcome, wu;(f(0;,60—;),6;,0_;) —u;(a,0;,6_;) is non-negative for all
type profiles, and strictly positive for at least one type profile, as f is not constantly
equal to a. Recall that we assumed throughout that beliefs have full support, i.e.
P;(0_; | 6;) > 0 for all type profiles. As a consequence, C'— D is positive for n large

enough, and player j has no incentive to deviate. Lastly, each player ¢ has an incentive

to transmit his true type since f is incentive compatible.

7.7 Proof of Theorem 3

The proof is very similar to the proofs of Theorems 1 and 2. The proof that the con-
dition is necessary is the same. For sufficiency, the main task is to extend Proposition
3 to weakly 2-connected networks with cycles. Once this is established, Theorem 3
follows, similarly as for Theorems 1 and 2 and this part of the proof is omitted.

We now explain how to extend Proposition 3. A important remark is the follow-
ing. Since the network has cycles, the existence of the timing structure is no longer
guaranteed, in fact it simply fails. To define a mechanism, one has to specify a timing
structure, i.e., who speaks first, who speaks second, and so on. To avoid this diffi-
culty, we associate to the network N, an augmented network N4, which is strongly
1-connected, weakly 2-connected and acyclic. Thus, Proposition 3 holds true on A4,

Then, we show how the protocol on A4 induces the desired protocol on .
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Let us fix a strongly 1-connected and weakly 2-connected network N (but not
necessarily acyclic). Recall that a network is a set of edges. A sub-network is thus a

subset of edges.

Lemma 7 There exists an acyclic and strongly 1-connected sub-network N'® of N.

Proof. For each i € N, consider a shortest directed path from 4 to 0 in N'. Such a
shortest directed path exists since N is strongly 1-connected. Let N be the collection
of all these paths. We claim that A'* has the required properties. By construction, it
is strongly 1-connected. Let us show that it is acyclic. By contradiction, assume that
N contains the cycle iy — iy — ... — ixg — i;. By construction, N is such that
C(0) =0, i.e., there is no edge 0i for some i € N in N It follows that the cycle does
not contain the designer (player 0). It then follows that there exists k € {2,..., K}
such that the shortest path from i, to 0 does not follow the cycle (otherwise, 0 cannot
be reached, a contradiction with 1-strong connectedness). Thus, the edge ixig,1 is not

on a shortest path from any player j to 0, contradicting the construction of N °

With a slight abuse of notation, let N'* be a maximal acyclic and strongly 1-
connected sub-network of A (it exists by the preceding lemma) and let C = N\N*“ be
the set of edges of A that do not belong to AN'*. Note that every edge of C belongs to
a cycle of N and that every cycle of N contains an edge in C. Let N4 be the network
obtain from N by replacing each edge ij in C by two edges: i(j)i and i(j)j, where i(j)
is a fictitious player who is a duplicate of player ¢. That is, if ij in C:

i — j is replaced by i < i(j) — j.
The edges of N'® are unchanged. See Figure 17 for an example.

Claim 3 N4 is strongly 1-connected, weakly 2-connected and acyclic.

Proof. Each “regular” player i has a directed path to 0 in N by construction. Since
the fictitious player i(7) is directly connected to i, he also has a path to the designer
by strong 1-connectedness of N'. Weak 2-connectedness is clearly preserved by the
transformation. Let us show that N4 is acyclic. Assume that A4 contains a cycle. By
our construction, each fictitious player has only out-going edges, thus cannot belong to

a cycle. This implies that the cycle was already a cycle in N and therefore, it should
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Figure 17: A cyclic network N and the associated acyclic N4

contain an edge which belongs to C. This is a contradiction because edges in C no
longer appear in N'4. o

Now, we claim that Proposition 3 extends to strongly 1-connected, weakly 2-
connected networks with cycles. First, on the network N4, for each player i, there
exists a protocol with the desired property by Proposition 3. We assume that each
fictitious player has no type and a constant payoff function. Second, on the network
N, the players can replicate this protocol. The timing of the protocol is the one given
by the timing structure of N4, which is well-defined since N4 is acyclic and strongly
1-connected. In particular, each duplicated player i plays only twice: he plays as the
fictitious player i(j) the first time and as player i the second time.

Thus, Proposition 3 extends and Theorem 3 follows, similarly as for Theorems 1
and 2.

7.8 Detection with probability one

Lemma 8 Let v be a random wvariable privately known by player i. If the network
is weakly 2-connected, there exists a mechanism M; on N such that, if all players
abide by the mechanism, then the designer learns the value of v, whereas each player
j # 1 receives messages that are probabilistically independent from v. Furthermore, the

designer detects deviations with probability one.

The intuition is as follows. For each integer 7, we can devise a test such that any

deviation is detected with probability at least 1 —1/n. We may thus ask the players to
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pass all such tests.'® There are several ways to construct such a test and we provide a
relatively simple one. We modify our protocol M; as follows. For simplicity, we assume

that player ¢ is not a provider.

Providers. Each provider a,, draws two independent infinite sequences (X g"H , X g"’T)nzl
of independently and identically (i.i.d.) distributed random variables, with uniform

distribution on [0,1) and sends these sequences.

Player i. Independently of his type and of the message he receives, player ¢ draws an
infinite sequence of i.i.d. fair coins ¢, € {H,T}. Define (Y, Y,[),>1 as (V,,Y,[) =
(Xp" @0, X)7T) if ¢, = H, and (V,,V,[) = (X7, X} T @ 6;) if ¢, = T. In words, for
each 7, player ¢ chooses according to the toss of a fair coin whether to encode his type
0; with X#H or with X#T. Player i then sends the pair of sequences (YnH, YnT)nZl to

his active successor.

Other players. The other active players (transmitters, lock-closers and lock-openers)
behave as in the proof of Theorem 2, except that now, vectors are sequences.

L,H LT
n ’ xn

If for each 7, it holds true that (z)" = 2" and )" # ") or (xl" # x[M and
w7 = x'T), the designer concludes that phase 1 of the test succeeds. Then, if 2" #
x| he computes 0; = 27T o 2T i p(by_y) is even and 0; = 2707 o 27T
if v(byr—1) is odd. If z™ # xF7 he computes 0; = 7 o 2T A p(by_y) is

even and 6; = x?WLH ) xﬂ’R’H if v(bpr—1) is odd. If all é? have the same value éi, the

The designer. The designer receives two pairs of sequences (x )n>1 and (x

T

designer concludes that phase 2 of the test succeeds, and regards 6; as the correct type
of player 7. If the test does not succeed, either in phase 1 or in phase 2, the designer

concludes that there was a deviation.

Under these strategies, the decoded type clearly coincides with the true type. It is
also clear that no player gets information about the message of player . The sequence
of coins being privately known to player ¢, each other active player only observes
sequences of i.i.d. uniformly distributed variables. Now, we claim that any deviation
is detected almost surely. Indeed, if some active player j # ¢ modifies the sequence,
to pass the test in phase 2 he must modify an entry of the double sequence for each

7. But then, to succeed in phase 1, he should modify only the component selected by

18We thank Sylvain Sorin for suggesting this argument.
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player i. Consequently, the probability of passing the test while changing the message
is at most the probability of guessing correctly an infinite sequence of fair coins, which

is 0. Any deviation is thus detected with probability 1.

Corollary 3 If the network is weakly 2-connected and if the environment has a bad
outcome, i.e. an outcome a such that u;(a,0) > u;(a,0) for all i € N, for all a € A,

for all 0 € ©, then Fi (&) = Fy+(E).

The proof consists in adapting the construction of Theorem 2. Using the above lemma,

any deviation brings the bad outcome almost surely and is therefore not profitable.
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