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SPECIAL MULTSERIAL ALGEBRAS ARE QUOTIENTS OF
SYMMETRIC SPECIAL MULTISERIAL ALGEBRAS

EDWARD L. GREEN AND SIBYLLE SCHROLL

ABSTRACT. In this paper we give a new definition of symmetric special multiserial
algebras in terms of defining cycles. As a consequence, we show that every special
multiserial algebra is a quotient of a symmetric special multiserial algebra.

1. INTRODUCTION

A major breakthrough in representation theory of finite dimensional algebras is the
classification of algebras in terms of their representation type. This is either finite, tame
or wild [D]. Algebras of finite representation type have only finitely many isomorphism
classes of indecomposable modules, the infinitely many indecomposable modules of a
tame algebra can be parametrized by one-parameter families whereas the representation
theory of a wild algebra contains that of the free algebra in two generators and so
in some sense contains that of any finite dimensional algebra. Thus no hope of a
parametrization of the isomorphism classes of the indecomposable modules can exist.

For this reason, algebras of finite and tame representation type have been the focus of
much of the representation theory of finite dimensional algebras. An important family
of tame algebras are special biserial algebras defined in [SW]. This class contains many
of the tame group algebras of finite groups and tame subalgebras of group algebras of
finite groups [El, gentle algebras, string algebras and symmetric special biserial algebras
[WW], also known as Brauer graph algebras [R] [S], algebras of quasi-quaternion type
[Lal and the intensely studied Jacobian algebras of surface triangulations with marked
points in the boundary arising in cluster theory [ABCP].

The strength of the well-studied representation theory of special biserial algebras, de-
rives from the underlying string combinatorics. Namely, by [GPl Ri WW]| every in-
decomposable non-projective module over a special biserial algebra is a string or band
module. Not only does this give rise to a formidable tool for calculations and proofs
but it also shows that special biserial algebras are of tame representation type.

Special multiserial algebras, defined in [VHW], are in general of wild representation type
and as a consequence their indecomposable modules cannot be classified in a similar
way. It is therefore remarkable that many of the results that are known to hold for
special biserial algebras still hold for special multiserial algebras. For example, a very
surprising fact about the indecomposable modules of these wild algebras was shown
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in [GS2]. Namely, the indecomposable modules over a special multiserial algebra are
multiserial, that is, their radical is either 0 or a sum of uniserial submodules. Thus
generalizing the analogous result for special biserial algebras [SW]. However, given the
absence of string combinatorics in the multiserial case, the proof is built on an entirely
different strategy. The same holds true for the result and proofs in this paper.

We start by giving the definition of an algebra defined by cycles. This definition is
built on the notion of a defining pair. We show that such an algebra is symmetric
special multiserial and that conversely, every symmetric special multiserial algebra is
an algebra defined by cycles. Note that in this context a symmetric algebra is an
algebra over a field endowed with a symmetric linear form with no non-zero left ideal
in its kernel. Symmetric algebras play an important role in representation theory and
many examples of well-known algebras are symmetric such as group algebras of finite
groups or Hecke algebras.

Given the new definitions of defining pairs and algebras defined by cycles we show that
we can construct a defining pair for every special multiserial algebra A and that A is
a quotient of the corresponding algebra defined by cycles. Thus we prove that every
special multiserial algebra is a quotient of a symmetric special multiserial algebra. This
result is an analogue of the corresponding result for special biserial algebras [WW].
Moreover, the special biserial case follows from our result omitting thus the need for
the string combinatorics on which the proof in [WW] is based.

2. PRELIMINARIES

We let K denote a field and ) a quiver. An ideal I in the path algebra KQ is admissible
if JN C I C J? for some N > 2, where J is the ideal in KQ generated by the arrows of
@. We begin by recalling the definition of a special multiserial algebra. A K-algebra is
a special multiserial algebra if it is Morita equivalent to a quotient of a path algebra,
KQ/I, by an admissible ideal I which satisfies the following condition:

(M)  For every arrow a € () there is at most one arrow b € () such that ab ¢ I and

there is at most one arrow ¢ € @) such that ca ¢ I

Throughout this paper we assume that all algebras are indecomposable. First we treat
the radical square zero case. We note that if A = KQ/I with I admissible is such that
the Jacobson radical of A squares to zero, then I = J? and A is a special multiserial
algebra since all paths of length 2 are in I. Thus, if A is a radical square zero algebra,
then we wish to show that A is the quotient of a symmetric special multiserial algebra.
For this we recall that an algebra A = KQ/I, with I generated by a set of paths of
length 2 is called gentle if

(G1) A is a special multiserial algebra, and,

(G2) at each vertex v there are at most 2 arrows ending at v and at most 2 arrows
starting at v.

Recall from [GS3| that an algebra K@Q/I is almost gentle if it is special multiserial and
if I can be generated by paths of length 2.

Proposition 2.1. Assume that A = KQ/J? where J is the ideal in KQ generated by
the arrows of Q. Then A is the quotient of a symmetric special multiserial algebra.
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In particular, the trivial extension A x D(A) is a symmetric special multiserial algebra
whose radical cube is zero, where D(—) denotes the duality Homp (—, K).

Proof. That A is an almost gentle algebra is clear. By [GS3] Theorem 4.3, we have
that A = A x D(A) is a symmetric special multiserial algebra. The algebra A is clearly
a quotient of A and, since I = J?, the radical cube of A is zero . O

We introduce notation and definitions needed for what follows. We say that a nonzero
element z € K@ is uniform if there exists vertices v and w in @, corresponding to
idempotents e, and e,, in K such that © = e,xe,,. If a and b are arrows in @Q, we let
ab denote the path consisting of the arrow a followed by the arrow b. If p is a path in
@, then the start vertex of p is denoted s(p) and the end vertex of p is denoted t(p).
A cycle is a path p such that s(p) = t(p). If C = ay...a, is a cycle in @, then a cyclic
permutation of C' is any cycle of the form a;a;41...ana1...a;—1 for all 1 <i <n. We
say that a cycle in @ is simple if it has no repeated arrows. Note that the number of
simple cycles is always finite. If C is a cycle in @ and p is a path, we say p lies in C' if
p is a subpath of C*, for some s > 1. If p is a path in Q, the length of p, denoted £(p),
is the number of arrows in p.

3. DEFINING PAIRS

In this section we give a method for constructing symmetric special multiserial algebras.
Suppose that @ is a quiver. We say the pair (S, i) is a defining pair in Q if S is a set
of simple cycles in Q and p: & — Z~( which satisfy the following conditions:

(DO) If C is a loop at a vertex v and C € S, then u(C) > 1.
(D1) If a simple cycle is in S, every cyclic permutation of the cycle is in S.
(D2) If C € S and (' is a cyclic permutation of C' then u(C) = u(C").

(D3
(

Every arrow occurs in some simple cycle in S.

)
)
)
D4) If an arrow occurs in two cycles in S, the cycles are cyclic permutations of each

other.

If (S, ) is a defining pair in @ then the K-algebra they define has quiver @) and ideal
of relations generated by all relations of the following three types:

Type 1 CHC) — ™) if ¢ and C" are cycles in S at some vertex v € Q.
Type 2 CHC)q, if C' € S and a is the first arrow in C.
Type 3 ab, if a,b € Q1 and ab is not a subpath of any C' € S.

The algebra A = KQ/I, where I is generated by all relations of Types 1, 2, and 3, is
called the algebra defined by (S, p) and we call A an algebra defined by cycles. We note
that some of the generators of Types 1,2, and 3 are in general redundant.

Theorem 3.1. Let Q be a quiver, K a field, and (S,u) a defining pair for Q. Let
A= KQ/I be the algebra defined by (S, ). Then A is a symmetric special multiserial
algebra.
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Proof. We begin by showing that I is an admissible ideal. Clearly, I is contained in the
ideal generated by paths of length 2. Let N = max{u(C)¢(C) | C € S}. We claim that
all paths of length N + 1 are in I. Let p be such a path. If there are arrows a and a’
such that aa’ is a subpath of p and aa’ is a Type 3 relation, then p € I. Suppose that
p contains no Type 3 relations. Then (D3) and the definition of N imply that there is
a simple cycle C' € S and an arrow b so that either bC*(©) or CH()p is a subpath of p.
We suppose first that C*(©)p is a subpath of p. Then C*C)p either is a Type 2 relation
or Cb contains a Type 3 relation. Finally, suppose that bC*©) is a subpath of p. If b is
the last arrow in C, then bC*(©) is a Type 2 relation using (D1) and (D2). If b is not
the last arrow in C, then ba is a Type 3 relation where a is the first arrow of C.

Next we show that A is a special multiserial algebra. Let a be an arrow. Suppose that
ab is a path of length 2 in @. By (D3) and (D4), a is in a cycle C' in S that is unique
up to cyclic permutation. Either b is the unique arrow such that ab lies in C or ab is a
Type 3 relation and hence in I. Thus, there is at most one arrow b such that ab ¢ I.
Similarly, there is at most one arrow ¢ such that ca ¢ I and we see that A is a special
multiserial algebra.

Finally we show that A is a symmetric algebra. We let 7: K@ — A denote the canonical
surjection. Define f: K@Q — K as follows. If p is a path in @, define

1, if p=CH for some C € S
fp) =

0, otherwise.

Linearly extend f to K Q. The reader may check that f induces a linear map f: A — K.
Let B be the set of paths in ). All sums will have only a finite number of nonzero
terms. Note that if x = ZpGB app € KQ with o, € K, then f(z) = > nes Qono)-

First we show that if A\, € A, then f(A\) = f(NA). Let x = >
Y= yenBqq € KQ such that w(z) = A and 7(y) = \. Then

flzy) = f((z app)(z Bqq)) = Z Z ap e f(pq) = Z pfq

peB OpP € K@ and

and

flyz) = f((z qu)(z app)) = Z Z Baowf(qp) = Z By

qeB pEB qEB peB qp=CH(©C) for C€S

In the above equations for all p,q € B for which pq # 0, we have that pq is a cyclic
permutation of gp. It then follows that f(zy) = f(yz) and hence f(AN) = f(NN).

Finally we claim that ker(f) contains no nonzero left or right ideals. We start by proving
that there are no right ideals in ker f. Suppose that J is a right ideal of A contained
in the kernel of f. Assume J # (0) and let A € J with A # 0. Then A = (X pen D)
where o, € K and all but a finite number of o, # 0. Without loss of generality, we
may assume that if a;, # 0, then p ¢ I. First suppose that there is a path p* ¢ I such
that aj, # 0 and p* is not of the form C*C) for any C' € S. Then there is a unique
C € S and path ¢ such that p*q = C*©). By (D1)-(D4), if p’ # p*, then p'q is not of
the form C"“(¢") for any ¢’ € S. Hence

FO() = F(OQ app)a)) = FO | cppa) = ape # 0.

pEB peEB
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But this contradicts J C ker(f) since Aw(q) € J. The proof that there a no left ideals

in ker(f) is similar to the proof for right ideals.

Thus we may assume that if a;, # 0 then p = CH*C) for some C € S. So we have
A =73 0eqo 2oces, acue)CMO)), where S, = {C € S | Cis a cycle at v} for any
v € Qq. Since A\ # 0, we see there is some vertex v such that e, Ae, # 0. Then

0= flevrer) = F(T( D acuerC*) = F(D acuerC*) = " aguo-

CceSy CeSy CeSy
Choose some C* € S,. Then, using that, for C € S, (CH) — C*C)Y is a Type 1
relation and ZCeSy acuc) = 0, we see that

e = (Y acuer D) = (3 ague)m(C) =

ces, ces,
Z acueym(CHE) — ) =,
CGSU

contradicting e, Ae, # 0. This completes the proof.

The converse of the above Theorem is also true. The Theorem below is not used in
the remainder of the paper and we only sketch the proof. The sketch below assumes
knowledge of Brauer configuration algebras found in [GSI].

Theorem 3.2. Let A = KQ/I be an indecomposable symmetric special multiserial
algebra with Jacobson radical squared nonzero, where I is an admissible ideal in KQ.
Then there is a defining pair (S,u) in Q such that the algebra defined by (S,u) is
isomorphic to A.

Proof. By [GS2], we may assume that A is the Brauer configuration algebra associated
to a Brauer configuration I' = (T, "1, i, 0). Let S be the set of special cycles in the
quiver of A. If C' is a special a-cycle for some « € 'y, define p*(C') = p(«). Using the
properties of special cycles of a Brauer configuration algebra, the reader may check that
(S, ") is a defining pair in Q. It is straightforward to see that the Brauer configuration
algebra A is isomorphic to the algebra defined by (S, u*).

4. QUOTIENTS

For the remainder of this section, we let A = K@Q/I be a special multiserial algebra,
that is I satisfies condition (M). We introduce two functions associated to A which
play a central role. Let ¢ be some element not in @; and set A = @1 U {¢}. Define
0:Q1r—>Aand 7: Q1 = Aby

o(a) = b ifab¢ I
o ifabelforallbe @

and

¢ ifea¢l
T(a): . .
o ifca ¢ I for all c € Q4

where a,b,c € Q1. From the definition of a special multiserial algebra, we see that
these functions are well-defined. Since A is finite dimensional, one of two things occur
for 0 when repeatedly applied to an arrow a € (1. Either there is a smallest positive
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integer m, such that ¢ (a) = ¢ or there is a smallest positive integer 7, such that
o™ (a) = a. Similarly, either there is a smallest positive integer n, such that 7 (a) = ©
or there is a positive integer 7, such that 7" (a) = a.

We list some basic properties of o and 7.
Bl If o(a) € @1, then 7o(a) = a.
B2 If 7(a) € Q1, then o7(a) = a.
B3 For a € @1, m, exists if and only if n, exists.
B4 For a € @1, m, exists if and only if n, exists.

Along with ¢ and 7, we need one more concept. We say a path M = aqas - - - a,, with
a; € Q1 1s (o, 7)-mazimal if o(a,) = o = 7(ay). Let M denote the set of (o, 7)-maximal
paths.

Suppose a € @1 is such that m, exists. Then we have a simple oriented cycle in @,
denoted C, such that C, = ac(a)o?(a)---0™"1(a) since 0™ (a) = a implies that
5(Cy) = t(Cy). It is easy to check that C, is a simple cycle. We let the set of such
simple cycles be denoted by C. Note that if C' € C, then every cyclic permutation of C
is in C.
Now suppose that a € ()1 is such that m, exists. Then

M, = 7" Y(a)r" 2(a)--- 7(a)ac(a) - - o™ 1(a)
is a (o, 7)-maximal path in which a occurs.

The next lemma lists some basic properties of the above constructions. The proof is
straightforward and left to the reader.

Lemma 4.1. Let A= KQ/I be a special multiserial algebra and let a € Q1. Then

(1) FEither a occurs in the (o, T)-mazimal path M, or the simple cycle C, but not
both.

(2) The arrow a occurs in at most one (o, T)-mazimal path.

(8) If a is an arrow in a simple cycle Cy, € C, for some arrow b, then Cy, is a cyclic
permutation of C,.

(4) The length of Cy, if it exists, is Mg = Ng.

(5) If M € M is a mazimal path, then M has no repeated arrows.

(6) If M € M and a is an arrow in M, then M = M,.

(7) If a occurs in the (o, T)-mazimal path M, then the length of M, is mg,+mng — 1.

We now construct a new quiver, @Q*, from Q). Set Q§ = Qo. For each M € M, let ay,
be an arrow from t(M) to s(M). Set Qf = Q1 U {an | M € M}. Note that Mays is
a simple cycle in Q* at s(M). Let M™* denote the set of cycles in Q* consisting of all
cyclic permutations of the May,, for M € M.

Since @ is a subquiver of Q*, we will freely view paths and cycles in () as paths or
cycles in Q*. Let
S={CeC}uM*,
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viewed as a set of simple cycles in Q*. Next, since I is admissble, there is a smallest
positive integer N, N > 2, such that all paths of length N or larger, are in I. Define
w: S — Zso by u(C) =N forall C € S

Proposition 4.2. Keeping the above notation, (S, u) is a defining pair in Q™.

Proof. Since N > 2 and we see that (D0) holds. Since u is constant on S, (D2) holds.
It is immediate that (D1) holds. If a is an arrow in @, then a occurs in some C' € C or
M € M. It is easy to see that for all M € M, the arrow ap; occurs in some cycle in
M*. Thus, every arrow in Q* occurs in some cycle in S and (D3) holds. By Lemma
[41] and our construction, (D4) holds and the proof is complete.

Let A* = KQ*/I* be the algebra defined by (S, ). By Theorem BI] A* is a symmet-
ric special multiserial algebra which we call the symmetric special multiserial algebra
associated to A.

Theorem 4.3. Let A be a special multiserial algebra and A* be the symmetric special
multiserial algebra associated to A defined by (S, ). Then A is a quotient of A*.

Proof. To define F': KQ* — K@ we use the universal mapping property of path
algebras. That is, let F(e,), for all v € Qf, be a full set of orthogonal idempotents
in KQ, F(ay) = 0, for all M € M, and F(a) = a for all the remaining arrows in
Q*. The K-algebra homomorphism F' is clearly surjective. The homomorphism F' will
induce a surjection F': A* — A if F(I*) C 1.

We prove F(I*) C I by showing that F' applied the generators of I* of Types 1,2, and
3are in I. If C and C’ are in S then consider C*(©) — ") 1f C (or C") contains
an arrow of the form ayy, for some M € M, then F sends C*©) (or C"*(C")) to 0 which
is in I. If ap; does not occur in C' (or in ) then C*(©) (or C’MC")) has length greater
than or equal to N since p has constant value N. Recalling that paths of length greater
or equal to NV in K@ are in I, we conclude that F' applied to a Type 1 relation is in I.

A similar argument works for Type 2 relations.

Finally, suppose that ab is a Type 3 relation. If either a or b is an arrow of the form
apr, for some M € M, then F(ab) = 0 € I. Suppose that neither a nor b is of the form
apr- Then F(ab) = ab. Since ab does not live on any C' € S, we see that ab does not
live on any C € C, where C is the set of simple cycles of A as defined at the beginning
of this section, nor is ab a subpath of any M in M. It follows that o(a) # b. But then
ab € I and we are done.
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