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Abstract

Atmospheric particulate pollution is a significant problem across the EU and there is concern that
there may be an increasing contribution from biomass burning, driven by rising fuel prices and an
increased interest in the use of renewable energy sources. This study was carried out to assess
current levels of biomass burning and their contribution to total PMo across five sites in North-West
Europe; an area which is frequently affected by poor air quality. Biomass burning was quantified by
the determination of levoglucosan concentrations from PMio aerosol filters collected over a 14
month period in 2013/2014 and continued for a further 12 months at the UK site in Leicester.
Levoglucosan levels indicated a distinct period of increased biomass combustion between November
and March. Within this period monthly average concentrations ranged between 23+9.7 and
283+163 ng/m3, with Lille showing consistently higher levels than the sites in Belgium, the
Netherlands and the UK. The estimated contribution to PMjo was, as expected, highest in the winter
season where the season average percentage contribution was lowest in Wijk aan Zee at 2.7+1.4 %
and again highest in Lille at 11.6£3.8 %, with a PM1, mass concentration from biomass that ranged
from 0.56 pg/m3in Leicester to 2.08 pug/m? in Lille. Overall there was poor correlation between the
levoglucosan concentrations measured at the different sites indicating that normally biomass
burning would only affect atmospheric particulate pollution in the local area; however, there was
evidence that extreme burning events such as the Easter fires traditionally held in parts of North-
West Europe can have far wider ranging effects on air quality. Network validation measurements
were also taken using a mobile monitoring station which visited the fixed sites to carry out
concurrent collections of aerosol filters; the result of which demonstrated the reliability of both
PMio and levoglucosan measurements.

Keywords: Levoglucosan, monosaccharide anhydrides, biomass burning, North-West Europe, PM;,
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Introduction

Exposure to atmospheric particulate matter (PM) has been shown to have detrimental effects on
health, in particular in vulnerable groups such as the elderly, children and those with pulmonary or
cardiovascular disease [1-3]. There are a variety of anthropogenic activities which contribute to total
PMio including energy production, transport, agriculture and industry; emissions from many of which
have decreased over the last 20 years [4]. There is, however, increasing concern regarding the
increasing contribution of biomass burning to total PMio. Air pollution from biomass burning in
some regions of Europe, such as in Scandinavia and Alpine areas, has for a long time been
considered a significant contributor to atmospheric PM [5]. In some alpine areas in Europe, where
wood burning is the predominant domestic heat source, biomass smoke can comprise more than
50% of the organic PM produced in the winter season [6]. More recently, evidence is emerging
suggesting that this problem is no longer limited to these areas and that biomass burning is
becoming an increasingly widespread problem across the whole of Europe [6-10].

There are several factors which are likely to be contributing to this ongoing increase in biomass
combustion. One large driving force is the effort of the European Union to reduce its use of fossil
fuels and increase the use of renewable energy, which is driving a return to biomass burning [5].
Current EU forecasts are anticipating a 57-110% increase in biomass burning between 2010 and
2020 [11]. Other schemes on a national level have similar aims; for example in the UK the
Department for Energy and Climate Change has developed the world’s first long-term financial
support programme for renewable heat, known as the Renewable Heat Incentive [12]. The scheme
pays participants who generate and use renewable energy to heat their buildings. Finally, the
increasing costs of traditional fuel sources are also having an effect: for example in Denmark
increasing fossil fuel costs have contributed to a doubling in the number of wood stoves and boilers
over a ten year period [13].

The ability to quantify the contribution of biomass burning to total atmospheric PM is, therefore,
becoming increasingly important for air quality management. Although several markers of biomass
burning have been applied for this purpose previously, the cellulose-specific monosaccharide
anhydride, levoglucosan, is often considered the marker of choice. Levoglucosan has several
advantages as a biomass burning marker: it is emitted in relatively large quantities, improving the
consistency of its measurement; it is subject to little interference from other sources; it has
relatively high stability in the atmosphere [6, 14] and its reliability has already been demonstrated
previously in several studies [15-17]. Examining the ratios of levoglucosan to its isomers can also give
further valuable information for the source identification of the specific type of biomass burnt. The
combustion of lignite, for example, has been shown to produce either very low or undetectable
levels of mannosan or galactosan [18, 19], whereas significantly higher levels are produced from the
combustion of contemporary biomass. Furthermore different types of contemporary biomass, such
as softwoods and hardwoods [20-22] and grasses and scrubland [23] have been shown to exhibit
source specific mannosan to galactosan ratios.

Exposure to ambient PM pollution is now ranked 9" worldwide and 11™ in Western Europe in the list
of risks to public health [24] and concentrations of particulate pollution have been particularly
problematic over the region in recent years, where there have been several episodes of extended
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breaches of EU air quality limits. This study aimed to quantify current concentrations of
levoglucosan present in atmospheric PM in order to estimate levels of contribution of biomass
burning to total PMi and to determine possible biomass sources. The study was carried out
between April 2013 and May 2015 as part of the Joint Air Quality Initiative Project [25] over which
time PMy, filters were collected at five locations in the North-West Europe region: Leicester (UK),
Wijk aan Zee and Amsterdam (the Netherlands), Antwerp (Belgium) and Lille (France), (Figure 1) and
levoglucosan levels quantified using a previously validated GC-MS method [26]. The sites selected
avoided the mores studied megacites such Paris or London with very high population densities in
order to attempt to capture a more typical representation of biomass derived PMjo levels that the
majority of the population are exposed to across the region.
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Experimental

Aerosol Collection, PM1o

Samples were collected daily (24 h exposure) onto 47 mm quartz filters (Pall Tissuquartz™, 2500
QAT-UP) using a sequential sampler Sven Leckel SEQ47/50 for Antwerp, Lille and Leicester or a
Derenda PNS 16 for Amsterdam and Wijk-aan-zee with a PMyg inlet, running at 2.3 m3/h for 24h per
filter. Filters were weighed before and after sampling in order to determine total PMio collection.
For pre- and post-sampling weighing filters were conditioned at 20 + 1 °C and 50 + 5 % relative
humidity for 48 h, weighed, left for a further 24 h and then re-weighed.

Aerosol samples were collected at fixed air quality monitoring sites in Amsterdam, Antwerp, Wijk
aan Zee, Lille and Leicester (Table 1). All Leicester measurements were taken at the Defra AURN
urban background air monitoring site based at the University of Leicester (http://uk-
air.defra.gov.uk/networks/site-info?site_id=LECU&view=View).

PMio sampling at the fixed sites was carried out during a 14 month period (426 days) from 1 April
2013 to 31 May 2014, except for the site in Lille where the measurements started 2 months later (5
June 2013 to 31 May 2014; 361 days), and Leicester where measurements were continued until 31
May 2015 (791 days). Monosaccharide anhydrides (MAs) were quantified every day for the site in
Leicester and every 6th day for the other fixed sites, with additional analyses on alternate days
during network validation (see the dates in Table 2).

Network Validation with Mobile Monitoring Station

PMyo levels were validated with use of a mobile monitoring station also containing a Sven Leckel
SEQ47/50 sampler which was sited adjacent to the sites at Leicester, Amsterdam and Antwerp as
well as at an alternative site within a few kilometres of the fixed sites (Table 1). MAs were quantified
on alternate days at the additional sites in Amsterdam (AD2), Antwerp (AP2) and Leicester (LE2) and
also for the validation filters taken in the mobile station adjacent to the Leicester site (LE1).

Data Coverage

Table 2 shows the number of valid gravimetric PMyo results for the sampler at the permanent
monitoring site and for the sampler in the mobile station when located adjacent to the fixed site or
at another site in the city. Data average availability for gravimetric PMjo across the fixed monitoring
sites was 91%, and varied from 77% in LL1S to 91-97% for the other sites. When the delayed start to
filter collection was taken in to account in Lille, data availability increased to 91%.

Chemicals

Chemical standards  of  levoglucosan (1,6-anhydro-B-D-glucopyranose), N-methyl-N-
(trimethylsilyl)trifluoroacetamide) (MSTFA) with 1% trimethylchlorosilane (TMCS), anhydrous
pyridine, cyclohexane, 1-phenyldodecane, methyl B-D-xylopyranoside and methanol were purchased
from Sigma (Poole, UK). Standards of mannosan (1,6-anhydro-B-D-mannopyranose) and galactosan



146
147

148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

166

167
168
169
170

171

(1,6-anhydro-B-D-galactopyranose) were purchased from Carbosynth (Compton, UK). Syringe filters
were 0.45 um PTFE filters from Agilent Technologies (Wokingham, UK).

Quantification of Monosaccharide Anhydrides by GC-MS

Levoglucosan, mannosan and galactosan were quantified using a validated GC-MS method described
in detail by Cordell et al (2014) [26]. Filters were analysed in three monthly batches and stored in at
-20 °C in accordance with the previously validated storage conditions. Briefly, MAs were extracted
from 1 cm? punches (spiked with 100 ng of methyl B-D-xylopyranoside as internal standard) from
filters by sonication in 1 ml methanol, extracts were filtered, dried then derivatized with MSTFA/1%
TMCS for 1 h at 80°C. 0.5 ul of the derivitization product was analysed using an Agilent 7890A GC
and 5975C MS with CTC-PAL autosampler (Agilent Technologies, Wokingham, UK). Quality control
samples were included every tenth sample (100/10 ng/sample of levoglucosan/mannosan and
galactosan for summer samples, 500/50 ng/sample of levoglucosan/mannosan and galactosan for
winter samples) along with a blank extracted filter sample. Calibration was carried out at the
beginning of each batch of analysis and was conducted over the range 5-5000 ng/sample for
levoglucosan and 1-500 ng/sample for galactosan and mannosan.

The mass spectrometer was operated in single-ion monitoring mode with the following ions
monitored: m/z 92, 204, 217 and 333. Mannosan, levoglucosan and methyl B-D-xylopyranoside were
quantified using the 204 ion with m/z 217 and 333 used for identity confirmation, galactosan was
quantified using the 217 ion with m/z 204 and 333 used for identity confirmation.

Black Carbon Measurements

Atmospheric black carbon measurements were taken at the Leicester site using a Multiangle
Absorption Photometer (MAAP) Model 5012 (Thermo Scientific) sampling at 1 m3/h with a PMy inlet
and PM; s sharp cut cyclone, measuring absorbance at 670 nm.
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Results and Discussions

Leicester

Levoglucosan as a Biomass Burning Marker

Levoglucosan is the most abundant organic tracer produced from the combustion of biomass [17],
and has been used for quantification of wood burning in a variety of studies across the world [6-10,
20, 22, 28-30]. It is suitable for use as a single marker species as non-biomass burning sources of
levoglucosan are likely to be insignificant. Although initially thought to have very good atmospheric
stability [14, 31], more recently there has been some concern over its potential degradation in high
OH conditions [32, 33]. However, whilst this may have important consequences in tropical regions it
is likely to have little effect in the North-West European area.

Biomass Burning in Leicester

Daily (24 h) PMyo filters were collected over the two year study period in Leicester, from which
levoglucosan concentrations were quantified. Figure 2 shows the levels of levoglucosan measured
across this time period. Two distinct periods of raised levels of levoglucosan can be discerned where
biomass burning was raised, covering the period from November to March each year. For both
years November saw the highest monthly averages of levoglucosan (126 ng/m?3 in 2013 and 140
ng/m?3 in 2014) followed by December (95 and 80 ng/m3, respectively). Mean summer levels were 20
ng/m3, and the mean concentration over the two year period was 45 ng/m?>. Leicester summer levels
were similar to those determined in other studies across Europe which have also shown consistently
low summer levels of levoglucosan in the order of 5-50 ng/m? [6-8, 28-30, 34].

Winter levels in Leicester (76 ng/m? for 2013, 72 ng/m?3 for 2014 December to February) are similar
to those measured by Crilley et al [35] at various sites across London and the South East in January
and February of 70-92 ng/m3 in 2012, and but slightly higher than the averaged concentrations of
31-59 ng/m? detected by from Harrison et al [34] at multiple sites in London (2010-2011) and the
Birmingham area. These measurements were, however, averaged over a longer season from
November to March which could explain the lower levels. Leicester levels are, however, somewhat
lower than those measured in another UK study in London 2009-2011 which reported January to
February concentrations in the range of 162-190 ng/m3 [10]. Levoglucosan concentrations in
Leicester during the winter are also relatively modest compared to the concentrations reported for
the same period at several other European cities, for example: winter levels in Austria were in the
range of 190-860 ng/m3[20], in Belgium 130-640 ng/m?3 [7, 28, 29], in Czech Republic 326-572 ng/m?3
[30] and those in Aviero, Portugal were measured at 1290 ng/m?3 [6].

Figure 3 shows that the conditions under which high levoglucosan levels prevailed were at low wind
speeds (<1 m/s) from all directions, or moderate winds (1-5 m/s) from the south-east. This suggests
that levoglucosan and thus biomass burning PM is generally being emitted locally and that the
housing to the south east is the dominant source of levoglucosan when winds exceed 1m/s.

The relationship between average daytime temperature and atmospheric levoglucosan
concentration was examined, and can be seen in Figure 4. Whilst a general seasonal pattern can be
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observed and all exceedances of 100 ng/m3 (90" percentile) occurred at relatively low temperatures
(<13°C), other than on a seasonal level there appears to be little direct correlation between
levoglucosan and temperature. This is indicative of the use of biomass burning in Leicester not as a
primary heat source but for other purposes such as decorative or as a secondary heating source.

Other Monosaccharide Anhydrides

The application of levoglucosan as a sole marker for biomass combustion has been shown to be less
accurate where there is the potential for emissions from burning of lignite to cause interference, and
that the isomeric ratios with other MAs may be more specific [19]. To this end in this study
mannosan and galactosan were simultaneously measured alongside levoglucosan. Mannosan is the
second most abundant MA produced in biomass smoke and levoglucosan to mannosan (L/M) ratios
can be used to help discriminate combustion sources. In previous studies the combustion of
softwoods has typically yielded L/M ratios of 2.6-6.7 [22, 36, 37], whereas hardwood and lignite
produce ratios that are significantly higher (13-24 for hardwoods [22, 36-39] and 31-90 lignite [19]).
Incorporation of galactosan (G) concentrations can facilitate further discrimination as galactosan has
been previously demonstrated to constitute a diagnostic marker for recent biomass burning [16];
L/(M+G) ratios of 1.8-2.8 [22, 36] provide further evidence of softwood sources.

The average L/M ratio of 2.8 and L/(M+G) ratio of 2.2 determined for Leicester in this study (Figure
5) are therefore in the range previously determined for combustion of mostly soft woods. Figure 5
also shows that there is excellent correlation between levoglucosan and mannosan and with
mannosan and galactosan and that the relatively consistent ratio demonstrates a constant
combustion source throughout the year. Some caution, however, should always be used when
interpreting sources of MAs in complex environmental samples as the absolute monosaccharide
release can be connected in part with the combustion regimes [40], with some uncertainty in the
possible effects that this can have on isomer ratios [41].

Data Validation Using Duplicate Analysis

In order to assess the reliability and reproducibility of the data produced within the study, a mobile
monitoring station was deployed to cross-validate the levoglucosan levels recorded at the Leicester
fixed site. The mobile station was situated around 10 m from the fixed site and PMy, filters were
collected at both sites using identical sampling equipment over 28 days from the 6" March 2014 to
4™ April 2014. These data (see supplementary data) demonstrated excellent agreement between the
two measurements, confirming the reliability of both the filter sampling and MA analysis methods.

Black Carbon and Wood Burning

Black carbon was also measured at the Leicester site over the period of the study using a MAAP 5012
measuring absorbance at 670 nm. Previous investigation has shown that black carbon formed from
wood burning contributes to the absorbance at this wavelength, but traffic also makes a
considerable contribution [42]. Figure 6 shows that when examined on a monthly averaged basis
there is good correlation between levoglucosan and black carbon concentrations. However, when
this is examined on a daily average basis it can be seen that whilst levoglucosan levels peak at
weekends, BC levels are highest on working days. This demonstrates that at the Leicester site the BC
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measurements are predominantly influenced by traffic BC emissions rather than those from biomass
burning.

Quantifying PM from Wood Burning

When examining the effects of wood burning on air quality it is important to not only consider the
absolute levels but also the contribution to PM as a whole. There is, however, considerable
uncertainty associated with the correct factor to use in order to convert from a levoglucosan
concentration to a PMip mass. The absolute magnitude of this factor is affected by several variables
including combustion source and combustion conditions. Schmidl et al. [22] investigated this in
some detail and derived the conversion factor of 10.7, produced assuming a beech/spruce/briquette
ratio of 2:7:1, and this factor has been used previously in several European biomass burning studies
[7, 20]. For this study the 10.7 factor of Schmidl et al. was used owing to the prediction that woods
burnt in the UK are likely to be predominantly softwoods and not dissimilar to those burnt in other
nearby European locations. Other studies have used slightly different factors but most are of a
similar value: e.g. Szidat et al. [43] use 10, Puxbaum et al. [6] 8.75, and Fuller et al. [10] used 11.

Using this conversion factor the daily contribution of wood burning to PMjo can be calculated (Figure
7), which again shows a distinct period of increased contribution between November and March
both years. The average contribution to PMyg in Leicester over the two year of the study was 3.1 %
(average PMyo concentration 0.49 pg/m?3), which rose in the winter period to 5.1% (0.77 pg/m3).
Several days, however, greatly exceeded the seasonal averages with 25 days exceeding 10 %
contribution, the highest contribution being recorded on Christmas day 2013 where the percentage
contribution peaked at 32%. However, the mass concentration was only 1.92 ug/m? with the high
contribution caused by the low (6.1 pg/m?) total PM1o concentration recorded on this day.

Comparison of Levoglucosan Levels Across NW Europe

In order to get a broader picture of how biomass burning levels varied across North-West Europe
data collected from a further four sites in Belgium, the Netherlands and France were included in the
second part of the study. To get an understanding of the composition of PMjg at all these sites,
whilst keeping the sample numbers manageable, PM1, concentrations were measured every day but
only every sixth filter was subjected to monosaccharide anhydride analysis. In order to compare the
data sets every sixth day reading was used from the Leicester site in this analysis.

Figure 8 shows the average monthly concentrations of levoglucosan at the five sites across NW
Europe for the study period April 2013 to May 2014. It can be seen that levels were similar across
the sites throughout summer, but notable differences in winter occurred, with Lille having
consistently the highest concentrations from November to May.

The presence of detectable levels of levoglucosan at all site during in summer is indicative of the
presence of other contributing sources throughout the year other than domestic heating. These
could include alternative domestic sources, such as garden waste burning, or wood fuelled patio
heaters, as well as agricultural sources.
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As previously discussed, levoglucosan concentrations in Leicester in 2013-2015 are lower than the
majority of measurements taken across Europe, however, none of the sites considered were located
in the largest cities often examined in such studies, such as London or Paris[5, 10, 34, 35, 44] The
sites considered offered an insight into wood burning in the urban environment removed from the
largest cites with the most pronounced air quality problems as despite this type of location housing
large populations it has been generally less well studied. The highest levels, in Lille over winter are
in the range of those measured in neighbouring Belgium (130-640 ng/m3 [7, 28, 29]), and Antwerp
shows somewhat lower levels than the ~300 ng/m?3 previously measured in the region during
2010/2011 [7]. Both the Dutch cities (Wijk aan Zee and Amsterdam) showed similar concentration
and when averaged over the winter periods were, similar to Leicester with some of the lowest
concentrations measured.

Contribution to Total PMio

The average seasonal contribution of wood burning to total PMy at all sites can be seen in Figure 9,
calculated using a conversion factor of 10.7 [22]. A similar trend is seen as observed for the
concentrations of levoglucosan, with Lille demonstrating the highest contribution to PMio over the
autumn, winter and spring periods 2013-2014 (no spring 2013 data were collected for Lille). Winter
average contribution in Lille reached 11.6 % in winter 2013 with a mean PM1o mass concentration of
2.11 pg/m3, whereas the other sites were notably lower, in the range 2.7-5.8 % (0.56-1.36 pg/m3).
Other studies have shown comparable levels at urban sites across Europe: e.g. Caseiro et al. [20]
estimated that wood burning was responsible for around 10% of wintertime PMuw in Vienna,
approximately 7-9 % (1.8 ug/m3) of the wintertime PM mass concentration in London (2009 and
2010) originated from biomass burning [10] and in Flanders, Belgium wood burning has been
estimated to contribute between 5 and 6 % of the annual mean PMuwin six cities [7]. There appears
to be higher use of wood as a fuel source in certain rural areas and the contribution of biomass
burning to PMjo can be particularly high in some areas in winter, e.g. in the municipality of Hamme,
Belgium the contribution of biomass burning to the total mass of PMyo was recorded at 21.9 % [7],
with an average of 7.5 pg/m? of PM produced by biomass combustion.

Although measured levels in 2013/2014 at the sites assessed average contributions are relatively
low, on several days in the year they exceeded 20 % which, while not likely to cause regulatory
breaches alone, may well offer a significant enough input to push total PMjo concentrations over the
EU day limit value of 50 ug/m3. The vast majority of particles emitted in wood smoke are below 2.5
um [13], so the newly introduced PM,s yearly limit of 25 pg/m3 will likely be even more severely
impacted. If biomass burning does increase as predicted by the EU forecasts [11] then it may start
to become a significant obstacle in maintaining particulate pollution levels below legislative limits.

MA ratios

In order to assess how biomass sources varied across the sites throughout the year, monthly
averaged L/M and L/(M+G) ratios were examined (Table 3). Across the sites the L/M ratios were in
the range 2.1-6.7 and L/(M+G) 1.8-4.3, which is consistent with a predominantly softwood
combustion source, as previously discussed for the ratios calculated for the Leicester site. Leicester
showed the most consistent ratios throughout the year (as previously demonstrated in Figure 5)
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indicating a largely consistent combustion source. More variation was seen at the other sites, with
Lille having the largest range (2.8-6.7 L/M, 2-4.3 L/(M+G)) and the highest recorded ratios 6.7/4.3.
All sites demonstrated an increase in both L/M and L/(M+G) ratios from the lowest values in
July/August which increased into winter before subsiding again in spring. Although the ratios still
imply a predominantly soft wood combustion source [19] it would appear that the source is
changing subtly throughout the year. The baseline levels measured during the summer and autumn
months are likely derived from sources other than domestic heating, such as garden bonfires, or
agricultural waste disposal. The sources in winter, predominantly domestic heating, appear to have
a higher hardwood contribution pushing the ratios up.

Network Validation-PM;/Levoglucosan

Further network validation was carried out by comparison of mobile station PMio measurements
with fixed site measurements at Amsterdam, Antwerp and Leicester over a period of approximately
one month (see Table 2 for periods measured). The results demonstrated (see Supplementary
Information) that the correlation for the three sites visited by the mobile station was very good,
although PM;o measurements were consistently slightly higher at the mobile station.

To examine spatial variation of PMiy and levoglucosan in the local environment, the mobile
monitoring station was sited at an alternative location 1.2-6.2 km from the fixed site. Figure 10
shows that there is, for the majority of the time, a good agreement of PMj, and levoglucosan
concentrations (analysed every 2nd day) between the sites. This is suggests that one urban
background monitoring site is likely to be representative of biomass burning and PMjo
concentrations throughout the considered urban environments.

At the Leicester site PMyg levels were significantly different on one day, and on another levoglucosan
levels were also very different. The PMyo concentration recorded on 24/4/14 was significantly higher
at the fixed site (100 pg/m?3 compared to 15 pg/m?3). On this day the weighing results for the filters
fell within specified parameters and operational data for the PMio samplers were normal. There was
also no difference in levoglucosan concentration on this day, but K* was three time higher at the
fixed site. The most likely conclusion from these data is that a very local source may have increased
PM1o; most probably dust created by construction work that was being carried out in the proximity
of the fixed site sampler on the date in question. On 18/4/14 there was a significantly raised level of
levoglucosan at the mobile site compared to that recorded at the fixed site (48 compared to 12
ng/m?3); again this is most likely a very local source of burning which increased levoglucosan.

Long distance influence of Wood Burning

The potential influence of biomass burning emissions over long distances was investigated by
correlation of levoglucosan concentrations between the different sites across Europe. A strong
correlation (r* = 0.865, data not shown) was seen between the two closest cities Amsterdam and
Wijk aan Zee (~25km apart), some degree of correlation is seen between Antwerp and Lille (r? =
0.65) and Antwerp and Amsterdam (r? = 0.53) which are around 100 km apart. Overall correlation
decreased with distance (Figure 11), suggesting that the normal domestic use of biomass as a
combustion source in one city is only likely to have an effect in the local region.
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Extreme Burning Events

Easter bonfires are a tradition across large areas of Europe including Denmark, parts of Sweden,
Finland, Germany, Switzerland, Austria and parts of the Netherlands and mass bonfire events such
as these can have a widespread effect across extensive areas. Figure 12 shows how levoglucosan
levels far exceeded seasonal averages on Easter day despite a lack of localised burning in the vicinity
of the sites themselves, with only Leicester being far enough away to be unaffected. Although too
far away to be affected by the Easter fires, the highest level of levoglucosan in Leicester over the
entire study period was recorded on the 6™ November 2014 (which corresponds to midnight
onwards on Guy Fawkes Night - a traditional bonfire and fireworks festival in the UK) at 766 ng/m3.
This concentration is nearly double the next highest concentration observed. Unfortunately, no data
was collected for Guy Fawkes Night the previous year, but there are likely to be significantly raised
levels every year owing to the prevalence of bonfires on the preceding evening. These data show
that biomass burning; despite having mostly significant effects locally has the potential to have wide
ranging effects across Europe.

Sixth Day Sampling Validity Assessment

Data analysis for comparisons across the five sites was carried out using measurements taken from
every sixth day filter, whereas at the Leicester site daily measurements were available. This enabled
an assessment to be made regarding the representativeness of six day data as a substitute for daily
sampling. Figure 13 shows the mean values obtained from the Leicester data, where averages are
taken from daily filters compared to every sixth filter on the days used for the cross site study.

The approximation of the six day data was very good over the summer and spring periods, but
showed higher error over autumn and winter; with December 2013 showing the largest error. This
is most likely caused by the large variations in levoglucosan levels that occurred in December with
levoglucosan ranging hugely from 10 to 438 ng/m3. Despite the underestimation evident in the data
the sixth day data still gives a good overall estimator of biomass burning levels for only a fraction of
the analysis effort, and an accurate relative comparison between the different sites as the
measurements were taken on the same days across all the sites.

Conclusions

This study represents one of the most extensive studies to date to examine the current effect
biomass burning is having on air quality across Europe. The data collected demonstrates the
existence of a distinct biomass burning period stretching from November to March across all sites in
North West Europe, with Lille consistently showing the highest levels of burning throughout spring,
autumn and winter. The highest contribution to PMjo also occurred in Lille in winter where it
averaged 11.6%. The average winter PMo contribution across all sites was 5.6%, which fell to below
1% in summer. Although these contributions seem relatively low currently, there are several driving
forces including rising fuel costs and government renewable fuel schemes which are likely to cause
increases in biomass burning derived PMjo pollution in years to come. A poor correlation between
temperature and levoglucosan concentration was observed at the Leicester site, the site of most
intense study, suggesting that wood is probably not being burnt as a primary domestic heat source
at this location.
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Data indicates that the detrimental effects of burning on air quality are only likely to be evident in
the local region as poor correlation was observed between most locations; however, large organised
burning events can cause much wider scale effects on air quality. Levoglucosan offers more reliable
estimates of biomass burning than markers such as K* and black carbon which are subject to higher
levels of interference from other sources. Furthermore the simultaneous measurements of other
MAs allowed the determination of the primary combustion source. In this study isomer ratios
suggested that softwoods were the mains source across the sites.
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