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Abstract. Gentle algebras are a class of algebras that are derived tame. They therefore
provide a concrete setting to study the structure of the (bounded) derived category in detail.
In this article we explicitly describe the triangulated structure of the bounded derived category
of a gentle algebra by describing its triangles. In particular, we develop a graphical calculus
which gives the indecomposable summands of the mapping cones of morphisms in a canonical
basis of the Hom-space between any two indecomposable complexes.
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Introduction

Derived categories provide a common framework for homological algebra in subjects such
as algebra, geometry and mathematical physics. For example, in mathematical physics, in the
context of homological mirror symmetry, they are the natural setting for Bridgeland’s stability
conditions [12]. In algebraic geometry, they arise in the study of non-commutative crepant
resolutions which are often studied via an algebra whose derived category is equivalent to the
derived category of the smooth variety resolving the singularity [46]. In representation theory,
derived categories are the natural setting for tilting theory of finite dimensional algebras, see for
example [33]. Thus understanding the structure of derived categories and their properties is an
important problem. However, owing to their complexity, in general, this is difficult to achieve.
Therefore in the cases, where this is achievable, it is of great value to obtain as much detailed
knowledge of the derived category as possible.

In the context of the representation theory of finite dimensional algebras, we will now describe
a situation where it is possible to gain insight into the structure of derived categories. According
to the tame-wild dichotomy [27], algebras are either of tame representation type, that is, all
indecomposable finite-dimensional modules can be classified or they are of wild representation
type and it is considered that a complete classification is impossible. Therefore much of the
work in representation theory has been focused on tame algebras and for particular classes of
tame algebras we have a good understanding of their (classical) representation theory, that is of
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their modules categories. A good example of this are special biserial algebras [47], a prominent
class of tame algebras, that has been widely studied, with many exciting recent developments,
see for example [1, 2, 3, 22, 24, 25, 28, 30, 45, 48]. One of the reasons that special biserial
algebras are so well-understood is that their indecomposable representations are classified in
terms of strings and bands [32, 42, 47].

The notion of derived-tameness was introduced in [31]. In the case of derived-tame algebras
we can gain concrete insight into the structure of the derived category. Gentle algebras are
derived tame [8]. They form a subclass of special biserial algebras which is closed under derived
equivalence [44]. They are, therefore, a natural class of algebras whose derived category is the
object of intensive study. As a result, our understanding of the structure of derived categories
of gentle algebras parallels that of our understanding of their module categories.

Gentle algebras first arose in the setting of tilting theory in the classification of iterated tilted

algebras of type A and type Ã in [5] and [7] respectively. They now play an important role
in many areas of mathematics: in algebra, they occur in cluster theory as Jacobian algebras
associated to surface triangulations [6, 29, 38], and in recent advances in invariant theory [23]. In
addition to their widespread appearance in representation theory and algebra, gentle algebras
also are instrumental in geometric contexts. For example, their singularity category [15] –
which measures how far an algebra or variety is away from being nonsingular – was described
in [36]. They feature prominently in the programme to understand singularities of nodal curves
[16, 17, 18] and similar combinatorics occur in an algebraic approach to mirror symmetry based
on dimer models [10].

From now on let Λ be a gentle algebra and Db(Λ) be its bounded derived category with shift
functor Σ. The indecomposable objects in Db(Λ) have been classified [8] in terms of string
combinatorics: namely they are given in terms of homotopy strings and homotopy bands; see
also [16] for a similar approach in the context of nodal algebras. Note that the terminology
originates in [9].

Using the Happel functor [33], the Auslander–Reiten (AR) structure of the perfect category
Kb(proj(Λ)) was determined in [9]. See also [4, §6] for similar results without the use of the
Happel functor. A canonical basis for the morphisms between indecomposable objects in Db(Λ)
was given in [4] in terms of three types of morphism: graph maps, single maps and double
maps. Note that the last two classes may have nontrivial homotopies between them which can
be detected by so-called quasi-graph maps. We will call this the ALP basis.

However, while the AR triangles are well understood [9], a complete description of the trian-
gulated structure of Db(Λ) is not known. In particular, given two indecomposable complexes P •

and Q• in Db(Λ) the middle terms of extensions Q• → E• → P • → ΣQ• were, up to now, not
well understood. In this paper, based on (homotopy) string combinatorics, we give a complete
description of the middle terms of such extensions. Note that a complete understanding of
middle terms of extensions and the triangulated structure is important for many applications,
for example:

• in cluster theory, these form the basis of the so-called exchange triangles and exchange
relations [14, 19, 21, 34, 35];
• understanding middle terms of extensions is a key ingredient in classifying torsion pairs

in triangulated categories [26, 39, 41, 49];
• the description of middle terms of extensions in the derived category of derived-discrete

algebras is instrumental in the classification of thick subcategories of discrete derived
categories [13];
• for a gentle algebra Λ and extending the geometric model in [13], Opper recently an-

nounced [40] a geometric model of Db(Λ) which uses the results of this paper;
• in an upcoming sequel to this this paper [20], the results and techniques developed in

this article will be used to show that the short exact sequences given in [43] form a
basis of the Ext1-space between any two indecomposable Λ-modules, thus answering
this longstanding open question.

2



In Db(Λ) the middle term E• of an extension Q• → E• → P •
f•→ ΣQ• is given by the inverse

shift of the mapping cone M•f• of the map f•. In this paper, we describe the indecomposable
summands of the mapping cones of the ALP basis elements, that is of maps f• in the canonical
basis of HomDb(Λ)(P

•, Q•), where P • and Q• are indecomposable complexes. Our description
is general in that our results cover both string and band complexes. Our main results can
be summarised in the following combinatorial description of the mapping cones of ALP basis
elements:

Theorem. Let Λ be a gentle algebra. Suppose σ and τ are homotopy strings or bands and
that Q•σ and Q•τ are the corresponding indecomposable string or band complexes. Let f• ∈
HomDb(Λ)(Q

•
σ, Q

•
τ ) be an ALP basis element. Then M•f• can be described by the following graph-

ical calculus.

(1) Let σ = βσLρσRα and τ = δτLρτRγ and suppose f• is a graph map corresponding to
the overlap ρ. Then M•f• is given by:

• • • • • •

• • • • • •

β

δ

α

γ

σL ρk ρ1 σR

fL fR

τL ρk ρ1 τR

(2) Let σ = βσLσRα and τ = δτLτRγ and suppose f• is a single map. Then M•f• is given
by:

• • •

• • •

β

α

δ γ

σL

f

σR = ffR

τR = f̄ f̄L

τL

fLffR

(3) Let σ = βσLσCσRα and τ = δτLτCτRγ and suppose f• is a double map. Then M•f• is
given by:

• • • •

• • • •

β

δ

α

γ

σL σR

τR

fL fR

σC

τCτL

We refer the reader to Sections 4, 5 and 6 for precise statements and details.

Convention. Throughout this article, all modules will be left modules and all maps will be
composed from left to right.

1. Background

1.1. The homotopy category and mapping cones. The required background on derived
and triangulated categories in the setting of representation theory can be found in [33].

Let Λ be a finite-dimensional algebra over an algebraically closed field k. The category of
interest in this article will be Kb,−(proj(Λ)), the homotopy category of right bounded com-
plexes of projective left Λ-modules with bounded cohomology. The morphisms of Kb,−(proj(Λ))
are cochain maps of complexes up to homotopy. Let (P •, dP ) and (Q•, dQ) be complexes in

Kb,−(proj(Λ)). Two maps f•, g• : P • → Q• are said to be homotopic, written f• ' g•, if there
exists a family of maps {hn : Pn → Qn−1}n∈Z such that fn − gn = dnPh

n+1 + hndn−1
Q . Below is
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a schematic of the situation:

· · ·
dn−2
P // Pn−1

dn−1
P //

fn−1−gn−1

��

Pn
dnP //

fn−gn ��

hn

||

Pn+1
dn+1
P //

fn+1−gn+1

��

hn+1

||

· · ·

· · ·
dn−2
Q

// Qn−1

dn−2
Q

// Qn
dnQ

// Qn+1

dn+1
Q

// · · ·

If f• ' 0• then f• is called null-homotopic. The family {hn}n∈Z is called a homotopy. Homotopy
forms an equivalence relation on the set of cochain maps P • → Q•.

Let K be a triangulated category. Throughout this article we shall denote the shift (or
suspension) functor by Σ: K → K. The first axiom of triangulated categories asserts that for
any morphism f : X → Y in K there exists a completion to a distinguished triangle

X
f−→ Y −→ Z −→ ΣX.

The third object Z in the triangle above is often called the cone of f owing to the fact that the
triangulated structure put on the homotopy category Kb,−(proj(Λ)) comes from the mapping
cone construction.

Definition 1.1. Let Λ be a finite-dimensional algebra and consider the homotopy category
Kb,−(proj(Λ)). Let (P •, dP ) and (Q•, dQ) be complexes in Kb,−(proj(Λ)) and suppose f• : P • →
Q• is a cochain map. The mapping cone of f• is the complex (M•f• , dMf• ) given by

Mn
f = Pn+1 ⊕Qn and dnMf•

=

[
−dn+1

P fn+1

0 dnQ

]
It is well known that Kb,−(proj(Λ)) ' Db(Λ), the bounded derived category of finitely gener-

ated left Λ-modules.

1.2. Gentle algebras. The definition of a gentle algebra goes back to [7], where they first
occurred as iterated tilted algebras of type A.

Definition 1.2. A finite dimensional k-algebra is called gentle if it is Morita equivalent to an
algebra kQ/I where Q is a quiver and I and admissible ideal in kQ such that

(1) For each vertex i ∈ Q0 there are at most two arrows starting at i and at most two arrows
ending at i;

(2) For each arrow a ∈ Q1 there is at most one arrow b such that ba /∈ I and at most one
arrow c such that ac /∈ I;

(3) For each arrow a ∈ Q1 there is at most one arrow b such that ba ∈ I and at most one
arrow c such that ac ∈ I;

(4) The ideal I is generated by length two monomial relations.

Note that if one removes condition (3) and relaxes condition (4) so that the monomial ideal
is generated simply by monomial relations one obtains a so-called string algebra.

Throughout, Λ will be a gentle algebra over an algebraically closed field k. For convenience
we shall always identify Db(Λ) ' Kb,−(proj(Λ)).

2. String and band complexes

The indecomposable complexes in Kb,−(proj(Λ)) were classified by Bekkert and Merklen in
[8]. They are classified in terms of homotopy strings and homotopy bands, where we use the
terminology of Bobiński [9]. In this article we shall use the basis of the morphism space between
indecomposable complexes given in [4]. As such, we provide a brief summary of the description
of homotopy strings and bands using the notation of [4].

4



Let Λ = kQ/I be a gentle algebra. Since we are reading paths from right to left, all modules
in this article will be left Λ-modules. Recall that for i, j ∈ Q0 there is a bijection:

{paths p : j  i in (Q, I)} 1−1−→ {basis elements of HomΛ(P (i), P (j))}
p 7−→ (u 7→ up).

Bekkert and Merklen’s key insight was that one could use this correspondence together with
the length two monomial relations for a gentle algebra to produce indecomposable complexes.
They were then able to use Bondarenko’s [11] technology concerning matrix problems to show
that these were all indecomposable complexes.

2.1. Homotopy strings. A homotopy letter is a triple (p, i, j) where p is a path in Q with no
subpath in I and i, j ∈ Z are such that |i− j| ≤ 1. The homotopy letter (p, i, j) is called direct
if i < j and inverse if i > j. We shall see below that i and j are the cohomological degrees of
the homotopy letter. If i = j then p is a trivial path and is called a trivial homotopy letter. The
inverse of (p, i, j) is (p, i, j)−1 = (p̄, j, i), where p̄ denotes the inverse path of p. The starting
and ending vertices of a homotopy letter are defined by

s(p, i, j) =

{
s(p) if (p, i, j) is direct;
e(p) if (p, i, j) is inverse;

and e(p, i, j) =

{
e(p) if (p, i, j) is direct;
s(p) if (p, i, j) is inverse.

The composition (p, i, j)(p′, i′, j′) is defined if j = i′ and s(p, i, j) = e(p′, i′, j′).
A homotopy string is a sequence of pairwise composable homotopy letters

σ =

1∏
r=n

(σr, ir, jr) = (σn, in, jn) · · · (σ2, i2, j2)(σ1, i1, j1)

such that

(1) whenever (σr, i, i+ 1)(σr−1, i+ 1, i+ 2) occurs σrσr−1 has a subpath in I;
(2) dually, whenever (σ̄r, i, i− 1)(σ̄r−1, i− 1, i− 2) occurs σr−1σr has a subpath in I;
(3) whenever (σr, i, i+1)(σ̄r−1, i+1, i) occurs σr and σr−1 do not start with the same arrow;
(4) dually, whenever (σ̄r, i, i−1)(σr−1, i−1, i) occurs σr and σr−1 do not end with the same

arrow.

The starting and ending vertices of a homotopy string σ are defined in the obvious fashion.
Similarly, the inverse of a homotopy string is defined in the obvious way. Often we shall not
require to record the degrees explicitly and may write the homotopy string as σ = σn · · ·σ2σ1

for short.

Remark 2.1. In light of the correspondence between paths and between indecomposable pro-
jective modules and elements of a basis of the Hom-space between them, we observe that for a
homotopy string σ = (σr, i, i + 1)(σr−1, i + 1, i + 2) condition (1) above induces a composition
of maps

P (e(σr))
σr−→ P (s(σr)) = P (e(σr−1))

σr−1−→ P (s(σr−1)).

Since σrσr−1 has a subpath in I, i.e. the relation induces the ∂2 = 0 property of the differential in
the corresponding homotopy string complex. Similarly for homotopy strings satisfying condition
(2).

We recall the following more intuitive way of expressing a homotopy string from [4].

Definition 2.2. Let σ =
∏1
r=n(σr, ir, jr) be a homotopy string. The unfolded diagram of σ

is a diagram where each indecomposable projective module is represented by a dot and each
homotopy letter is represented by either a left-pointing or right-pointing arrow. Left-pointing
arrows correspond to inverse homotopy letters and right-pointing arrows correspond to direct
homotopy letters. When the direction of the arrow is undetermined, we simply draw it as a

5



line.

degree: in jn = in−1 jn−1 = in−2 j3 = i2 j2 = i1 j1

σ : • σn •
σn−1 • • σ2 • σ1 •

Note that the arrows in an unfolded diagram point in the direction of the (differential) map,
i.e. in the opposite direction to the path in the quiver that constitutes the homotopy letter.

Definition 2.3. For a homotopy string σ there is an indecomposable complex P •σ ∈ Kb(proj(Λ))
called the corresponding string complex of σ, whose construction is described explicitly in [8,
Def 2]. Since P •σ

∼= P •σ̄ , as such there is an equivalence relation ∼−1 on homotopy strings given
by identifying a homotopy string with its inverse. We write HSt for the set of all homotopy
strings under ∼−1.

The passage from a homotopy string σ to the corresponding string complex P •σ is described
in the notation of the present article in [4, §2]. However, the passage is easily understood via
an example, which also motivates the unfolded diagram notation.

Example 2.4. Consider the algebra Λ = kQ/I given by the quiver:

1 2 3 4
a

b

c d

e

subject to the relations ca = dc = 0. Consider the homotopy string

σ = (d̄, 0,−1)(ec,−1, 0)(a, 0, 1)(b̄c̄ē, 1, 0)(d, 0, 1)(c, 1, 2)(a, 2, 3)

which corresponds to the unfolded diagram:

degree: 0 −1 0 1 0 1 2 3

σ : • •d̄oo ec // • a // • •b̄c̄ēoo d // • c // • a // • .

This corresponds to the following unconventional way of writing a complex of projective mod-
ules,

0 −1 0 1 0 1 2 3

P (3) P (4)
d̄oo ec // P (2)

a // P (1) P (4)
b̄c̄ēoo d // P (3)

c // P (2)
a // P (1) ,

which can be re-arranged into the following, more traditional, diagram of a complex of projective
modules,

P •σ : P (4)
[ d ec 0 ]// P (3)⊕ P (2)⊕ P (4)

[
0 0
a 0
ecb d

]
// P (1)⊕ P (3)

[ 0
c ]
// P (2)

[ a ] // P (1).

We make the following brief note on our convention for reading homotopy strings (and there-
fore paths) from right to left, and note that as a consequence, in this article we compose maps
from left to right.

Remark 2.5. Remark 2.1 explains our convention to read paths in the quiver from right to
left: this corresponds to reading maps between indecomposable projective modules from left to
right. Consider the following quiver:

1 2 3 4 5
a b c d

with a relation at 3. Let us now consider the two conventions in turn:
6



• Reading strings from left to right. Consider the homotopy string σ = abcd which de-
composes into homotopy letters σ = σ1σ2 with σ1 = ab and σ2 = cd. The relation says
bc = 0. The corresponding homotopy string complex is

P (5)
cd−→ P (3)

ab−→ P (1),

where we compose maps in the usual way from right to left. Notice that this re-orders
the homotopy letters in the string complex in comparison with those in the homotopy
string as a word. In particular, the relation bc = 0 giving rise to ∂2 = 0 is ‘separated’
when written as a complex.
• Reading strings from right to left. Consider the same homotopy string σ = dcba, again

decomposing into homotopy letters σ = σ2σ1 with σ1 = ba and σ2 = dc. The relation
says cb = 0. The corresponding homotopy string complex is

P (5)
dc−→ P (3)

ba−→ P (1),

where we now compose maps from left to right. Notice that the string complex and
homotopy string written as a word now coincide, and the relation is no longer separated.

2.2. Homotopy bands. A non-trivial homotopy string σ =
∏1
r=n(σr, ir, jr) is called a homo-

topy band if s(σ) = e(σ), in = j1, one of {σ1, σn} is direct and the other is inverse, and σ is
primitive, i.e. not a proper power of another homotopy string. Note that the condition in = j1
implies that there must be as many inverse homotopy letters as there are direct homotopy
letters, so in particular, any homotopy band contains an even number of homotopy letters.

Definition 2.6. The unfolded diagram for a homotopy band σ =
∏1
r=n(σr, ir, jr) is an infinite

repeating diagram using the same conventions as the unfolded diagram for a homotopy string:

in jn jn−1 j3 j2 j1 = in

· · · λσ1 • σn •
σn−1 • • σ2 • λσ1 • σn · · · ,

where the scalar λ ∈ k∗ is added to the component of the differential corresponding to the ‘first’
homotopy letter of σ in much the same way that a ‘twist’ is added to the algebra action on a
band module.

Definition 2.7. For a homotopy band σ and λ ∈ k there is an indecomposable complex
B•σ,λ ∈ Kb(proj(Λ)) called the corresponding band complex of σ, whose construction is described

explicitly in [8, Def 3]. Define an equivalence relation ∼r on the set of homotopy bands by
identifying a homotopy band with its cyclic rotations and their inverses. For homotopy bands
σ and τ , σ ∼r τ if and only if B•σ,λ

∼= B•τ,λ± . We write HBa for the set of all homotopy bands

under ∼r.
Example 2.8. Consider the algebra of Example 2.4 above. The homotopy string

σ = (d, 0, 1)(cb, 1, 2)(ā, 2, 1)(c̄ē, 1, 0)

defines a homotopy band whose unfolded diagram is

0 1 2 1 0

· · · •λc̄ēoo d // • cb // • •āoo •λc̄ēoo d // · · · ,
which corresponds to the following complex of projective modules:

P (4)
[ d λec ]// P (3)⊕ P (2)

[ cba ]
// P (1).

We note that w also determines a homotopy string complex, whose unfolded diagram is

0 1 2 1 0

• d // • cb // • •aoo • ,ecoo

7



whose corresponding homotopy string complex is

P (4)⊕ P (4)

[
d 0
0 ec

]
// P (3)⊕ P (2)

[ cba ]
// P (1).

2.3. Infinite homotopy strings. The final class of indecomposable complex are those corre-
sponding to infinite homotopy strings, which, as will become clear later, only occur when Λ
has infinite global dimension. They arise from taking projective resolutions of certain string
complexes. For details on how to take projective resolutions of complexes we refer the reader
to [37, Ch. 6]. The original reference for the following is [8], but we shall employ the notation
and terminology of [4]. First, we recall a definition from [9].

Definition 2.9. By a direct (resp. inverse) antipath we mean a homotopy string in which each
homotopy letter is direct (resp. inverse) of length one, i.e. is a direct or inverse arrow in the
quiver.

Suppose Λ = kQ/I is a gentle algebra of infinite global dimension. Then Q contains oriented
cycles with ‘full’ relations. Let C(Λ) denote the set of arrows a ∈ Q1 such that there is a cyclic
path an · · · a2a1 in Q that is repetition-free and satisfies ai+1ai ∈ I for 0 ≤ i ≤ n, where we take
a1 = a and a0 = an.

Definition 2.10. Let σ =
∏1
k=n(σk, ik, jk) be a homotopy string. Following [4, Def. 2.6] we

say that σ is

(1) right resolvable if (σ1, i1, j1) is inverse, j1 ≤ ik, jk for all 1 < k ≤ n, and there exists
a ∈ C(Λ) such that σ(a, j1, j1 − 1) is a homotopy string; in this case we say that σ is
right resolvable by a,

(2) primitive right resolvable if there exists no inverse antipath
∏1
k=r(σk, ik, jk) such that∏r+1

k=n(σk, ik, jk) is right resolvable.

There are dual notions of (primitive) left resolvable. A homotopy string is (primitive) two-
sided resolvable if it is both (primitive) right resolvable and (primitive) left resolvable.

Note that if σ is a (primitive) right resolvable homotopy string then σ−1 is a (primitive)
left resolvable homotopy string. As such, a homotopy string that is not (primitive) two-sided
resolvable but is (primitive) right resolvable or (primitive) left resolvable is called (primitive)
one-sided resolvable.

Remark 2.11. The point of the second part of Definition 2.10 is that a right resolvable ho-
motopy string admits a projective resolution of infinite length, but without the primitive as-
sumption, we would have multiple finite and right resolvable homotopy strings giving rise to
the same (right) infinite homotopy string.

We next explain how to form the corresponding infinite homotopy strings from a right re-
solvable homotopy string.

Definition 2.12. Suppose σ =
∏1
k=n(σk, ik, jk) is a homotopy string that is right resolvable

by a1 ∈ Q1 with al · · · a1 a repetition-free cyclic path in (Q, I) with full relations. The right
infinite homotopy string defined by σ is

σ∞ := σ(a1, j1, j1 − 1)(a2, j1 − 1, j1 − 2) · · · (al, j1 + 1− l, j1 − l)(a1, j1 − l, j1 − l − 1) · · · .
The unfolded diagram of σ∞ is

• σn • • σ2 • •σ1oo •a1oo •a2oo • •aloo •a1oo .

Left infinite homotopy strings and two-sided infinite homotopy strings are defined analogously.
A left or right infinite homotopy string that is not two-sided infinite is called a one-sided infinite
homotopy string. We denote by HSt1 the set of all one-sided infinite homotopy strings under
∼−1; cf. Definition 2.3. Similarly we denote the set of all two-sided infinite homotopy strings
under ∼−1 by HSt2.

8



2.4. The indecomposable complexes in Kb,−(proj(Λ)). We can now state the main theorem
of [8]. Recall the notation introduced in Definitions 2.3, 2.7 and 2.12.

Theorem 2.13 ([8, Thm. 3]). Let Λ = kQ/I be a gentle algebra. Then there are bijections
between

(1) indecomposable perfect complexes and HSt t (HBa× k∗ × N); and,
(2) indecomposable non-perfect complexes HSt1 t HSt2.

3. A basis for the Hom-space between indecomposable complexes

In this section, we present a brief survey of the results of [4] describing a basis for the Hom-
space between two indecomposable complexes. Let σ ∈ HSt t HBa t HSt1 t HSt2 and λ ∈ k∗.
We set

Q•σ =

{
P •σ if σ ∈ HSt t HSt1 t HSt2
B•σ,λ if σ ∈ HBa.

Note that in the case σ ∈ HBa we have suppressed the scalar λ from the notation for Q•σ; it
should be regarded as implicitly present, but has no implications on what follows other than
multiplication by the appropriate scalar. The main theorem of [4] is the following.

Theorem 3.1 ([4, Theorem 3.15]). Let σ, τ ∈ HSttHBatHSt1tHSt2. Then there is a canonical
basis of HomDb(Λ)(Q

•
σ, Q

•
τ ) given by:

• graph maps f• : Q•σ → Q•τ .
• singleton single maps f• : Q•σ → Q•τ ;
• singleton double maps f• : Q•σ → Q•τ ;
• quasi-graph maps f• : Q•σ  Σ−1Q•τ ;

We now describe each of the four types of maps occurring in the canonical basis. We note
that a quasi-graph map is not a map, but in fact determines classes of homotopy equivalent
single and double maps, which is why we denote it by  and not →.

3.1. Graph maps. In order to define graph maps, we consider the following setup.

Setup 3.2. Suppose σ and τ are homotopy strings or bands, up to inversion, of the form,

(1) σ = βσLρσRα and τ = δτLρτRγ; or
(2) σ = ρσRα and τ = ρτR,

where α, β, γ and δ are homotopy substrings, σL, σR, τL and τR are (possibly trivial) homotopy
letters (in which case the corresponding homotopy substring α, β, γ or δ would be trivial as
well), and ρ is a (possibly trivial) maximal common homotopy substring, and in the second case
an infinite homotopy substring of σ and τ . Moreover, we assume that ρ occurs in the same
cohomological degrees in both homotopy strings.

These setups are indicated in the following unfolded diagrams of Q•σ and Q•τ .

(1) Q•σ :
β
• σL

fL
��

(∗)

•
ρk •

ρk−1 · · ·
ρ2 •

ρ1 • σR

(∗∗)

• α

fR
��

Q•τ :
δ
• τL

• ρk
• ρk−1

· · · ρ2
• ρ1

• τR
• γ

(2) P •σ : •
ρ3 •

ρ2 •
ρ1 • σR

(∗∗)

• α

fR
��

P •τ : • ρ3
• ρ2

• ρ1
• τR

• γ

Note that the maximality of ρ as a common homotopy substring of σ and τ necessarily means
that σL 6= τL and σR 6= τR.

In (1) we use the notation Q• because the complexes may be either string or band complexes.
As soon as the maximal common homotopy substring is infinite, however, we are forced to have
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string complexes arising from infinite homotopy strings. In the unfolded diagram notation we
shall use to indicate that the homotopy string is infinite. The notation can
denote both a finite or an infinite homotopy substring.

Definition 3.3. The following unfolded diagrams define the graph map right endpoint condi-
tions of [4, §3.2],

(RG1) • σR // • α

fR
��

•
τR=σRfR

// • γ

(RG2) • •
σR=ω̄f̄Roo α

fR
��

• •
τR=ω̄
oo

γ

(RG3) • σR // • α

• •τR
oo

γ

(RG∞) • σL

fL
��

(∗)

•
ρ−1 •

ρ−2 •
ρ−3 •

• τL
• ρ−1

• ρ−2
• ρ−3

•

where (∗) satisfies a graph map left endpoint condition, and where ω is a direct homotopy letter.
The graph map left endpoint conditions are defined dually.

Definition 3.4. If, in Setup 3.2, one of the graph map right endpoint conditions holds and one
of the graph map left endpoint conditions holds then the data in the unfolded diagrams (1) and
(2) determines a map of complexes f• : Q•σ → Q•τ , which is called a graph map.

The situation of (2) will additionally be called a one-sided infinite graph map. Note that
when (LG∞) and (RG∞) both hold, we get a two-sided infinite graph map, which is necessarily
the identity map id• : P •σ → P •σ .

3.2. Single maps. Consider the following setup at the level of unfolded diagrams for Q•σ and
Q•τ :

(3) Q•σ :
β
• σL • σR

f
��

• α

Q•τ :
δ
• τL

• τR
• γ

where f is a nontrivial path in (Q, I).
In the following, let C := Cb,−(proj(Λ)) be the category of right bounded complexes of finitely

generated projective Λ-modules whose cohomology is bounded.

Definition 3.5. A map in HomC(Q•σ, Q
•
τ ) is a single map if it has only one nonzero component

which occurs in an unfolded diagram as in (3) above and which satisfies the following conditions:

(L1) The homotopy letter σL is either inverse or is direct and σLf has a subpath in I.
(L2) The homotopy letter τL is either direct or is inverse and fτL has a subpath in I.
(R1) The homotopy letter σR is either direct or is inverse and σRf has a subpath in I.
(R2) The homotopy letter τR is either inverse or is direct and fτR has a subpath in I.

It turns out that not all single maps in C actually give rise to maps in Kb,−(proj(Λ)), since
some may be null-homotopic. Furthermore, a single map may not be a unique representative
of its homotopy class, even in the case that it is not null-homotopic. It is useful to highlight
the following instances of single maps that are unique representatives of their homotopy classes,
and in particular are not null-homotopic.

Definition 3.6. A single map f• : Q•σ → Q•τ , with single component f , is called a singleton
single map if its unfolded diagram is one of the following, up to inversion of one of the homotopy
strings.

(i)
β
• σL •

f
��

δ
• τL

•

with f not a subletter of σL or τL;
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(ii)
β
• σL •

f
��

σR=ffR// • α

δ
• τL

•

with f not a subletter of τL and σL possibly zero;

(iii)
β
• σL •

f
��

δ
• τL

• •
τR=ffL

oo
γ

with f not a subletter of σL and τL possibly zero;

(iv)
β
• σL •

f
��

σR=ffR// • α

δ
• τL

• •
τR=ffL

oo
γ

with σL or τL possibly zero.

3.3. Double maps. Now consider the following setup at the level of unfolded diagrams for Q•σ
and Q•τ :

(4) Q•σ :
β
• σL • σC //

fL
��

• σR

fR
��

• α

Q•τ :
δ
• τL

• τC
// • τR

• γ

where fL and fR are nontrivial paths in (Q, I) such that fLτj = σifR has no subpath in I.

Definition 3.7. A map f• ∈ HomC(Q•σ, Q
•
τ ) is double map if it admits an unfolded diagram

with components fL and fR as in (4) in which (L1) and (L2) of Definition 3.5 hold for fL and
(R1) and (R2) of Definition 3.5 hold for fR.

As is the case with single maps, double maps in C may not give rise to maps in Kb,−(proj(Λ)).
They may even occur in the same homotopy class as single maps. Again, it is useful to highlight
the class of double maps which are unique representatives of their homotopy class, which means
that they are therefore not null-homotopic.

Definition 3.8. A double map f• : Q•σ → Q•τ as in diagram (4) above is a singleton double map
if there exists a nontrivial path f ′ in (Q, I) such that σC = fLf

′ and τC = f ′fR.

3.4. Quasi-graph maps. We finally turn to the definition of quasi-graph maps. Suppose we
are in Setup 3.2. The next definition makes explicit the situations in which the squares (∗) and
(∗∗) of the unfolded diagram (1) do not commute.

Definition 3.9. The following unfolded diagrams define the quasi-graph map right endpoint
conditions,

(RQ1) •
σR=τRτ

′
R// • α

• τR
// • γ

(RQ2) • •σR=ω̄oo α

• •
τR=ω̄ω̄′
oo

γ

(RQ3) • oo σR • α

• •τR
oo

γ

where ω and ω′ are direct homotopy letters, and all primed homotopy (sub)letters are non-
trivial. In (RQ3) we also permit σR or τR (but not both) to be zero. The quasi-graph map left
endpoint conditions are defined dually.

Definition 3.10. If, in Setup 3.2, one of the quasi-graph map right endpoint conditions holds
and one of the quasi-graph map left endpoint conditions holds, then we say there is a quasi-graph
map Q•σ  Q•τ .

Remark 3.11. Note that a quasi-graph map Q•σ  Q•τ does not define a map. However,
a quasi-graph map Q•σ  Σ−1Q•τ determines a family of homotopy equivalent single and/or
double maps Q•σ → Q•τ ; see [4, Prop. 4.8].
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Remark 3.12. A graph map f• : Q•σ → Q•τ determines a quasi-graph map Q•τ  Q•σ simply
by reading the components of the graph maps that are isomorphisms in the opposite direction.
This, therefore determines a homotopy class of single and double maps Q•τ → ΣQ•σ. In the
case that σ = τ ∈ HBa, this can be thought of as a concrete combinatorial manifestation of
(Auslander-Reiten-)Serre duality.

4. Mapping cones of graph maps

In this section we compute the mapping cones of graph maps. We first start by describing
the unfolded diagram of the mapping cone of a graph map. We then tackle the problem in the
case of a graph map between two string complexes and then deal with the cases that one of the
indecomposable complexes is a band complex.

4.1. The unfolded diagram of the mapping cone of a graph map. Let f• : Q•σ → Q•τ
be a graph map. The unfolded diagram of M•f• is the following, depending on which case of
Setup 3.2 we are in.

−β
• −σL

fL ""

•
−ρk •

−ρk−1 · · ·
−ρ2 •

−ρ1 • −σR • −α

fR
""

δ
• τL

• ρk
• ρk−1

· · · ρ2
• ρ1

• τR
• γ

•
−ρ3 •

−ρ2 •
−ρ1 • −σR • −α

fR
""

• ρ3
• ρ2

• ρ1
• τR

• γ

We illustrate this in an example.

Example 4.1. Let Λ be the algebra given by the following quiver with relations.

0

1

2

3

4

a

b

c

f

d

e

Let σ = edcbad̄ and τ = ēf̄ cbafe and consider the graph map f• : P •σ → P •τ whose unfolded
diagram is shown below.

• e // • dc //

d
��

• b // • a // •
f
��

•doo

• •e
oo •

f
oo

c
// •

b
// •

af
// • e

// •

The unfolded diagram of M•f• is thus

• −e // • −dc //

d ""

• −b // • −a // •
f

""

•−doo

• •e
oo •

f
oo

c
// •

b
// •

af
// • e

// •
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Encoding this information back into complexes gives rise to the following standard triangle in
Kb,−(proj(Λ)).

P •σ :

f•

��

P (3)
[ e ] // P (4)

[ dc ] //

[ d ]

��

P (2)
[ b 0 ] //

[ 1 0 ]

��

P (1)⊕ P (4)
[ ad ]

//

[ 1 0
0 0 ]
��

P (0)

[ f ]

��
P •τ :

g•

��

P (0)
[ c f ]

//

��

P (2)⊕ P (3) [
b 0
0 e

] //

��

P (1)⊕ P (4) [
af
0

] //

��

P (3)
[ e ]
//

��

P (4)

��
M•f• :

h•

��

P (3)
[−e ]

//

��

P (4)
[−dc d ]

//

��

P (2)⊕ P (0)[−b 0 1 0
0 0 c f

]//
��

P (1)⊕ P (4)⊕ P (2)⊕ P (3)−a 1 0
−d 0 0
0 b 0
0 0 e


//

��

P (0)⊕ P (1)⊕ P (4) [
f
af
0

] //
��

P (3)
[ e ]
// P (4)

ΣP •σ P (3)
[−e ]

// P (4)
[−dc ]

// P (2)
[−b 0 ]

// P (1)⊕ P (4) [−a
−d
] // P (0)

where g• and h• are the obvious degreewise split maps.

4.2. Mapping cones of graph maps between string complexes. Let σ and τ be homotopy
strings and f• : P •σ → P •τ be a graph map between the corresponding string complex. In this
case the generic situation is for M•f• to have two indecomposable summands, which are again
string complexes and whose strings can be read off from σ, τ and f• in a natural way. We
start with a technical definition which ensures that the unfolded diagram of the graph map is
properly oriented for the mapping cone calculus in the case that f• is a graph map supported
in precisely one degree.

Definition 4.2. Let σ and τ be homotopy strings and suppose f• : P •σ → P •τ is a graph map
concentrated in precisely one degree, i.e. the maximal common homotopy substring ρ is trivial
and satisfies the graph map endpoint conditions (RG3) and (LG3):

β
• •σLoo σR // • α

δ
• τL

// • •τR
oo

γ

We say that the homotopy strings σ and τ are compatibly oriented if σLτL 6= 0 and σRτR 6= 0.

We observe that if a graph map is supported in more than one degree, either by having
precisely one isomorphism and satisfying endpoint conditions so that one of fL or fR is nonzero,
or by having isomorphisms in at least two cohomological degrees (making ρ of length at least 1),
then the homotopy strings and graph map between them is forced to be ‘compatibly oriented’.

Note that in the following if a homotopy string σ = ∅ then the corresponding string complex
P •σ
∼= 0•.

Theorem 4.3. Let σ and τ be (possibly infinite) homotopy strings and suppose f• : P •σ → P •τ is
a graph map. Suppose that σ and τ are compatibly oriented. Then we have the following cases.

(1) If σ = βσLρσRα and τ = δτLρτRγ then the mapping cone M•f• is isomorphic in

Kb,−(proj(Λ)) to the direct sum of P •c1 ⊕ P
•
c2, where

c1 =


γ̄τ̄RσRα if σR 6= 0 and τR 6= 0;
γ̄ if σR = 0;
α if τR = 0;
∅ if σR = 0 and τR = 0,

and c2 =


βσLτ̄Lδ̄ if σL 6= 0 and τL 6= 0;
δ̄ if σL = 0;
β if τL = 0;
∅ if σL = 0 and τL = 0,

(2) If σ = ρσRα and τ = ρτRγ then the mapping cone M•f• is isomorphic in Kb,−(proj(Λ))
to P •c , where

c =


γ̄τ̄RσRα if σR 6= 0 and τR 6= 0;
γ̄ if σR = 0;
α if τR = 0;
∅ if σR = 0 and τR = 0.
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Remark 4.4. If in Theorem 4.3(1) the graph map right endpoint conditions (RG1) or (RG2)
occur then in either case γ̄τ̄RσRα = γ̄f̄Rα.

Proof. We will prove statement (1) in detail. The proof of statement (2) is similar and we leave
its proof to the reader.

We start by showing that P •c1 ⊕ P
•
c2 is a direct summand of M•f• . We do this by defining a

split monomorphism i•1 : P •c1 → M•f• and a retract p•1 : M•f• → P •c1 by looking at the homotopy
substrings on the right and using the right endpoint conditions. The maps i•2 : P •c2 →M•f• and
p•2 : M•f• → P •c2 are defined via a similar analysis of the homotopy substrings on the left and the
corresponding left endpoint conditions. Putting these together will define a split monomorphism

i• =
[
i•1
i•2

]
: P •c1 ⊕ P

•
c2 → M•f• with retract p• = [ p•1 p•2 ] : M•f• → P •c1 ⊕ P

•
c2 . In each case we will

have i•j ◦ p•j = id•P •cj
for j = 1, 2 (recalling our convention of composing maps from left to right).

If the endpoint condition (RG∞) holds then M•f• has only one indecomposable summand,
which arises from the dual analysis involving the left endpoint conditions. Indeed, the part of
the complex corresponding to the maximal common homotopy substring occurring in (RG∞)
will turn out to be null-homotopic using the arguments in the second step below. Thus, we need
only consider the right endpoint conditions (RG1), (RG2) and (RG3). Note further that if both
(RG∞) and (LG∞) hold then the corresponding graph map is an isomorphism and therefore
has trivial mapping cone.

In a case by case analysis of the (right) endpoint conditions we will now defined the maps
i•1 : P •c1 →M•f• and p•1 : M•f• → P •c1 .

Case (RG1): In this case, we have τRσR = fR so that c1 = γfRα. The map i•1 is encoded in
the following unfolded diagram, where we have only sketched the relevant part of the diagram.

P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

P (x0) P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (x0) P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

αR

fR

+1

αk−1

−1 +1

α1

±1 ±1

γr

+1

γr−1

+1 +1

γ1

+1 +1

+1

−σR −αk

fR

−αk−1 −α1

τR γr γr−1 γ1

Its retract p• : M•f• −→ P •c1 is encoded in the following unfolded diagram:

P (x0) P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (x0) P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

−σR

+1

−αR

fR

+1

−αk−1

−1 +1

−α1

±1 ±1
τR

σR

γr

+1

γr−1

+1 +1

γ1

+1 +1

αk

fR

αk−1 α1

γr γr−1 γ1

The unfolded diagram for i•1 is clearly commutative and therefore gives rise to a well-defined
morphism i•1 : P •c1 →M•f• . We need to check the commutativity of the diagram defining p•1.

We only need to check the commutativity of the diagram involving P (x0), P (xR) and P (yR);
it is clear that the rest of the diagram commutes. At the level of complexes, considering only
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the isomorphisms defined (in blue) in the unfolded diagram, we have

P (x0)
[−σR +1 ] // P (xR)⊕ P (x0)[

+1
−
]
��

[
fR
τR

]
// P (yR)

[ 0 +1 ]

��
P (xR)

[αk fR ]
// P (uk−1)⊕ P (yR)

One can clearly see that adding the correction term σR for − in the diagram above makes the
left-hand square commute. For the right-hand square recall that σRfR = τR by (RG1) and note
that if αk is inverse or zero then it does not occur in the right-hand diagram at all and therefore
there is nothing to show. If αk is direct, then σRαk = 0 by the definition of graph map, giving
the required commutativity. This is more clearly seen at the level of unfolded diagrams shown
below, where the correction terms are indicated in red, and morphisms factoring through zero
are in green.

P (x0) P (xR)

P (x0)

0 P (xR)

−σR

+1

0
+1

σR

P (x0) P (yR)

P (xR) P (uk−1)

P (yR)

τR

σR

+1

αk

fR

Case (RG2): Here we have τRσR = w wfR = fR so that c1 = γfRα. The split monomor-
phism i•1 : P •c1 → M•f• and its retract p1 : M•f• → P •c1 are encoded in the following unfolded
diagrams, respectively.

P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

P (x0) P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (x0) P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

−αk

fR

−αk−1 −α1

−w

γr

+1

γr−1

+1 +1

γ1

+1 +1

−σR=−wfR

+1

+1

−αk

fR

−1

−αk−1

+1 ±1

−α1

±1

τR=w

γr γr−1 γ1

P (x0) P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (x0) P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

−σR=−fRτR

+1

−αk

fR

+1

−αk−1

−1 +1

−α1

±1 ±1
τR γr

+1

γr−1

+1 +1

γ1

+1 +1

αk

fR

αk−1 α1

γr γr−1 γ1

As above, the unfolded diagram for p•1 is clearly commutative and therefore gives rise to a
well-defined map p•1 : M•f• → P •c1 . We check commutativity for i•1. As above, the only places

where the commutativity of i•1 is not immediately clear are those involving P (x0), P (xR) and
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P (yR). At the level of complexes we have,

P (xR)
[ fR ] //

[ 1 ]

��

P (yR)

[ 1 − ]

��
P (xR)

[ fR −σR ]
// P (yR)⊕ P (x0)

[ τR1 ]
// P (x0)

Analysing as in the case (RG1) above, one can see that substituting −ω for − the diagram
commutes.

Case (RG3): First assume that σR 6= 0 and τR 6= 0. As above, the split monomorphism
i•1 : P •c1 → M•f• and its retract p•1 : M•f• → P •c1 are encoded in the following unfolded diagrams,
respectively.

P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

P (x0) P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (x0) P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

αk

τRσR

αk−1 α1

−τR

γr

+1

γr−1

+1 +1

γ1

+1 +1

−σR

+1

+1

−αk

−1

−αk−1

+1 ±1

−α1

±1

τR

γr γr−1 γ1

P (x0) P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (x0) P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

−σR

+1

−αk −αk−1 −α1

τR

σR

γr

+1

γr−1

+1 +1

γ1

+1 +1+1

αk

τRσR

−1

αk−1

+1 ±1

α1

±1

γr γr−1 γ1

We check the commutativity of the diagram for i•1. Like in the cases above, it is clearly com-
mutative other than at P (x0), P (xR) and P (yR). At the level of complexes, the relevant part
of the diagram is

P (yR)
[ τRσR ] //

[ +1 − ]
��

P (xR)

[ +1 0 ]
��

P (yR)⊕ P (x0)[
0 τR
−σR +1

]// P (xR)⊕ P (x0)

where substituting −τR for − gives the required commutativity.
We now check commutativity for p•1. As usual, we only need to check at P (x0), P (xR) and

P (yR); the rest is clear. Firstly, consider the relevant part at the level of complexes.

P (yR)⊕ P (x0)

[
0 τR
−σR +1

]
//[

+1
0

]
��

P (xR)⊕ P (x0)[
+1
−
]

��
P (yR)

[ τRσR ]
// P (xR)
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P (x0) P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (x0) P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

P (x0) P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (x0) P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

−σR

+1

−αR

fR

+1

−αk−1

−1 +1

−α1

±1 ±1
τR

σR

γr

+1

γr−1

+1 +1

γ1

+1 +1

−σR

+1

−αk

fR

−αk−1 −α1

τR

γr γr−1 γ1

P (x0) P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (x0) P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

P (x0) P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (x0) P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

−σR=−fRτR

+1

−αk

fR

−αk−1 −α1

τR

−τR

γr

+1

γr−1

+1 +1

γ1

+1 +1

−σR=−fRτR

+1

+1

−αk

fR

−1

−αk−1

+1 ±1

−α1

±1

τR=w

γr γr−1 γ1

P (x0) P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (x0) P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

P (x0) P (xR) P (uk−1) P (uk−2) P (u1) P (u0)

P (x0) P (yR) P (vr−1) P (vr−2) P (v1) P (v0)

−σR

+1

−αk −αk−1 −α1

τR γr

−τR

γr−1 γ1

−σR

+1

−αk

σR

+1

−αk−1

+1 +1

−α1

+1 +1

τR γr

+1

γr−1

+1 +1

γ1

+1 +1

Figure 1. The composition p•1 ◦ i•1 on the level of the unfolded diagrams, case
(RG1) top, (RG2) middle, and (RG3) bottom.

Substituting σR for − gives the desired commutativity.
Note that if one of σR = 0 or τR = 0, but not both, then the definition of the maps and the

argument above goes through with the obvious modifications. If both σR = 0 and τR = 0, then
there are no maps i•1 or p•1 to define since c1 is necessarily the empty string; indeed, we fall into
case (2) of the statement of Theorem 4.3 in which ρ is finite.

We have now shown that P •c1 is a direct summand of M•f• by observing that i•1 ◦ p•1 = id•P •c1
.

Similar arguments show that P •c2 is a direct summand of M•f• , whence P •c1 ⊕ P •c2 is a direct
summand of M•f• .

For the converse direction, i.e. showing that M•f•
∼= P •c1⊕P

•
c2 , we first note that p•◦i• 6= id•M•

f•
;

see Figure 1. However, we shall show that p• ◦ i• is homotopic to id•M•
f•

. In particular, we shall

show p• ◦ i•− id•M•
f•
' 0. In Figure 1 we draw the unfolded diagrams of the composites p•1 ◦ i•1 for

each of the three right-sided graph map endpoint cases; the unfolded diagrams of the composites
p•2 ◦ i•2 and hence p• ◦ i• can be drawn similarly.

Since p• ◦ i• is the identity map on the components of M•f• determined by the homotopy
substrings α, β, γ and δ, without loss of generality we may assume that each of these substrings
does not exist. In the next diagram we sketch the unfolded diagram of the map p• ◦ i• −
id•M•

f•
omitting some correction terms, which must be treated in a case by case analysis. Note
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that, at the level of complexes, the components of p• ◦ i• − id•M•
f•

described in the (partial)

unfolded diagram are entries lying on the diagonals of the matrices giving p• ◦ i•− id•M•
f•

in each

cohomological degree.

P (xL) P (xn) P (xn−1) P (xn−2) P (x2) P (x1) P (x0) P (xR)

P (yL) P (xn) P (xn−1) P (xn−2) P (x2) P (x1) P (x0) P (yR)

P (xL) P (xn) P (xn−1) P (xn−2) P (x2) P (x1) P (x0) P (xR)

P (yL) P (xn) P (xn−1) P (xn−2) P (x2) P (x1) P (x0) P (yR)

−σL −ρn

+1

−ρn−1

+1 +1

−ρ2

+1

−ρ1

+1

−σR

+1

τL ρn

−1

ρn−1

−1 −1

ρ2

−1

ρ1

−1

τR

−1

−σL −ρn

−1

+1

−ρn−1

−1

+1

−1

+1

−ρ2

−1

+1

−ρ1

−1

+1

−σR

−1

+1

τL ρn

−1

ρn−1

−1 −1

ρ2

−1

ρ1

−1

τR

−1

Definition of the homotopy: Suppose that P (xi) sits in cohomological degree di in both P •σ
and P •τ . Thus for 0 ≤ i ≤ n we have one copy of P (xi) in degree di and one copy of P (xi)
in degree di − 1. Moreover, there is a component of the differential given by the identity map
of P (xi) as a degree 1 map from degree di − 1 to degree di. To construct a (null)homotopy
h = {hi}ni=0, we define a degree −1 map as follows. For each 0 ≤ i ≤ n, define a map by setting

hi : P (xi)
−1−→ P (xi) from degree di to di− 1. All other components of h are defined to be zero.

We now inductively show that h does indeed define a homotopy. We start at the beginning,
i.e. right end, of the homotopy string. The base step of the induction requires us to treat each
case of the right graph map endpoint conditions separately.

Base case for (RG1): Locally, the unfolded diagram of the map p• ◦ i•− id•M•
f•

is illustrated

in the diagram below, where the components of h are indicated in green and the components
of p• ◦ i• − id•M•

f•
are indicated in blue and red.

P (x1) P (x0) P (xR)

P (x1) P (x0) P (yR)

P (x1) P (x0) P (xR)

P (x1) P (x0) P (yR)

−ρ1

+1

−σR

+1 fR

ρ1 τR

−1
σR

−ρ1

+1

−1

−σR

+1

−1

fR

ρ1

−1

τR

−1

We show how the zeroth component of h, i.e. h0 : P (x0)→ P (x0) constructs the components
of p• ◦ i• − id•M•

f•
with source P (x0) in cohomological degrees d0 and d0 − 1. At the level of

complexes we have, in the case that ρ1 is direct,

P (x1)
[−ρ1 1 ] // P (x0)⊕ P (x1)

[−σR +1
0 ρ1

]
//

B
��

P (xR)⊕ P (x0)

[
fR
τR

]
//

A
��

[
0 0
−1 0

]
uu

P (yR) .

[ 0 ]
��

0

uu
P (x1)

[−ρ1 1 ]
// P (x0)⊕ P (x1) [−σR +1

0 ρ1

] // P (xR)⊕ P (x0) [
fR
τR

] // P (yR)

One sees immediately thatA =
[

0 0
σR −1

]
andB =

[ −1 0
−ρi 0

]
, giving rise to precisely the components

of p• ◦ i• − id•M•
f•

with source in P (x0) in degrees d0 and d0 − 1 plus an unwanted off-diagonal

term −ρ1 : P (x1)→ P (x0) in degree d0 − 1 = d1, which will be removed inductively.
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In the case that ρ1 is inverse,

P (x0)
[−ρ1 −σR +1 ] //

B
��

P (x1)⊕ P (xR)⊕ P (x0)

[+1 0
0 fR
ρ1 τR

]
//

A
��

[
0
0
−1

]
tt

P (x1)⊕ P (yR) .

0

tt
P (x0)

[−ρ1 −σR +1 ]
// P (x1)⊕ P (xR)⊕ P (x0) [+1 0

0 fR
ρ1 τR

] // P (x1)⊕ P (yR)

We have A =
[

0 0 0
0 0 0
ρ1 σr −1

]
and B = [−1], again giving precisely the components of p• ◦ i•− id•M•

f•

with source in P (x0) in degrees d0 and d0−1 plus an unwanted off-diagonal term −ρ1 : P (x0)→
P (x1) in degree d0 = d1 − 1, which again will be removed inductively.

Base case for (RG2): Locally, the unfolded diagram of the map p• ◦ i•− id•M•
f•

is illustrated

in the next diagram, where the components of h are indicated in green and the components of
p• ◦ i• − id•M•

f•
are indicated in blue and red.

P (x1) P (x0) P (xR)

P (x1) P (x0) P (yR)

P (x1) P (x0) P (xR)

P (x1) P (x0) P (yR)

−ρ1

+1

−σR=−fRτR

+1 fR

ρ1
τR

−1

−τR
−ρ1

+1

−1

−σR

+1

−1

fR

ρ1
τR

−1

As above, we show how h0 constructs the components of p• ◦ i•− id•M•
f•

with source in P (x0)

and P (yR) via the following diagram at the level of complexes. We only consider the case that
ρ1 is direct; the case that ρ1 is inverse, is analogous and is left to the reader.

P (x1)⊕ P (xR)

[ −ρ1 +1 0
−σR 0 fR

]
// P (x0)⊕ P (x1)⊕ P (yR)

[
+1
ρ1
τR

]
//

B
��

P (x0)

A
��

[−1 0 0 ]

tt
P (x1)⊕ P (xR)[ −ρ1 +1 0

−σR 0 fR

]// P (x0)⊕ P (x1)⊕ P (yR) [
+1
ρ1
τR

] // P (x0)

We obtain A = [−1] and B =

[
−1 0 0
−ρ1 0 0
−τR 0 0

]
, which again gives the components of p• ◦ i• − id•M•

f•

with source in P (x0) and P (yR) in degrees d0 and d0 − 1 plus an unwanted off-diagonal term
−ρ1 : P (x1)→ P (x1) in degree d0 − 1 = d1, and we remove this in the induction step.

Base case for (RG3): As above, we assume that both σR 6= 0 and τR 6= 0. In the case that
one, but not both, is zero, the same argument will hold with the obvious modifications. Locally,
the unfolded diagram of the map p• ◦ i• − id•M•

f•
is illustrated in the next diagram, where again

the components of h are indicated in green and the components of p• ◦ i• − id•M•
f•

are indicated

in blue and red.
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P (x1) P (x0) P (xR)

P (x1) P (x0) P (yR)

P (x1) P (x0) P (xR)

P (x1) P (x0) P (yR)

−ρ1

+1

−σR

+1

ρ1
τR

−1 −τR

−ρ1

+1

−1

−σR

+1

−1
σR

ρ1
τR

−1

Again, re-encoding the information in the above figure shows how h0 constructs the compo-
nents of p• ◦ i•− id•M•

f•
with sources in P (x0) and P (yR) in cohomological degrees d0 and d0−1.

As above, we only consider the case that ρ1 is direct; ρ1 inverse is similar.

P (x1)
[−ρ1 +1 0 ] // P (x0)⊕ P (x1)⊕ P (yR)

[−σR +1
0 ρ1
0 τR

]
//

B
��

P (xR)⊕ P (x0)

A
��

[
0 0 0
−1 0 0

]
tt

P (x1)
[−ρ1 +1 0 ]

// P (x0)⊕ P (x1)⊕ P (yR) [−σR +1
0 ρ1
0 τR

] // P (xR)⊕ P (x0)

We get A =
[

0 0
σR −1

]
and B =

[
−1 0 0
−ρ1 0 0
−τR 0 0

]
, which again gives the components of p• ◦ i• − id•M•

f•

with source in P (x0) and P (yR) in degrees d0 and d0 − 1 plus an unwanted off-diagonal term
−ρ1 : P (x1)→ P (x1) in degree d0 − 1 = d1, removed in the induction.

Induction step: Suppose 0 ≤ i < n. By the base cases for (RG1), (RG2) and (RG3)
the h0 component of the candidate homotopy h constructs the components with source P (x0)
and P (yR) in degrees d0 and d0 − 1. In addition, if ρ1 is direct we acquire an unwanted ‘off-
diagonal’ component −ρ1 : P (x1) → P (x0) in degree d1 = d0 − 1, and if ρ1 is inverse, we have
−ρ1 : P (x0)→ P (x1) in degree d0 = d1 − 1.

Assume, by induction, we have constructed components P (xi)
−1−→ P (xi) in degrees di and

di − 1 together with an unwanted off-diagonal component −ρi+1 : P (xi+1) → P (xi) in degree
di+1 = di − 1 in the case ρi+1 is direct, and −ρi+1 : P (xi)→ P (xi+1) in degree di = di+1 − 1 if
ρi+1 is inverse. We show now how the component hi+1 of the candidate homotopy h constructs
the components of p• ◦ i• − id•M•

f•
with source in P (xi+1) in degrees di+1 and di+1 − 1 while at

the same time removing the unwanted component corresponding to −ρi+1 but adding a further
unwanted component corresponding to −ρi+2. We assume that ρi+1 is direct; the case that ρi+1

is inverse is similar.

P (xi+1) P (xi) P (xi−1)

P (xi+2) P (xi+1) P (xi) P (xi−1)

P (xi+1) P (xi) P (xi−1)

P (xi+2) P (xi+1) P (xi) P (xi+1)

−ρi+1

+1

−ρi

+1 +1

ρi+2 ρi+1

−1

ρi

−1 −1

−ρi+1

+1

−1
−ρi

+1

−1

+1

−1

ρi+2 ρi+1

−1

ρi

−1 −1

Figure 2. Unfolded diagram indicating the construction of the components
−1: P (xi+1) → P (xi+1) in degrees di+1 and di+1 − 1, the cancellation of the
unwanted off-diagonal entry −ρi+1 and the creation of a new unwanted off-
diagonal entry −ρi+2 in the induction step.
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The setup at the level of unfolded diagrams is illustrated in Figure 2 above. At the level of
complexes we have

P (xi+1)⊕ P (xi+2)

[
−ρi+1 +1

0 ρi+2

]
//

A
��

P (xi)⊕ P (xi+1)

[
+1
ρi+1

]
//

B
[ −1 0
−ρi+1 0

]
��

[
0 0
−1 0

]
tt

P (xi) ,

[−1 ]

��[−1 0 ]=hitt
P (xi+1)⊕ P (xi+2) [

−ρi+1 +1
0 ρi+2

]// P (xi)⊕ P (xi+1) [
+1
ρi+1

] // P (xi)

where the matrices labelling the vertical arrows are those constructed in the previous steps of
the induction, in particularly, including the unwanted ‘off-diagonal’ entry −ρi+1. We now see
that

B =

[
−1 0
−ρi+1 0

]
+

[
0 0

ρi+1 −1

]
=

[
−1 0
0 −1

]
and A =

[
−1 0
−ρi+2 0

]
,

i.e. in B we have removed the unwanted ‘off-diagonal’ entry −ρi+1 and are just left with

components of p• ◦ i• − id•M•
f•

and in A we have added a component P (xi+1)
−1−→ P (xi+1)

in degree di+1 − 1 but also the unwanted component −ρi+2 : P (xi+2) → P (xi+1) in degree
di+1 − 1 = di+2.

Termination step: Finally, by induction, we will have obtained all components of p• ◦ i• −
id•M•

f•
with sources in P (xi) for 0 ≤ i < n and P (yR) together with an unwanted off-diagonal

entry −ρn : P (xn) → P (xn−1) in degree dn = dn−1 − 1 when ρn is direct and −ρ : P (xn−1) →
P (xn) in degree dn−1 = dn−1 when ρn is inverse. To complete the induction, one performs a case
analysis for each of the left graph map endpoint conditions (LG1), (LG2) and (LG3) analogous
to that for (RG1), (RG2) and (RG3) which began the induction, showing in particular that
the unwanted off-diagonal entry corresponding to −ρn is cancelled out at this stage and that

the components P (xn)
−1−→ P (xn) in degrees dn and dn − 1 are constructed together with the

components corresponding to the correction terms. This completes the argument in these cases.
Note that, in the case that the maximal common homotopy substring ρ is of length zero,

then one proceeds directly from the base step to the termination step without passing through
the induction step. In the case (LG∞), one simply continues using the induction step as in a
conventional induction. This completes the proof. �

4.3. Mapping cones of graph maps involving a band complex. Suppose σ and τ are
homotopy strings or bands, with at least one being a homotopy band. In this section we
consider the mapping cones of graph maps f• : Q•σ → Q•τ . The difference with Theorem 4.3
is that now M•f• has only one indecomposable summand. Moreover, this summand is a band
complex precisely when both σ and τ are homotopy bands, and is a string complex otherwise.

We start with the situation that both σ and τ are homotopy bands. We impose the convention
that the scalars λ and µ are placed on direct arrows of σ and τ , respectively.

Proposition 4.5. Let σ = βσLρσRα and τ = δτLρτRγ be homotopy bands. Suppose f• : B•σ,λ →
B•τ,µ is a compatibly oriented graph map. Then

M•f•
∼=
{
B•c,λµ−1 if f• has an even number of components;

B•c,−λµ−1 if f• has an odd number of components,

where c = βσLτ̄Lδ̄γ̄τ̄RσRα and where the scalar λµ−1 is placed on a direct homotopy letter of
α, β, γ̄ or δ̄.

Proof. We first check that c = βσLτ̄Lδ̄γ̄τ̄RσRα is a homotopy band. To do this, we introduce
some notation. Let

∂(σ) = # direct homotopy letters of σ, and, ι(σ) = # inverse homotopy letters of σ.
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We must show that ∂(c) = ι(c). Suppose, as usual, that σ = σm · · ·σ1 and τ = τn · · · τ1. Then
we have m = 2m′ and n = 2n′, where m′ = ∂(σ) = ι(σ) and n′ = ∂(τ) = ι(τ).

We start by dealing with the case that f• : B•σ,λ → B•τ,µ does not satisfy the graph map

endpoint conditions (RG3) or (LG3); not that f• cannot satisfy (RG∞) or (LG∞) because σ
and τ are homotopy bands. In this case c = βfLδ̄γ̄f̄Rα.

Suppose ∂(σLρσR) = l = ∂(τLρτR) and ι(σLρσR) = l′ = ι(τLρτR). Then ∂(α)+∂(β) = m′− l
and ι(α) + ι(β) = m′ − l′. Similarly, ∂(γ) + ∂(δ) = n′ − l and ι(γ) + ι(δ) = n′ − l′. It follows
that

∂(c) = ∂(α) + ∂(β) + ι(γ) + ι(δ) + 1 = m′ − l + n′ − l′ + 1, and,

ι(c) = ι(α) + ι(β) + ∂(γ) + ∂(δ) + 1 = m′ − l′ + n′ − l + 1.

The remaining cases are:

• f• satisfies (RG3) but not (LG3) so that c = βfLδ̄γ̄(τ̄RσR)α, where since τR is an inverse
homotopy letter then (τ̄RσR) is a direct homotopy letter;
• f• satisfies (LG3) but not (RG3) so that c = β(σLτ̄L)δ̄γ̄f̄Rα, where since σL is an inverse

homotopy letter then (σLτ̄L) is also an inverse homotopy letter;
• f• satisfies (RG3) and (LG3) so that c = β(σLτ̄L)δ̄γ̄(τ̄RσR)α, with the same observations

as above.

In each case, we obtain ∂(c) = m′ + n′ − l − l′ + 1 = ι(c). Hence c is a homotopy band, as
claimed.

The remainder of the proof is essentially the same as the proof of Theorem 4.3. Therefore,
we only comment on the minor changes one needs to make in the proof of Theorem 4.3 in this
case.

In the proof of Theorem 4.3 the maps i•1 : P •c1 → M•f• and i•2 : P •c2 → M•f• could be defined
independently of each other at either end of the unfolded diagram. Now we have only one map
i• : P •c →M•f• which is essentially ‘glued together’ from i•1 and i•2. In the definitions of i•1 and i•2
we had alternating signs on the identity maps between the indecomposable projective modules
occurring in the homotopy substrings α and β in order to account for the minus sign required
on the differential in the definition of the mapping cone. These alternating sequences of ±id
were defined independently of one another in i•1 and i•2 in Theorem 4.3. Now, after gluing they
are not, and the signs may not be definable in a compatible way. In the case that f• has an
even number of components they are definable in a compatible way. However, in the case that
f• has an odd number of components they are not. The remedy here is to introduce a minus
sign on one (and only one) homotopy letter in c. In addition, the components of i• should be
multiplied by the appropriate scalars λ±1 and µ±1, depending on the position of λ and µ in the
homotopy bands σ and τ , respectively. The definition of p• : M•f• → P •c is analogous. Finally,

it is straightforward to collect all the scalars λ±1, µ±1 and (−1)|f
•| to be the coefficient of one

homotopy letter of c. �

It is useful to illustrate the proof of Proposition 4.5 in an example. This example is a
modification of the one used in [4, §5.3] to illustrate maps involving band complexes.

Example 4.6. Let Λ be the algebra given by the following quiver with relations.

1

2

3

5

4

8

7

6

a

b d

i

g

c f

e h

j
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Consider the following homotopy bands: σ = ēd̄cb, τ = j̄ īhd̄cba and θ = j̄ īḡfcba. We consider
graph maps f•τ : B•σ,λ → B•τ,µ and f•θ : B•σ,λ → B•θ,ν defined by the following unfolded diagrams.

B•σ,λ :

f•τ��

• •eoo •doo c // • λb // •
λ−1a
��

•eoo

B•τ,µ : • •
j

oo •
µ−1i
oo

h
// • •

d
oo

c
// •

ba
// • •

j
oo

B•σ,λ :

f•θ��

• •eoo •doo c // • λb // •
λ−1a
��

•eoo

B•θ,ν : • •
j

oo •
i

oo •
ν−1g
oo

f
// • c

// •
ba
// • •

j
oo

Let cτ = heija and cθ = efdgija. In the figures below we illustrate the definition of maps
i•τ : B•cτ ,λµ−1 →M•f•τ and i•θ : B•cθ,−λν−1 →M•f•θ

.

2 2

1 8 7 1 8

2 5 4 3 2 5

1 8 7 5 4 3 1 8

+1

+1

λ−1a

+1

j

+1

he

µi

−h+1

+1

j

+1
−e

+1

−c−d

+1

−λb

+1 λ−1a

−e

j µi h d e ba j

2 5 2 5

1 8 7 6 1 8

2 5 4 3 2 5

1 8 7 6 4 3 1 8

−1

λe

+1

a

−1

λe

+1

−1

j

−1

−i

+1

µg

fd

−f

+1
−1

j

−1

−λe −c−d

+1

−b

+1 a

−λe

j i µg f c ba j

Finally, in the unfolded diagrams below, we indicate how to construct an isomorphism from
the representatives of B•cτ ,λµ−1 and B•cθ,−λν−1 depicted in the figures above and more canonical

representatives with all scalars collected into the coefficient of one homotopy letter.

· · · •λ−1aoo

1

•heoo µ−1i //

1

•
j //

µ

•
λ

•λ−1aoo

1

· · ·heoo

· · · •a
oo •

he
oo

i
// •

λµ−1j
// • •a
oo · · ·

he
oo

· · · •λ−1eoo

1

•
fdoo ν−1g //

1

• −i //

ν

•
j //

−ν

•
λ

•aoo

λ

•λ−1eoo

1

· · ·
fdoo

· · · •e
oo •

fd
oo

g
// •

−i
// •
−λν−1j

// • •a
oo •e

oo · · ·
fd
oo

We now examine the mapping cones of graph maps f• : Q•σ → Q•τ where only one of σ or τ
is a homotopy band. Again, M•f• is indecomposable, but in these cases it is a string complex.
The proofs of the following propositions proceed exactly as in Theorem 4.3 with none of the
subtleties of Proposition 4.5 and are thus omitted.
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Proposition 4.7. Let σ = βσLρσRα be a homotopy band and τ = δτLρτRγ be a homotopy
string. Suppose f• : B•σ,λ → P •τ is a compatibly oriented graph map. Then M•f• is isomorphic

to the string complex P •c , where c = δτLσ̄Lβ̄ᾱσ̄RτRγ.

Proposition 4.8. Let σ = βσLρσRα be a homotopy string and τ = δτLρτRγ be a homotopy
band. Suppose f• : P •σ → B•τ is a compatibly oriented graph map. Then M•f• is isomorphic to

the string complex P •c , where c = βσLτ̄Lδ̄γ̄τ̄RσRα.

5. Mapping cones of single maps

In this section, we describe the mapping cone calculus for single maps. As in Section 4, we
first describe the unfolded diagram of the mapping cone and then describe the mapping cone
calculus in the case of a single map between string complexes. We then deal with the cases in
which (at least) one of the indecomposable complexes is a band complex.

5.1. The unfolded diagram of the mapping cone of a single map. Let f• : Q•σ → Q•τ
be a single map with single component f . We illustrate the unfolded diagram of M•f• in the

generic situation (type (iv) of Definition 3.6.)

−β
• −σL •

f

""

−σR=−ffR// • −α

δ
• τL

• •
τR=ffL

oo
γ

5.2. Mapping cones of single maps between string complexes. We start with a technical
definition analogous to Definition 4.2.

Definition 5.1. Let σ and τ be homotopy strings and suppose f• : P •σ → P •τ is a (not necessarily
singleton) single map sitting in the following orientation.

β
• σL • σR //

f
��

• α

δ
• τL

• •τR
oo

γ

We shall say that the homotopy strings σ and τ are compatibly oriented (for f•) if

(i) the homotopy letters σL and τL do not contain f as a subletter;
(ii) if σL is direct then σLf = 0 and if τL is inverse fτL = 0;

(iii) σR = ffR and τR = f̄ f̄L for some (possibly trivial) paths fR and fL in (Q, I).

We observe that if σ and τ are compatibly oriented for a single map f• : P •σ → P •τ then such
a single map is in one of the four situations in Definition 3.6, where we now allow fR or fL to
be trivial. As such, the computation of the mapping cone of a single map has four cases, which
are stated in the theorem below.

Theorem 5.2. Let f• : Q•σ → Q•τ be a single map with single component f . Suppose that
σ = βσLσRα and τ = δτLτRγ are compatibly oriented for f . For cases (i) - (iv) of Definition 3.6,
the mapping cone is given as follows.

(1) If f• is of type (i) then M•f• is isomorphic to the indecomposable string complex P •c ,
where c = σfτ .

(2) If f• is of type (ii) then M•f• is isomorphic to P •c1 ⊕P
•
c2, where c1 = βσLfτ and c2 = α,

where if σR = σ1 then c2 = 1s(σ1) corresponding to the stalk complex of the indecompos-
able projective module P (s(σ1)).

(3) If f• is of type (iii) then M•f• is isomorphic to P •c1 ⊕P
•
c2, where c1 = σfτ̄Lδ̄ and c2 = γ,

where if τR = τ1 then c2 = 1s(τ1) corresponding to the stalk complex of the indecomposable
projective module P (s(τ1)).
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(4) If f• is of type (iv) then M•f• is isomorphic to P •c1 ⊕ P •c2, where c1 = βσLf τ̄Lδ̄ and
c2 = γ̄fLffRα.

Remark 5.3. It is worth noting some small discrepancy between naive word combinatorics and
the actual computation of the mapping cone that occurs in the computation of the summand P •c2
above. If f• is of type (iv), i.e. the generic case, then c2 = γ̄τ̄Rf̄σRα = γ̄ffLf̄ffRα = γ̄fLffRα.
However, in type (ii) notice that c2 6= f̄ffRα = fRα as if type (ii) were a degeneration of type
(iv). Similarly, for type (iii) c2 6= ffLfγ = f̄Lγ. In the cases that σR = f and τR = f̄ , i.e.
a single map that is not singleton, then the mapping cones in types (ii) and (iii) are simply
a degeneration of type (iv). Therefore, in the proof of Theorem 5.2 below, we treat singleton
single maps of types (i) - (iv) and observe that the computation for type (iv) holds for an
arbitary single map.

Proof of Theorem 5.2. The strategy of the proof is the same as that in Theorem 4.3: we will
show how to define a split monomorphism i• : P •c1 ⊕ P

•
c2 → M•f• and we will show that here i•

is an isomorphism in C−,b(proj(Λ)), and hence in Kb,−(proj(Λ)).
Throughout the proof we work at the level of unfolded diagrams to construct the required

isomorphism. While for word combinatorial reasons it is useful to state Theorem 5.2 in the setup
of Definition 5.1, the unfolded diagrams of the mapping cones look ‘more like complexes’ and
are thus easier to work with if the opposite orientation is taken for τ . Therefore, throughout
the proof we work instead with τ̄ . We shall draw a sketch (except for type (i), which is
straightforward) to indicate how the map looks in each type with the opposite orientation for
τ .

(1) In this case, the unfolded diagram of the mapping cone M•f• is,

• −σm • −σ1 •
f

""
•

τ1
• •

τn
•

where, for convenience, we have uses the following relabelling, σL = σ1, β = σm · · ·σ2, τL = τ1

and δ = τn · · · τ2. Thus M•f• is isomorphic to P •c , the isomorphism being given at the level of the

unfolded diagrams by the ‘graph’ map i• with components (+1,−1, · · · , (−1)n, (−1)n, · · · , (−1)n),
where the first n signs, corresponding to the homotopy letters of σ, alternate and are then fixed
upon reaching the homotopy letters corresponding to f and τ .

(2) Now suppose f• is of type (ii), that is, it has the following unfolded diagram,

β
• σL •

f
��

σR=ffR// • α

•
τL
•

δ

For convenience, assume α = σi−1 . . . σ1, σR = σi, σL = σi+1, β = σi+2 . . . σm and note that
τL = τ1 and δ = τn . . . τ2. Then the unfolded diagram of the mapping cone M•f• is

• −σm •
−σi+1 •

f ""

−σi=−ffR// • • −σ1 •

•
τ1
• •

τn
•

We now describe an inductive procedure defining a map i• =
[
i•1
i•2

]
: P •c1 ⊕ P

•
c2 → M•f• and we

show that it is an isomorphism. For clarity we label the indecomposable projective modules in
the unfolded diagrams as follows:
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P •σ : P (xm)
σm

P (xm−1) P (x1)
σ1

P (x0)

P •τ̄ : P (y0)
τ1

P (y1) P (yn−1)
τn

P (yn)

The first components of i•1 : P •c1 → M•f• will be P (xi)
+1−→ P (xi), P (y0)

+1−→ P (y0) and a

correction term P (y0)
−fR−→ P (xi−1). The first component of i•2 : P •c2 →M•f• will be P (xi−1)

+1−→
P (xi−1). These are indicated in the unfolded diagram sketched in Figure 3, from which one can
immediately observe commutativity for these components.

P (xi) P (xi−1)

P (y0)

P (xi) P (xi−1)

P (y0)

f

+1 +1

−fR

+1
−σi=ffR

f

Figure 3. First components of i•1 : P •c1 →M•f• and i•2 : P •c2 →M•f• for f of type (ii).

Ensuring the commutativity of each square, the identity maps defining the first components
of i•1 extend along the prefix σi−1 · · ·σ1 of both the string complex P •c1 and the mapping cone
M•f• as in Figure 4. The only possibility for non-commutativity occurs with the component

−fR : P (y0) → P (xi+1). If σi−1 is inverse or zero, then there is nothing to show. If σi−1 is
direct, then since σi = ffR we have by the relations of the (gentle) algebra and the definition
of a homotopy string that −fRσi−1 = 0, also giving the required commutativity.

P (xi−1)

P (y0)

P (xi−2) P (x1) P (x0)

P (xi−1) P (xi−2) P (x1) P (x0)

σi−1 σi−2 σ1

−σi−1 −σi−2 −σ1

+1

−fR
−1 ±1 ±1

Figure 4. Identity maps defining the components of i•1 along to the start of σ.

The first components of i•1 extend along the suffix σm · · ·σi+1 of the string complex P •c1 as
well as of the mapping cone M•f• as shown in Figure 5; in this case the commutativity is clear.
This then completes the definition of i•1.

P (xm) P (xm−1) P (xi+2) P (xi+1) P (xi)

P (y0)

P (xm) P (xm−1) P (xi+2) P (xi+1) P (xi) P (xi−1)

P (y0)

σm σi+2 σi+1

f

−σm −σi+2 −σi+1 −ffR

−f

±1 ±1 +1 −1 +1

Figure 5. Extension of the identity maps defining the first components of i•1
along to the end of σ.
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The first component of i•2, namely +1: P (y0) → P (y0) trivially extends along the length of
τ̄ defining the string complex P •c2 and M•f• as indicated in Figure 6; the commutativity is again
clear.

P (y0) P (y1) P (yn−2) P (yn−1) P (yn)

P (y0) P (y1) P (yn−2) P (yn−1) P (yn)

τ1 τn−1 τn

τ1 τn−1 τn

+1 +1 +1 +1 +1

Figure 6. Extension of the identity maps defining the first components of i•2
along to the end of τ .

By construction, this defines full rank matrices in each cohomological degree which com-
mute with the differentials in both P •c1 ⊕ P

•
c2 and M•f• . Therefore i• : P •c1 ⊕ P

•
c2 → M•f• is an

isomorphism of complexes.

(3) Now suppose f• is of type (iii), that is it has the following unfolded diagram,

β
• σL •

f
��

γ
•
τR=fLf

// •
τL
•

δ

For convenience, assume γ = τj . . . τj−1, τR = τj , τL = τj+1, δ = τn . . . τj+2 and note that
β = σm . . . σ2, σL = σ1. Then the unfolded diagram of the mapping cone M•f• is

• −σm • • −σ1 •
f

""
•

τ1
• •

τj=fLf
// •

τj+1
• •

τn
•

We define the maps i•1 : P •c1 → M•f• and i•2 : P •c2 → M•f• in the figures below. It is straightfor-

ward to check, using an analysis as in (2) above, that these induce well-defined morphisms of

complexes. Moreover, i• =
[
i•1
i•2

]
: P •c1⊕P

•
c2 →M•f• consists of full rank matrices in each degree,

and is therefore an isomorphism of complexes.

P (y0) P (y1) P (yj−2) P (yj−1)

P (xm) P (xm−1) P (x2) P (x1) P (x0)

P (y0) P (y1) P (yj−2) P (yj−1) P (yj) P (yj+1) P (yn−1) P (yn)

τ1

+1 +1

τj−1

+1 +1
−fL

−σm −σ2 −σ1

f

τ1 τj−1 τj=fLf τj+1 τn

P (xm) P (xm−1) P (x1) P (x0)

P (yj) P (yj+1) P (yn−1) P (yn)

P (xm) P (xm−1) P (x1) P (x0)

P (y0) P (y1) P (yj−1) P (yj) P (yj+1) P (yn−1) P (yn)

σm

±1 ∓1

σ1

−1

f

+1
τj+1

+1 +1

τn

+1 +1
−σm −σ1

f

τ1 τj=fLf τj+1 τn
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(4) Now suppose f• is of type (iv), that is it has the following unfolded diagram,

β
• σL •

f
��

σR=ffR// • α

γ
•
τR=fLf

// •
τL
•

δ

For convenience, assume β = σm . . . σi+2, σL = σi+1, σR = σi, α = σi−1 . . . σ1 and γ =
τ1 . . . τj−1, τR = τj , τL = τj+1, δ = τn . . . τj+2. Then the unfolded diagram of the mapping cone
M•f• is

• −σm • •
−σi+1 •

f

""

−σi=ffR// •
−σi−1 • • −σ1 •

•
τ1
• •

τj−1
•
τj=fLf

// •
τj+1

• •
τn
•

As above, we simply define the maps i•1 : P •c1 →M•f• and i•2 : P •c2 →M•f• in the figures below.
It is straightforward to check that these induce well-defined morphisms of complexes. Moreover,

i• =
[
i•1
i•2

]
: P •c1 ⊕ P

•
c2 → M•f• consists of full rank matrices in each degree, and is therefore an

isomorphism of complexes.

P (xi−1) P (xi−2) P (x1) P (x0)

P (y0) P (y1) P (yj−2) P (yj−1)

P (xm) P (xm−1) P (xi+1) P (xi) P (xi−1) P (xi−2) P (x1) P (x0)

P (y0) P (y1) P (yj−2) P (yj−1) P (yj) P (yj+1) P (yn−1) P (yn)

σi−1

+1 −1

σ1

∓1 ±1
τ1

+1 +1

τj−1

+1

fLffR

−fL

+1

−σm −σi+1 −σi=−ffR

f

−σi−1 −σ1

τ1 τj−1 τj=fLf τj+1 τn

P (xm) P (xm−1) P (xi+1) P (xi)

P (yj) P (yj+1) P (yn−1) P (yn)

P (xm) P (xm−1) P (xi+1) P (xi) P (xi−1) P (xi−2) P (x1) P (x0)

P (y0) P (y1) P (yj−2) P (yj−1) P (yj) P (yj+1) P (yn−1) P (yn)

σm

±1 ∓1

σi+1

−1

f

+1
τj+1

+1

−fR

+1

τn

+1 +1

−σm −σi+1 −σi=−ffR

f

−σi−1 −σ1

τ1 τj−1 τj=fLf τj+1 τn

�

5.3. Mapping cones of single maps involving a band complex. Suppose σ and τ are
homotopy strings or bands, with at least one being a homotopy band. We now consider the
mapping cones of single maps f• : Q•σ → Q•τ . As was the case in Section 4.3, M•f• is now
indecomposable. Moreover, M•f• is a band complex if and only if σ and τ are homotopy bands.
This is the situation with which we start.

If both σ and τ are homotopy bands, then any single map f• : B•σ,λ → B•τ,µ is necessarily of

type (iv). We again impose the convention that the scalars λ and µ are placed on direct arrows
of σ and τ , respectively.

Proposition 5.4. Suppose σ and τ are homotopy bands and f• : B•σ,λ → B•τ,µ with single
component f . Suppose that σ = βσLσRα and τ = δτLτRγ are compatibly oriented for f•. Then
M•f• is isomorphic to a band complex B•c,λµ−1, where c = βσLfτLδγτRfσRα and where the scalar

λµ−1 is placed on a direct homotopy letter of α, β, γ or δ.
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Proof. The verification that c is indeed a homotopy band is similar to that in the proof of
Proposition 4.5. The construction of an isomorphism i• : B•c,λµ−1 →M•f• proceeds exactly as in

the proof of Theorem 5.2, with no extra signs required on the differential of B•c,λµ−1 . �

The following two propositions deal with the cases where precisely one of σ or τ is a homotopy
band and the other is a homotopy string. In these cases M•f• is a string complex. The proofs
proceed exactly as in Theorem 5.2 with no additional subtlety and are therefore omitted. Note
that when σ is a homotopy band, any single map f• : B•σ,λ → P •τ is necessarily of type (ii) or

(iv) in Definition 3.6.

Proposition 5.5. Suppose σ is a homotopy band and τ is a homotopy string. Suppose f• : B•σ,λ →
P •τ is a single map with single component f . Suppose that σ = βσLσRα and τ = δτLτRγ is
compatibly oriented for f•. Then M•f• is isomorphic to the string complex P •c , where

(1) c = αβσLfτLδ when f• is of type (ii).
(2) c = γτRfσRαβσLfτLδ when f• is of type (iv).

When τ is a homotopy band, any single map f• : P •σ → B•τ,µ is necessarily of type (iii) or (iv)
in Definition 3.6.

Proposition 5.6. Suppose σ is a homotopy string and τ is a homotopy band. Suppose f• : P •σ →
B•τ,µ is a single map with single component f . Suppose that σ = βσLσRα and τ = δτLτRγ is
compatibly oriented for f•. Then M•f• is isomorphic to the string complex P •c , where

(1) c = βσLfτLδγ when f• is of type (iii).
(2) c = βσLfτLδγτRfσRα when f• is of type (iv).

6. Mapping cones of double maps

We now turn to the statement for double maps. Recall Definition 3.7 and the setup in (4)
on page 11. Note that double maps are automatically ‘compatibly oriented’ and therefore we
do not require such a definition in this case.

Theorem 6.1. Let f• : P •σ −→ P •τ be a double map with components (fL, fR). Suppose that
σ = βσLσCσRα and τ = δτLτCτRγ. Then the mapping cone M•f• is isomorphic to P •c1 ⊕ P

•
c2,

where c1 = γτRfRσRα and c2 = βσLfLτLδ.

Proof. We treat the case that f• : P •σ → P •τ is a singleton double map with components (fL, fR).
The argument when f• is not a singleton double map is the same with the component f replaced
by a trivial path. In terms of unfolded diagrams, the map f• is of the following form

β
• σL •

σC=fLf//

fL
��

• σR

fR
��

• α

δ
• τL

•
τC=ffR

// • τR
• γ

For convenience, assume σC = σi and τC = τj etc. Then the unfolded diagram of the mapping
cone M•f• is

• −σm • •
−σi+1 •

−σi=−fLf//

fL ""

•
σi−1

fR

""

• • σ1 •

• τn
• • τj+1

•
τj=ffR

// • τj−1
• • τ1

•

The proof is the same as that of Theorem 5.2, therefore, we just write down the maps
i•1 : P •c1 → M•f• and i•2 : P •c2 → M•f• at the level of unfolded diagrams in the figures below. It is
then straightforward to check these define full rank matrices in each cohomological degree, so

that i• =
[
i•1
i•2

]
: P •c1 ⊕ P

•
c2 →M•f• is an isomorphism.
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P (xi−1) P (xi−2) P (xi−3) P (x2) P (x1) P (x0)

P (yj−1) P (yj−2) P (y2) P (y1) P (y0)

P (xi) P (xi−1) P (xi−2) P (xi−3) P (x2) P (x1) P (x0)

P (yj) P (yj−1) P (yj−2) P (y2) P (y1) P (y0)

σi−1

fR

+1

σi−2

−1

+1

σ2

±1

σ1

∓1 ±1

τj−1

+1 +1

τ2

+1

τ1

+1 +1
−σi=−fLf

fL

−σi−1

fR

−σi−2 −σ2 −σ1

ffR τj−1 τ2 τ1

P (xm) P (xm−1) P (xi+2) P (xi+1) P (xi)

P (yn) P (yn−1) P (yj+2) P (yj+1) P (yj)

P (xm) P (xm−1) P (xi+2) P (xi+1) P (xi) P (xi−1)

P (yn) P (yn−1) P (yj+2) P (yj+1) P (yj) P (yj−1)

σm

±1

∓1

σi+2

+1

σi+1

−1

fL
+1

τn

+1 +1

τj+2

+1

τj+1

+1
−f +1

−σm −σi+2 −σi+1 −fLf

fL fR

τn τj+2 τj+1 ffR

�

We now give the analogous statements for double maps f• : Q•σ → Q•τ where at least one of
σ or τ is a homotopy band. As was the case for graph maps and single maps before, M•f• is
indecomposable and is a band complex if and only if both σ and τ are homotopy bands.

The proof of Theorem 6.1 carries through in each case below and therefore proofs are omitted.
As in Proposition 5.4 there are no extra subtleties coming from additional signs required on
homotopy letters. We start with the case that both σ and τ are homotopy bands.

Proposition 6.2. Let σ = βσLσCσRα and τ = δτLτCτRγ be homotopy bands. Suppose
f• : B•σ,λ → B•τ,µ is a double map with components (fL, fR). Then M•f• is isomorphic to a

band complex B•c,λµ−1, where c = βσLfLτ̄Lδ̄γ̄τ̄Rf̄RσRα and where the scalar λµ−1 is placed on

a direct homotopy letter of α, β, γ or δ.

Proposition 6.3. Let σ = βσLσCσRα be a homotopy band and τ = δτLτCτRγ be a homotopy
string. Suppose f• : B•σ,λ → P •τ is a double map with components (fL, fR). Then M•f• is

isomorphic to the string complex P •c , where c = δτLfLσ̄Lβ̄ᾱσ̄Rf̄RτRγ.

Proposition 6.4. Let σ = βσLσCσRα be a homotopy string and τ = δτLτCτRγ be a homo-
topy band. Suppose f• : P •σ → B•τ,µ is a double map with components (fL, fR). Then M•f• is

isomorphic to the string complex P •c , where c = βσLfLτ̄Lδ̄γ̄τ̄Rf̄RσRα.

7. Mapping cones and quasi-graph maps

Single maps and double maps that are not singleton occur in a homotopy class that is deter-
mined by a quasi-graph map P •σ  Σ−1P •τ . In this case, it is possible to read off the mapping
cone of any representative of the homotopy class from the quasi-graph map. Before we state how
this is done, we need the following bookkeeping definition to cover the case when a quasi-graph
map is supported in precisely one cohomological degree.

Definition 7.1. Let σ and τ be homotopy strings or bands and suppose ϕ : Q•σ  Σ−1Q•τ is a
quasi-graph map supported in exactly one degree, i.e. corresponds to the following diagram

β
• •σL σR • α

δ
• τL

• •τR γ

We say that the homotopy strings or bands σ and τ are compatibly oriented on the left if
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(1) If σL is direct then τL is either zero, inverse with σLτL 6= 0 or direct with τL = σ′LσL
for some non-trivial σ′L.

(2) If σL is inverse then τL is inverse and σL = τLτ
′
L for some non-trivial τ ′L.

(3) If σL is zero then τL is inverse.

Similarly, we say that the homotopy strings or bands σ and τ are compatibly oriented on the
right if the following dual conditions hold:

(1) If σR is inverse then τR is either zero, direct with σRτR 6= 0 or inverse with τR = σ′RσR
for some non-trivial σ′R.

(2) If σR is direct then τR is direct and σR = τRτ
′
R for some non-trivial τ ′R.

(3) If σR is zero then τR is direct.

We say that the homotopy strings or bands σ and τ are compatibly oriented for ϕ if they are
compatibly oriented on the left and on the right.

Note that when the maximal common homotopy substring ρ determining a quasi-graph map
ϕ : Q•σ  Σ−1Q•τ is of length at least one, the homotopy strings or bands σ and τ are automat-
ically compatibly oriented for ϕ in an unfolded diagram of ϕ.

Proposition 7.2. Let σ and τ be homotopy strings or bands. Suppose ϕ : P •σ  Σ−1P •τ is a
quasi-graph map determined by a maximal common homotopy substring ρ, i.e. σ = βσLρσRα
and τ = δτLρτRγ. Assume further that σ and τ are compatibly oriented for ϕ. Suppose
f• : Q•σ → Q•τ is a representative of the homotopy set determined by ϕ.

(1) If σ and τ are homotopy strings then M•f• is isomorphic to P •c1⊕P
•
c2, where c1 = βσLρτRγ

and c2 = δτLρσRα.
(2) If (σ, λ) and (τ, µ) are homotopy bands then M•f• is isomorphic to B•c,λµ−1 , where

c = βσLρτRγδτLρσRα and where the scalar λµ−1 is placed on a direct homotopy letter
of α or β or an inverse homotopy letter of γ or δ.

(3) If (σ, λ) is a homotopy band and τ is a homotopy string then M•f• is isomorphic to P •c ,
where c = δτLρσRαβσLρτRγ.

(4) If σ is a homotopy string and (τ, µ) is a homotopy band then M•f• is isomorphic to P •c ,
where c = βσLρτRγδτLρσRα.

Proof. One simply chooses a representative of the homotopy class determined by the quasi-
graph map ϕ : Q•σ  Σ−1P •τ and carries out the computation in Theorem 5.2 or Theorem 6.1.
Note the difference in the orientation of the homotopy strings σ and τ in this case with respect
to the orientations in Theorems 5.2 and 6.1. �

8. Examples

In this section we will illustrate the graphical mapping cone calculus in Db(Λ) developed in
Sections 4-7 on some concrete examples. In the first example, we consider maps involving only
string complexes and in the second example we consider band complexes.

Example 8.1. Let Λ be the gentle algebra given by the following quiver and relations:

0

1

2

3

4

a

b
c

f

d
e
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(1) Consider the homotopy strings σ = edcbad̄ and τ = ēf̄ cbafe, and the graph map f• : P •σ →
P •τ given by

P (3) P (4) P (2) P (1) P (0) P (4)Pσ

P (4) P (3) P (0) P (2) P (1) P (3) P (4)Pτ

e dc b a d

d f

e f c b af e

By Theorem 4.3, the mapping cone M•f• is isomorphic to P •c1⊕P
•
c2 where c1 = dfe and c2 = edfe

(cf. green and red boxes in the figure below).

P (3) P (4) P (2) P (1) P (0) P (4)

P (4) P (3) P (0) P (2) P (1) P (3) P (4)

e dc b a d

d f

e f c b af e

(2) Non-singleton double maps and single maps arise in the context of quasi-graph maps.
As described in Section 3, a given quasi-graph map gives rise to a class of (single and double)
maps, which are all homotopy equivalent to each other. In particular, they all have the same
mapping cone, which is the ‘mapping cone of the quasi-graph map’. We will now illustrate this
with an example. Consider a quasi-graph map ϕ : P •σ  Σ−1P •τ , for homotopy strings σ = bacb
and τ = f̄ cba, given by

P(2) P (1) P (0) P (2) P (1)Pσ

P (3) P (0) P (2) P (1) P (0)Σ−1Pτ

b a c b

f c b a

By Proposition 7.2(1), the mapping cone of any single or double map f• : P •σ → P •τ in the
homotopy set determined by ϕ is isomorphic to P •c1 ⊕ P

•
c2 , where c1 = bacba and c2 = f̄ cb (cf.

green and red boxes in the figure below).

P(2) P (1) P (0) P (2) P (1)

P (3) P (0) P (2) P (1) P (0)

b a c b

f c b a

We now consider a single map f• : P •σ → P •τ and a double map g• : P •σ → P •τ in the homotopy
set determined by the quasi-graph map ϕ.

(i) Let f• : P •σ → P •τ be a single map in the homotopy set determined by ϕ given by

P(2) P (1) P (0) P (2) P (1)Pσ

P (0) P (1) P (2) P (0) P (3)Pτ

b a c b

c

a b c f

where we have drawn the unfolded diagram so that it is compatibly oriented (see Def-
inition 5.1). By Theorem 5.2, the mapping cone is M•f•

∼= P •c1 ⊕ P
•
c2 , where c1 = bacba

and c2 = f̄ cb (cf. green and red boxes in the figure below).

P(2) P (1) P (0) P (2) P (1)

P (0) P (1) P (2) P (0) P (3)

b a c b

c

a b c f

c
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(ii) Let g• : P •σ → P •τ be a double map in the homotopy set determined by ϕ given by

P (2) P (1) P (0) P (2) P (1)Pσ

P (0) P (1) P (2) P (0) P (3)Pτ

b a c b

a f

a b c f

By Theorem 6.1, its mapping cone is M•g•
∼= P •c1 ⊕ P

•
c2 , where c1 = f̄ cb and c2 = bacba

(cf. red and green boxes in the figure below).

P (2) P (1) P (0) P (2) P (1)

P (0) P (1) P (2) P (0) P (3)

b a c b

a f

a b c f

We finally give an example involving band complexes.

Example 8.2. For this example, we take Λ to be the algebra given in Example 4.6 because it
has smaller homotopy bands than the example above. Let σ = hgd̄f̄ and τ = bēd̄c be homotopy
bands with corresponding scalars λ and µ respectively. By Proposition 4.5, the mapping cone
for the graph map f• : B•σ,λ → B•τ,µ given below is M•f•

∼= B•c,λµ−1 , where c = hgeb̄c̄f̄ .

P (6) P (5) P (6)

P (3) P (2) P (5) P (4) P (3)

λhg df

f

b e d µc
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