
1 
 

Bayesian bivariate meta-analysis of correlated effects: impact of the 

prior distributions on the between-study correlation, borrowing of 

strength, and joint inferences 

Author affiliations 

Danielle L Burke1*, Sylwia Bujkiewicz2 and Richard D Riley1 

* Correspondence: d.burke@keele.ac.uk 

1 Research Institute for Primary Care and Health Sciences, Keele University, 

Staffordshire, UK 

2 Biostatistics Group, Department of Health Sciences, University of Leicester, 

University Road, Leicester LE1 7RH, UK 

Acknowledgements 

Richard D Riley was supported by funding from a multivariate meta-analysis grant from 

the MRC Methodology Research Programme (grant reference number: MR/J013595/1). 

Danielle Burke was partly supported by funding from the MRC Midlands Hub for Trials 

Methodology Research, at the University of Birmingham (Medical Research Council 

Grant ID G0800808). Sylwia Bujkiewicz is supported by the Medical Research Council 

(MRC) Methodology Research Programme [New Investigator Research Grant 

MR/L009854/1] 

We would like to thank Dan Jackson and Ian White for helpful feedback during the 

initial stages of the project, and also two anonymous reviewers for their constructive 

feedback on how to improve the article. 

mailto:d.burke@keele.ac.uk


2 
 

Author contributions 

RR and SB conceived the research idea. DB undertook all the simulation analyses under 

the supervision of RR and feedback from SB. DB drafted the paper and revised 

following comments from RR and SB.  



3 
 

Abstract 

Multivariate random-effects meta-analysis allows the joint synthesis of correlated 

results from multiple studies, for example for multiple outcomes or multiple treatment 

groups. In a Bayesian univariate meta-analysis of one endpoint, the importance of 

specifying a sensible prior distribution for the between-study variance is well-

understood. However, in multivariate meta-analysis there is little guidance about the 

choice of prior distributions for the variances or, crucially, the between-study 

correlation, ρB; for the latter, researchers often use a Uniform(-1,1) distribution 

assuming it is vague. 

 

In this article, an extensive simulation study and a real illustrative example is used to 

examine the impact of various (realistically) vague prior distributions for ρB and the 

between-study variances within a Bayesian bivariate random-effects meta-analysis of 

two correlated treatment effects. A range of diverse scenarios are considered, including 

complete and missing data, to examine the impact of the prior distributions on posterior 

results (for treatment effect and between-study correlation), amount of borrowing of 

strength, and joint predictive distributions of treatment effectiveness in new studies. 

 

Two key recommendations are identified to improve the robustness of multivariate 

meta-analysis results. Firstly, the routine use of a Uniform(-1,1) prior distribution for ρB 

should be avoided, if possible, as it is not necessarily vague. Instead, researchers should 

identify a sensible prior distribution, for example by restricting values to be positive or 

negative as indicated by prior knowledge. Secondly, it remains critical to use sensible 

(e.g. empirically-based) prior distributions for the between-study variances, as an 

inappropriate choice can adversely impact the posterior distribution for ρB, which may 
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then adversely affect inferences such as joint predictive probabilities. These 

recommendations are especially important with a small number of studies and missing 

data. 
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1 Introduction 

 

The multivariate meta-analysis approach has been advocated to jointly synthesise 

multiple correlated results from related research studies (1, 2). For example, in a meta-

analysis of multiple outcomes, a cancer patient’s overall survival time is likely to be 

correlated with their progression-free survival time, and therefore treatment effect 

estimates for both outcomes are likely correlated within a study. Similarly, in a network 

meta-analysis of multiple treatment groups, the treatment effect for A vs B is likely 

correlated with that for A vs C. Compared to separate univariate meta-analyses, the 

multivariate approach utilises such correlation to gain additional information toward the 

estimation of summary meta-analysis results (3, 4). This is especially advantageous 

when there are missing effect estimates in some studies (such as missing direct 

comparisons in network meta-analysis) and when there is potential outcome reporting 

bias (5, 6), as the correlation can lead to more precise inferences and/or a reduction in 

bias (2), which has been referred to as ‘borrowing of strength’(7). 

 

The Bayesian framework for multivariate meta-analysis is a natural way to account for 

all parameter uncertainty, to make predictions regarding the possible effects in new 

studies, and to derive joint probability estimates regarding the multiple effects of 

interest. However, it requires the specification of prior distributions for all unknown 

parameters, which may be considered a disadvantage when genuine prior information 

does not exist. A previous simulation study of Bayesian univariate meta-analyses (8) 

found that the pooled effect estimates can be particularly sensitive to the choice of prior 

distribution for the between-study variance, even when seemingly ‘vague’ prior 

distributions are specified. To address this, previous work has utilised a large collection 
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of existing meta-analyses to generate empirical prior distributions for the unknown 

between-study variance in a new univariate meta-analysis of intervention effects for 

continuous outcomes (9) and binary outcomes (10, 11), across a wide-range of 

healthcare settings, such as where the outcome of interest is all-cause mortality. 

 

In addition to prior distributions for the between-study variances, a multivariate meta-

analysis also requires prior distribution(s) for the between-study correlation(s). One 

might address this using the conjugate prior distribution for the entire between-study 

variance-covariance matrix, which is the inverse-Wishart prior distribution, and this has 

been used by previous authors, such as bivariate meta-analyses of test accuracy studies 

(12-14). However, others argue it is preferable to place separate prior distributions on 

each component of the between-study variance-covariance matrix because the Wishart 

prior distribution can be very influential toward the posterior estimates of the between-

study variances (14-17); the Wishart distribution is a generalisation of the gamma 

distribution, which is known to be influential in univariate meta-analysis when used as a 

prior distribution for the between-study variances, especially when the true between-

study variances are close to zero (8). Separation of the between-study variance-

covariance matrix also allows more flexibility in the choice of prior distributions for 

each component, for instance if genuine prior information was available for some, but 

not all, of the components. 

 

In situations where separate prior distributions are placed on the between-study 

variances and correlations, an unanswered question remains: what is the impact of the 

choice of prior distributions for the between-study correlations and variances in a 

multivariate meta-analysis, especially in situations where little or no prior information is 
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available? Appropriate estimation of the between-study variance-covariance matrix is 

important to making valid inferences, and thus undesired influence of prior distributions 

is unwanted when prior information is unavailable. For instance, appropriate estimation 

of the between-study correlation is desired because it dictates the magnitude of the 

borrowing of strength (1), and is therefore potentially influential toward pooled effects, 

credible intervals and prediction intervals; it is also pivotal when estimating functions of 

the pooled estimates, or when deriving joint probability estimates (such as the 

probability that the treatment is effective for all outcomes). However, in our experience, 

most previous Bayesian applications of multivariate meta-analysis (including some of 

our own) adopt a U(-1,1) prior distribution for the between-study correlation, but do not 

conduct sensitivity analyses to check whether it is appropriate or influential (1, 17, 18). 

 

The aim of this paper is to examine the impact of seemingly vague and realistically 

vague prior distributions for the between-study correlations and variances in a bivariate 

meta-analysis, to extend previous work in the univariate setting (8). Real application 

and an extensive simulation study are described, focusing on a Bayesian bivariate meta-

analysis of treatment effects for two correlated outcomes, and investigating how the 

choice of prior distributions impacts upon posterior estimates of the pooled treatment 

effects and between-study covariance matrix, the accuracy of 95% credible and 

prediction intervals, and joint probabilistic inferences. Both complete and missing 

outcome data situations are examined, and the impact on the amount of borrowing of 

strength (that is, the change in pooled results and credible intervals from univariate to 

bivariate analysis) is also considered. 

 



8 
 

The remainder of this paper is structured as follows. Section 2 introduces the bivariate 

random-effects meta-analysis model and potential prior distributions for the between-

study variances and correlation. Section 3 describes the methods and results of the 

simulation study. The key findings are then illustrated in the context of a real meta-

analysis dataset in Section 4. Section 5 concludes with some discussion and 

recommendations. 

 

2 General model for bivariate random-effects meta-analysis 

 

This section summarises the general framework for bivariate meta-analysis, and 

introduces possible prior distributions for the between-study variances and correlation. 

We focus on the use of bivariate meta-analysis for two correlated outcomes, but the 

issues remain similarly pertinent in other situations of correlated effects, such as 

multiple treatment groups (network meta-analysis) and multiple performance statistics 

(such as sensitivity and specificity) (19, 20). 

 

2.1 Model specification 

 

Suppose that each of i=1 to n studies examines an effect of interest (such as a treatment 

effect) for two outcomes (j=1,2), such as systolic and diastolic blood pressure, or 

overall and progression-free survival. Let each study provide the estimated effects, Yi1 

and Yi2, and their associated standard errors, si1 and si2 , where each Yij is an estimate of 

an underlying true value, θij, and these true values may vary between studies due to 

heterogeneity. Assuming the Yij and θij are drawn from a bivariate normal distribution, 
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and that the within-study variance-covariance matrix (Si) is known, then the bivariate 

random-effects meta-analysis model can be specified as: 

 

 �Yi1
Yi2
�  ~ N ��θi1

θi2
�  , Si� 

Si=�
si1

2 ρWi
si1si2

ρWi
si1si2 si2

2 � 

�θi1
θi2
�  ~ N ��

β1
β2
�  , D� 

D= �
τ1

2 ρBτ1τ2

ρBτ1τ2 τ2
2 � 

(1) 

 

The true values (θij) therefore have a mean value βj (referred to as the ‘pooled’ effect for 

outcome j) and between-study variance, τj
2. The within-study covariance matrix, Si, 

contains the known within-study variances, sij
2 , and within-study covariances, ρWi

si1si2, 

for each trial, where ρWi
 represents the within-study correlation of Yi1 and Yi2. The 

between-study covariance matrix, D, contains the unknown between-study variances, 

τj
2, and the unknown between-study correlation, ρB, of the θi1s and θi2s. Multivariate 

extensions to the bivariate model (1) follow naturally, though are more complex due to 

the increasing number of between-study variances and correlations that require 

estimation (2, 14, 21, 22). 

 

2.1.1 Within-study and between-study correlation 

 



10 
 

Within-study and between-study correlation are two measures of correlation in a 

multivariate random-effects meta-analysis model. The within-study correlation is a 

measure of the association between the effect estimates in each study, and is caused by 

the same patients contributing correlated data toward both outcomes. Estimation of 

model (1) typically assumes these are known (just as the within-study variances are 

assumed known) (1), and for the purposes of this paper we also make this assumption. 

Authors such as Riley et al. and Trikalinos et al. detail how to derive within-study 

correlations when individual participant data are available (23, 24), but they can also be 

approximated using aggregate data in some other situations (25). Alternatively, it is 

possible to construct prior distributions from previous studies (21, 22). 

 

The between-study correlation is a measure of how the true underlying effects are 

related across studies, and occurs because of between-study heterogeneity in, for 

example, the dosage of a drug or patient characteristics of the study populations, such as 

age. The between-study correlation is unknown and must be estimated in the meta-

analysis model, alongside the between-study variances. 

 

Both within- and between-study correlation can influence the amount of borrowing of 

strength in a bivariate meta-analysis (5, 7). Within-study correlations are more 

influential when the within-study variances are large relative to the between-study 

variance, whereas the between-study correlation is more influential when the between-

study variances are large relative to the within-study variances. Further, accounting for 

such correlation is essential when an aim is to make joint inferences about the two 

effects of interest, such as the probability that they are both above a particular value. 
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2.2 Model estimation 

 

In a frequentist framework, model (1) can be estimated by methods of moments or 

restricted maximum likelihood (2). Within a Bayesian framework, the likelihood 

pertaining to model (1) is combined with prior distributions for the unknown parameters 

of βj, τj
2 and ρB, and then posterior inferences are derived by sampling from the marginal 

posterior distributions using, for example, Markov chain Monte Carlo (MCMC) via 

Gibbs sampling. The convergence of parameters must be checked, which can be done 

visually using history and trace plots, and possible autocorrelation must be examined, 

which can be reduced by thinning the samples. 

 

The prior distributions for the pooled effects (βj) are not evaluated and are given a vague 

N(0, 10002) prior distribution throughout. Here, the focus is on examining different 

choices of the prior distributions for τj
2 and, especially, ρB, and these are now discussed. 

 

2.3 Choice of prior distribution for τj 

 

In univariate meta-analysis, the prior distribution for 1/τ2 was once commonly chosen to 

be the Gamma(ϵ, ϵ) distribution with the misperception that if ϵ were very small (i.e. 

0.001) then this distribution would be ‘vague’ (8). However, previous work by Lambert 

et al (8) (and more generally outside the meta-analysis field by Gelman (26)) 

demonstrated that the Gamma distribution is not appropriate, as posterior inferences for 

the between-study variance and pooled effects are sensitive to ϵ. Here, ϵ must be set to a 

reasonable value, or meta-analysts should rather use one of a number of different 

weakly informative prior distributions discussed by Lambert et al. and Gelman (8, 26). 
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These refer to distributions that are set up so that the information they provide is weak, 

but contain only realistic values for the variance. These include the half-Normal(0,a) 

distribution (27, 28), and the half-t family of distributions, such as the half-Cauchy 

distribution (26). In particular, for the half-Normal(0,a) distribution, the value of a can 

be chosen to cover all realistic values of the between-study variance, for example as 

identified from other previous meta-analyses of the same outcome type in the same 

disease field. 

 

The latter idea leads naturally to empirically-based prior distributions for the between-

study variances (29). Indeed, previous work has used a large collection of existing meta-

analyses to generate empirical prior distributions for the unknown between-study 

variance in a new univariate meta-analysis of intervention effects for continuous 

outcomes (9) and binary outcomes (10, 11), across a wide-range of healthcare settings, 

such as where the outcome of interest is all-cause mortality. 

 

Here, in the setting of bivariate meta-analysis, we interrogate some inappropriate and 

sensible/weakly informative prior distributions for the between-study variances, to 

explore their impact on bivariate meta-analysis estimates and conclusions. In particular, 

in the simulation study (Section 3) two contrasting prior distributions for the between-

study variances are compared: an inappropriate Gamma distribution and a more suitable 

truncated normal distribution that was suggested by Lambert et al (8). Then, in the 

illustrative example in Section 4, a relevant empirical prior distribution is chosen and 

compared to an inappropriate Gamma prior distribution. 
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We include an inappropriate Gamma distribution for 1/τ2 in both simulations and the 

example to highlight the danger of using this (or its extension, the Wishart distribution) 

as a prior distribution for the between-study variances in the context of bivariate meta-

analysis applications, with particular emphasis on how it can adversely affect the 

posterior distribution for ρB and the amount of borrowing of strength toward the pooled 

effects. Though it is well-documented that inverse-Gamma and Wishart prior 

distributions for variance terms are inappropriate, unfortunately they are still adopted in 

the meta-analysis field. For example, Menke (30), Riley et al. (12) and Zwinderman and 

Bussuyt (13) use a Wishart prior distribution in bivariate meta-analyses of sensitivity 

and specificity from multiple test accuracy studies. Yang et al. use a Wishart prior 

distribution in their network meta-analysis of multiple therapies for acute ischemic 

stroke (31), as does Jansen in a network meta-analysis of multiple treatments of lung 

cancer (32). In their seminal paper on the Bayesian approach to multivariate meta-

analysis of multiple outcomes, Nam et al. use an inverse Gamma prior on each of the 

between-study variances (18). Therefore, given its continued use, herein it is important 

to demonstrate the drawback of the Gamma prior distribution within multivariate meta-

analysis, with a novel angle on its impact on ρB, the amount of borrowing of strength 

and joint inferences. 

 

2.4 Choice of prior distribution for ρB 

 

A range of (realistically) vague prior distributions for the between-study correlation are 

considered to account for varying levels of hypothetical prior knowledge. Below are 

five possible prior distributions in which options 1 to 3 allow the between-study 



14 
 

correlation to be positive or negative, and options 4 and 5 only allow the between-study 

correlation to be positive. The five prior distributions are shown in Figure 1. 

 

(INSERT FIGURE 1) 

 

Option 1 

ρB~U(-1,1) 

 

This prior distribution gives equal weight to all possible positive and negative values of 

correlation. This distribution is often used in practice [for example, see the following 

references (1, 17, 18)], and is usually considered when there is no prior information 

regarding the true value of the between-study correlation. 

 

Option 2 

z=
1
2

log�
1+ρB
1-ρB

�~N(0,sd=0.4) 

 

This prior distribution is referred to as a Fisher prior and it is similar to option 1, as it 

has the same mean and allows both positive and negative values (21), but gives more 

weight around the mean and less weight at the extremes. 

 

Option 3 

�ρB+1�
2

~Beta(1.5,1.5) 
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Similar to options 1 and 2, this Beta prior distribution also allows for positive and 

negative values of the between-study correlation. It is similar to option 1 in that it is 

relatively flat across the range of values, with the exception that values at the extreme 

ends of the distribution are considered extremely unlikely. The scale and shape 

parameter values of 1.5 are chosen here to ensure a prior distribution that is noticeably 

different to both options 1 and 2. 

 

Option 4 

ρB~U(0,1) 

 

This prior distribution gives equal weight to all possible positive values of correlation. 

 

Option 5 

logit(ρB)~N(0,sd=0.8) 

 

Similar to option 4, this logit prior distribution allows only positive values, however, 

more weight is given around the mean and less weight is given in the tails of the 

distribution. 

 

Although these five prior distributions reflect a key range of options, we recognise that 

other choices of prior distributions could be specified. In particular, it may be that 

negative values of the correlation are very unlikely but not impossible and therefore a 

prior distribution might be specified that, unlike priors 4 and 5, allows for some small 
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probability of negative values. An example of such a prior distribution is shown in the 

Supplementary Material. Clearly the choice will be context specific, but here onwards 

the five prior distributions described above are our key focus. 

 

3 Simulation study to examine choice of prior distributions 
 

We now describe the methods and results of the simulation study to examine the impact 

of (realistically) vague prior distributions for the between-study variances and 

correlation in a Bayesian estimation of bivariate meta-analysis model (1). The 

simulation focuses mainly on N=10 studies per meta-analysis, but both complete data 

(both outcomes available in all 10 studies) and missing data (some studies only provide 

one outcome) situations are considered. Alternative N is also considered briefly in 

Section 3.2.5. 

 

3.1 Methods of the simulation study 
 

The simulation study involves three key steps, as follows. 

 

Step 1: Generation of bivariate meta-analysis datasets for a range of settings. 

 

We use the simulation data previously generated by Riley et al. (33), where full details 

of the simulation process are documented. Briefly, for each simulation scenario (see 

below), a true between-study and within-study bivariate Normal model was specified 

according to equation (1). Then, allowing for the specified within- and between-study 

variances and correlations, two effect estimates (Yi1 and Yi2) were generated (one for 
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each outcome) for each of the 10 studies in the meta-analysis. This was repeated 1000 

times, so to generate 1000 meta-analysis datasets for each simulation. A range of 

simulation settings are considered (Table 1). 

 

Table 1: Settings for which simulated meta-analysis datasets were generated. 

Setting 
True parameter value 
ρWi ρB β1 β2 τ1 τ2 

Complete data 
1 0 0 0 2 0.5 0.5 
2 0 0.8 0 2 0.5 0.5 
3 0.8 0 0 2 0.5 0.5 
4 0.8 0.8 0 2 0.5 0.5 
5 0.8 0.8 0 2 0.05 0.05 
Missing data 
6 0 0 0 2 0.5 0.5 
7 0 0.8 0 2 0.5 0.5 
8 0.8 0 0 2 0.5 0.5 
9 0.8 0.8 0 2 0.5 0.5 
Within-study variances (sij

2) were drawn from a log normal distribution, and had an average value of 0.5. 

Therefore, settings 1 to 4 and 6 to 9 had similarly sized within- and between-study variances on average, 

whilst settings 5 and 10 had relatively large within-study variances. 

 

Settings 1 to 5 involve complete data (i.e. Yi1 and Yi2 are available for all studies) but 

settings 6 to 9 involve missing data, where some studies were made to have only Yi2. 

Missing data scenarios are very important, as borrowing of strength may be large in 

such situations. We chose to generate non-ignorable missingness. In each complete data 

meta-analysis dataset, the treatment effect estimate for outcome 1 (Yi1) was selectively 

removed if it was larger than the unweighted mean of Yi1 within each set of 10 trials, 

i.e.: 
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Remove Yi1 if Yi1>
1
10
� Yi1

10

i=1
 

 

On average, this process removed half of the treatment effect estimates and their 

standard deviations for outcome 1 in the simulated datasets. This missing data process 

was chosen to reflect selective outcome reporting bias in which an outcome is measured 

and analysed but not reported on the basis of the results (34, 35). Though this missing 

data mechanism is missing-not-at-random (MNAR), the utilisation of correlation from 

reported outcomes can still reduce (though not entirely remove) bias in univariate meta-

analysis results in this situation, as shown elsewhere (6), and is now a key reason for 

applying the multivariate model (36). Therefore, it is of particular interest whether 

chosen prior distributions affect the bivariate meta-analysis results for outcome 1 in this 

setting. 

 

Step 2: Fit model (1) to each dataset in each setting, for all the different sets of 

prior distributions. 

 

To each of the 1000 meta-analysis datasets within each of the nine settings, model (1) 

was fitted using MCMC with a particular set of chosen prior distributions. This was 

then repeated for each different set of prior distributions. The different sets of prior 

distributions were as follows. 

 

Pooled effects (βj) 

 

The prior distributions for βj were always given a vague N(0, 10002). 
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Between-study variances (τj
2) 

 

Two prior distributions for τj
2 were chosen (one that appeared appropriate and one that 

appeared inappropriate) based on the results of a univariate meta-analysis of the 

simulated datasets where ρWi=ρB=0 in model (1) (see Table S1 in the Supplementary 

material). Because the true between-study standard deviations in the simulations were 

0.5, a τj~N(0,2) (τj>0) prior distribution appeared most suitable (realistically vague) 

amongst six prior distributions previously explored by Lambert et al. (8). In contrast, 

the Gamma(0.1,0.1) prior distribution for 1/τj
2 was, as expected, by far the poorest in 

terms of estimating τj accurately. However, as this inappropriate prior distribution is still 

often adopted in the multivariate meta-analysis literature (see earlier) we include it here 

to highlight its impact. Thus, in each setting of the simulation study, both these prior 

distributions were evaluated to compare the impact of a seemingly suitable prior 

distribution with a seemingly inappropriate prior distribution for τj. 

 

Between-study correlation (ρB) 

 

The prior distributions evaluated for ρB were the five prior distributions detailed in 

Section 2.4. 

 

This led to 10 combinations of the prior distributions for between-study variances and 

correlations shown in Table 2. 
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Table 2: All combinations of prior distributions for between-study correlation and 
between-study variance. 

Combination Prior distribution for ρB Prior distribution for τj 

(i) ρB~U(-1,1) 

τj~N(0,2), τj>0 

(ii) 
z=

1
2

log�
1+ρB
1-ρB

� ~N(0,sd=0.4) 

(iii) �ρB+1�
2

~Beta(1.5,1.5) 

(iv) ρB~U(0,1) 

(v) logit(ρB)~N(0,sd=0.8) 

(vi) ρB~U(-1,1) 

1/τj
2~Gamma(0.1,0.1) 

(vii) 
z=

1
2

log�
1+ρB
1-ρB

� ~N(0,sd=0.4) 

(viii) �ρB+1�
2

~Beta(1.5,1.5) 

(ix) ρB~U(0,1) 

(x) logit(ρB)~N(0,sd=0.8) 

 

In each analysis, the posterior parameter estimates were obtained using the Gibbs 

Sampler MCMC method, which was implemented in SAS 9.3 using the PROC MCMC 

procedure (37). For each dataset, the analyses were performed with 300,000 iterations 

after allowing for a 200,000 iteration burn in and the samples were thinned by 100 to 

reduce autocorrelation (see Supplementary Material for SAS code). The convergence of 

parameters was checked using history and trace plots. 

 

Step 3: Summarise results. 

 

In each setting, to summarise and compare the posterior results for each set of prior 

distributions, the following were calculated from the set of 1000: 
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• The mean posterior mean of pooled effects across all simulations, the mean and 

median posterior median of between-study standard deviation across all 

simulations; and the mean and median posterior median of between-study 

correlation across all simulations (to check for bias), 

 

• The mean and median standard deviation of the posterior pooled effects across 

simulations, 

 

• The mean-squared error (MSE) of the pooled effects, calculated by the average 

squared difference from the true value across the 1000 simulated datasets, 

 

• The coverage performance of the 95% credible intervals for the pooled effects, 

calculated by the percentage of the 1000 95% credible intervals that contain the 

true effect. 

 

Further, we also evaluated performance in terms of predictive inferences about 

treatment effects in new trials. The predictive distribution of treatment effects in a new 

trial was assumed to be: 

 

 
�

θi1new

θi2new
� ~N��

β1
β2
� ,D� 

(2) 

 

In each analysis, values of θi1new and θi2new were sampled from this distribution during 

the MCMC process, which naturally accounts for the uncertainty in the pooled average 

effects, β1 and β2, and the uncertainty in the between-study covariance matrix, D. 
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Across all datasets in each setting for each set of prior distributions, we used these to 

derive: 

 

• The average marginal probability that θi1new>0, the average marginal probability 

that θi2new>2, and the average joint probability that both θi1new>0 and θi2new>2. 

 

In settings 1, 3, 6 and 8, where ρB=0, the two true marginal probabilities that θi1new>0 

and θi2new>2 was both 0.5, and the true joint probability that θi1new>0 and θi2new>2 was 

0.25. When ρB=0.8 in settings 2, 4, 5, 7 and 9, the true joint probability was 0.4. 

 

3.2 Results of the simulation study 

 

3.2.1 Complete case data when using prior distribution for between-study 

variance of τj~N(0,2) (τj>0) 

Table 3 and Table 4 display the simulation results for setting 1 and setting 4, 

respectively, for the different prior distributions for the between-study correlation where 

the sensible prior distribution for τj is used (N(0,2) truncated at zero). The equivalent 

results for settings 2 and 3 are presented in Tables S2 and S3 in the Supplementary 

Material. 
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Table 3: Simulation results for 10 studies with complete data (setting 1). The within-study correlation, ρWi was zero and the same for 
each study. The prior distribution for τj is N(0,2)I(0,) and for βj is N(0,10002). 

Prior for ρB 

Mean 

posterior 

mean of 

β1 (SD of 

mean) 

Mean/ 

median 

SD of 

β1 

Mean 

MSE 

of β1 

% of 

95% CrIs 

for β1 

including 

β1 % 

Mean 

prob 

(θi1new>0) 

Mean 

posterior 

mean of 

β2 (SD of 

mean) 

Mean/ 

median 

SD of 

β2 

Mean 

MSE 

of β2 

% of 

95% CrIs 

for β2 

including 

β2 (%) 

Mean 

prob 

(θi2new>2) 

Mean/ 

median 

posterior 

median 

τ1 

Mean/ 

median 

posterior 

median 

τ2 

Mean/ 

median 

posterior 

median 

ρB 

Mean 

prob 

(θi1new>0 

& 

θi2new>2) 

True values 0.0 - - - 0.5 2.0 - - - 0.5 0.5 0.5 0.0 0.25 

ρB~U(-1,1) 
-0.0020 

(0.1955) 

0.2185/ 

0.2159 
0.0382 95.6 0.4969 

2.0011 

(0.2198) 

0.2616/ 

0.2583 
0.0483 96.6 0.4989 

0.5006/ 

0.4985 

0.5344/ 

0.5280 

0.0070/ 

0.0045 
0.2483 

Fisher z~ 

N(0,sd=0.4) 

-0.0021 

(0.1952) 

0.2168/ 

0.2136 
0.0381 95.8 0.4966 

2.0011 

(0.2193) 

0.2606/ 

0.2569 
0.0480 96.6 0.4989 

0.4965/ 

0.4953 

0.5293/ 

0.5281 

0.0026/ -

0.0012 
0.2478 

(ρB+1)/2~ 

Beta(1.5,1.5) 

-0.0025 

(0.1957) 

0.2179/ 

0.2149 
0.0383 95.6 0.4965 

2.0014 

(0.2195) 

0.2614/ 

0.2600 
0.0481 96.6 0.5000 

0.4995/ 

0.4996 

0.5327/ 

0.5295 

0.0049/ 

0.0055 
0.2480 

ρB~U(0,1) 
-0.0020 

(0.1954) 

0.2190/ 

0.2160 
0.0382 95.5 0.4963 

2.0022 

(0.2203) 

0.2616/ 

0.2579 
0.0485 96.4 0.4994 

0.5006/ 

0.5050 

0.5326/ 

0.5302 

0.4121/ 

0.4114 
0.2958 

Logit(ρB)~ 

N(0,sd=0.8) 

-0.0019 

(0.1955) 

0.2198/ 

0.2175 
0.0382 95.5 0.4955 

2.0017 

(0.2204) 

0.2619/ 

0.2573 
0.0485 96.5 0.4991 

0.5033/ 

0.5041 

0.5359/ 

0.5285 

0.4682/ 

0.4738 
0.3012 

MSE is mean-square error; CrI is credible interval; SD is standard deviation; the means and medians represent the posterior means and medians 

from the distribution of summary estimates from the 1000 datasets. 
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Table 4: Simulation results for 10 studies with complete data (setting 4). The within-study correlation, ρWi was 0.8 and the same for each 
study. The prior distribution for τj is N(0,2)I(0,) and for βj is N(0,10002). 

Prior for ρB 

Mean 

posterior 

mean of 

β1 (SD of 

mean) 

Mean/ 

median 

SD of 

β1 

Mean 

MSE 

of β1 

% of 

95% CrIs 

for β1 

including 

β1 

Mean 

prob 

(θi1new>0) 

Mean 

posterior 

mean of 

β2 (SD of 

mean) 

Mean/ 

median 

SD of 

β2 

Mean 

MSE 

of β2 

% of 

95% CrIs 

for β2 

including 

β2 

Mean 

prob 

(θi2new>2) 

Mean/ 

median 

posterior 

median 

τ1 

Mean/ 

median 

posterior 

median 

τ2 

Mean/ 

median 

posterior 

median 

ρB 

Mean 

prob 

(θi1new>0 

& 

θi2new>2) 

True values 0.0 - - - 0.5 2.0 - - - 0.5 0.5 0.5 0.8 0.4 

ρB~U(-1,1) 
-0.0091 

(0.1850) 

0.2081/ 

0.2085 
0.0343 95.6 0.4962 

2.0009 

(0.2029) 

0.2319/ 

0.2320 
0.0411 96.3 0.4973 

0.5134/ 

0.5203 

0.4965/ 

0.5019 

0.5160/ 

0.5770 
0.3279 

Fisher z~ 

N(0,sd=0.4) 

-0.0088 

(0.1848) 

0.2055/ 

0.2070 
0.0342 95.5 0.4968 

2.0002 

(0.2055) 

0.2329/ 

0.2301 
0.0422 96.0 0.4974 

0.5047/ 

0.5150 

0.4813/ 

0.4829 

0.2363/ 

0.2452 
0.2915 

(ρB+1)/2~ 

Beta(1.5,1.5) 

-0.0088 

(0.1846) 

0.2071/ 

0.2081 
0.0341 95.6 0.4963 

2.0012 

(0.2034) 

0.2315/ 

0.2301 
0.0413 96.3 0.4975 

0.5094/ 

0.5179 

0.4893/ 

0.4933 

0.4226/ 

0.4582 
0.3159 

ρB~U(0,1) 
-0.0090 

(0.1844) 

0.2074/ 

0.2067 
0.0341 95.3 0.4958 

1.9994 

(0.2116) 

0.2299/ 

0.2283 
0.0448 96.2 0.4975 

0.5105/ 

0.5153 

0.5036/ 

0.5056 

0.6458/ 

0.6562 
0.3460 

Logit(ρB)~ 

N(0,sd=0.8) 

-0.0092 

(0.1844) 

0.2045/ 

0.2045 
0.0341 95.4 0.4957 

2.0012 

(0.2026) 

0.2285/ 

0.2270 
0.0410 95.9 0.4975 

0.5021/ 

0.5081 

0.4891/ 

0.4908 

0.5545/ 

0.5538 
0.3312 

MSE is mean-square error; CrI is credible interval; SD is standard deviation; the means and medians represent the posterior means and medians 

from the distribution of summary estimates from the 1000 datasets. 



25 
 

In all settings the choice of prior distribution for ρB is informative of the posterior 

estimate of ρB. This is expected since there are only 10 studies per meta-analysis, so 

there are only 10 data points to estimate a correlation, and thus the posterior mean is 

similar to the prior mean. For example, in setting 1 (ρWi=ρB=0, Table 3) where ρB~U(-

1,1), the mean posterior median for ρB across simulations is 0.007. When ρB~U(0,1), the 

mean posterior median for ρB across simulations is 0.412. A similar result is observed in 

settings 2-4. In setting 2 and setting 4, the true value of ρB is 0.8, however, none of the 

selected prior distributions led to average medians of ρB across simulations close to its 

true value. For example, in setting 4 (ρWi=ρB=0.8, Table 4) where ρB~U(0,1), the 

average posterior median of ρB is only 0.646. 

 

The performance of the 95% credible intervals is also close to 95% for βj regardless of 

the choice of prior distribution for ρB. Further, the choice of prior distribution for ρB has 

little impact on the posterior means of β1 and β2 across simulations, and their mean 

standard deviations. In other words, there appears to be very little borrowing of 

strength, which agrees with previous work that shows the borrowing of strength in a 

bivariate meta-analysis toward the estimates of βj is usually very small when complete 

data are available for both outcomes (5, 33). 

 

However, the prior distribution for ρB does have a larger impact upon average joint 

inferences across both outcomes. The average joint probability that θ�i1new>0 & θ�i2new>2 

is slightly higher for the prior distributions for ρB that allow only positive values. Also, 

since no prior distribution leads to an average posterior median of the between-study 

correlation close to 0.8, the average joint probability is always lower than the true value 

of 0.4. 
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3.2.2 Complete case data when using prior distribution for between-study 

variance of 1/τj
2~Gamma(0.1,0.1) 

 

Table 5 displays the simulation results for setting 3 where the inappropriate 

Gamma(0.1,0.1) prior distribution for 1/τj
2 is used. The equivalent results for settings 1, 

2 and 4 are in Tables S4, S5 and S6, respectively, in the Supplementary Material. 

The posterior means for β1 and β2 remain approximately unbiased for all choices of the 

prior distributions for ρB, for settings 1 to 4. However, the posterior distributions of the 

τj
2s are centred on much larger values than 0.25 for both outcomes. Therefore, the 

standard deviations of the pooled effects are much larger than those when τj~N(0,2)I(0,). 

Thus, the credible intervals for the pooled effect estimates are too wide, leading to 

inappropriate coverage of 100% in all settings, regardless of the choice of prior 

distribution for ρB. 

 

The simulation results also show that when the values of τj are larger, ρB is likely to 

increase. This can lead to a huge upward bias in the posterior distribution of ρB, even 

with the U(–1,1) prior distribution for ρB. For example, using prior distributions of 

1/τj
2~Gamma(0.1,0.1) and ρB~U(-1,1) in setting 3 (true ρB=0, Table 5), the mean 

posterior median ρB across simulations is 0.605. However, using the same prior 

distribution for ρB but a prior distribution for τj of N(0,2)I(0,) the average posterior 

median for ρB is -0.035 (Table 4). This is due to much higher average estimates of τj 

with the Gamma prior distribution (mean posterior median τ1=1.926, mean posterior 

median τ2=2.157) compared to the half Normal prior distribution (mean posterior 

median τ1=0.532, mean posterior median τ2=0.536). 
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The estimates of the joint probability (that θ�i1new>0 & θ�i2new>2) are again influenced by 

the estimate of correlation between the outcomes. In the same example as above, where 

the correlation is dramatically overestimated, the true joint probability is 0.25 but the 

mean joint probability estimate across simulations is 0.342. This highlights that 

seemingly vague prior distributions for the τj’s and ρB may have undesired impact on the 

posterior conclusions, which may lead to incorrect (joint) inferences. 
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Table 5: Simulation results for 10 studies with complete data (setting 3). The within-study correlation, ρWi was 0.8 and the same for each 
study. The prior distribution for 1/τj

2
 is gamma(0.1,0.1) and for βj is N(0,10002). 

Prior for ρB 

Mean 

posterior 

mean of 

β1 (SD of 

mean) 

Mean/ 

median 

SD of 

β1 

Mean 

MSE 

of β1 

% of 

95% CrIs 

for β1 

including 

β1 

Mean 

prob 

(θi1new>0) 

Mean 

posterior 

mean of 

β2 (SD of 

mean) 

Mean/ 

median 

SD of 

β2 

Mean 

MSE 

of β2 

% of 

95% CrIs 

for β2 

including 

β2 

Mean 

prob 

(θi2new>2) 

Mean/ 

median 

posterior 

median 

τ1 

Mean/ 

median 

posterior 

median 

τ2 

Mean/ 

median 

posterior 

median 

ρB 

Mean 

prob 

(θi1new>0 

& 

θi2new>2) 

True values 0.0 - - - 0.5 2.0 - - - 0.5 0.5 0.5 0.0 0.25 

ρB~U(-1,1) 
0.0024 

(0.1999) 

0.6813/ 

0.6785 
0.0399 100 0.5008 

1.9923 

(0.2412) 

0.7940/ 

0.7822 
0.0582 100 0.4986 

1.9255/ 

1.9173 

2.1574/ 

2.1207 

0.6047/ 

0.8646 
0.3419 

Fisher z~ 

N(0,sd=0.4) 

0.0031 

(0.2006) 

0.5985/ 

0.5968 
0.0402 100 0.5010 

1.9937 

(0.2506) 

0.6925/ 

0.6886 
0.0628 100 0.4986 

1.7049/ 

1.6961 

1.8709/ 

1.8571 

0.2378/ 

0.2482 
0.2811 

(ρB+1)/2~ 

Beta(1.5,1.5) 

0.0029 

(0.1997) 

0.6511/ 

0.6491 
0.0399 100 0.5008 

1.9923 

(0.2418) 

0.7595/ 

0.7513 
0.0584 100 0.4992 

1.8459/ 

1.8391 

2.0611/ 

2.0399 

0.6045/ 

0.7817 
0.3338 

ρB~U(0,1) 
0.0023 

(0.2005) 

0.6822/ 

0.6770 
0.0401 100 0.5005 

1.9931 

(0.2446) 

0.7980/ 

0.7863 
0.0598 100 0.4988 

1.9280/ 

1.9166 

2.1711/ 

2.1359 

0.8858/ 

0.8982 
0.4132 

Logit(ρB)~ 

N(0,sd=0.8) 

0.0029 

(0.2013) 

0.6077/ 

0.6049 
0.0405 100 0.5010 

1.9941 

(0.2480) 

0.7095/ 

0.7037 
0.0615 100 0.4995 

1.7370/ 

1.7305 

1.9309/ 

1.9167 

0.6942/ 

0.6970 
0.3637 

MSE is mean-square error; CrI is credible interval; SD is standard deviation; the means and medians represent the posterior means and medians 

from the distribution of summary estimates from the 1000 datasets. 
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3.2.3 Results with missing data when prior distribution for τj is N(0,2) 

(τj>0) 

 

For the missing data settings, it was of particular interest whether the prior distributions 

affect the outcome 1 results (for which missing data was selectively missing) and the 

amount of borrowing of strength. Both the N(0,2) (τ>0) prior distribution for τj and the 

Gamma(0.1,0.1) prior distribution for 1/τj
2 were considered again, but for brevity the 

results are only presented for settings 8 and 9 where there are within-study correlations 

of 0.8. 

 

The simulation results are shown in Table 6 for setting 9 (β1=0, β2=2, τ1=τ2=0.5, 

ρWi=ρB=0.8) (setting 8 is in Table S7 in the Supplementary Material). As expected, due 

to the selective missingness, the average posterior mean for β1 is consistently lower than 

the true value for all prior distributions, and in all settings. For example, where the true 

β1=0, the mean β1 is, on average, -0.432 (s.d. is 0.250) where ρB~U(-1,1). However, if 

the posterior mean for ρB is higher, the bias in the posterior distribution of β1 is lower; in 

other words, the borrowing of strength increases as the posterior mean for ρB increases. 

For example, in the same set of results, for ρB~U(0,1) the average posterior median ρB is 

0.545 and the mean β1 across simulations is -0.390. The estimated effect for outcome 

two remains approximately unbiased across all settings as there is complete data for this 

outcome (6). 

 

Though bias remains in the mean β1 across simulations, crucially it is closer to the true 

value of 0 than a separate univariate meta-analysis for outcome 1. In the same example, 

where ρB~U(-1,1) the average mean β1 is -0.432 (s.d. 0.250) whereas the average mean 
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from the univariate analysis is -0.483 (s.d. is 0.251). The MSE of β1 is also lower in the 

bivariate model compared to the univariate model for all prior distributions for ρB. In the 

same scenario, the MSE of β1 from the bivariate analysis is 0.249 but 0.296 in the 

univariate analysis. Further, if a more appropriate prior distribution is used for ρB, the 

greater the reduction in the MSE. The more appropriate prior distributions for ρB also 

leads to better coverage. Where ρB~U(0,1), the number of 95% CrIs that contain the true 

β1 is 73.5%, compared to 67.2% when ρB~U(-1,1), and just 61.2% in the univariate 

analysis. Therefore, the amount of borrowing of strength is heavily influenced by the 

choice of prior distribution for ρB. 
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Table 6: Simulation results for 10 studies with missing data for outcome 1 (setting 9). The within-study correlation, ρWi was 0.8 and the 
same for each study. The prior distribution for τj is N(0,2)I(0,) and for βj is N(0,10002). 

Prior for ρB 

Mean 

posterior 

mean of 

β1 (SD of 

mean) 

Mean/ 

median 

SD of 

β1 

Mean 

MSE 

of β1 

% of 

95% CrIs 

for β1 

including 

β1 

Mean 

prob 

(θi1new>0) 

Mean 

posterior 

mean of 

β2 (SD of 

mean) 

Mean/ 

median 

SD of 

β2 

Mean 

MSE 

of β2 

% of 

95% CrIs 

for β2 

including 

β2 

Mean 

prob 

(θi2new>2) 

Mean/ 

median 

posterior 

median 

τ1 

Mean/ 

median 

posterior 

median 

τ2 

Mean/ 

median 

posterior 

median 

ρB 

Mean 

prob 

(θi1new>0 

& 

θi2new>2) 

True values 0.0 - - - 0.5 2.0 - - - 0.5 0.5 0.5 0.8 0.4 

Univariate 
-0.4826 

(0.2513) 

0.2820/ 

0.2553 
0.2960 61.2 0.1501 

2.0009 

(0.2185) 

0.2593/ 

0.2580 
0.0477 96.5 0.4989 

0.2890/ 

0.2485 

0.5249/ 

0.5293 
- 0.0749 

ρB~U(-1,1) 
-0.4324 

(0.2496) 

0.2787/ 

0.2535 
0.2492 67.2 0.1800 

2.0041 

(0.2324) 

0.2615/ 

0.2596 
0.0540 95.2 0.5031 

0.3216/ 

0.2801 

0.6108/ 

0.6085 

0.1552/ 

0.1531 
0.1129 

Fisher z~ 

N(0,sd=0.4) 

-0.4438 

(0.2506) 

0.2727/ 

0.2468 
0.2597 64.1 0.1714 

2.0085 

(0.2243) 

0.2602/ 

0.2579 
0.0503 95.6 0.5040 

0.3126/ 

0.2654 

0.6048/ 

0.6029 

0.0497/ 

0.0406 
0.0987 

(ρB+1)/2~ 

Beta(1.5,1.5) 

-0.4364 

(0.2494) 

0.2756/ 

0.2506 
0.2526 66.4 0.1765 

2.0050 

(0.2329) 

0.2608/ 

0.2584 
0.0542 95.6 0.5040 

0.3176/ 

0.2719 

0.6092/ 

0.6068 

0.1109/ 

0.1052 
0.1061 

ρB~U(0,1) 
-0.3920 

(0.2370) 

0.2718/ 

0.2480 
0.2098 73.7 0.1948 

2.0005 

(0.2225) 

0.2604/ 

0.2582 
0.0495 95.8 0.5000 

0.3210/ 

0.2819 

0.6112/ 

0.6101 

0.5450/ 

0.5452 
0.1453 

Logit(ρB)~ 

N(0,sd=0.8) 

-0.3965 

(0.2367) 

0.2695/ 

0.2480 
0.2132 73.5 0.1918 

2.0017 

(0.2226) 

0.2589/ 

0.2569 
0.0495 95.7 0.5004 

0.3161/ 

0.2762 

0.6078/ 

0.6073 

0.5132/ 

0.5132 
0.1397 

MSE is mean-square error; CrI is credible interval; SD is standard deviation; the means and medians represent the posterior means and medians 

from the distribution of summary estimates from the 1000 datasets. 
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3.2.4 Results with missing data when prior distribution for 1/τj
2 is 

Gamma(0.1,0.1) 

 

The results of the missing data scenario when the prior distribution for 1/τj
2 is 

Gamma(0.1,0.1) are shown in Tables S8 and S9 in the Supplementary Material. As in 

the complete data simulations, the main finding is that the posterior estimates of τj are 

hugely overestimated, and this leads to overly large estimates of ρB for all prior 

distributions for ρB (compared to when using a N(0,2)I(0,) prior distribution for τj). 

 

3.2.5 Increasing the number of trials per meta-analysis 

 

One finding from the simulations so far is that the prior distribution for the between-

study correlation can be highly informative towards the borrowing of strength, posterior 

results and joint inferences for meta-analyses of 10 studies, with complete and missing 

data. In settings 2 and 4, where there is strong true between-study correlation (ρB=0.8), 

most of the prior distributions for ρB result in this parameter being underestimated. To 

ascertain if this improved when the number of studies per meta-analysis increases, the 

simulations were repeated with 25 and 50 studies. For brevity, only the results for 

complete data in setting 4 (where ρWi=0.8 and ρB=0.8) where τj~N(0,2)I(0,) are 

discussed. 

 

The results are shown in Tables S10 and S11 in the Supplementary Material. As 

expected, as the number of studies per meta-analysis increases, the posterior median of 

ρB is closer to the true value. For example, recall that given 10 studies and ρB~U(-1,1) 

the mean posterior median ρB across simulations was 0.516 (Table 4), but with 50 
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studies the mean posterior median is 0.734. Interestingly, the average ρB is still 

underestimating the true value of 0.8 for any of the prior distributions for ρB, and the 

choice of prior distribution is still influential even when there are 50 studies. 

The mean joint probability estimates are closer to 0.4 with 50 studies compared to 25 or 

10 studies, but they are still lower than the true value of 0.4 for all prior distributions for 

ρB. This again is partly due to the underestimated between-study correlation, but is also 

due to the uncertainty in all parameters. For instance, even when repeating the 

simulations in setting 4 and forcing ρB to be 0.8, the mean joint probability is 0.372 and 

thus still underestimated compared to 0.4. Only in the unrealistic situation where all 

parameters are known (i.e. ρB, τj, β1, and β2 are fixed at their true values), is the mean 

joint probability approximately 0.4. Therefore, unless the meta-analysis has a very large 

number of studies, the uncertainty in the estimates of the pooled treatment effects, the 

between-study variances and the between-study correlation, will be propagated into 

lower joint probabilistic inferences than if these parameters were known. 

 

This finding can perhaps be considered comparable to the use of the t-distribution for 

the derivation of prediction intervals for θinew by Higgins et al. in a frequentist 

framework (38). Here, the t-distribution is used instead of the Normal distribution to 

account for the uncertainty in the between-study variance. This can be extended to a 

bivariate setting. If 2,000,000 samples of x and y are drawn from a bivariate t-

distribution (with 8 degrees of freedom since the number of trials is 10) with means zero 

and two, respectively, variances equal to 0.25, and correlation equal to 0.8, then the 

joint probability that x>0 and y>2 is just 0.366. This is similar to the mean joint 

probability estimate of 0.372 in the simulation study when the correlation is forced to be 

0.8. The joint probability is only equal to 0.4 when the bivariate Normal distribution is 
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assumed. If 2,000,000 x and y are sampled from the bivariate Normal distribution, with 

the same parameter values as those used above, then the resulting probability is very 

close to 0.4. 

 

3.2.6 Reducing the size of the between-study variance relative to the within-

study variance 

 

In the simulations so far, the true between-study variance was 0.25 for both outcomes, 

which was a similar size compared to the within-study variances. If the between-study 

variances are large relative to the within-study variances, it is known that the between-

study correlation (rather than the within-study correlations) will be most influential 

toward the borrowing of strength (1). However, even when the between-study variances 

are small relative to the within-study variances, the magnitude of between-study 

correlation is crucial toward joint (predictive) inferences, and so it is important to 

estimate it reliably. However, in the frequentist setting, it is known to be potentially 

problematic to estimate between-study variances and correlations when the between-

study variation is relatively small, as shown elsewhere (33). Therefore, in the Bayesian 

setting, prior distributions for between-study variances and correlations are likely to be 

even more influential toward their posterior results when the between-study variation is 

relatively small. 

 

To illustrate this, bivariate meta-analysis data were additionally simulated for setting 5 

using the same approach as before, but now with true between-study variances of 

0.0025 compared to within-study variances as before (i.e. on average 0.5). Only within 

and between-study correlations of 0.8 were considered and the results are shown in 
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Supplementary Table S12. The results show that the prior distributions for the between-

study variances and correlations are very influential, and more than in the earlier 

simulations. For example, the mean posterior median correlation is 0.281 (true value is 

0.8) from the new simulations for setting 5 when using a U(-1,1) prior distribution; this 

is much closer to the prior distribution mean compared to the mean posterior median 

correlation of 0.516 in the earlier simulations in setting 4 (Table 4) where the between-

study variation was larger. 

 

4 Illustrative example 

 

This section illustrates the key findings from the simulation study in a meta-analysis 

dataset involving (potentially selectively) missing data. The example is introduced, and 

then the key results summarised. 

 

4.1 Combining partially and fully-adjusted results 

 

The dataset for the illustrative example is from a previous individual participant data 

(IPD) meta-analysis of trials concerned with whether smoking is a prognostic factor for 

stroke, where smoking is a binary variable by yes (current smoker) or no (not current 

smoker) (23). The summary results for the 10 trials are shown in Table 7. There are two 

prognostic effects for smoking: a partially adjusted log hazard ratio (HR), which is 

adjusted for treatment, and a fully adjusted log HR, which is adjusted for treatment, age 

and BMI. There is missing information for age and BMI in five out of 10 trials, and so 

only partially adjusted HR estimates are available in these. However, in the remaining 

five trials, there is information to estimate both fully and partially adjusted log HRs. 
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These prognostic effect estimates are highly correlated with the within-study 

correlations close to +1 (derived from bootstrapping) (23). Interestingly, the five studies 

only giving partially adjusted results have, on average, smaller HR estimates than in 

those studies providing both partially and fully adjusted effects. Therefore, there is 

concern that there is selective reporting bias here for the fully adjusted results, and that a 

univariate meta-analysis of the fully adjusted results will be biased upwards. A bivariate 

meta-analysis of the partially and fully adjusted results borrows strength to reduce this 

bias. 

 

Table 7: Results for the 10 trials in the meta-analysis of partially-adjusted and 
fully-adjusted log hazard ratios (log HR) (23). 

Trial 

name* 
Control Treatment 

Partially-

adjusted log 

HR 

(var) 

Fully-

adjusted log 

HR 

(var) 

Within-study 

correlations (from 

bootstrap) 

ATMH 750 780 0.216 (0.752) 0.173 (0.754) 0.992 

HEP 199 150 1.238 (0.182) 1.477 (0.223) 0.893 

EWPHE 82 90 -1.038 (1.080) -0.667 (1.125) 0.988 

HDFP 2371 2427 0.884 (0.072) 0.894 (0.074) 0.985 

MRC-1 3445 3546 1.232 (0.119) 1.209 (0.120) 0.986 

MRC-2 1337 1314 0.379 (0.039) - - 

SHEP 2371 2365 0.399 (0.027) - - 

STOP 131 137 1.203 (1.256) - - 

Sy-Chi 1139 1252 0.633 (0.042) - - 

Sy-Eur 2297 2398 0.156 (0.100) - - 

 

Upon applying the bivariate meta-analysis, two prior distributions for the between-study 

variances are considered for comparison. The first is the inappropriate Gamma prior 

distribution, where 1/τj
2~Gamma(0.1,0.1) (8). The second prior distribution is an 

empirical prior for future meta-analyses with a binary outcome (10) where 
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τj
2~lognormal(-2.89,1.912). This prior distribution is proposed by Turner et al. for non-

pharmacological interventions with semi-objective outcomes (an objective outcome that 

is not all-cause mortality). The median for τj
2 is 0.056 and a 95% prior interval is 0.001 

to 2.35. This prior distribution is not an exact match as these are prognostic rather than 

intervention effects, and the outcome is survival rather than binary. However, the event 

(stroke) is rare in this example and hazard ratios and odds ratios are often similar in this 

setting (39, 40), therefore this empirical prior distribution is considered suitable for 

illustrative application here. 

 

4.2 Results from illustrative example 

 

The results of the meta-analyses are shown in Table 8. Utilisation of correlation leads to 

large borrowing of strength toward the fully adjusted pooled results in the bivariate 

meta-analysis. For example, in the analysis using the empirical prior distributions for 

the variances and the U(0,1) prior distribution for the correlation, the fully adjusted 

pooled estimate for the logHR is 0.68 compared to 0.98 in the univariate analysis, which 

corresponds to a HR of 1.97 rather than 2.66. In regards the influence of the choice of 

prior distributions for the variances and correlations, the key findings are now 

discussed, which also highlight those identified in the simulation study. 

 

Key finding (i): The choice of prior distribution for ρB influences the posterior estimates 

for ρB and thus borrowing of strength toward βj and joint inferences. 

 

As expected, the choice of prior distribution for ρB influences the mean ρB and its 95% 

CrI. Using the empirical prior distribution for τj, the posterior median ρB is 0.069 (95% 
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CrI -0.618 to 0.695) when using the Fisher prior distribution for ρB (Figure 2). However, 

when ρB~U(0,1), the posterior median ρB is 0.561 (95% CrI 0.0.035 to 0.983). These 

large changes in the between-study correlation affect the pooled treatment effect 

estimates. The posterior mean fully-adjusted log HR is 0.701 (95% CrI 0.410 to 1.037) 

when using the Fisher prior distribution, compared to 0.681 (95% CrI 0.404 to 0.995) 

with the Uniform prior distribution. The latter leads to more borrowing of strength in 

the bivariate analysis, which gives a narrower CrI and slightly lower summary 

prognostic effect than identified in the other analyses. Joint inferences are also affected. 

For example, consider the posterior probability that both partially and fully adjusted 

HRs are >1.5 in the analyses using the empirical-based prior for τj. These range from 

0.73 to 0.8 depending on the chosen prior distribution for the between-study correlation. 

 

(INSERT FIGURE 2) 

 

Key finding (ii): The choice of prior distribution for τj influences the posterior results 

for ρB and thus borrowing of strength toward βj and joint inferences. 

 

As observed in the simulation study, as the estimates of τj increase, ρB also increases, 

even when the prior distribution for ρB remains the same. For example, when ρB~U(-

1,1), the posterior median for ρB is 0.199 (95% CrI -0.917 to 0.974) if τj
2~lognormal(-

2.89,1.912), and 0.842 (95% CrI -0.644 to 0.999) when 1/τj
2~Gamma(0.1,0.1). This is 

because the posterior estimates of τj differ for these two prior distributions for τj (Figure 

3) (τ1
2 is 0.036 and τ2

2 is 0.035 with the empirical prior distribution, compared to 

τ1
2=4.508 and τ1

2=6.821 with a Gamma(0.1,0.1) prior distribution). This example 

illustrates that the choice of prior distribution for the between-study variances can 
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impact considerably upon the posterior distribution for ρB. Subsequently, it also impacts 

upon the borrowing of strength and joint inferences. For example, in the bivariate meta-

analysis with a U(0,1) prior distribution for the between-study correlation, the 

inappropriate Gamma prior for 1/τj
2 leads to a joint probability of 0.50 that both the true 

partially and fully adjusted HRs are >1.5. In contrast, when using the empirically-based 

prior distribution, the predicted probability is 0.77 and thus far larger. 

 

(INSERT FIGURE 3) 

 

Key finding (iii): The prior distribution for ρB also influences the posterior estimates for 

τj. 

 

As identified in the simulation study, the prior distribution for ρB can alter the posterior 

distributions for τj. When 1/τj
2~Gamma(0.1,0.1) and ρB~U(-1,1), the posterior median 

τ1
2 is 4.508 (95% CrI 1.570 to 11.341) and τ2

2 is 6.821 (95% CrI 1.924 to 22.742) 

(Figure 4). However, when 1/τj
2~Gamma(0.1,0.1) but with the Fisher prior distribution 

for ρB, the posterior medians of τ1
2 and τ2

2
 are 3.475 (95% CrI 1.266 to 8.940) and 

10.201 (95% CrI 1.929 to 42.271), respectively. 

 

(INSERT FIGURE 4) 

 

Key finding (iv): The Gamma prior distribution for 1/τj
2 is inappropriate and 

empirically-based prior distributions are preferred for multivariate meta-analysis. 
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The Gamma prior distribution for the between-study variances appears particularly 

inappropriate because the posterior estimates of τj
2 are much larger than when using the 

empirical prior distribution, and this increases the mean of the posterior distribution of 

ρB, which affects the joint probability estimates. This finding agrees with those in the 

simulation study and those already determined elsewhere, for example by Lambert et al. 

(8) and Wei et al. (17) about the influential impact of a Gamma (Wishart) prior 

distribution on the between-study variances in meta-analysis, and Gelman (26) more 

generally. In addition, the results of our example and the simulation study reveal the 

Gamma prior can be influential toward the between-study correlation, and thus 

borrowing of strength and joint inferences. For example, in our illustrative case study in 

stroke, the joint probability that the partially and fully adjusted HRs are >1.5 is reduced 

by about 0.3 to 0.4 in the analyses using the Gamma prior distribution compared to the 

empirically-based prior distribution. 

 

Therefore, empirically-based prior distributions for between-study variances are highly 

preferable in the multivariate meta-analysis field. Similarly, empirically-based prior 

distributions for the between-study correlation are needed where possible, to ensure that 

the borrowing of strength and joint inferences are appropriate. The commonly chosen 

U(-1,1) prior distribution may not always be appropriate. 
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Table 8: Illustrative example - summary results from bivariate meta-analysis for various prior distributions for ρB and τj. 

Prior for τ 

Prior for ρB 

Mean partially-

adjusted log HR 

(95% CrI) 

Mean fully-

adjusted log HR 

(95% CrI) 

Median τ1
2 

(95% CrI) 

Median τ2
2 

(95% CrI) 

Median ρB 

(95% CrI) 

Prob (Partially-

adjusted 

logHR>0.405 & fully-

adjusted 

logHR>0.405) 

1/τj
2~Gamma(0.1,0.1)       

ρB=ρWi=0 
0.553 

(-0.667 to 1.779) 

0.645 

(-2.409 to 3.588) 

3.512 

(1.262 to 9.138) 

10.999 

(2.000 to 46.298) 

- 
0.283 

ρB~U(-1,1) 
0.575 

(-0.811 to 1.938) 

0.674 

(-1.146 to 2.434) 

4.508 

(1.570 to 11.341) 

6.821 

(1.924 to 22.742) 

0.842 

(-0.644 to 0.999) 
0.446 

Fisher z~N(0,sd=0.4) 
0.580 

(-0.658 to 1.819) 

0.741 

(-2.061 to 3.507) 

3.475 

(1.266 to 8.940) 

10.201 

(1.929 to 42.271) 

0.143 

(-0.647 to 0.804) 
0.322 

(ρB+1)/2~Beta(1.5,1.5) 
0.572 

(-0.750 to 1.885) 

0.676 

(-1.493 to 2.902) 

3.963 

(1.391 to 10.333) 

8.083 

(1.883 to 31.501) 

0.629 

(-0.765 to 0.998) 
0.457 

ρB~U(0,1) 
0.581 

(-0.818 to 2.006) 

0.666 

(-1.044 to 2.396) 

4.642 

(1.598 to 11.856) 

6.423 

(1.884 to 21.295) 

0.932 

(0.414 to >0.999) 
0.504 

Logit(ρB)~N(0,sd=0.8) 
0.559 

(-0.672 to 1.770) 

0.666 

(-1.768 to 3.082) 

3.488 

(1.297 to 8.919) 

8.955 

(1.922 to 34.985) 

0.622 

(0.234 to 0.908) 
0.401 

τj
2~lognormal(-2.89,1.912)       

ρB=ρWi=0 
0.585 

(0.335 to 0.852) 

0.978 

(0.447 to 1.449) 

0.057 

(0.000 to 0.272) 

0.120 

(0.001 to 0.965) 

- 
0.730 
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Prior for τ 

Prior for ρB 

Mean partially-

adjusted log HR 

(95% CrI) 

Mean fully-

adjusted log HR 

(95% CrI) 

Median τ1
2 

(95% CrI) 

Median τ2
2 

(95% CrI) 

Median ρB 

(95% CrI) 

Prob (Partially-

adjusted 

logHR>0.405 & fully-

adjusted 

logHR>0.405) 

ρB~U(-1,1) 
0.581 

(0.362 to 0.821) 

0.692 

(0.399 to 1.031) 

0.036 

(0.001 to 0.155) 

0.035 

(0.001 to 0.200) 

0.199 

(-0.917 to 0.974) 
0.775 

Fisher z~N(0,sd=0.4) 
0.580 

(0.367 to 0.812) 

0.701 

(0.410 to 1.037) 

0.033 

(0.001 to 0.143) 

0.031 

(0.001 to 0.161) 

0.069 

(-0.618 to 0.695) 
0.795 

(ρB+1)/2~Beta(1.5,1.5) 
0.581 

(0.364 to 0.817) 

0.696 

(0.410 to 1.027) 

0.036 

(0.001 to 0.160) 

0.036 

(0.001 to 0.160) 

0.029 

(0.001 to 0.150) 
0.768 

ρB~U(0,1) 
0.584 

(0.359 to 0.826) 

0.681 

(0.404 to 0.995) 

0.042 

(0.001 to 0.177) 

0.037 

(0.001 to 0.187) 

0.561 

(0.035 to 0.983) 
0.771 

Logit(ρB)~N(0,sd=0.8) 
0.581 

(0.360 to 0.821) 

0.682 

(0.400 to 1.001) 

0.038 

(0.001 to 0.149) 

0.035 

(0.001 to 0.177) 

0.522 

(0.183 to 0.841) 
0.772 
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5 Discussion 

 

In a meta-analysis of multiple effects, a multivariate approach can jointly synthesise the 

endpoints and account for any correlation between the effects that may exist both within and 

between studies (5, 33). This leads to borrowing of strength and thus potentially different and 

stronger conclusions than separate univariate analyses, and therefore within a Bayesian 

bivariate meta-analysis framework it is crucial for prior distributions to be selected with care. 

This paper has explored the choice of prior distributions for the between-study variances and 

correlation in a Bayesian bivariate random-effects meta-analysis within a simulation study 

and a real example. The key recommendations are summarised in Box 1, and now briefly 

discussed. 

 

5.1 Key findings 

 

In current applications of multivariate meta-analysis, the U(-1,1) distribution is often selected 

for the between-study correlation without a sensitivity analysis (1, 17, 18), perhaps assuming 

it is vague . However, this work illustrates that the choice of prior distribution for ρB is often 

highly informative of posterior conclusions for all parameters of interest, especially when 

there are few studies in the meta-analysis, or missing outcome data. Even with large numbers 

of studies, such as 50, the prior distribution still noticeably influences the posterior 

distribution for the between-study correlation, which can impact upon the amount of 

borrowing of strength, joint inferences and subsequently clinically important measures such 

as the summary treatment effects and probabilistic statements. Therefore, a major 

recommendation is that the prior distribution for the between-study correlation must be 
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chosen carefully in future multivariate meta-analyses, and the commonly chosen U(-1,1) 

prior distribution is not always appropriate. 

 

Though appropriate estimation of the between-study correlation is important in complete data 

settings (especially when making joint inferences across the multiple outcomes), it is even 

more critical in missing data settings. The prior distribution is more informative of the 

posterior distribution for this parameter since there is less data to estimate the between-study 

correlation, and the correlation itself has more impact on the borrowing of strength, which is 

usually greater in missing data settings (5). Therefore a sensible prior distribution for the 

between-study correlation is desired. External sources of data, such as similar systematic 

reviews, could be used to construct plausible prior distributions for this parameter (21, 26, 

29). If related data is unavailable, a clinically relevant range of values for the prior 

distribution could still be specified. For example, if the meta-analysis pools overall and 

progression-free survival, it may be clinically plausible that the correlation is restricted to 

positive values only, and therefore a U(0,1) prior distribution may be more realistic than a 

U(-1,1) distribution. Alternatively, if a meta-analysis is used to pool sensitivity and 

specificity estimates from diagnostic test studies, the correlation could be restricted to 

negative values, and the U(–1,0) prior distribution may be a sensible choice. If negative (or 

positive) values are highly unlikely but not implausible, then a distribution might be used that 

allows all values but with most probability given to positive (or negative) values (see 

Supplementary Material). If there is no prior information to inform a more realistically vague 

prior distribution then the U(-1,1) distribution appears the most sensible choice. However, a 

sensitivity analysis that considers alternative prior distributions would then be especially 

important. 
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The choice of prior distribution for the between-study correlation and the between-study 

variances are not independent, and therefore wise choices must be made for all parameters in 

the bivariate meta-analysis model. Where previous simulation work has illustrated the 

importance of the prior distribution for the between-study variance in a univariate meta-

analysis (8), the simulation studies in this paper reveal this is also true for a bivariate meta-

analysis. If an inappropriate prior distribution is selected for the between-study variance, this 

not only has an impact on the posterior estimates of τj themselves, but also on the posterior 

estimate of between-study correlation, the pooled treatment effect estimates, the amount of 

borrowing of strength and subsequently joint inferences. Therefore, previously derived 

empirical prior distributions (9-11) should be considered for the between-study variance 

parameters in a multivariate setting. The use of Gamma or Wishart prior distributions should 

be avoided; our simulation study shows this may introduce bias in the posterior estimates of 

the between-study variances and correlation, which then may influence the subsequent meta-

analysis results and borrowing of strength. This was previously noted as a potential concern 

by Achana et al.(41) in a single application of network meta-analysis of multiple treatments 

and outcomes. However, Wishart prior distributions are still being suggested by some 

researchers, for example in a recent tutorial for undertaking Bayesian bivariate meta-analyses 

(42). 

 

5.2 Limitations 

 

Whilst many different prior distributions were examined, there are, of course, numerous other 

prior distributions that could be used, but were not considered here. Furthermore, the 

simulation study was specifically for bivariate meta-analysis, but there may be more than two 
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correlated outcomes. In this case, there are several more between-study variance-covariance 

parameters that require prior distributions. However, the findings are likely to generalise. 

 

Finally, the simulation results (e.g. bias, MSE, coverage) are essentially a frequentist 

evaluation of a Bayesian analysis, which some may argue may not be appropriate. In 

particular, Senn previously suggested that it is perhaps philosophically incorrect to conduct a 

simulation study to assess the performance of Bayesian prior distributions because it is 

“irrelevant to any Bayesian who truly believed what the prior distribution represented” (43). 

Though this is an important statement, the rationale for the simulation study here is similar to 

that of Lambert et al. who justify that, “if a statistician desires to have a model with good bias 

and coverage properties, but needs/wants to use Bayesian methods, then we believe that 

simulation is a very good way of establishing this” (44). 

 

5.3 Conclusions 

 

The simulation study and the illustrative example revealed that the choice of prior 

distribution for the between-study correlation in a Bayesian multivariate random-effects 

meta-analysis is important and must be chosen with caution, and in conjunction with suitable 

choices of prior distributions for the between-study variances. Ideally, empirical prior 

distributions should be utilised for the between-study variance parameters, and external 

clinical evidence used to inform realistically vague prior distribution of the between-study 

correlation. This is especially important for multivariate meta-analysis involving missing 

data, where the correlation dictates the amount of borrowing of strength from indirect 

information, and when joint inferences are desired across the multiple effects of interest. 

Often, sensitivity analyses to the choice of all prior distributions will be essential. 
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Box 1 summarizes recommendations for future Bayesian multivariate random-effects meta-

analyses. 

 

Box 1: Key recommendations for specification of prior distributions for between-study 
variances and correlation in a Bayesian bivariate meta-analysis. 

• The use of a Wishart prior distribution on the entire between-study variance-covariance 

matrix is best avoided; it can be highly influential toward posterior meta-analysis results. 

Rather, a separate prior distribution should be specified for the between-study variances and 

the correlation. 

• The prior distributions for between-study variances need to be chosen sensibly as they 

strongly impact on parameter estimates including the between-study correlation, and thus can 

influence the amount of borrowing of strength and subsequent joint inferences. For this 

purpose, empirical prior distributions may be most useful, such as those by Turner et al. and 

Rhodes et al. (9, 10). The use of an inverse Gamma prior distribution is best avoided. 

• The prior distribution for between-study correlation also needs to be chosen sensibly, as it 

may have large influence toward the amount of borrowing of strength and joint inferences, 

especially when the number of studies providing both outcomes is few and the between-study 

variation is relatively small. A U(-1,1) prior distribution for ρB is not always vague and thus 

should not be routinely used without due thought, even when the number of studies is large 

(say, 50) it can have an important influence when the true correlation is large. 

• Clinical, biological or methodological rationale might provide external evidence to inform a 

more realistically vague prior distribution for the between-study correlation. For example, a 

U(0,1) prior distribution could be specified if only positive values are plausible, such as 

prognostic effects that are partially and fully adjusted, or treatment effects on two highly 

correlated outcomes like systolic and diastolic blood pressure. A U(-1,0) prior distribution 
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might be specified if only negative values are plausible, for example for sensitivity and 

specificity from multiple studies that use different thresholds. 

• Sensitivity analysis for the choice of prior distributions on between-study variances and 

correlations may be needed, especially when external evidence to inform the prior 

distributions is not available, borrowing of strength is potentially large (due to missing data), 

and there is relatively small information from the likelihood to inform their posterior 

distributions (for example, when the number of studies in the meta-analysis is small, and the 

between-study variance is small relative to the within-study variances). 
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Figure legends 

Figure 1: Density plots for prior distributions for between-study correlation: 

(a) ρB ~ U(-1,1) (Option 1); (b) 1
2

log �1+ρB
1-ρB

� ~ N(0, sd=0.4) (Option 2); 

(c) �ρB+1�
2

 ~ Beta(1.5,1.5) (Option 3); (d) ρB ~ U(0,1) (Option 4); 

(e) logit(ρB) ~ N(0, sd=0.8) (Option 5). 

Figure 2: Posterior mean and 95% CrI for between-study correlation for various prior 

distributions in the illustrative example. 

Figure 3: Posterior median and 95% CrI for between-study variances and between-study 

correlation for the two selected prior distributions for the between-study variances. 

Figure 4: Posterior median and 95% CrI for between-study variance for fully-adjusted logHR 

for various priors for between-study correlation. 

Figure S1: Density plot for prior distribution for between-study correlation: 1
2

log �1+ρB
1-ρB

� ~ 

N(0.47, sd=0.27). 
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