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Abstract

Multivariate random-effects meta-analysis allows the joint synthesis of correlated
results from multiple studies, for example for multiple outcomes or multiple treatment
groups. In a Bayesian univariate meta-analysis of one endpoint, the importance of
specifying a sensible prior distribution for the between-study variance is well-
understood. However, in multivariate meta-analysis there is little guidance about the
choice of prior distributions for the variances or, crucially, the between-study
correlation, pp; for the latter, researchers often use a Uniform(-1,1) distribution

assuming it is vague.

In this article, an extensive simulation study and a real illustrative example is used to
examine the impact of various (realistically) vague prior distributions for pg and the
between-study variances within a Bayesian bivariate random-effects meta-analysis of
two correlated treatment effects. A range of diverse scenarios are considered, including
complete and missing data, to examine the impact of the prior distributions on posterior
results (for treatment effect and between-study correlation), amount of borrowing of

strength, and joint predictive distributions of treatment effectiveness in new studies.

Two key recommendations are identified to improve the robustness of multivariate
meta-analysis results. Firstly, the routine use of a Uniform(-1,1) prior distribution for pg
should be avoided, if possible, as it is not necessarily vague. Instead, researchers should
identify a sensible prior distribution, for example by restricting values to be positive or
negative as indicated by prior knowledge. Secondly, it remains critical to use sensible
(e.g. empirically-based) prior distributions for the between-study variances, as an

inappropriate choice can adversely impact the posterior distribution for pz, which may



then adversely affect inferences such as joint predictive probabilities. These
recommendations are especially important with a small number of studies and missing

data.
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1 Introduction

The multivariate meta-analysis approach has been advocated to jointly synthesise
multiple correlated results from related research studies (1, 2). For example, in a meta-
analysis of multiple outcomes, a cancer patient’s overall survival time is likely to be
correlated with their progression-free survival time, and therefore treatment effect
estimates for both outcomes are likely correlated within a study. Similarly, in a network
meta-analysis of multiple treatment groups, the treatment effect for A vs B is likely
correlated with that for A vs C. Compared to separate univariate meta-analyses, the
multivariate approach utilises such correlation to gain additional information toward the
estimation of summary meta-analysis results (3, 4). This is especially advantageous
when there are missing effect estimates in some studies (such as missing direct
comparisons in network meta-analysis) and when there is potential outcome reporting
bias (5, 6), as the correlation can lead to more precise inferences and/or a reduction in

bias (2), which has been referred to as ‘borrowing of strength’(7).

The Bayesian framework for multivariate meta-analysis is a natural way to account for
all parameter uncertainty, to make predictions regarding the possible effects in new
studies, and to derive joint probability estimates regarding the multiple effects of
interest. However, it requires the specification of prior distributions for all unknown
parameters, which may be considered a disadvantage when genuine prior information
does not exist. A previous simulation study of Bayesian univariate meta-analyses (8)
found that the pooled effect estimates can be particularly sensitive to the choice of prior
distribution for the between-study variance, even when seemingly ‘vague’ prior

distributions are specified. To address this, previous work has utilised a large collection



of existing meta-analyses to generate empirical prior distributions for the unknown
between-study variance in a new univariate meta-analysis of intervention effects for
continuous outcomes (9) and binary outcomes (10, 11), across a wide-range of

healthcare settings, such as where the outcome of interest is all-cause mortality.

In addition to prior distributions for the between-study variances, a multivariate meta-
analysis also requires prior distribution(s) for the between-study correlation(s). One
might address this using the conjugate prior distribution for the entire between-study
variance-covariance matrix, which is the inverse-Wishart prior distribution, and this has
been used by previous authors, such as bivariate meta-analyses of test accuracy studies
(12-14). However, others argue it is preferable to place separate prior distributions on
each component of the between-study variance-covariance matrix because the Wishart
prior distribution can be very influential toward the posterior estimates of the between-
study variances (14-17); the Wishart distribution is a generalisation of the gamma
distribution, which is known to be influential in univariate meta-analysis when used as a
prior distribution for the between-study variances, especially when the true between-
study variances are close to zero (8). Separation of the between-study variance-
covariance matrix also allows more flexibility in the choice of prior distributions for
each component, for instance if genuine prior information was available for some, but

not all, of the components.

In situations where separate prior distributions are placed on the between-study
variances and correlations, an unanswered question remains: what is the impact of the
choice of prior distributions for the between-study correlations and variances in a

multivariate meta-analysis, especially in situations where little or no prior information is



available? Appropriate estimation of the between-study variance-covariance matrix is
important to making valid inferences, and thus undesired influence of prior distributions
is unwanted when prior information is unavailable. For instance, appropriate estimation
of the between-study correlation is desired because it dictates the magnitude of the
borrowing of strength (1), and is therefore potentially influential toward pooled effects,
credible intervals and prediction intervals; it is also pivotal when estimating functions of
the pooled estimates, or when deriving joint probability estimates (such as the
probability that the treatment is effective for all outcomes). However, in our experience,
most previous Bayesian applications of multivariate meta-analysis (including some of
our own) adopt a U(-1,1) prior distribution for the between-study correlation, but do not

conduct sensitivity analyses to check whether it is appropriate or influential (1, 17, 18).

The aim of this paper is to examine the impact of seemingly vague and realistically
vague prior distributions for the between-study correlations and variances in a bivariate
meta-analysis, to extend previous work in the univariate setting (8). Real application
and an extensive simulation study are described, focusing on a Bayesian bivariate meta-
analysis of treatment effects for two correlated outcomes, and investigating how the
choice of prior distributions impacts upon posterior estimates of the pooled treatment
effects and between-study covariance matrix, the accuracy of 95% credible and
prediction intervals, and joint probabilistic inferences. Both complete and missing
outcome data situations are examined, and the impact on the amount of borrowing of
strength (that is, the change in pooled results and credible intervals from univariate to

bivariate analysis) is also considered.



The remainder of this paper is structured as follows. Section 2 introduces the bivariate
random-effects meta-analysis model and potential prior distributions for the between-
study variances and correlation. Section 3 describes the methods and results of the
simulation study. The key findings are then illustrated in the context of a real meta-
analysis dataset in Section 4. Section 5 concludes with some discussion and

recommendations.

2 General model for bivariate random-effects meta-analysis

This section summarises the general framework for bivariate meta-analysis, and
introduces possible prior distributions for the between-study variances and correlation.
We focus on the use of bivariate meta-analysis for two correlated outcomes, but the
issues remain similarly pertinent in other situations of correlated effects, such as
multiple treatment groups (network meta-analysis) and multiple performance statistics

(such as sensitivity and specificity) (19, 20).

2.1 Model specification

Suppose that each of i=1 to n studies examines an effect of interest (such as a treatment
effect) for two outcomes (j=1,2), such as systolic and diastolic blood pressure, or
overall and progression-free survival. Let each study provide the estimated effects, Y,
and Y, and their associated standard errors, s;; and s,>, where each Yj; is an estimate of
an underlying true value, 6;, and these true values may vary between studies due to

heterogeneity. Assuming the Y;; and 6; are drawn from a bivariate normal distribution,



and that the within-study variance-covariance matrix ($;) is known, then the bivariate

random-effects meta-analysis model can be specified as:
Y 0;1 @
(1) ~(a2) -5}

2
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S,: 2
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The true values (6;) therefore have a mean value f; (referred to as the ‘pooled’ effect for

outcome j) and between-study variance, rj2 . The within-study covariance matrix, S,

2

contains the known within-study variances, S5

and within-study covariances, p w Si15i25
for each trial, where Py, represents the within-study correlation of Y;; and Y;,. The
between-study covariance matrix, D, contains the unknown between-study variances,
sz , and the unknown between-study correlation, pp, of the 6;;s and 6;,s. Multivariate
extensions to the bivariate model (1) follow naturally, though are more complex due to

the increasing number of between-study variances and correlations that require

estimation (2, 14, 21, 22).

2.1.1 Within-study and between-study correlation



Within-study and between-study correlation are two measures of correlation in a
multivariate random-effects meta-analysis model. The within-study correlation is a
measure of the association between the effect estimates in each study, and is caused by
the same patients contributing correlated data toward both outcomes. Estimation of
model (1) typically assumes these are known (just as the within-study variances are
assumed known) (1), and for the purposes of this paper we also make this assumption.
Authors such as Riley et al. and Trikalinos et al. detail how to derive within-study
correlations when individual participant data are available (23, 24), but they can also be
approximated using aggregate data in some other situations (25). Alternatively, it is

possible to construct prior distributions from previous studies (21, 22).

The between-study correlation is a measure of how the true underlying effects are
related across studies, and occurs because of between-study heterogeneity in, for
example, the dosage of a drug or patient characteristics of the study populations, such as
age. The between-study correlation is unknown and must be estimated in the meta-

analysis model, alongside the between-study variances.

Both within- and between-study correlation can influence the amount of borrowing of
strength in a bivariate meta-analysis (5, 7). Within-study correlations are more
influential when the within-study variances are large relative to the between-study
variance, whereas the between-study correlation is more influential when the between-
study variances are large relative to the within-study variances. Further, accounting for
such correlation is essential when an aim is to make joint inferences about the two

effects of interest, such as the probability that they are both above a particular value.
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2.2 Model estimation

In a frequentist framework, model (1) can be estimated by methods of moments or
restricted maximum likelihood (2). Within a Bayesian framework, the likelihood
pertaining to model (1) is combined with prior distributions for the unknown parameters
of B, rj2 and pp, and then posterior inferences are derived by sampling from the marginal
posterior distributions using, for example, Markov chain Monte Carlo (MCMC) via
Gibbs sampling. The convergence of parameters must be checked, which can be done
visually using history and trace plots, and possible autocorrelation must be examined,

which can be reduced by thinning the samples.

The prior distributions for the pooled effects () are not evaluated and are given a vague
N(0, 1000?) prior distribution throughout. Here, the focus is on examining different

choices of the prior distributions for sz and, especially, pp, and these are now discussed.

2.3 Choice of prior distribution for 7;

In univariate meta-analysis, the prior distribution for 1/ was once commonly chosen to
be the Gamma(e, €) distribution with the misperception that if € were very small (i.e.
0.001) then this distribution would be ‘vague’ (8). However, previous work by Lambert
et al (8) (and more generally outside the meta-analysis field by Gelman (26))
demonstrated that the Gamma distribution is not appropriate, as posterior inferences for
the between-study variance and pooled effects are sensitive to €. Here, € must be set to a
reasonable value, or meta-analysts should rather use one of a number of different

weakly informative prior distributions discussed by Lambert et al. and Gelman (8, 26).
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These refer to distributions that are set up so that the information they provide is weak,
but contain only realistic values for the variance. These include the half-Normal(0,a)
distribution (27, 28), and the half-¢ family of distributions, such as the half-Cauchy
distribution (26). In particular, for the half-Normal(0,a) distribution, the value of a can
be chosen to cover all realistic values of the between-study variance, for example as
identified from other previous meta-analyses of the same outcome type in the same

disease field.

The latter idea leads naturally to empirically-based prior distributions for the between-
study variances (29). Indeed, previous work has used a large collection of existing meta-
analyses to generate empirical prior distributions for the unknown between-study
variance in a new univariate meta-analysis of intervention effects for continuous
outcomes (9) and binary outcomes (10, 11), across a wide-range of healthcare settings,

such as where the outcome of interest is all-cause mortality.

Here, in the setting of bivariate meta-analysis, we interrogate some inappropriate and
sensible/weakly informative prior distributions for the between-study variances, to
explore their impact on bivariate meta-analysis estimates and conclusions. In particular,
in the simulation study (Section 3) two contrasting prior distributions for the between-
study variances are compared: an inappropriate Gamma distribution and a more suitable
truncated normal distribution that was suggested by Lambert et al (8). Then, in the
illustrative example in Section 4, a relevant empirical prior distribution is chosen and

compared to an inappropriate Gamma prior distribution.
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We include an inappropriate Gamma distribution for 1/ 7 in both simulations and the
example to highlight the danger of using this (or its extension, the Wishart distribution)
as a prior distribution for the between-study variances in the context of bivariate meta-
analysis applications, with particular emphasis on how it can adversely affect the
posterior distribution for pg and the amount of borrowing of strength toward the pooled
effects. Though it is well-documented that inverse-Gamma and Wishart prior
distributions for variance terms are inappropriate, unfortunately they are still adopted in
the meta-analysis field. For example, Menke (30), Riley et al. (12) and Zwinderman and
Bussuyt (13) use a Wishart prior distribution in bivariate meta-analyses of sensitivity
and specificity from multiple test accuracy studies. Yang et al. use a Wishart prior
distribution in their network meta-analysis of multiple therapies for acute ischemic
stroke (31), as does Jansen in a network meta-analysis of multiple treatments of lung
cancer (32). In their seminal paper on the Bayesian approach to multivariate meta-
analysis of multiple outcomes, Nam et al. use an inverse Gamma prior on each of the
between-study variances (18). Therefore, given its continued use, herein it is important
to demonstrate the drawback of the Gamma prior distribution within multivariate meta-
analysis, with a novel angle on its impact on pp, the amount of borrowing of strength

and joint inferences.

2.4 Choice of prior distribution for pg

A range of (realistically) vague prior distributions for the between-study correlation are
considered to account for varying levels of hypothetical prior knowledge. Below are

five possible prior distributions in which options 1 to 3 allow the between-study
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correlation to be positive or negative, and options 4 and 5 only allow the between-study

correlation to be positive. The five prior distributions are shown in Figure 1.

(INSERT FIGURE 1)

Option 1

pBNU(-lal)

This prior distribution gives equal weight to all possible positive and negative values of
correlation. This distribution is often used in practice [for example, see the following
references (1, 17, 18)], and is usually considered when there is no prior information

regarding the true value of the between-study correlation.

Option 2

1 1+p
=—1 B ) N(0,sd=0.4
z=5 0g<1_pB> (0,5d=0.4)

This prior distribution is referred to as a Fisher prior and it is similar to option 1, as it
has the same mean and allows both positive and negative values (21), but gives more

weight around the mean and less weight at the extremes.

Option 3

(5*1)

5 ~Beta(1.5,1.5)
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Similar to options 1 and 2, this Beta prior distribution also allows for positive and
negative values of the between-study correlation. It is similar to option 1 in that it is
relatively flat across the range of values, with the exception that values at the extreme
ends of the distribution are considered extremely unlikely. The scale and shape
parameter values of 1.5 are chosen here to ensure a prior distribution that is noticeably

different to both options 1 and 2.

Option 4

pB~U(O,1)

This prior distribution gives equal weight to all possible positive values of correlation.

Option 5

logit(pz)~N(0,sd=0.8)

Similar to option 4, this logit prior distribution allows only positive values, however,
more weight is given around the mean and less weight is given in the tails of the

distribution.

Although these five prior distributions reflect a key range of options, we recognise that
other choices of prior distributions could be specified. In particular, it may be that
negative values of the correlation are very unlikely but not impossible and therefore a

prior distribution might be specified that, unlike priors 4 and 5, allows for some small
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probability of negative values. An example of such a prior distribution is shown in the
Supplementary Material. Clearly the choice will be context specific, but here onwards

the five prior distributions described above are our key focus.

3 Simulation study to examine choice of prior distributions

We now describe the methods and results of the simulation study to examine the impact
of (realistically) vague prior distributions for the between-study variances and
correlation in a Bayesian estimation of bivariate meta-analysis model (1). The
simulation focuses mainly on N=10 studies per meta-analysis, but both complete data
(both outcomes available in all 10 studies) and missing data (some studies only provide
one outcome) situations are considered. Alternative N is also considered briefly in

Section 3.2.5.

3.1 Methods of the simulation study

The simulation study involves three key steps, as follows.

Step 1: Generation of bivariate meta-analysis datasets for a range of settings.

We use the simulation data previously generated by Riley et al. (33), where full details
of the simulation process are documented. Briefly, for each simulation scenario (see
below), a true between-study and within-study bivariate Normal model was specified
according to equation (1). Then, allowing for the specified within- and between-study

variances and correlations, two effect estimates (Y;; and Y;») were generated (one for
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each outcome) for each of the 10 studies in the meta-analysis. This was repeated 1000
times, so to generate 1000 meta-analysis datasets for each simulation. A range of

simulation settings are considered (Table 1).

Table 1: Settings for which simulated meta-analysis datasets were generated.

True parameter value

Setting

Pwi  PB B B2 7 72
Complete data
1 0 0 0 2 0.5 0.5
2 0 0.8 0 2 0.5 0.5
3 0.8 0 0 2 0.5 0.5
4 0.8 0.8 0 2 0.5 0.5
5 0.8 0.8 0 2 0.05 0.05
Missing data
6 0 0 0 2 0.5 0.5
7 0 0.8 0 2 0.5 0.5
8 0.8 0 0 2 0.5 0.5
9 0.8 0.8 0 2 0.5 0.5

Within-study variances (s,-jz) were drawn from a log normal distribution, and had an average value of 0.5.
Therefore, settings 1 to 4 and 6 to 9 had similarly sized within- and between-study variances on average,

whilst settings 5 and 10 had relatively large within-study variances.

Settings 1 to 5 involve complete data (i.e. Y¥;; and Y}, are available for all studies) but
settings 6 to 9 involve missing data, where some studies were made to have only Y.
Missing data scenarios are very important, as borrowing of strength may be large in
such situations. We chose to generate non-ignorable missingness. In each complete data
meta-analysis dataset, the treatment effect estimate for outcome 1 (Y;;) was selectively
removed if it was larger than the unweighted mean of Y;; within each set of 10 trials,

i.e.:

17



1 10
Remove Y;; if Y,~1>—Z Yy
10 £y

On average, this process removed half of the treatment effect estimates and their
standard deviations for outcome 1 in the simulated datasets. This missing data process
was chosen to reflect selective outcome reporting bias in which an outcome is measured
and analysed but not reported on the basis of the results (34, 35). Though this missing
data mechanism is missing-not-at-random (MNAR), the utilisation of correlation from
reported outcomes can still reduce (though not entirely remove) bias in univariate meta-
analysis results in this situation, as shown elsewhere (6), and is now a key reason for
applying the multivariate model (36). Therefore, it is of particular interest whether
chosen prior distributions affect the bivariate meta-analysis results for outcome 1 in this

setting.

Step 2: Fit model (1) to each dataset in each setting, for all the different sets of

prior distributions.

To each of the 1000 meta-analysis datasets within each of the nine settings, model (1)
was fitted using MCMC with a particular set of chosen prior distributions. This was
then repeated for each different set of prior distributions. The different sets of prior

distributions were as follows.

Pooled effects ()

The prior distributions for f; were always given a vague N(0, 1000%).

18



Between-study variances (sz)

Two prior distributions for rj2 were chosen (one that appeared appropriate and one that
appeared inappropriate) based on the results of a univariate meta-analysis of the
simulated datasets where py=pp=0 in model (1) (see Table S1 in the Supplementary
material). Because the true between-study standard deviations in the simulations were
0.5, a 7;~N(0,2) (7/>0) prior distribution appeared most suitable (realistically vague)
amongst six prior distributions previously explored by Lambert et al. (8). In contrast,
the Gamma(0.1,0.1) prior distribution for l/rj2 was, as expected, by far the poorest in
terms of estimating 7;accurately. However, as this inappropriate prior distribution is still
often adopted in the multivariate meta-analysis literature (see earlier) we include it here
to highlight its impact. Thus, in each setting of the simulation study, both these prior
distributions were evaluated to compare the impact of a seemingly suitable prior

distribution with a seemingly inappropriate prior distribution for ;.

Between-study correlation (pp)

The prior distributions evaluated for pz were the five prior distributions detailed in

Section 2.4.

This led to 10 combinations of the prior distributions for between-study variances and

correlations shown in Table 2.
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Table 2: All combinations of prior distributions for between-study correlation and
between-study variance.

Combination Prior distribution for pp Prior distribution for 7;
(1) p~U(-1,1)
i 1 1+
) z==log Py ~N(0,5d=0.4)
2 l-pg
(111) +1 7~N(0,2), 70
(’)‘32—)~Beta(1.5,1.5) ! !
(iv) ps~U(0,1)
(v) logit(pz)~N(0,sd=0.8)
(vi) pr~U(-1,1)
vii 1 1+
(v z==log Py ~N(0,5d=0.4)
2 l-pg
(viii) +1 1/17~Gamma(0.1,0.1)
(’)‘32—)~Beta(1.5,1.5) !
(ix) ps~U(0,1)
(x) logit(pz)~N(0,sd=0.8)

In each analysis, the posterior parameter estimates were obtained using the Gibbs
Sampler MCMC method, which was implemented in SAS 9.3 using the PROC MCMC
procedure (37). For each dataset, the analyses were performed with 300,000 iterations
after allowing for a 200,000 iteration burn in and the samples were thinned by 100 to
reduce autocorrelation (see Supplementary Material for SAS code). The convergence of

parameters was checked using history and trace plots.

Step 3: Summarise results.

In each setting, to summarise and compare the posterior results for each set of prior

distributions, the following were calculated from the set of 1000:
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e The mean posterior mean of pooled effects across all simulations, the mean and
median posterior median of between-study standard deviation across all
simulations; and the mean and median posterior median of between-study

correlation across all simulations (to check for bias),

e The mean and median standard deviation of the posterior pooled effects across

simulations,

e The mean-squared error (MSE) of the pooled effects, calculated by the average

squared difference from the true value across the 1000 simulated datasets,

e The coverage performance of the 95% credible intervals for the pooled effects,
calculated by the percentage of the 1000 95% credible intervals that contain the

true effect.

Further, we also evaluated performance in terms of predictive inferences about
treatment effects in new trials. The predictive distribution of treatment effects in a new

trial was assumed to be:

Oil 10 B )
(o) ~((7)2)

In each analysis, values of ;. and 6;2,.,, were sampled from this distribution during
the MCMC process, which naturally accounts for the uncertainty in the pooled average

effects, f; and £,, and the uncertainty in the between-study covariance matrix, D.
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Across all datasets in each setting for each set of prior distributions, we used these to

derive:

e The average marginal probability that 6;;,.,>0, the average marginal probability

that 6,,,.,>2, and the average joint probability that both 6;;,.,~0 and 6,2,¢,>2.

In settings 1, 3, 6 and 8, where pz=0, the two true marginal probabilities that ;;;,.,,~0
and 6;2,.,,>2 was both 0.5, and the true joint probability that 6;;,.,~>0 and 0;2,.,>2 was

0.25. When pp=0.8 in settings 2, 4, 5, 7 and 9, the true joint probability was 0.4.

3.2 Results of the simulation study

3.2.1 Complete case data when using prior distribution for between-study
variance of 7,~N(0,2) (7>0)

Table 3 and Table 4 display the simulation results for setting 1 and setting 4,

respectively, for the different prior distributions for the between-study correlation where

the sensible prior distribution for 7; is used (N(0,2) truncated at zero). The equivalent

results for settings 2 and 3 are presented in Tables S2 and S3 in the Supplementary

Material.
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Table 3: Simulation results for 10 studies with complete data (setting 1). The within-study correlation, py; was zero and the same for
each study. The prior distribution for zjis N(0,2)I(0,) and for f; is N(0,10002).

Mean % of Mean % of Mean/ Mean/ Mean/ Mean
Mean/ Mean/
posterior Mean 95% Crls Mean posterior Mean 95% CrlIs Mean median median median prob
median median
Prior for pp mean of SD of MSE for f; prob mean of SD of MSE for 3, prob posterior posterior posterior (6i7,.,~0
0 0
B (SD of P of f; including  (0i740>0) | f2 (SD of P of 5, including  (6i2,0,>2) | median median median &
mean) ’ Bi % mean) ’ B2 (%) 2 2 pr Oe?)
True values 0.0 - - - 0.5 2.0 - - - 0.5 0.5 0.5 0.0 0.25
-0.0020  0.2185/ 2.0011 0.2616/ 0.5006/ 0.5344/ 0.0070/
pp~U(-1,1) 0.0382 95.6 0.4969 0.0483 96.6 0.4989 0.2483
(0.1955)  0.2159 (0.2198)  0.2583 0.4985 0.5280 0.0045
Fisher z~ -0.0021  0.2168/ 2.0011 0.2606/ 0.4965/ 0.5293/  0.0026/ -
0.0381 95.8 0.4966 0.0480 96.6 0.4989 0.2478
N(0,sd=0.4) (0.1952)  0.2136 (0.2193)  0.2569 0.4953 0.5281 0.0012
(pptl)/2~ -0.0025  0.2179/ 2.0014 0.2614/ 0.4995/ 0.5327/ 0.0049/
0.0383 95.6 0.4965 0.0481 96.6 0.5000 0.2480
Beta(1.5,1.5) (0.1957)  0.2149 (0.2195)  0.2600 0.4996 0.5295 0.0055
-0.0020  0.2190/ 2.0022 0.2616/ 0.5006/ 0.5326/ 0.4121/
pp~U(0,1) 0.0382 95.5 0.4963 0.0485 96.4 0.4994 0.2958
(0.1954)  0.2160 (0.2203)  0.2579 0.5050 0.5302 0.4114
Logit(pg)~ -0.0019  0.2198/ 2.0017 0.2619/ 0.5033/ 0.5359/ 0.4682/
0.0382 95.5 0.4955 0.0485 96.5 0.4991 0.3012
N(0,sd=0.8) (0.1955)  0.2175 (0.2204) 0.2573 0.5041 0.5285 0.4738

MSE is mean-square error; Crl is credible interval; SD is standard deviation; the means and medians represent the posterior means and medians

from the distribution of summary estimates from the 1000 datasets.
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Table 4: Simulation results for 10 studies with complete data (setting 4). The within-study correlation, py; was 0.8 and the same for each

study. The prior distribution for z;is N(0,2)I(0,) and for g; is N(0,10002).

Mean % of Mean % of Mean/ Mean/ Mean/ Mean
Mean/ Mean/
posterior Mean 95% Crls Mean posterior Mean 95% CrlIs Mean median median median prob
median median
Prior for pp mean of SD of MSE for f; prob mean of SD of MSE for 3, prob posterior posterior posterior (07,0
0 0
B (SD of of f; including  (0;7,.,,>0) | S (SD of of ; including (0,,,>2) | median median median &
B B2
mean) Bi mean) B2 7] T2 Ps Oi2new>2)
True values 0.0 - - - 0.5 2.0 - - - 0.5 0.5 0.5 0.8 0.4
-0.0091 0.2081/ 2.0009 0.2319/ 0.5134/ 0.4965/ 0.5160/
pp~U(-1,1) 0.0343 95.6 0.4962 0.0411 96.3 0.4973 0.3279
(0.1850)  0.2085 (0.2029)  0.2320 0.5203 0.5019 0.5770
Fisher z~ -0.0088  0.2055/ 2.0002 0.2329/ 0.5047/ 0.4813/ 0.2363/
0.0342 95.5 0.4968 0.0422 96.0 0.4974 0.2915
N(0,sd=0.4) (0.1848)  0.2070 (0.2055)  0.2301 0.5150 0.4829 0.2452
(ppt1)/2~ -0.0088  0.2071/ 2.0012 0.2315/ 0.5094/ 0.4893/ 0.4226/
0.0341 95.6 0.4963 0.0413 96.3 0.4975 0.3159
Beta(1.5,1.5) (0.1846)  0.2081 (0.2034)  0.2301 0.5179 0.4933 0.4582
-0.0090  0.2074/ 1.9994 0.2299/ 0.5105/ 0.5036/ 0.6458/
pp~U(0,1) 0.0341 95.3 0.4958 0.0448 96.2 0.4975 0.3460
(0.1844)  0.2067 (0.2116)  0.2283 0.5153 0.5056 0.6562
Logit(pg)~ -0.0092  0.2045/ 2.0012 0.2285/ 0.5021/ 0.4891/ 0.5545/
0.0341 95.4 0.4957 0.0410 95.9 0.4975 0.3312
N(0,sd=0.8) (0.1844)  0.2045 (0.2026)  0.2270 0.5081 0.4908 0.5538

MSE is mean-square error; Crl is credible interval; SD is standard deviation; the means and medians represent the posterior means and medians

from the distribution of summary estimates from the 1000 datasets.
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In all settings the choice of prior distribution for pz is informative of the posterior
estimate of pp. This is expected since there are only 10 studies per meta-analysis, so
there are only 10 data points to estimate a correlation, and thus the posterior mean is
similar to the prior mean. For example, in setting 1 (pyi=pp=0, Table 3) where pz~U(-
1,1), the mean posterior median for pp across simulations is 0.007. When pp~U(0,1), the
mean posterior median for pp across simulations is 0.412. A similar result is observed in
settings 2-4. In setting 2 and setting 4, the true value of pp is 0.8, however, none of the
selected prior distributions led to average medians of pz across simulations close to its
true value. For example, in setting 4 (py=p5=0.8, Table 4) where pp~U(0,1), the

average posterior median of pj is only 0.646.

The performance of the 95% credible intervals is also close to 95% for f; regardless of
the choice of prior distribution for pp. Further, the choice of prior distribution for pz has
little impact on the posterior means of #; and £, across simulations, and their mean
standard deviations. In other words, there appears to be very little borrowing of
strength, which agrees with previous work that shows the borrowing of strength in a
bivariate meta-analysis toward the estimates of §; is usually very small when complete

data are available for both outcomes (5, 33).

However, the prior distribution for pg does have a larger impact upon average joint
inferences across both outcomes. The average joint probability that 8;,.,,>0 & 8;2,0,>2
is slightly higher for the prior distributions for pg that allow only positive values. Also,
since no prior distribution leads to an average posterior median of the between-study

correlation close to 0.8, the average joint probability is always lower than the true value

of 0.4.
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3.2.2 Complete case data when using prior distribution for between-study

variance of l/rj2~Gamma(0.1,0.1)

Table 5 displays the simulation results for setting 3 where the inappropriate
Gamma(0.1,0.1) prior distribution for l/rj2 is used. The equivalent results for settings 1,
2 and 4 are in Tables S4, S5 and S6, respectively, in the Supplementary Material.

The posterior means for f; and /5, remain approximately unbiased for all choices of the
prior distributions for p, for settings 1 to 4. However, the posterior distributions of the
7/’s are centred on much larger values than 0.25 for both outcomes. Therefore, the
standard deviations of the pooled effects are much larger than those when 7;~N(0,2)/(0,).
Thus, the credible intervals for the pooled effect estimates are too wide, leading to
inappropriate coverage of 100% in all settings, regardless of the choice of prior

distribution for pg.

The simulation results also show that when the values of 7; are larger, pp is likely to
increase. This can lead to a huge upward bias in the posterior distribution of pz, even
with the U(-1,1) prior distribution for pg. For example, using prior distributions of
l/er~Gamma(0.1,0. 1) and pp~U(-1,1) in setting 3 (true pp=0, Table 5), the mean
posterior median pp across simulations is 0.605. However, using the same prior
distribution for pg but a prior distribution for 7; of N(0,2)/(0,) the average posterior
median for pp is -0.035 (Table 4). This is due to much higher average estimates of z;
with the Gamma prior distribution (mean posterior median 7;,=1.926, mean posterior
median 7,=2.157) compared to the half Normal prior distribution (mean posterior

median 7,=0.532, mean posterior median 7,=0.536).
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The estimates of the joint probability (that 8;,,,>0 & 8;3,.,,>2) are again influenced by
the estimate of correlation between the outcomes. In the same example as above, where
the correlation is dramatically overestimated, the true joint probability is 0.25 but the
mean joint probability estimate across simulations is 0.342. This highlights that
seemingly vague prior distributions for the 7;’s and pz may have undesired impact on the

posterior conclusions, which may lead to incorrect (joint) inferences.
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Table 5: Simulation results for 10 studies with complete data (setting 3). The within-study correlation, py; was 0.8 and the same for each
study. The prior distribution for 1/1'1-2 is gamma(0.1,0.1) and for f; is N(0,1000%).

Mean % of Mean % of Mean/ Mean/ Mean/ Mean
Mean/ Mean/
posterior Mean 95% Crls Mean posterior Mean 95% Crls Mean median median median prob
median median
Prior for pp mean of SD of MSE for f; prob mean of SD of MSE for 3, prob posterior posterior posterior (6i1,.,>0
0 0
B (SD of P of f; including  (0;7,.,>0) | B2 (SD of P of 5, including (0;2,.,>2) | median median median &
mean) ! Bi mean) ’ B2 (9] 72 Ps Oi2new>2)
True values 0.0 - - - 0.5 2.0 - - - 0.5 0.5 0.5 0.0 0.25
0.0024 0.6813/ 1.9923 0.7940/ 1.9255/ 2.1574/ 0.6047/
pz~U(-1,1) 0.0399 100 0.5008 0.0582 100 0.4986 0.3419
(0.1999)  0.6785 (0.2412)  0.7822 1.9173 2.1207 0.8646
Fisher z~ 0.0031 0.5985/ 1.9937 0.6925/ 1.7049/ 1.8709/ 0.2378/
0.0402 100 0.5010 0.0628 100 0.4986 0.2811
N(0,sd=0.4) (0.2006)  0.5968 (0.2506)  0.6886 1.6961 1.8571 0.2482
(ppt1)/2~ 0.0029 0.6511/ 1.9923 0.7595/ 1.8459/ 2.0611/ 0.6045/
0.0399 100 0.5008 0.0584 100 0.4992 0.3338
Beta(1.5,1.5) (0.1997)  0.6491 (0.2418)  0.7513 1.8391 2.0399 0.7817
0.0023 0.6822/ 1.9931 0.7980/ 1.9280/ 2.1711/ 0.8858/
pp~U(0,1) 0.0401 100 0.5005 0.0598 100 0.4988 0.4132
(0.2005)  0.6770 (0.2446)  0.7863 1.9166 2.1359 0.8982
Logit(pg)~ 0.0029 0.6077/ 1.9941 0.7095/ 1.7370/ 1.9309/ 0.6942/
0.0405 100 0.5010 0.0615 100 0.4995 0.3637
N(0,sd=0.8) (0.2013)  0.6049 (0.2480)  0.7037 1.7305 1.9167 0.6970

MSE is mean-square error; Crl is credible interval; SD is standard deviation; the means and medians represent the posterior means and medians

from the distribution of summary estimates from the 1000 datasets.
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3.2.3 Results with missing data when prior distribution for z; is N(0,2)

(z>0)

For the missing data settings, it was of particular interest whether the prior distributions
affect the outcome 1 results (for which missing data was selectively missing) and the
amount of borrowing of strength. Both the N(0,2) (>0) prior distribution for z; and the
Gamma(0.1,0.1) prior distribution for l/rj2 were considered again, but for brevity the
results are only presented for settings 8 and 9 where there are within-study correlations

of 0.8.

The simulation results are shown in Table 6 for setting 9 (£,=0, =2, 7,=1,=0.5,
pwi—pp=0.8) (setting 8 is in Table S7 in the Supplementary Material). As expected, due
to the selective missingness, the average posterior mean for f; is consistently lower than
the true value for all prior distributions, and in all settings. For example, where the true
£:=0, the mean f; is, on average, -0.432 (s.d. 1s 0.250) where pg~U(-1,1). However, if
the posterior mean for pp is higher, the bias in the posterior distribution of f; is lower; in
other words, the borrowing of strength increases as the posterior mean for pp increases.
For example, in the same set of results, for pz~U(0,1) the average posterior median pp is
0.545 and the mean f; across simulations is -0.390. The estimated effect for outcome
two remains approximately unbiased across all settings as there is complete data for this

outcome (6).

Though bias remains in the mean f; across simulations, crucially it is closer to the true
value of 0 than a separate univariate meta-analysis for outcome 1. In the same example,

where pp~U(-1,1) the average mean f; is -0.432 (s.d. 0.250) whereas the average mean
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from the univariate analysis is -0.483 (s.d. is 0.251). The MSE of f; is also lower in the
bivariate model compared to the univariate model for all prior distributions for pp. In the
same scenario, the MSE of f; from the bivariate analysis is 0.249 but 0.296 in the
univariate analysis. Further, if a more appropriate prior distribution is used for pg, the
greater the reduction in the MSE. The more appropriate prior distributions for pp also
leads to better coverage. Where pp~U(0,1), the number of 95% Crls that contain the true
L1 is 73.5%, compared to 67.2% when pp~U(-1,1), and just 61.2% in the univariate
analysis. Therefore, the amount of borrowing of strength is heavily influenced by the

choice of prior distribution for pp.
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Table 6: Simulation results for 10 studies with missing data for outcome 1 (setting 9). The within-study correlation, py; was 0.8 and the

same for each study. The prior distribution for z;is N(0,2)/(0,) and for f; is N(0,10002).

Mean % of Mean % of Mean/ Mean/ Mean/ Mean
Mean/ Mean/
posterior Mean 95% Crls Mean posterior Mean 95% Crls Mean median median median prob
median median
Prior for pp mean of SD of MSE for f; prob mean of SD of MSE for 3, prob posterior posterior posterior (6i1,.,>0
0 0
B (SD of of f; including  (6i7,6,>0) | £2 (SD of of 5, including  (€i240,>2) | median median median &
B B
mean) Bi mean) B2 (9] 72 Ps Oi2new>2)
True values 0.0 - - - 0.5 2.0 - - - 0.5 0.5 0.5 0.8 0.4
-0.4826  0.2820/ 2.0009 0.2593/ 0.2890/ 0.5249/
Univariate 0.2960 61.2 0.1501 0.0477 96.5 0.4989 - 0.0749
(0.2513)  0.2553 (0.2185)  0.2580 0.2485 0.5293
-0.4324  0.2787/ 2.0041 0.2615/ 0.3216/ 0.6108/ 0.1552/
pz~U(-1,1) 0.2492 67.2 0.1800 0.0540 95.2 0.5031 0.1129
(0.2496)  0.2535 (0.2324)  0.2596 0.2801 0.6085 0.1531
Fisher z~ -0.4438  0.2727/ 2.0085 0.2602/ 0.3126/ 0.6048/ 0.0497/
0.2597 64.1 0.1714 0.0503 95.6 0.5040 0.0987
N(0,sd=0.4) (0.2506)  0.2468 (0.2243)  0.2579 0.2654 0.6029 0.0406
(ppt1)/2~ -0.4364  0.2756/ 2.0050 0.2608/ 0.3176/ 0.6092/ 0.1109/
0.2526 66.4 0.1765 0.0542 95.6 0.5040 0.1061
Beta(1.5,1.5) (0.2494)  0.2506 (0.2329) 0.2584 0.2719 0.6068 0.1052
-0.3920  0.2718/ 2.0005 0.2604/ 0.3210/ 0.6112/ 0.5450/
pp~U(0,1) 0.2098 73.7 0.1948 0.0495 95.8 0.5000 0.1453
(0.2370)  0.2480 (0.2225)  0.2582 0.2819 0.6101 0.5452
Logit(pg)~ -0.3965  0.2695/ 2.0017 0.2589/ 0.3161/ 0.6078/ 0.5132/
0.2132 73.5 0.1918 0.0495 95.7 0.5004 0.1397
N(0,sd=0.8) (0.2367)  0.2480 (0.2226)  0.2569 0.2762 0.6073 0.5132

MSE is mean-square error; Crl is credible interval; SD is standard deviation; the means and medians represent the posterior means and medians

from the distribution of summary estimates from the 1000 datasets.
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3.2.4 Results with missing data when prior distribution for l/rj2 is

Gamma(0.1,0.1)

The results of the missing data scenario when the prior distribution for l/rj2 is
Gamma(0.1,0.1) are shown in Tables S8 and S9 in the Supplementary Material. As in
the complete data simulations, the main finding is that the posterior estimates of 7; are
hugely overestimated, and this leads to overly large estimates of pp for all prior

distributions for pp (compared to when using a N(0,2)/(0,) prior distribution for 7;).

3.2.5 Increasing the number of trials per meta-analysis

One finding from the simulations so far is that the prior distribution for the between-
study correlation can be highly informative towards the borrowing of strength, posterior
results and joint inferences for meta-analyses of 10 studies, with complete and missing
data. In settings 2 and 4, where there is strong true between-study correlation (pz=0.8),
most of the prior distributions for pp result in this parameter being underestimated. To
ascertain if this improved when the number of studies per meta-analysis increases, the
simulations were repeated with 25 and 50 studies. For brevity, only the results for
complete data in setting 4 (where p;=0.8 and pz=0.8) where 7,~N(0,2)/(0,) are

discussed.

The results are shown in Tables S10 and S11 in the Supplementary Material. As
expected, as the number of studies per meta-analysis increases, the posterior median of
pp 1s closer to the true value. For example, recall that given 10 studies and pp~U(-1,1)

the mean posterior median pp across simulations was 0.516 (Table 4), but with 50

32



studies the mean posterior median is 0.734. Interestingly, the average pj is still
underestimating the true value of 0.8 for any of the prior distributions for pp, and the
choice of prior distribution is still influential even when there are 50 studies.

The mean joint probability estimates are closer to 0.4 with 50 studies compared to 25 or
10 studies, but they are still lower than the true value of 0.4 for all prior distributions for
pp- This again is partly due to the underestimated between-study correlation, but is also
due to the uncertainty in all parameters. For instance, even when repeating the
simulations in setting 4 and forcing pp to be 0.8, the mean joint probability is 0.372 and
thus still underestimated compared to 0.4. Only in the unrealistic situation where all
parameters are known (i.e. pg, 7, f;, and 5, are fixed at their true values), is the mean
joint probability approximately 0.4. Therefore, unless the meta-analysis has a very large
number of studies, the uncertainty in the estimates of the pooled treatment effects, the
between-study variances and the between-study correlation, will be propagated into

lower joint probabilistic inferences than if these parameters were known.

This finding can perhaps be considered comparable to the use of the #-distribution for
the derivation of prediction intervals for 6,,.,, by Higgins et al. in a frequentist
framework (38). Here, the #-distribution is used instead of the Normal distribution to
account for the uncertainty in the between-study variance. This can be extended to a
bivariate setting. If 2,000,000 samples of x and y are drawn from a bivariate ¢-
distribution (with 8 degrees of freedom since the number of trials is 10) with means zero
and two, respectively, variances equal to 0.25, and correlation equal to 0.8, then the
joint probability that x>0 and y>2 is just 0.366. This is similar to the mean joint
probability estimate of 0.372 in the simulation study when the correlation is forced to be

0.8. The joint probability is only equal to 0.4 when the bivariate Normal distribution is
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assumed. If 2,000,000 x and y are sampled from the bivariate Normal distribution, with
the same parameter values as those used above, then the resulting probability is very

close to 0.4.

3.2.6 Reducing the size of the between-study variance relative to the within-

study variance

In the simulations so far, the true between-study variance was 0.25 for both outcomes,
which was a similar size compared to the within-study variances. If the between-study
variances are large relative to the within-study variances, it is known that the between-
study correlation (rather than the within-study correlations) will be most influential
toward the borrowing of strength (1). However, even when the between-study variances
are small relative to the within-study variances, the magnitude of between-study
correlation is crucial toward joint (predictive) inferences, and so it is important to
estimate it reliably. However, in the frequentist setting, it is known to be potentially
problematic to estimate between-study variances and correlations when the between-
study variation is relatively small, as shown elsewhere (33). Therefore, in the Bayesian
setting, prior distributions for between-study variances and correlations are likely to be
even more influential toward their posterior results when the between-study variation is

relatively small.

To illustrate this, bivariate meta-analysis data were additionally simulated for setting 5
using the same approach as before, but now with true between-study variances of
0.0025 compared to within-study variances as before (i.e. on average 0.5). Only within

and between-study correlations of 0.8 were considered and the results are shown in
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Supplementary Table S12. The results show that the prior distributions for the between-
study variances and correlations are very influential, and more than in the earlier
simulations. For example, the mean posterior median correlation is 0.281 (true value is
0.8) from the new simulations for setting 5 when using a U(-1,1) prior distribution; this
is much closer to the prior distribution mean compared to the mean posterior median
correlation of 0.516 in the earlier simulations in setting 4 (Table 4) where the between-

study variation was larger.

4 Illustrative example

This section illustrates the key findings from the simulation study in a meta-analysis
dataset involving (potentially selectively) missing data. The example is introduced, and

then the key results summarised.

4.1 Combining partially and fully-adjusted results

The dataset for the illustrative example is from a previous individual participant data
(IPD) meta-analysis of trials concerned with whether smoking is a prognostic factor for
stroke, where smoking is a binary variable by yes (current smoker) or no (not current
smoker) (23). The summary results for the 10 trials are shown in Table 7. There are two
prognostic effects for smoking: a partially adjusted log hazard ratio (HR), which is
adjusted for treatment, and a fully adjusted log HR, which is adjusted for treatment, age
and BMI. There is missing information for age and BMI in five out of 10 trials, and so
only partially adjusted HR estimates are available in these. However, in the remaining
five trials, there is information to estimate both fully and partially adjusted log HRs.
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These prognostic effect estimates are highly correlated with the within-study
correlations close to +1 (derived from bootstrapping) (23). Interestingly, the five studies
only giving partially adjusted results have, on average, smaller HR estimates than in
those studies providing both partially and fully adjusted effects. Therefore, there is
concern that there is selective reporting bias here for the fully adjusted results, and that a
univariate meta-analysis of the fully adjusted results will be biased upwards. A bivariate
meta-analysis of the partially and fully adjusted results borrows strength to reduce this

bias.

Table 7: Results for the 10 trials in the meta-analysis of partially-adjusted and
fully-adjusted log hazard ratios (log HR) (23).

Partially- Fully-
Within-study
Trial adjusted log  adjusted log
. Control Treatment correlations (from
name HR HR
bootstrap)
(var) (var)

ATMH 750 780 0.216 (0.752)  0.173 (0.754) 0.992
HEP 199 150 1.238 (0.182)  1.477 (0.223) 0.893
EWPHE 82 90 -1.038 (1.080) -0.667 (1.125) 0.988
HDFP 2371 2427 0.884 (0.072)  0.894 (0.074) 0.985
MRC-1 3445 3546 1.232 (0.119)  1.209 (0.120) 0.986
MRC-2 1337 1314 0.379 (0.039) - -
SHEP 2371 2365 0.399 (0.027) - -
STOP 131 137 1.203 (1.256) - -
Sy-Chi 1139 1252 0.633 (0.042) - -
Sy-Eur 2297 2398 0.156 (0.100) - -

Upon applying the bivariate meta-analysis, two prior distributions for the between-study
variances are considered for comparison. The first is the inappropriate Gamma prior
distribution, where l/rj2~Gamma(0.1,0. 1) (8). The second prior distribution is an

empirical prior for future meta-analyses with a binary outcome (10) where
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r?~lognormal(-2.89, 1 91%). This prior distribution is proposed by Turner et al. for non-

J

pharmacological interventions with semi-objective outcomes (an objective outcome that
is not all-cause mortality). The median for rf 1s 0.056 and a 95% prior interval is 0.001

to 2.35. This prior distribution is not an exact match as these are prognostic rather than
intervention effects, and the outcome is survival rather than binary. However, the event
(stroke) is rare in this example and hazard ratios and odds ratios are often similar in this
setting (39, 40), therefore this empirical prior distribution is considered suitable for

illustrative application here.

4.2 Results from illustrative example

The results of the meta-analyses are shown in Table 8. Utilisation of correlation leads to
large borrowing of strength toward the fully adjusted pooled results in the bivariate
meta-analysis. For example, in the analysis using the empirical prior distributions for
the variances and the U(0,1) prior distribution for the correlation, the fully adjusted
pooled estimate for the logHR is 0.68 compared to 0.98 in the univariate analysis, which
corresponds to a HR of 1.97 rather than 2.66. In regards the influence of the choice of
prior distributions for the variances and correlations, the key findings are now

discussed, which also highlight those identified in the simulation study.

Key finding (i): The choice of prior distribution for pginfluences the posterior estimates

for pp and thus borrowing of strength toward p; and joint inferences.

As expected, the choice of prior distribution for pp influences the mean pp and its 95%

Crl. Using the empirical prior distribution for z;, the posterior median pg is 0.069 (95%
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Crl -0.618 to 0.695) when using the Fisher prior distribution for pp (Figure 2). However,
when pz~U(0,1), the posterior median pz is 0.561 (95% Cr1 0.0.035 to 0.983). These
large changes in the between-study correlation affect the pooled treatment effect
estimates. The posterior mean fully-adjusted log HR is 0.701 (95% CrI 0.410 to 1.037)
when using the Fisher prior distribution, compared to 0.681 (95% Crl 0.404 to 0.995)
with the Uniform prior distribution. The latter leads to more borrowing of strength in
the bivariate analysis, which gives a narrower Crl and slightly lower summary
prognostic effect than identified in the other analyses. Joint inferences are also affected.
For example, consider the posterior probability that both partially and fully adjusted
HRs are >1.5 in the analyses using the empirical-based prior for 7;. These range from

0.73 to 0.8 depending on the chosen prior distribution for the between-study correlation.

(INSERT FIGURE 2)

Key finding (ii): The choice of prior distribution for t; influences the posterior results

for pp and thus borrowing of strength toward f; and joint inferences.

As observed in the simulation study, as the estimates of ; increase, pp also increases,
even when the prior distribution for pp remains the same. For example, when pp~U(-
1,1), the posterior median for pz is 0.199 (95% Crl -0.917 to 0.974) if rj2~logn0rmal(-
2.89,1.91%), and 0.842 (95% Crl -0.644 to 0.999) when l/rj2~Gamma(0.1,0.1). This is
because the posterior estimates of 7; differ for these two prior distributions for z; (Figure
3) (z,” is 0.036 and 7,” is 0.035 with the empirical prior distribution, compared to
112=4.508 and 712=6.821 with a Gamma(0.1,0.1) prior distribution). This example

illustrates that the choice of prior distribution for the between-study variances can
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impact considerably upon the posterior distribution for ps. Subsequently, it also impacts
upon the borrowing of strength and joint inferences. For example, in the bivariate meta-
analysis with a U(0,1) prior distribution for the between-study correlation, the

inappropriate Gamma prior for l/rj2 leads to a joint probability of 0.50 that both the true
partially and fully adjusted HRs are >1.5. In contrast, when using the empirically-based

prior distribution, the predicted probability is 0.77 and thus far larger.

(INSERT FIGURE 3)

Key finding (iii): The prior distribution for pg also influences the posterior estimates for

7).

As identified in the simulation study, the prior distribution for pz can alter the posterior
distributions for 7;, When 1/q2~Gamma(0. 1,0.1) and pp~U(-1,1), the posterior median
7% 15 4.508 (95% Crl 1.570 to 11.341) and 7,° is 6.821 (95% Crl 1.924 to 22.742)
(Figure 4). However, when 1/ rj2~Gamma(0. 1,0.1) but with the Fisher prior distribution
for pg, the posterior medians of 7,” and 7,” are 3.475 (95% Crl 1.266 to 8.940) and

10.201 (95% Crl 1.929 to 42.271), respectively.

(INSERT FIGURE 4)

Key finding (iv): The Gamma prior distribution for ]/rj2 is inappropriate and

empirically-based prior distributions are preferred for multivariate meta-analysis.
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The Gamma prior distribution for the between-study variances appears particularly
inappropriate because the posterior estimates of sz are much larger than when using the
empirical prior distribution, and this increases the mean of the posterior distribution of
pa, which affects the joint probability estimates. This finding agrees with those in the
simulation study and those already determined elsewhere, for example by Lambert et al.
(8) and Wei et al. (17) about the influential impact of a Gamma (Wishart) prior
distribution on the between-study variances in meta-analysis, and Gelman (26) more
generally. In addition, the results of our example and the simulation study reveal the
Gamma prior can be influential toward the between-study correlation, and thus
borrowing of strength and joint inferences. For example, in our illustrative case study in
stroke, the joint probability that the partially and fully adjusted HRs are >1.5 is reduced
by about 0.3 to 0.4 in the analyses using the Gamma prior distribution compared to the

empirically-based prior distribution.

Therefore, empirically-based prior distributions for between-study variances are highly
preferable in the multivariate meta-analysis field. Similarly, empirically-based prior
distributions for the between-study correlation are needed where possible, to ensure that
the borrowing of strength and joint inferences are appropriate. The commonly chosen

U(-1,1) prior distribution may not always be appropriate.
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Table 8: Illustrative example - summary results from bivariate meta-analysis for various prior distributions for pz and 7.

Prob (Partially-

Mean partially- Mean fully- 5 5 adjusted
Prior for t Median 7, Median 7, Median pg
adjusted log HR adjusted log HR logHR>0.405 & fully-
Prior for pp (95% CrI) (95% Crl) (95% Crl)
(95% CrI) (95% CrI) adjusted
logHR>0.405)
1/ti~Gamma(0.1,0.1)
0.553 0.645 3.512 10.999 -
Ps=Pwi=0 0.283
(-0.667 to 1.779) (-2.409 to 3.588) (1.262 t0 9.138) (2.000 to 46.298)
0.575 0.674 4.508 6.821 0.842
pe~U(-1,1) 0.446
(-0.811 to 1.938) (-1.146 to 2.434) (1.570 to 11.341) (1.924 t0 22.742) (-0.644 t0 0.999)
0.580 0.741 3.475 10.201 0.143
Fisher z~N(0,sd=0.4) 0.322
(-0.658 to 1.819) (-2.061 to 3.507) (1.266 to 8.940) (1.929 to 42.271) (-0.647 to 0.804)
0.572 0.676 3.963 8.083 0.629
(ppt1)/2~Beta(1.5,1.5) 0.457
(-0.750 to 1.885) (-1.493 t0 2.902) (1.391 to 10.333) (1.883 to 31.501) (-0.765 t0 0.998)
0.581 0.666 4.642 6.423 0.932
pp~U(0,1) 0.504
(-0.818 to 2.006) (-1.044 to 2.396) (1.598 to 11.856) (1.884 to 21.295) (0.414 to0 >0.999)
0.559 0.666 3.488 8.955 0.622
Logit(pz)~N(0,sd=0.8) 0.401
(-0.672 to 1.770) (-1.768 to 3.082) (1.297 t0 8.919) (1.922 to 34.985) (0.234 t0 0.908)
t ~lognormal(-2.89,1.91°)
0.585 0.978 0.057 0.120 -
pB=pWi=0 0.730
(0.335 t0 0.852) (0.447 to 1.449) (0.000 to 0.272) (0.001 to 0.965)
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Prob (Partially-

Mean partially- Mean fully- 5 5 adjusted
Prior for t Median 7, Median 7, Median pg
adjusted log HR adjusted log HR logHR>0.405 & fully-
Prior for pp (95% Crl) (95% CrI) (95% CrI)
(95% CrI) (95% CrI) adjusted
logHR>0.405)
0.581 0.692 0.036 0.035 0.199
pe~U(-1,1) 0.775
(0.362 t0 0.821) (0.399 to 1.031) (0.001 to 0.155) (0.001 to 0.200) (-0.917 t0 0.974)
0.580 0.701 0.033 0.031 0.069
Fisher z~N(0,sd=0.4) 0.795
(0.367 t0 0.812) (0.410 to 1.037) (0.001 to 0.143) (0.001 to 0.161) (-0.618 to 0.695)
0.581 0.696 0.036 0.036 0.029
(ppt1)/2~Beta(1.5,1.5) 0.768
(0.364 t0 0.817) (0.410 to 1.027) (0.001 to 0.160) (0.001 to 0.160) (0.001 to 0.150)
0.584 0.681 0.042 0.037 0.561
ps~U(0,1) 0.771
(0.359 t0 0.826) (0.404 to0 0.995) (0.001 t0 0.177) (0.001 to 0.187) (0.035 t0 0.983)
0.581 0.682 0.038 0.035 0.522
Logit(pg)~N(0,sd=0.8) 0.772
(0.360 to 0.821) (0.400 to 1.001) (0.001 to 0.149) (0.001 to 0.177) (0.183 t0 0.841)
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5 Discussion

In a meta-analysis of multiple effects, a multivariate approach can jointly synthesise the
endpoints and account for any correlation between the effects that may exist both within and
between studies (5, 33). This leads to borrowing of strength and thus potentially different and
stronger conclusions than separate univariate analyses, and therefore within a Bayesian
bivariate meta-analysis framework it is crucial for prior distributions to be selected with care.
This paper has explored the choice of prior distributions for the between-study variances and
correlation in a Bayesian bivariate random-effects meta-analysis within a simulation study
and a real example. The key recommendations are summarised in Box 1, and now briefly

discussed.

5.1 Key findings

In current applications of multivariate meta-analysis, the U(-1,1) distribution is often selected
for the between-study correlation without a sensitivity analysis (1, 17, 18), perhaps assuming
it is vague . However, this work illustrates that the choice of prior distribution for pp is often
highly informative of posterior conclusions for all parameters of interest, especially when
there are few studies in the meta-analysis, or missing outcome data. Even with large numbers
of studies, such as 50, the prior distribution still noticeably influences the posterior
distribution for the between-study correlation, which can impact upon the amount of
borrowing of strength, joint inferences and subsequently clinically important measures such
as the summary treatment effects and probabilistic statements. Therefore, a major

recommendation is that the prior distribution for the between-study correlation must be
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chosen carefully in future multivariate meta-analyses, and the commonly chosen U(-1,1)

prior distribution is not always appropriate.

Though appropriate estimation of the between-study correlation is important in complete data
settings (especially when making joint inferences across the multiple outcomes), it is even
more critical in missing data settings. The prior distribution is more informative of the
posterior distribution for this parameter since there is less data to estimate the between-study
correlation, and the correlation itself has more impact on the borrowing of strength, which is
usually greater in missing data settings (5). Therefore a sensible prior distribution for the
between-study correlation is desired. External sources of data, such as similar systematic
reviews, could be used to construct plausible prior distributions for this parameter (21, 26,
29). If related data is unavailable, a clinically relevant range of values for the prior
distribution could still be specified. For example, if the meta-analysis pools overall and
progression-free survival, it may be clinically plausible that the correlation is restricted to
positive values only, and therefore a U(0,1) prior distribution may be more realistic than a
U(-1,1) distribution. Alternatively, if a meta-analysis is used to pool sensitivity and
specificity estimates from diagnostic test studies, the correlation could be restricted to
negative values, and the U(—1,0) prior distribution may be a sensible choice. If negative (or
positive) values are highly unlikely but not implausible, then a distribution might be used that
allows all values but with most probability given to positive (or negative) values (see
Supplementary Material). If there is no prior information to inform a more realistically vague
prior distribution then the U(-1,1) distribution appears the most sensible choice. However, a
sensitivity analysis that considers alternative prior distributions would then be especially

important.
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The choice of prior distribution for the between-study correlation and the between-study
variances are not independent, and therefore wise choices must be made for all parameters in
the bivariate meta-analysis model. Where previous simulation work has illustrated the
importance of the prior distribution for the between-study variance in a univariate meta-
analysis (8), the simulation studies in this paper reveal this is also true for a bivariate meta-
analysis. If an inappropriate prior distribution is selected for the between-study variance, this
not only has an impact on the posterior estimates of 7; themselves, but also on the posterior
estimate of between-study correlation, the pooled treatment effect estimates, the amount of
borrowing of strength and subsequently joint inferences. Therefore, previously derived
empirical prior distributions (9-11) should be considered for the between-study variance
parameters in a multivariate setting. The use of Gamma or Wishart prior distributions should
be avoided; our simulation study shows this may introduce bias in the posterior estimates of
the between-study variances and correlation, which then may influence the subsequent meta-
analysis results and borrowing of strength. This was previously noted as a potential concern
by Achana et al.(41) in a single application of network meta-analysis of multiple treatments
and outcomes. However, Wishart prior distributions are still being suggested by some
researchers, for example in a recent tutorial for undertaking Bayesian bivariate meta-analyses

(42).

5.2 Limitations

Whilst many different prior distributions were examined, there are, of course, numerous other
prior distributions that could be used, but were not considered here. Furthermore, the

simulation study was specifically for bivariate meta-analysis, but there may be more than two
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correlated outcomes. In this case, there are several more between-study variance-covariance

parameters that require prior distributions. However, the findings are likely to generalise.

Finally, the simulation results (e.g. bias, MSE, coverage) are essentially a frequentist
evaluation of a Bayesian analysis, which some may argue may not be appropriate. In
particular, Senn previously suggested that it is perhaps philosophically incorrect to conduct a
simulation study to assess the performance of Bayesian prior distributions because it is
“irrelevant to any Bayesian who truly believed what the prior distribution represented” (43).
Though this is an important statement, the rationale for the simulation study here is similar to
that of Lambert et al. who justify that, “if a statistician desires to have a model with good bias
and coverage properties, but needs/wants to use Bayesian methods, then we believe that

simulation is a very good way of establishing this” (44).

5.3 Conclusions

The simulation study and the illustrative example revealed that the choice of prior
distribution for the between-study correlation in a Bayesian multivariate random-effects
meta-analysis is important and must be chosen with caution, and in conjunction with suitable
choices of prior distributions for the between-study variances. Ideally, empirical prior
distributions should be utilised for the between-study variance parameters, and external
clinical evidence used to inform realistically vague prior distribution of the between-study
correlation. This is especially important for multivariate meta-analysis involving missing
data, where the correlation dictates the amount of borrowing of strength from indirect
information, and when joint inferences are desired across the multiple effects of interest.

Often, sensitivity analyses to the choice of all prior distributions will be essential.
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Box 1 summarizes recommendations for future Bayesian multivariate random-effects meta-

analyses.

Box 1: Key recommendations for specification of prior distributions for between-study
variances and correlation in a Bayesian bivariate meta-analysis.

e The use of a Wishart prior distribution on the entire between-study variance-covariance
matrix is best avoided; it can be highly influential toward posterior meta-analysis results.
Rather, a separate prior distribution should be specified for the between-study variances and

the correlation.

e The prior distributions for between-study variances need to be chosen sensibly as they
strongly impact on parameter estimates including the between-study correlation, and thus can
influence the amount of borrowing of strength and subsequent joint inferences. For this
purpose, empirical prior distributions may be most useful, such as those by Turner et al. and

Rhodes et al. (9, 10). The use of an inverse Gamma prior distribution is best avoided.

e The prior distribution for between-study correlation also needs to be chosen sensibly, as it
may have large influence toward the amount of borrowing of strength and joint inferences,
especially when the number of studies providing both outcomes is few and the between-study
variation is relatively small. A U(-1,1) prior distribution for pp is not always vague and thus
should not be routinely used without due thought, even when the number of studies is large

(say, 50) it can have an important influence when the true correlation is large.

e C(linical, biological or methodological rationale might provide external evidence to inform a
more realistically vague prior distribution for the between-study correlation. For example, a
U(0,1) prior distribution could be specified if only positive values are plausible, such as
prognostic effects that are partially and fully adjusted, or treatment effects on two highly

correlated outcomes like systolic and diastolic blood pressure. A U(-1,0) prior distribution
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might be specified if only negative values are plausible, for example for sensitivity and

specificity from multiple studies that use different thresholds.

Sensitivity analysis for the choice of prior distributions on between-study variances and
correlations may be needed, especially when external evidence to inform the prior
distributions is not available, borrowing of strength is potentially large (due to missing data),
and there is relatively small information from the likelihood to inform their posterior
distributions (for example, when the number of studies in the meta-analysis is small, and the

between-study variance is small relative to the within-study variances).
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Figure legends

Figure 1: Density plots for prior distributions for between-study correlation:

(a) pg ~ U(-1,1) (Option 1); (b) %log (Hﬁ) ~N(0, sd=0.4) (Option 2);

l-pg
(c) (pBZ—H) ~ Beta(1.5,1.5) (Option 3); (d) ps ~ U(0,1) (Option 4);

(e) logit(pg) ~ N(0, sd=0.8) (Option 5).

Figure 2: Posterior mean and 95% Crl for between-study correlation for various prior

distributions in the illustrative example.

Figure 3: Posterior median and 95% CrI for between-study variances and between-study

correlation for the two selected prior distributions for the between-study variances.

Figure 4: Posterior median and 95% CrI for between-study variance for fully-adjusted logHR

for various priors for between-study correlation.

Figure S1: Density plot for prior distribution for between-study correlation: %log (%) ~
B

N(0.47, sd=0.27).
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