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Abstract

Probabilistic conditions for lateral stability of bridges are proposed, based on output from the
inverted pendulum pedestrian model from the field of biomechanics. Statistical variations of the
parameters defining the model are studied based on real statistical data of the English population.
Variability of the self-excited forces is quantified for crowds of different velocities and critical
conditions are identified for bridge natural frequencies below 5Hz. Allowance is made for the
influence of the bridge mode shape and number of pedestrians in the crowd and their spatial
distribution. This allows realistic worst case conditions among different loading scenarios for a

particular structure to be found.

Keywords: bridges; human-structure interaction; biomechanics; inverted pendulum model; lateral

vibrations; dynamic instability

1. Introduction

The problem of pedestrian-induced lateral vibrations is especially pertinent to bridges, which,
due to the trend of building lighter and longer structures, have become increasingly vulnerable to
dynamic pedestrian loading. Among well documented cases of bridges susceptible to excessive lateral
vibrations are the London Millennium Footbridge (LMF) [1], the Singapore Airport’s Changi
Mezzanine Bridge (CMB) [2], the Clifton Suspension Bridge (CSB) [3] and the Pedro e Inés
Footbridge (PIF) [4]. The measured responses of these bridges to crowd actions are characterised by
divergent amplitude lateral vibrations which develop rapidly with a small increase in the number of
occupants, which cannot be explained considering pedestrian forces exerted on stationary ground
only, thus suggesting the existence of self-excited (or ‘motion-dependent’) forces arising from bi-
directional human-structure interaction. (Excessive vibrations of bridges due to pedestrian loading can
also occur in vertical direction (e.g. [5, 6]) and human-structure interaction is also likely to occur on

vertically oscillating ground [18], but this problem is outside of the scope of this paper.)
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The origin of the self-excited forces has most commonly been explained as the pedestrians
synchronising to the movement of the structure, adjusting the frequency and phase of their footsteps
in a manner to increase its motion (‘lock-in’), a phenomenon allegedly reinforced by interpersonal
synchronisation occurring unintentionally in crowds. However, many loading models based on these
propositions stand in direct contrast to some recent observations. Specifically, no evidence of
synchronisation was detected from measurements on the CMB [2] and CSB [3], yet rapid increases of
lateral displacement amplitudes were clearly observed. Interestingly, the measured responses of these
two bridges are compatible with the model based upon a linear relationship between the local velocity
of the deck and the lateral pedestrian force, derived by Arup from the tests on the LMF [1], although
the values of the pedestrian negative damping parameter (the coefficient of proportionality) differ in
each case. Moreover, a lack of synchronisation was found from the latest experimental campaign
aimed at measuring forces from pedestrians walking on a laterally oscillating instrumented treadmill
[7]. However, self-excited forces were identified, with the most important component centred at the
treadmill vibration frequency, which was generally different from the walking frequency. Therefore,
the model derived by Arup seems to be valid (although the nature of the underlying mechanism, at
least in the case of small amplitude vibrations, might have been misunderstood at the time), but it
requires further generalisation.

For that purpose a fundamental biomechanically-inspired inverted pendulum pedestrian
model (IPM) has been applied to study lateral pedestrian-structure interactions [8, 9]. In this model,
while supported on one leg, the pedestrian acts passively under the influence of gravity and any
acceleration of the supporting surface, which can be considered as an external perturbation. Lateral
balance is maintained by means of a foot placement control law at the transition from one foot to the
other (without assuming synchronisation of footstep timing to the bridge motion), whereby the foot is
placed further or less far out to the side on each step to stabilise the pedestrian’s lateral balance
depending on the their lateral velocity at the time it is placed (e.g. if falling too fast to the right, the
foot is placed further to the right). Experimental evidence was recently presented by Hof et al. [10]
showing this is the primary response to lateral perturbations while walking. Outputs of the IPM have
been found to be consistent with the measured lateral forces of pedestrians on stationary ground [8],
the self-excited forces identified from the laboratory tests by Ingolfsson et al. [7], and the
measurements on the LMF, CMB and CSB [9].

To put the findings from the IPM in the context of existing modelling approaches, formalised
design recommendations and other proposed models are briefly reviewed and some of their
shortcomings highlighted. Utilising real statistical data, the distributions of the parameters defining
the IPM are then analysed. Taking these into consideration, probabilistic dynamic stability criteria are
derived for a given number of pedestrians on a bridge, accounting for their spatial distribution with

relation to the mode shape.



76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

2. Existing design recommendations and modelling approaches

Elementary recommendations for the design of structures for the actions of pedestrians are
included in Eurocodes 0 and 5 [11, 12] and ISO 10137 [13], dealing with the evaluation of
serviceability against vibrations of walkways for human occupancy. All these standards propose some
design parameters expressed in terms of acceleration for lateral frequencies typically below 2.5Hz.
However, measurements on the CMB [2] and CSB [3] have revealed that quantifying the acceleration
alone may not capture the potential for instability, since when certain conditions are met the
acceleration amplitude can grow rapidly from very low levels. Eurocode 1 [14] acknowledges the
complex nature of pedestrian action and states that appropriate loading models and comfort criteria
may be defined in the National Annexes. In broad terms, a periodic force with a frequency range
between 0.5 and 1.5Hz is to be assumed in the lateral direction.

A lateral pedestrian load model is presented in the reports from two major European research
projects focusing on human-induced vibrations: Human Induced Vibrations of Steel Structures
(HIVOSS) [15] and Advanced Load Models for Synchronous Pedestrian Excitation and Optimised
Design Guidelines for Steel Footbridges (SYNPEX) [16]. However, this model ignores the influence
of the feedback from the movement of the structure on pedestrian behaviour and instead, for
calculation of the structural response, it suggests application of the first harmonic load contribution
only, characteristic of walking on stationary ground (0.04 fraction of body weight), and application of
an increased first harmonic load factor when synchronisation with the vibration occurs (0.055 or
0.075 fraction of body weight for acceleration amplitudes lower or higher than 0.5m/s’, respectively).
Synchronisation lies at the centre of the guidelines from the French Ministry of Transport and
Infrastructure (Sétra) [17]. An acceleration limit of 0.1m/s” is proposed, beyond which the probability
of synchronisation increases and large amplitude lateral vibrations can develop. However, the
negative damping model proposed by Arup is consistent with the data collected on the LMF, CMB
and CSB down to very low vibration levels, well below this proposed limit. (Synchronisation may
however occur for larger vibration amplitudes, which is beyond the scope of the current paper, which
deals only with the initiation of the lateral instability.) A number of other modelling approaches have
been proposed in which synchronisation and parametric resonance are employed as driving
mechanisms of lateral vibrations, which are reviewed in [18-22]. However, these models are often
based on uncertain forcing assumptions and parameters are often chosen to fit the data.

An alternative source of the additional self-excited forces was suggested by Barker [23] who
formulated a pedestrian model comprising a lumped mass, equal to the whole pedestrian body mass
(at the centre of mass, CoM), moving along the bridge in a straight line, from which the lateral forces
are derived by resolving its action through an inclined massless leg. He found that, without assuming
synchronisation, averaged over all possible phase angles, pedestrians put energy into the vibrating
bridge, even for pedestrian pacing frequencies different from the bridge frequency. The results from

this model, calibrated by the Arup model [1], constitute the basis of the recommendations in the UK
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National Annex to Eurocode 1 (UKNA) [24] for avoidance of unstable lateral responses due to crowd

loading [25], shown in Fig. 1.
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Fig. 1. Lateral stability boundary taken directly from UKNA (grey curve whose dashed part indicates uncertain
values). Also presented are the results from site measurements on four bridges: the LMF [1] (for frequency
range of 0.5-1Hz — black curve), CMB [2] (m), CSB [3] (® — unstable modes, o — stable modes) and PIF [4] (&),

and results of laboratory investigations [7] for amplitude of 4.5mm (x).

The stability boundary (grey curve) is defined in terms of the pedestrian mass damping parameter
(similar to the Pedestrian Scruton Number proposed by McRobie & Morgenthal [26] and equivalent
to half the Pedestrian Scruton Number adopted by Newland [27]) relating the modal mass of the

bridge, M, the modal mass of pedestrians, M,,, and the structural damping ratio, ¢:

D= M 1
=S5 M
where My, is defined as:
L
M, = f me?2ds ()
0

where m is the mass of pedestrians per unit length, L is the length of the bridge, ¢ is the lateral mode
shape and s is the distance along the bridge. To avoid dynamic instability in a given lateral vibration
mode, the pedestrian mass damping parameter for that mode, with the relevant pedestrian mass,
should lie above the stability boundary. For comparison, also presented are estimates of values on the
stability boundary from the LMF [1], for bridge natural frequencies of 0.5-1Hz, the CMB [2] and CSB
[3] (two unstable modes), derived for these three bridges through inverse dynamics (by identifying the

forces from the motion of the bridge and finding the constant of proportionality with the velocity).
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Also shown is a value on the stability boundary from the PIF [4], derived from crowd loading tests
which validated the critical number of people necessary for the onset of instability, N, as specified

by the formula established by Arup [1] for a uniform distribution of pedestrians:

AnifM L
cr — k L
J, P?ds

€)

where f,, is the natural frequency and k is the negative damping coefficient per pedestrian, taken as
300Ns/m as derived from tests on the LMF. Also shown in Fig. 1 are estimates of the stability
boundary from the latest experimental measurements from people walking at their preferred speed on
a laterally oscillating treadmill [7] (the effect of different walking speed was not investigated) and two
CSB stable points (open circles) which must lie above the actual stability boundary. All of the points
and curves shown from bridges and the treadmill, except for the two CSB stable points, are estimates
of the stability boundary itself. In all but one case (CMB) the UKNA design curve envelopes the
estimated stability boundary values from measurements, so it would seem reasonable. However, much
uncertainty remains.

According to the authors of the UKNA, reliable test measurements are available for
frequencies 0.5-1.1Hz [28], to which stability boundaries were calibrated (rather than derived directly
from the model). The extensions of the curve beyond this range are based upon Barker’s [23]
theoretical model of the response assuming crowded walking at the mean pacing frequency of 2Hz
and with the model parameters set to fit the experimental results obtained at Imperial College London
(to the best of the authors’ knowledge, unpublished), while taking half of the pedestrians to be
correlated with the bridge motion. Other limitations of the model include neglecting the effect of
motion of the pedestrian CoM induced by feedback from the bridge motion, the assumption that
pedestrians place their feet without regard to the current kinematics, at a constant lateral distance from
the vertical projection of the CoM at each step, and lack of consideration of a wider range of
pedestrian parameters and the effect of their distributions (including masses and leg lengths and in
particular walking frequencies, which decrease with crowd density). Moreover, since it assumes
constant bridge and pedestrian masses per unit length, the UKNA does not allow for inclusion of
variable traffic situations (e.g. different distributions of pedestrians on the bridge and their relation to
the mode shape) in the case of lateral vibrations. Clearly, the current recommendations have some
merit, but further improvements are necessary. This prompted an aspiration to redefine the stability
boundary based on findings from a more fundamental, biomechanically-inspired inverted pendulum
model of the pedestrian behaviour, which is a more rigorous and justified extension of Barker’s [23]
model.

A stochastic model for pedestrian lateral loading has been proposed by Ingdlfsson &
Georgakis [29] based on results from measurements of pedestrian forces on a laterally oscillating

instrumented treadmill [7]. In their model the magnitudes of the self-excited forces were presented as



175
176
177
178
179
180
181
182
183
184
185
186
187
188

189
190

191
192

193
194
195
196
197
198
199
200
201

202
203

204
205
206

functions of the ratio of the lateral vibration frequency, f; to the pedestrian lateral walking frequency,
fp- However, no evidence has been presented showing that the pedestrian self-excited forces are
dependent on this ratio but independent of its individual components which could justify such a
parametric simplification. Moreover the distribution of pedestrian walking frequencies, which was
found to greatly influence the critical number of pedestrians necessary for instability, was assumed
arbitrarily. Most importantly, in contrast to the stochastic load model of Ing6lfsson & Georgakis [29]
the probabilistic criteria proposed here do not require extensive computational effort for the
assessment of dynamic stability. Instead, simple formulae are given which can be quickly applied by

the designer.
3. Revised loading model — the Inverted Pendulum Model (IPM)
As in the model devised by Barker [23], the IPM consists of the CoM placed on top of a

massless rigid leg (Fig. 2). However, a number of improvements are introduced to account for the

main shortcomings of the former model.
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Fig. 2. Inverted pendulum pedestrian model (IPM) subjected to lateral bridge vibrations.

The IPM is built to mimic anthropomorphic properties of upright locomotion and is scaled to
preserve spatio-temporal parameters of human gait. It is commonly used in the field of biomechanics
[30] (but with stationary ground assumed). For simplicity, here it is restricted to the frontal plane (i.e.
the vertical plane perpendicular to the direction of progression). To truly capture the behaviour of a
pedestrian walking on an laterally oscillating bridge, the motion of the CoM due to the effects of
gravity and the acceleration of the bridge are considered, as are the equal and opposite lateral forces
on the CoM and bridge. The lateral force on the bridge, F;, is found using the Lagrange-d’Alembert

principle as (for detailed derivation of the model see Macdonald [8]):

FL=_mp(jé+y)=mp~Q;29(u_y) “4)

where m,, is the pedestrian mass, x is the displacement of the bridge, y and u are, respectively, the

displacement of the CoM and the position of foot placement relative to an arbitrary point on the
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bridge, Q, = m, where g denotes acceleration due to gravity and [ is the inverted pendulum
length, and dots over symbols represent the derivatives with respect to time. Sinusoidal motion of the
bridge is assumed in the analysis to define the self-excited forces on the bridge from the pedestrian, as
a function of bridge frequency.

A foot placement control law is adopted for the pedestrian to remain balanced, which is the
most efficient strategy for correcting postural instability in the presence of lateral perturbations [31].
In agreement with experimental findings of human gait, the pedestrian adjusts the width of each step
according to the state of the CoM at the time of foot placement, such that [32]:

In

Un = yr? + Q_ + (_1)nbmin (5
14

where subscript n represents the step number, superscript 0 denotes the value of a parameter at the
beginning of current step, and by, is a constant distance known as the margin of stability. The
applicability of the above formula in the presence of lateral perturbations has been recently confirmed
in an experimental study in which an external lateral impulse was applied to subjects walking on an
instrumented treadmill [10]. Some uncertainty remains in the way people perceive self-motion while
walking on moving ground. In the analysis an assumption was made that in this case sight provides
the most important sensory information, hence the relative velocity (with respect to the bridge) was
adopted in the foot placement control law (Eq. (5)) (see [8] and [9] for a discussion of this). The IPM
gives reasonable estimates of the lateral forces on the stationary ground with components at the lateral
walking frequency, f,,, and its odd harmonics. On laterally vibrating ground it is capable of producing
additional self-excited components of force, without having to synchronise to the ground motion.
These components appear as lines on both sides of the odd harmonics of the pedestrian lateral walking
frequency, f, (Fig. 3).

Instead of frequency and phase tuning, the pedestrian frequency is assumed to be unaffected
by the bridge motion which only causes step width adjustments. Importantly, this agrees with the
experimental results from tests in which subjects walked at their preferred speed on a laterally
oscillating treadmill [7]. It should be pointed out that a limitation of the experiments was that the
walking speed was selected initially for no lateral motion and was then fixed for all subsequent tests
with motion. It is therefore not proven how pedestrians may behave if instead able to adjust their
speed freely, which hence could involve changing their walking frequency. However, such a change is
more likely for larger vibration amplitudes, which are more perceptible, so for the small vibrations
relevant to the initial onset of the dynamic instability addressed in this paper, the assumption is
believed to be valid.

From the output of the model, the critical component of the force which is at the bridge
vibration frequency (f; Fig. 3 — thick line), can be divided into a component in phase with bridge

velocity and a component in phase with bridge acceleration. These components are found to be
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proportional to the bridge velocity and acceleration themselves, so they can be expressed as the
equivalent pedestrian added damping, AC (equivalent to —k), and equivalent pedestrian added mass,
AM, [8, 9] which can be easily included in the bridge equation of motion (Section 5). The self-excited
components of the interaction force from treadmill experiments have been treated similarly (but with

the opposite sign convention) by Ingoélfsson and co-workers [7, 29].
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Fig. 3. Fourier decomposition of the force derived from the IPM from a typical pedestrian (m, = 76.2kg, | =
1.153m) walking with lateral frequency of 0.6Hz in the presence of lateral ground motion with a frequency of

0.47Hz (i.e. approximately as for the first lateral mode of the central span of the LMF) and amplitude 2mm.

It was found previously by Macdonald [8] that the equivalent added damping and mass
derived from the IPM are strongly dependent on the bridge vibration frequency but are independent of
the amplitude of the bridge vibration and the margin of stability, by;,. Also they are directly
proportional to the pedestrian mass, m,. An extensive parametric study of the effects of the leg
length, pedestrian walking frequency and bridge vibration frequency on the equivalent added damping
and mass has been conducted [9]. The variation of AC and AM with bridge vibration frequency, for a
typical pedestrian walking at different frequencies, are presented in Fig. 4. Note these results are
expected averages over long walking time periods. Also presented in Fig. 4(a) are the results from site
measurements on the LMF [1], CMB [2] and CSB [3] which fall within the range of values predicted
by the IPM for low walking frequencies.
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Fig. 4. (a) Equivalent negative damping and (b) equivalent added mass per pedestrian for lateral walking
frequencies from 0.6Hz to 1.1Hz for a typical pedestrian (m, = 76.2kg, [ = 1.153m). Also presented in (a) are
the results from site measurements on three bridges: LMF (thick black line,[1]), CMB (+,[2]) and CSB (X,[3]).

The IPM is believed to be the only current model (other than Barker’s simpler version of it
[23]) that, when subjected to lateral ground motion, gives self-excited forces at the bridge vibration
frequency compatible with Arup’s negative damping model [1] without synchronisation of the
footsteps (as observed on the CMB and CSB). Furthermore, the results from the IPM are in very good
agreement with the measurements on full-scale bridges [9], which are available for bridge frequencies
in the range 0.5-1.0 Hz. They are also in line with the observation on the CSB that the frequencies of
the two excited lateral modes increased under the action of pedestrians, and it is the only current
model that can explain the simultaneous excitation of multiple lateral modes observed on the LMF
and CSB [9]. Furthermore, the results are in reasonable agreement with those from the tests of people
walking on a laterally oscillating instrumented treadmill [9], conducted by Ingdlfsson et al. for
treadmill frequencies in the range 0.33-1.07 Hz [7]. The advantage over Ingolfsson et al.’s [7]
empirical self-excited forces is the [IPM’s ability to explore parameter variations, such as the effect of

different walking frequencies, leg lengths and pedestrian masses. Therefore, the model was applied in
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a procedure that aimed to capture the variability of pedestrian loading in crowds and define
probabilistic stability criteria. Importantly, the proposed framework is not only valid for pedestrian
loading model derived from the IPM but can be easily applied with results obtained from any other

models or from experimental investigations.

4. Distribution of pedestrian parameters

In order to define probabilistic stability criteria some descriptive statistical measurements

relevant to the entire statistical population need to be known. Quantitative information of central
tendency and dispersion of data can be specified by mean and standard deviation, respectively.
Therefore, the purpose of the procedure outlined below was to estimate the mean and standard
deviation of the equivalent added damping and the mean of the equivalent added mass from individual
pedestrians. This was achieved by adopting the distribution of pedestrian parameter values defining
the IPM, corresponding to a representative sample of the English population aged 16 and over
obtained from the latest available UK National Health Service survey [33].
The individuals’ gender, mass and height records were extracted from the pool of data and filtered
according to the reliability parameter assigned for each category. This left approximately 12400
individual data records available for further processing (referred to hereafter as the statistical
population). Rather than extracting statistics of the data and using them for further analysis assuming
a certain distribution, the equivalent added damping and mass were estimated for each individual and
the results were analysed statistically. Thus the actual distributions of the parameters of the statistical
population, including their inter-dependence, and the non-linearity of their effect on the equivalent
added damping and mass were included in the results. To capture the parameters of the IPM
characteristic of typical crowds, the plausible velocities (or pedestrian densities, as these parameters
become correlated with densification of traffic) of the crowd also had to be established, since the
pedestrian damping was found to depend on pacing rate hence velocity as well as well as the basic
pedestrian parameters. The following procedure was adopted to satisfy these requirements.

The leg lengths of pedestrians were obtained from the relationships established (although not
given explicitly) for each gender by Pheasant [34]:

I, = 0.7028h — 0.3091 and I = 0.6797h — 0.2781 (6a,b)

where [, and [ are the leg length for males and females, respectively, h is the height, and the values
of all parameters are expressed in metres. The equivalent inverted pendulum lengths were then
calculated according to the formula adopted by Hof [35]: | = 1.34 X (leg length). The range of
plausible walking velocities considered in the study spanned between 0.5m/s and 1.7m/s. The lower
boundary was conservatively chosen considering a maximum density of approximately 2people/m’.
Although it can be easily imagined that in dense crowds pedestrians can advance at much lower

velocities, the mechanics of walking are in these cases often impaired and near-periodicity is lost due

10
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to the close proximity of other pedestrians. As a consequence, the duration of the double-support
phase of gait (the period when both legs are in contact with the ground) increases and the walkers
move in an unsteady manner. Velocities higher than 1.7m/s are also achievable, but they are
uncomfortable for walking in practice and at this point people often break into a jog [36]. The
individuals’ lateral walking frequencies in the plausible range of walking velocities were obtained
from the relationship established by Dean [37]:

0.5
fp = 1.3502—— (7)

where v is the forward velocity expressed in metres per second and h is the height expressed in
metres. For a fairly dense crowd in which all pedestrians are constrained to walk at the same velocity
Eq. (7) gives a distribution of lateral walking frequencies depending on the pedestrian height. The
applicability of this formula can be demonstrated by comparison with the results from measurements
of behaviour of 800 pedestrians walking on two footbridges by Pachi & Ji [38]. In that study it was
established that the average pedestrian frequency was 1.8Hz and the standard deviation was 0.11Hz
for average pedestrian velocity of 1.3m/s. For the same walking velocity, using data from more than
12400 representative individuals from the statistical population in conjunction with Eq. (7), the
calculated average walking frequency was found as 1.84Hz and the standard deviation as 0.11Hz.
Considering all walking velocities and all individuals from the statistical population, the pedestrian
lateral walking frequencies spanned between 0.47Hz and 1.28Hz.

The values of equivalent added damping and mass for each individual (using his/her height, leg length
and mass) at thirteen walking velocities (0.5m/s to 1.7m/s in 0.1m/s increments), for the bridge
vibration frequency range of 0.05Hz to SHz were obtained by interpolating from base curves similar
to those in Fig. 4, but normalised by pedestrian mass, for walking frequencies of 0.4Hz to 1.3Hz in
0.1Hz increments and leg lengths of 0.66m to 1.12m in 0.115m increments, distributed such as to
cover the whole range of this parameter established for the entire statistical population. (An
alternative method of finding the equivalent added mass and damping for each pedestrian would be to
use the recently derived analytical solution of the model [39], which yields almost identical results to
those from the adopted numerical method). The mean and standard deviation of all the individual
results for AC (critical for stability) and the mean of AM were then found (Uac, oac and pap,

respectively) at each combination of crowd velocity and bridge vibration frequency.
4.1 Equivalent added damping

The mean equivalent added damping for all thirteen crowd velocities is presented in Fig. 5(a).
To make it non-dimensional and for convenience for subsequent use it is normalised by 2w,
(giving fiac), where m, = 76.2kg is the average pedestrian mass of the statistical population and

wp = 2nfy. —fc 1s comparable with the pedestrian mass damping parameter (Fig. 1) (after

11
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accounting for the added mass effect (Section 5) and the number of pedestrians on the structure
(Section 6)). It can be seen that i, is very dependent on the crowd velocity, v, due to Eq. (7) and the
dependence of AC on f, (Fig. 4(a)). The maximum value of —fiy¢ in Fig. 5(a), at a given bridge
vibration frequency, corresponds to the most detrimental expected added damping for any speed of
crowd. For the values of the pedestrian mass damping parameter, D (Eq. (1)), in Fig. 1 from the four
bridges and the treadmill tests, the actual crowd velocity may not have been the most critical for the
relevant bridge frequency, so the given measured values are lower bounds of the worst case envelope.
If the crowd had a different speed, the damping contribution from the pedestrians could be more

detrimental (or beneficial).
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Fig. 5. (a) Normalised mean equivalent added damping from more than 12400 representative individuals of the
English population aged 16 and over, for walking velocities from 0.5m/s to 1.7m/s at 0.1m/s intervals, and (b)

corresponding normalised standard deviation of equivalent added damping.
It needs to be pointed out that uncertainties exist in the limiting pedestrian damping values for

bridge vibration frequencies below 0.5Hz. This is due to the lack of reliable data on pedestrian

balance adjustments on laterally oscillating ground for walking velocities below 0.5m/s and the

12



374
375
376
377
378
379
380
381
382
383
384
385
386
387
388

389
390

391
392
393
394
395
396
397
398
399
400
401

402
403

complexity of gait changes in these cases, previously discussed (Section 4). However, no reliable
measurements from bridges on which modes below approximately 0.5Hz have been excessively
excited due to crowd action have been reported to date.

The standard deviations of the equivalent added damping values from the statistical

population, o, for each crowd speed, normalised by the same factor as for ji,c, are presented in Fig.
5(b) (i.e. Gac)-

4.2 Equivalent added mass

The second component of the self-excited force, the equivalent added mass, needs to be
accounted for due to its potential effect of changing the natural frequency of the system which in turn
can cause a change in AC (see Section 5). The mean equivalent added mass of all individuals from the
statistical population normalised by the average pedestrian mass (M, = 76.2kg), for all considered

crowd velocities, is presented in Fig. (6) (i.e. fiap)-

051 b
;S& 0 /, —— ; —— e o =
3 "
<
I
=S 051 4
13?
-1F _
.15 I 1 1 1 L 1 L 1 L
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Bridge vibration frequency, fh [Hz]

Fig. 6. Normalised mean equivalent added mass from more than 12400 representative individuals of the English

population aged 16 and over, for walking velocities from 0.5m/s to 1.7m/s in 0.1m/s intervals.

5. Critical stability parameters

In the previous section statistical measures of the equivalent added damping and mass were
found for all individuals from the statistical population for different combinations of crowd velocity
and bridge vibration frequency. However, for each bridge vibration frequency only the critical crowd
velocity needs to be considered, but the added mass can shift the bridge vibration frequency, which
needs to be taken into account. To identify the critical conditions a mathematical expression
describing the interacting crowd-bridge system is first defined. Considering a single lateral mode of
the structure, assuming it to behave linearly, dynamically loaded by a crowd, the equation of motion

can be written as:
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Np Ny

M+ 2 AM(w,)d? | X +|C + 2 AC(wy)p? | X + KX = Fop )

i=1 i=1

where N,, is the number of pedestrians on the bridge, C and K are, respectively, the generalised
damping coefficient and stiffness corresponding to the structural mode, X is the generalised
displacement of the structural mode, AM; and AC; are the effective added mass and damping from the
i-th pedestrian, ¢; is the modal amplitude at the location of the i-th pedestrian and Fey; contains all
components of the pedestrian loading apart from that at the bridge vibration frequency (see Fig. 3). To
analyse the dynamic stability of the crowd-structure system only the self-excited forces at the bridge
vibration frequency are considered (Fey = 0) [9, 40]. If the total damping becomes negative, divergent
amplitude vibrations will develop. However, the added damping from the pedestrians is frequency-
dependant. The focus in this section is, therefore, on establishing the influence of the equivalent added
mass, included as the sum of contributions from all pedestrians on the bridge in the first brackets of
Eq. (8), on the equivalent added damping, included as the sum of contributions from all pedestrians on
the bridge in the second brackets of Eq. (8). This allows the mean and standard deviation of the
critical negative damping to be found which will be utilised in probabilistic stability criteria in Section
6.

5.1 Frequency shifts

The equivalent added mass can have the effect of modifying the natural frequency of the
crowd-bridge system. This is especially pronounced for high pedestrian to bridge mass ratios (q =
M,, /M), hence, most likely, for approximately uniformly distributed dense crowds. For bridges where
continuous dense crowds can be expected, the UKNA [24] suggests application of a vertical live load
of 5kN/m”. Taking an average pedestrian mass of my, = 76.2kg this corresponds to the static weight of
6.7 people/m’. Obviously, at this density walking is largely constrained, if not impossible, hence the
IPM is not applicable. However, keeping in mind that the maximum mass ratio observed among all
herein quoted bridges during lateral pedestrian-induced instability periods was approximately 0.23 [1]
(assuming uniform distribution of pedestrians on the bridge), a maximum value of 0.5 was chosen in
the analysis. For each pedestrian to bridge mass ratio from 0.1 to 0.5, in 0.1 increments, the ratios of
the expected angular response frequency (i.e. natural frequency of the combined pedestrian-bridge
system) to the angular natural frequency of the bridge itself, w, = 2nf, = \/K/_M , were found
(r = wp/wy,) at each considered crowd velocity, over the whole range of considered bridge vibration
frequencies. This was possible by considering the natural frequency and damping coefficient on the
stability boundary of the combined system in Eq. (8) (as in Newland [27] and Bocian et al. [9]).

Hence:
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wn = wpy 1+ figy (wp)gq
{ = —lac(wp)qr
where iz is the normalised mean equivalent added mass presented in Fig. 6. Note, from Eq. (10) it

follows that for small mass ratios (r = 1) the expected pedestrian mass damping parameter D (Eq. (1))

is equivalent to —fi,. from Fig. 5(a), with f, = f,,.

1.9 T T T T T T T T T

1.8 F n q rmin rmu,\' T
- 1.7F K 0.1 =
SR TK 0.2 —
N 0.3 —
= —0—
2
g —-
)
g
=
g
)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Bridge natural frequency, 7:1 [Hz]

Fig. 7. The envelopes of maxima (black curves) and minima (grey curves) of response frequency to structural
natural frequency ratios (r) based on mean equivalent added mass, for pedestrian to structure mass ratios (q)

from 0.1 to 0.5.

The envelopes of minima, 1y,;,,, and maxima, 7;,,,, of the frequency ratio r established for
each mass ratio, for any crowd velocity, are presented in Fig. 7. These do not generally correspond
with critical conditions for dynamic instability, but they show the possible ranges of natural frequency
shifts of the system in the presence of the pedestrians. It can be seen that large mass ratios cause non-
linear shifts in the vibration frequency of the structure which can either become lower or higher (e.g.
as identified on the CSB [3]) than the structure’s inherent natural frequency, depending mainly on the
crowd velocity. For the maximum mass ratio of 0.23 [1] mentioned above, the expected change in

vibration frequency does not exceed 21%.

5.2 Critical negative damping

Having found relationships between the response and natural frequencies for all combinations
of considered walking speeds, v, and mass ratios, g, from Eq. (9), it is possible to define the
normalised critical mean negative added damping and its standard deviation, as a function of the
structural natural frequency, using Eq. (10). Since different walking velocities may determine the
critical mean equivalent added damping at different bridge vibration frequencies, the maximum

detrimental —ji,; was found for each bridge natural frequency and then the corresponding standard
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deviation, o,¢, was identified. The critical —fisc for different mass ratios is presented in Fig. 8(a). It
can be seen that increasing the mass ratio widens the frequency range for which detrimental
pedestrian damping can be expected and, in general, increases the magnitude of —fix. for f,, below
1.4Hz. For f,, above 1.4Hz the differences between the values of critical —fi,. for different mass
ratios are negligible and they can be approximated by the same curve. In the derivation of the results
in Fig. 8(a) using Eqgs. (9) and (10), only the mean value of AM was considered and not its statistical
variation. To allow for this and for the range of mass ratios likely in practice, from Fig. 8(a) an
empirical envelope of —fi,. for a mass ratio of 0.5 is proposed for subsequent use as follows (with f;,

expressed in Hz):

( _ﬁAC(fn)
! _ —0.3297f; + 1.149f,} — 0.8517f;2 — 0.8094f,7 + 1.1f,, — 0.1937 for 0.21Hz< f, < 1.4Hz

£3 —2.121f2 + 1.393f, — 0.1063

—firc(fp) = 0.48e708%/n for f, >1.4Hz.

The normalised standard deviation of the equivalent added damping, 6, corresponding to the crowd
velocity giving the critical value of —fi,., for each bridge frequency and mass ratio, is presented in
Fig. 8(b). Note the discrete values of 6 in Fig. 7(b) do not give smooth curves, which is caused by
the critical —fi,. (and corresponding fia,,) falling on different walking velocity curves and the related
different frequency shifts (Egs. (9) and (10); see Section 5.1). Also shown in Fig. 8(b) is a fitted curve

that envelopes the empirical points, given by (with f,, in Hz):

Gac(fn) = —0.83£,2 + 0.79f, for 0.21Hz < f,, <0.56Hz

~ =027 -1.83f, (12)
(O)-Alcz(flz).an € + for f,>0.56Hz.

The fitted 6z usually overestimates the magnitude of 6. derived empirically, thus exaggerating the
dispersion of the data, which can be considered as a conservative measure when defining probabilistic

stability criteria.
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Fig. 8. (a) Critical —fi . for different mass ratios after making allowance for the added mass effect, and (b)
normalised standard deviation corresponding to the critical equivalent added damping for the same mass ratios,

plotted against bridge natural frequency.

6. Probabilistic stability criteria for crowds of pedestrians distributed over a structure

In the above section the normalised mean and standard deviation (Fig. 8(a) & (b),
respectively) of the equivalent added damping (critical for stability and accounting for the added mass
effect) were established for individual pedestrians from the statistical population. In this section the
sum of the effects from any number of pedestrians on the bridge (N,) is considered making provisions
for the variability of their parameters and their distribution with relation to the bridge mode shape. As
N, increases, obviously the expected total pedestrian damping increases in magnitude, but the relative
spread of the results decreases. It is useful to bear in mind that not all combinations of N, and the
critical value of —fiyc may be realistic for a particular bridge. For example, high walking velocities
which might define the critical —fi,¢ in some bridge frequency ranges might not be achievable if the

traffic becomes too dense. The proposed probabilistic stability conditions address a uniform
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distribution of pedestrians, a random distribution of pedestrians and a distribution where all
pedestrians are at the maximum of the mode shape. The first case is applicable to structures where
high density pedestrian traffic is expected. The second case is more conservative for the same number
of pedestrians, but it is applicable for less dense crowds, and the third case is the most conservative
distribution of pedestrians possible, but it is not realistic for large crowds.

For dynamic stability, it must be satisfied that the total damping is positive, i.e.:

Np

C+ Y ACi(wp)p? > 0. (13)
2

By recalling that the damping ratio is defined as { = C/(2Mwy,), Eq. (13) can be rewritten as:

— 3., AC(w) B (14)

M >
( 2(1)b

The numerator of the expression on the right side of the inequality in Eq. (14) is the weighted sum of
damping contributions from all pedestrians on the bridge. Considering the random nature of the

pedestrian parameters, the probabilistic stability condition is:

M > — !_E ZAC (wp)p? |+ ZQO-ZNP ACi(wp)dF o

where E[e] denotes the expected value of an arbitrary random variable ¢, g, is the standard deviation
of ¢, and z, is the parameter corresponding to the 100(1 — a) percent one-sided upper confidence
interval of the normal distribution.

The assumption of the applicability of the normal distribution is made on the basis of the
central limit theorem, stating that the mean (or sum) of a random sample drawn from a population
with any distribution, provided this distribution has finite variance, is approximately distributed as a
normal random variable [41]. Note the confidence limit is defined for a random sample of N,
pedestrians on the bridge at any one time. People will move on and off the bridge so the sample is
continuously changing. Hence for long duration events, the confidence limit will be exceeded for a
proportion a of the time. Therefore @ needs to be made sufficiently small so that the confidence limit
is expected to be exceeded for too little time for vibrations to build up appreciably. Also note that the
“external forcing” component of loading (Fuy; in Eq. (8)) can put energy into bridge (or take it out)
over short periods, which can have a similar short term effect as negative (or positive) damping (but

in long term it averages out). Ingo6lfsson et al. [7] had very large scatter of measured added damping
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values, especially for f,, = f;,, probably due to this effect, based on measurements records of 30
seconds duration.
The standard deviations in the following mathematical expressions defining the probabilistic

stability criteria were obtained by considering the distribution of the variance, o2

ol = E[(s —E[D?]. (16)

For known positions of pedestrians, given that AC; and ¢; are independent, it can be shown

that Eq. (15) can be expressed as:

1 Np o No o,
M>geiome ) " Btz | )" o1 (17
i=

This holds for all possible distributions of pedestrians and all possible mode shapes. The summations
for discrete pedestrian positions can be approximated by integrals for an equivalent continuous
distribution.

Hereafter parameters @; are introduced for brevity, denoting non-dimensional integrals of the j-th

power of the mode shape:

1t
Q; = Zfo ¢’ds. (18)

These can be evaluated for any known mode shape, but for sinusoidal mode shapes defined as:

amns
¢ = sin T, (1 9)

where a is the number of half sine waves, for any integer a:

3
0, = and Oy =3 (20a,b)

6.1. Uniform distribution of pedestrians

For a uniform distribution of pedestrians, Eq. (17) becomes:

M

1
> —fize + 2,00 ——/ D
Bac + Za0ac (DZ\/N—p\/ 4 (21)

Pnom
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where the nominal modal mass of pedestrians can be taken as:

M

Pnom

= N, i, @, . (22)

It is noteworthy that for uniformly distributed mass of the bridge, M =m,L®, where m, is the bridge
mass per unit length, so in Eq. (21) M/M,  is independent of the mode shape and is simply equal to
the ratio of the physical bridge mass to nominal physical pedestrian mass (per unit length or total).
Then the only dependence on the mode shape is through ®, and ®, on the right hand side of the
equation.

Using the mean term (—fiz¢) only, Eq. (21) is equivalent to Eq. (3), but here allowance is made for the
added mass effect and —fiyc (equivalent to k in Eq. (3)) is given as a function of bridge frequency
over a wider range (Fig. 8(a) and Eq. (11)). In addition, the variability of pedestrian parameters is
allowed for with the standard deviation term (G¢, Fig. 8(b) and Eq. (12)), with a chosen confidence
interval, given by z,,.

For sinusoidal mode shapes Eq. (21) becomes:

(M B B 3
M, > —[ac T ZgO0nc m (23)

and

M

Pnom

= N, i, /2. (24)

6.2. Random distribution of pedestrians

For a random distribution of pedestrians, in Eq. (15) ¢; (the mode shape amplitude at the
position of each pedestrian) is a random variable, as well as AC;. For a uniform probability

distribution function for the pedestrians’ positions along the bridge, Eq. (17) becomes:

M
M

Pnom

~ le ~2 ~2 2
> —fipc + —\/GAC(I)4 + i3 (04 — @3). (25)
o, /N,

Note that here M,  is still the deterministic nominal modal mass of pedestrians, as defined in Eq.
(22) for a uniform distribution, rather than the actual modal mass which is a random variable
depending on the actual distribution of pedestrians.

For sinusoidal mode shapes, Eq. (25) becomes:
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M

1
> ~fisc + % JW (B +35%) 26)
p

Pnom

Comparing Eqs. (25) & (26) with Egs. (21) & (23), clearly the expected damping demand for
uniformly and randomly distributed pedestrians is the same, but for a random pedestrian distribution it

has higher variance.
6.3. All pedestrians at the maximum of the mode shape

The worst possible distribution of pedestrians is when all of them are positioned at the
maximum antinode of the mode shape (or antinodes, if there are more than one with equal magnitude)
so all their damping contributions have maximum weighting, given by 2., where ¢4, is the
maximum amplitude of the mode shape. Often ¢4, is normalised to unity, but most importantly it
has to be consistent with scale of the mode shape in M and @,. This scenario is only realistic for small

crowds. In this case Eq. (17) becomes:

5 5 1
<—#Ac + Za0ac —> - (27)

A

M S Prrax
M D,

Pnom

Again, for consistency of presentation, M,, s still the nominal modal mass of pedestrians defined
in Eq. (22) (based on a uniform distribution), rather than the actual modal mass of pedestrians which
in this case is somewhat larger. From Eq. (27), for sinusoidal mode shapes, the distribution of
pedestrians such that all of them are at the maximum antinode causes a mean damping demand twice
as large and a standard deviation of damping demand m times as large as in the case of the same

number of pedestrians uniformly distributed.
6.4. Example application

To quantify the effects of the statistical variations studied in this paper for a typical bridge, an
example is considered of a bridge having a sinusoidal mode shape, occupied by a maximum of 100
pedestrians. Stability boundaries are found for a serviceability limit state confidence limit of 99%
(Zg.01 = 2.326). The proposed pedestrian mass damping parameter values required for stability, for the
three different pedestrian distributions considered, are presented in Fig. 9 from Egs. (23), (26) and
(27) and using the envelope curves for —finc (Eq. (11)) and 6a¢c (Eq. (12)). For comparison the
corresponding recommendations from the UKNA [24] are also included. Note the pedestrian mass
damping parameter is expressed here as a function of the nominal pedestrian mass, M, . from Eq.

(22) and not the actual pedestrian mass, M,,, from Eq. (2). Hence for a sinusoidal mode shape and
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with all the pedestrians at the antinode(s), the values of D (Eq. (1)) from the UKNA [24] need to be
doubled. The values of pedestrian mass damping parameters for 50% (mean) and 99% confidence

limits are denoted D5 and Dgyq, respectively.
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Fig. 9. Proposed values of the pedestrian mass damping parameter required for stability for 50% (mean, Ds)
and 99% (Dgg) confidence limits for uniform and random pedestrian distributions, and a distribution where all
pedestrians are located at the maximum of the mode shape, with corresponding recommendations from the

UKNA [24], for a bridge with a sinusoidal mode shape occupied by 100 pedestrians.

As expected, the most lenient criterion is found for the uniform distribution. A more onerous criterion
needs to be met for a random distribution of pedestrians. In the case of all pedestrians concentrated at
the maximum of the mode shape, the values of the pedestrian mass damping parameter lie
considerably above these from the other two cases. However, if the considered bridge were such that
the presence of 100 pedestrians represented dense traffic conditions, it is likely a lower number of
pedestrians could be physically accommodated at the maximum antinode(s).

Applying the 99% confidence limit causes increases in the required pedestrian mass damping
parameter which are at least 6%, 18% and 5% larger than the corresponding Ds, for the uniform,
random and maximum antinode distributions, respectively. The recommendations from the UKNA
[24] are typically less onerous except for frequencies below approximately 0.55Hz, for which the
UKNA pedestrian mass damping parameter curve was defined based on uncertain assumptions (see
Section 2). Also the UKNA [24] suggests that the lateral loading from a crowd of walking pedestrians
does not need to be considered for structures with lateral natural frequencies above approximately
1.7Hz. In contrast, the IPM predicts that this limit is closer to SHz and that pedestrian mass damping
parameter below this value can be significant. Regrettably there are no suitable data quantifying
pedestrian loading currently available for vibration frequencies above approximately 1.1Hz which
could help in verification of the predictions of the IPM. It is noteworthy that this renders the stability
conditions proposed by UKNA above this limit equally uncertain. Further empirical data would be

beneficial to close this gap. The proposed stability criteria are more onerous than the UKNA since
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they allow for the most critical walking velocity for each bridge frequency and the statistical variation
of pedestrian parameters, as well as being based on a more rigorous underlying pedestrian model.

For a larger number of pedestrians on the bridge the relative spread of the equivalent added
damping from all the pedestrians would be smaller, therefore D99 would be closer to the
corresponding Dso (from Egs. (21), (25) and (27)). Conversely, a smaller number of pedestrians
would allow more adverse effect from the statistical variation and would require relatively more
restrictive stability criteria.

For real bridges the mode shapes are not necessarily sinusoidal although they may have a
similar form. Egs. (17), (21), (25) and (27) are applicable for any lateral mode of any bridge, with @,
and @, given by Eq. (18). To give an indication of the effect of the mode shape on the results, values
have been calculated for the first four lateral modes of the Clifton Suspension Bridge, as measured on
site and reported by Macdonald [3]. The values of @, are 0.693, 0.468, 0.499 and 0.477 and of @, are
0.537, 0.354, 0.387 and 0.343 for each mode, c.f. 0.5 and 0.375 respectively for sinusoidal modes.
The mode shape makes no difference to the mean values of pedestrian mass damping parameters in
any case, but the statistical variation of the results is affected. Relative to the results for sinusoidal
mode shapes, still for 100 pedestrians on the bridge, the 99% confidence limits are modified by -3.2%
to +0.3% for a uniform pedestrian distribution, -5.3% to +1.5% for a random pedestrian distribution
and -28% to +6.7% for all pedestrians at the maximum antinode. Hence, apart from the case of all
pedestrians at the maximum antinode, it seems that the probabilistic stability criteria are not very
sensitive to the mode shape. The effect of the number of pedestrians is always to reduce the spread of
the equivalent added damping by a factor of \/pr .

7. Conclusions

In this paper probabilistic stability criteria for structures subjected to lateral crowd actions
have been presented, based on analysis of the inverted pendulum pedestrian model from the field of
biomechanics. The model is capable of providing self-excited forces on bridges, which can be
quantified as equivalent added damping (sometimes negative) and mass to the bridge and is consistent
with measurements both on full-scale bridges and in laboratory tests. The model shows high
dependence on the bridge and pedestrian frequencies, so these parameters have both been varied in
the analysis. In the derivation of the stability criteria real statistical data from the English population
have been utilised to obtain distributions of pedestrian parameters defining the model. The variability
of the self-excited forces in the plausible range of crowd velocities has been quantified through
statistical measures and the worst conditions identified for structural frequencies in the range 0.05Hz
to SHz. The analysis has accounted for the most critical crowd velocity for each bridge frequency and
the effective added mass from the crowd, which can modify the vibration frequency and hence
broaden the instability region. Hence envelopes of the mean and standard deviation of the equivalent

added damping per pedestrian, as a function of bridge natural frequency, have been determined.

23



694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731

Considering the total effect of a crowd of pedestrians the probabilistic stability criterion has
been defined in general, for any distribution of pedestrians and any mode shape. It has then been
developed for three different traffic situations, which could determine the structural damping
requirements in these different cases, namely uniform, random and concentrated (at the most onerous
position) distributions of pedestrians. The influence of the number of pedestrians occupying the
structure has also been addressed in that for larger crowds the effect of the statistical variability
reduces, relatively speaking. The analysis allows for the effect of the bridge mode shape, although it
has been found that the results are generally not very sensitive to it. The final results are presented in
terms of the minimum mass damping parameter of the structure required to prevent lateral dynamic
instability of the bridge with a certain confidence limit, as a function of bridge natural frequency. The
resulting criteria are similar to but slightly more onerous than the UKNA [24] for bridge frequencies
above approximately 0.5Hz, since they allow for the most critical walking velocity for each bridge
frequency and the statistical variation of pedestrian parameters.

The proposed stability criteria come from the output of the presented fundamental
biomechanical pedestrian model rather than from empirically fitting model parameters to the limited
number of measured bridge responses. Although the utilised statistical data are specific to the English
population, the outlined procedure could be readily applied with any other relevant distributions of
pedestrian parameters. Furthermore, any advancement in the determination of the pedestrian loads on
laterally oscillating structures can be easily incorporated within the proposed probabilistic framework
to further refine the stability criteria. Therefore the outcome of this study is believed to represent a
step forward towards improvement of the existing recommendations concerned with the design of

structures against the destabilising lateral walking forces from crowds.
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