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Abstract 10 

 11 

Probabilistic conditions for lateral stability of bridges are proposed, based on output from the 12 

inverted pendulum pedestrian model from the field of biomechanics. Statistical variations of the 13 

parameters defining the model are studied based on real statistical data of the English population. 14 

Variability of the self-excited forces is quantified for crowds of different velocities and critical 15 

conditions are identified for bridge natural frequencies below 5Hz. Allowance is made for the 16 

influence of the bridge mode shape and number of pedestrians in the crowd and their spatial 17 

distribution. This allows realistic worst case conditions among different loading scenarios for a 18 

particular structure to be found. 19 

 20 
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1. Introduction 25 

The problem of pedestrian-induced lateral vibrations is especially pertinent to bridges, which, 26 

due to the trend of building lighter and longer structures, have become increasingly vulnerable to 27 

dynamic pedestrian loading. Among well documented cases of bridges susceptible to excessive lateral 28 

vibrations are the London Millennium Footbridge (LMF) [1], the Singapore Airport’s Changi 29 

Mezzanine Bridge (CMB) [2], the Clifton Suspension Bridge (CSB) [3] and the Pedro e Inês 30 

Footbridge (PIF) [4]. The measured responses of these bridges to crowd actions are characterised by 31 

divergent amplitude lateral vibrations which develop rapidly with a small increase in the number of 32 

occupants, which cannot be explained considering pedestrian forces exerted on stationary ground 33 

only, thus suggesting the existence of self-excited (or ‘motion-dependent’) forces arising from bi-34 

directional human-structure interaction. (Excessive vibrations of bridges due to pedestrian loading can 35 

also occur in vertical direction (e.g. [5, 6]) and human-structure interaction is also likely to occur on 36 

vertically oscillating ground [18], but this problem is outside of the scope of this paper.) 37 
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The origin of the self-excited forces has most commonly been explained as the pedestrians 38 

synchronising to the movement of the structure, adjusting the frequency and phase of their footsteps 39 

in a manner to increase its motion (‘lock-in’), a phenomenon allegedly reinforced by interpersonal 40 

synchronisation occurring unintentionally in crowds. However, many loading models based on these 41 

propositions stand in direct contrast to some recent observations. Specifically, no evidence of 42 

synchronisation was detected from measurements on the CMB [2] and CSB [3], yet rapid increases of 43 

lateral displacement amplitudes were clearly observed. Interestingly, the measured responses of these 44 

two bridges are compatible with the model based upon a linear relationship between the local velocity 45 

of the deck and the lateral pedestrian force, derived by Arup from the tests on the LMF [1], although 46 

the values of the pedestrian negative damping parameter (the coefficient of proportionality) differ in 47 

each case. Moreover, a lack of synchronisation was found from the latest experimental campaign 48 

aimed at measuring forces from pedestrians walking on a laterally oscillating instrumented treadmill 49 

[7]. However, self-excited forces were identified, with the most important component centred at the 50 

treadmill vibration frequency, which was generally different from the walking frequency. Therefore, 51 

the model derived by Arup seems to be valid (although the nature of the underlying mechanism, at 52 

least in the case of small amplitude vibrations, might have been misunderstood at the time), but it 53 

requires further generalisation. 54 

For that purpose a fundamental biomechanically-inspired inverted pendulum pedestrian 55 

model (IPM) has been applied to study lateral pedestrian-structure interactions [8, 9]. In this model, 56 

while supported on one leg, the pedestrian acts passively under the influence of gravity and any 57 

acceleration of the supporting surface, which can be considered as an external perturbation. Lateral 58 

balance is maintained by means of a foot placement control law at the transition from one foot to the 59 

other (without assuming synchronisation of footstep timing to the bridge motion), whereby the foot is 60 

placed further or less far out to the side on each step to stabilise the pedestrian’s lateral balance 61 

depending on the their lateral velocity at the time it is placed (e.g. if falling too fast to the right, the 62 

foot is placed further to the right). Experimental evidence was recently presented by Hof et al. [10] 63 

showing this is the primary response to lateral perturbations while walking. Outputs of the IPM have 64 

been found to be consistent with the measured lateral forces of pedestrians on stationary ground [8], 65 

the self-excited forces identified from the laboratory tests by Ingólfsson et al. [7], and the 66 

measurements on the LMF, CMB and CSB [9]. 67 

To put the findings from the IPM in the context of existing modelling approaches, formalised 68 

design recommendations and other proposed models are briefly reviewed and some of their 69 

shortcomings highlighted. Utilising real statistical data, the distributions of the parameters defining 70 

the IPM are then analysed. Taking these into consideration, probabilistic dynamic stability criteria are 71 

derived for a given number of pedestrians on a bridge, accounting for their spatial distribution with 72 

relation to the mode shape. 73 

 74 

 75 
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2. Existing design recommendations and modelling approaches 76 

 77 

Elementary recommendations for the design of structures for the actions of pedestrians are 78 

included in Eurocodes 0 and 5 [11, 12] and ISO 10137 [13], dealing with the evaluation of 79 

serviceability against vibrations of walkways for human occupancy. All these standards propose some 80 

design parameters expressed in terms of acceleration for lateral frequencies typically below 2.5Hz. 81 

However, measurements on the CMB [2] and CSB [3] have revealed that quantifying the acceleration 82 

alone may not capture the potential for instability, since when certain conditions are met the 83 

acceleration amplitude can grow rapidly from very low levels. Eurocode 1 [14] acknowledges the 84 

complex nature of pedestrian action and states that appropriate loading models and comfort criteria 85 

may be defined in the National Annexes. In broad terms, a periodic force with a frequency range 86 

between 0.5 and 1.5Hz is to be assumed in the lateral direction.  87 

 A lateral pedestrian load model is presented in the reports from two major European research 88 

projects focusing on human-induced vibrations: Human Induced Vibrations of Steel Structures 89 

(HIVOSS) [15] and Advanced Load Models for Synchronous Pedestrian Excitation and Optimised 90 

Design Guidelines for Steel Footbridges (SYNPEX) [16]. However, this model ignores the influence 91 

of the feedback from the movement of the structure on pedestrian behaviour and instead, for 92 

calculation of the structural response, it suggests application of the first harmonic load contribution 93 

only, characteristic of walking on stationary ground (0.04 fraction of body weight), and application of 94 

an increased first harmonic load factor when synchronisation with the vibration occurs (0.055 or 95 

0.075 fraction of body weight for acceleration amplitudes lower or higher than 0.5m/s2, respectively). 96 

Synchronisation lies at the centre of the guidelines from the French Ministry of Transport and 97 

Infrastructure (Sétra) [17]. An acceleration limit of 0.1m/s2 is proposed, beyond which the probability 98 

of synchronisation increases and large amplitude lateral vibrations can develop. However, the 99 

negative damping model proposed by Arup is consistent with the data collected on the LMF, CMB 100 

and CSB down to very low vibration levels, well below this proposed limit. (Synchronisation may 101 

however occur for larger vibration amplitudes, which is beyond the scope of the current paper, which 102 

deals only with the initiation of the lateral instability.) A number of other modelling approaches have 103 

been proposed in which synchronisation and parametric resonance are employed as driving 104 

mechanisms of lateral vibrations, which are reviewed in [18-22]. However, these models are often 105 

based on uncertain forcing assumptions and parameters are often chosen to fit the data. 106 

An alternative source of the additional self-excited forces was suggested by Barker [23] who 107 

formulated a pedestrian model comprising a lumped mass, equal to the whole pedestrian body mass 108 

(at the centre of mass, CoM), moving along the bridge in a straight line, from which the lateral forces 109 

are derived by resolving its action through an inclined massless leg. He found that, without assuming 110 

synchronisation, averaged over all possible phase angles, pedestrians put energy into the vibrating 111 

bridge, even for pedestrian pacing frequencies different from the bridge frequency. The results from 112 

this model, calibrated by the Arup model [1], constitute the basis of the recommendations in the UK 113 
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National Annex to Eurocode 1 (UKNA) [24] for avoidance of unstable lateral responses due to crowd 114 

loading [25], shown in Fig. 1. 115 
 116 

 117 
Fig. 1. Lateral stability boundary taken directly from UKNA (grey curve whose dashed part indicates uncertain 118 

values). Also presented are the results from site measurements on four bridges: the LMF [1] (for frequency 119 

range of 0.5-1Hz – black curve), CMB [2] (■), CSB [3] (● – unstable modes, ○ – stable modes) and PIF [4] (▲), 120 

and results of laboratory investigations [7] for amplitude of 4.5mm (×). 121 

 122 

The stability boundary (grey curve) is defined in terms of the pedestrian mass damping parameter 123 

(similar to the Pedestrian Scruton Number proposed by McRobie & Morgenthal [26] and equivalent 124 

to half the Pedestrian Scruton Number adopted by Newland [27]) relating the modal mass of the 125 

bridge, 𝑀, the modal mass of pedestrians, 𝑀𝑝, and the structural damping ratio, 𝜁: 126 

 127 

𝐷 = 𝜁
𝑀
𝑀𝑝

 (1) 

 128 

where 𝑀𝑝 is defined as: 129 
 130 

𝑀𝑝 =  � 𝑚𝜙2d𝑠
𝐿

0
 (2) 

 131 

where 𝑚 is the mass of pedestrians per unit length, 𝐿 is the length of the bridge, 𝜙 is the lateral mode 132 

shape and 𝑠 is the distance along the bridge. To avoid dynamic instability in a given lateral vibration 133 

mode, the pedestrian mass damping parameter for that mode, with the relevant pedestrian mass, 134 

should lie above the stability boundary. For comparison, also presented are estimates of values on the 135 

stability boundary from the LMF [1], for bridge natural frequencies of 0.5-1Hz, the CMB [2] and CSB 136 

[3] (two unstable modes), derived for these three bridges through inverse dynamics (by identifying the 137 

forces from the motion of the bridge and finding the constant of proportionality with the velocity). 138 
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Also shown is a value on the stability boundary from the PIF [4], derived from crowd loading tests 139 

which validated the critical number of people necessary for the onset of instability, 𝑁cr, as specified 140 

by the formula established by Arup [1] for a uniform distribution of pedestrians: 141 

 142 

𝑁cr =
4𝜋𝜋𝑓𝑛𝑀

𝑘
𝐿

∫ 𝜙2d𝑠𝐿
0

 (3) 

 143 

where 𝑓𝑛 is the natural frequency and 𝑘 is the negative damping coefficient per pedestrian, taken as 144 

300Ns/m as derived from tests on the LMF. Also shown in Fig. 1 are estimates of the stability 145 

boundary from the latest experimental measurements from people walking at their preferred speed on 146 

a laterally oscillating treadmill [7] (the effect of different walking speed was not investigated) and two 147 

CSB stable points (open circles) which must lie above the actual stability boundary. All of the points 148 

and curves shown from bridges and the treadmill, except for the two CSB stable points, are estimates 149 

of the stability boundary itself. In all but one case (CMB) the UKNA design curve envelopes the 150 

estimated stability boundary values from measurements, so it would seem reasonable. However, much 151 

uncertainty remains. 152 

According to the authors of the UKNA, reliable test measurements are available for 153 

frequencies 0.5-1.1Hz [28], to which stability boundaries were calibrated (rather than derived directly 154 

from the model). The extensions of the curve beyond this range are based upon Barker’s [23] 155 

theoretical model of the response assuming crowded walking at the mean pacing frequency of 2Hz 156 

and with the model parameters set to fit the experimental results obtained at Imperial College London 157 

(to the best of the authors’ knowledge, unpublished), while taking half of the pedestrians to be 158 

correlated with the bridge motion. Other limitations of the model include neglecting the effect of 159 

motion of the pedestrian CoM induced by feedback from the bridge motion, the assumption that 160 

pedestrians place their feet without regard to the current kinematics, at a constant lateral distance from 161 

the vertical projection of the CoM at each step, and lack of consideration of a wider range of 162 

pedestrian parameters and the effect of their distributions (including masses and leg lengths and in 163 

particular walking frequencies, which decrease with crowd density). Moreover, since it assumes 164 

constant bridge and pedestrian masses per unit length, the UKNA does not allow for inclusion of 165 

variable traffic situations (e.g. different distributions of pedestrians on the bridge and their relation to 166 

the mode shape) in the case of lateral vibrations. Clearly, the current recommendations have some 167 

merit, but further improvements are necessary. This prompted an aspiration to redefine the stability 168 

boundary based on findings from a more fundamental, biomechanically-inspired inverted pendulum 169 

model of the pedestrian behaviour, which is a more rigorous and justified extension of Barker’s [23] 170 

model. 171 

A stochastic model for pedestrian lateral loading has been proposed by Ingólfsson & 172 

Georgakis [29] based on results from measurements of pedestrian forces on a laterally oscillating 173 

instrumented treadmill [7]. In their model the magnitudes of the self-excited forces were presented as 174 
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functions of the ratio of the lateral vibration frequency, 𝑓𝑏 to the pedestrian lateral walking frequency, 175 

𝑓𝑝. However, no evidence has been presented showing that the pedestrian self-excited forces are 176 

dependent on this ratio but independent of its individual components which could justify such a 177 

parametric simplification. Moreover the distribution of pedestrian walking frequencies, which was 178 

found to greatly influence the critical number of pedestrians necessary for instability, was assumed 179 

arbitrarily. Most importantly, in contrast to the stochastic load model of Ingólfsson & Georgakis [29] 180 

the probabilistic criteria proposed here do not require extensive computational effort for the 181 

assessment of dynamic stability. Instead, simple formulae are given which can be quickly applied by 182 

the designer. 183 

  184 

3. Revised loading model – the Inverted Pendulum Model (IPM) 185 

 186 

As in the model devised by Barker [23], the IPM consists of the CoM placed on top of a 187 

massless rigid leg (Fig. 2). However, a number of improvements are introduced to account for the 188 

main shortcomings of the former model. 189 
 190 

 191 
 192 

Fig. 2. Inverted pendulum pedestrian model (IPM) subjected to lateral bridge vibrations.  193 

 194 

The IPM is built to mimic anthropomorphic properties of upright locomotion and is scaled to 195 

preserve spatio-temporal parameters of human gait. It is commonly used in the field of biomechanics 196 

[30] (but with stationary ground assumed). For simplicity, here it is restricted to the frontal plane (i.e. 197 

the vertical plane perpendicular to the direction of progression). To truly capture the behaviour of a 198 

pedestrian walking on an laterally oscillating bridge, the motion of the CoM due to the effects of 199 

gravity and the acceleration of the bridge are considered, as are the equal and opposite lateral forces 200 

on the CoM and bridge. The lateral force on the bridge, 𝐹𝐿, is found using the Lagrange-d’Alembert 201 

principle as (for detailed derivation of the model see Macdonald [8]): 202 
 203 

𝐹𝐿 = −𝑚𝑝(𝑥̈ + 𝑦̈) = 𝑚𝑝𝛺𝑝2(𝑢 − 𝑦) (4) 

 204 

where 𝑚𝑝 is the pedestrian mass, 𝑥 is the displacement of the bridge, 𝑦 and 𝑢 are, respectively, the 205 

displacement of the CoM and the position of foot placement relative to an arbitrary point on the 206 
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bridge, Ω𝑝 = �𝑔 𝑙⁄ , where 𝑔 denotes acceleration due to gravity and 𝑙 is the inverted pendulum 207 

length, and dots over symbols represent the derivatives with respect to time. Sinusoidal motion of the 208 

bridge is assumed in the analysis to define the self-excited forces on the bridge from the pedestrian, as 209 

a function of bridge frequency. 210 

A foot placement control law is adopted for the pedestrian to remain balanced, which is the 211 

most efficient strategy for correcting postural instability in the presence of lateral perturbations [31]. 212 

In agreement with experimental findings of human gait, the pedestrian adjusts the width of each step 213 

according to the state of the CoM at the time of foot placement, such that [32]: 214 
 215 

𝑢𝑛 = 𝑦𝑛0 +
𝑦̇𝑛0

Ω𝑝
+ (−1)𝑛𝑏min (5) 

 216 

where subscript 𝑛 represents the step number, superscript 0 denotes the value of a parameter at the 217 

beginning of current step, and 𝑏min is a constant distance known as the margin of stability. The 218 

applicability of the above formula in the presence of lateral perturbations has been recently confirmed 219 

in an experimental study in which an external lateral impulse was applied to subjects walking on an 220 

instrumented treadmill [10]. Some uncertainty remains in the way people perceive self-motion while 221 

walking on moving ground. In the analysis an assumption was made that in this case sight provides 222 

the most important sensory information, hence the relative velocity (with respect to the bridge) was 223 

adopted in the foot placement control law (Eq. (5)) (see [8] and [9] for a discussion of this). The IPM 224 

gives reasonable estimates of the lateral forces on the stationary ground with components at the lateral 225 

walking frequency, 𝑓𝑝, and its odd harmonics. On laterally vibrating ground it is capable of producing 226 

additional self-excited components of force, without having to synchronise to the ground motion. 227 

These components appear as lines on both sides of the odd harmonics of the pedestrian lateral walking 228 

frequency, 𝑓𝑝 (Fig. 3). 229 

Instead of frequency and phase tuning, the pedestrian frequency is assumed to be unaffected 230 

by the bridge motion which only causes step width adjustments. Importantly, this agrees with the 231 

experimental results from tests in which subjects walked at their preferred speed on a laterally 232 

oscillating treadmill [7]. It should be pointed out that a limitation of the experiments was that the 233 

walking speed was selected initially for no lateral motion and was then fixed for all subsequent tests 234 

with motion. It is therefore not proven how pedestrians may behave if instead able to adjust their 235 

speed freely, which hence could involve changing their walking frequency. However, such a change is 236 

more likely for larger vibration amplitudes, which are more perceptible, so for the small vibrations 237 

relevant to the initial onset of the dynamic instability addressed in this paper, the assumption is 238 

believed to be valid. 239 

From the output of the model, the critical component of the force which is at the bridge 240 

vibration frequency (𝑓𝑏; Fig. 3 – thick line), can be divided into a component in phase with bridge 241 

velocity and a component in phase with bridge acceleration. These components are found to be 242 
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proportional to the bridge velocity and acceleration themselves, so they can be expressed as the 243 

equivalent pedestrian added damping, ∆𝐶 (equivalent to −𝑘), and equivalent pedestrian added mass, 244 

∆𝑀, [8, 9] which can be easily included in the bridge equation of motion (Section 5). The self-excited 245 

components of the interaction force from treadmill experiments have been treated similarly (but with 246 

the opposite sign convention) by Ingólfsson and co-workers [7, 29]. 247 

 248 

 249 
Fig. 3. Fourier decomposition of the force derived from the IPM from a typical pedestrian (𝑚𝑝 = 76.2kg, 𝑙 = 250 

1.153m) walking with lateral frequency of 0.6Hz in the presence of lateral ground motion with a frequency of 251 

0.47Hz (i.e. approximately as for the first lateral mode of the central span of the LMF) and amplitude 2mm.  252 

 253 

It was found previously by Macdonald [8] that the equivalent added damping and mass 254 

derived from the IPM are strongly dependent on the bridge vibration frequency but are independent of 255 

the amplitude of the bridge vibration and the margin of stability, 𝑏min. Also they are directly 256 

proportional to the pedestrian mass, 𝑚𝑝. An extensive parametric study of the effects of the leg 257 

length, pedestrian walking frequency and bridge vibration frequency on the equivalent added damping 258 

and mass has been conducted [9]. The variation of Δ𝐶 and Δ𝑀 with bridge vibration frequency, for a 259 

typical pedestrian walking at different frequencies, are presented in Fig. 4. Note these results are 260 

expected averages over long walking time periods. Also presented in Fig. 4(a) are the results from site 261 

measurements on the LMF [1], CMB [2] and CSB [3] which fall within the range of values predicted 262 

by the IPM for low walking frequencies. 263 

 264 

 265 

 266 
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Fig. 4. (a) Equivalent negative damping and (b) equivalent added mass per pedestrian for lateral walking 267 

frequencies from 0.6Hz to 1.1Hz for a typical pedestrian (𝑚𝑝 = 76.2kg, 𝑙 = 1.153m). Also presented in (a) are 268 

the results from site measurements on three bridges: LMF (thick black line,[1]), CMB (+,[2]) and CSB (×,[3]). 269 

 270 

The IPM is believed to be the only current model (other than Barker’s simpler version of it 271 

[23]) that, when subjected to lateral ground motion, gives self-excited forces at the bridge vibration 272 

frequency compatible with Arup’s negative damping model [1] without synchronisation of the 273 

footsteps (as observed on the CMB and CSB). Furthermore, the results from the IPM are in very good 274 

agreement with the measurements on full-scale bridges [9], which are available for bridge frequencies 275 

in the range 0.5-1.0 Hz. They are also in line with the observation on the CSB that the frequencies of 276 

the two excited lateral modes increased under the action of pedestrians, and it is the only current 277 

model that can explain the simultaneous excitation of multiple lateral modes observed on the LMF 278 

and CSB [9]. Furthermore, the results are in reasonable agreement with those from the tests of people 279 

walking on a laterally oscillating instrumented treadmill [9], conducted by Ingólfsson et al. for 280 

treadmill frequencies in the range 0.33-1.07 Hz [7]. The advantage over Ingólfsson et al.’s [7] 281 

empirical self-excited forces is the IPM’s ability to explore parameter variations, such as the effect of 282 

different walking frequencies, leg lengths and pedestrian masses. Therefore, the model was applied in 283 
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a procedure that aimed to capture the variability of pedestrian loading in crowds and define 284 

probabilistic stability criteria. Importantly, the proposed framework is not only valid for pedestrian 285 

loading model derived from the IPM but can be easily applied with results obtained from any other 286 

models or from experimental investigations. 287 

 288 

4. Distribution of pedestrian parameters 289 

In order to define probabilistic stability criteria some descriptive statistical measurements 290 

relevant to the entire statistical population need to be known. Quantitative information of central 291 

tendency and dispersion of data can be specified by mean and standard deviation, respectively. 292 

Therefore, the purpose of the procedure outlined below was to estimate the mean and standard 293 

deviation of the equivalent added damping and the mean of the equivalent added mass from individual 294 

pedestrians. This was achieved by adopting the distribution of pedestrian parameter values defining 295 

the IPM, corresponding to a representative sample of the English population aged 16 and over 296 

obtained from the latest available UK National Health Service survey [33].  297 

The individuals’ gender, mass and height records were extracted from the pool of data and filtered 298 

according to the reliability parameter assigned for each category. This left approximately 12400 299 

individual data records available for further processing (referred to hereafter as the statistical 300 

population). Rather than extracting statistics of the data and using them for further analysis assuming 301 

a certain distribution, the equivalent added damping and mass were estimated for each individual and 302 

the results were analysed statistically. Thus the actual distributions of the parameters of the statistical 303 

population, including their inter-dependence, and the non-linearity of their effect on the equivalent 304 

added damping and mass were included in the results. To capture the parameters of the IPM 305 

characteristic of typical crowds, the plausible velocities (or pedestrian densities, as these parameters 306 

become correlated with densification of traffic) of the crowd also had to be established, since the 307 

pedestrian damping was found to depend on pacing rate hence velocity as well as well as the basic 308 

pedestrian parameters. The following procedure was adopted to satisfy these requirements. 309 

The leg lengths of pedestrians were obtained from the relationships established (although not 310 

given explicitly) for each gender by Pheasant [34]: 311 
 312 

𝑙m = 0.7028ℎ − 0.3091 and 𝑙f = 0.6797ℎ − 0.2781 (6a,b) 

where 𝑙m and 𝑙f are the leg length for males and females, respectively, ℎ is the height, and the values 313 

of all parameters are expressed in metres. The equivalent inverted pendulum lengths were then 314 

calculated according to the formula adopted by Hof [35]: 𝑙 = 1.34 × (leg length). The range of 315 

plausible walking velocities considered in the study spanned between 0.5m/s and 1.7m/s. The lower 316 

boundary was conservatively chosen considering a maximum density of approximately 2people/m2. 317 

Although it can be easily imagined that in dense crowds pedestrians can advance at much lower 318 

velocities, the mechanics of walking are in these cases often impaired and near-periodicity is lost due 319 
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to the close proximity of other pedestrians. As a consequence, the duration of the double-support 320 

phase of gait (the period when both legs are in contact with the ground) increases and the walkers 321 

move in an unsteady manner. Velocities higher than 1.7m/s are also achievable, but they are 322 

uncomfortable for walking in practice and at this point people often break into a jog [36]. The 323 

individuals’ lateral walking frequencies in the plausible range of walking velocities were obtained 324 

from the relationship established by Dean [37]: 325 
 326 

𝑓𝑝 = 1.3502
𝑣0.5

ℎ
 (7) 

 327 

where 𝑣 is the forward velocity expressed in metres per second and ℎ is the height expressed in 328 

metres. For a fairly dense crowd in which all pedestrians are constrained to walk at the same velocity 329 

Eq. (7) gives a distribution of lateral walking frequencies depending on the pedestrian height. The 330 

applicability of this formula can be demonstrated by comparison with the results from measurements 331 

of behaviour of 800 pedestrians walking on two footbridges by Pachi & Ji [38]. In that study it was 332 

established that the average pedestrian frequency was 1.8Hz and the standard deviation was 0.11Hz 333 

for average pedestrian velocity of 1.3m/s. For the same walking velocity, using data from more than 334 

12400 representative individuals from the statistical population in conjunction with Eq. (7), the 335 

calculated average walking frequency was found as 1.84Hz and the standard deviation as 0.11Hz. 336 

Considering all walking velocities and all individuals from the statistical population, the pedestrian 337 

lateral walking frequencies spanned between 0.47Hz and 1.28Hz. 338 

The values of equivalent added damping and mass for each individual (using his/her height, leg length 339 

and mass) at thirteen walking velocities (0.5m/s to 1.7m/s in 0.1m/s increments), for the bridge 340 

vibration frequency range of 0.05Hz to 5Hz were obtained by interpolating from base curves similar 341 

to those in Fig. 4, but normalised by pedestrian mass, for walking frequencies of 0.4Hz to 1.3Hz in 342 

0.1Hz increments and leg lengths of 0.66m to 1.12m in 0.115m increments, distributed such as to 343 

cover the whole range of this parameter established for the entire statistical population. (An 344 

alternative method of finding the equivalent added mass and damping for each pedestrian would be to 345 

use the recently derived analytical solution of the model [39], which yields almost identical results to 346 

those from the adopted numerical method). The mean and standard deviation of all the individual 347 

results for ∆𝐶 (critical for stability) and the mean of ∆𝑀 were then found (𝜇Δ𝐶, 𝜎Δ𝐶 and 𝜇Δ𝑀, 348 

respectively) at each combination of crowd velocity and bridge vibration frequency. 349 

 350 

4.1 Equivalent added damping 351 

 352 

The mean equivalent added damping for all thirteen crowd velocities is presented in Fig. 5(a). 353 

To make it non-dimensional and for convenience for subsequent use it is normalised by 2𝜔𝑏𝑚�𝑝 354 

(giving 𝜇�Δ𝐶), where 𝑚�𝑝 = 76.2kg is the average pedestrian mass of the statistical population and 355 

𝜔𝑏 = 2π𝑓𝑏. −𝜇�Δ𝐶 is comparable with the pedestrian mass damping parameter (Fig. 1) (after 356 
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accounting for the added mass effect (Section 5) and the number of pedestrians on the structure 357 

(Section 6)). It can be seen that 𝜇�Δ𝐶 is very dependent on the crowd velocity, 𝑣, due to Eq. (7) and the 358 

dependence of ∆𝐶 on 𝑓𝑝 (Fig. 4(a)). The maximum value of −𝜇�Δ𝐶 in Fig. 5(a), at a given bridge 359 

vibration frequency, corresponds to the most detrimental expected added damping for any speed of 360 

crowd. For the values of the pedestrian mass damping parameter, 𝐷 (Eq. (1)), in Fig. 1 from the four 361 

bridges and the treadmill tests, the actual crowd velocity may not have been the most critical for the 362 

relevant bridge frequency, so the given measured values are lower bounds of the worst case envelope. 363 

If the crowd had a different speed, the damping contribution from the pedestrians could be more 364 

detrimental (or beneficial).  365 

 366 

 

 

Fig. 5. (a) Normalised mean equivalent added damping from more than 12400 representative individuals of the 367 

English population aged 16 and over, for walking velocities from 0.5m/s to 1.7m/s at 0.1m/s intervals, and (b) 368 

corresponding normalised standard deviation of equivalent added damping. 369 

 370 

It needs to be pointed out that uncertainties exist in the limiting pedestrian damping values for 371 

bridge vibration frequencies below 0.5Hz. This is due to the lack of reliable data on pedestrian 372 

balance adjustments on laterally oscillating ground for walking velocities below 0.5m/s and the 373 
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complexity of gait changes in these cases, previously discussed (Section 4). However, no reliable 374 

measurements from bridges on which modes below approximately 0.5Hz have been excessively 375 

excited due to crowd action have been reported to date. 376 

The standard deviations of the equivalent added damping values from the statistical 377 

population, 𝜎Δ𝐶, for each crowd speed, normalised by the same factor as for 𝜇�Δ𝐶, are presented in Fig. 378 

5(b) (i.e. 𝜎�Δ𝐶).  379 

 380 

4.2 Equivalent added mass 381 

 382 

The second component of the self-excited force, the equivalent added mass, needs to be 383 

accounted for due to its potential effect of changing the natural frequency of the system which in turn 384 

can cause a change in Δ𝐶 (see Section 5). The mean equivalent added mass of all individuals from the 385 

statistical population normalised by the average pedestrian mass (𝑚�𝑝 = 76.2kg), for all considered 386 

crowd velocities, is presented in Fig. (6) (i.e. 𝜇�Δ𝑀). 387 

 388 

 389 
Fig. 6. Normalised mean equivalent added mass from more than 12400 representative individuals of the English 390 

population aged 16 and over, for walking velocities from 0.5m/s to 1.7m/s in 0.1m/s intervals. 391 

 392 

5. Critical stability parameters 393 

 394 

 In the previous section statistical measures of the equivalent added damping and mass were 395 

found for all individuals from the statistical population for different combinations of crowd velocity 396 

and bridge vibration frequency. However, for each bridge vibration frequency only the critical crowd 397 

velocity needs to be considered, but the added mass can shift the bridge vibration frequency, which 398 

needs to be taken into account. To identify the critical conditions a mathematical expression 399 

describing the interacting crowd-bridge system is first defined. Considering a single lateral mode of 400 

the structure, assuming it to behave linearly, dynamically loaded by a crowd, the equation of motion 401 

can be written as: 402 
 403 
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�𝑀 + �𝛥𝑀𝑖(𝜔𝑏)𝜙𝑖2
𝑁𝑝

𝑖=1

� 𝑋̈ + �𝐶 + �𝛥𝐶𝑖(𝜔𝑏)𝜙𝑖2
𝑁𝑝

𝑖=1

� 𝑋̇ + 𝐾𝐾 = 𝐹ext (8) 

 404 

where 𝑁𝑝 is the number of pedestrians on the bridge, 𝐶 and 𝐾 are, respectively, the generalised 405 

damping coefficient and stiffness corresponding to the structural mode, 𝑋 is the generalised 406 

displacement of the structural mode, 𝛥𝑀𝑖 and 𝛥𝐶𝑖 are the effective added mass and damping from the 407 

𝑖-th pedestrian, 𝜙𝑖 is the modal amplitude at the location of the 𝑖-th pedestrian and 𝐹ext contains all 408 

components of the pedestrian loading apart from that at the bridge vibration frequency (see Fig. 3). To 409 

analyse the dynamic stability of the crowd-structure system only the self-excited forces at the bridge 410 

vibration frequency are considered (𝐹ext = 0) [9, 40]. If the total damping becomes negative, divergent 411 

amplitude vibrations will develop. However, the added damping from the pedestrians is frequency-412 

dependant. The focus in this section is, therefore, on establishing the influence of the equivalent added 413 

mass, included as the sum of contributions from all pedestrians on the bridge in the first brackets of 414 

Eq. (8), on the equivalent added damping, included as the sum of contributions from all pedestrians on 415 

the bridge in the second brackets of Eq. (8). This allows the mean and standard deviation of the 416 

critical negative damping to be found which will be utilised in probabilistic stability criteria in Section 417 

6. 418 

 419 

5.1 Frequency shifts 420 

 421 

The equivalent added mass can have the effect of modifying the natural frequency of the 422 

crowd-bridge system. This is especially pronounced for high pedestrian to bridge mass ratios (𝑞 =423 

𝑀𝑝/𝑀), hence, most likely, for approximately uniformly distributed dense crowds. For bridges where 424 

continuous dense crowds can be expected, the UKNA [24] suggests application of a vertical live load 425 

of 5kN/m2. Taking an average pedestrian mass of 𝑚�𝑝 = 76.2kg this corresponds to the static weight of 426 

6.7 people/m2. Obviously, at this density walking is largely constrained, if not impossible, hence the 427 

IPM is not applicable. However, keeping in mind that the maximum mass ratio observed among all 428 

herein quoted bridges during lateral pedestrian-induced instability periods was approximately 0.23 [1] 429 

(assuming uniform distribution of pedestrians on the bridge), a maximum value of 0.5 was chosen in 430 

the analysis. For each pedestrian to bridge mass ratio from 0.1 to 0.5, in 0.1 increments, the ratios of 431 

the expected angular response frequency (i.e. natural frequency of the combined pedestrian-bridge 432 

system) to the angular natural frequency of the bridge itself, 𝜔𝑛 = 2𝜋𝑓𝑛 = �𝐾 𝑀⁄ , were found 433 

(𝑟 = 𝜔𝑏/𝜔𝑛) at each considered crowd velocity, over the whole range of considered bridge vibration 434 

frequencies. This was possible by considering the natural frequency and damping coefficient on the 435 

stability boundary of the combined system in Eq. (8) (as in Newland [27] and Bocian et al. [9]). 436 

Hence: 437 

 438 
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𝜔𝑛 = 𝜔𝑏�1 + 𝜇�Δ𝑀(𝜔𝑏)𝑞 (9) 

𝜁 = −𝜇�Δ𝐶(𝜔𝑏)𝑞𝑞 (10) 

where 𝜇�Δ𝑀 is the normalised mean equivalent added mass presented in Fig. 6. Note, from Eq. (10) it 439 

follows that for small mass ratios (𝑟 ≈ 1) the expected pedestrian mass damping parameter 𝐷 (Eq. (1)) 440 

is equivalent to −𝜇�Δ𝐶 from Fig. 5(a), with 𝑓𝑏 = 𝑓𝑛. 441 

 442 

 443 

 444 
Fig. 7. The envelopes of maxima (black curves) and minima (grey curves) of response frequency to structural 445 

natural frequency ratios (𝑟) based on mean equivalent added mass, for pedestrian to structure mass ratios (𝑞) 446 

from 0.1 to 0.5. 447 

 448 

The envelopes of minima, 𝑟𝑚𝑚𝑚, and maxima, 𝑟𝑚𝑚𝑚, of the frequency ratio 𝑟 established for 449 

each mass ratio, for any crowd velocity, are presented in Fig. 7. These do not generally correspond 450 

with critical conditions for dynamic instability, but they show the possible ranges of natural frequency 451 

shifts of the system in the presence of the pedestrians. It can be seen that large mass ratios cause non-452 

linear shifts in the vibration frequency of the structure which can either become lower or higher (e.g. 453 

as identified on the CSB [3]) than the structure’s inherent natural frequency, depending mainly on the 454 

crowd velocity. For the maximum mass ratio of 0.23 [1] mentioned above, the expected change in 455 

vibration frequency does not exceed 21%. 456 

 457 

5.2 Critical negative damping 458 

 459 

Having found relationships between the response and natural frequencies for all combinations 460 

of considered walking speeds, 𝑣, and mass ratios, 𝑞, from Eq. (9), it is possible to define the 461 

normalised critical mean negative added damping and its standard deviation, as a function of the 462 

structural natural frequency, using Eq. (10). Since different walking velocities may determine the 463 

critical mean equivalent added damping at different bridge vibration frequencies, the maximum 464 

detrimental −𝜇�Δ𝐶 was found for each bridge natural frequency and then the corresponding standard 465 
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deviation, 𝜎Δ𝐶, was identified. The critical −𝜇�Δ𝐶 for different mass ratios is presented in Fig. 8(a). It 466 

can be seen that increasing the mass ratio widens the frequency range for which detrimental 467 

pedestrian damping can be expected and, in general, increases the magnitude of −𝜇�Δ𝐶 for 𝑓𝑛 below 468 

1.4Hz. For 𝑓𝑛 above 1.4Hz the differences between the values of critical −𝜇�Δ𝐶 for different mass 469 

ratios are negligible and they can be approximated by the same curve. In the derivation of the results 470 

in Fig. 8(a) using Eqs. (9) and (10), only the mean value of Δ𝑀 was considered and not its statistical 471 

variation. To allow for this and for the range of mass ratios likely in practice, from Fig. 8(a) an 472 

empirical envelope of −𝜇�Δ𝐶 for a mass ratio of 0.5 is proposed for subsequent use as follows (with 𝑓𝑛 473 

expressed in Hz): 474 

 475 

⎩
⎪
⎨

⎪
⎧

 

−𝜇�Δ𝐶(𝑓𝑛)

=
−0.3297𝑓𝑛5 + 1.149𝑓𝑛4 − 0.8517𝑓𝑛3 − 0.8094𝑓𝑛2 + 1.1𝑓𝑛 − 0.1937

𝑓𝑛3 − 2.121𝑓𝑛2 + 1.393𝑓𝑛 − 0.1063
 

for   0.21Hz < 𝑓𝑛 < 1.4Hz 
(11) 

−𝜇�Δ𝐶(𝑓𝑛) = 0.48e−0.84𝑓𝑛  for   𝑓𝑛 ≥ 1.4Hz. 

The normalised standard deviation of the equivalent added damping, 𝜎�Δ𝐶, corresponding to the crowd 476 

velocity giving the critical value of −𝜇�Δ𝐶, for each bridge frequency and mass ratio, is presented in 477 

Fig. 8(b). Note the discrete values of 𝜎�Δ𝐶 in Fig. 7(b) do not give smooth curves, which is caused by 478 

the critical −𝜇�Δ𝐶 (and corresponding 𝜇�Δ𝑀) falling on different walking velocity curves and the related 479 

different frequency shifts (Eqs. (9) and (10); see Section 5.1). Also shown in Fig. 8(b) is a fitted curve 480 

that envelopes the empirical points, given by (with 𝑓𝑛 in Hz): 481 

 482 

�  

𝜎�Δ𝐶(𝑓𝑛) = −0.83𝑓𝑛2 + 0.79𝑓𝑛 for   0.21Hz < 𝑓𝑛 < 0.56Hz 

(12) 𝜎�Δ𝐶(𝑓𝑛) = 0.27e−1.83𝑓𝑛 +
0.12e−0.57𝑓𝑛  

for   𝑓𝑛 ≥ 0.56Hz. 

 483 

The fitted 𝜎�Δ𝐶 usually overestimates the magnitude of 𝜎�Δ𝐶 derived empirically, thus exaggerating the 484 

dispersion of the data, which can be considered as a conservative measure when defining probabilistic 485 

stability criteria. 486 

 487 

 488 
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Fig. 8. (a) Critical −𝜇�Δ𝐶  for different mass ratios after making allowance for the added mass effect, and (b) 489 

normalised standard deviation corresponding to the critical equivalent added damping for the same mass ratios, 490 

plotted against bridge natural frequency. 491 

 492 

 493 

6. Probabilistic stability criteria for crowds of pedestrians distributed over a structure 494 

 495 

 In the above section the normalised mean and standard deviation (Fig. 8(a) & (b), 496 

respectively) of the equivalent added damping (critical for stability and accounting for the added mass 497 

effect) were established for individual pedestrians from the statistical population. In this section the 498 

sum of the effects from any number of pedestrians on the bridge (𝑁𝑝) is considered making provisions 499 

for the variability of their parameters and their distribution with relation to the bridge mode shape. As 500 

𝑁𝑝 increases, obviously the expected total pedestrian damping increases in magnitude, but the relative 501 

spread of the results decreases. It is useful to bear in mind that not all combinations of 𝑁𝑝 and the 502 

critical value of −𝜇�Δ𝐶 may be realistic for a particular bridge. For example, high walking velocities 503 

which might define the critical −𝜇�Δ𝐶 in some bridge frequency ranges might not be achievable if the 504 

traffic becomes too dense. The proposed probabilistic stability conditions address a uniform 505 
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distribution of pedestrians, a random distribution of pedestrians and a distribution where all 506 

pedestrians are at the maximum of the mode shape. The first case is applicable to structures where 507 

high density pedestrian traffic is expected. The second case is more conservative for the same number 508 

of pedestrians, but it is applicable for less dense crowds, and the third case is the most conservative 509 

distribution of pedestrians possible, but it is not realistic for large crowds. 510 

For dynamic stability, it must be satisfied that the total damping is positive, i.e.: 511 
 512 

𝐶 + �𝛥𝐶𝑖(𝜔𝑏)𝜙𝑖2
𝑁𝑝

𝑖=1

> 0. (13) 

 513 

By recalling that the damping ratio is defined as 𝜁 = 𝐶 (2𝑀𝜔𝑏)⁄ , Eq. (13) can be rewritten as: 514 
 515 

𝜁𝜁 >
−∑ 𝛥𝐶𝑖(𝜔𝑏)𝜙𝑖2

𝑁𝑝
𝑖=1

2𝜔𝑏
. (14) 

 516 

The numerator of the expression on the right side of the inequality in Eq. (14) is the weighted sum of 517 

damping contributions from all pedestrians on the bridge. Considering the random nature of the 518 

pedestrian parameters, the probabilistic stability condition is: 519 
 520 

𝜁𝜁 >
1

2𝜔𝑏
�−E ��𝛥𝐶𝑖(𝜔𝑏)𝜙𝑖2

𝑁𝑝

𝑖=1

� + 𝑧𝛼𝜎∑ 𝛥𝐶𝑖(𝜔𝑏)𝜙𝑖
2𝑁𝑝

𝑖=1
� (15) 

 521 

where E[•] denotes the expected value of an arbitrary random variable •, 𝜎• is the standard deviation 522 

of •, and 𝑧𝛼 is the parameter corresponding to the 100(1 − 𝛼) percent one-sided upper confidence 523 

interval of the normal distribution.  524 

The assumption of the applicability of the normal distribution is made on the basis of the 525 

central limit theorem, stating that the mean (or sum) of a random sample drawn from a population 526 

with any distribution, provided this distribution has finite variance, is approximately distributed as a 527 

normal random variable [41]. Note the confidence limit is defined for a random sample of 𝑁𝑝 528 

pedestrians on the bridge at any one time. People will move on and off the bridge so the sample is 529 

continuously changing. Hence for long duration events, the confidence limit will be exceeded for a 530 

proportion 𝛼 of the time. Therefore 𝛼 needs to be made sufficiently small so that the confidence limit 531 

is expected to be exceeded for too little time for vibrations to build up appreciably. Also note that the 532 

“external forcing” component of loading (𝐹ext in Eq. (8)) can put energy into bridge (or take it out) 533 

over short periods, which can have a similar short term effect as negative (or positive) damping (but 534 

in long term it averages out). Ingólfsson et al. [7] had very large scatter of measured added damping 535 
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values, especially for 𝑓𝑝 ≈ 𝑓𝑏, probably due to this effect, based on measurements records of 30 536 

seconds duration.  537 

The standard deviations in the following mathematical expressions defining the probabilistic 538 

stability criteria were obtained by considering the distribution of the variance, 𝜎•2: 539 

 540 
𝜎•2  =  E[(• − E[•])2]. (16) 

For known positions of pedestrians, given that 𝛥𝐶𝑖 and 𝜙𝑖 are independent, it can be shown 541 

that Eq. (15) can be expressed as: 542 
 543 

𝜁𝜁 >
1

2𝜔𝑏
�−𝜇Δ𝐶� 𝜙𝑖2

𝑁𝑝

𝑖=1
+ 𝑧𝛼𝜎Δ𝐶�� 𝜙𝑖4

𝑁𝑝

𝑖=1
�. (17) 

 544 

This holds for all possible distributions of pedestrians and all possible mode shapes. The summations 545 

for discrete pedestrian positions can be approximated by integrals for an equivalent continuous 546 

distribution. 547 

Hereafter parameters Φ𝑗 are introduced for brevity, denoting non-dimensional integrals of the 𝑗-th 548 

power of the mode shape: 549 

 550 

Φ𝑗 =  
1
𝐿
� 𝜙𝑗d𝑠
𝐿

0
 . (18) 

 551 

These can be evaluated for any known mode shape, but for sinusoidal mode shapes defined as: 552 

 553 

𝜙 =  sin
𝑎𝜋𝑠
𝐿

, (19) 

 554 

where 𝑎 is the number of half sine waves, for any integer a: 555 
 556 

Φ2 =
1
2

 and Φ4 =
3
8

 . (20a,b) 

 557 

6.1. Uniform distribution of pedestrians 558 

 559 

For a uniform distribution of pedestrians, Eq. (17) becomes: 560 
 561 

𝜁𝜁
𝑀𝑝nom

> −𝜇�Δ𝐶 + 𝑧𝛼𝜎�Δ𝐶
1

Φ2�𝑁𝑝
�Φ4 (21) 

 562 



20 
 

where the nominal modal mass of pedestrians can be taken as:  563 
 564 

𝑀𝑝nom = 𝑁𝑝𝑚�𝑝Φ2 . (22) 

 565 

It is noteworthy that for uniformly distributed mass of the bridge, 2ΦbM m L=  where bm  is the bridge 566 

mass per unit length, so in Eq. (21) 
nompM M  is independent of the mode shape and is simply equal to 567 

the ratio of the physical bridge mass to nominal physical pedestrian mass (per unit length or total). 568 

Then the only dependence on the mode shape is through 2Φ  and 4Φ  on the right hand side of the 569 

equation. 570 

Using the mean term (−𝜇�Δ𝐶) only, Eq. (21) is equivalent to Eq. (3), but here allowance is made for the 571 

added mass effect and −𝜇�Δ𝐶 (equivalent to 𝑘 in Eq. (3)) is given as a function of bridge frequency 572 

over a wider range (Fig. 8(a) and Eq. (11)). In addition, the variability of pedestrian parameters is 573 

allowed for with the standard deviation term (𝜎�Δ𝐶, Fig. 8(b) and Eq. (12)), with a chosen confidence 574 

interval, given by 𝑧𝛼.  575 

For sinusoidal mode shapes Eq. (21) becomes: 576 

 577 

𝜁𝜁
𝑀𝑝nom

> −𝜇�Δ𝐶 + 𝑧𝛼𝜎�Δ𝐶�
3

2𝑁𝑝
 (23) 

 578 

and 579 
 580 

𝑀𝑝nom = 𝑁𝑝𝑚�𝑝 2⁄  . (24) 

 581 

6.2. Random distribution of pedestrians 582 

 583 

 For a random distribution of pedestrians, in Eq. (15) 𝜙𝑖 (the mode shape amplitude at the 584 

position of each pedestrian) is a random variable, as well as Δ𝐶𝑖. For a uniform probability 585 

distribution function for the pedestrians’ positions along the bridge, Eq. (17) becomes:  586 

 587 
𝜁𝜁

𝑀𝑝nom
> −𝜇�Δ𝐶 +

𝑧𝛼
Φ2�𝑁𝑝

�𝜎�Δ𝐶2 Φ4 + 𝜇�Δ𝐶
2 �Φ4 − Φ2

2� . (25) 

 588 

Note that here 𝑀𝑝nom is still the deterministic nominal modal mass of pedestrians, as defined in Eq. 589 

(22) for a uniform distribution, rather than the actual modal mass which is a random variable 590 

depending on the actual distribution of pedestrians.  591 

For sinusoidal mode shapes, Eq. (25) becomes: 592 

 593 
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𝜁𝜁
𝑀𝑝nom

> −𝜇�Δ𝐶 + 𝑧𝛼�
1

2𝑁𝑝
(𝜇�Δ𝐶

2 + 3𝜎�Δ𝐶2 ) . (26) 

 594 

Comparing Eqs. (25) & (26) with Eqs. (21) & (23), clearly the expected damping demand for 595 

uniformly and randomly distributed pedestrians is the same, but for a random pedestrian distribution it 596 

has higher variance. 597 

 598 

6.3. All pedestrians at the maximum of the mode shape 599 

 600 

The worst possible distribution of pedestrians is when all of them are positioned at the 601 

maximum antinode of the mode shape (or antinodes, if there are more than one with equal magnitude) 602 

so all their damping contributions have maximum weighting, given by 𝜙𝑚𝑚𝑚
2 , where 𝜙𝑚𝑚𝑚 is the 603 

maximum amplitude of the mode shape. Often 𝜙𝑚𝑚𝑚 is normalised to unity, but most importantly it 604 

has to be consistent with scale of the mode shape in 𝑀 and Φ2. This scenario is only realistic for small 605 

crowds. In this case Eq. (17) becomes: 606 

 607 
𝜁𝜁

𝑀𝑝nom
>
𝜙𝑚𝑚𝑚
2

Φ2 
�−𝜇�Δ𝐶 + 𝑧𝛼𝜎�Δ𝐶

1

�𝑁𝑝
� . (27) 

 608 

Again, for consistency of presentation, 𝑀𝑝nom is still the nominal modal mass of pedestrians defined 609 

in Eq. (22) (based on a uniform distribution), rather than the actual modal mass of pedestrians which 610 

in this case is somewhat larger. From Eq. (27), for sinusoidal mode shapes, the distribution of 611 

pedestrians such that all of them are at the maximum antinode causes a mean damping demand twice 612 

as large and a standard deviation of damping demand �8 3⁄  times as large as in the case of the same 613 

number of pedestrians uniformly distributed. 614 

 615 

6.4. Example application 616 

 617 

To quantify the effects of the statistical variations studied in this paper for a typical bridge, an 618 

example is considered of a bridge having a sinusoidal mode shape, occupied by a maximum of 100 619 

pedestrians. Stability boundaries are found for a serviceability limit state confidence limit of 99% 620 

(𝑧0.01 = 2.326). The proposed pedestrian mass damping parameter values required for stability, for the 621 

three different pedestrian distributions considered, are presented in Fig. 9 from Eqs. (23), (26) and 622 

(27) and using the envelope curves for −𝜇�Δ𝐶 (Eq. (11)) and 𝜎�Δ𝐶 (Eq. (12)). For comparison the 623 

corresponding recommendations from the UKNA [24] are also included. Note the pedestrian mass 624 

damping parameter is expressed here as a function of the nominal pedestrian mass, 𝑀𝑝nom, from Eq. 625 

(22) and not the actual pedestrian mass, 𝑀𝑝, from Eq. (2). Hence for a sinusoidal mode shape and 626 
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with all the pedestrians at the antinode(s), the values of 𝐷 (Eq. (1)) from the UKNA [24] need to be 627 

doubled. The values of pedestrian mass damping parameters for 50% (mean) and 99% confidence 628 

limits are denoted 𝐷50 and 𝐷99, respectively. 629 

 630 

 631 
Fig. 9. Proposed values of the pedestrian mass damping parameter required for stability for 50% (mean, 𝐷50) 632 

and 99% (𝐷99) confidence limits for uniform and random pedestrian distributions, and a distribution where all 633 

pedestrians are located at the maximum of the mode shape, with corresponding recommendations from the 634 

UKNA [24], for a bridge with a sinusoidal mode shape occupied by 100 pedestrians. 635 

 636 

As expected, the most lenient criterion is found for the uniform distribution. A more onerous criterion 637 

needs to be met for a random distribution of pedestrians. In the case of all pedestrians concentrated at 638 

the maximum of the mode shape, the values of the pedestrian mass damping parameter lie 639 

considerably above these from the other two cases. However, if the considered bridge were such that 640 

the presence of 100 pedestrians represented dense traffic conditions, it is likely a lower number of 641 

pedestrians could be physically accommodated at the maximum antinode(s).  642 

Applying the 99% confidence limit causes increases in the required pedestrian mass damping 643 

parameter which are at least 6%, 18% and 5% larger than the corresponding 𝐷50 for the uniform, 644 

random and maximum antinode distributions, respectively. The recommendations from the UKNA 645 

[24] are typically less onerous except for frequencies below approximately 0.55Hz, for which the 646 

UKNA pedestrian mass damping parameter curve was defined based on uncertain assumptions (see 647 

Section 2). Also the UKNA [24] suggests that the lateral loading from a crowd of walking pedestrians 648 

does not need to be considered for structures with lateral natural frequencies above approximately 649 

1.7Hz. In contrast, the IPM predicts that this limit is closer to 5Hz and that pedestrian mass damping 650 

parameter below this value can be significant. Regrettably there are no suitable data quantifying 651 

pedestrian loading currently available for vibration frequencies above approximately 1.1Hz which 652 

could help in verification of the predictions of the IPM. It is noteworthy that this renders the stability 653 

conditions proposed by UKNA above this limit equally uncertain. Further empirical data would be 654 

beneficial to close this gap. The proposed stability criteria are more onerous than the UKNA since 655 



23 
 

they allow for the most critical walking velocity for each bridge frequency and the statistical variation 656 

of pedestrian parameters, as well as being based on a more rigorous underlying pedestrian model. 657 

For a larger number of pedestrians on the bridge the relative spread of the equivalent added 658 

damping from all the pedestrians would be smaller, therefore 𝐷99 would be closer to the 659 

corresponding 𝐷50 (from Eqs. (21), (25) and (27)). Conversely, a smaller number of pedestrians 660 

would allow more adverse effect from the statistical variation and would require relatively more 661 

restrictive stability criteria. 662 

For real bridges the mode shapes are not necessarily sinusoidal although they may have a 663 

similar form. Eqs. (17), (21), (25) and (27) are applicable for any lateral mode of any bridge, with Φ2 664 

and Φ4 given by Eq. (18). To give an indication of the effect of the mode shape on the results, values 665 

have been calculated for the first four lateral modes of the Clifton Suspension Bridge, as measured on 666 

site and reported by Macdonald [3]. The values of Φ2 are 0.693, 0.468, 0.499 and 0.477 and of Φ4 are 667 

0.537, 0.354, 0.387 and 0.343 for each mode, c.f. 0.5 and 0.375 respectively for sinusoidal modes. 668 

The mode shape makes no difference to the mean values of pedestrian mass damping parameters in 669 

any case, but the statistical variation of the results is affected. Relative to the results for sinusoidal 670 

mode shapes, still for 100 pedestrians on the bridge, the 99% confidence limits are modified by -3.2% 671 

to +0.3% for a uniform pedestrian distribution, -5.3% to +1.5% for a random pedestrian distribution 672 

and -28% to +6.7% for all pedestrians at the maximum antinode. Hence, apart from the case of all 673 

pedestrians at the maximum antinode, it seems that the probabilistic stability criteria are not very 674 

sensitive to the mode shape. The effect of the number of pedestrians is always to reduce the spread of 675 

the equivalent added damping by a factor of pN . 676 

 677 

7. Conclusions 678 

 679 

In this paper probabilistic stability criteria for structures subjected to lateral crowd actions 680 

have been presented, based on analysis of the inverted pendulum pedestrian model from the field of 681 

biomechanics. The model is capable of providing self-excited forces on bridges, which can be 682 

quantified as equivalent added damping (sometimes negative) and mass to the bridge and is consistent 683 

with measurements both on full-scale bridges and in laboratory tests. The model shows high 684 

dependence on the bridge and pedestrian frequencies, so these parameters have both been varied in 685 

the analysis. In the derivation of the stability criteria real statistical data from the English population 686 

have been utilised to obtain distributions of pedestrian parameters defining the model. The variability 687 

of the self-excited forces in the plausible range of crowd velocities has been quantified through 688 

statistical measures and the worst conditions identified for structural frequencies in the range 0.05Hz 689 

to 5Hz. The analysis has accounted for the most critical crowd velocity for each bridge frequency and 690 

the effective added mass from the crowd, which can modify the vibration frequency and hence 691 

broaden the instability region. Hence envelopes of the mean and standard deviation of the equivalent 692 

added damping per pedestrian, as a function of bridge natural frequency, have been determined. 693 
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Considering the total effect of a crowd of pedestrians the probabilistic stability criterion has 694 

been defined in general, for any distribution of pedestrians and any mode shape. It has then been 695 

developed for three different traffic situations, which could determine the structural damping 696 

requirements in these different cases, namely uniform, random and concentrated (at the most onerous 697 

position) distributions of pedestrians. The influence of the number of pedestrians occupying the 698 

structure has also been addressed in that for larger crowds the effect of the statistical variability 699 

reduces, relatively speaking. The analysis allows for the effect of the bridge mode shape, although it 700 

has been found that the results are generally not very sensitive to it. The final results are presented in 701 

terms of the minimum mass damping parameter of the structure required to prevent lateral dynamic 702 

instability of the bridge with a certain confidence limit, as a function of bridge natural frequency. The 703 

resulting criteria are similar to but slightly more onerous than the UKNA [24] for bridge frequencies 704 

above approximately 0.5Hz, since they allow for the most critical walking velocity for each bridge 705 

frequency and the statistical variation of pedestrian parameters. 706 

The proposed stability criteria come from the output of the presented fundamental 707 

biomechanical pedestrian model rather than from empirically fitting model parameters to the limited 708 

number of measured bridge responses. Although the utilised statistical data are specific to the English 709 

population, the outlined procedure could be readily applied with any other relevant distributions of 710 

pedestrian parameters. Furthermore, any advancement in the determination of the pedestrian loads on 711 

laterally oscillating structures can be easily incorporated within the proposed probabilistic framework 712 

to further refine the stability criteria. Therefore the outcome of this study is believed to represent a 713 

step forward towards improvement of the existing recommendations concerned with the design of 714 

structures against the destabilising lateral walking forces from crowds.  715 
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