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THE EXT ALGEBRA OF A BRAUER GRAPH ALGEBRA

EDWARD L. GREEN, SIBYLLE SCHROLL, NICOLE SNASHALL, AND RACHEL TAILLEFER

ABSTRACT. In this paper we study finite generation of the Ext algebra of a Brauer graph
algebra by determining the degrees of the generators. As a consequence we characterize
the Brauer graph algebras that are Koszul and those that are ICa.

INTRODUCTION

This paper studies finite generation, and the corresponding degrees of the generators,
of the Ext algebra of a Brauer graph algebra. We show that if the Brauer graph has no
truncated edges then the Ext algebra of the associated Brauer graph algebra is finitely
generated in degrees 0, 1 and 2. As a result we characterize those Brauer graph algebras
that are Ky in the sense of Cassidy and Shelton [5]. Moreover, we determine the Koszul
and the d-Koszul Brauer graph algebras.

Let K be a field, Q a finite quiver and I an ideal of K Q. Let .J be the ideal in K Q which
is generated by the arrows of Q and assume that I is contained in J2. Let A = KQ/I
be a finite dimensional indecomposable algebra. Let r denote the Jacobson radical J/I
of A. The Ext algebra (or cohomology ring) of A is given by E(A) = Ext}(A/r,A/r) =
®n>0 Exti (A/r,A/r) with the Yoneda product. If the ideal I is generated by length
homogeneous elements, then the length grading of K'Q induces a grading A = Ag ® A1
Ao & -+, where Ay is the K-space spanned by the vertices of Q. The graded Jacobson
radical of Aisr = Ay @ Ay @ -+, and Ag = A/r. In Section [[l, we recall the definition
of a Brauer graph and its associated Brauer graph algebra, as well as the concept of a
truncated edge in a Brauer graph. The latter is of fundamental importance in determining
the behaviour of the Ext algebra of a Brauer graph algebra.

This work was motivated by the study of the Koszul Brauer graph algebras. Koszul
algebras play an important role in representation theory, and it is well-known that if
A = KQ/I is a Koszul algebra then the Ext algebra F(A) is finitely generated in degrees

0 and 1. Moreover the ideal I is quadratic, that is, I is generated by homogeneous
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elements of length 2. We determine the Koszul Brauer graph algebras in Theorem 2.4]
before investigating several generalizations of this concept among Brauer graph algebras.

One such generalization is the class of [y algebras, which was introduced by Cassidy
and Shelton in [5]. They define a graded algebra A to be Ky if E(A) is generated as an
algebra in degrees 0, 1 and 2. In Theorem Rl we shows that if a Brauer graph has no
truncated edges, then the Ext algebra of the associated Brauer graph algebra is finitely
generated in degrees 0,1 and 2. We then characterize the Ko Brauer graph algebras in
Theorem

Another generalization of a Koszul algebra is that of a d-Koszul algebra, where d > 2;
these algebras were introduced by Berger in [3]. A graded algebra A = KQ/I is a d-Koszul
algebra if the n-th projective module in a minimal graded projective A-resolution of Ag

can be generated in degree d(n), where the map ¢ : N — N is defined by

5(n) = {%Elld %f n %s even
f5=d+1 if n is odd.

In particular, the ideal I of a d-Koszul algebra K Q/I is generated by homogeneous ele-
ments of length d. Note that if d = 2, we recover the usual (quadratic) Koszul algebras. It
was shown in [9] that the Ext algebra of a d-Koszul algebra is finitely generated in degrees
0, 1 and 2; thus d-Koszul algebras are Ko algebras. The d-Koszul Brauer graph algebras
are fully determined in Theorem 2.4

It is then natural to consider algebras K Q/I where the ideal I is generated by homo-
geneous elements of more than one length. We say that A = KQ/I is a 2-d-homogeneous
algebra if I can be generated by homogeneous elements of degrees 2 and d. Green and
Marcos introduced 2-d-determined and 2-d-Koszul algebras in [8]. We discuss these al-
gebras in Section [@ but note here simply that a 2-d-Koszul algebra is 2-d-determined,
which in turn is 2-d-homogeneous; moreover a 2-d-determined algebra is 2-d-Koszul if its
Ext algebra is finitely generated. Having determined the 2-d-homogeneous Brauer graph
algebras in Section 2] we return to these algebras in Section @ where we give a positive
answer for Brauer graph algebras to all three questions posed in [§]. As a consequence we
are also able to give new classes of 2-d-Koszul algebras. In particular, the second question
in [§] asks whether it is the case that the Ext algebra of a 2-d-Koszul algebra of infinite
global dimension is necessarily generated in degrees 0, 1 and 2. This is indeed the case for
Brauer graph algebras. Moreover, for a 2-d-homogeneous Brauer graph algebra Ar with
Brauer graph I', we show in Theorem [0.6] that the following four conditions are equivalent:
(1) T has no truncated edges, (2) Ar is 2-d-determined, (3) Ar is 2-d-Koszul, and (4) the
Ext algebra of Ar is generated in degrees 0, 1 and 2 (that is, Ar is K2). It should be
noted that these properties are not, in general, equivalent, as is demonstrated by Cassidy
and Phan in [4].
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This paper extends the work of Antipov and Generalov, who showed in [I] that the Ext
algebra of a symmetric Brauer graph algebra is finitely generated. We remark that [1]
used different methods, and gave no details of the degrees of the generators.

The body of the paper proves the necessary structural results to describe the uniserial
modules, string modules, syzygies and projective resolutions of the simple modules. The
paper uses the covering theory for Brauer graphs and Brauer graph algebras developed in
[10]. We see at the start of Section Bl that [I0] enables us to reduce to the case where
the Brauer graph has no loops or multiple edges and where the multiplicity function is
identically one; this vastly reduces the computations required to determine the Ext algebra.
We then discuss the quantizing function q, and show, if K is algebraically closed, that we
may further reduce to the case where q = 1. Note that if the field is algebraically closed
and if either the Brauer graph is a tree or the Brauer graph algebra is symmetric, then
necessarily q = 1.

We now introduce Brauer graph algebras, giving the definitions and notation which we

use throughout the paper.

1. BACKGROUND AND NOTATION

Let I" be a finite connected graph with at least one edge. We denote by I'g the set of
vertices of I' and by I'y the set of edges of I'. We equip I'" with a multiplicity function
m: 'y = N\ {0} and, for each vertex in I', we fix a cyclic ordering o of the edges incident
with this vertex. We call the triple (I',0,m) a Brauer graph. We may denote a Brauer
graph by I', where the choice of cyclic ordering and multiplicity function are suppressed.
In all examples a planar embedding of I' is given and we choose the cyclic ordering to be
the clockwise ordering of the edges around each vertex.

We say that an edge ¢ in I' is the successor of the edge s at the vertex « if both s and
t are incident with o and edge t directly follows edge s in the cyclic ordering around «.
For each a € Ty, let val(a) denote the wvalency of «, that is, the number of edges incident
with o where we count each loop as two edges. If val(a) = 1 with edge s incident with
the vertex « then we say that s is its own successor. If « is a vertex with val(a) = 1 and
m(a) = 1 so that s is the only edge incident with « then we call s a truncated edge at the
vertex .

Following [2] and [13], we let K be a field and introduce the Brauer graph algebra of
a Brauer graph I". We associate to I' a quiver Or and a set of relations pr in the path
algebra K Or, which we call the Brauer graph relations, defined below. Let It be the ideal
of K Qr which is generated by the set pr. We define the Brauer graph algebra Ar of I" to
be the quotient Ar = K Qr/Ir. We keep the notation of [10] throughout this paper, and
now define Or and pr.
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If the Brauer graph I' is o« —— f with m(a) = m(5) = 1 then Qr is O:r and
pr = {22} so the Brauer graph algebra is K[z]/(x?).

We now define Qr for a general Brauer graph (excluding the above case, so if edge s
is truncated at vertex o and the endpoints of s are @ and 5 then m(S)val(5) > 2). The
vertices of Qr correspond to the edges of I', that is, for every edge s € I'y there is a
corresponding vertex vg in Qp. If edge t is the successor of edge s at the vertex o and edge
s is not a truncated edge at « then there is an arrow from vs to vy in Qp. For each vertex
a and edge s incident with «, let s = sg,s1,...,Sya1(a)—1 be the edges incident with «
listed in the cyclic ordering, where the loops are listed twice and the other edges precisely
once. We call this the successor sequence of s at a. We set sy,(q) = S, noting that s is
the successor of sy,)(q)—1. Observe that if s = s, s1, s2,..., -1 Is the successor sequence
for s at vertex «, then s1,89,...,5,_1, So is the successor sequence for s1 at o.

In case I' has at least one loop, care must be taken. In such circumstances, for each
vertex «, we choose a distinguished edge, s, incident with «. If £ is a loop at «, £ occurs
twice in the successor sequence of s,. We distinguish the first and second occurrences of
¢ in this sequence and view the two occurrences as two edges in I'y. Thus, I'y is the set of
all edges with the proviso that loops are listed twice and have different successors.

In order to define the Brauer graph relations pr we need a quantizing function q. Let A1
be the set of pairs (s, «) such that s € 'y is incident with « € Ty and s is not truncated at
either of its endpoints, and let q: Xr — K \ {0} be a set function. We denote q((s, «)) by
(s,o- With this additional data we call (I',0,m,q) a quantized Brauer graph. We remark
that if the Brauer graph I' is « —— 3 then Ap = (). If the field is algebraically closed
and if either the Brauer graph is a tree or the Brauer graph algebra is symmetric, then
q=1 (see [2]).

There are three types of relations for (I',0,m,q). Note that we write our paths from
left to right.

Relations of type one. For each vertex « and edge s incident with «, which is not
truncated at the vertex «, let s = sq,51, ..., Syal(a)—1 be the successor sequence of s at a.
From this we obtain a cycle Cs o = apay - - @yai(a)—1 in Qr where the arrow a, corresponds
to the edge s,y1 being the successor of the edge s, at the vertex . With this notation,
for each edge s € I' with endpoints « and [ so that s is not truncated at either « or 3,
pr contains either qs,aC’:éa) — qs,gC:gg) or qSﬁC:éﬁ) — s, 2}&0‘). We call this a type one
relation. Note that since one of these relations is the negative of the other, the ideal I
does not depend on this choice.

Relations of type two. The second type of relation occurs if s is a truncated edge at
the vertex o and the endpoints of s are a and . Let Cs g = boby - - - byay(s)—1 be the cycle
(5)b0.

associated to edge s incident with vertex . In this case we have a relation 0?5
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Relations of type three. These relations are quadratic monomial relations of the form
ab in K Qr where ab is not a subpath of any C ,.
We note that it is well-known that a Brauer graph algebra is special biserial and weakly

symimetric.

Throughout this paper, all modules are right modules. We denote the Jacobson radical
r 4. of the Brauer graph algebra Ar by r when no confusion can arise. We will use lower
case letters such as s and t to denote edges in I', capital letters S and 71" to denote the
corresponding simple Ap-modules, and vs and v; to denote the corresponding vertices
in Qr. If S is a simple Ap-module, then we denote the projective Ap-cover of S by
TS PS — 5.

Let P be an indecomposable projective Ap-module corresponding to the vertex v, in Qp
and edge s in I'. If the edge s is not truncated, then P has both top and socle isomorphic
to S, and rad P/ Soc P is a direct sum of two uniserial modules. Let the vertices of s be «
and 3 and let s, s1,. .., Syal(a)—1 be the successor sequence for s at a, and s,t1, ..., tyai(g)—1
be the successor sequence for s at 5. Then rad P/Soc P = U @ V', where U and V have

composition series

Sla B Sval(a)—la Sa Sla s asval(a)—l’ cee aSa Sla cee asval(a)—l

and

Ti, . T g)=1, 5115 - s Toar)=15 - -+ S, 115 - -+ Toa(8)—1
respectively, such that, for i = 1,...,val(a) — 1, the simple module S; occurs precisely
m(«) times and is associated to the edge s; in I', and, for j = 1,...,val(f) — 1, the simple

module T} occurs precisely m(/3) times and is associated to the edge t; in I'.
In the case where s is truncated, then P is itself uniserial. Suppose that s is not
truncated at vertex a and let s,s1,...,Suia)—1 be the successor sequence for s at a.

Then P has composition series
Sa Sl, cee >Sval(oz)—1a Sa Sla ) Sval(a)—la v aSa Sla ) Sval(a)—la S

where, for i = 1,...,val(a) — 1, the simple module S; occurs precisely m(«) times and is

associated to the edge s; in I

2. d-HOMOGENEOUS AND 2-d-HOMOGENEOUS BRAUER GRAPH ALGEBRAS

Suppose that A = KQ/I where I is a homogeneous ideal with respect to the length
grading. Let p be a minimal set of generators for I; the elements in p are necessarily
homogeneous. Let d > 2 and d’ > 2 be distinct integers. We say that A is d-homogeneous
(or quadratic when d = 2) if p contains homogeneous elements of length d only. We say

that A is d-d’'-homogeneous if A is not d-homogeneous or d’-homogeneous and p consists
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of homogeneous elements of length d or d’. Note that this does not depend on the choice
of minimal generating set p for I.
In this section we investigate the d-homogeneous and 2-d-homogeneous Brauer graph

algebras. Therefore we need to know a minimal generating set for I. Recall that, for an

integer n > 1, A,, is the graph - e - with n vertices and A,, is the

circular graph with n 4+ 1 vertices.

Lemma 2.1. Let (I';0,m,q) be a quantized Brauer graph such that T is not Ao, and let
Ar = KQr/Ir be the associated Brauer graph algebra. Let p C pr be a minimal generating
set for Ir. Then p contains all the relations of types one and three, and it contains the
relation of type two associated to the edge s truncated at o if and only if the successor of

s at its other endpoint 8 is also truncated.

Proof. 1t is clear that relations of type one and three must be in p, so we must prove the
condition on relations of type two. Since I' # Ay and s is truncated at «, the edge s has a
successor s1 distinct from s at 8. Let s = sq,s1,. .., Svai(g)—1 be the successor sequence of
s at 3, and let Ry be the relation of type two associated to s, so that Ry = Cz(ﬁ )bo where
Cs,5 = bob1 -+ - byar(gy—1

First assume that s; is not truncated at its other endpoint v. We want to prove that
the relation Ro is not in p. Since s; is not truncated at either of its endpoints, there is
a relation of type one associated to sj, of the form Ry := qsl,ng(g) — qswcs“}(g) € p.
We have Cs, 3 = b1 - byai(g)—1bo, and we let C, , = apay - - - dyai(4)—1. Therefore Ry =
C’:éﬁ)bo = boCz(,g) = q;{BbORl + q;%ﬁqsl,fngal e avalw)_ngg)fl, where R3 := bpag € p
is a relation of type three. Therefore Ry & p.

Conversely, assume that 51 is truncated at . Suppose that Re & p, so that we can
write Ry = > P | MR 1 ul + 20 N 2 ,uj + > )\"Rék)u% for some i, N, AY, i, 41, o,
in KQr and relations R§ ), R(J) Ré ) of type one, two and three in p. We work in K Qr,
which is graded by length.

The relation Rs is monomial, hence must occur in one of the summands. By definition,
the ng) are not subpaths of Ry (since the proper subpaths of Ry are all subpaths of some
Cs, 5 and Ry has length at least 3). Moreover, if )\;»R(j . = Ro, then R(j )is a product of
(some of) the arrows by for 0 < ¢ < val(3) — 1, so that Rg ) must be a cyclic permutation of
Ry and hence equal to R, a contradiction. Finally, if Rs is in the term )\'Rg) i, then R(i)
)

is a K-linear combination of C, (5 for some ¢, and another cycle that does not contain a
be, and, for length reasons, we must have t =0 or t = 1. But sy = s and s; are truncated
at a and ~ respectively, so there are no relations of type one associated to these edges.

We have again a contradiction, and therefore conclude that Rs is in p. U

We start by describing all d-homogeneous Brauer graph algebras for d > 2
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Proposition 2.2. Let (T',0,m, q) be a quantized Brauer graph and let Ar be the associated
Brauer graph algebra. Then Ar is quadratic if and only if (I';0,m) is one of the following

Brauer graphs.

(1) T'=Ay withm=1 and q=1.

(2) T = A, with n > 2, all multiplicities equal to 1 except at the first and last vertices
which are equal to 2.

(38) T'= A, withn > 3, all multiplicities equal to 1 except at one end vertex which is equal
to 2.

(4) T=A, withn>4, m=1and q=1.

(5) T =A, withn>1 and m = 1.

(6) T=-") withm=1.

Proof. Suppose that Ar is quadratic. Let p C pr be a minimal generating set for It. If a
is a vertex in I" such that val(a) > 2, then there is a relation of type one or type two of
length at least 3 in p. This contradicts the fact that Ap is quadratic. Therefore val(a) < 2
for all vertices o in I'.

There are two cases to consider.

(i) We assume that there is a vertex a in I" with val(a) = 1.

Then there is a unique edge s in I' with endpoint «. Let 5 denote the other
endpoint of s. There are two subcases to consider here.

First suppose that edge s is truncated at «, that is, m(a) = 1. If val(p) = 1,
then, since T is connected, Ar = K|[z]/(z™#)*1) which is quadratic if and only if
m(f) = 1. Thus I' = Ay and m = 1; this is (1). Note that we can assume that
q = 1 since there are no relations of type one. On the other hand, if val(g) = 2,
then we have a relation of type two of length val(8)m(8) + 1 > 3 in It associated
to the edge s incident with vertex 5. This relation cannot be in p, so the successor
s1 of s at f is not truncated at its other endpoint 7, by Lemma [ZI. Hence we
have a relation of type one associated to si, of length m(3) val(f) = m(y) val(y),
in p. Therefore m(3)val(8) = m(y)val(y) = 2. If val(y) = 1 then m(y) = 2 so
that I' = Ag and the multiplicities are (1,1,2); this is part of (3). If val(y) = 2,
then m(y) = 1 and we continue, to get A, with n > 4 and multiplicities either
(1,1,...,1,1) or (1,1,...,1,2) (the last edge can be truncated if n > 4). We have
thus obtained (3) and (4).

We may now assume that there are no truncated edges. Since the edge s is
not truncated at either of its endpoints a and 3, we have a relation of type one
associated to s in p so that val(8)m(8) = 2 = val(a)m(c). Since val(a) = 1, we
have that m(a) = 2. Moreover, either val() = 1 in which case I' is the graph Ay
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with m = 2, or val(f) = 2, m() = 1 and we continue to get the graph A, with
multiplicities (2,1,1,...,1,2). This gives (2).
We assume that all vertices have valency 2.

Let « be a vertex in I'. Since val(«) = 2, there is either a loop, a double edge
or two single edges at «.

If there is a loop s at «, then, since I' is connected, I' is equal to 0‘35'
Then there is a relation of type one associated to s so that val(a)m(a) = 2 and
therefore m(or) = 1. This is the graph of (6). If there is a double edge at «,
then a similar argument shows that m(a) = 1. If 5 is the other vertex of this
double edge, then we have val(5) > 2. However, all vertices in I" have valency
at most 2, so that val(f) = 2. SoI'is a ==/ with m = 1, and we have the
graph Ay of (5). Finally, suppose there are two edges s and ¢ which are incident
with «. By assumption, neither s nor ¢ is truncated, so that there is a relation of
type one associated to both s and ¢, and therefore val(a)m(a) = 2 and m(a) = 1.

Continuing this argument, shows that I' = A, withn > 2 and m = 1, which is

(5)-

This gives all possible Brauer graphs (I',0,m,q). We now give the associated Brauer

graph algebras, which are all quadratic.

(1) Ar = K[z]/(z?).
(2) Ar = KQr/Ip where Qr is the quiver

(3)

a1 a an—2
b 17 2T 27 a1 )b
OC ~ v3 n— vnfg n—1
ai as An—2

and the ideal It is generated by a;a; — a;—1a;—1, a;—1a; and a;a;—1 for 2 <i < n — 2,

2

aia; — b%, Qp—20n—2 — qb;_4, boai, aiby, an—2b,—1 and b,_ja,_2 for some nonzero

q € K. Note that we have scaled the arrows in the quiver so that the quantizing

function g is 1 except for one value which we have denoted by ¢; moreover, if ¢ has a

square root in K, then we can replace ¢ by 1 (see [7]).
Ap = KQr/Ir where Qr is the quiver

al a2 QAn—2
17 ST s 2 1 )b
>~ T — e T n-l
ay ao Up—2

and the ideal It is generated by a;a; — a;—1a;—1, a;—1a; and a;a;—1 for 2 <i < n — 2,

Qp_20p_9 — qbi_l, ap—2b,_1 and b,_1a,_o for some nonzero ¢ € K, which can be

replaced by 1 if ¢ has a square root in K.
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(4) Ar = KQr/Ir where Qr is the quiver

a1 a2 An—2
S~ “~— L L
al a2 an—2

and the ideal It is generated by a;a; — a;_1a;_1, a;_1a; and a;a;_1 for 2 <7 < n — 2.
Note that we have scaled the arrows in the quiver so that q = 1.

(5) Ap = KQr/Ir where Qr is the quiver with n vertices and 2n arrows

and the ideal It is generated by a;a;+1, a;—1a,—2 and a;a; — q;a;—1a,—1, for ¢ =
0,...,m —1, with ¢; € K, ¢; # 0, where the subscripts are taken modulo n and
where a; denotes the arrow that goes from vertex 7 to vertex i + 1 and a; denotes the
arrow that goes from vertex 7+ 1 to vertex 7. Again we can rescale the arrows so that

q is 1 at all but one place (see [6]).
(6) Ar =K [ 8 Q : Qa } /(a8 — qBa,a?, %) for some nonzero ¢ € K. O

We now turn to d-homogeneous algebras with d > 3.

Proposition 2.3. Let (T',0,m,q) be a quantized Brauer graph and let Ar be the associated
Brauer graph algebra. Then Ar is d-homogeneous with d = 3 if and only if T is a star with
n edges, for some n > 1, such that n divides d — 1, the multiplicity of the central vertex
18 d;nl and the other multiplicities are equal to 1. The algebra Ar is uniquely determined
by (T, 0,m); it is the symmetric Nakayama algebra whose quiver is a cycle of length n and

its ideal It is generated by all paths of length d.

Proof. If Ar is d-homogeneous, then there are no relations of type three, so the quiver Qp
cannot contain distinct cycles at the same vertex. In terms of the graph I', this means
that all edges in I' are truncated at exactly one vertex. Therefore I' is a star in which
all the outer vertices have multiplicity 1. Let n be the number of edges in I' and m the
multiplicity of the central vertex. The only relations in the algebra Ar are of type two
and are of length nm 4+ 1. Hence nm = d — 1. Finally, since Ar is monomial, we may

assume that q = 1. U

It is well-known that all the Brauer graph algebras in Proposition 22(1), (2), (5), (6)
and in Proposition 23] are d-Koszul (see for instance [6l [7, 7] and the references therein).
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However, it is easy to verify that the algebras of Proposition[Z2(3) and (4) are not Koszul,
since the resolution of the simple module at the vertex 1 is not linear in either of these

cases. This gives the following result.

Theorem 2.4. Let (I';o0,m,q) be a quantized Brauer graph and let Ar be the associated
Brauer graph algebra. Then Ar is Koszul if and only if it is quadratic and either I' = Aq
or I has no truncated edges. For d > 3, the Brauer graph algebra Ar is d-Koszul if and

only if it is d-homogeneous.
Now, fix an integer d > 2. We describe the 2-d-homogeneous Brauer graph algebras.

Proposition 2.5. Let (T',0,m, q) be a quantized Brauer graph and let Ar be the associated
Brauer graph algebra. Then Ar is 2-d-homogeneous if and only if (I';0,m,q) satisfies one

of the following conditions.

(1) For all vertices v in T', we have m(a) val(a) = d.
(2) T has a truncated edge, T' # Ao, no two successors are truncated, and for every vertex
a in I" we have m(a) val(a) € {1,d}.

Proof. Note that there must be at least one edge in I that is not truncated at either of its
endpoints, otherwise we are in the situation of Proposition [Z2(1) or of Proposition 23]
and the algebra Ar is quadratic or d-homogeneous. Let p C pr be a minimal set of

generators for Ir. The proof has two cases.

(i) First assume that there is an edge s in I' that is truncated at the vertex a in I'. Let
B be the other endpoint of s. If val(3) = 1, then we only have relations of type two
in p, all of the same length, so that Ar is homogeneous, which gives a contradiction.

We may therefore assume that there is an edge ¢ in I'; incident with 8 and such that
t # s. There is a relation of type two associated to s at 3 of length val(8)m(8)+1 > 3.
If ¢ is the successor of s at § and if ¢ is truncated at its other endpoint, then, by
Lemma [Z], this relation of type two is in p, so that val(5)m(8) + 1 = d. However,
Ar is not d-homogeneous so there must be a nontruncated edge u incident with 3
so that val(8) > 3. Thus there is a relation of type one associated to u of length
val(B)m(8) = d — 1 so that we have d — 1 = 2, since Ap is 2-d-homogeneous. But
val(8) > 3 so that we have a contradiction. This shows that no two successors are
truncated and none of the relations of type two are in p.

Therefore the successor ¢t of s at § is not truncated, and there is a relation of
type one associated to t of length val(8)m(8) = val(y)m(y), where ~ is the other
endpoint of ¢. Since Ar is not quadratic, we must have val(5)m(3) = val(y)m(y) = d.
Continuing in this way, we see that every relation of type one must have length d

and we get (2). Moreover, if (2) is satisfied, then there are (quadratic) relations
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of type three since there are at least two adjacent cycles Cy 3 and C}, in Qr. Since
there are no relations of type two in p and all relations of type one are of length d,
it follows that Ar is indeed 2-d-homogeneous.

(ii) Now assume that there are no truncated edges in I'. Therefore there are no relations
of type two.

We suppose first that all vertices have valency at least 2. Then the relations of
type one have length 2 or d. More precisely, for any edge s with endpoints « and 3,
we must have val(a)m(a) = val(8)m(5) € {2,d}. Since I is connected and Ar is not
quadratic, we must have val(a)m(a) = d for all vertices «, and we are in case (1).
Moreover, if all vertices @ have valency at least 2 and val(a)m(a) = d, then there
are relations of type three so that Ar is 2-d-homogeneous.

Finally, we consider the case where there is a vertex a with val(a) = 1. Let s
be the edge incident with « and let § be the other endpoint of s. Since s is not
truncated at either endpoint, we have m(a) > 1 and val(8)m(g) > 1. If val(g) = 1,
then there are quadratic relations of type three, and a relation of type one associated
to s of length m(a) = m(p3), and so m(a) = m(5) must equal d. Thus I' = Ay with
multiplicity d at each vertex. It is easy to see that the corresponding algebra is 2-d-
homogeneous. On the other hand, if val(8) > 1, let ¢ be another edge incident with
5. By assumption, the edge t is not truncated at its other endpoint . Then there
are quadratic relations of type three, a relation of type one associated to s of length
m(a) = val(8)m(f) and a relation of type one associated to ¢ of length val(8)m(53) =
val(y)m(7). Therefore m(a) = val(f)m(B) = val(y)m(y) = d. Continuing in this
way, we have val(e)m(e) = d at every vertex ¢ in I', which completes (1). The

corresponding algebra is 2-d-homogeneous. O

We end this section with two corollaries which describe in more detail the 2-d-homogeneous

Brauer graph algebras Arp in the cases where I' is a star and where I" is A,,.

Corollary 2.6. Suppose I' is a star whose central vertex is ag and the other vertices are
ordered cyclically o, ..., an; set anr1 = ay. Then the associated Brauer graph algebra is
2-d-homogeneous if and only if n divides d, the vertex cg has multiplicity %, and for every
i with 1 <i < n we have m(;) € {1,d} and m(oy)m(viy1) € {d,d?}.

Corollary 2.7. Suppose I' = A,,. Then the associated generalized Brauer tree algebra is
2-d-homogeneous if and only if n > 3, d is even, the multiplicities of the first and last
vertex are in {1,d} with at least one of them equal to d if n = 3, and the multiplicities of

the other vertices are all equal to %l.
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We now look more generally at the Ext algebra of a Brauer graph algebra. We will
return in Section [@ to 2-d-homogeneous Brauer graph algebras and the degrees in which

the Ext algebra is generated.

3. THE EXT ALGEBRA AND COVERINGS

In this section, we use the covering theory for Brauer graphs which was developed
in [I0] to simplify the calculation of the Ext algebra. We show that we may assume,
without any loss of generality, that our quantized Brauer graph (T', 0, m, q) has m = 1 and
contains no loops or multiple edges. We then discuss the quantizing function ¢, proving in
Proposition B2], that if the field K is algebraically closed field and if the associated Brauer
graph algebra Ar is length graded, then the number of generators of the Ext algebra
E(Ar) and their degrees do not depend on g.

Let (I';o,m, q) be a quantized Brauer graph and let Ar denote the associated Brauer
graph algebra. We recall the following definitions from [I0]. For each o € 'y, we define
Z, to be the set Z, = {(s,t) | s,t € I'1,t is the successor of s at vertex a}. Let Zr be the
disjoint union

Zr=J Za.
a€ly
Let G be a finite abelian group. A set function W: Zr — G is called a successor weighting
of the Brauer graph (I',0,m, q). For a € T'y we define the order of a,, denoted ord(«), to be
the order in G of the element wq = [ (5 ez, W(s,t). A successor weighting W: Zr — G
of the Brauer graph (I',0,m, q) is called a Brauer weighting if ord(a) | m(«) for all « € T'y.

Let W: Zr — G be a Brauer weighting, and let Ar,, be the Brauer graph algebra asso-
ciated to the quantized Brauer covering graph (I'y, oy, my, qw). Let ra,. (respectively,
TAp,, ) be the Jacobson radical of Ar (respectively, Ary, ). By [10, Theorem 4.3], Ar,,
is the covering algebra associated to a weight function W*: (Qr); — G. Hence the Ext
algebra Ext’ (Ar/ra., Ar/ra4;) is generated in degrees dy, ..., d if and only if the Ext
algebra Extf%w (Ary, /I‘_AFW,.AFW /I'AFW) is generated in degrees di,...,ds. In fact, we
have the following well-known result.

Proposition 3.1. Keeping the notation above, the ring structure of Ext’y (Ar/rap, Ar/ra;)
can be completely determined from the ring structure of Extj}rw (Ary /Tap,, s Ary /Tar,, )

Proof. The G-grading on Ar induced by the weight function W*: (Qr); — G induces
a G-grading on Ext’ (Ar/ra., Ar/ra.) such that, if g € G, and S and T are simple
Ar-modules then

Ext.(5,T)g = Ext, (S, 0(9)T),
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where the right hand side is the graded Ext-group, S and T are viewed as graded mod-
ules with support in degree 1z, and o is the shift functor. The graded Yoneda prod-
uct Exté, (T, 0(9)U) x Extg,.(S,0(h)T) is defined in the usual way after noting that
Extg, (T,0(9)U) = Extg,(o(h)T,0(h)o(g)U). Finally, using that the category of G-
graded Ap-modules is equivalent to the category of Ar, -modules we obtain the desired
result. O

Now, in [I0, Theorem 6.8], it was shown, for any quantized Brauer graph (I'¢, 0o, mg, qo),
that there is a tower of quantized Brauer covering graphs (I'g, 00, mg,qo), (I'1, 01, m1,q1),
(T'9, 02, m2,q2), (I's, 03, m3,q3) such that the topmost quantized Brauer covering graph
(T's, 03, m3, q3) has multiplicity function mg identically one, and the graph I's has no loops
or multiple edges.

Hence, with Proposition Bl we may assume that (I',0,m,q) is a quantized Brauer

graph with m = 1 and with no loops or multiple edges.

We now consider the quantizing function q in the case where Ar is length graded. It
is known that if the field is algebraically closed and if either the Brauer graph is a tree
or the Brauer graph algebra is symmetric, then we can always rescale the arrows so that
q = 1. The next result shows that we may also assume that ¢ = 1 in the case where Ar is
length graded, since the number of generators of the Ext algebra E(Ar) and their degrees
do not depend on gq.

We begin by introducing some additional notation. If edge ¢ is the successor of edge s
in I' at vertex «, we denote the corresponding arrow in Qr from vertex vs to vertex vy
by a(s,t,a«). In fact, this arrow is uniquely determined by s and ¢. For, suppose there
are vertices « and [ in I' such that a(s,¢,«) and a(s,t, 3) are arrows. Since there are no
loops in I', we have s # t. If a # 3, then s and ¢ are distinct edges with endpoints « and
B, contradicting the assumption that there are no multiple edges in I". Hence o = 3. So
if edge t is the successor of edge s at vertex « in I', then the vertex « is unique. Thus we

denote the arrow in Qr from vertex v, to vertex vy simply by a(s,t).

Proposition 3.2. Let K be an algebraically closed field and let (T'y0,m,q) be a quantized
Brauer graph with m = 1 and with no loops or multiple edges. Let Ar be the associated
Brauer graph algebra. Suppose that Ar is length graded. Then the number of generators
of Ext A, (Ar/rap, Ar/ran) and their degrees do not depend on q.

Proof. Let (I', 0,m) be a Brauer graph with m = 1 and with no loops or multiple edges. We
may assume that I is not a star (Ag included) since the associated Brauer graph algebras
are all monomial and hence do not depend on a quantizing function q. Therefore there

exists an edge s with endpoints o and 8 such that v := val(a) > 1 and val(3) > 1.
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Let A be the Brauer graph algebra associated to (I',0,m) with quantizing function
identically 1. We shall twist A by a graded algebra automorphism o of A so that A7 is the
Brauer graph algebra associated to the quantized Brauer graph (I',0,m,q) with q equal
to 1 except at (s,«a) and (s,f), then use [5] to see that the Ext algebras of A and A“
have the same number of generators in the same degrees. This means that we will have
changed precisely one relation in the generating set for I, namely C; o, — C; 3 will become
9s,0Cs,0 — 95,8Cs g or, to simplify notation, rC, o — Cs g where r = qs@q;é. None of the
other relations will change.

Recall that the product in A7 is given by z -y = zot® (y) where x and y are length
homogeneous elements in A and ¢(z) is the length of x.

Let s = s, s1,S2,...,8,—1 be the successor sequence of s at a, and let a; = a(s;, si+1)
be the corresponding arrows in the quiver Qr, for i = 0,1,...,v — 1 (where s, = s). In
this notation, Cs o = apay - - - ay—1. We shall define a graded algebra automorphism o of A
by setting, for i = 0,1,...,v—1, o(a;) = r;a; for some r; € K\ {0} to be determined, and
fixing all other arrows and vertices in Qr. Suppose we have such an automorphism o. Then,
in A7, the cycle Cs o becomes 7"17% e rgjaoal -+ ay_1. The arrows ag, ..., a,_1 occur in
at most v relations of type one, involving the cyclic permutations of Cs ,. Therefore we

want

2 v—2_ v—1
r1r2---rv72r071a0a1---av_gav_l =Trapdi - - Qy—2Qay—1

2 v—2_ v—1
T2T3---Tv71TO ajag - - Ay—1a9 — a1ag * -+ Ay—10a0

2 v—2, v—1
rory Ty _3Ty—20y—1a00a71 * * * Qy—2 = Qy—1A00a71 * * - Qy—2,

so we must solve the system

2 v—2_ v—1
mry Ty oly—1 =T
rori .-t irgmt =1

2 v—2, v—1
TOT] * Ty 3Ty_9 =1

If v = 2, the system is immediately solved: ry = r and rop = 1. If v = 3, it is easy to
see that 7o = 712, 1y = r{ and r{ = 7 so that choosing a 9-th root of r for r; defines
0. Now suppose that v > 3. Starting with the last equation, we can express ry in terms
of ri,...,ry_o and then r,_1 also in terms of r1,...,7,_2. At the next stage, r,_o may
be written in terms of rq,...,r,_3, so that ro and r,_; may also be written in terms of

r1,...,7y—3. Continuing in this way, we see that r1,...,7r,_2 must be equal up to v-th
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roots of unity so that

re = Car1, T3 = (371, ..., Ty—2 = Gu—2T1
) _3 (U 1) 'U+1) v—2)
for some v-th roots of unity (o, ..., (y—2. We then have ro = (5,7 - (,_ and
(v+2)(v 3)
To_1=(3-- g‘f} 5 2 (UH)(U 2)- . Therefore
r=rirdeertTh = G (G () = )
where p(v) = @ Choosing a ¢(v)-th root of r for 71 and (2 = -+ = (,_2 = 1 defines

an automorphism o as required. Note that ¢(3) = 9, so that we have defined the same
automorphism o in the case v = 3.

We now use [5], where the authors show that the Ext algebra of A7 is obtained from the
Ext algebra of A by twisting (they consider a connected graded algebra, but the proof and
result are easily adapted to a quotient of a path algebra by a length homogeneous ideal).
Twisting does not change the number of generators of the Ext algebra or their degrees.

Proceeding in this way for each relation of type one, we see that the number of generators

of the Ext algebra and their degrees do not depend on gq. O

As a corollary of the proof, we may relax the condition that K is algebraically closed.

Corollary 3.3. Let K be a field and let (T',0,m, q) be a quantized Brauer graph with m = 1
and with no loops or multiple edges. Let Ar be the associated Brauer graph algebra. We

assume that one of the following conditions holds:

(i) the valency of every vertex in I is at most two, or
(ii) there is an integer k such that the valency of every vertex in I' is either 1 or k and
the field K contains a root of the polynomial Xk R=1/2 _ for any r € K.

Then the number of generators of Ext 4. (Ar/r .y, Ar/r.a.) and their degrees do not depend

on q.

Proof. In both cases, the ideal It is length homogeneous, and hence Ar is length graded.
It then follows from the proof of Proposition that the result holds. O

From now on, we assume that q = 1, and write (I", 0, m) for a Brauer graph with q = 1.
We assume that (I',0,m) is a Brauer graph with no loops or multiple edges and m = 1.
The next sections describe the structure of certain classes of modules of a Brauer graph

algebra.

4. STRUCTURE OF INDECOMPOSABLE MODULES

Let (T',0,m) be a Brauer graph with no loops or multiple edges and m = 1. Let Ap
denote the associated Brauer graph algebra. We assume q = 1. The following result is used

in Sections [ and [6] where we determine the structure of uniserial and string Ap-modules.
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Proposition 4.1. Let (I',o,m) with m = 1 be a Brauer graph with no loops or multiple

edges and let Ar denote the associated Brauer graph algebra. Let S and T be simple

Ar-modules associated to the edges s and t in T'.

(1) If S2 T, then dimg (Hom 4. (Ps, Pr)) < 1.

(2) If S=T, then dimg (Hom 4,.(Ps, Pr)) = 2.

(3) We have that dimg(Homa.(Ps, Pr)) = 1 if, and only if, S 2% T and there is a
uniserial module with top S and socle T'. In this case, the uniserial module is unique

up to isomorphism.

Proof. (1) Suppose that S 2 T and assume for contradiction that dim g (Hom 4. (Ps, Pr)) >
2. Denote the endpoints of edge ¢ in I' by @ and 5. By our no loops assumption,
a # (. Since Ar is a special biserial selfinjective algebra, rad(Pr)/Soc(Pr) is ei-
ther a uniserial module U or a direct sum of two uniserial modules L; @& Lo. Since
dimg (Hom 4. (Ps, Pr)) > 2 and Soc(Pr) = T, the simple S occurs at least twice as a
composition factor of rad(Pr)/Soc(Pr). If S occurs as a composition factor of either
U or one of the L;’s at least two times, then either m(a) > 2, m(3) > 2 or s is a loop,
which all contradict our hypothesis. On the other hand, suppose that S occurs as a
composition factor of both L1 and Lo. Then s occurs in the successor sequences of ¢
at both vertices @ and 3. Hence, s also has endpoints a and 3. But then s and ¢ are
distinct edges between « and [, which contradicts the hypothesis that there are no
multiple edges. Thus dimg (Hom 4. (Ps, Pr)) < 1.

(2) This is proved by a similar argument to that in (1).

(3) First assume that S 2 T and there is a uniserial module V' having top S and so-
cle T. Then V embeds in the injective module Pr. Hence S must be a compo-
sition factor of Pp. Then dimg(Homa.(Ps,Pr)) = 1 by (1). Next suppose that
dimg (Hom 4. (Ps, Pr)) = 1. By (2), S 2 T. If Pr is uniserial, then it follows that
there is a uniserial submodule of Py with top S and socle T since S is a composition
factor of Pr. Otherwise, we may suppose that rad(Pr)/Soc(Pr) = L; & Lo, and, by
assumption, S is a composition factor of exactly one of Ly or Ls. So suppose that
S is a composition factor of L; and g is the composition of the canonical surjections
rad(Pr) — rad(Pr)/T and rad(Pr)/T — Li. Let V = g='(L;). Then V is a uniserial
submodule of Py having S as a composition factor. Hence, there is a uniserial module
with top S and socle T

It remains to show that if V7 and V5 are uniserial modules with top S and socle T,
then V3 =2 V5. Note that V4 and V5 both embed in Pr. If Vi 2 V5 then S would occur
at least twice as a composition factor of Pr, contradicting (1). This completes the

proof.
O
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Corollary 4.2. Let (I',0,m) with m = 1 be a Brauer graph with no loops or multiple edges
and let Ar denote the associated Brauer graph algebra. Let S and T be simple Ap-modules

associated to the edges s and t in I'. Then we have the following.

(1) If f,g9: Ps — rad(Pr) are nonzero morphisms, then Im(f) = Im(g).

(2) There are only a finite number of submodules of an indecomposable projective Ar-
module.

(3) A submodule M of an indecomposable projective Ap-module is determined by the sim-
ple Ar-modules occurring in the top of M.

(4) There are only a finite number of quotient modules of an indecomposable projective

Ar-module.

Proof. We see that (1) follows from Proposition AIl(1) and (2).

To show (2) and (3), let Pr be an indecomposable projective Ap-module and let M be a
nonprojective, nonsimple submodule of Ppr. Then we have an inclusion f: M — Pp. If Pg
is an indecomposable projective Apr-module and g: Ps — M is a module homomorphism
such that the induced map g: Pg — M /rad M is nonzero, then there is a nonzero map
h = fog: Ps — rad(Pr). By (1), Im(h) is unique. Now Pr is either uniserial or biserial.
If Pr is uniserial, then M = Im(h) and, by Proposition 1], both (2) and (3) follow.

Now suppose that Pr is biserial with rad(Pr)/Soc(Pr) = Li & La. By Proposi-
tion LIK(1), we see Im(h)/Soc(Pr) C Ly or Im(h)/Soc(Pr) C Ly. Assume, without loss
of generality, that Im(h)/ Soc(Pr) C Ly. If M/Soc(Pr) C L; then M = Im(h) and there
are only a finite number of such submodules M. So suppose that M/Soc(Pr) € Ly so
that M # Im(h). Note that M/ Soc(Pr)  Lo. Then, since rad(Pr)/Soc(Pr) = L1 & Lo,
we have M/rad M = S @ S', for some simple Ap-module S’. By Proposition EI[(1) and
(2), S 2 S’ Defining h': Pgs — Pr in a similar fashion to the definition of h, we see that
Im(R")/ Soc(Pr) C Ly and M/ Soc(Pr) = Im(h)/Soc(Pr) ® Im(h')/Soc(Pr). Parts (2)
and (3) now follow.

The proof of (4) follows from (2). O

Let S be the simple Apr-module associated to the edge s in I'. We remarked at the end
of Section [M] that Ps is uniserial if and only if s is a truncated edge. The next result is
more specific on the structure of the indecomposable projective Ap-modules, in the case
where m = 1 and I' has no loops or multiple edges; its proof is straightforward and we

leave it to the reader.

Lemma 4.3. Let (I';o,m) with m = 1 be a Brauer graph with no loops or multiple edges
and let Ar denote the associated Brauer graph algebra. Assume S is a simple Ap-module
such that Pgs is biserial and U is a simple Apr-module such that Py is uniserial. If s is the

edge in I' associated to S and s has endpoints o and B, then let s = sg,51,52,...,Sm—1
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and s = tg,t1,ta,...,th_1 be the successor sequences for s at vertices o and 3 respectively.
Let S; (resp. T;) be the simple Ap-module associated to the edge s; (resp. t;). If u is
the edge in T' associated to U and u has endpoints o/ and ' with u truncated at (3, then
let uw = wug,u,u2,...,up—1 be the successor sequence for w at . Let U; be the simple
Ar-module associated to the edge u;.

(1) The composition factors of Ps are {S,S1,...,Sm—1,T1,...,Th—1,5}.

(2) The composition factors of Py are {U,Uy,...,Up_1,U}.

8) Fori=1,....m—1landj=1,...,n—1, 5; 2 T}.

(4) For0<i<j<m-—1,8%5;.

(5) For0<i<j

(6) For 0 < J

5. STRUCTURE OF UNISERIAL MODULES

In this section we describe the structure of the uniserial modules of a Brauer graph

algebra.

Proposition 5.1. Let (I',0,m) with m = 1 be a Brauer graph with no loops or multi-
ple edges and let Ar denote the associated Brauer graph algebra. Assume S is a sim-
ple Ar-module such that Ps is biserial and U is a simple Ap-module such that Py is
uniserial. If s is the edge in I' associated to S and s has endpoints o and (3, then let
S§ = 80,51,82,..-,8m_1 and s = tg,t1,to,...,th_1 be the successor sequences for s at ver-
tices o and [ respectively. Let S; (resp. T;) be the simple Ap-module associated to the
edge s; (resp. t;) and Sy, = T, = S. If u is the edge in T' associated to U and u has
endpoints o and ' with u truncated at ', then let u = ug,u1,us, ..., up—1 be the succes-
sor sequence for u at o'. Let U; be the simple Ar-module associated to the edge u; and
U, =Uy =U. Let L be a nonzero uniserial Ar-module with composition series for L,
0)=Ly1CLpyCc---CLiCLy=L.

(1) If the socle of L is isomorphic to S, then either 0 < k < m —1 and, for j =0,...,k,

Lj/Ljt1 = Sp_pyjor0<Ek<n—1and, forj=0,....k, Lj/Ljt1 =Ty j4j.

(2) If the socle of L is isomorphic to U, then 0 < k < p and j =0,...,k, Lj/Lj;1 =

Up—kt-

Proof. We prove (1) and leave (2) to the reader. If L is a simple module, then L = S = S,,,,
and taking k = 0 we see that (1) follows. Now assume that L is a nonsimple uniserial
module with socle S. It follows that L is isomorphic to a submodule of Pg since Pg is the
injective envelope of S. Since m = 1 and I" has no loops or multiple edges, rad(Ps) is the

sum of two uniserial modules X and Y such that

(i) X NY = Soc(Ps),
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(ii) if 0 = X, € Xp—1 C -+ C Xp = X is the composition series for X, then, for
G=0,..,m—1,X;/Xj11 2 Sj41,
(iii) if 0 = Y, C Y1 C -+ C Yy = Y is the composition series for Y, then, for
G=0,...n—1,Y;/Yj = Ty,
By Corollary 2(3) and Lemma A3](5), the uniserial module L must be isomorphic to a
submodule of either X or Y and the result follows. O

An immediate consequence of the above result is the following.

Corollary 5.2. Let (I',0,m) with m = 1 be a Brauer graph with no loops or multiple edges
and let Ar denote the associated Brauer graph algebra. If L and L' are two nonsimple,
nonprojective uniserial Ap-modules such that Soc(L) = Soc(L') and Top(L) = Top(L'),
then L = L.

6. STRUCTURE OF STRING MODULES

Let (I',0,m) with m = 1 be a Brauer graph with no loops or multiple edges and let Ap
denote the associated Brauer graph algebra. We now classify the string modules for Ar and
begin with uniserial modules. Let L be a (nonzero) uniserial Ap-module. There are 3 cases
to consider. The first case is that L is a projective-injective module. There is no special
notation for this case. The second case is that L is isomorphic to a simple Ap-module, S.
Let s be the edge in I' associated to S. In this case, we denote L (up to isomorphism)
by str(s™), where str(s™) = S. The final case is that L is a nonsimple nonprojective
uniserial module with top 7" and socle S. Let s and ¢ be the edges in I' associated to the
simple modules S and T respectively. By Corollary 521 T and S completely determine L
up to isomorphism. We denote L by either str(t*,s™) or str(s—,t").

If s and t are edges in I',; and the successor sequence for s at vertex ais s = sq, 51, ..., Sm_1,
then we say t occurs in the successor sequence for s at vertex o if o is a nontruncated
endpoint of s and t = s;, for some 1 < i < m — 1. Clearly t occurs in the successor
sequence for s at vertex « if and only if s occurs in the successor sequence for ¢ at vertex
a. Note also that ¢t cannot occur in the successor sequence for s at both endpoints a and
B, for otherwise o = 3 which contradicts the assumption that there are no loops in I'. Let
S and T be the simple Ap-modules associated to s and t respectively. By Proposition 5.1
and its proof, we see that there is a uniserial module L, unique up to isomorphism, with
top T and socle S, if and only if s =t or ¢t occurs in the successor sequence for s at some
vertex a.

Thus, summarizing the description of uniserial string modules, we have the projective-
injective uniserial modules, the simple modules str(s™), and the modules of the form

str(t™,s™) where ¢ occurs in the successor sequence for s at some vertex a.
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We now describe the nonuniserial string modules for Ar in terms of sequences of

weighted edges in the Brauer graph I'.

Definition 6.1. For n > 2, let §1,...,5, be edges in I'. We assign either + or — to

each edge §; and denote this assignment by either §Z+ or 3;. Consider the sequence
o = 8§74,8%,...,8n, where ¢; € {+,—} for i = 1,...,n. We say o is an acceptable

sequence of weighted edges if the following hold.
(ST1) Fori=1,...,n—1, € # €j41.

(ST2) Fori =1,...,n—1, there are vertices «; in I', such that §;;1 occurs in the successor
sequence for §; at vertex a.
(ST3) Fori=1,...,n—2, a; # ajy1.

We note that, for i = 1,...,n — 1, the vertex «; is uniquely determined by §; and §;41
by our assumption that I' has no loops or multiple edges. We use the notation § in order
to distinguish acceptable sequences and successor sequences, but it may happen that §;, 1
is in fact successor of §; at one of its vertices.

The following result is straightforward and the proof is left to the reader.

Lemma 6.2. Let (I';o,m) with m = 1 be a Brauer graph with no loops or multiple edges

and suppose that o = 87*,85%,...,85 is an acceptable sequence of weighted edges in T with
n > 2. Then

(1) 80,87, ..., 87 is an acceptable sequence of weighted edges in T,

(2) 51*,85%,...,87 is an acceptable sequence of weighted edges inT', fori=2,...,n, and,
(3) fori=1,...,n, ife =+ whene; = —, and e = — when e; = +, then 800,852, 5

is an acceptable sequence of weighted edges in I.

Suppose that o = §7',85%,--- , 85" is an acceptable sequence of weighted edges in T'.

For i = 1,...,n, let S; be the simple Ap-module associated to the edge §;. We define
str(o) inductively such that the top of str(o) is ®{i\e¢=+}§i and the socle of str(o) is
@{ilei:—}gi' We say str(o) satisfies the top and socle condition.

Definition 6.3. Let o = §7*,55%,..., 8% be an acceptable sequence of weighted edges in
I, and let n > 2. For n = 2, str(8}, §5%) was defined above, and clearly satisfies the top

and socle condition.

Assume n > 3 and suppose we have defined str(3{",385%,...,5."7') satisfying the top
and socle condition. There are two cases: e¢,_1 = — and e¢,_1 = +.
(i) Suppose e,_1 = —, so that e, = +. We set

str(c) = coker(p: S,_1 — str(87,... 82 5 ) @str(3, |, 5)),
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where p is induced from the map on socles given by

Syl = (S2®S84®---@®8n_1)® Sp_1 with z — ((0,...,0,2),2) if nis odd
St = (1 @830 ®8,.1) @ S,_1 with 2+ ((0,...,0,2),2) if n is even.

(ii) Now suppose that e,_1 = +. Then e, = —. We define str(o) to be the kernel of the
composition
str(§i1, ) §ani227 §r—i—71) 2] Str(ngh §r_z) — (@{Z | ei:+,1<i<n—1}‘§i) @ Sn—l 1> Sn—h
where the first map is given by canonical surjection onto the tops of str(3{',...,5."7")
and str(§;" 7', 3¢") and v is given by
((yQ’yll""aynfl)ay;L—l) = Yn—1 _y;L—l if n is odd
((Y1,935 -+ Yn—1),Yn—1) 7> Yn—1 — Yp_1 if 1 is even,

where y; € S; and Y4 € S, 1.

The reader may check that the top and socle condition is satisfied by str(c) in all cases.

The next proposition gives an alternative definition for str(o).

Proposition 6.4. Let (I',o,m) with m = 1 be a Brauer graph with no loops or mul-
tiple edges and let Ar denote the associated Brauer graph algebra. Suppose that o =
a€1 a€2 sén

571,85, ...,8%m is an acceptable sequence of weighted edges in I' with n > 3 and let S; be

the simple Ar-module associated to 8;. Let 2 <k <n—1.

(1) If e, = —, then we set
X = coker(u: S — str(35%,...,50%) @ str(s, ..., 85)),

where p is induced from the map on socles given by

S = (52084 ® - @S8) D (S Shp2®-)

with x — ((0,...,0,2),(z,0,...,0)) if k is even
S (81 @88 @8 ® (S ® Sk )
with x — ((0,...,0,z), (,0,...,0)) if k is odd.
(2) If e =+, then we set X to be the kernel of the composition of canonical surjections
onto tops
str(35,...,80%) @ str(5y, ..., 85) = (Bremr1<ick)Si) @ (Blei—t heicny i)
with

Vi (Ofei=+1<i<k}Si) D (Bfe;—+ k<i<n}Si) =Sk
where v is given by
{((y2ay4a s ayk;)? (y;g’yk-f—Qa s )) = Yk — y;{; ka is even
((ylay3a s ayk;), (y;.gayk-f—Qa e )) = Yk — y;.;; ka 18 Odd’
with y; € S; and Yy, € Si.
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Then str(o) = X.

Proof. We proceed by induction on n. For n = 3, k must be 2 = n—1 and the result follows
from the definition of str(c). Now assume the result is true for all m, 3 < m < n—1. Fix
2<k<n—1 If k=n—1, then the result again follows from the definition of str(o).
Assume k < n — 1. There are many cases to consider: e equal to + or —, k even or odd,
and n even or odd. The cases all have similar proofs. We prove one case and leave the
others to the reader.

The case we prove is for n even, k even, and e, = +. Note that we then have, for 7 odd,
e; = — and, for i even, e¢; = +. For ease of notation, we set Z; = str(s7,...,8,, 1), Z2 =
str(8,_1,8)), Uy =str(37,...,8)), Us =str(8},...,§), and V; = str(8},...,5, ;).

From the definition of str(c), we have a short exact sequence of Ap-modules
0— 8,15 7@ Zy — str(o) — 0.
By induction, we have a short exact sequence
02, 5,0V 5 8, —o0.

From this short exact sequence we obtain

g 0
0 Idg,

0= 21®2Z  — > (U®&V)®Zy— S ®0—0.
Also by induction, we have a short exact sequence
0= 81— Vi@ 725Uy — 0,

From this short exact sequence we obtain

dy, 0
0 ¢

02088, 1 sUea(ViaZ)  — U U —D0.
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Using the above sequences and that Uy @ Vi @ Zy = (U1 @ V1) @ Zo = Uy & (Vi @ Zs),

we obtain an exact commutative diagram:

The reader may check that the exact sequence that appears as the last column in the

diagram above proves that X = str(o) in this case. O

Corollary 6.5. Let (I, 0, m) with m = 1 be a Brauer graph with no loops or multiple edges

and let Ar denote the associated Brauer graph algebra. Suppose that o = §5',852,..., 8%
is an acceptable sequence of weighted edges in I' with n > 2. Then T = 85", §Z":11, 8T

1s also an acceptable sequence of weighted edges in I' and
str(o) = str(7).

Proof. By Lemma [6.2l(1), 7 is an acceptable sequence of weighted edges in I'. For n = 2,
the result follows from the definitions. If n > 3, taking k& = 2 in Proposition B4 and

induction yields the result. O

By Corollary [6.5] we see that there are 3 types of string modules over Ap. Suppose
o = 87',...,8r is an acceptable sequence of weighted edges in I'. We say that str(o) is
a positive string module if e; = + = e,, a negative string module if e4 = — = e,, and

a mized string module if e; # e,. We will see that the positive string modules play an

important role in the cohomology theory of Ar.

7. SYZYGIES AND RESOLUTIONS IN A BRAUER GRAPH ALGEBRA WITH NO TRUNCATED
EDGES

In this section we assume that (I',0,m) with m = 1 is a Brauer graph with no loops or
multiple edges, and let Ar denote the associated Brauer graph algebra. The main result
here is Theorem [T 4], where we give a minimal projective resolution of a simple Apr-module,

in the case where I' has no truncated edges.
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We begin by fixing a nontruncated edge s in I' with endpoints « and 8. Since m = 1,
both o and 8 have valency at least 2. Let edge s’ be in the successor sequence of s at
vertex a. We say edge s” follows (s', s) if s” is the successor of s at vertex 8. The following

diagram illustrates this definition:

o () O
o /
(63 s B
o o o
O o o
As in Section [d, if e = 4, we let ¢* = — and if e = —, we let e* = +. We are now in a

position to describe the first syzygy of a positive string module. For this, we introduce the
following notational conventions. The string module str(s*,¢~,u™) will be schematically

represented by
S Y

For a nontruncated edge s, the indecomposable projective Ap-module with top S will be

schematically represented by

where the edge ¢ in I' is in the successor sequence for s at one endpoint of s, and the edge

u is in the successor sequence for s at the other endpoint of s. If a solid line

S

T

appears, then that signifies that not only is ¢ in the successor sequence of s at some vertex

of I', but ¢ is the successor of s at that vertex.

Proposition 7.1. Let (I',o,m) with m = 1 be a Brauer graph with no loops or multiple
edges, and let Ar denote the associated Brauer graph algebra. Suppose that M = str(o)

is a positive string module, where o = 87*,..., 85" is an acceptable sequence of weighted
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edges in I, and n > 3. Suppose also, for each i with e; = 4+, that §; is a nontruncated
edge. Then the first syzygy of M is isomorphic to the positive string module str(T), where

«
1 & a€r sén

T =50",5]", ..., 8, 8",
and where §q follows (82,51) and 8,41 follows (8,—1,58,).
Proof. Since str(o) is a positive string module, n is an odd integer, say n = 2m + 1. By

assumption, m > 1. The projective cover of M is PSI P Pég O P PngH and the socle
of M is given by 5'2 @ 5'4 @D ng. Thus M structurally looks like:

S1 Ss Sh
So Sy Sn—1
Since $§1, 83, ..., Som1 are all nontruncated edges, the corresponding indecomposable pro-

jectives PSH , Pé'g’ ... ’P§2m+1

) PngH looks like:

are biserial. Thus, from the definition of ‘follows’, Py @ng <)

5 53 Sn

So So @ So S$.® s ©Sn_1 Sn,+1

From these diagrams, the reader can easily provide the remaining details of the proof. [J

We assume for the rest of this section that I' contains no truncated edges.

To describe projective resolutions of simple Ap-modules, we will need further notation.
For s an edge in I', we represent the simple Ap-module S by vs(Ar/r), where v is the
vertex in Qr associated to the edge s. Here we are viewing v, as the idempotent in Arp
corresponding to the edge s in I'. We also set the projective Ap-module Pg to be vs(Ar).

Let 89 be an edge in I'.  We now present a minimal projective Ap-resolution of the

simple module vg, (Ar/r),
2 1 0
@1 = @5 Q"L Q" vy (Ar/r) — 0.

We see that Q¥ = vz, (Ar) with f© being the canonical surjection and the first syzygy
is str(§f1, 50 §f), where §_1 and §; are the successors of §y at its endpoints. Applying

Proposition [[I] repeatedly, we see that, if n is odd, then the n-th syzygy of vs,(Ar/r) is

er (v§o (Af/r)) = Str(gi_n’ §:n+1’ gi_n+2’ s >§i—1’ §6a gii_’ s ’ggfla ,§:),
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and, if n is even, then the n-th syzygy of vs, (Ar/r) is

n N At A At A oAt A A At
Qe (s (Ar/r)) = str(87,,87 1,87 10, 8°1,80,81,---,8,_1,5,),
where, for i = 2,...,n, §_; follows (8_;12,8_;11), and §; follows (§;_2,8;—1). From this

we obtain the next result.

Proposition 7.2. Keeping the above notation, let Q™ be the n-th projective in a minimal

projective Ar-resolution of the simple module vs,(Ar/r), and let n > 0. If n is odd,

QnZPS'_n@PS @...@Pg_l@Pgl@...@Pgn_Q@PAn’

—n+2

and, if n is even,

Q"=P; ©P; O OP; ®Py®Pg @ 0Py &P,

where, §_1 and 81 are the successors of g at its endpoints, and, for i = 2,...,n, §_;

follows (8_;42,8-i11), and §; follows (8;—2,8;—1).

It remains to describe the maps f™ in the projective resolution. We recall from Section [3]
that, if edge t is the successor of edge s in I' at vertex a, then we denote the corresponding
arrow in Qr from vertex vy to vertex v; by a(s,t), since there are no loops or multiple edges
in I'. Suppose that s = sg, 51, S9,...,5,—1 is the successor sequence for s at the vertex «
in T, and set s, = so. If 1 < k < n—1, we denote the path a(sg, s1)a(s1,s2) - a(sk_1, Sk),
from v, to v, in Or, by p(so, sx). Note that our assumptions on I' show that p(so, si) is
well-defined.

Lemma 7.3. Suppose that s is an edge in I' with endpoints o and B and that s =
80,81, -,8n_1 1S the successor sequence for s at a. Let s, = sg since sq is the successor

of sp—1. Assume that t is in the successor sequence of s at 3.

(1) If0<i<j<k<n, then p(s;,s;)p(s;, si) = p(si, sk) # 0.
(2) If1
(3) If 0

<1 < n, then p(t, so)p(so, si) = 0.
<1< n—1, then p(si, sn)p(so,t) = 0.
Proof. To prove (1), we note that p(s;,sj) = a(si, si41)---a(sj—1,s;) and p(s;,s) =
a(sj,sj41) - a(sg—1,s,). Hence p(si, s5)p(sj,56) = p(si,s%). That p(ss, i) # 0 follows
from the relations defining It and the fact that p(s;, si) is a factor of C 4.

The other parts follow from the relations defining I, and the fact that p(sg,s;) and
p(si, sn) are associated to the successor sequence for s at vertex «, whereas the paths

p(t, s0) and p(sp,t) are associated to the successor sequence for s at vertex f3. O

We are now in a position to define the maps f”: Q" — Q™ ', for n > 0. The map
fO: vay(Ar) — wsy(Ar/r) is the canonical surjection. Recall that, for each edge s €

I', we are setting Ps = vs(Ar). Using our description of the projective module Q™ in
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Proposition [[2] for n > 1, we write Q™ as an (n + 1) x 1 column vector. Then f"
will be given as an n x (n + 1) matrix with the (4, j)-th entry in vs_, ., , (Ar)
Cmi2joo  Unyzj2 (Ar) to PS‘
The map f!: Q' — QU is given by the 1 x 2 matrix

Vs _pqoj—29

=Vs_ 19 (Ar).

representing a map from Py ot

( p(30,5-1) p(50,51) ),
where §_1 and §; are the successors of § at its endpoints, so that p(8p, $-1) = a(80,5-1)
and p(go, §1) = a(§0, §1)
For n > 2, f™ is given by the matrix

(=)™ 'p(8—nt1,8-n) P(§1—n+17 5_n+2) 0 0 0
0 (=)™ " p(8—nt3,8-—n+2) P(3_ni3,8_nt4) 0 0
0 0 (=D)" " 'p(5—n+5,8-n+a) 0 0
0 0 0 0 0
p(gn,73a§n,—2) 0

0 0 0 e (D" p(8n—1,8n—2)  P(Sn—1,8n)

We now come to the main result of this section, which shows that we have indeed

described a minimal projective Ar-resolution of the simple module vg, (Ar/r).

Theorem 7.4. Let (I';0,m) with m = 1 be a Brauer graph with no loops or multiple edges
and no truncated edges, and let Ar denote the associated Brauer graph algebra. Let 5q be

an edge in I' and

@ = @5 Q5 Q05 g (Ar/r) >0
be as given above. Then (Q°, f®) is a minimal projective Ar-resolution of vs,(Ar/r).
Proof. We begin by showing that f" 1o f* =0, for n > 1. For n = 1 this is clear since,
from the definitions of 0 and f!, we see that Im(f1) = vg,r = str(37,, 35, 8]) = Ker(f9).

That f!o f2 =0 can be proved directly from the matrices. So assume n > 3.

Let A be the matrix representing f

(=)™ 'p(8-ny1,8-n) P(5—n+t1,8-nt2) 0 0 0
0 (=)™ 'p(8—nts,8—ny2) P(8—nt3,8-nta) 0 0
0 0 (=)™ 'p(8—nt5,8—nt4) 0 0
0 0 0 0 0
P(8n-3,8n—2) 0
0 0 0 co (=D ' p(Sn1,8n-2)  P(Sn-1,5n)
and B be the matrix representing f"~!
(=)™ ?p(8—nt2,8-n41) P(8—n+t2,8-n43) 0 0 0
0 (—1)7%210(577&47 S-n+3) P(3_nt4,8_nts5) 0 0
0 0 (=)™ 2p(5-n+6,8—n+5) 0 0
0 0 0 0 0
p(gn,747 én—S) 0

0 0 0 coo (D)™ p(8n—2,8n-3) P(Sn—2,8n-1)
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We show BA is the zero matrix. The (1,1)-entry of BAis —p(8_pn42, 8 n41)P(8—nt1,5_p).
But §_,492 and 5_,, are in the successor sequences for §_, 1 at different vertices. Hence
P(8nt2,8 n1)P(3-n+1,3_5) = 0 by Lemma [Z3(3). The remaining entries of the first
column in BA are all 0.

The (1,2)-entry of BA is

n—1

(_1)n72p(§—n+27 §—n+1)p(§—n+17 §—n+2) + (_1) p(g—n-l—Qa §—n+3)p(§—n+37 §—n+2)-

Suppose the endpoints of §_,49 are a and g in I'. If §_,41 is in the successor se-
quence of 5_, o at the vertex a, then p(5_,42,35_n41)P(3—n+1,5-nt2) = Cs_,0a- We
must also have that §_,,3 is in the successor sequence of §_, o at the vertex 5, and
P(5_nt2, 8- n43)P(3-n43,5-n4+2) = Cs_,., 3. Hence we see that the (1,2)-entry of BA is
(=1)"%(Cs_, 0,0 — Cs_,.,»,p) which is a scalar multiple of a relation of type one in I and
hence 0.

The (2,2)-entry of BA is (—1)"2p(5_nia, 8 ni3)(—=1)" " 'p(5_ 43,8 ni2). But 5,4
and §_,49 are in the successor sequences for §_,,3 at different vertices. Hence
P(8—ntay8—n13)p(8—n+t3,8-—nt2) = 0 by Lemma The remaining entries of the sec-
ond column in BA are all 0.

This alternating pattern continues for the remaining columns and we have shown BA
is the zero matrix. Thus Im(f") C Ker(f™1).

To show equality, we note that the top of @™ maps into Ker(f"~1!). Inductively, we may
assume that Ker(f"~!) is isomorphic to Q% (vs(Ar/r)). The uniqueness of the simple
composition factors of indecomposable projective Ap-modules given in Lemma H3)(3),
together with the structure of the syzygies given in Proposition [Z.I] show that the top of
Q"™ maps isomorphically to the top of Ker(f"~1). Hence Im(f") = Ker(f"~1).

Since, for n > 1, the image of f" is contained in Q™ 'r, the resolution is minimal and

the proof is complete. O

8. THE EXT ALGEBRA OF A BRAUER GRAPH ALGEBRA WITH NO TRUNCATED EDGES

In this section, we assume that (I, 0,m) is a Brauer graph with no truncated edges. We
prove one of the main results of this paper, showing that the Ext algebra of the associated
Brauer graph algebra Ar is finitely generated in degrees 0, 1 and 2.

Let G be a finite abelian group and let W: Zr — G be a Brauer weighting such that
the Brauer covering graph (I'yy, oy, mypy) has myy = 1 and no loops or multiple edges (see
Section B)). Suppose that s is an edge in I" incident with vertex o in I, and s, is an edge in
Iy incident with vertex a4 in I'y, such that s, lies over s and a4 lies over a for some g € G.
Then, by [I0, Proposition 3.4 and Definition 3.5], m(a) valp(a) = my (o) valpy, (o),
where valp(o) and valr,, (o) denote the valencies of o and « respectively. It follows

that edge s in I' is truncated at vertex a in I' if and only if edge s, in I'y is truncated
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at vertex ay in I'yy. Thus, to study the Ext algebra of a Brauer graph algebra associated
to a Brauer graph (I', 0, m) with no truncated edges, it follows from the above discussion
and Proposition BJ] that we may assume (I", 0,m) is a Brauer graph with m = 1, with no
loops or multiple edges and no truncated edges.

Let Ar denote the associated Brauer graph algebra and let r denote the Jacobson radical
of Ar. The Ext algebra of Ar is E(Ar) = @n>0Ext’y (Ar/r, Ar/r) with the Yoneda
product. Let 8 be an edge in T' and Sy = vs,(Arp/r) the associated simple Ap-module,

where vg, is the idempotent in Ar associated to 5y. Let
2 1 0
@1 =25 Q"5 Q"D vy (Ar/r) = 0
be the minimal projective Arp-resolution of So given in Theorem [(4] with

Q" = Py &Py @& @®P; &Py &Py &Py, forneven
Py @ Pg ®---®P; &Py ®---®F;, for n odd.

—n+2
Since each Pg is an indecomposable projective Ar-module, we choose a K-basis G?(S’o),
where i € {—n,—n +2,...,n —2,n}, for Ext’ (S'O,AF/I'), where G?(S'o) represents the
element in Extzr(go, Ar/r) given by the composition

Qn — Pgi — S'Z — .A[*/I',

where the first map is the projection map, the second map is the canonical surjection,
and the third map is inclusion. We call {GZ”(5'0)}ie{,n,,nw,___,nﬁ’n} the canonical basis
of Ext’y . (So, Ar/r). Since Ap/r = &gyer, So, so that
Ext’ (Ar/r, Ar/r) = @ Ext%. (So, Ar/r),
So€el
we abuse notation and view
g" = U {Gzn(SO)}ie{fn,fn+2,...,n72,n}

S0€lt

as a K-basis of Ext’ (Ar/r, Ar/r).

We now present the main result of this section.

Theorem 8.1. Let (I',0,m) be a Brauer graph with no truncated edges, and let Ar denote
the associated Brauer graph algebra. Then the Ext algebra, E(Ar), is finitely generated in
degrees 0,1 and 2.

Proof. From the above discussion, we may assume (I', 0, m) is a Brauer graph with m = 1,
with no loops or multiple edges and no truncated edges. Fix an edge §y in I with associated
simple Ap-module Sy. We keep the previous notation. Since Ar /r = @®er, T, we have
Ext’) . (S'O,Ap/r) = ®er, EthF(SO,T), and hence, for i € {—n,—n+2,...,n—2,n}, we
may view G?(Sp) as a map G?(S5p): Q" — ;.
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First we suppose that n > 2 is an even integer. Let i € {2,4,...,n —2,n}, and let
2 1 0
(R*,¢%): = R2L RS R L, (Ap/r) — 0

be the minimal projective Ap-resolution of S;_; given in Theorem [Z4l We show that

G (80) = G2 (So) + G (Si1),
where the right hand side is viewed in the Yoneda product Ext}étF (S'i_l, S'Z) xEthl;l (5'0, S'i_l).
For ease of notation and consistency, we set £y = §;_1 (noting that i # 0). Let #; and {_;

be the edges in I" that are the successors of #y at the endpoints of y. Define the sequence
f,n, t:nﬂ, .. ,fn,l, tn recursively:
for i > 1, tAZ follows (fi_z,fi_l) and E—i follows (f—i+27£—i+1)-

With this notation,

R {Pi“m & P’flmm B P P:,Al2 & PTO & PT2 @B PTm’ for m even
lem ) PT,m+2 D---D lel D PT1 ©---D PTm’ for m odd,
and the maps ¢g™: R™ — R™ ! are given in a similar fashion to the maps f” in the
resolution of SO.

We begin by finding maps 1y and 1, such that the following diagram commutes.

0 Q—=Q!

o
P1 po
1

0 A
Rl g0 9 .34 |

Since fy = 8;_1 and since §; follows (8i—2,8i—1), we see that §; is the successor of §;_;
at one of its endpoints. Furthermore, §;_» is in the successor sequence of §;_1 at the other
endpoint 3 of ;_1. Thus, after reordering, we may assume that ¢; = 3; and that both §;_
and t_; are in the successor sequence of §;_; at the vertex 8, with ¢_; being the successor

of §;_1 at 8. The following diagram illustrates this.

(o) (o)
si=t1
Sime B di—1=to
O. (o) (o) o
t_q
(o) (o)
From this we see that RY = PTO = PS‘i_l and R! = Pll ® Pi“l = P:,Al1 ® PS’i' Define

Yo: Q"1 = RV by Yo(T_pi1,ong3,- -, Tn-3, Tn1) = zi_1 and define ¢1: Q" — R' by
the 2 X n matrix

o O

0 —p(t_1,§i_2) 0 0O --- 0
0 0 vy, 0 -+ 0
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where the first nonzero column represents the map from PS},Q to Py @ PS} and the next
nonzero column represents the map from PSi to Py @ Pgi. The reader may now check
the commutativity of (x).

Next we see fI‘OHl the diagram
fn
Qn Qn—l

G?:f(go)
ld’l lm\
1

O A
Rl R _9 .3

G}(m .

S;

that G}(S;_1) o1 = G 1(So) * GH(Si_1) = G(Sp).

Next suppose i € {—n,—n+2,...,—2}. The proof that G;‘;f(é‘o) % GH(Siy1) = GP(So)
is similar and is left to the reader. In fact, interchanging §; with §_; fori € {2,... ., n—2,n}
in the above proof, gives the result.

For n even, it remains to consider the case when ¢ = 0. Here we show that
Gy ~%(S0) * G§(S0) = G5 (S0).

This is clear if n = 2 so assume n > 4. We find explicit maps 6y, 61, and 65 such that the

following diagram commutes.

n n—1

() QLo L gn
J, l l %j(ﬁo)

02 01 0o

2 1 0 .

@t L5
We have that Q% = PS’_i @ PS—H—Q DD PSi—Q &) Pgi. Thus, for ¢ > 3, and j = i — 2k,
with k£ > 0,

QZ:Pﬁ,i@PS,i @“.@PS!];Q@QJ@PSJJF @...@Pgi.

+2 2
We then take 6, 61, and 6 to be the projections Q° — @7, for the appropriate i’s and
j§’s. The reader may check that (++) commutes. Noting that the composition GZ(Sp) o 6y
is just G(Sp), we have that Gi~2(Sg) * G2(So) = G2(So). This completes the study of
the case when n is even.

Now suppose that n is odd, n > 3. We claim that, for i € {1,3,...,n —2,n},
G771 (S0) * G (Si-1) = G (o),
and for i € {—1,-3,...,—n+2,—n},
Gy (S0) * GH(Si1) = GF(S0).
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For i # —1, 1, the proof is analogous to the n even case. For ¢ = —1 or i = 41, keeping 6y

and 0, as above, we get a commutative diagram

n I n—

Qr —— Q! A

lel leoﬁl(so)
1 0 "

QL qr L3

and it is now immediate that
Gy (So) * G} (So) = G7(Sp).

Thus we have shown that every basis element in Ext’y (S'O,T) is the product of an
element in some Extﬁ;l(gi,T) with an element in Exthr(go,gi), or is the product of
an element in some Extz;z(gi, T') with an element in Extilr(é'o, 5‘,) This completes the
proof. O

We end this section with an immediate application to Ko algebras. The concept of a Ko
algebra was introduced by Cassidy and Shelton in [5, Definition 1.1], where they defined a
graded algebra A to be ICq if the Ext algebra, F(A), is generated as an algebra in degrees

0, 1 and 2. This class of algebras is a natural generalization of the class of Koszul algebras.

Corollary 8.2. Let K be an algebraically closed field and let (I';o,m,q) be a quantized
Brauer graph with no truncated edges. Let Ar denote the associated Brauer graph algebra.
Suppose Ar is length graded. Then Ar is a Ko algebra.

Proof. From the discussion at the beginning of this section, we may assume that (I', 0, m, q)
is a quantized Brauer graph with m = 1, with no loops or multiple edges and no truncated
edges. From Proposition B2, we may assume further that ¢ = 1 since the number of
generators of the Ext algebra, F(Ar), and their degrees do not depend on q. The result
now follows from Theorem and the fact that Arp is a graded algebra. O

We consider Ky algebras and other generalizations of Koszul algebras further in the

next section.

9. LENGTH GRADED BRAUER GRAPH ALGEBRAS

In this section, (I, 0,m) is a Brauer graph and Ar denotes the associated Brauer graph
algebra.

Our first results lead to Theorem [0.4] where we characterise the Brauer graph algebras
Ar where the Ext algebra, F(Ar), is finitely generated in degrees 0, 1 and 2. This provides
a converse to Theorem In the remainder of the section we consider length graded
Brauer graph algebras Ap. We recall the definition from [8] of a 2-d-Koszul algebra. We

then complete our study of generalizations of Koszul algebras with Theorem [3.6] where we



THE EXT ALGEBRA OF A BRAUER GRAPH ALGEBRA 33

classify the Brauer graph algebras that are 2-d-Koszul. Indeed, Theorem shows that
a Brauer graph algebra is a 2-d-Koszul algebra if and only if it is 2-d-homogeneous and a
Ko algebra.

We begin with a result on syzygies of string modules where the Brauer graph I' may

have both truncated and nontruncated edges.

Proposition 9.1. Let (I',0,m) with m = 1 be a Brauer graph with no loops or multiple

edges, and let Ar denote the associated Brauer graph algebra. Let o = §7*,... be an

’ n
acceptable sequence of weighted edges in T, and n > 2. Let M = str(o).
(1) Suppose that ey = +.

e If 31 is a nontruncated edge, then the first syzygy of M is isomorphic to the string
module str(7), where T begins as in Proposition [71.

e If §1 is a truncated edge, then the first syzygy of M is isomorphic to the string
module str(7), where T begins T = SIT, §§2, ..

(2) Suppose that e; = —

e If 31 and 8o are incident at the vertexr o and if 8o is the successor of §1 at «, then
the ﬁrst sYzygy of M is isomorphic to the string module str(r), where T begins
T = §§2,§§3, ..

e If 31 and 85 are incident at the vertex o and if §o is not the successor of §1 at a,
then the ﬁrst sY2ygy of M is isomorphic to the string module str(7), where T begins
=it §;2, §33, ..., and where t is the successor of 8 at c.

(38) The first syzygy of M may be fully determined using (1), (2) and Corollary [G3.

The proof is similar to that of Proposition [[.I} note that these syzygies also appear in
[1] where they consider the Ext algebra of a symmetric Brauer graph algebra.

For a string module str(o), where o = 87", ..., 8% is an acceptable sequence of weighted
edges in I', we see that the only §; that can be truncated edges are §; and §,,. Thus we
may use Proposition to find all syzygies of the simple Ap-modules. In the case where
S is the simple Ap-module corresponding to a truncated edge s in I', we can simplify

Proposition [@.1] and have the following corollary.

Corollary 9.2. Let (I',0,m) withm = 1 be a Brauer graph with no loops or multiple edges,
and assume that T' # Ao. Let Ar denote the associated Brauer graph algebra. Suppose
that edge s in I' is truncated at vertex a. Define edges §; recursively, so that §9 = s, §1
is the successor of s at the endpoint B # «, and, for m > 1, if §,, is not truncated at the
vertex which is not incident with 8,,—1, then §,4+1 follows (84,1, 58m). Then,

(1) there is some n =1 so that 8, is a truncated edge in T';

(2) for 1 <m < n, the m-th syzygy of S is str(s
(3) the (n+ 1)—5t syzygy of S is str(8;).

m’ml)
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Moreover, S is a periodic Ap-module.

The sequence (8o, 81, ..., §,) of Corollary 0.2 is precisely the Brauer walk for s = §; see
[14] and [II]. We note that it is also known from [I5, Corollary 2.7] that S is a periodic
Apr-module when s is a truncated edge in I.

For the next result, we recall that Hom 4.(—,—) denotes the Ap-module homomor-

phisms modulo those homomorphisms which factor through a projective Apr-module.

Theorem 9.3. Let (I',o,m) with m = 1 be a Brauer graph with no loops or multiple
edges. Let Ar denote the associated Brauer graph algebra. If T' has both truncated and
nontruncated edges, then the Ext algebra, E(Ar), is not generated in degrees 0, 1 and 2
alone.

In particular, if we have a sequence of edges Sq, 1, ...,8, with n > 2, where

(i) 80 and 8, are truncated edges,
(ii) 81,82, ...,8,—1 are nontruncated edges,
(iii) 81 is the successor of 8o,
(iv) ;41 follows (8;-1,8;) for1 <i<n—1,
then there is an element of Extfﬁl(go,gn) which is not in the subalgebra of E(Ar) gen-

erated by the elements of degree at most n.

Proof. Note that we continue to assume that the Brauer graph I' is connected. We shall use
Corollary @2 repeatedly without comment. Recall that Extf“;lr (S0, T) = Hom 4, (Q%(Sp), T)
Hom 4 (QFF¢ (Sp), Q(T)) for any simple module T, and that for simple modules S, T and
U, and integers k and ¢, the Yoneda product Extﬁr (T,U) x ExtﬁF(S, T) — EXtZJICZ(S, U)
can be identified with the composition of maps Hom 4 . (Q2%4(S), Q(T)) x Hom 4. (Q4(T),U) —
Hom 4. (QF4(S), U).

Since §¢ is a truncated edge, we know that Extxtl(go, S,) = Hom 4. (2"11(Sp), S,,) =

Hom 4. (5'”, S'n) ~ K. We must prove that homomorphisms from S,, to itself cannot be

1

written as sums of Yoneda products of elements of Extly. (S0, T) and EthAp (T, S,) with
T a simple Ap-module, i + j = n + 1 and ¢ and j nonzero.

First note that ExtQF(SO,T) ~ Hom 4. (Q2(Sp), T) = Hom 4, (Top(Q(Sp)), T), and we
have Top(Q2*(Sp)) = S; for some ¢ with 1 < i < n. Therefore T' = S;.

Moreover, Extly (So,S;) = Hom 4 (Q7(Sp), 7 (S;)) = Hom 4.(Q"+1(So), 7 (S;)) =
Hom 4, (S, 7 (85;)) and Extf‘lr(gi,gn) >~ Hom,.(7(5;),5,). These two spaces must
be nonzero; therefore S, must be in the socle and in the top of €7(S;). Since §, is
truncated, this means that ©7(S;) is a mixed string module, of the form str(3;,...,3}),
by Proposition @Il But then the composition S'n — (S'Z) — S'n must be zero, unless
Q7 (S'Z) = S'n, since the first map must go into the socle and the second map comes from the
top. Hence assume that Q7($;) = S,,. Since S, = Q"1(Sy) and Ar is selfinjective, this
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implies that §; = Qn+1-J (5'0) = Qi(S'o) so that Qi(S'O) is simple. However, Qi(go) is the
nonsimple uniserial module with top S, and socle Si,l, so that we have a contradiction.
Therefore any Yoneda product Extjtl_i(T, S,) x Ext!y, (80, T) — Ext%tl(go,gn) with

1 <7< nandT simple is zero, and we have the required result. O

The next theorem characterizes the Brauer graph algebras Ar where the Ext algebra,
E(Ar), is finitely generated in degrees 0, 1 and 2, providing a converse to Theorem

Theorem 9.4. Let (I';0,m) be a Brauer graph and let Ar denote the associated Brauer
graph algebra. Then the Ext algebra, E(Ar), is finitely generated in degrees 0, 1 and 2 if

and only if I does not have both truncated and nontruncated edges.

Proof. If T has no truncated edges, then it follows from Theorem RBIlthat E(Ar) is finitely
generated in degrees 0,1 and 2. So suppose that I" has at least one truncated edge. If all
the edges are truncated then I' is a star (including the case I' = Ay) and the associated
Brauer graph algebra Ar is a Nakayama algebra. It is well-known that such an algebra is
d-Koszul (for d > 2) and hence, by [9], its Ext algebra is generated in degrees (at most)
0, 1 and 2. (Indeed, a d-Koszul algebra is also length graded and so is Ks.)

Thus we may assume that I" has both truncated and nontruncated edges. From the
discussion at the start of Section B and Proposition B, we may assume that (I, 0,m) is
a Brauer graph with m = 1, with no loops or multiple edges and which also has both
truncated and nontruncated edges. It is now immediate from Theorem 03] that F(Ar)

cannot be generated only in degrees 0, 1 and 2. U

Corollary 9.5. Let (I',o,m) be a Brauer graph and let Ar denote the associated Brauer
graph algebra. Suppose Ar is length graded. Then Ar is Ko if and only if I' does not have

both truncated and nontruncated edges.

We now introduce 2-d-Koszul algebras, a class of graded algebras which includes the
Koszul algebras. Recall from Section [ that an algebra A = KQ/I is a 2-d-homogeneous
algebra if I can be generated by homogeneous elements of lengths 2 and d.

Let A = KQ/I where I is generated by homogeneous elements, so that A is length
graded with A = Ag @ Ay & Ay @ ---. Following Green and Marcos in [§], and for a
function F: N — N, the algebra A is said to be F-determined (respectively, weakly F-
determined) if the n-th projective module in a minimal graded projective resolution of Ag
(viewed as a graded A-module in degree 0) can be generated in degree F'(n) (respectively,
< F(n)), for all n € N. Let 6: N — N be the map given by

2d if n is even
5(”) = Z_ld . .
fomd+1 if n is odd.
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An algebra A = KQ/I is then said to be a 2-d-determined algebra if I can be generated
by homogeneous elements of degrees 2 and d, and if A is weakly d-determined. Thus
a 2-d-determined algebra is a 2-d-homogeneous algebra. Furthermore, a 2-d-determined
algebra is said to be 2-d-Koszul if its Ext algebra is finitely generated.

Assume that (T, 0,m, q) is a quantized Brauer graph and let Ar denote the associated
Brauer graph algebra. Suppose that Arp is graded with the length grading. Then the
conclusions of Theorems and are still true for Ap, provided the field K satisfies one
of the two conditions in Corollary B3l This is the case if K is algebraically closed, for which
see Proposition and also Corollary B2l This allows us to classify the 2-d-homogeneous

Brauer graph algebras which are 2-d-determined.

Theorem 9.6. Let (I';0,m,q) be a quantized Brauer graph, let Ap denote the associated
Brauer graph algebra, and assume that either q = 1 or the field K satisfies the conditions
in Corollary[33. Let d > 3 and suppose that Ar is 2-d-homogeneous. Then the following

are equivalent:

(1) T has no truncated edges,
(2) Ar is 2-d-determined,
(3) Ar is 2-d-Koszul,

(4) Ap is Ks.

Proof. The equivalence between (1) and (4) follows from Corollary @5 since a 2-d-
homogeneous Brauer graph algebra cannot have only truncated edges. By definition,
(3) implies (2). We prove that (1) and (2) are equivalent, and then that (2) implies (3).
Suppose throughout that Ar is 2-d-homogeneous.

(2) = (1). Suppose that I" has at least one truncated edge s. By Proposition [Z5]
we know that no two successors are truncated and that for any vertex « in I' we have
m(a)val(a) € {1,d}. There are edges 59 = s,51,...,8,—1, 8, such that §, is truncated,
n>2, 8,...,58,_1 are not truncated, §; is the successor of 5y at the vertex oy and for
each integer m with 1 < m < n the edge §,,4+1 follows (8,,—1, 8,,,) at the vertex a,,11, as
in Corollary Note that when §,, is a loop, it occurs twice in the successor sequence
of 8,,—1; when we say that 8,,,1 follows (8,,-1, 8,,) in this case, we have considered one
instance of the loop being in the successor sequence of §,,_1, and §,, 11 is the successor of
S$m—1 at the other instance of this loop in the successor sequence of §,,_1. We shall now
prove that the third projective in a minimal projective resolution of the simple Ap-module
Sn,l has a generator in degree d + 2 > §(3) so that Ap cannot be 2-d-determined.

Let t be the successor of §,_1 at a,—1 and, if ¢ is not truncated, let u follow (8,_1,t).

Then the indecomposable projective module Py is the uniserial module of length d whose
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Sn
top and socle are S;,, which we represent by Pg = SY,I- The indecomposable projective
Sn
Sn-1
S . g . L
module Pg is biserial, we represent it by Pg = " where X is the uniserial
n—1 n—1 < /Y St
Sn-1

module of length d — 1 with top 7" and socle Sh_1 (defined from the successor sequence of

t at ay,—1). We shall also need Pp and Py which we represent as follows:

X e, U
- if ¢ is truncated Z if u is truncated
T U
Pr = and Py =
/T\X Z/U\ . 3
p & if ¢ is not truncated T [/L if w is not truncated,
\’T/ n—1

where U, Z and L are uniserial modules defined as before from the appropriate successor
sequences.
Let (Q°®, f*) be a minimal projective resolution of S,_1. Then Q' is generated in degree 1

(by arrows in the quiver). If the edge ¢ is truncated, then Qz(ﬁn,l) = T/S""lxg , the module

Q? is generated in degree d, the next syzygy is Q?’(S'n_l) = X\sn,l/ " and Q? is generated

N U
in degree d + 2 > 6(3). If the edge t not is truncated, then Q2(S, ) = Z\’T/Sn—l , and

Sn
the module Q? is generated in degrees 2 and d. If the edge u is truncated, the next syzygy

T
is Q3(S,_1) = v \X\ _Y and Q3 is generated in degrees d + 1 and d +2 > §(3). Finally,
Sn 1

~

LT

if the edge u is not truncated, the next syzygy is Q3(S,_1) = v \X\ Y and Q3 is
Sn—l

generated in degrees 3, d+ 1 and d + 2 > 4(3).

Therefore, if I has a truncated edge, then Ar is not 2-d-determined. Hence (2) implies
(1).

(1) = (2). Now assume that I" does not have any truncated edges. Then by Proposition
20 we know that for any vertex o in I' we have m(a)val(a) = d. To prove that Ar is
2-d-determined, we shall follow the lines of Proposition[Z.2] and give a projective resolution
of the simple module SO, in which the projectives will be generated in appropriate degrees.
We need to be more precise in our notation, since we are no longer assuming that there are
no multiple edges; in particular, in the notation a(s,t,«) defined in Section B the vertex
« must be specified.

Let §y be an edge in I', and let oy and 5y be its endpoints. Let §; be the successor of §g
at o and let a1 be the other endpoint of §1. Let §_1 be the successor of §y at 5y and let 5q
be the other endpoint of §_1. For an integer n > 2 and for any integer ¢ with 2 < i < n, let
3; be the the edge that follows (8;_2,8;—1) at a;_1, let a; be the other endpoint of §;, let
3_; be the the edge that follows (8_;12,8_;11) at f;_1, let 3; be the other endpoint of 5_;.
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Then the projectives Q™ in a minimal projective resolution of Sy are as in Proposition
The map f!: Q' — QO is given by the matrix

(a(80,5-1,50) a(30,31,a0)).

In order to define the maps f™: Q" — Qn_l for n > 2, we need to define, for 0 < j <
VLTAL the following paths of length d — 1 :

m(an—2j—2)—1
8n—2j-2,0n—2j-2

S N (2 2 m(Bn—2j—2)—1
P(5_nt2j41 5—ny2j42; Bn—2j—2) = P(3—nt2j+1, 5—n+2j+2 /Bfn+2j+2)C§7n+2j+275n72j72-

P(8p—2j—1,8n-2j-2,0n_2j-2) = P(8n—2j—1, Sn—2j—2, n_2;j_2) and

If n > 2iseven and 0 < j < 5§ — 1, the matrix of f": Q" — Q" ! is described as follows,

its (j, j)-entry is — a(8_ny2j41,5 nt2j, Bn—2j-1)

its (4,7 + 1)-entry is p(8_pn+2j+1, S—nt2j+2, Bn-2j-2)
(n—1—=j,n—1—j)-entryis — p(8p—2j—1,8n-2j—2, n—2j—2)

(’I’L —1- j, n — j)—entry is a(§n,2j,1, §n72j, ()én,Qj,l).

its
its
Ifn>3isoddand 0 < j < "T_?’, the matrix of f™: Q"™ — Q" ! is described as follows,

its (4, j)-entry is a(3_n42j11,5-nt2j, Bn—2j-1)

its (4,7 + 1)-entry is p(8_n+2j+1, S—nt2j+2, Bn—2j-2)

its (n—1—j,n—1—j)-entry is p(8,—2j—1,8n—2j—2, ¥n—2j—2)
its (n — 1 —j,n — j)-entry is a(8,—2j—1, 8n—2j, ¥n—2j—1)

(”771, =y entry is a(80,5_1, Bo)

2
its (251, 2)-entry is a(30, 81, o).

The projective @' is generated in degree 1 (by arrows in the quiver Qr), the projective
Q? is generated in degrees 2 and d (by some elements in the set of minimal generators of
the ideal It, but this can also be seen directly). It can then be seen inductively, using the
resolution given above, that Q™ is generated in degrees at most d(n); more precisely, the
modules PSA%% and PS:H% are generated in degrees n + j(d — 2) with 0 < j < [§]. This
is true of the resolution of any simple Ap-module, and therefore Ap is 2-d-determined.
Thus (1) implies (2), and we have that (1), (2) and (4) are equivalent.

(2) = (3). Suppose Ar is 2-d-determined. Then, by the equivalence of (2) and (4),
we know that Ar is Ko. Hence the Ext algebra, F(Ar), is generated in degrees 0, 1 and 2
and so is finitely generated. Thus Ar is 2-d-Koszul and hence (3) holds. This completes
the proof. O

This theorem gives a positive answer for Brauer graph algebras to all three questions
asked by Green and Marcos in [8 Section 5|. Specifically, we have shown, for a Brauer

graph algebra Ar which is 2-d-homogeneous, that
(1) if Ap is a 2-d-determined algebra, then E(Ar) is finitely generated;
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(2) if Ar is a 2-d-determined algebra and if E(Ar) is finitely generated, then E(Ar)
is generated in degrees 0, 1 and 2;
(3) if E(Ar) is generated in degrees 0, 1 and 2, then Ar is a 2-d-determined algebra.

In addition, note that algebras Ay of [16], where N > 1, are all Brauer graph algebras,
where I' is the oriented cycle with every vertex having multiplicity IN. Moreover, these
algebras are 2-2N-homogeneous and, using Theorem [0.6] we see that they are also 2-2/N-
Koszul. This example gives a new class of 2-d-Koszul algebras.

In contrast to Theorem [0.0], a negative answer was given by Cassidy and Phan to the
first two questions posed by Green and Marcos in [§]. In [4], Cassidy and Phan give
specific infinite-dimensional algebras A and B such that A is 2-4-determined but E(A) is
not finitely generated, and B is 2-4-determined of infinite global dimension, E(B) is finitely
generated, but F(B) is not generated in degrees 0, 1 and 2. Another generalization of
Koszul is given by Herscovich and Rey in [12], where they study multi-Koszul algebras.
In particular, they remark that a left {2, d}-multi-Koszul algebra is a 2-d-Koszul algebra
in the sense of [§], though the converse does not hold. However, they showed that the Ext
algebra of a multi-Koszul algebra A is generated in degrees 0, 1 and 2, so that the algebra
A itself is K.
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