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Abstract 

An over representation of adverse pregnancy outcomes has been observed in pregnancies associated 

with a male fetus. We investigated the association between fetal gender and candidate biomarkers 

for preeclampsia. Proteins were quantified in samples taken at 20 weeks from women recruited to 

the SCOPE study (preeclampsia n=150; no preeclampsia n=450). In contrast to PlGF, sEng and IGFALs, 

levels of ADAM12 at 20 weeks were dependent on fetal gender in pregnancies complicated by 

preeclampsia, male (n=73) 1.3 multiples of the median (MoM) [IQR 1.1-1.5] vs female (n=75) 1.1 [1.0-

1.3]; p<0.01. Prediction of preeclampsia using ADAM12 levels was improved for pregnancies 

associated with a male rather than a female fetus, Area under Receiver Operator Curve (AUC) 0.73 

(95% CI 0.67-0.80) vs 0.62 (0.55-0.70), (p=0.028). The data presented here fit a contemporary 

hypothesis that there is a difference between the genders in the response to an adverse maternal 

environment and suggest that an alteration in ADAM12 may reflect an altered placental response in 

pregnancies subsequently complicated by preeclampsia. 

  



Introduction  

Many investigators have observed disparities between male and female fetuses in relation to a 

number of adverse pregnancy outcomes. The ratio of male fetuses to female fetuses has been shown 

to be increased in fetal loss due to miscarriage1 and stillbirths2. Disorders of pregnancy associated 

with poor placentation such as abruption2, preeclampsia3 and fetal growth restriction (FGR) 

associated with placental insufficiency4, 5 have also been shown to occur more frequently when the 

fetus is male. Furthermore, sex specific alterations in placental genes (e.g. JAK1, IL2RB, Clusterin, 

LTBP, CXCL1 and IL1RL1 and TNF receptor)6 have been observed to be upregulated in female 

placentas suggesting that aberrations in placental function can occur in a sex specific manner7. 

Placental complications such as preeclampsia and fetal growth restriction represent highly significant, 

but potentially modifiable health and economic burdens throughout the world.  Preeclampsia 

continues to be a major cause of maternal mortality8, and there are strong associations between 

both conditions and stillbirth9, 10. Effects of preeclampsia and FGR are not limited to very early life; 

surviving babies are at increased risk of cardiovascular disease, chronic hypertension, type 2 diabetes 

and schizophrenia in adulthood11. To prevent the complications of preeclampsia and FGR, women at 

high risk of the condition need to be identified early in pregnancy.  Consequently there is much 

interest in predictive tests using combinations of clinical risk factors, biophysical measurements and 

biochemical tests12-16.  Although there have been significant advances in the reported performance of 

these combinations, to date no screening test has achieved the requisite sensitivity and specificity to 

be useful and cost effective in a clinical setting.  

Much of the data on early pregnancy biomarkers is conflicting17-20, with several studies reporting 

positive and negative findings for the same markers. We have previously identified the biomarkers 

placental growth factor (PlGF), soluble endoglin (sEng), metallopeptidase Domain 12 (ADAM-12) and 

insulin-like growth factor acid labile subunit (IGFALS)) as being relevant to the prediction of 

preeclampsia and FGR21. In this study, we aimed to investigate whether there was a significant 

association between fetal gender and the levels of these protein biomarkers. In addition, the 

influence of fetal gender on the predictive performance of potential biomarkers was assessed. 



Methods 

Local ethical committee approval was granted and written informed consent was obtained from all 

participants. Women recruited into the SCOPE study, a prospective screening study of low risk 

nulliparous women recruited in Australia, New Zealand, United Kingdom and Ireland between 

November 2004 and February 2011 (ACTRN12607000551493) participated in this study12. A research 

midwife interviewed participants at 14-16 weeks’ and 19-21 weeks’ gestation and pregnancy 

outcomes were prospectively tracked. At the time of interview, blood pressure, height and weight 

were measured and data were entered on an internet accessed central database (MedSciNet). Two 

consecutive manual blood pressure measurements were recorded. Blood samples were collected on 

EDTA at 14-16 and 19-21 weeks’ gestation and plasma was stored at -80°C within four hours of 

collection.  

Samples:  

150 women who developed preeclampsia and 450 controls were randomly selected from the 5605 

women recruited in Australia, New Zealand, London, Manchester, Leeds, UK and Cork, Ireland. 

Controls were selected from those who did not have preeclampsia at the same center and included 

women with uncomplicated pregnancies and those with complications such as small for gestational 

age, preterm birth, gestational hypertension and gestational diabetes21. Preeclampsia was defined as 

systolic blood pressure ≥140 mm Hg or diastolic blood pressure ≥90 mm Hg, or both, on at least two 

occasions four hours apart after 20 weeks’ gestation but before the onset of labour, or postpartum, 

with either proteinuria (24 hour urinary protein ≥300 mg or spot urine protein:creatinine ratio ≥ 30 

mg/mmol creatinine or urine dipstick protein ≥++) or any multisystem complication of preeclampsia12. 

Preterm preeclampsia was defined as women who required delivery prior to 37 weeks’ gestation. 

Small for gestational age (SGA) was used as a proxy for FGR and was defined as infants weighing 

<10th customized centile12. 

Measurement of proteins 

Proteins were quantified as part of a biomarker validation study using targeted mass spectrometry 

assays based on an SRM peptide quantification method, using custom-built assays as previously 

reported21. In brief, plasma samples were depleted of albumin and IgG, denatured and spiked with 

mixture of isotopically-labelled peptides serving as internal reference. Following tryptic digestion, 

and peptide separations, quantitative data was obtained using a triple quadrupole MS instrument. 

The readout of an assay in each sample was the ratio of the analyte signal area (endogenous peptide) 

over the common internal standard signal area. Comparison of ratios between different samples 



represents the relative quantification of the protein. The details of the peptide transitions used are 

described in the supplementary information of our previous study21. 

The sample order was randomised prior to every analytical step, and laboratory personnel were 

blinded to the pregnancy outcome related to each sample. Technical variation was estimated by 

preparing and measuring 10% of the samples, in duplicate, in a randomized order. Coefficient of 

variation were 11%, 12% and 10% for sEng, ADAM12 and IGFALS, respectively, with <5% missing data 

for each biomarker21.  

PlGF was measured in all samples using DELFIA time resolve fluorescence technology (PerkinElmer, 

Turku, Finland). Interassay coefficients of variation for the PlGF assay were 3% at 16.8 pg/mL and 8% 

at 852 pg/mL. 

Data analysis 

The sample size was determined by the previous study which aimed to identify a panel of predictive 

markers for preeclampsia21.  R and bioconductor were used to perform all statistical analyses22. The 

characteristics of the preeclampsia group and controls were compared using student t test, Wilcoxon 

rank sum test and χ² test. Amongst the controls, there was a significant relationship between 

ADAM12 concentration and gestational age at sampling and BMI and therefore ADAM12 was 

converted to multiples of the median (MoM). sEng concentration was also expressed as MoM to 

correct for BMI. Median differences in biomarker levels were assessed using Mann Whitney-U and 

differences between areas under receiver operator characteristic curves (AUC) were assessed using 

DeLong’s test. For the multiple of the mean (MoM) the regressed medians were computed using a 

log-linear regression of the first degree on the control population.   

 



Results 

Baseline characteristics and pregnancy outcome for the patient cohort investigated are shown in 

Table 1. As expected, significant differences between groups were observed for the parameters 

known to be associated with preeclampsia, such as early pregnancy BMI and blood pressure. There 

were significantly more preterm births in the preeclampsia groups, in addition to a higher proportion 

of small for gestational age infants compared with the group that did not develop preeclampsia 

(control group).  

Figure 1 shows the levels of ADAM12, s-ENG and IGFALS and PlGF at 20 weeks in women with 

preeclampsia compared to controls. There was no effect of gender on sEng, PlGF or IGFALS levels in 

the control group or in women with pregnancies complicated by preeclampsia or SGA (p>0.05). In 

contrast, levels of ADAM12 at 20 weeks were dependent on fetal gender in women with 

preeclampsia, with significantly higher ADAM12 levels observed in women carrying male fetuses 

(n=73) compared to women carrying female fetuses (n=75) (1.3 MoM [IQR 1.1-1.5] vs 1.1 [1.0-1.3]; 

p<0.01; Mann-Whitney U test). There was no effect of fetal gender in the control group on ADAM12 

levels. ADAM12 levels were associated with significantly higher AUCs (prediction of preeclampsia) for 

pregnancies associated with a male rather than a female fetus, 0.73 (95% CI 0.67-0.80) vs 0.62 (0.55-

0.70), respectively (p=0.028; DeLong’s test; Figure 2). The MoM levels of ADAM12 were also 

dependent on fetal gender in pregnancies complicated by SGA (male n=39, female n=49; p<0.01; 

Figure 3). The prediction of SGA using ADAM12 was poor and the AUC was not significantly altered 

by fetal gender (AUC females 0.55 [95% CI 0.45-0.64] vs males 0.60 [0.51-0.69]; p>0.05; DeLong’s 

test). No significant relationship between ADAM12 and the other markers IGFALS (rho: 0.25), PlGF 

(rho: 0.16) or s-ENG (rho: 0.42) was observed.  

 



Discussion 

Previous work has suggested that there are altered responses to pregnancy stressors according to 

fetal gender. In this study we aimed to determine the potential impact of fetal gender on levels of a 

number of pregnancy biomarkers. Of the proteins quantified in this cohort, there was a strong 

association of ADAM12 with fetal gender in pregnancies subsequently complicated by preeclampsia 

and/or SGA. ADAM12 was upregulated in pregnancies complicated by preeclampsia but 

discrimination between cases and controls was more distinct for pregnancies with a male rather than 

a female fetus. This gender effect was not observed for the other proteins measured.  

Both naturally occurring splice variants, ADAM12-L and ADAM12-S, are highly expressed in the 

human placenta23, and ADAM12-S is found in maternal serum from the early first trimester24. At the 

beginning of pregnancy (up to week 8) ADAM12 is closely correlated to the size of the placenta25. In 

normal pregnancy, the ADAM12-S levels associate with gestational age and a 60-fold increase 

between 8 weeks and full term pregnancy (>38 weeks)24.  

It has been suggested that ADAM12 is involved in the regulation of fetal growth through proteolysis 

of insulin-like growth factor binding proteins (IGFBPs). Proteolysis of IGFBPs results in the release of 

insulin-like growth factors (IGFs) which play an important role in the development of the placenta 

and fetus 26. The cleavage of IGFBP3 (the most abundant IGFBP in serum) and IGFBP5 by ADAM12-S is 

thought to be one of the factors which regulates the bioavailability of IGF-I and IGF-II and reduced 1st 

trimester ADAM-12 levels have been reported in SGA pregnancies27. Several other publications have 

reported the potential of ADAM12 to be used as an early pregnancy marker for both preeclampsia 

and fetal growth restriction (FGR), although the results are inconclusive17, 28. In these studies, 1st 

trimester maternal serum ADAM12 concentrations were influenced by fetal gender, gestational age 

(increasing), ethnicity (higher in African American), maternal weight (decreasing), smoking (lower in 

smokers) and maternal age (lower in women ≥40 years). The authors, however, commented that 

smoking and maternal age accounted for the largest intergroup differences in ADAM12, whereas 

gender-related differences were negligible28.  

The data regarding changes in ADAM12 in early pregnancy are conflicting17, 19, 20, 29, 30 with previous 

studies reporting a down regulation of ADAM12 in pregnancies subsequently complicated by 

preeclampsia and more recent reports suggesting an upregulation. Some of these disparities may 

relate to different sampling methods, particularly different gestational ages. In the current study, 

significant differences in ADAM12 were observed at 20 weeks, a later gestation than many of the 

previous reports. 



The data presented here fit a contemporary hypothesis stating that when exposed to insults during 

pregnancy female and male offspring “react” differently7.  Previous studies have demonstrated that 

cord blood levels of IGF I and IGFBP-3 are different between male and female fetuses31. In addition, a 

prospective study of pregnancies complicated by maternal asthma investigated the relative 

influences of asthma, corticosteroid use, smoking and components of the IGF axis on birthweight32. A 

gender-specific difference in the relationship between IGF I and IGFBP on birthweight was observed; 

in pregnancies with a male fetus IGF I levels were not influenced by maternal factors whereas IGF I 

was significantly decreased in pregnancies complicated by asthma and smoking when the fetus was 

female. The authors hypothesized that this data was supportive of different response strategies by 

male and female fetuses to adverse pregnancy conditions7. Males are believed to adapt for 

continued growth in an adverse maternal environment while females reduce growth in an attempt to 

survive further maternal insults.  The data presented here suggest that an alteration in ADAM12 may 

reflect an altered placental response, perhaps mediated by changes in IGF bioavailability, in 

pregnancies subsequently complicated by preeclampsia. It is interesting that there was no observed 

effect of fetal gender on the other biomarkers investigated in this study. This may indicate that 

regulation of angiogenic factors (sEng and PlGF) is independent of fetal gender, although this would 

need to be confirmed in independent studies. Whilst IGFALS mRNA is expressed by the placenta33, it 

is likely that the majority of circulating IGFALS is maternal in origin34 and therefore unlikely to be 

affected by fetal gender.   

Limitations of study 

Whilst this study has used data from a large prospective cohort, the number of pregnancies studies 

subsequently affected by preeclampsia is modest. In addition, the analysis described in this study 

represents a post hoc analysis of data generated as part of a previous study and may therefore be 

subject to bias. 

Significance 

Gender differences may account for disparate data relating to ADAM12 as a predictive marker for 

preeclampsia. Given the heterogeneity of preeclampsia as a diagnosis, the influence of factors such 

as fetal gender, not traditionally considered in screening algorithms, may be important in the pursuit 

of more accurate predictive tests for pregnancy complications. Novel technologies which allow us to 

determine fetal gender from maternal blood are likely to be more affordable in the future; this may 

allow the inclusion of fetal gender in predictive algorithms. Both prediction studies and ex vivo 

studies need to consider the effect of fetal gender in the development of pregnancy complications. 
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Figure legends 

Figure 1 

Levels of ADAM12, PlGF, sEng and IGFALs in samples taken at 20 weeks from women with and 

without preeclampsia subdivided by fetal sex. The dotted lines represent the median of the control 

and preeclampsia groups for both sexes combined .  

 

Figure 2 

Univariate area under the receiver operator curve (AUC) with 95% CI for the candidate biomarkers, 

subdivided by fetal sex. 

 

Figure 3 

Levels of ADAM12, PlGF, sEng and IGFALs in samples taken at 20 weeks from women with (n=88) and 

without SGA (n=512) subdivided by fetal sex. The dotted lines represent the medians of the control 

and SGA groups for both sexes combined. ADAM12 was significantly different between SGA 

pregnancies associated with male vs female fetus (p< 0.01), but not different in women without SGA. 

  



Table 1 Demographic characteristics  

Characteristics 

Preeclampsia 

(n=150) 

No Preeclampsia 

(n=450) 
P value 

Maternal age (years) 28 (23-32) 29 (24-32) NS 
Fetal gender male 75 (50%) 232 (52%) NS 
Caucasian Ethnicity 128 (90%) 402 (90%) NS 
Smoker at 15 wks 12 (8%) 61 (14%) NS 
Body mass index at 15 wks(kg/m2) 26.6 (23.1-30.5) 24.1 (21.7-27.7) <0.001 
Gestation at sampling (wks) 20.4 (0.7) 20.4 (0.8) NS 
Systolic blood pressure (mmHg)  116 (11) 109 (10) <0.001 
Diastolic blood pressure (mmHg)  69 (9) 65 (7) <0.001 
Gestation age at delivery (weeks) 38 (37-40) 40 (39-41) <0.001 
Preterm birth (<37 wks) 42 (28%) 19 (4%) <0.001 
Small for gestational age  39 (26%) 49 (11%) <0.001 
Gestational hypertension  0 (0%)  39 (9%) <0.001 
Gestational diabetes mellitus 8 (7%) 8 (3%) NS 

Results are expressed as mean (SD), median (interquartile range, IQR) or n (%).  
 


