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Abstract.

Background: Trimethylamine N-oxide (TMAO) has attracted interest as circulating levels have
reported prognostic value in patients with cardiovascular conditions, such as heart failure. With
continual advances in accurate mass measurements, robust methods that can employ the capabilities
of time of flight mass spectrometers would offer additional utility in the analysis of complex clinical
samples.

Methods: A Waters Acquity UPLC was coupled to a Waters Synapt G2-S high resolution mass
spectrometer. TMAO was measured in plasma by stable-isotope dilution-hydrophilic interaction
liquid chromatography-time of flight mass spectrometry with multiple reaction monitoring (LC-ToF-
MRM). Two transitions were monitored; m/z 76.1 to 58.066/59.073 and m/z 85.1 to 66.116/68.130.
The method was assessed for linearity, lower limits of detection and quantitation, and reproducibility.
A selected cohort of patients with systolic heart failure (SHF; n=43) and healthy controls (n=42) were
measured to verify the assay is suitable for the analysis of clinical samples.

Results: Quantitative analysis of TMAO using LC-ToF-MRM enabled linearity to be established
between 0.1 and 75 pmol\L, with a lower limit of detection of 0.05 pmol\L. Relative standard
deviations reported an inter-day variation of < 20.8% and intra-day variation at < 11.4% with intra-
study quality control variation of 2.7%. Run times were 2.5 min. Clinical application of the method
reported that TMAO in SHF was elevated compared to healthy controls (p<0.0005).

Conclusion: LC-ToF-MRM offers a highly selective method for accurate mass measurement of
TMAO with rapid and reproducible results. Applicability of the method was shown in a selected

cohort of patient samples.

Keywords: TMAO; high resolution mass spectrometry; multiple reaction monitoring; time of flight;

heart failure; LC-MS/MS



Introduction

Trimethylamine N-oxide (TMAO) is a downstream metabolite of carnitine and choline, driven by
intestinal microbiota, which has engendered considerable research effort as a new biomarker for a
variety of cardiovascular diseases [1-3]. It is also being investigated in other diseases where the
aetiology is thought to be related to a perturbance of the gut microbiome, including colorectal cancer
[4], diabetes [5] and renal disease [6] as well as being a putative central mediator in cholesterol
balance [7]. Described methods for detecting TMAO are centred on the use of liquid chromatography-
tandem mass spectrometry with multiple reaction monitoring (LC-MS/MS-MRM), often utilising a
stable isotopically labelled standard for quantitation [e.g. 8-10].

Clinical laboratories are increasingly reliant on LC-MS platforms which offer sensitive and
robust solutions to analysis [11-13]. The measurement of small molecules and peptides is primarily
conducted using triple quadrupole mass spectrometers because of the levels of sensitivity achieved,
wide dynamic range (6-7 orders of magnitude) and the relatively high throughput [14-16]. LC-
MS/MS-MRM on triple quadrupoles is increasingly being seen as a gold standard for measurement of
molecules in clinical laboratories [17]. Whilst limitations exist with these approaches [18], the
selectivity and wide dynamic range leads to a high level of sensitivity which has benefitted many
different fields. For many analytes, sufficient selectivity is delivered by triple quadrupole instruments.
However, in certain circumstances improvements in selectivity are necessary. For example, recent
developments in the analysis of common clinical analytes, such as the metabolites of vitamin D,

demonstrate that improved levels of selectivity would be advantageous [19].

[Orthogonal acceleration] Time of flight ([oa]ToF) mass spectrometers are able to measure
target ions with high mass resolution. Instruments such as the Waters Synapt series are able to
increase sensitivities through the utilisation of a 100 % ToF duty cycle, a process known as target
enhancement. Instead of using a continuous beam of ions, as would be typical in ToF configurations,

a travelling waveform is used in order to establish a series of packets which each undergo a short ToF



separation as they travel through an ion guide, known as the transfer cell. The [oa]ToF pusher is then

synchronised with the arrival of ion packets having the targeted m/z [20].

The assay described herein has incorporated hydrophilic interaction liquid chromatography
(HILIC) which is particularly suitable for polar molecules [21]. An emphasis was put on having high
throughput with an ambition of developing a rapid, reproducible method for clinical investigations. To
our knowledge, there are currently no routine clinical methods for biomarker quantitation that utilise
the high accuracy produced by LC-ToF analyses and thus, we sought to investigate whether LC-ToF-

MRM could be used to establish a high throughput assay for TMAO measurement in clinical samples.



Materials and Methods

Materials

TMAO (98.9 % purity) was purchased from Sigma-Aldrich (Gillingham, UK) and its labelled isotope,
Dy-TMAO (> 98 % purity, 99.9 % enrichment), was purchased from Cambridge Isotopes (Tewksbury,
MA, USA). Water, acetonitrile, methanol (MeOH), formic acid (HCOOH) (all Optima™ LC-MS
grade) and 25 % extra pure ammonium hydroxide (NH,OH) in H,O (Acros Organics) were purchased
from Fisher Scientific (Loughborough, UK). Stripped plasma (4 x charcoal, EDTA pooled gender:
product code HMPLEDTA2-STRPD-HEV-53432) was purchased from Seralab (Haywards Heath,

UK).

Sample Preparation

Blood samples were collected from an antecubital vein into collection tubes containing
ethylenediaminetetraacetic acid (Sarstedt, Niimbrecht, Germany). After collection, plasma was
immediately separated by centrifugation at 1500 x g for 15 min, transferred to aliquots and stored at -
80 °C until analysis. Sample preparation was done according to described methods [9] using stable-
isotope dilution by mixing 20 pL of plasma with 80 puL of 10 umol\LL Dy-TMAO in MeOH. Protein
precipitation was achieved by a 1 min vortex period followed by centrifugation at 16900 x g for 20
min. After centrifugation, the supernatant was removed and transferred to a vial for analysis. All
blood samples used in this manuscript were drawn from individuals who had given written informed
consent and, where applicable, study protocols complied with the declaration of Helsinki and were

approved by the local ethics committee.



Sample Analysis

Samples were analysed by liquid chromatography-tandem mass spectrometry with multiple reaction
monitoring using a ToF mass analyser. LC-ToF-MRM was performed in positive ion electrospray
ionisation mode using an Acquity I-class UPLC (Waters Corp., Milford, MA, USA) coupled to a
Synapt G2-S high resolution mass spectrometer (Waters Corp., Milford, MA, USA). Optimised mass
spectrometer source settings can be found in Table 1. An Acquity UPLC BEH HILIC column (130 A,
1.7 pm, 2.1 mm x 10 mm, Waters Corp., Milford, MA, USA) with an Acquity UPLC BEH HILIC
VanGuard pre-column (130 A, 1.7 um, 2.1 mm x 5 mm, Waters Corp., Milford, MA, USA) was used.
Buffer A was 0.025 % NH,OH, 0.045 % HCOOH (pH 8.1), with buffer B as pure acetonitrile. An
injection volume of 5 pL and a flow of 600 puL\min were used with a column temperature of 50 °C.
The gradient started with 95 % B at 0 min linearly reducing to 4 % B at 0.8 min and returning to 95 %
B at 1.9 min with a total analysis time of 2.5 min. MRM was performed by pre-filtering the precursor
ions using the quadrupole mass analyser for m/z values of 76.1 (TMAO) and 85.1 (Dy-TMAO) and
supplying a collision voltage ramp in the transfer cell of 10 to 20 V and 10 to 25 V, respectively. The
ToF analyser is able to achieve greater specificity via high mass accuracy and therefore transition
fragments of m/z 58.066 & 59.073 (TMAO) and 66.116 & 68.130 (Dy-TMAOQO) were monitored
(Figure 1). Confirmation of analyte was achieved by mass spectra and retention time (Figure 2). Peak
areas for the most abundant fragment were calculated using QuanLynx (Waters Corp., Milford, MA,
USA) and results were reported as a response ratio of TMAO to Dy-TMAO and converted to

concentration in wmol\L.

<INSERT TABLE 1 NEAR HERE>

<INSERT FIGURE 1 NEAR HERE>

<INSERT FIGURE 2 NEAR HERE>



Calibration, Recovery and Matrix Interferences

Calibration experiments were created using 9 concentrations of TMAO ranging from 0 to 75 umol\L.
TMAO-free plasma was obtained by gel filtration (Sephadex® G-25, Sigma-Aldrich, Gillingham,
UK) of charcoal stripped plasma. TMAO was spiked into the resultant eluent to form concentrations
of 0, 0.05, 0.1, 0.5, 2, 10, 25, 50 and 75 pmol\L. Each of the neat calibration solutions was diluted
with 4 parts Dy-TMAO in MeOH to simulate the extraction process, vortexed for 1 min, centrifuged
and transferred to a LC vial for analysis. Injections were performed in triplicate using analysis
methods as described. Lower limit of quantitation (LLOQ) was determined with an analyte response
of at least 5 times the response compared to a blank and a reproducibility of < 20 %, with lower limit
of detection (LLOD) determined as a response of at least 3 times that of the blank with a
reproducibility of > 20 % [22]. All samples were preceded by a blank injection (80 % MeOH) to

ensure carryover was not present.

In order to assess inter-day variation, calibrations were performed once daily, on five
consecutive days. Additionally, to assess intra-day variation, a total of five calibrations were
completed within one 24 hour period. Response ratios were calculated for TMAO to Dy-TMAO,
variations were assessed with relative standard deviations (RSDs) and a linear fit was calculated using

least squares regression.

Recovery and matrix interferences were assessed by performing two additional calibration analyses
according to guidelines by Matuszewski et al [23]. One set of calibrations was performed with TMAO
initially dissolved in water, at the concentrations stated previously, and the other with TMAO spiked
into the extracted solution of the TMAO-free plasma. Each one of these additional calibrations was

completed alongside the main calibration, with set order rotation, over the five consecutive days.



Matrix effect (ME), recovery of the extraction procedure (RE) and overall process efficiency (PE)
were calculated according to the equations detailed by Matuszewski et al [23]. Further standard
addition experiments were performed to assess the recovery of spiked TMAO in to the pre-treated
(stripped plasma without gel filtration) and untreated (unmodified plasma from a healthy volunteer)
matrices. Triplicate analyses were performed on the neat matrix and a series of 100 mL aliquots of
each matrix spiked with 1, 2, 3, 4 or 5 uLL of 1 mmol\L TMAO stock solution. Each aliquot was mixed
thoroughly and extracted using the described method. Signal variations were calculated by

comparison of the reported and expected TMAO values.

Reproducibility of Extraction

In order to confirm that the extraction method is reproducible, plasma samples from ten individuals, a
mixture of healthy and heart disease patients across the normal working range, were extracted using
the above process. Each plasma sample was extracted three times into separate microcentrifuge tubes.
All extractions were run in triplicate, in a randomised order, using the described method and RSDs
were calculated for the measured response ratios of analyte to internal standard across all 9 injections

for each individual.

Assay Imprecision

Assay imprecision was analysed following guidelines found in the NCCLS EP5-A document [24].
Three plasma samples previously observed to contain low (1.5 umol\L), medium (5 umol\L) and high
(40 pmol\L) levels of TMAO were analysed in duplicate, twice daily for a total of twenty consecutive

days. Estimates were calculated for within-run and total precision.



Clinical Application

With the aim of demonstrating the assay’s applicability to measure clinical samples, eighty five
samples were analysed from two groups of participants, one containing individuals diagnosed with
systolic heart failure (SHF; n =43, 56 % male) and the other with apparently healthy controls free
from cardiovascular disease (CON; n = 42, 52 % male). Group differences were analysed using the
Mann-Whitney U test for non-parametric data. All statistical analyses were performed using IBM
SPSS Statistics (v22.0.0.1, IBM). All data are expressed as mean =+ standard deviation unless
otherwise defined. Healthy participant quality control (QC) extracts ((TMAO] = 3.2 pmol\L) were

injected after every eight duplicate sample analyses.



Results

Calibration, Recovery and Matrix Interferences

None of the blank injections showed peaks corresponding to TMAO or Do-TMAO, which
demonstrated zero carryover. All calibration experiments spiked in TMAO-free plasma produced a
correlation coefficient () of > 0.998. No TMAO was detected in the 0 pmol\L standard, confirming
removal of TMAO through gel filtration. Although a weak signal for TMAO was obtained in the 0.05
umol\L standard, it was deemed as below the limit of quantitation; all other concentrations reported a
TMAO signal. Inter-day RSDs were < 20.8 %, with intra-day RSDs of < 11.4 %. Variation for
multiple injections ranged from 2.4 to 21.3 % across concentrations, with 0.1 pmol\L determined as
the LLOQ, and 0.05 umol\L as the LLOD. A complete list of RSDs, with accompanying 95 %

confidence intervals, is shown in Table 2.

<INSERT TABLE 2 NEAR HERE>

Comparison of the three sets of calibration experiments reported a mean ME of 98 %. Mean RE was
calculated to be 107 % and mean PE was 103 %. Table 3 displays a summary of ME, RE and PE for
each individual concentration point. Recovery of TMAO in the extraction of pre-treated and untreated
matrices, as assessed by standard addition experiments, reported mean recovery values of 102 and 96

%, respectively (Table S1).

<INSERT TABLE 3 NEAR HERE>
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Reproducibility of Extraction

Calculated TMAO plasma concentrations for the ten individuals ranged from 1.9 to 25.4 umol\L. The
RSDs for the triplicate extractions ranged from 1.4 to 6.6 %, demonstrating a reproducible extraction
method across a range of plasma concentrations. A summary of results for all plasma samples can be

seen in Table 4.

<INSERT TABLE 4 NEAR HERE>

Assay Imprecision

According to the calculations presented in the NCCLS EP5-A document [24], assay estimates for
within-run precision were 6.6, 3.3 and 1.9 %, with total precision calculated at 7.2, 4.4 and 2.8 % for

low, medium and high TMAO level plasma, respectively.

Clinical Samples

Samples of patients with SHF showed increased levels of TMAO in plasma compared to healthy
controls (p < 0.0005), with the median (interquartile range) as 9.0 (4.2 — 14.4) and 4.0 (3.1 — 5.0)
umol\L, respectively (Figure 3). There were no differences in age between groups (72.7 £ 9.3 vs 72.9
+ 4.9, SHF v CON, p = 0.83), nullifying the possible increase in TMAO due to the previously
reported positive association with aging [9]. The RSD for repeated QC injections was 2.7 % (95 %

confidence intervals; 2.3 — 3.5 %) and the mean RSD for all sample replicate injections was 2.5 %.

11



<INSERT FIGURE 3 NEAR HERE>
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Discussion

The measurement of TMAO using an isotopically labelled standard in conjunction with a LC-high
mass accuracy ToF-MRM assay provides a suitably sensitive assay which is linear, precise and
accurate. In the protocol described in the present study, target enhancement is utilised to improve the
overall sensitivity. This capability enhances duty cycle by synchronising the timing of the product
ions of interest with the ToF pusher. The assay greatly benefits by having a much enhanced signal

with little detriment to noise.

To our knowledge, we describe the first example of a clinical assay utilising a Synapt
generation ToF-MRM assay for a compound that can provide clinical prognostic value to a variety of
diseases [1-3, 25]. The assay is linear over nearly 3 orders of magnitude, has a limit of detection of
0.05 pmol\L and has a total injection-to-injection run time of 3 min. We have shown the ability to
measure TMAO in human clinical samples with excellent levels of precision and reproducibility (sub
3 %). Median inter- and intra-day reproducibility lay below 4 %. Importantly, we demonstrated a
clinical measurement range for this molecule of between 2 and 55 pmol\L (see Figure 3), and within
this range the assay reported RSDs of 2.5 — 5.0 and 1.0 — 3.5 % for inter- and intra-day variation,
respectively. These data demonstrate the utility of the described assay for the analysis of clinical
samples. The sample preparation is minimal, demonstrably repeatable, very amenable to automation
and takes less than 30 min from thaw to injection. With ToF instruments there is a compromise
between absolute sensitivity and resolution. This assay utilised a half-way setting which enabled good
sensitivity at 20K resolution (full width height maximum). Thus, settings could be used that achieve
either greater sensitivity (at the expense of resolution) or greater resolution (at the expense of

sensitivity).

As clinical diagnostic services evolve, LC-MS platforms are envisioned to constitute a major
part of the diagnostic provision. Next steps for this transition will include the need for high mass

accuracy instrumentation to overcome interferences that can affect the accuracy of measurement with
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some nominal mass MRM systems [18, 26-27]. Initial exploration of this technology has already been
done in toxicology laboratories [28]. It is envisaged that, with the perpetuating interest in the gut
microbiome and health, research interest in TMAO and other gut-related analytes will increase (e.g.
betaine, carnitine and acylcarnitines [29]). ToF-MRM assays have the inherent capability to be
multiplexed and thus have incorporated into a single analysis these related analytes and their
respective isotopically labelled standards for parallel quantitative measurement. High level selectivity
that may be required to delineate some species in multiplex assays, those displaying extremely similar
retention time/mass-to-charge profiles, is benefited by employment of the high resolution and high
mass accuracy that is afforded by new generation Q-ToF or Q-Orbitrap instruments [30-32].
Furthermore with the Synapt series of mass spectrometers, travelling wave ion mobility technology
offers another method of separation which has been shown to afford clinical utility in a qualitative

[33] and quantitative [34] manner.

As a proof of concept, we applied the method to a selected set of clinical samples in order to
evaluate TMAO levels in patients with SHF, compared to healthy controls free from cardiovascular
disease. The sample sets were age- and sex-matched. The results plotted in Figure 4 indicate that,
although there is overlap in sample distribution, individuals suffering from systolic HF generally
report higher levels of TMAO. The variation seen across the two populations may be present due to a
diverse range of HF severity and potential confounding variables that could produce elevated levels in
some healthy individuals (e.g. diet, renal function). When comparing with reported TMAO
concentrations, healthy control participants showed similar median values to previous healthy cohorts
[2,6]. Patients suffering from SHF reported elevated levels to other HF cohorts [2,3], but similar to
those suffering from chronic kidney disease [6]. This result, although interesting, is derived from a

limited patient population but demonstrates the clinical applicability of the described method.

ToF-MRM offers high levels of selectivity and is suitable for highly reproducible analysis of
TMAO in clinical samples. The uptake of this technology within clinical laboratories is achievable
due to its reliability, selectivity, high-throughput, reproducibility, mass accuracy, precision and

sensitivity that can be achieved.
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Table 1. Optimised mass spectrometer source conditions for positive ion mode electrospray ionisation

of trimethylamine N-oxide.

Source Settings

Capillary Voltage (kV) 0.5
Cone Voltage (V) 15
Source Offset 40

Temperatures (°C)
Source 150
Desolvation Gas 650

Gas Flows & Pressures

Cone Gas (L\hr) 250
Desolvation Gas (L\hr) 900
Nebuliser Gas Pressure (bar) 7
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Table 2. Relative standard deviations calculated from repeated calibration analyses detailing inter-

day, intra-day and total variance at all calibration points.

RSD (95 CI, %)

[TMAO] (umol\L) Inter-day Intra-day All Injections
0.1 20.8 (13.5-32.1) 11.4(7.4-17.6) 21.3(17.6 - 22.5)

0.5 5.8(3.8-9.0) 54(3.5-8.2) 8.9(7.3-9.4)

2 503.2-7.6) 35(22-53) 5.7 (4.7 - 6.0)

10 33(2.1-5.1) 1.0 (0.7 - 1.6) 3.6(3.0-3.8)

25 2.5(1.6-3.9) 2.5(1.6-3.9) 29((2.4-3.0)

50 3.0(1.9-4.6) 1.8 (1.2-2.8) 3.1(2.6-3.3)

75 1.4(0.9-2.2) 1.4 (0.9-2.2) 24(2.0-25)

Inter-day: calculated for 5 experiments conducted over 5 consecutive days

Intra-day: calculated for 5 experiments conducted within a period of 24 hours

All injections: calculated using all 30 repeated injections taken from the inter- and intra-day

experiments

Note: 95 CI =95 % confidence intervals; TMAO = trimethylamine N-oxide; RSD = relative standard

deviation
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Table 3. Matrix effect (ME), recovery (RE) and process efficiency (PE) for each calibration point
calculated using repeated experiments for TMAO spiked into water (Neat), plasma prior to extraction

(Spike EXprg) and plasma after extraction (Spike EXpost). Adapted from Matuszewski et al. (20).

Mean Response Ratio (TMAO to D,-TMAO)

[TMAO]

(umol\L) Neat Spike EXpre  Spike EXpost ME (%) RE (%) PE (%)
0.1 0.0003 0.0004 0.0002 77% 167% 129%
0.5 0.0011 0.0013 0.0013 115% 100% 115%

2 0.0053 0.0052 0.0060 113% 87% 98%
10 0.0299 0.0277 0.0269 90% 103% 93%
25 0.0814 0.0779 0.0812 100% 96% 96%
50 0.1763 0.1677 0.1699 96% 99% 95%
75 0.2790 0.2585 0.2556 92% 101% 93%

Mean 98% 107% 103%

Note: Do-TMAO = deuterated trimethylamine N-oxide; TMAO = trimethylamine N-oxide
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Table 4. Relative standard deviations calculated for triplicate extractions of ten plasma samples

across a working range of TMAO concentrations.

g;?;‘;‘lz Plasafng}‘f)‘*o] Ri\;[;;:se SD RSD (CI) (%)
Ratio

1.9 0.0036 0.0002 5.9(4.2-10.1)

B 25 0.0066 0.0001 1.4 (1.0—2.4)
C 32 0.0096 0.0003 34(2.5-59)
D 5.6 0.0212 0.0009 3.9 (2.8-6.7)
E 6.9 0.0274 0.0007 25(1.8-42)
F 7.2 0.0287 0.0020 6.6 (4.7—11.3)
G 111 0.0479 0.0019 3.7 (27— 6.4)
H 17.0 0.0760 0.0021 2.5(1.8—4.4)
I 18.5 0.0833 0.0036 40 (2.9-6.9)
J 25.4 0.1164 0.0027 22(1.6-3.8)

Mean response ratio and SD were calculated using all 9 injections provided by 3 technical replicates

in each of 3 biological replicates

Note: CI = 95 % confidence intervals; RSD = relative standard deviation; SD = standard deviation;

TMAO = trimethylamine N-oxide
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Figure Captions

Fig. 1 Precursor and product ion formations for a) trimethylamine N-oxide (TMAO) and b) its

deuterated stable isotope (Dy-TMAO) with corresponding mass-to-charge ratios (m/z)

Fig. 2 Example unsmoothed extracted ion chromatograms from stable-isotope dilution-liquid
chromatography-time of flight mass spectrometry with multiple reaction monitoring of a)
trimethylamine N-oxide and c¢) its deuterated stable isotope (Dy-TMAQO) with corresponding peak
mass spectra b) and d), respectively. Data obtained from a pooled plasma sample of heart failure

patients with an estimated TMAO concentration of 7.7 umol\L

Note: m/z denotes mass-to-charge ratio

Fig. 3 Individual value plots with median (dashed line) to show trimethylamine N-oxide
concentrations in human plasma from a select cohort of patients suffering from systolic heart failure

and healthy age-matched controls

Note: * denotes p < 0.0005
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Fig. 1 Precursor and product ion formations for a) trimethylamine N-oxide (TMAO) and b) its

deuterated stable isotope (Dy-TMAO) with corresponding mass-to-charge ratios (m/z)
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Fig. 2 Example unsmoothed extracted ion chromatograms from stable-isotope dilution-liquid
chromatography-time of flight mass spectrometry with multiple reaction monitoring of a)
trimethylamine N-oxide and c¢) its deuterated stable isotope (Dy-TMAQO) with corresponding peak
mass spectra b) and d), respectively. Data obtained from a pooled plasma sample of heart failure

patients with an estimated TMAO concentration of 7.7 umol\L

Note: m/z denotes mass-to-charge ratio
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Fig. 3 Individual value plots with median (dashed line) to show trimethylamine N-oxide
concentrations in human plasma from a select cohort of patients suffering from systolic heart failure

and healthy age-matched controls

Note: * denotes p < 0.0005
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