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Abstract (200 words) 
A numerical investigation is conducted of the flow between two concentric cylinders with a wide gap, relevant 
to bearing chamber applications. This wide gap configuration has received comparatively less attention than 
narrow gap journal bearing type geometries. The flow in the gap between an inner rotating cylinder and an outer 
stationary cylinder has been modelled as an incompressible flow using an implicit finite-volume RANS scheme 
with the realisable 𝑘 − ε model. The model flow is above the critical Taylor number at which axisymmetric 
counter-rotating Taylor vortices are formed. The tangential velocity profiles at all axial locations are different 
from typical journal bearing applications, where the velocity profiles are quasi-linear. The predicted results led 
to two significant findings of impact in rotating machinery operations. Firstly, the axial variation of the 
tangential velocity gradient induces an axially varying shear stress, resulting in local bands of enhanced work 
input to the working fluid. This is likely to cause unwanted heat transfer on the surface in high torque turbo-
machinery applications. Secondly, the radial inflow at the axial end-wall boundaries is likely to promote the 
transport of debris to the junction between the end-collar and the rotating cylinder, causing the build-up of 
fouling in the seal. 
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1.0  Introduction 

The understanding of the flow in the gap between 
concentric independently rotating cylinders is both of 
scientific and of practical interest for many engineering 
applications in rotating machinery. Specific examples 
include the lubricating flow between rotating shafts of 
turbo-pumps in rocket engines and of multi-spool 
turbofan engines and in the bearing housing of high [1] 
and low [2] bypass aircraft engines. Other areas of 
application are found in the bearing chambers of internal 
combustion aero-engines, rotating tube in tube heat 
exchangers and in the submerged pumps for water wells. 

Lubrication is very important in turbo-machineries 
where the inner cylinder (shaft) rotates and the outer 
cylinder (journal bearing) is stationary. In this 
application, the clearance is typically small enough, the 
lubricant viscous enough, and the speeds slow enough so 
that the flow is laminar. The flow is eccentric because the 
radial loading on the shaft reduces the bearing clearance 
on one side. With a properly designed bearing, the shaft, 

while turning, will not contact the bearing because the 
viscous shear force between the shaft and the lubricant 
carries the lubricant into this space. At high shaft speeds 
and high shaft loads, the laminar flow becomes first 
axially non-uniform and then non-axisymmetric [3-9]. 
This is because the forces arising from viscosity are 
insufficient to overcome those associated with the fluid 
inertia. This transition increases the shaft torque 
significantly so that ball and or roller bearings are used in 
place of a journal bearing at these higher rotational 
speeds.  

Many experimental investigations and numerical 
simulations have been conducted to understand the 
complexities of this flow. This activity dates back to 
1888 and 1890, when Mallock [3-4] and Couette [5] 
conducted independent experiments using concentric 
rotating cylinders. More recently, Liao et al. [8] 
conducted numerical simulations that reproduced three 
regimes of the Couette-Taylor system, namely the steady 
circular Couette flow, the steady axisymmetric Taylor 
vortex flow, and the periodic spiral vortex flow. They 
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validated their computational results using the 
experimental observations of Andereck et al. [9]. They 
concluded that this system exhibits a rich diversity of 
steady and chaotic flow patterns that are complex in 
nature and may arise as a result of small perturbations. 
These characteristics are typical expressions of 
hydrodynamic instabilities in the flow. Czarny et al. [10] 
performed a direct numerical simulation, using a three-
dimensional spectral method, of a small axial length to 
diameter ratio annular flow driven by counter-rotating 
cylinders. The numerical model predicted two different 
flow regimes, wavy vortices and interpenetrating spirals. 

The flow enclosed between rotating coaxial cylinders 
is often characterised with respect to the Taylor number, 
𝑇𝑇, which expresses in non-dimensional form the 
importance of the centripetal acceleration in a rotating 
flow relative to the viscous forces. In this study, where 
only the inner cylinder is rotating, the Taylor number Ta 
is defined as 

 𝑇𝑇 =
2𝜂2𝑑4

1 − 𝜂2
�
Ω
ν
�
2

 1 

where 𝜂 = 𝑅𝑖/𝑅𝑜 is the radius ratio, 𝑅𝑖 and 𝑅𝑜 are the 
radii of the inner and the outer cylinders respectively, 
𝑑 = 𝑅𝑜 − 𝑅𝑖 is the gap width, Ω is the rotational speed of 
the inner cylinder, and ν is the fluid kinematic viscosity. 

Many aspects of the flow developing between coaxial 
rotating cylinders are yet to be fully detailed. One of the 
advantages of 3D simulations over traditional 
experiments is the ability to investigate the salient 
features of the flow across the entire annulus on 
meridional, axial and cascade planes. Whilst a 3D model 
is more demanding both in terms of its development time 
and of the computational resources, it has the potential to 
resolve the time-averaged three-dimensional motion of 
the localised flow disturbances induced by the rotation of 
the inner cylinder. 

Adebayo and Rona [11-12] measured by PIV the in-
plane velocity between rotating cylinders at wide gap. 
These measurements were limited to the meridional 
plane where the PIV gave direct measurements of the in-
plane velocity. Computational fluid dynamic (CFD) can 
overcome this limitation by estimating the full 3D 
velocity field as part of the flow field solution. The CFD 
model therefore enables to quantify and qualify the 
important flow fields beyond the current limitations of 
conventional non-intrusive optics-based measurement 
techniques. 

In this study, CFD is used to predict the flow pattern 
and examine in detail the velocity distributions both in 
the meridional and in the axial planes in a moderately 
wide gap set-up. The accuracy of the predicted result is 

validated by comparing the velocity profiles from the 
CFD simulations to the PIV measurements by Adebayo 
and Rona [11-12] in the meridional plane. Conclusions 
are drawn on the significant implication of these findings 
for high torque turbomachinery applications. 

 
2.0 Computation domain and flow conditions 
2.1 Geometry  

A three-dimensional (3D) numerical model is used to 
examine the velocity field flow in more than one plane. 
The model geometry is defined with respect to the 
coordinates shown in Figure 1. The cylinders are coaxial 
with the axis coinciding with the 𝑋-direction of the 
cylindrical reference system (𝑟,𝜃,𝑋). Two different 
coaxial assemblies, summarised in Table 1, are 
considered to allow a parametric study of the flow 
pattern in the annular region of the coaxial cylinders. The 
rotating speed Ω of the inner cylinder is held constant at 
52.36 rad/s in all test cases. The geometries modelled in 
this study were created using commercial CFD software 
GAMBIT 2.4.6.  

 

              (a) 

                    
                         (b) 

Figure 1: (a) Tetrahedral computational mesh structure 
and (b) computational mesh detail at the end wall one 
mesh point every 10 has been plotted radially, for clarity. 
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Table 1: Specifications for the computational parameters 
Description Test case 1 Test case 2 

Inner cylinder length (m) 0.5 0.5 
Outer cylinder length (m) 0.5 0.5 
Inner cylinder outer 
diameter (m) 

0.05 0.05 

Outer cylinder inner 
diameter (m) 

0.094 0.114 

Gap width 𝑑 (m) 0.022 0.032 
Aspect ratio Γ = 𝐿/𝑑 11.36 7.81 
Radius ratio 𝜂 = 𝑅𝑖/𝑅𝑜 0.53 0.44 
Clearance ratio 𝑑/𝑅𝑖  0.88 1.28 
Reynolds number 𝑅𝑅 1.97 x 103 2.88 x103 
Taylor number 𝑇𝑇 2.35 x 106 6.47 x 106 

 
2.2 Boundary conditions 

The internal flow between the two rotating cylinders 
is modelled as fully enclosed using the commercial CFD 
software ANSYS Fluent [13]. At the start of the 
computation, zero flow conditions are imposed 
throughout the computational domain. The axis of the 
cylinders is horizontal and the vertical extent of 
computational domain is limited to 0.114 m. Therefore, 
gravitational acceleration effects are not modelled. No-
slip stationary adiabatic wall boundary conditions are 
applied at the left and the right end-walls, as well as at 
the outer cylindrical surface at 𝑅𝑜. The inner cylinder 
surface is modelled as a rotating adiabatic no-slip wall. 
These boundaries fully delimit the computational domain 
and define a closed system. An adequate match of the 
acceleration profile between experiment [11-12] and 
computation was found to be important, as such the 
simulations in this work were carried out with a sudden 
start of the inner cylinder at the specified angular speed, 
modelling experiments in which the target rotational 
speed of the inner cylinder is reached within one second 
[14-15]. 

The closed type system being modelled enables some 
flexibility in the definition of the turbulence quantities at 
the start of the computation. Unlike an open system with 
a computational inflow boundary, which affects the 
solution at all times, the turbulence quantities in a closed 
system are updated by the flow solver and are therefore 
self-determined in the converged solution. The 
turbulence level at the start of the computation was 
specified in terms of the turbulence intensity and 
hydraulic diameter. Estimations of turbulence intensity 
𝑇𝑇 , turbulent kinetic energy 𝑘, and turbulent dissipation 
rate 𝜀 were calculated for all the CFD simulations using 
empirical correlations for pipe flows [13]. Specifically, 

 

 𝑇𝑇 = 0.16 𝑅𝑒𝐻−0.125 2 
 

 𝑘 = 1.5 𝑈𝑎𝑎𝑎2 𝑇𝐼2 3 
 

 𝜀 = 𝐶𝜇0.75𝑘1.5𝑙−1 4 
 
where 𝑅𝑒𝐻 is the Reynolds number based on the 
hydraulic diameter 𝐷𝐻 = 2𝑑 of the cylindrical assembly, 
𝑈𝑎𝑎𝑎 is the bulk velocity, the constant 𝐶𝜇 = 0.09, and 
𝑙 = 0.07𝐷𝐻 . 

The turbulence intensity, turbulence kinetic energy 𝑘 
and turbulent dissipation rate ε levels are 6%, 0.0093 
m2/s2, and 0.0478 m2/s3 respectively for the test case Γ = 
11.36, and 5%, 0.0064 m2/s2, and 0.0189 m2/s3 
respectively for the test case Γ = 7.81. These are 
indicative of a turbulent flow in the annular region 
between the cylinders and are above typical values of 
0.2% to 0.3% that are found in the test section of well-
designed wind tunnels. 
 
3.0 Numerical model 
3.1 Computational scheme 

In this study, all the CFD simulations assume an 
isothermal, viscous, and incompressible (constant 
density) fluid. The incompressible Reynolds Averaged 
Navier Stokes (RANS) equations for the conservation of 
mass and momentum [16-17] govern this flow. The 
governing equations are discretized by a finite volume 
approach and the pressure based segregated solver by 
Chorin [18] is used for their numerical integration. At 
each finite volume face, the values of the integrand are 
required for the convection terms of the turbulence 
closure model. This is determined by interpolation from 
the cell-averaged flow state and this is accomplished by 
using the second-order upwind scheme [17]. 

In this study, two turbulence models were evaluated 
for closing the RANS equations: the realisable 𝑘 −
𝜀 model developed by Shih et al. [19], and the Reynolds 
stress model (RSM) by Launder et al. [20]. These models 
were used to run identical cases for each of the two 
computational geometries. The results show that the 
realisable 𝑘 − 𝜀 model predicts higher radial velocity 
maxima (0.2%) and lower radial velocity minima (0.1%) 
than the RSM model. This indicates that stronger Taylor 
vortices are predicted with the realisable 𝑘 − ε model. 
Apart from these quantitative differences between the 
predictions from the two models, the RSM took at least 
50% more CPU time to complete the simulations for all 
test cases. Based on the result from this preliminary test, 
the realizable 𝑘 − ε turbulence model was chosen for 
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computing all the CFD solutions in this study. The 
selection of the realizable 𝑘 − ε model for the RANS 
study is also supported by past experience with CFD. 
The realizable 𝑘 − ε model provides superior 
performance than the standard 𝑘 − ε model for flows 
involving rotation, boundary layers under strong adverse 
pressure gradients, separation, and recirculation [13] like 
in this study. The realizable 𝑘 − ε model has also shown 
substantial improvements over the standard 𝑘 − ε model 
where the flow features include strong streamline 
curvature, vortices, and rotation. 
 
3.2 Domain discretisation 

The computational domains were meshed using the 
commercial CFD mesh generator GAMBIT 2.4.6. The 
unstructured tetrahedral mesh of intermediate mesh 
density (type 2) used for test case 1 is shown in Figure 1. 
The mesh quality of the two test cases was assessed by 
evaluating the cell skewness. The maximum cell 
skewness for the test cases was found to be within the 
range 0.50 – 0.7, which suggests that all the meshes in 
this work are of good quality [13]. The mesh was 
clustered around the inner cylinder surface by the size 
function tool in GAMBIT 2.4.6. A constant starting cell 
size of 1.0 mm was used for all the test cases. This value 
was increased by 50% and 40% for growth rate and 
maximum cell size respectively for the test cases Γ = 
11.36 and Γ = 7.81.  

A grid independence test was conducted to assess the 
dependence of the results upon the level of the spatial 
discretisation. Three progressively finer meshes were 
evaluated for the two test cases in this study. For the test 
case Γ = 11.36, 4.2 million, 6.1 million, and 7.9 million 
cells were used. For the test case Γ = 7.81, 4.9 million, 
6.9 million, and 7.9 million cells were used. These 
meshes are referred to as type 1, type 2, and type 3 in the 
progressive mesh size order in Figure 2. The predictions 
of the total number of vortices and of the axial 
distribution of static pressure, axial velocity, and radial 
velocity were used as monitoring parameters to establish 
the grid independence of the predictions. 

Figure 2(a) and Figure 2(b) show respectively the 
CFD predictions of the radial velocity profiles extracted 
at the gap mid-span of the lower channel (𝜃 = −𝜋/2) in 
the meridional plane for the two test cases using the three 
different levels of computational mesh refinement. The 
results show that the radial velocity profiles have the 
same trends, which indicate that the different levels of 
computational mesh refinement have little impact on the 
axial spacing of the Taylor vortices, as shown by the 

regularly spaced maxima and minima in Figure 2(a) and 
Figure 2(b). 

Predictions obtained using mesh types 1 to 3 display 
an appreciable overlap in radial velocity over the entire 
range 0 ≤ 𝑋/𝑅𝑖 ≤ 10. This indicates that the numerical 
scheme is predicting the same Taylor vortex pattern at all 
the three levels of mesh refinement and that any further 
increase in grid density may not noticeably improve the 
accuracy of the RANS predictions. 

The percentage difference in the radial velocity 
between mesh type 3 and the other two mesh types were 
calculated. The results show that the percentage 
differences between the mesh types were all less than 5% 
for all the flow variables, while the number of the 
vortices for the two test cases remains unchanged. As a 
result, the computational mesh type 2 was chosen for the 
two test cases in this study as it provides sufficiently grid 
independent predictions, given the available 
computational resources. 

 

 
(a) 

 
(b) 

Figure 2: Radial velocity profiles at 𝑟 = 𝑅𝑖 + 0.5𝑑 for 
three different levels of computational mesh refinement 
for test cases (a) Γ = 11.36 and (b) Γ = 7.81. 
 
4.0 Validation of the CFD results 

In the experiment by Adebayo and Rona [11-12], the 
in-plane velocity was surveyed by PIV on the meridional 
plane. The comparison of the CFD predictions with these 
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reference measurements shows that there is agreement 
between the two results. For instance, Figure 3 shows the 
axial and radial velocity profiles from the CFD 
simulations and the PIV experiments for the test case 
Γ = 11.36. The velocity is normalised with respect to the 
inner cylinder surface speed 𝛺𝑅𝑖 and lengths are 
normalised by the inner cylinder radius 𝑅𝑖 . The velocity 
profiles were extracted and plotted at constant radial 
positions 𝑟 = 𝑅𝑖 + 0.125𝑑 for the axial velocity and at 
𝑟 = 𝑅𝑖 + 0.5𝑑 for the radial velocity, along the axial 
direction on the lower (𝜃 = −𝜋/2) channel of the 
annulus. The PIV error bands delimited by the plain 
dashed lines (without symbols) are included in the 
profiles of Figure 3(a) and Figure 3(b) to document the 
experimental uncertainty.  

 

 
(a) 

 
(b) 

Figure 3: Normalised (a) axial and (b) radial velocity 
profiles from PIV and CFD at the constant radial 
positions 𝑟 = 𝑅𝑖 + 0.125𝑑 and 𝑟 = 𝑅𝑖 + 0.5𝑑 on the 
meridional plane 𝜃 =  −𝜋/2, with the PIV error band. Γ 
= 11.36. 
 

In Figure 3(a) and Figure 3(b), the velocity profiles 
from both CFD and PIV at the radial positions 𝑟 = 𝑅𝑖 +
0.125𝑑 and 𝑟 = 𝑅𝑖 + 0.5𝑑 respectively show that the 
flow is almost centrally symmetric about the cylinder 
length mid-span at 𝑋/𝑅𝑖 = 5 and the magnitude of the 
corresponding velocity minima and maxima are almost 
the same. Although there is a little variation between the 
PIV and the CFD velocity profiles near the right end-wall 
in Figure 3(a) and Figure 3(b), the CFD profiles are still 
within the PIV measurement uncertainty band. The little 
difference observed between the PIV and the CFD 

profiles in Figure 3(a) and Figure 3(b) at the end-wall 
boundaries is attributed to the approximate alignment of 
the end-wall boundaries orthogonal to the cylinder axis 
in the experimental setup. 

Overall, the spatial variation of the in-plane velocities 
observed by PIV is substantially reproduced by CFD 
simulations. This indicates that the time averaged flow 
dynamics is correctly modelled. 
 
5.0 Results and discussions 
5.1 Overall flow resistance to rotation 

The tangential velocity difference between the inner 
and the outer cylindrical walls shears the fluid in the 
annular gap to resist the rotation of the inner cylinder. 
This resistance manifests itself as a torque, which is an 
integral quantity, dependent on the flow pattern. The 
torque predicted by CFD from integrating the surface 
shear stress on the inner cylinder is 2.09 x 10-5 Nm and 
2.06 x 10-5 Nm respectively for the test cases Γ = 11.36 
and Γ = 7.81. Comparative values of torque 𝑇 were 
obtained from the empirical correlation of Wendt [21] 
reported in Lathrop et al. [22] 

 

 
𝑇

𝜌𝜈2𝐿
= 1.45 

𝜂3/2

1 − 𝜂7/4 𝑅𝑒
1.5 5 

 
where 𝜌 is the air density, 𝐿 = 0.25 m is the axial length 
of the cylinders, and 𝑅𝑅 = �𝑇𝑇(1 − 𝜂)−1(1 + 𝜂)/2 is 
the flow Reynolds number. At the test conditions of 
Table 1, the torque estimates are 1.22 x 10-5 Nm and 1.16 
x 10-5 Nm respectively for the test cases Γ = 11.36 and Γ 
= 7.81. As the empirical correlation does not include any 
information about the staging between different Taylor 
vortex regimes, the match in the order of magnitude 
between the predicted torque from the empirical 
correlation and CFD may be deemed satisfactory. Given 
the very small magnitude of these torque values, a direct 
measurement of this variable was not attempted in 
Adebayo and Rona [11-12] due to the dominant role of 
the torque contribution from the roller bearings that 
supported the rotation of the inner cylinder. 
 
5.1 Flow pattern in the meridional plane  

Figure 4(a) and Figure 4(b) show respectively the 
CFD predictions of the velocity vectors in the meridional 
plane for the configurations Γ = 11.36 and Γ = 7.81. The 
velocity vectors are normalised by the inner cylinder 
angular speed Ω𝑅𝑖. An axisymmetric flow pattern of 
pairs of counter-rotating vortices is shown both in Figure 
4(a) and Figure 4(b). This pattern repeats along the axial 
shaft with consecutive cells moving the flow in the same 
direction at their meeting point. Along the axial direction 
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of the computational domain, which is 10𝑅𝑖, six pairs of 
vortices are predicted for the test case Γ = 11.36, while 
four pairs of vortices are predicted for the test case Γ = 
7.81. These are symmetrical about the mid-point along 
the axial direction. Therefore, to illustrate the flow 
pattern more clearly, only the vortices to the left of the 
point of symmetry are shown in Figure 4. The reduction 
in the number of the vortices from six pairs to four pairs 
is one of the effects of the change in the gap width 𝑑 and 
an indication that the number of vortices is a function of 
the aspect and radius ratios, in agreement with the 
experimental investigation by Adebayo and Rona [11-
12]. 

In the CFD simulation, the no-slip boundary 
conditions imposed at the end-walls generate a boundary 
layer flow, with a peculiar discontinuity in velocity at the 
junctions between the rotating inner cylinder and the 
stationary end-walls. The discontinuity of the boundary 
conditions at the meeting point of the inner cylinder and 
the end-walls generates a weaker circulation cell adjacent 
to these end-walls compared to the more inbound cells, 
as can be observed in Figure 4. 

As the inner cylinder rotates, the radial velocity 
induced by the vortices, as a result of a higher centrifugal 
force experienced by the fluid particles near the wall of 
the inner cylinder, convects the fluid with high tangential 
momentum near the rotating inner cylinder radially 
outward, in the outflow regions between two adjacent 
paired vortices. Symmetrically, low speed fluid from 
near the stationary outer cylinder is convected radially 
inward in the inflow (upwell at 𝜃 = −𝜋/2) regions 
between two adjacent pairs of vortices. The redistribution 
of the angular momentum of the fluid across the annulus 
affects the inward and the outward flow velocity 
distribution. This is responsible for the stronger radial 
outflow than the radial inflow between the vortices 
observed in Figure 4. 

At the meeting point of two adjacent vortices, there is 
significant flow mixing and exchange of momentum at 
the outflow region, with each vortex adding to the 
mixing region at the centre of a vortex pair, close to the 
inner cylinder and then receiving fluid from this mixing 
region, close to the outer cylinder. A similar mixing 
process occurs at the inflow region, between 
neighbouring vortex pairs. 

In Figure 4, the vortex centres are shifted toward the 
outer cylinder, due primarily to the imbalance between 
the centrifugal force due to the rotation of the inner 
cylinder and the pressure gradient due to the stationary 
outer cylinder wall, as the centrifugal force pulls the fluid 
away from the rotating inner cylinder. 

 
(a) 

 
(b) 

Figure 4: Normalised velocity vectors in the meridional 
plane of the annulus for test cases (a) Γ = 11.36 and (b) Γ 
= 7.81. The reference velocity vector magnitude is 
0.5 Ω𝑅𝑖 . 
 
5.2 Flow pattern in the axial plane 

Figure 5(a-f) show the velocity vector maps of 
different flow patterns at various axial locations 
projected on the axial plane for the test cases Γ = 11.36 
and Γ = 7.81. The analysis of the flow in the axial plane 
complements the PIV results obtained in the meridional 
plane reported by Adebayo and Rona [11-12] to achieve 
a clearer understanding of the physics of the fluid motion 
in the annular gap between the cylinders as the gap width 
changes. Various cross-sections have been sliced normal 
to the axis of the coaxial cylinders of Figure 1 in order to 
analyse the flow variables in the axial planes. In all, six 
different flow patterns (including the flow pattern at the 
end-walls) are identified within the computational 
domain. Four out of the six patterns recur in the axial 
direction with the spatial period of one Taylor vortex 
pair. The sliced positions are labelled alphabetically (a-e) 
in Figure 4(a) and Figure 4(b) for the test cases Γ = 11.36 
and Γ = 7.81 respectively for easy identification. The  
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(a) 𝑋/𝑅𝑖  = 0.05. Γ = 11.36 

 
(b) 𝑋/𝑅𝑖 = 0.65. Γ = 11.36 

 
(c) 𝑋/𝑅𝑖  = 1.07. Γ = 11.36 

 
(d) 𝑋/𝑅𝑖 = 1.97. Γ = 7.81 

 
(e) 𝑋/𝑅𝑖  = 2.62. Γ = 7.81 

 
(f) 𝑋/𝑅𝑖 = 9.95. Γ = 7.81 

Figure 5: Velocity vectors in the axial plane normalised by Ω𝑅𝑖. 
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location of slice f, which is not shown on these figures, is 
close to the right end-wall at 𝑋/𝑅𝑖= 9.95. These sections 
define the axial planes where the flow pattern is 
investigated and correspond to axial positions (a) X/Ri = 
0.05, (b) 𝑋/𝑅𝑖 = 0.65, and (c) 𝑋/𝑅𝑖  = 1.07, in Figure 
4(a), and (d) 𝑋/𝑅𝑖 = 1.97 and (e) 𝑋/𝑅𝑖  = 2.62, in Figure 
4(b). 

The velocity vectors maps at 𝑋/𝑅𝑖  = 1.41, 𝑋/𝑅𝑖  = 
1.84, and 𝑋/𝑅𝑖 = 9.95 for the test case Γ = 11.36 give 
similar patterns as the velocity vector maps in Figure 
5(d-f) for test case Γ = 7.81 and are therefore not shown. 
Similarly, velocity vectors maps at 𝑋/𝑅𝑖= 0.05, 𝑋/𝑅𝑖 = 
0.92, and 𝑋/𝑅𝑖  = 1.47 for the test case Γ = 7.81 are not 
shown because they are similar to the velocity vector 
maps in Figure 5(a-c) for test case Γ = 11.36. In Figure 5, 
the reference vector is shown on each velocity map so 
that the magnitude of the vectors can be appreciated. 

Figure 5(a) and Figure 5(f) show respectively the 
normalised velocity vector maps near the end-walls at 
𝑋/𝑅𝑖 = 0.05 and 𝑋/𝑅𝑖 = 9.95 for the test cases Γ = 11.36 
and Γ = 7.81 and enable to understand the effects of the 
end-walls on the axial plane flow. The magnitudes of the 
velocity vectors at these locations are relatively small 
compared with other locations in the central region of the 
computational domain. This is primarily because 
computations are performed with a stationary end-wall. 

Figure 5(b) and Figure 5(d) show the normalised 
velocity vectors at 𝑋/𝑅𝑖= 0.65 at Γ = 11.36 and at 𝑋/𝑅𝑖= 
1.97 at Γ = 7.81. These locations correspond to the 
centres of a clockwise vortex and of an anti-clockwise 
vortex respectively in Figure 4(a) and Figure 4(b) based 
on the flow visualisations of the lower channel at 
𝜃 = −𝜋/2 of Figure 4(a) and Figure 4(b). The flow 
patterns of Figure 5(b) and Figure 5(d) for the test cases 
Γ = 11.36 and Γ = 7.81 are similar in terms of the 
velocity vector magnitude, despite the difference in the 
gap width, while in the meridional plane of Figure 4, the 
axial velocity components at (b) and (d) are opposite to 
one another. The axial location of Figure 5(b) 
corresponds to an axial location of almost zero radial 
velocity in Figure 3(b) and to an axial velocity maximum 
in Figure 3(a). Similarly, the axial location of Figure 5(d) 
corresponds to an axial location of almost zero radial 
velocity in Figure 2(b). 

In Figure 5(c), the axial plane 𝑋/𝑅𝑖  = 1.07 
corresponds to the outward flow region in Figure 4(a). 
The flow pattern at this location shows that the 
magnitude of the velocity vectors is higher compared 
with the magnitude of the velocity vectors at the other 
locations in Figure 5. This position is where high radial 
momentum fluid is being carried outwardly by the Taylor 

vortices toward the stationary outer cylinder, as 
evidenced by the direction of the velocity vector pattern. 
This position corresponds to an axial velocity zero 
crossing in Figure 3(a) and to a radial velocity maximum 
in Figure 3(b). 

Figure 5(e) shows the normalised velocity vectors at 
𝑋/𝑅𝑖 = 2.62 for the test case Γ = 7.81. This location 
corresponds to an inflow region in Figure 4(b) for the test 
case Γ = 7.81. At this location, low tangential momentum 
fluid is being carried inwardly by the radial velocity 
induced by the Taylor vortices from the stationary outer 
cylinder toward the rotating inner cylinder, as evidenced 
by the direction of the velocity vector pattern. This 
position corresponds to a position of radial velocity 
minimum in Figure 2(b). Comparing the velocity vectors 
at this position to the velocity vectors at Figure 5(c), it is 
evinced that the tangential momentum at the inflow 
regions is lower than that at the outflow regions. 

Figure 5(a-f) shows that the velocity vectors near the 
inner cylinder display a higher tangential velocity 
magnitude than the vectors near the outer cylinder. The 
tangential velocity at the wall of the outer stationary 
cylinder tends to zero, primarily to satisfy the no-slip 
condition imposed on the wall of the outer cylinder. 
These velocity vector maps indicate that the tangential 
velocity is the dominant in-plane velocity component, as 
the radial velocity is relatively weak.  

 
5.3 Velocity profiles in the axial plane 

The azimuthal distribution of the tangential velocity 
at the axial location 𝑥/𝑅𝑖  = 1.07 is shown in Figure 6(a) 
for the test case Γ = 11.36 at constant radial positions 
(𝑟 − 𝑅𝑖)/𝑑 of 0.125, 0.5, and 0.875, to examine the axial 
symmetry of the flow. Figure 6 shows that at all three 
radial positions the tangential velocity is essentially 
constant and nearly independent from the azimuthal 
coordinate 𝜃. This indicates that the flow is substantially 
axisymmetric and that does not manifest any appreciable 
waviness of the Taylor vortices in the azimuthal 
direction. Similar results are shown in Figure 6(b) for the 
test case Γ = 7.81 at the axial location 𝑥/𝑅𝑖  = 2.62. 

The radial velocity profiles at the axial locations (b) 
to (e) of Figure 4 were extracted for the test cases Γ = 
11.36 and Γ = 7.81. The profiles in the axial plane are 
axisymmetric, as such the profiles at different angles 𝜃 
around the annulus coincide. These profiles enable to 
assess the radial dependence of the flow variables more 
readily than the meridional and cascade plane plots. The 
profiles, therefore, can be used to provide information 
about the radial velocity distributions within the annular 
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space of bearing chambers and for further clarifying the 
trends shown by the velocity vector maps in Figure 5.  

 
   (a) 

 
Figure 6: Azimuthal profiles of normalised tangential 
velocity at different radial heights on selected axial 
planes for the test cases (a) Γ = 11.36 and (b) Γ = 7.81. 

 
Figure 7(a) and Figure 7(b) show respectively the 

radial profiles of tangential velocity at a single axial 
location extracted from axial planes like (c) in Figure 
4(a) and Figure 4(b), along the full length of the cylinder. 
These planes are the centre of the outward flow 
(downwells) regions for the test cases Γ = 11.36 and Γ = 
7.81. The predicted flow tangential velocity, normalised 
by the inner cylinder tangential rotational speed Ω𝑅𝑖, is 
plotted as clockwise negative in Figure 6 and Figure 7, to 
be consistent with the right-handed reference system of 
Figure 1. The abscissa in Figure 7 is the radial distance 
from the inner cylinder surface to the outer cylinder 
surface, normalised by the gap width, d, which is related 
to the cylindrical coordinates system of Figure 1(a) by 
(𝑟 − 𝑅𝑖)/𝑑. 

In Figure 7(a) and Figure 7(b), a more boundary 
layer-like velocity profile is obtained near the wall of the 
cylinders compared to the constant gradient profile 
typical of rotary viscometers or narrow gap journal 
bearings. The profiles show that the tangential velocity 

magnitude is greater than the radial velocity in Figure 
2(b) and Figure 3 (b) over the range 0 ≤ (𝑟 − 𝑅𝑖)/𝑑 ≤
0.94 for Γ = 11.36 and 0 ≤ (𝑟 − 𝑅𝑖)/𝑑 ≤ 0.82 for 
Γ = 7.81 and is the dominant component of the in-plane 
velocity. This confirms the dominance of the clockwise 
motion shown by the velocity vector maps of Figure 5. 

 
(a)  

 
(b)  

Figure 7: Normalised tangential velocity profiles at the 
down-well positions on selected axial planes at 𝜃 =
 −𝜋/2 for the test cases (a) Γ = 11.36 and (b) Γ = 7.81. 
 

In the outflow regions shown in Figure 7(a) for Γ = 
11.36, the normalised tangential velocity has a maximum 
magnitude at the inner rotating wall and zero magnitude 
at the outer stationary wall. Its magnitude decreases less 
rapidly near the wall of the inner cylinder compared to 
the velocity profiles through the centres of the clockwise 
vortices shown in Figure 8(a). The profiles then increase 
more rapidly near the wall of the outer cylinder. The 
region with the lower tangential velocity magnitude 
decay rate is 0 ≤ (𝑟 − 𝑅𝑖)/𝑑 ≤ 0.16, which corresponds 
to the tangential velocity range −1.0Ω𝑅𝑖 ≤ 𝑢𝜃 ≤
−0.63Ω𝑅𝑖. The region with rapid decay rate is 0.16 ≤
(𝑟 − 𝑅𝑖)/𝑑 ≤ 1.0, which corresponds to the tangential 
velocity range −0.63Ω𝑅𝑖 ≤ 𝑢𝜃 ≤ 0. The normalised 
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tangential velocity magnitude in Figure 7(b) for the test 
case Γ = 7.81 exhibits a similar trend as in Figure 7(a) for 
Γ = 11.36. 

The profiles through the centres of the clockwise 
vortices shown in Figure 8(a) and Figure 8(b) 
respectively for the test cases Γ = 11.36 and Γ = 7.81 
show the same trend. The profiles show three distinctive 
regions where the profiles change. The tangential 
velocity magnitude near the wall of the inner cylinder 
decreases rapidly up to the radial position (𝑟 − 𝑅𝑖)/𝑑 ≈
0.2, which corresponds to a negative tangential velocity 
of -0.3Ω𝑅𝑖. The tangential velocity magnitude then 
stabilises in the central region, over the range 0.2 ≤ (𝑟 −
𝑅𝑖)/𝑑 ≤ 0.90, and then decreases rapidly over the region 
0.9 ≤ (𝑟 − 𝑅𝑖)/𝑑 ≤ 1.0 where it reaches zero at the wall 
of the outer cylinder as a result of the no-slip boundary 
condition. 
 

 
(a) 

 

 
(b) 

Figure 8: Normalised tangential velocity profiles through 
the centres of the clockwise vortices on selected axial 
planes at 𝜃 =  −𝜋/2 for the test cases (a) Γ = 11.36 and 
(b) Γ = 7.81. 

 

The profiles through the centres of the anti-clockwise 
vortices for the test cases Γ = 11.36 and Γ = 7.81 have a 
trend similar to that of Figure 8(a) and Figure 8(b). 

Figure 9(a) and Figure 9(b) show respectively the 
tangential velocity at the inflow regions for the test cases 
Γ = 11.36 and Γ = 7.81. The tangential velocity 
magnitude decreases monotonically in two regions. The 
first region is near the inner cylinder at 0 ≤ (𝑟 −
𝑅𝑖)/𝑑 ≤ 0.18, which corresponds to the tangential 
velocity range -1.0 Ω𝑅𝑖 ≤ 𝑢𝜃 ≤ −0.24 Ω𝑅𝑖. The second 
region is 0.18 ≤ (𝑟 − 𝑅𝑖)/𝑑 ≤ 1.0, which corresponds 
to the tangential velocity range −0.24 Ω𝑅𝑖 ≤ 𝑢𝜃 ≤ 0.  

 

 
(a)  

 

 
(b)  

Figure 9: Normalised tangential velocity profiles at the 
up-well positions on the selected planes at 𝜃 =  −𝜋/2 for 
the test cases (a) Γ = 11.36 and (b) Γ = 7.81. 
 

From the radial profiles of the in-plane normalised 
tangential velocity in Figure 7 to Figure 9, the tangential 
velocity magnitude rapidly decays from the inner rotating 
cylinder at all axial locations. The decay rate for the 
tangential velocity magnitude is more modest in the 
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outflow regions, over the range 0 ≤ (𝑟 − 𝑅𝑖)/𝑑 ≤ 0.18, 
compared to the decay rate over the inflow regions. It is 
worth noting that the tangential velocity profiles at all 
axial locations is different from that of the journal 
bearing where the velocity profiles are linear. A similar 
non-linear behaviour of the tangential velocity profile in 
counter-rotating cylinders was reported by Vaezi et al. 
[23]. In addition, the axial variation in the tangential 
velocity at the down-well and up-well regions is likely to 
lead to a significant axial variation in pressure 
distribution, based on simple radial equilibrium 
arguments in the rotating flow. This hypothesis is 
currently under investigation. 
 
6.0 Conclusions 

An insight into the three-dimensional dynamics of the 
flow in the wide gap between a stationary outer cylinder 
and a rotating coaxial inner cylinder was obtained by 
computational fluid dynamics. The wide gap 
configuration has received comparatively less attention 
than narrow gap geometries, which have been studied 
extensively in the literature due to their relevance to 
journal bearings. This study therefore fills an important 
gap in the literature on Taylor Couette flows. 

Axial variations in all three velocity components 
document a flow that departs significantly from a two-
dimensional constant-gradient radial velocity distribution 
that may be used for representing lightly loaded roller 
bearing flows. The axial variation of the tangential 
velocity gradient induces an axially varying shear stress, 
resulting in local bands, or rings, of enhanced work input 
to the working fluid. This is likely to cause unwanted 
surface hot-spotting, arranged in the form of bands, in 
high torque applications. 

At the axial end-wall boundaries of rotating 
machinery, the radial inflow is likely to promote the 
transport of debris to the junction between the end-collar 
and the rotating shaft, leading to the build-up of fouling 
in the shaft seal. 

Whereas the current study is limited to discussing the 
flow dynamics, it has produced a computational fluid 
dynamics model that enables to explore the force and 
pressure distribution in the annular gap between the two 
cylinders. The variation in the tangential velocity along 
the entire annulus is likely to lead to a significant axial 
variation in pressure distribution, based on simple radial 
equilibrium arguments in the rotating flow. This 
hypothesis motivates a separate study dedicated to this 
important aspect of the Taylor-Couette system at wide 
gap (large clearance) that is currently underway. In 
addition, this study can be extended to an investigation 

into the effects of a non-zero axial flow rate and of a 
radial shaft load on the flow, towards building a higher 
fidelity model of a bearing chamber. 
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