The three-dimensional velocity distribution of wide gap Taylor-Couette flow
modelled by CFD

D. Adebayo and A. Rona®
Department of Engineering, University of Leicester, University Road,
Leicester, LE1 7RH, U.K.

dsab@le.ac.uk; ar45@le.ac.uk

(a) Author to whom correspondence should be addressed: ar45@Ile.ac.uk.

Abstract (200 words)

A numerical investigation is conducted of the flow between two concentric cylinders with a wide gap, relevant
to bearing chamber applications. This wide gap configuration has received comparatively less attention than
narrow gap journal bearing type geometries. The flow in the gap between an inner rotating cylinder and an outer
stationary cylinder has been modelled as an incompressible flow using an implicit finite-volume RANS scheme
with the realisable k — ¢ model. The model flow is above the critical Taylor number at which axisymmetric
counter-rotating Taylor vortices are formed. The tangential velocity profiles at all axial locations are different
from typical journal bearing applications, where the velocity profiles are quasi-linear. The predicted results led
to two significant findings of impact in rotating machinery operations. Firstly, the axial variation of the
tangential velocity gradient induces an axially varying shear stress, resulting in local bands of enhanced work
input to the working fluid. This is likely to cause unwanted heat transfer on the surface in high torque turbo-
machinery applications. Secondly, the radial inflow at the axial end-wall boundaries is likely to promote the
transport of debris to the junction between the end-collar and the rotating cylinder, causing the build-up of

fouling in the seal.
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1.0 Introduction

The understanding of the flow in the gap between
concentric independently rotating cylinders is both of
scientific and of practical interest for many engineering
applications in rotating machinery. Specific examples
include the lubricating flow between rotating shafts of
turbo-pumps in rocket engines and of multi-spool
turbofan engines and in the bearing housing of high [1]
and low [2] bypass aircraft engines. Other areas of
application are found in the bearing chambers of internal
combustion aero-engines, rotating tube in tube heat
exchangers and in the submerged pumps for water wells.

Lubrication is very important in turbo-machineries
where the inner cylinder (shaft) rotates and the outer
cylinder (journal bearing) is stationary. In this
application, the clearance is typically small enough, the
lubricant viscous enough, and the speeds slow enough so
that the flow is laminar. The flow is eccentric because the
radial loading on the shaft reduces the bearing clearance
on one side. With a properly designed bearing, the shaft,

while turning, will not contact the bearing because the
viscous shear force between the shaft and the lubricant
carries the lubricant into this space. At high shaft speeds
and high shaft loads, the laminar flow becomes first
axially non-uniform and then non-axisymmetric [3-9].
This is because the forces arising from viscosity are
insufficient to overcome those associated with the fluid
inertia. This transition increases the shaft torque
significantly so that ball and or roller bearings are used in
place of a journal bearing at these higher rotational
speeds.

Many experimental investigations and numerical
simulations have been conducted to understand the
complexities of this flow. This activity dates back to
1888 and 1890, when Mallock [3-4] and Couette [5]
conducted independent experiments using concentric
rotating cylinders. More recently, Liao et al. [8]
conducted numerical simulations that reproduced three
regimes of the Couette-Taylor system, namely the steady
circular Couette flow, the steady axisymmetric Taylor
vortex flow, and the periodic spiral vortex flow. They
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validated their computational results using the
experimental observations of Andereck et al. [9]. They
concluded that this system exhibits a rich diversity of
steady and chaotic flow patterns that are complex in
nature and may arise as a result of small perturbations.
These characteristics are typical expressions of
hydrodynamic instabilities in the flow. Czarny et al. [10]
performed a direct numerical simulation, using a three-
dimensional spectral method, of a small axial length to
diameter ratio annular flow driven by counter-rotating
cylinders. The numerical model predicted two different
flow regimes, wavy vortices and interpenetrating spirals.

The flow enclosed between rotating coaxial cylinders
is often characterised with respect to the Taylor number,
Ta, which expresses in non-dimensional form the
importance of the centripetal acceleration in a rotating
flow relative to the viscous forces. In this study, where
only the inner cylinder is rotating, the Taylor number Ta
is defined as
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where n = R;/R, is the radius ratio, R; and R, are the
radii of the inner and the outer cylinders respectively,
d = R, — R; is the gap width, Q is the rotational speed of
the inner cylinder, and v is the fluid kinematic viscosity.

Many aspects of the flow developing between coaxial
rotating cylinders are yet to be fully detailed. One of the
advantages of 3D simulations over traditional
experiments is the ability to investigate the salient
features of the flow across the entire annulus on
meridional, axial and cascade planes. Whilst a 3D model
is more demanding both in terms of its development time
and of the computational resources, it has the potential to
resolve the time-averaged three-dimensional motion of
the localised flow disturbances induced by the rotation of
the inner cylinder.

Adebayo and Rona [11-12] measured by PIV the in-
plane velocity between rotating cylinders at wide gap.
These measurements were limited to the meridional
plane where the PIV gave direct measurements of the in-
plane velocity. Computational fluid dynamic (CFD) can
overcome this limitation by estimating the full 3D
velocity field as part of the flow field solution. The CFD
model therefore enables to quantify and qualify the
important flow fields beyond the current limitations of
conventional non-intrusive optics-based measurement
techniques.

In this study, CFD is used to predict the flow pattern
and examine in detail the velocity distributions both in
the meridional and in the axial planes in a moderately
wide gap set-up. The accuracy of the predicted result is

validated by comparing the velocity profiles from the
CFD simulations to the PIV measurements by Adebayo
and Rona [11-12] in the meridional plane. Conclusions
are drawn on the significant implication of these findings
for high torque turbomachinery applications.

2.0 Computation domain and flow conditions
2.1 Geometry

A three-dimensional (3D) numerical model is used to
examine the velocity field flow in more than one plane.
The model geometry is defined with respect to the
coordinates shown in Figure 1. The cylinders are coaxial
with the axis coinciding with the X-direction of the
cylindrical reference system (r,6,X). Two different
coaxial assemblies, summarised in Table 1, are
considered to allow a parametric study of the flow
pattern in the annular region of the coaxial cylinders. The
rotating speed Q of the inner cylinder is held constant at
52.36 rad/s in all test cases. The geometries modelled in
this study were created using commercial CFD software
GAMBIT 2.4.6.

Figure 1: (a) Tetrahedral computational mesh structure
and (b) computational mesh detail at the end wall one
mesh point every 10 has been plotted radially, for clarity.



Table 1: Specifications for the computational parameters

Description Testcase 1  Test case 2
Inner cylinder length (m) 0.5 0.5
Outer cylinder length (m) 0.5 0.5
Inner cylinder outer 0.05 0.05
diameter (m)
Outer cylinder inner 0.094 0.114
diameter (m)
Gap width d (m) 0.022 0.032
Aspectratiol = L/d 11.36 7.81
Radius ration = R;/R, 0.53 0.44
Clearance ratio d/R; 0.88 1.28
Reynolds number Re 1.97x10°  2.88 x10°
Taylor number Ta 235x10°  6.47 x 10°
2.2 Boundary conditions

The internal flow between the two rotating cylinders
is modelled as fully enclosed using the commercial CFD
software ANSYS Fluent [13]. At the start of the
computation, zero flow conditions are imposed
throughout the computational domain. The axis of the
cylinders is horizontal and the vertical extent of
computational domain is limited to 0.114 m. Therefore,
gravitational acceleration effects are not modelled. No-
slip stationary adiabatic wall boundary conditions are
applied at the left and the right end-walls, as well as at
the outer cylindrical surface at R,. The inner cylinder
surface is modelled as a rotating adiabatic no-slip wall.
These boundaries fully delimit the computational domain
and define a closed system. An adequate match of the
acceleration profile between experiment [11-12] and
computation was found to be important, as such the
simulations in this work were carried out with a sudden
start of the inner cylinder at the specified angular speed,
modelling experiments in which the target rotational
speed of the inner cylinder is reached within one second
[14-15].

The closed type system being modelled enables some
flexibility in the definition of the turbulence quantities at
the start of the computation. Unlike an open system with
a computational inflow boundary, which affects the
solution at all times, the turbulence quantities in a closed
system are updated by the flow solver and are therefore
self-determined in the converged solution. The
turbulence level at the start of the computation was
specified in terms of the turbulence intensity and
hydraulic diameter. Estimations of turbulence intensity
TI, turbulent Kinetic energy k, and turbulent dissipation
rate € were calculated for all the CFD simulations using
empirical correlations for pipe flows [13]. Specifically,
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where Reyp is the Reynolds number based on the
hydraulic diameter Dy = 2d of the cylindrical assembly,
Uqwg is the bulk velocity, the constant C, = 0.09, and
[ = 0.07Dy.

The turbulence intensity, turbulence kinetic energy k
and turbulent dissipation rate € levels are 6%, 0.0093
m?/s?, and 0.0478 m?/s® respectively for the test case I' =
11.36, and 5%, 0.0064 m°/s’, and 0.0189 m?/s’
respectively for the test case I' = 7.81. These are
indicative of a turbulent flow in the annular region
between the cylinders and are above typical values of
0.2% to 0.3% that are found in the test section of well-
designed wind tunnels.

3.0 Numerical model
3.1 Computational scheme

In this study, all the CFD simulations assume an
isothermal, viscous, and incompressible (constant
density) fluid. The incompressible Reynolds Averaged
Navier Stokes (RANS) equations for the conservation of
mass and momentum [16-17] govern this flow. The
governing equations are discretized by a finite volume
approach and the pressure based segregated solver by
Chorin [18] is used for their numerical integration. At
each finite volume face, the values of the integrand are
required for the convection terms of the turbulence
closure model. This is determined by interpolation from
the cell-averaged flow state and this is accomplished by
using the second-order upwind scheme [17].

In this study, two turbulence models were evaluated
for closing the RANS equations: the realisable k —
& model developed by Shih et al. [19], and the Reynolds
stress model (RSM) by Launder et al. [20]. These models
were used to run identical cases for each of the two
computational geometries. The results show that the
realisable k — & model predicts higher radial velocity
maxima (0.2%) and lower radial velocity minima (0.1%)
than the RSM model. This indicates that stronger Taylor
vortices are predicted with the realisable k — & model.
Apart from these quantitative differences between the
predictions from the two models, the RSM took at least
50% more CPU time to complete the simulations for all
test cases. Based on the result from this preliminary test,
the realizable k — ¢ turbulence model was chosen for



computing all the CFD solutions in this study. The
selection of the realizable k — e model for the RANS
study is also supported by past experience with CFD.
The realizable k —¢ model provides superior
performance than the standard k — e model for flows
involving rotation, boundary layers under strong adverse
pressure gradients, separation, and recirculation [13] like
in this study. The realizable k — € model has also shown
substantial improvements over the standard k — € model
where the flow features include strong streamline
curvature, vortices, and rotation.

3.2 Domain discretisation

The computational domains were meshed using the
commercial CFD mesh generator GAMBIT 2.4.6. The
unstructured tetrahedral mesh of intermediate mesh
density (type 2) used for test case 1 is shown in Figure 1.
The mesh quality of the two test cases was assessed by
evaluating the cell skewness. The maximum cell
skewness for the test cases was found to be within the
range 0.50 — 0.7, which suggests that all the meshes in
this work are of good quality [13]. The mesh was
clustered around the inner cylinder surface by the size
function tool in GAMBIT 2.4.6. A constant starting cell
size of 1.0 mm was used for all the test cases. This value
was increased by 50% and 40% for growth rate and
maximum cell size respectively for the test cases I' =
11.36and I = 7.81.

A grid independence test was conducted to assess the
dependence of the results upon the level of the spatial
discretisation. Three progressively finer meshes were
evaluated for the two test cases in this study. For the test
case ' = 11.36, 4.2 million, 6.1 million, and 7.9 million
cells were used. For the test case I' = 7.81, 4.9 million,
6.9 million, and 7.9 million cells were used. These
meshes are referred to as type 1, type 2, and type 3 in the
progressive mesh size order in Figure 2. The predictions
of the total number of vortices and of the axial
distribution of static pressure, axial velocity, and radial
velocity were used as monitoring parameters to establish
the grid independence of the predictions.

Figure 2(a) and Figure 2(b) show respectively the
CFD predictions of the radial velocity profiles extracted
at the gap mid-span of the lower channel (6 = —m/2) in
the meridional plane for the two test cases using the three
different levels of computational mesh refinement. The
results show that the radial velocity profiles have the
same trends, which indicate that the different levels of
computational mesh refinement have little impact on the
axial spacing of the Taylor vortices, as shown by the

regularly spaced maxima and minima in Figure 2(a) and
Figure 2(b).

Predictions obtained using mesh types 1 to 3 display
an appreciable overlap in radial velocity over the entire
range 0 < X/R; < 10. This indicates that the numerical
scheme is predicting the same Taylor vortex pattern at all
the three levels of mesh refinement and that any further
increase in grid density may not noticeably improve the
accuracy of the RANS predictions.

The percentage difference in the radial velocity
between mesh type 3 and the other two mesh types were
calculated. The results show that the percentage

differences between the mesh types were all less than 5%
for all the flow variables, while the number of the
vortices for the two test cases remains unchanged. As a
result, the computational mesh type 2 was chosen for the
two test cases in this study as it provides sufficiently grid
given  the

independent  predictions, available

computational resources.
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Figure 2: Radial velocity profiles at r = R; + 0.5d for
three different levels of computational mesh refinement
for test cases (a) I' = 11.36 and (b) ' = 7.81.

4.0 Validation of the CFD results

In the experiment by Adebayo and Rona [11-12], the
in-plane velocity was surveyed by PIV on the meridional
plane. The comparison of the CFD predictions with these



reference measurements shows that there is agreement
between the two results. For instance, Figure 3 shows the
axial and radial velocity profiles from the CFD
simulations and the PIV experiments for the test case
I' = 11.36. The velocity is normalised with respect to the
inner cylinder surface speed 0R; and lengths are
normalised by the inner cylinder radius R;. The velocity
profiles were extracted and plotted at constant radial
positions r = R; + 0.125d for the axial velocity and at
r = R; + 0.5d for the radial velocity, along the axial
direction on the lower (6 = —m/2) channel of the
annulus. The PIV error bands delimited by the plain
dashed lines (without symbols) are included in the
profiles of Figure 3(a) and Figure 3(b) to document the
experimental uncertainty.
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Figure 3: Normalised (a) axial and (b) radial velocity
profiles from PIV and CFD at the constant radial
positions r = R; + 0.125d and r = R; + 0.5d on the
meridional plane 8 = —m/2, with the PIV error band. T’
=11.36.
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In Figure 3(a) and Figure 3(b), the velocity profiles
from both CFD and PIV at the radial positions r = R; +
0.125d and r = R; + 0.5d respectively show that the
flow is almost centrally symmetric about the cylinder
length mid-span at X/R; = 5 and the magnitude of the
corresponding velocity minima and maxima are almost
the same. Although there is a little variation between the
PIV and the CFD velocity profiles near the right end-wall
in Figure 3(a) and Figure 3(b), the CFD profiles are still
within the PIV measurement uncertainty band. The little
difference observed between the PIV and the CFD

profiles in Figure 3(a) and Figure 3(b) at the end-wall
boundaries is attributed to the approximate alignment of
the end-wall boundaries orthogonal to the cylinder axis
in the experimental setup.

Overall, the spatial variation of the in-plane velocities
observed by PIV is substantially reproduced by CFD
simulations. This indicates that the time averaged flow
dynamics is correctly modelled.

5.0 Results and discussions
5.1 Overall flow resistance to rotation

The tangential velocity difference between the inner
and the outer cylindrical walls shears the fluid in the
annular gap to resist the rotation of the inner cylinder.
This resistance manifests itself as a torque, which is an
integral quantity, dependent on the flow pattern. The
torque predicted by CFD from integrating the surface
shear stress on the inner cylinder is 2.09 x 10° Nm and
2.06 x 10" Nm respectively for the test cases I' = 11.36
and I' = 7.81. Comparative values of torque T were
obtained from the empirical correlation of Wendt [21]
reported in Lathrop et al. [22]
773/2

= 1.45
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where p is the air density, L = 0.25 m is the axial length
of the cylinders, and Re = /Ta(1—n)"1(1 +n)/2 is
the flow Reynolds number. At the test conditions of
Table 1, the torque estimates are 1.22 x 10° Nm and 1.16
X 10®° Nm respectively for the test cases I' = 11.36 and T’
= 7.81. As the empirical correlation does not include any
information about the staging between different Taylor
vortex regimes, the match in the order of magnitude
between the predicted torque from the empirical
correlation and CFD may be deemed satisfactory. Given
the very small magnitude of these torque values, a direct
measurement of this variable was not attempted in
Adebayo and Rona [11-12] due to the dominant role of
the torque contribution from the roller bearings that
supported the rotation of the inner cylinder.

5.1 Flow pattern in the meridional plane

Figure 4(a) and Figure 4(b) show respectively the
CFD predictions of the velocity vectors in the meridional
plane for the configurations I' = 11.36 and ' = 7.81. The
velocity vectors are normalised by the inner cylinder
angular speed QR;. An axisymmetric flow pattern of
pairs of counter-rotating vortices is shown both in Figure
4(a) and Figure 4(b). This pattern repeats along the axial
shaft with consecutive cells moving the flow in the same
direction at their meeting point. Along the axial direction



of the computational domain, which is 10R;, six pairs of
vortices are predicted for the test case I' = 11.36, while
four pairs of vortices are predicted for the test case I' =
7.81. These are symmetrical about the mid-point along
the axial direction. Therefore, to illustrate the flow
pattern more clearly, only the vortices to the left of the
point of symmetry are shown in Figure 4. The reduction
in the number of the vortices from six pairs to four pairs
is one of the effects of the change in the gap width d and
an indication that the number of vortices is a function of
the aspect and radius ratios, in agreement with the
experimental investigation by Adebayo and Rona [11-
12].

In the CFD simulation, the no-slip boundary
conditions imposed at the end-walls generate a boundary
layer flow, with a peculiar discontinuity in velocity at the
junctions between the rotating inner cylinder and the
stationary end-walls. The discontinuity of the boundary
conditions at the meeting point of the inner cylinder and
the end-walls generates a weaker circulation cell adjacent
to these end-walls compared to the more inbound cells,
as can be observed in Figure 4.

As the inner cylinder rotates, the radial velocity
induced by the vortices, as a result of a higher centrifugal
force experienced by the fluid particles near the wall of
the inner cylinder, convects the fluid with high tangential
momentum near the rotating inner cylinder radially
outward, in the outflow regions between two adjacent
paired vortices. Symmetrically, low speed fluid from
near the stationary outer cylinder is convected radially
inward in the inflow (upwell at 6 = —m/2) regions
between two adjacent pairs of vortices. The redistribution
of the angular momentum of the fluid across the annulus
affects the inward and the outward flow velocity
distribution. This is responsible for the stronger radial
outflow than the radial inflow between the vortices
observed in Figure 4.

At the meeting point of two adjacent vortices, there is
significant flow mixing and exchange of momentum at
the outflow region, with each vortex adding to the
mixing region at the centre of a vortex pair, close to the
inner cylinder and then receiving fluid from this mixing
region, close to the outer cylinder. A similar mixing
process occurs at the inflow region, between
neighbouring vortex pairs.

In Figure 4, the vortex centres are shifted toward the
outer cylinder, due primarily to the imbalance between
the centrifugal force due to the rotation of the inner
cylinder and the pressure gradient due to the stationary
outer cylinder wall, as the centrifugal force pulls the fluid
away from the rotating inner cylinder.
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Figure 4: Normalised velocity vectors in the meridional
plane of the annulus for test cases (a) I' = 11.36 and (b) I’
=7.81. The reference velocity vector magnitude is

0.5 QR;.

5.2 Flow pattern in the axial plane

Figure 5(a-f) show the velocity vector maps of
different flow patterns at various axial locations
projected on the axial plane for the test cases I' = 11.36
and ' = 7.81. The analysis of the flow in the axial plane
complements the PIV results obtained in the meridional
plane reported by Adebayo and Rona [11-12] to achieve
a clearer understanding of the physics of the fluid motion
in the annular gap between the cylinders as the gap width
changes. Various cross-sections have been sliced normal
to the axis of the coaxial cylinders of Figure 1 in order to
analyse the flow variables in the axial planes. In all, six
different flow patterns (including the flow pattern at the
end-walls) are identified within the computational
domain. Four out of the six patterns recur in the axial
direction with the spatial period of one Taylor vortex
pair. The sliced positions are labelled alphabetically (a-€)
in Figure 4(a) and Figure 4(b) for the test cases I' = 11.36
and I' = 7.81 respectively for easy identification. The
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location of slice f, which is not shown on these figures, is
close to the right end-wall at X /R;= 9.95. These sections
define the axial planes where the flow pattern is
investigated and correspond to axial positions (a) X/R; =
0.05, (b) X/R; = 0.65, and (c) X/R; = 1.07, in Figure
4(a), and (d) X/R; = 1.97 and (e) X/R; = 2.62, in Figure
4(b).

The velocity vectors maps at X/R; = 1.41, X/R; =
1.84, and X/R; = 9.95 for the test case I' = 11.36 give
similar patterns as the velocity vector maps in Figure
5(d-f) for test case I' = 7.81 and are therefore not shown.
Similarly, velocity vectors maps at X/R;= 0.05, X/R; =
0.92, and X/R; = 1.47 for the test case I' = 7.81 are not
shown because they are similar to the velocity vector
maps in Figure 5(a-c) for test case I' = 11.36. In Figure 5,
the reference vector is shown on each velocity map so
that the magnitude of the vectors can be appreciated.

Figure 5(a) and Figure 5(f) show respectively the
normalised velocity vector maps near the end-walls at
X/R; =0.05 and X/R; = 9.95 for the test cases I' = 11.36
and I' = 7.81 and enable to understand the effects of the
end-walls on the axial plane flow. The magnitudes of the
velocity vectors at these locations are relatively small
compared with other locations in the central region of the
computational domain. This is primarily because
computations are performed with a stationary end-wall.

Figure 5(b) and Figure 5(d) show the normalised
velocity vectors at X/R;=0.65 atI' = 11.36 and at X/R;=
1.97 at T = 7.81. These locations correspond to the
centres of a clockwise vortex and of an anti-clockwise
vortex respectively in Figure 4(a) and Figure 4(b) based
on the flow visualisations of the lower channel at
6 = —m/2 of Figure 4(a) and Figure 4(b). The flow
patterns of Figure 5(b) and Figure 5(d) for the test cases
' = 11.36 and T = 7.81 are similar in terms of the
velocity vector magnitude, despite the difference in the
gap width, while in the meridional plane of Figure 4, the
axial velocity components at (b) and (d) are opposite to
one another. The axial location of Figure 5(b)
corresponds to an axial location of almost zero radial
velocity in Figure 3(b) and to an axial velocity maximum
in Figure 3(a). Similarly, the axial location of Figure 5(d)
corresponds to an axial location of almost zero radial
velocity in Figure 2(b).

In Figure 5(c), the axial plane X/R;= 1.07
corresponds to the outward flow region in Figure 4(a).
The flow pattern at this location shows that the
magnitude of the wvelocity vectors is higher compared
with the magnitude of the velocity vectors at the other
locations in Figure 5. This position is where high radial
momentum fluid is being carried outwardly by the Taylor

vortices toward the stationary outer cylinder, as
evidenced by the direction of the velocity vector pattern.
This position corresponds to an axial velocity zero
crossing in Figure 3(a) and to a radial velocity maximum
in Figure 3(b).

Figure 5(e) shows the normalised velocity vectors at
X/R; = 2.62 for the test case I' = 7.81. This location
corresponds to an inflow region in Figure 4(b) for the test
case I' = 7.81. At this location, low tangential momentum
fluid is being carried inwardly by the radial velocity
induced by the Taylor vortices from the stationary outer
cylinder toward the rotating inner cylinder, as evidenced
by the direction of the velocity vector pattern. This
position corresponds to a position of radial velocity
minimum in Figure 2(b). Comparing the velocity vectors
at this position to the velocity vectors at Figure 5(c), it is
evinced that the tangential momentum at the inflow
regions is lower than that at the outflow regions.

Figure 5(a-f) shows that the velocity vectors near the
inner cylinder display a higher tangential velocity
magnitude than the vectors near the outer cylinder. The
tangential velocity at the wall of the outer stationary
cylinder tends to zero, primarily to satisfy the no-slip
condition imposed on the wall of the outer cylinder.
These velocity vector maps indicate that the tangential
velocity is the dominant in-plane velocity component, as
the radial velocity is relatively weak.

5.3 Velocity profiles in the axial plane

The azimuthal distribution of the tangential velocity
at the axial location x/R; = 1.07 is shown in Figure 6(a)
for the test case I' = 11.36 at constant radial positions
(r — R;)/d of 0.125, 0.5, and 0.875, to examine the axial
symmetry of the flow. Figure 6 shows that at all three
radial positions the tangential velocity is essentially
constant and nearly independent from the azimuthal
coordinate 6. This indicates that the flow is substantially
axisymmetric and that does not manifest any appreciable
waviness of the Taylor vortices in the azimuthal
direction. Similar results are shown in Figure 6(b) for the
test case I' = 7.81 at the axial location x/R; = 2.62.

The radial velocity profiles at the axial locations (b)
to (e) of Figure 4 were extracted for the test cases I' =
11.36 and T’ = 7.81. The profiles in the axial plane are
axisymmetric, as such the profiles at different angles 6
around the annulus coincide. These profiles enable to
assess the radial dependence of the flow variables more
readily than the meridional and cascade plane plots. The
profiles, therefore, can be used to provide information
about the radial velocity distributions within the annular



space of bearing chambers and for further clarifying the
trends shown by the velocity vector maps in Figure 5.

~ — B~ - R+0.125d
- -5 - - Ri+0.5d
——8-—- R;+0.875d

0.1F
o F
C 02F
-~ B = 580500 60-65-0-5-0-B-0-0-5-0-0-0- 0G0
> F
G 36 6:6-000-000-00000COCOCOO00D
T .04F
s F
£ 051
I F
g’ 0.6 E
S T B B B D D1 D o [ D D D DD D DD >
-0.7F
_OB:HH|HH|H\\|\\Hl\H\|HH|HHlHHlHHlHHl
“0 01 02 03 04 05 06 07 08 09 1
0/2n
@
~ — b — - R+0.125d
- -&-- R+05d
0r —+&—— R;+0.875d
0 l[;EFB—EH}HEFE—EFEI—EI—EI—EI—EFEI—E}E}EHE—E}EEH}B—E
0.2 ES G- OOG-GmOmG-OO-O-O-O-O-O-O-O--O-0-00
L0313 B 1 B D D B D D D DD D D > DD DD > >

o
(4]

Tangential velocity / QR,
S S
(<2} S~

RN RN RN RN EE R ERE AR |

&
i

NN NN SN ENEEE NN SN RN EEENE N N |
01 02 03 04 05 06 07 08 09 1

0/2n
Figure 6: Azimuthal profiles of normalised tangential
velocity at different radial heights on selected axial
planes for the test cases (a) I' = 11.36 and (b) ' = 7.81.
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Figure 7(a) and Figure 7(b) show respectively the
radial profiles of tangential velocity at a single axial
location extracted from axial planes like (c) in Figure
4(a) and Figure 4(b), along the full length of the cylinder.
These planes are the centre of the outward flow
(downwells) regions for the test cases I' = 11.36 and I' =
7.81. The predicted flow tangential velocity, normalised
by the inner cylinder tangential rotational speed QR;, is
plotted as clockwise negative in Figure 6 and Figure 7, to
be consistent with the right-handed reference system of
Figure 1. The abscissa in Figure 7 is the radial distance
from the inner cylinder surface to the outer cylinder
surface, normalised by the gap width, d, which is related
to the cylindrical coordinates system of Figure 1(a) by
(r—=Ry)/d.

In Figure 7(a) and Figure 7(b), a more boundary
layer-like velocity profile is obtained near the wall of the
cylinders compared to the constant gradient profile
typical of rotary viscometers or narrow gap journal
bearings. The profiles show that the tangential velocity

magnitude is greater than the radial velocity in Figure
2(b) and Figure 3 (b) over the range 0 < (r — R;)/d <
094 for T=1136 and 0<(r—R;)/d <0.82 for
I' = 7.81 and is the dominant component of the in-plane
velocity. This confirms the dominance of the clockwise

motion shown by the velocity vector maps of Figure 5.

——<—— XIR,=1.07
0 &5 XIR =256

F s X/R =4.19
s — < XIR =584
0.1F & XIR = 7.51
F X/R. =8.95
-0.2F !
o =
C -03F
2 04fF
[5] -
2 =
g -0.5F
= =
"E -0.6:
S F
D -
S -0.7F
[l F
-0.8
-0.9f5
_l\H\l\u\|HH|HH|HHluuluuluHluuluul
0O 01 02 03 04 05 06 07 08 09 1
(r-R)/d
(@)
o XIR,=147
0 — & XIR=3.75
— &= X/IR =629
o1 ——<—— XIR| =857
-0.2
o
G -03
2 04
(&3
=]
S 05
=
£ -0.6
(<5
{=>]
S 07
'—
-0.8 I

1001702 03 04 05 06 0.7 06 08 1
(r-r)/d
(b)
Figure 7: Normalised tangential velocity profiles at the
down-well positions on selected axial planes at 6 =
—m /2 for the test cases (a) I' = 11.36 and (b) I' = 7.81.

In the outflow regions shown in Figure 7(a) for I’ =
11.36, the normalised tangential velocity has a maximum
magnitude at the inner rotating wall and zero magnitude
at the outer stationary wall. Its magnitude decreases less
rapidly near the wall of the inner cylinder compared to
the velocity profiles through the centres of the clockwise
vortices shown in Figure 8(a). The profiles then increase
more rapidly near the wall of the outer cylinder. The
region with the lower tangential velocity magnitude
decay rate is 0 < (r — R;)/d < 0.16, which corresponds
to the tangential wvelocity range —1.0QR; <ug <
—0.63QR;. The region with rapid decay rate is 0.16 <
(r —R;)/d < 1.0, which corresponds to the tangential
velocity range —0.63QR; < ug < 0. The normalised



tangential velocity magnitude in Figure 7(b) for the test
case I' = 7.81 exhibits a similar trend as in Figure 7(a) for
I'=11.36.

The profiles through the centres of the clockwise
vortices shown in Figure 8(a) and Figure 8(b)
respectively for the test cases I' = 11.36 and " = 7.81
show the same trend. The profiles show three distinctive
regions where the profiles change. The tangential
velocity magnitude near the wall of the inner cylinder
decreases rapidly up to the radial position (r — R;)/d =
0.2, which corresponds to a negative tangential velocity
of -0.3QR;. The tangential velocity magnitude then
stabilises in the central region, over the range 0.2 < (r —
R;)/d < 0.90, and then decreases rapidly over the region
0.9 < (r —R;)/d < 1.0 where it reaches zero at the wall
of the outer cylinder as a result of the no-slip boundary
condition.
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Figure 8: Normalised tangential velocity profiles through
the centres of the clockwise vortices on selected axial
planes at 6 = —m/2 for the test cases (a) I' = 11.36 and
(b) T =7.81.
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The profiles through the centres of the anti-clockwise
vortices for the test cases I' = 11.36 and " = 7.81 have a
trend similar to that of Figure 8(a) and Figure 8(b).

Figure 9(a) and Figure 9(b) show respectively the
tangential velocity at the inflow regions for the test cases
' = 1136 and ' = 7.81. The tangential velocity
magnitude decreases monotonically in two regions. The
first region is near the inner cylinder at 0 < (r —
R;)/d < 0.18, which corresponds to the tangential
velocity range -1.0 QR; < ug < —0.24 QR;. The second
region is 0.18 < (r — R;)/d < 1.0, which corresponds
to the tangential velocity range —0.24 QR; < ug < 0.
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Figure 9: Normalised tangential velocity profiles at the
up-well positions on the selected planes at 6 = —m/2 for

the test cases (a) I' = 11.36 and (b) I' = 7.81.

From the radial profiles of the in-plane normalised
tangential velocity in Figure 7 to Figure 9, the tangential
velocity magnitude rapidly decays from the inner rotating
cylinder at all axial locations. The decay rate for the
tangential velocity magnitude is more modest in the



outflow regions, over the range 0 < (r — R;)/d < 0.18,
compared to the decay rate over the inflow regions. It is
worth noting that the tangential velocity profiles at all
axial locations is different from that of the journal
bearing where the velocity profiles are linear. A similar
non-linear behaviour of the tangential velocity profile in
counter-rotating cylinders was reported by Vaezi et al.
[23]. In addition, the axial variation in the tangential
velocity at the down-well and up-well regions is likely to
lead to a significant axial variation in pressure
distribution, based on simple radial equilibrium
arguments in the rotating flow. This hypothesis is
currently under investigation.

6.0 Conclusions

An insight into the three-dimensional dynamics of the
flow in the wide gap between a stationary outer cylinder
and a rotating coaxial inner cylinder was obtained by
computational ~ fluid dynamics. The wide gap
configuration has received comparatively less attention
than narrow gap geometries, which have been studied
extensively in the literature due to their relevance to
journal bearings. This study therefore fills an important
gap in the literature on Taylor Couette flows.

Axial variations in all three velocity components
document a flow that departs significantly from a two-
dimensional constant-gradient radial velocity distribution
that may be used for representing lightly loaded roller
bearing flows. The axial variation of the tangential
velocity gradient induces an axially varying shear stress,
resulting in local bands, or rings, of enhanced work input
to the working fluid. This is likely to cause unwanted
surface hot-spotting, arranged in the form of bands, in
high torque applications.

At the axial end-wall boundaries of rotating
machinery, the radial inflow is likely to promote the
transport of debris to the junction between the end-collar
and the rotating shaft, leading to the build-up of fouling
in the shaft seal.

Whereas the current study is limited to discussing the
flow dynamics, it has produced a computational fluid
dynamics model that enables to explore the force and
pressure distribution in the annular gap between the two
cylinders. The variation in the tangential velocity along
the entire annulus is likely to lead to a significant axial
variation in pressure distribution, based on simple radial
equilibrium arguments in the rotating flow. This
hypothesis motivates a separate study dedicated to this
important aspect of the Taylor-Couette system at wide
gap (large clearance) that is currently underway. In
addition, this study can be extended to an investigation
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into the effects of a non-zero axial flow rate and of a
radial shaft load on the flow, towards building a higher
fidelity model of a bearing chamber.
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