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Hard spheres are a central and important model reference system for both homogeneous and inhomogeneous
fluid systems. In this paper we present new high-precision molecular dynamics computer simulations for a
hard sphere fluid at a planar hard wall. For this system we present benchmark data for the density profile
ρ(z) at various bulk densities, the wall surface free energy γ, the excess adsorption Γ, and the excess volume
vex, which is closely related to Γ. We compare all benchmark quantities with predictions from state-of-the-artclassical density functional theory calculations within the framework of fundamental measure theory. While
we find overall good agreement between computer simulations and theory, significant deviations appear at
sufficiently high bulk densities.

1. Introduction
Hard spheres are a central model in statistical physics and act as reference system for simple and

complex fluids. The bulk phase behavior of the hard-sphere system is simple because the system is ather-

mal – there is no energy scale to be compared to the thermal energy of kB T , where kB is the Boltzmann

constant and T the absolute temperature. Therefore, the phase behavior is controlled solely by the par-
ticle density ρ = N /V - or equivalently by the packing fraction η = ρ∗π/6, where the reduced density is
defined as ρ∗ = ρσ3

, with σ being the hard-sphere diameter. For packing fractions η< 0.492 the equilib-
rium thermodynamic phase is fluid, while above this value of η hard spheres can form a crystal.

In general, the structure of simple liquids is dominated by packing effects generated by the steep

and short-ranged repulsive part of the interatomic interaction, which can be very well approximated

by a hard-sphere interaction. The usefulness of the hard-sphere system as a reference is not limited to

bulk systems, but extends, as well, to inhomogeneous fluids. For example, the system studied here, a

hard-sphere fluid confined by planar hard walls, is one of the simplest model systems for a fluid-solid

interface. The wall can be modelled by the external potential

Vext(r) =Vext(z) =
{ ∞ z <σ/2

0 otherwise,
(1.1)

where z is the distance normal to the wall. Close to the wall, the fluid develops an inhomogeneous struc-
ture, which can be described through the ensemble averaged density profile ρ(r). At sufficiently low bulk
densities, when spontaneous symmetry breaking due to freezing can be ruled out, the equilibrium den-

sity profile possesses the same spatial symmetry as the external potential, so that we can assume that

the density profiles depend only on z, that is, ρ(r) = ρ(z). From the density profile as a function of pack-
ing fraction one can determine a number of thermodynamic interfacial properties, including the excess

adsorption Γ, the excess volume vex = ρΓ and the wall surface free energy γ.
Recently, high precision results for the excess adsorption Γ and the wall surface free energy γ at

various bulk densities have been obtained using molecular-dynamics simulation [1, 2]. Due to their high
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precision, these data are well suited as benchmarks to enable the testing of theoretical predictions. In this

paper we present the results for the density profile ρ(z), from these high precision simulations, together
with comparisons with state-of-the-art classical density functional theories (DFT) for hard-sphere fluids –

namely DFT formulations based on fundamental measure theory (FMT) [3, 4].

2. Methods
2.1. Simulation
The density profiles of the hard-sphere fluid at planar hard wall were determined in the molecular

dynamics (MD) simulation using the algorithm of Rapaport [5]. The walls were placed normal to the z-
axis at a distance of about 65σ apart. The x-y cross section was approximately square with a side length
of about 50σ. Periodic boundary conditions were employed in the x and y directions. To measure the
density profiles, ρ(z), the system was divided along the z-axis into bins of width 0.02σ. The size of the
simulation box was the same in all simulations while the number of spheres varied from about 8000 for

the lowest bulk reduced density of about 0.052 to about 150 000 for the highest reduced density of about

0.938. Systems at 17 different densities were simulated. At each density, we performed 50 independent

runs starting from well equilibrated initial states. The data for the density profiles were averaged over

the runs and over the two walls. The 95% confidence intervals were estimated from the scatter in the

data for the independent runs. We also simulated systems of smaller size at a range of densities and

determined that the size of the systematic error due to the finite system size was much smaller than

the statistical errors. In this manuscript, we include only a few examples of the density profiles. The

complete tabulated density profiles can be found in the Supplementary Material [6]. MD results for the

excess volume, vex, were obtained from the density profiles using procedure described in the Supplement

to Ref. [7].

2.2. Density Functional Theory
In density functional theory (DFT) there exists a functionalΩ[ρ] of the density distribution ρ(r) of the

form [8]

Ω[ρ] =F [ρ]+
∫

d 3r ρ(r)(Vext(r)−µ), (2.1)

whereF [ρ] is the functional of the intrinsic Helmholtz free energy,Vext(r) is the external and µ the chem-
ical potential. It can be shown that the functional Ω[ρ] is minimized by the equilibrium density profile
ρ0(r) and that it reduces to Ω – the grand potential of the system in equilibrium, i.e. Ω=Ω[ρ0] [8]. These
properties can be employed in order to obtain the inhomogeneous structure of a fluid in an external po-

tential within the same framework as thermodynamic quantities. From the variational principle of DFT

we obtain the equilibrium density profile:

δΩ[ρ]

δρ(r)

∣∣∣∣
ρ(r)=ρ0(r)

= 0. (2.2)

From the density profile ρ0(r), in general, or ρ0(z) in the present study, one can directly compute the
excess adsorption Γ via

Γ= 1

A

∫
V

d 3r
(
ρ0(r)−ρ)= ∫

L

d z (ρ0(z)−ρ), (2.3)

where ρ is the bulk density, and the wall surface free energy γ via

γ= 1

A

(
Ω[ρ0(r)]+pV

)=Ω[ρ0(z)]+pL. (2.4)

Here A is the area of the wall, which is assumed to be infinite and L =V /A is the extension of the system
in z-direction. In order to make Γ and γ well-defined quantities it is necessary to define the volume V
in Eqs. (2.3) and (2.4), i.e. one has to define the dividing interface at which the system and the wall are
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separated [9]. Here we use the location of the actual hard wall as dividing interface. As a consequence,

the excess adsorption Γ for a hard-sphere fluid turns out to be negative and the surface free energy

γ positive. Because the wall surface free energy γ and the excess adsorption Γ are related by Gibbs’s

adsorption theorem

Γ=−
(
∂γ

∂µ

)
T,V

(2.5)

the definition of V or L has to be the same in both Eqs. (2.3) and (2.4).
Another useful structural quantity is the excess interfacial volume, vex, defined as

vex =
∫
L

d z

(
1− ρ0(z)

ρ

)
. (2.6)

This quantity, which is related to the interfacial adsorption by

Γ=−ρvex (2.7)

is useful as it provides a convenient route to the determination of γ directly from the density profile

through the relation

vex =
(
∂γ

∂p

)
T,N

(2.8)

as was illustrated in Ref. [2].

For an application of DFT one has to specify the functionalF [ρ] of the intrinsic Helmholtz free energy
in Eq. (2.1). The intrinsic Helmholtz free energy can be split into

F [ρ] =Fi d [ρ]+Fex [ρ] (2.9)

with an exactly know ideal gas contribution

Fi d [ρ] =β−1
∫

d 3r ρ(r)
(
lnλ3ρ(r)−1

)
(2.10)

and an excess (over the ideal gas) contribution Fex [ρ], which contains all the information about inter-
particle interaction. In Eq. (2.10) β= 1/(kB T ), and λ is the thermal wavelength.
For the system of interest, a hard sphere fluid, fundamental measure theory (FMT)[3, 4] provides an

accurate approach for the excess free energy functional. Within FMT the excess free energy is written as

Fex [ρ] =β−1
∫

d 3r Φ({nα}), (2.11)

whereΦ, the excess free energy density, is a function of weighted densities nα(r) [3, 4]. The details of FMT,
including the definition of the weighted densities can be found in a recent review [4]. Here, we employ

three different versions of FMT: (i) the original Rosenfeld functional [3], (ii) theWhite-Bear version of FMT

[10, 11], and (iii) the White-Bear version of FMT Mark II [12]. The main difference between these three

versions of FMT is the equation of state underlying the functional is the Percus-Yevick (PY) compressibility

pressure for the Rosenfeld functional, the Mansoori-Carnahan-Starling-Leland (MCSL) [13] pressure for

the White Bear version of FMT and a recently proposed, somewhat more consistent generalization [14]

of the Carnahan-Starling (CS) pressure [15, 16] to mixtures for the White-Bear Version of FMT Mark II.

3. Results
3.1. Density Profiles
We begin by presenting density profiles of a hard-sphere fluid in contact with a planar hard wall at

selected values of the bulk density . The density profiles from the MD simulations act as benchmark data

for a comparison with the results from different versions of FMT.
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Figure 1. Top panel: Equilibrium density profiles ρ(z) of a hard-sphere fluid of reduced density ρ∗ ≈
0.305 (η ≈ 0.159) at a planar hard wall. The black line denotes data from MD simulation, while the red,
green and blue lines correspond to various versions of FMT. Bottom Panel: the deviation of the FMT
densities from the MD results. The statistical errors in the MD data are smaller than the width of the

lines.

It is interesting to note that, for a fluid in contact with a planar hard wall, the density closest to the

wall, the so-called contact density ρc , is fixed by the contact theorem

ρc = ρ(z =σ+/2) =βp, (3.1)

where p is the bulk pressure. Eq. (3.1) is satisfied by the results of FMT [4].
It is well known that the CS pressure, which underlies the one-componentWhite-Bear andWhite Bear

Mark II versions of FMT, is more accurate, as measured by comparison to computer simulations, than the

PY compressibility pressure, which underlies the original Rosenfeld functional. At low bulk density the

difference between the CS and PY equation of state is small, but at sufficiently high bulk fluid densities

the PY pressure significantly overestimates the pressure of a hard-sphere fluid relative to the computer

simulation results. Hence, it is to be expected that very near the wall, where ρ(z) is strongly influenced
by the contact theorem [Eq. (3.1)], the density profiles obtained from theWhite-Bear versions of FMT will

be closer to the simulation results than those calculated using the Rosenfeld functional.

In Figs. 1 - 4, we show density profiles at four different values of the bulk density. In Fig. 1 the bulk

density ρ∗ ≈ 0.305, corresponding to a bulk packing fraction of η ≈ 0.159, is relatively low. All versions
of FMT predict density profiles that agree very well over the whole range of z with that obtained from
computer simulations. At the wall, as expected, the White Bear versions of FMT are more accurate than

the Rosenfeld functional, but the difference is very small, as can be estimated from the difference be-

tween the PY and the CS equations of state (about 0.3%). The packing effects close to the wall are small

and decay fast.

At a somewhat larger value of the bulk density, ρ∗ ≈ 0.701 (η ≈ 0.367) [shown in Fig. 2], the agree-
ment between the profiles from FMT and those from computer simulations is very good in all details. At

this intermediate bulk density, the PY and CS pressure differ by about 3%, which is reflected by a small
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Figure 2. Same as Fig. 1 for ρ∗ ≈ 0.701 (η≈ 0.367)

deviation between the density profile obtained from the Rosenfeld functional and the profiles from the

White Bear versions of FMT - especially close to the wall. This deviation, however, is sufficiently small

that it can only be seen in the bottom panel of Fig. 2. Packing effects at this bulk density are significantly

more pronounced than for the bulk density used for Fig. 1 – note the different scales for the y -axes in the
bottom panel.

As the bulk density is further increased to ρ∗ ≈ 0.857 (η ≈ 0.449) [Fig. 3], and ρ∗ ≈ 0.938 (η ≈ 0.492)
[Fig. 4], respectively, the agreement between FMT and computer simulations is still good very close to the

wall, but clearly less satisfying for the oscillatory structure – we observe that the FMT underestimates

significantly the height of the density peaks about one particle diameter away from the wall. Especially

at ρ∗ ≈ 0.938, a density close to bulk freezing, one can see that the height of the second density peak is
also underestimated by FMT.

Because all versions of FMT seem to have the problem with the second peak in the density profile at

high fluid density, it seems likely that it is not due to the precise form of the excess free energy density

Φ employed, but rather the structure and range of the weight functions that can only approximate the

complicated integrals of the virial expansion of the free energy [17–19].

3.2. Surface Free Energy γ
From the equilibrium density profile it is straightforward within DFT to compute the wall surface free

energy from Eq. (2.4). As the various versions of FMT result in slightly different density profiles, as shown

in Figs. 1 - 4, the wall surface free energy obtained from the different versions of FMT are expected to

differ by a small amount.

The MD simulation results were obtained, as in Refs. [2], using Eq. (2.8) and integrating the excess vol-

ume, vex, with respect to pressure. In that work, the numerical error in the integration was minimized by

subtracting from the integrand the expression for the excess volume from Scaled Particle Theory (SPT)

and then adding back, after integration, the exact expression for the SPT. For the data used in Ref. [2] this

was sufficient to ensure that the numerical integration error was smaller than the reported statistical er-
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Figure 3. Same as Fig. 1 for ρ∗ ≈ 0.857 (η≈ 0.449)
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Figure 5. The wall surface free energy γ of a hard-sphere fluid at a planar hard wall as a function of the
packing fraction η. The overall agreement between the different versions of FMT (lines) and MC simula-

tions (symbols) is excellent. For η≥ 0.4 there are small deviations between the DFT and MD results.

ror. However, this is not sufficient for the high precision simulations reported here. For the calculation of

γ from the current MD results, instead of subtracting the SPT expression from the integrand, we subtract

the corresponding expression from a recent high-accuracy parameterization of γ, presented in Ref. [20].

This results in a numerical error that is smaller than the reported statistical error. A table of numerical

values of γ are contained in the Supplementary Information [6].

In Fig. 5 we show a comparison of the wall surface free energy as a function of the packing fraction η

from the different versions of FMT (lines) and fromMD simulations (symbols). As expected the agreement

among the different versions of FMT and theMD simulations is excellent at small and intermediate values

of the packing fraction and remains good in the whole fluid density-range.

At higher values of the packing fraction, η≥ 0.3, one can observe that the FMT results slightly overes-
timate the wall surface free energy compared to the MD results [20]. In the inset we highlight the region

of high values of η, from which one can see clearly that the wall surface free energy obtained by the

original Rosenfeld functional (red line) overestimates the values from the simulations the most, while the

prediction from the White-Bear version of FMT (green line) is closest to the MD data.

Recently, a new parametrization of the simulation data for γ was given by us [20], that is accurate in

the whole range of fluid densities. Especially at higher densities an additional term with a high power in

η is required in the parametrization in order to account for all the simulation data. Such a term is not

reflected in the excess free energy density Φ of FMT.

3.3. Adsorption Γ and excess volume vex

As discussed in Section II, the excess adsorption Γ can be calculated via two different routes: (i) by

integrating the density profile, Eq. (2.3), or (ii) using the adsorption theorem, Eq. (2.5). We have confirmed

that our DFT and MD results are consistent, in that they yield the same values of Γ via both routes. The

MD data for Γ can be found in the Supplemental Information [6].

In Fig. 6 we show the excess adsorption as a function of the packing fraction η. At low values of η the
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Figure 6. The excess adsorption Γ for a hard-sphere fluid at a planar hardwall as a function of the packing
fraction η. The symbols denote data fromMD simulation, while the lines correspond to different versions

of FMT.

DFT results are indistinguishable from each other and agree very well with the MD data. In contrast to

the wall surface free energy γ, shown in Fig. 5, FMT results start to deviate from the MD data already at

moderate value of η≥ 0.25. For η≥ 0.3 the results from different versions of FMT begin to deviate from
each other and for η≥ 0.4 there is a significant difference between the simulation results and those from
FMT. While the excess adsorption increases towards less negative values for η ≥ 0.4 in the simulation
results, the FMT results display a local minimum and then decrease further for η→ 0.5. It should be noted
that the presence of the local minimum is a consequence of the current choice of volume definition. If

one uses another commonly used volume definition in which the position of the wall is coincident with

the center of a hard-sphere in contact with the wall then the local minimum disappears; however, the

underestimation by the DFT of Γ at high packing fractions remains.

The excess volume, vex as a function of η is shown in Fig. 7 - see the Supplemental Information[6]

for numerical values of vex(η). As is the case for Γ, there are significant deviations in the FMT estimates
for vex from the MD results at high packing fraction, η > 0.4. At these high packing fractions, the values
of vex are overestimated by all versions of FMT examined. The excess volume has a direct relationship

to the surface free energy through Eq. (2.8) and it is through the integration of this equation that the

MD simulation values for γ shown in Fig. 5 are calculated [2]. Because vex is directly calculated from

the density profile using Eq. (2.6), it provides a direct link between the density profile and interfacial

thermodynamics, as measured by the surface free energy. In fact, the overestimation of vex by the FMT at

high packing fractions is dominated by the significant underestimation at high η by the FMT of the second

and third peaks of ρ(z) (Fig. 3 and 4). Because the pressure is a monotonically increasing function of η,
the overestimation of vex at high packing fractions by the FMT leads directly, through Eq. (2.8) to the

observed overestimation of γ by the FMT.

4. Discussion
The overall agreement between the benchmark simulation data for the density profiles, the wall sur-

face free energy and the excess adsorption of hard sphere fluid at a planar hard wall and results obtained
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using accurate FMT DFT calculation is very good. We have found, however, that at sufficiently large pack-

ing fractions η systematic deviations develop. At around η ≥ 0.3 first small deviations develop. They
become more serious for η≥ 0.4 and show up in all quantities that we have studied here, i.e. the density
profiles, the surface free energy and the excess adsorption. This was also observed in a study of confined

hard-sphere fluids [21].

We find that for the dividing surface employed in our study, the actual hard wall position, the DFT

results of the surface free energy γ is less sensitive to the deviations in the density profiles than the excess

adsorption Γ. While the deviation in γ between the DFT and simulation results is small, even at high

packing fractions, the DFT results for Γ shows far larger relative deviations compared to the benchmark

simulations. At the moment it is not clear whether these deviations can be reduced by changing the form

of the excess free energy densityΦ – the functional form of the empirical parametrization of γ and Γ [20]

could give a hint – or if they are due to the range of weight functions employed by FMT.
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