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Abstract

State of the art reviews of remote sensing change detection are becoming increasingly complicated and
disparate due to an ever growing list of techniques, algorithms and methods. To provide a clearer, synoptic
view of the field this review has organised the literature by the unit of analysis and the comparison method
used to identify change. This significantly reduces the conceptual overlap present in previous reviews giving a
succinct nomenclature with which to understand and apply change detection workflows. Under this
framework, several decades of research has been summarised to provide an overview of current change
detection approaches. Seven units of analysis and six comparison methods were identified and described
highlighting the advantages and limitations of each within a change detection workflow. Of these, the pixel
and post-classification change methods remain the most popular choices. In this review we extend previous
summaries and provide an accessible description of the field. This supports future research by placing a clear
separation between the analysis unit and the change classification method. This separation is then discussed,

providing guidance for applied change detection research and future benchmarking experiments.
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1. Introduction

Remote sensing change detection is a disparate, highly variable and ever-expanding area of research. There
are many different methods in use, developed over several decades of satellite remote sensing. These
approaches have been consolidated in several reviews (Coppin et al., 2004; Hussain et al., 2013; Lu et al., 2004;
Radke et al., 2005; Warner et al., 2009) and even reviews of reviews (ilsever & Unsalan, 2012), each aiming to
better inform applied research and steer future developments. However, most authors agree that a universal
change detection technique does not yet exist (Ehlers et al., 2014) leaving end-users of the technology with an
increasingly difficult task selecting a suitable approach. For instance Lu et al. (2004) present seven categories
divided into 31 techniques, making an overall assessment very difficult. Recent advances in Object Based
Image Analysis (OBIA) have also further complicated this picture by presenting two parallel streams of
techniques (G. Chen et al., 2012; Hussain et al., 2013) with significant conceptual overlaps. For instance, direct
image comparison and direct object comparison (Hussain et al., 2013) could relate to identical operations
applied to different analysis units. This review provides a clearer nomenclature with less conceptual overlap by
providing a clear separation between the unit of analysis, be it the pixel or image-object, and the comparison

method used to highlight change.

Previous reviews (Hussain et al., 2013; Lu et al., 2004) have identified three broad stages in a remote sensing
change detection project, namely pre-processing, change detection technique selection and accuracy
assessment. This review focuses on the second stage, aiming to bring an improved clarity to a change
detection technique selection. A change detection technique can be considered in terms of four components
(Figure 1): the pre-processed input imagery, the unit of analysis, a comparison method and finally the derived
change map ready for interpretation and accuracy assessment. To identify change(s), the input images are
compared and a decision is made as to the presence or degree of change. Prior to this, the geographical
‘support ‘ (Atkinson, 2006) must be defined so that it is understood exactly which spatial analysis units are to
be compared over time. At a fundamental level this might be individual image pixels but could also include;
systematic groups of pixels, image-objects, vector polygons or a combination of these. With a comparison
framework established, analysis units are then compared to highlight change. There are many different

methods of achieving this, from simple arithmetic differencing, sequential classifications or statistical analysis.
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This comparison results in a ‘change’ map which may depict the apparent magnitude of change, the type of

change or a combination of both.
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Figure 1. A schematic showing the four components of a change detection technique.

2. Unit of Analysis

Modern remote sensing and image processing facilitate the comparison of images under several different
frameworks. In the broadest sense image pixels and image-objects are the two main categories of analysis
unit presented in the change detection literature (G. Chen et al., 2012; Hussain et al., 2013). When further
exploring the possible interactions, there are in fact many more permutations by which a change comparison
can be made. For instance, image pixels may be considered individual autonomous units or part of a
systematic group such as a kernel filter or moving window. Listner and Niemeyer (2011a) outlined three
different scenarios of image-object comparison; those generated independently, those generated from a
multi-temporal data stack, and lastly a simple overlay operation. In addition to these one could also consider
mapping objects, typically vector polygons derived from field survey, or stereo or mono photogrammetry
(Comber et al., 2004b; Sofina et al., 2012; Walter, 2004). Furthermore, a mixture of analysis units may be

utilised, with this strategy sometimes referred to as a hybrid approach (G. Chen et al., 2012; Hussain et al.,
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2013). We discuss these elements in seven categories, namely pixel, kernel, image-object overlay, image-
object comparison, multi-temporal image-object, vector polygon and hybrid. These categories are summarised
in Table 1 to include a brief description of each, advantages and disadvantages and some examples from the
literature. To further clarify these definitions illustrations are given in Figure 2, where the absolute change
magnitude under each unit of analysis is depicted for a bi-temporal pair of images. The review then continues

with a more detailed discussion of each unit of analysis.
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Table 1: An overview of analysis units commonly used in remote sensing change detection studies. The
comparable features are based on Avery & Colwell’s fundamental features of image interpretation; as cited

by Campbell 1983, p43.

L Comparable o )
Description Advantages Limitations Example studies
features
Abd El-Kawy et al. (2011); Deng
etal. (2008); Green etal.,
. i (1994); Hame et al., (1998);
i May be unsuitable for higher
. . i Fast and suitable for larger . R Jensen & Toll, (1982); Ochoa-
< Single image pixels are Tone ) ) . resolution imagery. Tone is :
X o pixels sizes. The unit does Gaona & Gonzalez-Espinosa
a compared. Shadow (limited) . the only comparable X
not generalise the data. R (2000); Peiman (2011);
reference point.
Rahman et al. (2011); Shalaby
& Tateishi (2007); Torres-Vera
et al. (2009)
Generalises the data. The
T scale of the comparison is
one
Groups of pixels are Text Enables measures of typically limited by a fixed Bruzzone & Prieto (2000); He et
— exture
2 compared within a pattern (limited) statistical correlation and kernel size. Adaptive kernels al. (2011); Im & Jensen (2005);
£ attern (limite
] kernel filter or moving L o texture. Facilitates basic have been developed but Klaric et al. (2013); Volpi et al.
i Association (limited) X . .
window. e contextual measures. multi-scale analysis remains a (2013)
Shadow (limited)
challenge. Contextual
information is limited.
Image-objects are X .
> Segmentation may provide a
& generated by i
5 i Tone more meaningful framework i . .
> segmenting one of the Generalises the data. Object Comber et al. (2004a); Listner
° . X i Texture for texture measures and i .
k] images in the time o . i size and shape cannot be & Niemeyer (2011a);
k7 X i Pattern (limited) generalisation. Provides a i R
a series. A comparison o . i compared. Sub-object change Tewkesbury & Allitt (2010);
[ i X . Association (limited) suitable framework for Rk
I against other images is o i may remain undetectable. Tewkesbury (2011)
% K Shadow (limited) modelling contextual
£ then made by simple
= features.
overlay.
Tone Boldt et al. (2012); Dingl
oldt et al. ; Dingle
- Image-objects are Texture Shares the advantages of Generalises the data. Linking i €
% < X . K i K . Robertson & King (2011);
2 9 generated by Size image-object overlay plus an image-objects over time is a
g2 A > i Ehlers et al. (2006); Gamanya
T ® segmenting each Shape independent spatial challenge. X
1Y g- X K K M . . et al. (2009); Listner &
© 5 image in the time Pattern framework facilitates Inconsistent segmentation . i
£ S o o i R o A Niemeyer (2011a); Lizarazo
= series independently. Association rigorous comparisons. leads to object ‘slivers’. (2012)
Shadow
Shares the advantages of
= Tone image-object overlay plus
g 7] Image-objects are g ) K VP . . Bontemps et al. (2012);
a 2 Texture the segmentation can Generalises the data. Object )
£ 2 generated by X K Chehata et al. (2011); Desclée
Q i . Pattern honour both static and size and shape cannot be i
# & | segmenting the entire o i R . et al. (2006); Doxani et al.
= K R Association dynamic boundaries while compared. X
S £ time series together. . K (2011); Teo & Shih (2013)
s - Shadow maintaining a consistent
topology.
Digital mapping databases
c often provide a
S Vector polygons Tone i ) " . i . Comber et al. (2004b); Duro et
> . cartographically ‘clean’ basis Generalises the data. Object
° extracted from digital Texture o i al. (2013); Gerard et al. (2010);
o . . for analysis with the size and shape cannot be X
5 mapping or cadastral Association i Sofina et al. (2012); Walter
= . potential to focus the compared.
F datasets. Shadow (limited) . i (2004)
> analysis using attributed
thematic information.
The level of generalisation
may be chosen with
. Tone reference to the identified
Segmented image- i i . .,
- i Texture radiometric change. i . Aguirre-Gutiérrez et al. (2012);
= objects generated from i Object size and shape cannot K
S : Pattern Although size and shape Bazi et al. (2010); Bruzzone &
> a pixel or kernel level o K be compared.
T X Association cannot be used in the Bovolo (2013)
comparison. L )
Shadow comparison it may be used in
the interpretation of the
radiometric change.
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Figure 2. A matrix of analysis units commonly used in re
25cm resolution aerial imagery over Norwich, UK from 2006. Image 2 is aerial imagery captured over the
same area in 2010, also at 25cm resolution. The change magnitude is the absolute difference between Image
1 and Image 2 calculated over the respective unit of analysis. All imagery ©Airbus Defence and Space Ltd.

2014.
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Pixel

The pixel is the most fundamental element of an image (Fisher, 1997) and forms a convenient and well used
means of comparison. Since the beginning of satellite remote sensing images have been analysed digitally by
comparing pixel intensities for changes in a range of applications such as urban development (Deng et al.,
2008; Jensen & Toll, 1982; Torres-Vera et al., 2009), land cover and land use changes (Green et al., 1994;
Ochoa-Gaona & Gonzalez-Espinosa, 2000; Peiman, 2011; Shalaby & Tateishi, 2007) and forestry (Coops et al.,
2010; Hame et al., 1998; Wulder et al., 2008). The concept of comparing images is very simple, with arithmetic
operations such as subtraction or division applied to continuous band radiance or reflectance (Green et al.,
1994; Jensen & Toll, 1982), or integer class labels (Abd El-Kawy et al., 2011; Rahman et al., 2011). These
examples show that when the pixel spatially represents the anticipated change relatively well it can be a
simple and effective focus by which to make change decisions, especially when there is a strong relationship

between pixel intensity and the land cover transitions under investigation.

The pixel as a unit for change comparison does have many critics, and is not seen as a suitable approach when
considering modern Very High Resolution (VHR) imagery. For instance G. Chen et al. (2012) argue that pixels
have limited comparable classification features, typically just tone or radiance and so do not provide an
adequate framework to model contextual information. Whereas Hussain et al. (2013) highlight that the pixel
may be a source of geometric error, especially when integrating different data types. The overriding criticism
of the pixel as an analysis unit for change detection is the susceptibility of producing spurious, noisy change
pixels as a result of within class spectral variability and image registration issues. This issue commonly referred
to as classification ‘salt and pepper’ is widely discussed in the change detection (G. Chen et al., 2012; Hussain
et al., 2013; Radke et al., 2005) and general remote sensing literature (Baraldi & Boschetti, 2012; Blaschke,
2010) as a prominent feature of pixel-based classifications, especially when dealing with VHR imagery. In light
of these limitations, other means of comparison have been developed and implemented with a focus on

groups of pixels.

Kernel

The use of a pixel kernel filter or moving window is a systematic way of generalising change results and

introducing contextual information. By considering a local neighbourhood of image pixels change can be
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interpreted statistically, aiming to filter noise and identify ‘true’ change. A neighbourhood of pixels is also a
means of modelling local texture and contextual relationships by statistical and knowledge-based means. For
instance, Im & Jensen (2005) used a neighbourhood correlation analysis to improve the identification of
change information in VHR imagery by considering linear regression parameters instead of pixel radiance
alone. The use of kernel-based texture measures have also proved to be a complementary addition to the
change detection problem in several studies including those by He et al. (2011) & Klaric et al. (2013).
Furthermore, the use of contextual information is an effective method of filtering spurious change pixels
(Bruzzone & Prieto, 2000; Volpi et al., 2013). These examples highlight the benefit of kernel filters; as a means
of reducing spurious change and as a mechanism of allowing change decisions to be made beyond basic tonal
differences. Unfortunately, kernel filters are often operated at a fixed scale and the determination of optimum
window sizes is not clearly defined (Warner, 2011). Consequently their use can lead to blurred boundaries and

the removal of smaller features.

Image-object overlay

Objects segmented from one image may simply be overlaid on another forming the spatial framework for
comparison (Listner & Niemeyer, 2011a); Figure 2 illustrates this concept. These objects then form the basis of
an arithmetic or statistical comparison of the underlying image pixels. Image-objects have been found to make
the modelling of contextual information more accessible. For example Tewkesbury & Allitt (2010) segmented
aerial imagery and used mean image ratio differences to assist in the identification of impermeable surface
change. In further work a spatial knowledge base was applied to separate the identified change into those
associated with existing properties and those that are part of a new development (Tewkesbury, 2011).
Research by Listner & Niemeyer (2011a; 2011b) segmented one image and then used a measure of object
heterogeneity calculated on bi-temporal imagery to highlight change. Comber et al. (2004a) overlaid classified
image-objects on a pixel-based classification and then used expert knowledge to assist in the identification of
true change from classification error. Overlaying existing objects onto new images can form a simple basis for
change detection while benefiting from object-based contextual measures. The main disadvantage of this
approach is that the geometry of the image-objects reflects only one of the images; with change in the

opposing image not necessarily conforming to the imposed spatial framework.



135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

Image-object comparison

The premise of image-object comparison is that two images are segmented independently so that the image-
objects and their respective properties may be compared. The theoretical construct here is that corresponding
image-objects may be ‘linked’ across space and time allowing a comparison to be made without the constraint
of a geometric union. The distinct advantage here is that all object properties can be compared including size
and shape (Listner & Niemeyer, 2011a) or class label (G. Chen et al., 2012). However, due to variations in
factors such as illumination, viewing angle, phenology and atmospheric conditions, segmentations may be

highly variable even under stable land cover and perfect co-registration.

The process of comparing one object with another is therefore complicated and non-trivial. Listner &
Niemeyer (2011a) propose two approaches to comparison namely, directed object correspondence whereby an
object is given a weighted sum of all overlapping objects and correspondence via intersection where object
attributes are compared directly, but only over the spatial intersection created between the two time periods.
The majority of the literature in this area uses the latter method, especially when applied to post-classification
change (Boldt et al., 2012; Dingle Robertson & King, 2011; Gamanya et al., 2009). Image-object comparison by
intersection is also illustrated in Figure 2. The main limitation of a spatial intersection of segmentations, also
referred to as correspondence via intersection, is that it introduces a widely reported problem of ‘sliver’
objects under inconsistent segmentations (G. Chen et al., 2012; McDermid et al., 2008). Sliver objects can
result in false change being detected and impact the utility of updated land cover maps (Linke et al., 2009a).
One method of minimising sliver objects is to simply remove smaller change objects, as demonstrated by Boldt
et al. (2012). However, this approach equates to a systematic reduction in the cartographic scale of the
change analysis and information loss. Linke et al. (2009b) tackled this problem by using object width to
highlight slivers prior to elimination. They showed that this allows the compilation of a dynamic land cover
inventory; however, this approach remains insensitive to narrow change objects below the specified width
threshold. While the work of Linke et al. (2009b) provides a robust strategy to suppress sliver objects more
work is required on the rigorous matching of image objects so that their full properties may be used in a

change comparison (Hussain et al., 2013; Listner & Niemeyer, 2011a).
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Multi-temporal image-object

Multi-temporal objects may be created by simply segmenting all available images together in a single data
stack as illustrated in Figure 2. This approach has the distinct advantage of considering all images during object
formation therefore minimising sliver errors and potentially honouring key multi-temporal boundaries. For
example, Doxani et al. (2011) used this approach to detect detailed urban change, an application that would
be prone to widespread sliver errors due to differences in viewing geometry and shading. Teo & Shih (2013)
also used multi-temporal image-objects as the basis for urban change detection, this time utilising LiDAR data,
where it was found to perform well even in the presence of high magnitude spatial registration noise found at
the edge of buildings. This approach has also proved successful in forest change applications at large (Chehata
et al,, 2011), moderate (Desclée et al., 2006) and small (Bontemps et al., 2012) cartographic scales. These
examples show how multi-temporal image-objects are an elegant way of representing an image time-series,
especially in applications involving elevated features where extensive viewing geometry differences are
expected. However, this analysis unit is limited because object size and shape cannot be easily compared and

smaller or indistinct changes may be generalised out during the segmentation process.

Vector polygon

Vector polygons originating from existing mapping databases can be overlaid over imagery and used as a basis
to group image pixels in a change analysis. Groups of pixels across a temporal sequence may then be analysed
statistically, the result of which may indicate changes within the corresponding polygons. This approach is
often linked to map updating in which remotely sensed images are used to automatically identify broad scale
change in polygons and regions where map updating is required, thereby reducing the manual review process.
For instance Walter (2004) calculated spectral means, variances and corresponding pixel class area for a set of
land parcel polygons. These features were then used within a supervised classification to identify changed
parcels. In a simpler workflow Gerard et al. (2010) overlaid recent CORINE land cover parcels against aerial
images to visually assess historical changes over 50 years. These demonstrate how vector polygons can be
used to spatially guide a change assessment. However, since the polygons often form part of land
informational database this information may also be used to help inform the change detection process. For
example, Comber et al. (2004b) used soil properties, rainfall and terrain to supplement the satellite spectral

information when updating land cover mapping in Scotland.
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Existing class labels can provide useful information in change detection workflows, allowing efforts to be
focused and acting as a thematic guide for classification algorithms. For instance, Bouziani et al. (2010) &
Sofina et al. (2012) used a ‘map guided’ approach to train a supervised classification algorithm to identify new
buildings and Duro et al. (2013) used cross correlation analysis to statistically identify change candidates based
on existing land cover map class labels. The use of vector polygons as a framework for change detection has
great potential especially in cases where existing, high quality attribution is used to inform the classification
process. However, an assumption of this approach is that the scale of the vector polygons matches the scale of
the change of interest. If this is not the case then a strategy will need to be considered to adequately represent

the change; for instance pixels may be used to delineate smaller change features within a vector polygon.

Hybrid

A hybrid approach refers to a combination of analysis units to highlight change in a stepwise way. In its most
basic form this relates to a change comparison of pixels which are then filtered or segmented as a mechanism
to interpret what the change image is showing. For example, Bazi et al. (2010) first derived a pixel-based
change image and then used multi-resolution segmentation to logically group the results. Their approach
proved successful when experimentally applied to Landsat and lkonos imagery. Figure 2 replicates the method
employed by Bazi et al. (2010), first calculating the absolute difference between image pixels and then
performs a multi-resolution segmentation on the difference image before finally calculating the mean absolute
difference of the original images by image-object. Research by Linke et al. (2009b) found that a multi-
resolution segmentation of pixel-based Landsat wetness difference images proved an effective method of
identifying montane land cover change in Alberta, Canada. Aguirre-Gutiérrez et al. (2012) combined pixel and
object-based classifications in a post-classification workflow that sought to retain the most accurate elements
of each. Bruzzone & Bovolo (2013) modelled different elements of change at the pixel level to include
shadows, registration noise and change magnitude. These pixel-based change indicators were then used to
inform a change classification based on overriding multi-temporal image-objects. These examples show that
using a hybrid of analysis units may be an intuitive approach whereby change in pixel intensity is logically

grouped towards identifying features of interest.
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3. Comparison methods

Previous reviews (Coppin et al., 2004; Hussain et al., 2013; Lu et al., 2004) have presented exhaustive lists of

change detection techniques containing many comparison methods. Here six broad comparison methods are

identified that capture the key features of previous research in a concise and accessible manner. These

categories are summarised in Table 2 to include a brief description of each, advantages and disadvantages and

some examples from the literature. This is followed by a more detailed discussion of each comparison method.

Table 2: An overview of commonly used comparison methods.

Description

Advantages

Limitations

Example studies

Image radiance or derivative features
are numerically compared to identify
change.

Layer arithmetic

Can be simple to implement.

Usually gives little
insight into the type of
change.

Coulter et al. (2011); Dams et al. (2013);
Desclée et al. (2006); Falco et al. (2013);
Green et al. (1994); Homer & Xian (2011);
Im et al. (2008); Im & Jensen (2005); Jensen
& Toll (1982); Klaric et al. (2013); Lu et al.
(2010); Tewkesbury & Allitt (2010)

The comparison of multiple maps to
identify class transitions.

Post-classification
change

Produces a labelled change
map. Prior radiometric

calibration may not be required.

Errors in any of the input
maps are directly
translated to the change
map.

Abd El-Kawy et al. (2011); Boldt et al.
(2012); Chou et al. (2005); Comber et al.
(2004a); Dingle Robertson & King (2011);

Gamanya et al. (2009); Hester et al. (2010);
Lietal. (2012); Teo & Shih (2013); Torres-
Vera et al. (2009); X. Chen et al. (2012)

A multi-temporal data stack is
classified directly identifying both
static and dynamic land cover.

Only one classification stage is
required. Provides an effective
framework to mine a
complicated time series.
Produces a labelled change
map.

Classification training
datasets can be difficult
to construct, especially

for a time series of
images.

Chehata et al. (2011); Gao et al. (2012);
Ghosh et al. (2014); Hame et al. (1998);
Hayes & Sader (2001); Schneider (2012)

A mathematical transformation to
highlight variance between images.

Transformation | Direct classification

Provides an elegant way to
handle high dimensional data.

There is no defined
thematic meaning to the
results. Change may be
difficult to locate and
interpret.

Deng et al. (2008); Doxani et al. (2011);
Listner & Niemeyer (2011a)

The computation of difference vectors
between analysis units giving both the
magnitude and direction of change.

CVA

Gives insight into the type of
change occurring.

In its raw form the
change direction and
magnitude may be
ambiguous.

Bovolo et al. (2012); Bovolo & Bruzzone
(2007); Bruzzone & Prieto (2000); Carvalho
Junior et al. (2011); Cohen & Fiorella
(1998); Johnson & Kasischke (1998)

The use of multiple comparison
methods within a workflow. The most
commonly used strategy is a
combination of layer arithmetic to
identify change and direct
classification to label it.

Hybrid change
detection

Training data does not have to
be collected over
radiometrically stable areas.

No specific limitations.

Bruzzone & Bovolo (2013); Doxani et al.
(2011); Seto et al. (2002); Xian & Homer
(2010)

Layer arithmetic

Arithmetic operations such as subtraction or division applied to bi-temporal imagery are simple methods of

change detection. These operations give an image depicting radiance differences, which is hoped reflects the

magnitude of change on the ground (Singh, 1989). This technique has long been used to highlight areas of
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image change quickly with minimal supervision (Green et al., 1994; Jensen & Toll, 1982) and is still in use
today, typically applied to image-objects (Desclée et al., 2006; Tewkesbury & Allitt, 2010). To add thematic
meaning to a difference image, the image radiance may be transformed into a vegetation index or fractional
cover image prior to the layer arithmetic. For example Coulter et al. (2011) differenced regionally normalised
measures of NDVI to identify vegetative land cover change while Tewkesbury & Allitt (2010) used image ratios
to identify vegetation removal in aerial imagery. It is also common to monitor urban expansion by subtracting
multi-temporal impermeable surface fractional cover images obtained by sub-pixel analysis (Dams et al., 2013;
Gangkofner et al., 2010; Lu et al.,2010). A highly evolved system of layer differencing is presented by Jin et al.
(2013), whereby change is assessed based upon combining difference images of image spectral indices and
biophysical transformations. These examples demonstrate how simple arithmetic operations of image
radiance, or derivative features can be used to highlight changed areas, target specific features based upon an

expected spectral response or quantify fractional, sub-pixel changes.

Layer arithmetic comparisons may go beyond simple radiometric differencing by leveraging different units of
analysis. This empowers the comparison by considering texture, context and morphology; therefore reducing
the dependency on a target’s spectral characteristics as an indicator of change. For instance Im & Jensen
(2005) found that measures of kernel similarity —namely correlation coefficient, slope and offset- proved to be
more effective indicators of change than simple pixel differencing. Further work showed that this same
comparison method may also be applied to multi-temporal image-objects (Im et al., 2008); although no
significant improvement was found when compared to the kernel based approach. When working with VHR
imagery several researchers have incorporated measures of texture and morphology into the arithmetic
comparison as a means of reducing the dependence on image tone. For instance, Klaric et al. (2013) present a
change detection system based on a weighted combination of neighbourhood spectral, textural and
morphological features. The authors argue that this approach is not entirely dependent on spectral change and
is applicable to multi-spectral and panchromatic imagery. The idea of reducing the dependence on spectral
information is further developed by Falco et al. (2013) in research using Quickbird panchromatic imagery
alone, as a basis for change detection, by comparing measures of morphology and spatial autocorrelation.

Image change isn’t necessarily associated with a strong spectral difference, and these examples have shown
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how researchers have tackled this problem by using contextual information. However, there is still much

research to be done in this area to improve classification accuracies over complex targets.

Post-classification change

Post-classification change or map-to-map change detection is the process of overlaying coincident thematic
maps from different time periods to identify changes between them. The distinct advantage of this technique
is that the baseline classification and the change transitions are explicitly known. Furthermore, since the maps
may be produced independently, a radiometric normalisation is not necessary (Coppin et al., 2004; Warner et
al., 2009). The direct comparison of satellite derived land cover maps is one of the most established and widely
used change detection methods, applicable to Landsat class imagery (Abd El-Kawy et al., 2011; Dingle
Robertson & King, 2011; Gamanya et al., 2009; Torres-Vera et al., 2009) and VHR imagery (Boldt et al., 2012;
Demir et al., 2013; Hester et al., 2010). The approach may also be used to locate changes of a specific
thematic target. For instance, Boldt et al. (2012) and Teo & Shih (2013) both used post-classification change to
uniquely identify building changes. These examples show that post-classification change is a thematically rich

technique able to answer specific change questions, making it suitable for a range of different applications.

Post-classification change is limited by map production issues and compounded errors making it a costly and
difficult method to adopt. The comparison method requires the production of two entire maps which may be
an expensive (Lu et al., 2004) and an operationally complex task. Furthermore, input maps may be produced
using differing data and algorithms. In this case, a distinction must be made between classification
inconsistencies and real change as explored by Comber et al. (2004a). The biggest issue with post-classification
change is that it is entirely dependent on the quality of the input maps (Coppin et al., 2004; Lu et al., 2004)
with individual errors compounding in the change map (Serra et al., 2003). Therefore, it is difficult and

expensive to produce a time series of maps with sufficient quality to obtain meaningful change results.

There have been significant efforts to improve post-classification change results by accounting for classification
uncertainty and by modelling anticipated change scenarios. Classification uncertainty may be spatial, thematic

or a combination of both and accounted for by assigning confidences to these criteria. For instance, X. Chen et

al. (2012) compared fuzzy class probability, rather than crisp labels, to highlight uncertain land cover

transitions. Hester et al. (2010) used spatial and thematic fuzziness in the classification of urban change using
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Quickbird imagery accounting for increased pixel level mis-registration in VHR imagery. Specific change
scenarios can also be modelled in an attempt to identify and remove unlikely land cover transitions. For
instance Chou et al. (2005) developed a spatial knowledge base, implemented as pixel kernel filters to remove
change pixels not conforming to pre-determined change scenarios. This approach has also been extended to
include full urban simulations as a means of identifying unlikely transitions (Li et al., 2012). These examples
demonstrate that post-classification change has been extended from a simple map label arithmetic operation

to one that considers the confidence of a particular label and the likelihood of its indicated change.

Direct classification

A multi-temporal stack of images can be directly classified to give a land cover inventory over stable areas and
land cover transitions where change has occurred. The data stack consists of multiple sets of n band images
which may be treated by a classifier as one set of classification features. This is then classified with a
supervised or unsupervised technique aiming to give a set of stable land cover classes and changed land cover
transitions. The technique is advantageous, since only one classification stage is required and identified
changes are thematically labelled. Several researchers investigating forest change have used this approach as a
means of directly identifying their target of interest. For instance, Hayes & Sader (2001), Hame et al. (1998)
and Chehata et al. (2011) all implemented forest change detection systems based an unsupervised
classification of multi-temporal imagery, facilitated by a good understanding of the nature of the change.
These examples from forestry applications show how the direct classification technique can be used to solve a
relatively well constrained problem. However, direct classification is a powerful tool in the context of a data
mining problem such as the interpretation of a dense time series of images. Such a scenario is very difficult to
conceptualise or model with expert knowledge, and is an ideal scenario for machine learning algorithms. For
example, Schneider (2012) was able to successfully mine a time series of 50 Landsat images from 1988 to 2010
for changes in urban extent using supervised support vector machine (SVM) and decision tree classifiers. The
dense time series and machine learning approach allowed the extraction of meaningful change under
complicated phenological patterns without explicitly modelling them. Gao et al. (2012) also used this strategy,
applying a supervised decision tree classifier to extract impermeable surface change over 33 years using nine
Landsat images. These examples demonstrate that the direct classification of a time series of images can be an

effective way of deciphering change that may be buried within complex patterns. However, deriving training
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datasets for such a classification can be very challenging (Lu et al., 2004) and unsupervised approaches can
prove unresponsive to small magnitude change patterns (Warner et al., 2009). In light of these limitations,
recent work by Ghosh et al. (2014) into semi-supervised change classification is extremely interesting with

more research needed in this area.

Transformation

Data transformations such as principle component analysis (PCA) and multivariate alteration detection (MAD)
are methods of data reduction by suppressing correlated information and highlighting variance. When applied
to a multi-temporal stack of remotely sensed images there is the potential to highlight image change, since it
should be uncorrelated between the respective datasets. For instance, Deng et al. (2008) applied PCA to a
multi-temporal data stack of Landsat and SPOT 5 imagery in order to identify changed areas for a subsequent
supervised change classification. The PCA image was classified into ‘change’ and ‘no change’ domains by
labelling unsupervised clusters. In this case, 60 clusters were required to identify the change present,
indicating that the change signal was relatively well ‘hidden’ within the principle components. Doxani et al.
(2011) found that applying the MAD transformation to image-objects was an effective method of highlighting
change objects in VHR imagery. Listner & Niemeyer (2011a) also applied a MAD transformation to image-
objects to highlight change. However, they highlighted that the MAD transformation may become
mathematically unstable when applied to highly correlated features. This is particularly relevant when
considering the large number of classification features available under OBIA. In order to ensure a robust
change detection strategy, they proposed a prior PCA, with the first three principle components acting as the
inputs to the MAD transformation. Although this strategy worked in their application, it does highlight an issue
with transformations, namely that the first 2 or 3 components may not necessarily contain the desired change
information (Bovolo et al., 2012). Therefore, change features may either be missed or buried within a high
number of transformation components. Furthermore, PCA and MAD transformations are scene dependant and
may prove difficult to interpret (Carvalho Junior et al., 2013; Lu et al., 2004; Warner et al., 2009).
Transformations can be a useful way of assessing change within a complex time series of images. However,
they usually only serve to highlight change and therefore should form part of a hybrid change detection
workflow to provide change labels. Lastly, due to the scene dependence, it may prove a difficult task to locate

change within the multiple components, if the change is represented at all.
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Change Vector Analysis (CVA)

Change vector analysis is a method of interpreting change based on its magnitude and direction. To facilitate
this, bi-temporal datasets are described in three components; namely the feature vector at time 1, the feature
vector at time 2 and an interconnecting vector. The interconnecting vector is called the change vector and its
magnitude and direction can give us an insight into the type of change occurring. The geometry of a CVA is
given in Figure 3a (in 2D for simplicity). Calculating the magnitude is very simple (see Cohen & Fiorella, 1998, p
91), easily extended to high dimensional feature space. For instance, the change magnitude of all six Landsat
spectral bands (excluding the thermal) is often calculated to assess the apparent extent of change (Bruzzone &
Prieto, 2000; Xian & Homer, 2010). In theory the magnitude gives the degree to which the image radiance has
changed, containing limited thematic content, while the direction indicates the type of change. Therefore, the
combination of magnitude and direction can be a means of labelling change and minimising false positives
(Bovolo & Bruzzone, 2007). In the standard formulation of CVA (Figure 3a) the direction is described by a
directional cosine for each axis of the feature space. Therefore, n-1 directional cosines are required to describe
the change direction in n dimensional feature space, leading to a complicated output data array which may be
difficult to interpret (Carvalho Junior et al., 2011). In light of this, many researchers simplify the input feature
space to two bands only. For example, Bovolo et al. (2007) defined a 2D feature space based on Landsat bands
3 and 4 allowing burnt area change to be uniquely identified from magnitude, and a single angular direction.
Another method used to simplify CVA direction is by applying a prior transformation to the input multi-
dimensional data and performing the analysis on two of the components alone. Cohen & Fiorella (1998) and
Johnson & Kasischke (1998) used this approach, transforming the six available Landsat bands into tasselled cap
components as input into a 2D CVA. These examples highlight how CVA has the potential to be used as both a
change identification and labelling tool. However, a complicated description of n dimensional change limits its
application. This point is discussed in detail by Bovolo et al. (2012), who note that limiting CVA to 2
dimensional features space requires prior knowledge of the nature of the change occurring and may lead to a
poor analysis through an ill-informed band selection. This highlights a clear need to more elegantly describe

change direction in n dimensional feature space.

More recently, there has been some interesting research describing how n dimensional change directional

information can be conveyed in a CVA. These have sought to use several image channels while retaining a



364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

simple description of the change direction. For instance, Carvalho Junior et al. (2011) proposed the use of the
spectral angle mapper (SAM) and its statistically normalised derivative, spectral correlation mapper (SCM),
both well-established techniques, common in hyperspectral remote sensing. Such techniques are used to
describe how similar any two n dimensional vectors are to each other, and so has clear applicability to change
detection. SAM, mathematically based on the inner product of two vectors (Yuan et al., 1998) is the single
angle between two n dimensional vectors (Figure 3b). It is worth re-iterating that SAM and SCM are both
measures of similarity and do not give change direction or type per-se. However, they can be highly

informative and complementary to a change vector analysis (Carvalho Junior et al., 2011).

The principle behind SAM was further explored by Bovolo et al. (2012) in order to relate the single angle back
to change direction. This work used the same theoretical basis as Carvalho Junior et al. (2011) but instead

evaluated the angle between the change vector itself and an arbitrary reference vector (Figure 3c), and Bovolo

et al. (2012) normalised the reference vector by setting all elements equal to \/ﬁ/n. The rationale for this
approach is that the use of an arbitrary reference vector gives a consistent baseline for the change direction,
allowing thematic changes to be consistently grouped throughout a scene. Bovolo et al. (2012) argue with
reference to experimental examples, that this formulation of CVA does not require any prior knowledge of the
anticipated change or its remote sensing response. Moreover, the technique can identify more types of change
since all of the available information is considered. These developments could go some way towards
establishing CVA as a universal framework for change detection as suggested by Johnson & Kasischke (1998).
Due to the recent nature of this research there are few published examples however the underlying
philosophy has great potential, particularly when considering future super spectral satellite missions and the
wide variety of object-based features available. At the time of writing there is no published research
integrating the work of Carvalho Junior et al. (2011) and Bovolo et al. (2012), despite the complementary

nature of these descriptors of multi-dimensional change.

A little-reported limitation of CVA is that both the magnitude and direction can be ambiguous (Johnson &
Kasischke, 1998). Consider the three identified formulations of CVA displayed in Figure 3a, b & c. It is evident
that the change vector itself can be translated within the feature space, while retaining the same measures of
magnitude and direction. There is the possibility that multiple thematic changes may be described by identical

measures of magnitude and direction, limiting the power of CVA as a change labelling tool. In appraising this
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limitation, Cohen & Fiorella (1998) concluded that a baseline reference vector, typically from the first time
period, should be used when attempting to further classify CVA results. This limitation of CVA is easily
surmountable but clearly increases the burden of the interpretation task, especially in the case of high

dimensional datasets.

Figure 3: An illustration in 2 dimensions of the geometry of three formulations of CVA. For each, the xand y
axis represent the input features under analysis, typically spectral bands. Vector A and Vector B represent
the value of a given analysis unit for a bi-temporal pair of images. (a) The ‘standard’ formulation of CVA
describing the change vector by magnitude and a series of angular directions relative to each axis. (b)
Spectral Angle Mapper (SAM) for CVA, after Carvalho Junior et al. (2011). (c) n dimensional CVA, after
Bovolo et al. (2012).

Hybrid Change Detection

A hybrid approach uses more than one comparison method in order to increase the understanding of
identified change. At an elementary level it could be thought of in two stages: Locating change and identifying
change. This approach identifies change candidates, minimising reference data collection (Lu et al., 2004).
Hybrid change detection is often expressed as a layer arithmetic operation to identify changed elements,
followed by a supervised or unsupervised direct classification of the changed features giving them meaning (Lu
et al., 2004). For example, Seto et al. (2002) first established a CVA depicting the radiometric change
magnitude and direction, and then used a supervised classification to label into specific land cover transitions.
While Doxani et al. (2011) tackled urban change detection in VHR imagery by first applying a MAD transform to
highlight changed areas, and then applied a knowledge-based classification to filter and classify the results. An
interesting formulation of hybrid change detection has recently been presented by Bruzzone & Bovolo (2013).
They argue that functional change detection must distinguish semantic change, relating to specific features

from radiometric, or image change. This theory was experimentally implemented by combining pixel-based
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measures of shadow, radiometric change and noise within an object-based classification. These examples
highlight a trend amongst research that seeks to use multiple stages of change comparison to solve particular

problems, a trend which is likely to continue as workflows become ever more complex.

4. Discussion

Here, we consider some of the specific issues which underlie this review, and make some practical suggestions
which may be adopted in future experimental and applied research. The organisation and nomenclature
developed is a response to the burgeoning change detection literature, proliferated by the addition of object-
based methods. While OBCD has undoubted merits, the pixel as an analysis unit and allied comparison
methods are still very relevant. Therefore, remotely sensed optical image change detection should be
considered as a whole. We further discuss this rationale starting with the recent rise of OBCD and why its use
should be carefully considered on merit and better-organised in experimental research. We then discuss an
application-driven framework to identify requirements, and inform the selection of an appropriate unit of
analysis and comparison method based on scale and thematic objectives. We argue that a unit of analysis
should be selected based on its representation of the application scale with respect to the available image
resolution, and its ability to deliver the required comparison features. On the other hand the comparison

method must fit the application’s thematic objectives.

There is currently a debate in the remote sensing literature over the merits of object-based change detection
(OBCD) verses traditional pixel-based methods. Some believe that OBCD is a more advanced solution, capable
of producing more accurate estimates of change particularly when VHR imagery is used. For instance G Chen
et al. (2012) and Hussain et al. (2013) argue that OBCD is an advancement beyond pixel-based change
detection that generates fewer spurious results with an enhanced capability to model contextual information.
Moreover, Boldt et al. (2012) describe pixel-based change detection of VHR imagery as inappropriate. Kuntz et
al. (2011) comments that objects are less sensitive to geometric errors due to a greater potential for a majority
overlap and Im et al. (2008) points to the fact that OBIA may be a more efficient means of making change
comparisons. Crucially, objects are described as an intuitive vehicle to apply expert knowledge (Blaschke,
2010; Vieira et al., 2012) which if operationalized would represent an opportunity to model specific change

features.
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There is a significant technical overlap between object and pixel-based approaches. It is becoming increasing
common in the literature to subdivide change detection methods into either pixel or object-based approaches
followed by a range of sub-methods (Boldt et al., 2012; G. Chen et al., 2012; Hussain et al., 2013). This results
in a very disparate and complicated set of change detection methods, making evaluation and selection
extremely difficult. However, many of the sub-methods are very similar, if not identical, varying only by the
analysis unit used for the comparison. For instance, post-classification change remains conceptually the same
under pixel and object-based implementations as shown in a comparative analysis by Walter (2004). Simple
arithmetic change operations such as differencing and ratios (Green et al., 1994; Jensen & Toll, 1982) -arguably
the foundation of remote sensing change detection- may be applied equally to pixels or image-objects. More
complicated procedures such as a multivariate correlation analysis may also be applied to pixels or objects (Im
et al., 2008). Warner et al. (2009) suggests that any change detection technique that can be applied to pixels
can also be applied to objects. While there are obvious merits to working with objects, it is not always useful to
make a hard distinction between object and pixel-based change detection. This can result in an overly

complicated and disparate presentation of the available techniques.

Focusing on OBCD may unnecessarily narrow the focus of a literature review or method selection because of a
bias towards the unit of analysis, at the detriment of the comparison methodology. Although using image-
objects for change analysis has its undoubted merits and is a ‘hot topic’ for research (Blaschke, 2010), it is
important to consider remote sensing change detection as a whole and be aware of advancements in both
pixel and object-based methods since they are usually interchangeable. For instance, two recent reviews of
change detection focusing on OBIA methods (G. Chen et al., 2012; Hussain et al., 2013) bypass recent
important advancements in CVA (Bovolo & Bruzzone, 2007; Bovolo et al., 2012; Carvalho Junior et al., 2011).
CVA and the vast majority of comparison methodologies are not constrained to image pixels with a change
analysis executable on pixels, primitive image-objects or meaningful image-objects (Bruzzone & Bovolo, 2013).
In essence, change detection workflows are more often than not transferable between analysis units
regardless of their initial conception. Ultimately, it is more useful to make a technique selection considering

the merits of both the comparison methodology and analysis unit in relation to the task in hand.

OBIA and by association OBCD is a means of generalising image pixels, with the segmentation scale directly

controlling the size of detectable features. When segmenting at a particular scale the resultant objects are
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conveying statistical summaries of the underlying pixels. As highlighted by Walter (2004), regions of change
must occupy a significant proportion of an object or exhibit extraordinary magnitude in order to be detectable.
Therefore, the segmentation scale and image resolution must be carefully chosen so as to adequately define
change features of interest (Hall & Hay, 2003). Dingle Robertson & King (2011) highlight that the selection of
an appropriate segmentation scale is not straightforward. In their workflow they qualitatively identified a
suitable segmentation scale but nonetheless found that smaller, less abundant classes were not retained in
their post-classification change analysis. The generalising properties of OBIA are however actively used as a
means of removing spurious, ‘salt and pepper’ features (Boldt et al., 2012; Im et al., 2008). This point would be
of particular concern when seeking change at large cartographic scales. Clearly then, when considering an
object-based unit of analysis, the size of the target change must be known prior to performing the analysis so

that a suitable segmentation scale may be applied.

Experimental methods aiming to test object-based methods against pixel-based counterparts are often flawed
because several variables are under comparison. Research aiming to compare pixel-based classifications
against object-based ones should then be designed with the analysis unit as the sole variable. Under the
framework presented in this review, change detection analysis units could then be meaningfully compared
while maintaining identical comparison methodologies. However, it is often the case that experiments are
undertaken varying both the analysis unit and comparison or classification method. For instance, Dingle
Robertson & King (2011) compared a maximum likelihood classification of pixels to a nearest neighbour
classification of image-objects; While Myint et al. (2011) compared nearest neighbour and knowledge based
classifications of image-objects to a maximum likelihood pixel classification. These experiments provide
conclusions based on compounded variables with the effect of an analysis unit change confused with a change
of classification algorithm. Conversely, interesting research by Duro et al. (2012) found that the differences in
accuracy of pixel and object-based classifications were not statistically significant when executed with the
same machine learning algorithm. There is then a case for caution before declaring object-based methods as
superior. In the case of change detection it is hoped that the clearer demarcation between the analysis unit
and comparison methodology presented in this review can help to steer research in this area, providing more

reliable information as to the relative merits of each component.
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The nomenclature presented here may be used to help guide method selection in applied research. While this
is an extremely complicated and non-prescriptive task, we believe that the breakdown of change detection
into two discrete components does help to focus selection decisions more meaningfully. An application-driven
framework is provided by which to build criteria for a technique selection. This framework, along with the key
decisions and considerations are illustrated in Figure 4. A given change detection application will always start
with thematic and scale objectives, which may be summarised by the required types of change and the spatial
scale at which they must be identified and depicted. These objectives inform the selection of the unit of
analysis and comparison method directly, but are also used in the selection of suitable imagery and the
identification of classification features required to satisfy the thematic objectives. Comparison features are
typically identified by expert knowledge and understanding of the anticipated change, which may develop into
full ontological descriptions as explored by Arvor et al. (2013). Although not a scientific consideration, costs
will inevitably constrain most change detection projects to some degree. Therefore, sensible substitutions

must be made in lieu of techniques and data requirements that prove too resource intensive.
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Figure 4: An application driven framework for the selection of an appropriate change detection unit of
analysis and comparison method.

The application scale with respect to the resolution of the available imagery contributes to the selection of an
appropriate unit of analysis. If we consider change targets as geo-objects —abstractions of the reality on the
ground at a particular scale (Castilla & Hay, 2008), then the unit of analysis will seek to approximate geo-
objects to varying levels of spatial, morphological and contextual fidelity. Single pixels are still routinely used as
the unit of analysis for change at moderate scales based on medium resolution imagery (Abd El-Kawy et al.,
2011; Schneider, 2012). Moreover, urban change detection has been demonstrated at relatively large
cartographic scales using sub-pixel analysis of medium resolution images (Lu et al., 2010; Xian & Homer, 2010).
It is argued by Blaschke et al. (2014) that geo-objects are best represented by many pixels aggregated to image
objects, irrespective of the image resolution. This is clearly present in the object-based change detection
literature, with projects conducted using imagery at high (Chehata et al., 2011; Doxani et al., 2011; Ehlers et
al., 2014), medium (Desclée et al., 2006; Dingle Robertson & King, 2011; Gamanya et al., 2009; Lizarazo, 2012)

and even low (Bontemps et al., 2012) resolutions. Based on imagery licensing, storage and processing it is a fair
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assumption that the cost to conduct a change analysis will be related to the number of pixels under
investigation. Therefore, the use of aggregated image-object units of analysis may represent a higher cost
solution for a given application scale. For example, the sub-pixel detection of change at a relatively large
cartographic scale employed by Xian & Homer (2010) presents a solution with ‘reasonable costs and
production times’ (Xian & Homer, 2010, p1685). Given the huge variability present in the literature, it is not
possible to recommend an appropriate unit of analysis based on the application scale and image resolution
alone. Clearly, cost has influenced previous projects but the required comparable features, driven by an

application’s thematic objectives is a crucial factor that completes the decision.

The classification features required to make a meaningful change comparison are pivotal when selecting an
appropriate unit of analysis. To illustrate this point, we consider the comparisons requirements for a specific
change application, (the comparison of impervious surfaces) and then refer to instances in the literature that
have addressed this problem. The comprehensive identification of impervious surfaces, and the monitoring of
their change over time using remotely sensed data, would require the comparison of multi-spectral image
tone, supplemented by texture and context. More specifically, this task might involve the analysis of: (1) Key
absorption and reflection features present in the visible, near-infrared and especially short-wave infrared
regions (Weng, 2012), (2) Fine scale textures (Perry & Nawaz, 2008), and lastly (3) The image scene’s
contextual and 3D parameters (Herold, 2008). Interpreting these may imply an image-object comparison of
hyperspectral imagery; which may be beyond the resources of most applications. Therefore, it is common to
sensibly reduce the scope of a change analysis to meet the available resources. For example, while Landsat
imagery does not have the spectral fidelity to model impervious spectral responses precisely, Landsat’s broad
short wave infrared band is useful in the task. For example, Xian & Homer (2010) developed a sub-pixel
method of estimating relatively large-scale impervious surface change derived from the spectral information of
30m Landsat pixels alone. If there is an exploitable spectral signature associated with the change of interest,
which may be identified in the available data, then a tonal comparison only is required. This opens up all
available units of analysis. For instance, forest change has been detected by comparing image tone by pixel
(Cohen & Fiorella, 1998; Hayes & Sader, 2001; Tan et al., 2013), image-object overlay (Tian et al., 2013) or
multi-temporal image-objects (Bontemps et al., 2012). Returning to the impervious surface change theme,

Zhou, et al. (2008) found that their available VHR colour infrared images were insufficient to detect impervious



554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

surfaces spectrally. Therefore, 3D LiDAR information and auxiliary mapping was utilised to assist with the
detection. Research by X. Chen et al. (2012) also found spectral confusion in change detection, this time
between forest and cropland change. In these circumstances, the inclusion of additional classification features
-facilitated by units of analysis other than the pixel- may be used to improve change detection results. For
example, kernel based texture (He et al., 2011), multi-temporal image-object texture (Desclée et al., 2006),
image-object shape comparison (Boldt et al., 2012), local image correlation from kernel (Im & Jensen, 2005)
and multi-temporal image-objects (Im et al., 2008) and lastly, context modelled with kernels (Volpi et al., 2013)
and image-object comparison (Hazel, 2001). To summarise, if the target of interest is associated with a
measurable spectral signature then the separation may be ‘trivial’ (Blaschke et al., 2014, p182), opening up all
available units of analysis. In this case selection may be based on the application’s scale objectives and the
available imagery. For more complex situations, the ability of the unit of analysis to model textural,
morphological and contextual features over time should be used in the selection. Image-object comparison
presents the most comprehensive framework, but the technical complications may limit its application.
Therefore in such circumstances, image-object comparison and hybrid approaches offer simplified, albeit more

limited frameworks.

The thematic objectives of an application must be carefully considered when evaluating a comparison method.
Consequently, it is important to distinguish between the two broad outcomes of a change analysis, namely the
identification of radiometric change and semantic change (Bruzzone & Bovolo, 2013). Radiometric change
relates to spectral or image change (Warner et al., 2009) and is simply an observed difference in image tone.
Radiometric change relates to all changes indiscriminately to include actual changes on the ground and those
associated with illumination, phenology or viewing geometry. Semantic change on the other hand is
thematically subdivided into meaningful categories — be they differences in scene shading or specific land
cover transitions. Clearly, semantic change is of greater value, directly informing the end user. Unfortunately,
these two very different outcomes are normally presented jointly as ‘change detection’ (Johnson & Kasischke,
1998) making comparisons between different research projects very difficult. Generally, simple layer
arithmetic comparisons resulting in a difference image depict radiometric change only, leaving the end user to
review all radiometric change prior to identifying features of interest. Bruzzone & Bovolo (2013) have argued

strongly that change detection should identify different types of change in order to effectively remove noise
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and isolate targets of interest. The default choice of identifying semantic change for applications requiring
meaningful, quantitative information is post-classification change (Abd El-Kawy et al., 2011; Rahman et al.,
2011; Torres-Vera et al., 2009) but this may be prohibitively expensive in some cases. In applications such as
impervious surface change (Lu et al., 2010), layer arithmetic may be used to directly inform the thematic
objectives. For more complicated requirements, a direct classification of a multi-temporal data stack shows

great potential, especially when applied to a dense time series with suitable training data.

5. Conclusions

This review has presented optical image change detection techniques to a clear, succinct nomenclature based
on the unit of analysis and the comparison methodology. This nomenclature significantly reduces conceptual

overlap in modern change detection making a synoptic view of the field far more accessible. Furthermore, this
approach will help to guide technique comparison research by placing a clear separation of variables between

the analysis unit and classification method.

The summary of analysis units shows that more research is required to identify optimum approaches for
change detection. While image-object comparison is theoretically the most powerful unit, in light of
inconsistent segmentations, matching image-objects over space and time requires far more sophisticated map
conflation technology. Therefore, multi-temporal image-objects or a hybrid approach are likely the most
robust analysis units, while the pixel is still suitable for many applications. It is recommended that future
research in this area ensures a strict separation of analysis unit and comparison method variables in order to

provide clearer information on the relative merits of each.

Post-classification change is the most popular comparison method due to the descriptive nature of the results
allowing specific thematic questions to be answered. A direct classification of a complicated data stack is also
an effective method of identifying semantic changes. However, the required training data is extremely difficult
to obtain since the location of change is usually not known prior to an analysis. As highlighted by Lu et al.
(2004) a hybrid approach may inherit the benefits of a direct classification while simplifying training data
collection. Recent developments in CVA provide a powerful framework to compare multi-dimensional data but
remain largely untested in the literature. Therefore, more research is required exploring recent formulations of

CVA, in particularly the effect of integrating object-based features and other contextual measures.
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The use of image-objects as the unit of analysis in a change detection workflow should be a carefully

considered decision based on the application at hand rather than adopted as a default choice. The main factor
in this decision should be the requirement to compare features inherent to image-objects such as morphology
and context. This decision must also include the scale of the analysis and acceptable levels of generalisation to

be applied with respect to the pixel size of the images under analysis.

Remote sensing change detection is a vast subject that has evolved significantly in the last 30 years but more
research is required to tackle persistent problems. These include: scene illumination effects (Hussain et al.,
2013; Singh, 1989), changes in viewing geometry (Listner & Niemeyer, 2011a; Lu et al., 2004), scale and the
identification of small, ‘sub-area’ change (G. Chen et al., 2012), objects based feature utilisation (G. Chen et al.,
2012; Hussain et al., 2013) and segmentation consistency and comparison (Hussain et al., 2013; Listner &
Niemeyer, 2011a). This review makes a contribution by offering a clearer organisation by which to conduct

research in this field.
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