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Abstract 8 

State of the art reviews of remote sensing change detection are becoming increasingly complicated and 9 

disparate due to an ever growing list of techniques, algorithms and methods. To provide a clearer, synoptic 10 

view of the field this review has organised the literature by the unit of analysis and the comparison method 11 

used to identify change. This significantly reduces the conceptual overlap present in previous reviews giving a 12 

succinct nomenclature with which to understand and apply change detection workflows. Under this 13 

framework, several decades of research has been summarised to provide an overview of current change 14 

detection approaches. Seven units of analysis and six comparison methods were identified and described 15 

highlighting the advantages and limitations of each within a change detection workflow. Of these, the pixel 16 

and post-classification change methods remain the most popular choices.  In this review we extend previous 17 

summaries and provide an accessible description of the field. This supports future research by placing a clear 18 

separation between the analysis unit and the change classification method. This separation is then discussed, 19 

providing guidance for applied change detection research and future benchmarking experiments. 20 
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1. Introduction 23 

Remote sensing change detection is a disparate, highly variable and ever-expanding area of research. There 24 

are many different methods in use, developed over several decades of satellite remote sensing. These 25 

approaches have been consolidated in several reviews (Coppin et al., 2004; Hussain et al., 2013; Lu et al., 2004; 26 

Radke et al., 2005; Warner et al., 2009) and even reviews of reviews (İlsever & Ünsalan, 2012), each aiming to 27 

better inform applied research and steer future developments. However, most authors agree that a universal 28 

change detection technique does not yet exist (Ehlers et al., 2014) leaving end-users of the technology with an 29 

increasingly difficult task selecting a suitable approach. For instance Lu et al. (2004) present seven categories 30 

divided into 31 techniques, making an overall assessment very difficult. Recent advances in Object Based 31 

Image Analysis (OBIA) have also further complicated this picture by presenting two parallel streams of 32 

techniques (G. Chen et al., 2012; Hussain et al., 2013) with significant conceptual overlaps. For instance, direct 33 

image comparison and direct object comparison (Hussain et al., 2013) could relate to identical operations 34 

applied to different analysis units. This review provides a clearer nomenclature with less conceptual overlap by 35 

providing a clear separation between the unit of analysis, be it the pixel or image-object, and the comparison 36 

method used to highlight change. 37 

Previous reviews (Hussain et al., 2013; Lu et al., 2004) have identified three broad stages in a remote sensing 38 

change detection project, namely pre-processing, change detection technique selection and accuracy 39 

assessment. This review focuses on the second stage, aiming to bring an improved clarity to a change 40 

detection technique selection. A change detection technique can be considered in terms of four components 41 

(Figure 1): the pre-processed input imagery, the unit of analysis, a comparison method and finally the derived 42 

change map ready for interpretation and accuracy assessment. To identify change(s), the input images are 43 

compared and a decision is made as to the presence or degree of change. Prior to this, the geographical 44 

‘support ‘ (Atkinson, 2006) must be defined so that it is understood exactly which spatial analysis units are to 45 

be compared over time. At a fundamental level this might be individual image pixels but could also include; 46 

systematic groups of pixels, image-objects, vector polygons or a combination of these. With a comparison 47 

framework established, analysis units are then compared to highlight change. There are many different 48 

methods of achieving this, from simple arithmetic differencing, sequential classifications or statistical analysis. 49 



   

This comparison results in a ‘change’ map which may depict the apparent magnitude of change, the type of 50 

change or a combination of both. 51 

 52 

Figure 1. A schematic showing the four components of a change detection technique. 53 

2. Unit of Analysis 54 

Modern remote sensing and image processing facilitate the comparison of images under several different 55 

frameworks.  In the broadest sense image pixels and image-objects are the two main categories of analysis 56 

unit presented in the change detection literature (G. Chen et al., 2012; Hussain et al., 2013). When further 57 

exploring the possible interactions, there are in fact many more permutations by which a change comparison 58 

can be made. For instance, image pixels may be considered individual autonomous units or part of a 59 

systematic group such as a kernel filter or moving window. Listner and Niemeyer (2011a) outlined three 60 

different scenarios of image-object comparison; those generated independently, those generated from a 61 

multi-temporal data stack, and lastly a simple overlay operation. In addition to these one could also consider 62 

mapping objects, typically vector polygons derived from field survey, or stereo or mono photogrammetry 63 

(Comber et al., 2004b; Sofina et al., 2012; Walter, 2004). Furthermore, a mixture of analysis units may be 64 

utilised, with this strategy sometimes referred to as a hybrid approach (G. Chen et al., 2012; Hussain et al., 65 
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2013). We discuss these elements in seven categories, namely pixel, kernel, image-object overlay, image-66 

object comparison, multi-temporal image-object, vector polygon and hybrid. These categories are summarised 67 

in Table 1 to include a brief description of each, advantages and disadvantages and some examples from the 68 

literature. To further clarify these definitions illustrations are given in Figure 2, where the absolute change 69 

magnitude under each unit of analysis is depicted for a bi-temporal pair of images. The review then continues 70 

with a more detailed discussion of each unit of analysis.  71 



   

Table 1: An overview of analysis units commonly used in remote sensing change detection studies. The 72 
comparable features are based on Avery & Colwell’s fundamental features of image interpretation; as cited 73 
by Campbell 1983, p43. 74 

 
Description 

Comparable 
features 

Advantages Limitations Example studies 

Pi
xe

l Single image pixels are 
compared. 

Tone 
Shadow (limited) 

Fast and suitable for larger 
pixels sizes. The unit does 
not generalise the data. 

May be unsuitable for higher 
resolution imagery. Tone is 

the only comparable 
reference point. 

Abd El-Kawy et al. (2011); Deng 
et al. (2008);  Green et al., 

(1994); Hame et al., (1998); 
Jensen & Toll, (1982); Ochoa-
Gaona & Gonzalez-Espinosa 

(2000);  Peiman (2011); 
Rahman et al. (2011); Shalaby 
& Tateishi (2007); Torres-Vera 

et al. (2009) 

Ke
rn

el
 Groups of pixels are 

compared within a 
kernel filter or moving 

window. 

Tone 
Texture 

Pattern (limited) 
Association (limited) 

Shadow (limited) 

Enables measures of 
statistical correlation and 
texture. Facilitates basic 

contextual measures. 

Generalises the data. The 
scale of the comparison is 
typically limited by a fixed 

kernel size. Adaptive kernels 
have been developed but 

multi-scale analysis remains a 
challenge. Contextual 
information is limited. 

Bruzzone & Prieto (2000); He et 
al. (2011); Im & Jensen (2005); 
Klaric et al. (2013); Volpi et al. 

(2013) 

Im
ag

e-
ob

je
ct

 o
ve

rla
y 

Image-objects are 
generated by 

segmenting one of the 
images in the time 

series. A comparison 
against other images is 
then made by simple 

overlay. 

Tone 
Texture 

Pattern (limited) 
Association (limited) 

Shadow (limited) 

Segmentation may provide a 
more meaningful framework 

for texture measures and 
generalisation. Provides a 

suitable framework for 
modelling contextual 

features. 

Generalises the data. Object 
size and shape cannot be 

compared. Sub-object change 
may remain undetectable. 

Comber et al. (2004a); Listner 
& Niemeyer (2011a); 

Tewkesbury & Allitt (2010); 
Tewkesbury (2011) 

Im
ag

e-
ob

je
ct

 
co

m
pa

ris
on

 Image-objects are 
generated by 

segmenting each 
image in the time 

series independently. 

Tone 
Texture 

Size 
Shape 

Pattern 
Association 

Shadow 

Shares the advantages of 
image-object overlay plus an 

independent spatial 
framework facilitates 
rigorous comparisons. 

Generalises the data. Linking 
image-objects over time is a 

challenge. 
Inconsistent segmentation 

leads to object ‘slivers’. 

Boldt et al. (2012); Dingle 
Robertson & King (2011); 

Ehlers et al. (2006); Gamanya 
et al. (2009); Listner & 

Niemeyer (2011a); Lizarazo 
(2012) 

M
ul

ti-
te

m
po

ra
l 

im
ag

e-
ob

je
ct

 

Image-objects are 
generated by 

segmenting the entire 
time series together. 

Tone 
Texture 
Pattern 

Association 
Shadow 

Shares the advantages of 
image-object overlay plus 

the segmentation can 
honour both static and 

dynamic boundaries while 
maintaining a consistent 

topology. 

Generalises the data. Object 
size and shape cannot be 

compared. 

Bontemps et al. (2012); 
Chehata et al. (2011); Desclée 

et al. (2006); Doxani et al. 
(2011); Teo & Shih (2013) 

Ve
ct

or
 p

ol
yg

on
 

Vector polygons 
extracted from digital 
mapping or cadastral 

datasets. 

Tone 
Texture 

Association 
Shadow (limited) 

Digital mapping databases 
often provide a 

cartographically ‘clean’ basis 
for analysis with the 

potential to focus the 
analysis using attributed 

thematic information. 

Generalises the data. Object 
size and shape cannot be 

compared. 

Comber et al. (2004b); Duro et 
al. (2013); Gerard et al. (2010); 

Sofina et al. (2012); Walter 
(2004) 

H
yb

rid
 Segmented image-

objects generated from 
a pixel or kernel level 

comparison. 

Tone 
Texture 
Pattern 

Association 
Shadow 

The level of generalisation 
may be chosen with 

reference to the identified 
radiometric change. 

Although size and shape 
cannot be used in the 

comparison it may be used in 
the interpretation of the 

radiometric change. 

Object size and shape cannot 
be compared. 

Aguirre-Gutiérrez et al. (2012); 
Bazi et al. (2010); Bruzzone & 

Bovolo (2013) 
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Figure 2. A matrix of analysis units commonly used in remote sensing change detection studies. Image 1 is 76 
25cm resolution aerial imagery over Norwich, UK from 2006. Image 2 is aerial imagery captured over the 77 
same area in 2010, also at 25cm resolution. The change magnitude is the absolute difference between Image 78 
1 and Image 2 calculated over the respective unit of analysis. All imagery ©Airbus Defence and Space Ltd. 79 
2014.  80 



   

Pixel 81 

The pixel is the most fundamental element of an image (Fisher, 1997) and forms a convenient and well used 82 

means of comparison. Since the beginning of satellite remote sensing images have been analysed digitally by 83 

comparing pixel intensities for changes in a range of applications such as urban development (Deng et al., 84 

2008; Jensen & Toll, 1982; Torres-Vera et al., 2009), land cover and land use changes (Green et al., 1994; 85 

Ochoa-Gaona & Gonzalez-Espinosa, 2000; Peiman, 2011; Shalaby & Tateishi, 2007) and forestry  (Coops et al., 86 

2010; Hame et al., 1998; Wulder et al., 2008). The concept of comparing images is very simple, with arithmetic 87 

operations such as subtraction or division applied to continuous band radiance or reflectance (Green et al., 88 

1994; Jensen & Toll, 1982), or integer class labels (Abd El-Kawy et al., 2011; Rahman et al., 2011). These 89 

examples show that when the pixel spatially represents the anticipated change relatively well it can be a 90 

simple and effective focus by which to make change decisions, especially when there is a strong relationship 91 

between pixel intensity and the land cover transitions under investigation. 92 

The pixel as a unit for change comparison does have many critics, and is not seen as a suitable approach when 93 

considering modern Very High Resolution (VHR) imagery. For instance G. Chen et al. (2012) argue that pixels 94 

have limited comparable classification features, typically just tone or radiance and so do not provide an 95 

adequate framework to model contextual information. Whereas Hussain et al. (2013) highlight that the pixel 96 

may be a source of geometric error, especially when integrating different data types. The overriding criticism 97 

of the pixel as an analysis unit for change detection is the susceptibility of producing spurious, noisy change 98 

pixels as a result of within class spectral variability and image registration issues. This issue commonly referred 99 

to as classification ‘salt and pepper’ is widely discussed in the change detection (G. Chen et al., 2012; Hussain 100 

et al., 2013; Radke et al., 2005) and general remote sensing literature (Baraldi & Boschetti, 2012; Blaschke, 101 

2010) as a prominent feature of pixel-based classifications, especially when dealing with VHR imagery. In light 102 

of these limitations, other means of comparison have been developed and implemented with a focus on 103 

groups of pixels. 104 

Kernel 105 

The use of a pixel kernel filter or moving window is a systematic way of generalising change results and 106 

introducing contextual information. By considering a local neighbourhood of image pixels change can be 107 



   

interpreted statistically, aiming to filter noise and identify ‘true’ change. A neighbourhood of pixels is also a 108 

means of modelling local texture and contextual relationships by statistical and knowledge-based means. For 109 

instance, Im & Jensen (2005) used a neighbourhood correlation analysis to improve the identification of 110 

change information in VHR imagery by considering linear regression parameters instead of pixel radiance 111 

alone. The use of kernel-based texture measures have also proved to be a complementary addition to the 112 

change detection problem in several studies including those by He et al. (2011) & Klaric et al. (2013). 113 

Furthermore, the use of contextual information is an effective method of filtering spurious change pixels 114 

(Bruzzone & Prieto, 2000; Volpi et al., 2013). These examples highlight the benefit of kernel filters; as a means 115 

of reducing spurious change and as a mechanism of allowing change decisions to be made beyond basic tonal 116 

differences. Unfortunately, kernel filters are often operated at a fixed scale and the determination of optimum 117 

window sizes is not clearly defined (Warner, 2011). Consequently their use can lead to blurred boundaries and 118 

the removal of smaller features. 119 

Image-object overlay 120 

Objects segmented from one image may simply be overlaid on another forming the spatial framework for 121 

comparison (Listner & Niemeyer, 2011a); Figure 2 illustrates this concept. These objects then form the basis of 122 

an arithmetic or statistical comparison of the underlying image pixels. Image-objects have been found to make 123 

the modelling of contextual information more accessible. For example Tewkesbury & Allitt (2010) segmented 124 

aerial imagery and used mean image ratio differences to assist in the identification of impermeable surface 125 

change. In further work a spatial knowledge base was applied to separate the identified change into those 126 

associated with existing properties and those that are part of a new development (Tewkesbury, 2011). 127 

Research by Listner & Niemeyer (2011a; 2011b) segmented one image and then used a measure of object 128 

heterogeneity calculated  on bi-temporal imagery to highlight change. Comber et al. (2004a) overlaid classified 129 

image-objects on a pixel-based classification and then used expert knowledge to assist in the identification of 130 

true change from classification error. Overlaying existing objects onto new images can form a simple basis for 131 

change detection while benefiting from object-based contextual measures. The main disadvantage of this 132 

approach is that the geometry of the image-objects reflects only one of the images; with change in the 133 

opposing image not necessarily conforming to the imposed spatial framework. 134 



   

Image-object comparison 135 

The premise of image-object comparison is that two images are segmented independently so that the image-136 

objects and their respective properties may be compared. The theoretical construct here is that corresponding 137 

image-objects may be ‘linked’ across space and time allowing a comparison to be made without the constraint 138 

of a geometric union. The distinct advantage here is that all object properties can be compared including size 139 

and shape (Listner & Niemeyer, 2011a) or class label (G. Chen et al., 2012). However, due to variations in 140 

factors such as illumination, viewing angle, phenology and atmospheric conditions, segmentations may be 141 

highly variable even under stable land cover and perfect co-registration. 142 

The process of comparing one object with another is therefore complicated and non-trivial. Listner & 143 

Niemeyer (2011a) propose two approaches to comparison namely, directed object correspondence whereby an 144 

object is given a weighted sum of all overlapping objects and correspondence via intersection where object 145 

attributes are compared directly, but only over the spatial intersection created between the two time periods. 146 

The majority of the literature in this area uses the latter method, especially when applied to post-classification 147 

change (Boldt et al., 2012; Dingle Robertson & King, 2011; Gamanya et al., 2009). Image-object comparison by 148 

intersection is also illustrated in Figure 2. The main limitation of a spatial intersection of segmentations, also 149 

referred to as correspondence via intersection, is that it introduces a widely reported problem of ‘sliver’ 150 

objects under inconsistent segmentations (G. Chen et al., 2012; McDermid et al., 2008). Sliver objects can 151 

result in false change being detected and impact the utility of updated land cover maps (Linke et al., 2009a). 152 

One method of minimising sliver objects is to simply remove smaller change objects, as demonstrated by Boldt 153 

et al. (2012).  However, this approach equates to a systematic reduction in the cartographic scale of the 154 

change analysis and information loss. Linke et al. (2009b) tackled this problem by using object width to 155 

highlight slivers prior to elimination. They showed that this allows the compilation of a dynamic land cover 156 

inventory; however, this approach remains insensitive to narrow change objects below the specified width 157 

threshold. While the work of Linke et al. (2009b) provides a robust strategy to suppress sliver objects more 158 

work is required on the rigorous matching of image objects so that their full properties may be used in a 159 

change comparison (Hussain et al., 2013; Listner & Niemeyer, 2011a). 160 



   

Multi-temporal image-object 161 

Multi-temporal objects may be created by simply segmenting all available images together in a single data 162 

stack as illustrated in Figure 2. This approach has the distinct advantage of considering all images during object 163 

formation therefore minimising sliver errors and potentially honouring key multi-temporal boundaries. For 164 

example, Doxani et al. (2011) used this approach to detect detailed urban change, an application that would 165 

be prone to widespread sliver errors due to differences in viewing geometry and shading. Teo & Shih (2013) 166 

also used multi-temporal image-objects as the basis for urban change detection, this time utilising LiDAR data, 167 

where it was found to perform well even in the presence of high magnitude spatial registration noise found at 168 

the edge of buildings. This approach has also proved successful in forest change applications at large (Chehata 169 

et al., 2011), moderate (Desclée et al., 2006) and small (Bontemps et al., 2012) cartographic scales. These 170 

examples show how multi-temporal image-objects are an elegant way of representing an image time-series, 171 

especially in applications involving elevated features where extensive viewing geometry differences are 172 

expected. However, this analysis unit is limited because object size and shape cannot be easily compared and 173 

smaller or indistinct changes may be generalised out during the segmentation process. 174 

Vector polygon 175 

Vector polygons originating from existing mapping databases can be overlaid over imagery and used as a basis 176 

to group image pixels in a change analysis. Groups of pixels across a temporal sequence may then be analysed 177 

statistically, the result of which may indicate changes within the corresponding polygons. This approach is 178 

often linked to map updating in which remotely sensed images are used to automatically identify broad scale 179 

change in polygons and regions where map updating is required, thereby reducing the manual review process. 180 

For instance Walter (2004) calculated spectral means, variances and corresponding pixel class area for a set of 181 

land parcel polygons. These features were then used within a supervised classification to identify changed 182 

parcels. In a simpler workflow Gerard et al. (2010) overlaid recent CORINE land cover parcels against aerial 183 

images to visually assess historical changes over 50 years. These demonstrate how vector polygons can be 184 

used to spatially guide a change assessment. However, since the polygons often form part of land 185 

informational database this information may also be used to help inform the change detection process. For 186 

example, Comber et al. (2004b) used soil properties, rainfall and terrain to supplement the satellite spectral 187 

information when updating land cover mapping in Scotland. 188 



   

Existing class labels can provide useful information in change detection workflows, allowing efforts to be 189 

focused and acting as a thematic guide for classification algorithms. For instance, Bouziani et al. (2010) & 190 

Sofina et al. (2012) used a ‘map guided’ approach to train a supervised classification algorithm to identify new 191 

buildings and Duro et al. (2013) used cross correlation analysis to statistically identify change candidates based 192 

on existing land cover map class labels. The use of vector polygons as a framework for change detection has 193 

great potential especially in cases where existing, high quality attribution is used to inform the classification 194 

process. However, an assumption of this approach is that the scale of the vector polygons matches the scale of 195 

the change of interest. If this is not the case then a strategy will need to be considered to adequately represent 196 

the change; for instance pixels may be used to delineate smaller change features within a vector polygon. 197 

Hybrid 198 

A hybrid approach refers to a combination of analysis units to highlight change in a stepwise way. In its most 199 

basic form this relates to a change comparison of pixels which are then filtered or segmented as a mechanism 200 

to interpret what the change image is showing. For example, Bazi et al. (2010) first derived a pixel-based 201 

change image and then used multi-resolution segmentation to logically group the results. Their approach 202 

proved successful when experimentally applied to Landsat and Ikonos imagery. Figure 2 replicates the method 203 

employed by Bazi et al. (2010), first calculating the absolute difference between image pixels and then 204 

performs a multi-resolution segmentation on the difference image before finally calculating the mean absolute 205 

difference of the original images by image-object. Research by Linke et al. (2009b) found that a multi-206 

resolution segmentation of pixel-based Landsat wetness difference images proved an effective method of 207 

identifying montane land cover change in Alberta, Canada. Aguirre-Gutiérrez et al. (2012) combined pixel and 208 

object-based classifications in a post-classification workflow that sought to retain the most accurate elements 209 

of each. Bruzzone & Bovolo (2013) modelled different elements of change at the pixel level to include 210 

shadows, registration noise and change magnitude. These pixel-based change indicators were then used to 211 

inform a change classification based on overriding multi-temporal image-objects. These examples show that 212 

using a hybrid of analysis units may be an intuitive approach whereby change in pixel intensity is logically 213 

grouped towards identifying features of interest. 214 



   

3. Comparison methods 215 

Previous reviews (Coppin et al., 2004; Hussain et al., 2013; Lu et al., 2004) have presented exhaustive lists of 216 

change detection techniques containing many comparison methods. Here six broad comparison methods are 217 

identified that capture the key features of previous research in a concise and accessible manner. These 218 

categories are summarised in Table 2 to include a brief description of each, advantages and disadvantages and 219 

some examples from the literature. This is followed by a more detailed discussion of each comparison method. 220 

Table 2: An overview of commonly used comparison methods. 221 

 
Description Advantages Limitations Example studies 

La
ye

r a
rit

hm
et

ic
 

Image radiance or derivative features 
are numerically compared to identify 

change. 
Can be simple to implement. 

Usually gives little 
insight into the type of 

change. 

Coulter et al. (2011); Dams et al. (2013); 
Desclée et al. (2006); Falco et al. (2013); 

Green et al. (1994); Homer & Xian (2011); 
Im et al. (2008); Im & Jensen (2005); Jensen 

& Toll (1982); Klaric et al. (2013); Lu et al. 
(2010); Tewkesbury & Allitt (2010) 

Po
st

-c
la

ss
ifi

ca
tio

n 
ch

an
ge

 

The comparison of multiple maps to 
identify class transitions. 

Produces a labelled change 
map. Prior radiometric 

calibration may not be required. 

Errors in any of the input 
maps are directly 

translated to the change 
map. 

Abd El-Kawy et al. (2011); Boldt et al. 
(2012); Chou et al. (2005); Comber et al. 
(2004a); Dingle Robertson & King (2011); 

Gamanya et al. (2009); Hester et al. (2010); 
Li et al. (2012); Teo & Shih (2013); Torres-

Vera et al. (2009); X. Chen et al. (2012) 

D
ire

ct
 c

la
ss

ifi
ca

tio
n 

A multi-temporal data stack is 
classified directly identifying both 

static and dynamic land cover. 

Only one classification stage is 
required. Provides an effective 

framework to mine a 
complicated time series. 

Produces a labelled change 
map. 

Classification training 
datasets can be difficult 
to construct, especially 

for a time series of 
images. 

Chehata et al. (2011); Gao et al. (2012); 
Ghosh et al. (2014); Hame et al. (1998); 
Hayes & Sader (2001); Schneider (2012) 

Tr
an

sf
or

m
at

io
n 

A mathematical transformation to 
highlight variance between images. 

Provides an elegant way to 
handle high dimensional data. 

There is no defined 
thematic meaning to the 
results. Change may be 
difficult to locate and 

interpret. 

Deng et al. (2008); Doxani et al. (2011); 
Listner & Niemeyer (2011a) 

CV
A 

The computation of difference vectors 
between analysis units giving both the 

magnitude and direction of change. 

Gives insight into the type of 
change occurring. 

In its raw form the 
change direction and 

magnitude may be 
ambiguous. 

Bovolo et al. (2012); Bovolo & Bruzzone 
(2007); Bruzzone & Prieto (2000); Carvalho 

Júnior et al. (2011); Cohen & Fiorella 
(1998); Johnson & Kasischke (1998) 

H
yb

rid
 c

ha
ng

e 
de

te
ct

io
n 

The use of multiple comparison 
methods within a workflow. The most 

commonly used strategy is a 
combination of layer arithmetic to 

identify change and direct 
classification to label it. 

Training data does not have to 
be collected over 

radiometrically stable areas. 
No specific limitations. 

Bruzzone & Bovolo (2013); Doxani et al. 
(2011); Seto et al. (2002); Xian & Homer 

(2010) 

Layer arithmetic 222 

Arithmetic operations such as subtraction or division applied to bi-temporal imagery are simple methods of 223 

change detection. These operations give an image depicting radiance differences, which is hoped reflects the 224 

magnitude of change on the ground (Singh, 1989). This technique has long been used to highlight areas of 225 



   

image change quickly with minimal supervision (Green et al., 1994; Jensen & Toll, 1982) and is still in use 226 

today, typically applied to image-objects (Desclée et al., 2006; Tewkesbury & Allitt, 2010). To add thematic 227 

meaning to a difference image, the image radiance may be transformed into a vegetation index or fractional 228 

cover image prior to the layer arithmetic. For example Coulter et al. (2011) differenced regionally normalised 229 

measures of NDVI to identify vegetative land cover change while Tewkesbury & Allitt (2010) used image ratios 230 

to identify vegetation removal in aerial imagery. It is also common to monitor urban expansion by subtracting 231 

multi-temporal impermeable surface fractional cover images obtained by sub-pixel analysis (Dams et al., 2013; 232 

Gangkofner et al., 2010; Lu et al.,2010). A highly evolved system of layer differencing is presented by Jin et al. 233 

(2013), whereby change is assessed based upon combining difference images of image spectral indices and 234 

biophysical transformations. These examples demonstrate how simple arithmetic operations of image 235 

radiance, or derivative features can be used to highlight changed areas, target specific features based upon an 236 

expected spectral response or quantify fractional, sub-pixel changes. 237 

Layer arithmetic comparisons may go beyond simple radiometric differencing by leveraging different units of 238 

analysis. This empowers the comparison by considering texture, context and morphology; therefore reducing 239 

the dependency on a target’s spectral characteristics as an indicator of change. For instance Im & Jensen 240 

(2005) found that measures of kernel similarity –namely correlation coefficient, slope and offset- proved to be 241 

more effective indicators of change than simple pixel differencing. Further work showed that this same 242 

comparison method may also be applied to multi-temporal image-objects (Im et al., 2008); although no 243 

significant improvement was found when compared to the kernel based approach. When working with VHR 244 

imagery several researchers have incorporated measures of texture and morphology into the arithmetic 245 

comparison as a means of reducing the dependence on image tone. For instance, Klaric et al. (2013) present a 246 

change detection system based on a weighted combination of neighbourhood spectral, textural and 247 

morphological features. The authors argue that this approach is not entirely dependent on spectral change and 248 

is applicable to multi-spectral and panchromatic imagery. The idea of reducing the dependence on spectral 249 

information is further developed by Falco et al. (2013) in research using Quickbird panchromatic imagery 250 

alone, as a basis for change detection, by comparing measures of morphology and spatial autocorrelation. 251 

Image change isn’t necessarily associated with a strong spectral difference, and these examples have shown 252 



   

how researchers have tackled this problem by using contextual information. However, there is still much 253 

research to be done in this area to improve classification accuracies over complex targets. 254 

Post-classification change 255 

Post-classification change or map-to-map change detection is the process of overlaying coincident thematic 256 

maps from different time periods to identify changes between them. The distinct advantage of this technique 257 

is that the baseline classification and the change transitions are explicitly known. Furthermore, since the maps 258 

may be produced independently, a radiometric normalisation is not necessary (Coppin et al., 2004; Warner et 259 

al., 2009). The direct comparison of satellite derived land cover maps is one of the most established and widely 260 

used change detection methods, applicable to Landsat class imagery (Abd El-Kawy et al., 2011; Dingle 261 

Robertson & King, 2011; Gamanya et al., 2009; Torres-Vera et al., 2009) and VHR imagery (Boldt et al., 2012; 262 

Demir et al., 2013; Hester et al., 2010).  The approach may also be used to locate changes of a specific 263 

thematic target. For instance, Boldt et al. (2012) and Teo & Shih (2013) both used post-classification change to 264 

uniquely identify building changes. These examples show that post-classification change is a thematically rich 265 

technique able to answer specific change questions, making it suitable for a range of different applications. 266 

Post-classification change is limited by map production issues and compounded errors making it a costly and 267 

difficult method to adopt. The comparison method requires the production of two entire maps which may be 268 

an expensive (Lu et al., 2004) and an operationally complex task. Furthermore, input maps may be produced 269 

using differing data and algorithms. In this case, a distinction must be made between classification 270 

inconsistencies and real change as explored by Comber et al. (2004a). The biggest issue with post-classification 271 

change is that it is entirely dependent on the quality of the input maps (Coppin et al., 2004; Lu et al., 2004) 272 

with individual errors compounding in the change map (Serra et al., 2003). Therefore, it is difficult and 273 

expensive to produce a time series of maps with sufficient quality to obtain meaningful change results. 274 

There have been significant efforts to improve post-classification change results by accounting for classification 275 

uncertainty and by modelling anticipated change scenarios. Classification uncertainty may be spatial, thematic 276 

or a combination of both and accounted for by assigning confidences to these criteria. For instance, X. Chen et 277 

al. (2012) compared fuzzy class probability, rather than crisp labels, to highlight uncertain land cover 278 

transitions. Hester et al. (2010) used spatial and thematic fuzziness in the classification of urban change using 279 



   

Quickbird imagery accounting for increased pixel level mis-registration in VHR imagery. Specific change 280 

scenarios can also be modelled in an attempt to identify and remove unlikely land cover transitions. For 281 

instance Chou et al. (2005) developed a spatial knowledge base, implemented as pixel kernel filters to remove 282 

change pixels not conforming to pre-determined change scenarios. This approach has also been extended to 283 

include full urban simulations as a means of identifying unlikely transitions (Li et al., 2012). These examples 284 

demonstrate that post-classification change has been extended from a simple map label arithmetic operation 285 

to one that considers the confidence of a particular label and the likelihood of its indicated change. 286 

Direct classification 287 

A multi-temporal stack of images can be directly classified to give a land cover inventory over stable areas and 288 

land cover transitions where change has occurred. The data stack consists of multiple sets of n band images 289 

which may be treated by a classifier as one set of classification features. This is then classified with a 290 

supervised or unsupervised technique aiming to give a set of stable land cover classes and changed land cover 291 

transitions. The technique is advantageous, since only one classification stage is required and identified 292 

changes are thematically labelled. Several researchers investigating forest change have used this approach as a 293 

means of directly identifying their target of interest. For instance, Hayes & Sader (2001), Hame et al. (1998) 294 

and Chehata et al. (2011) all implemented forest change detection systems based an unsupervised 295 

classification of multi-temporal imagery, facilitated by a good understanding of the nature of the change. 296 

These examples from forestry applications show how the direct classification technique can be used to solve a 297 

relatively well constrained problem. However, direct classification is a powerful tool in the context of a data 298 

mining problem such as the interpretation of a dense time series of images. Such a scenario is very difficult to 299 

conceptualise or model with expert knowledge, and is an ideal scenario for machine learning algorithms. For 300 

example, Schneider (2012) was able to successfully mine a time series of 50 Landsat images from 1988 to 2010 301 

for changes in urban extent using supervised support vector machine (SVM) and decision tree classifiers. The 302 

dense time series and machine learning approach allowed the extraction of meaningful change under 303 

complicated phenological patterns without explicitly modelling them. Gao et al. (2012) also used this strategy, 304 

applying a supervised decision tree classifier to extract impermeable surface change over 33 years using nine 305 

Landsat images. These examples demonstrate that the direct classification of a time series of images can be an 306 

effective way of deciphering change that may be buried within complex patterns. However, deriving training 307 



   

datasets for such a classification can be very challenging  (Lu et al., 2004) and unsupervised approaches can 308 

prove unresponsive to small magnitude change patterns (Warner et al., 2009). In light of these limitations, 309 

recent work by Ghosh et al. (2014) into semi-supervised change classification is extremely interesting with 310 

more research needed in this area. 311 

Transformation 312 

Data transformations such as principle component analysis (PCA) and multivariate alteration detection (MAD) 313 

are methods of data reduction by suppressing correlated information and highlighting variance. When applied 314 

to a multi-temporal stack of remotely sensed images there is the potential to highlight image change, since it 315 

should be uncorrelated between the respective datasets. For instance, Deng et al. (2008) applied PCA to a 316 

multi-temporal data stack of Landsat and SPOT 5 imagery in order to identify changed areas for a subsequent 317 

supervised change classification. The PCA image was classified into ‘change’ and ‘no change’ domains by 318 

labelling unsupervised clusters. In this case, 60 clusters were required to identify the change present, 319 

indicating that the change signal was relatively well ‘hidden’ within the principle components. Doxani et al. 320 

(2011) found that applying the MAD transformation to image-objects was an effective method of highlighting 321 

change objects in VHR imagery. Listner & Niemeyer (2011a) also applied a MAD transformation to image-322 

objects to highlight change. However, they highlighted that the MAD transformation may become 323 

mathematically unstable when applied to highly correlated features. This is particularly relevant when 324 

considering the large number of classification features available under OBIA. In order to ensure a robust 325 

change detection strategy, they proposed a prior PCA, with the first three principle components acting as the 326 

inputs to the MAD transformation. Although this strategy worked in their application, it does highlight an issue 327 

with transformations, namely that the first 2 or 3 components may not necessarily contain the desired change 328 

information (Bovolo et al., 2012). Therefore, change features may either be missed or buried within a high 329 

number of transformation components. Furthermore, PCA and MAD transformations are scene dependant and 330 

may prove difficult to interpret (Carvalho Júnior et al., 2013; Lu et al., 2004; Warner et al., 2009). 331 

Transformations can be a useful way of assessing change within a complex time series of images. However, 332 

they usually only serve to highlight change and therefore should form part of a hybrid change detection 333 

workflow to provide change labels. Lastly, due to the scene dependence, it may prove a difficult task to locate 334 

change within the multiple components, if the change is represented at all. 335 



   

Change Vector Analysis (CVA) 336 

Change vector analysis is a method of interpreting change based on its magnitude and direction. To facilitate 337 

this, bi-temporal datasets are described in three components; namely the feature vector at time 1, the feature 338 

vector at time 2 and an interconnecting vector. The interconnecting vector is called the change vector and its 339 

magnitude and direction can give us an insight into the type of change occurring. The geometry of a CVA is 340 

given in Figure 3a (in 2D for simplicity). Calculating the magnitude is very simple (see Cohen & Fiorella, 1998, p 341 

91), easily extended to high dimensional feature space. For instance, the change magnitude of all six Landsat 342 

spectral bands (excluding the thermal) is often calculated to assess the apparent extent of change (Bruzzone & 343 

Prieto, 2000; Xian & Homer, 2010). In theory the magnitude gives the degree to which the image radiance has 344 

changed, containing limited thematic content, while the direction indicates the type of change. Therefore, the 345 

combination of magnitude and direction can be a means of labelling change and minimising false positives 346 

(Bovolo & Bruzzone, 2007). In the standard formulation of CVA (Figure 3a) the direction is described by a 347 

directional cosine for each axis of the feature space. Therefore, n-1 directional cosines are required to describe 348 

the change direction in n dimensional feature space, leading to a complicated output data array which may be 349 

difficult to interpret (Carvalho Júnior et al., 2011). In light of this, many researchers simplify the input feature 350 

space to two bands only. For example, Bovolo et al. (2007) defined a 2D  feature space based on Landsat bands 351 

3 and 4 allowing burnt area change to be uniquely identified from magnitude, and a single angular direction.  352 

Another method used to simplify CVA direction is by applying a prior transformation to the input multi-353 

dimensional data and performing the analysis on two of the components alone. Cohen & Fiorella (1998) and 354 

Johnson & Kasischke (1998) used this approach, transforming the six available Landsat bands into tasselled cap 355 

components as input into a 2D CVA. These examples highlight how CVA has the potential to be used as both a 356 

change identification and labelling tool. However, a complicated description of n dimensional change limits its 357 

application. This point is discussed in detail by Bovolo et al. (2012), who note that limiting CVA to 2 358 

dimensional features space requires prior knowledge of the nature of the change occurring and may lead to a 359 

poor analysis through an ill-informed band selection. This highlights a clear need to more elegantly describe 360 

change direction in n dimensional feature space. 361 

More recently, there has been some interesting research describing how n dimensional change directional 362 

information can be conveyed in a CVA. These have sought to use several image channels while retaining a 363 



   

simple description of the change direction. For instance, Carvalho Júnior et al. (2011) proposed the use of the 364 

spectral angle mapper (SAM) and its statistically normalised derivative, spectral correlation mapper (SCM), 365 

both well-established techniques, common in hyperspectral remote sensing. Such techniques are used to 366 

describe how similar any two n dimensional vectors are to each other, and so has clear applicability to change 367 

detection. SAM, mathematically based on the inner product of two vectors (Yuan et al., 1998) is the single 368 

angle between two n dimensional vectors (Figure 3b). It is worth re-iterating that SAM and SCM are both 369 

measures of similarity and do not give change direction or type per-se. However, they can be highly 370 

informative and complementary to a change vector analysis (Carvalho Júnior et al., 2011). 371 

The principle behind SAM was further explored by Bovolo et al. (2012) in order to relate the single angle back 372 

to change direction. This work used the same theoretical basis as Carvalho Júnior et al. (2011) but instead 373 

evaluated the angle between the change vector itself and an arbitrary reference vector (Figure 3c), and Bovolo 374 

et al. (2012) normalised the reference vector by setting all elements equal to √𝑛 𝑛� . The rationale for this 375 

approach is that the use of an arbitrary reference vector gives a consistent baseline for the change direction, 376 

allowing thematic changes to be consistently grouped throughout a scene. Bovolo et al. (2012) argue with 377 

reference to experimental examples, that this formulation of CVA does not require any prior knowledge of the 378 

anticipated change or its remote sensing response. Moreover, the technique can identify more types of change 379 

since all of the available information is considered. These developments could go some way towards 380 

establishing CVA as a universal framework for change detection as suggested by Johnson & Kasischke (1998). 381 

Due to the recent nature of this research there are few published examples however the underlying 382 

philosophy has great potential, particularly when considering future super spectral satellite missions and the 383 

wide variety of object-based features available. At the time of writing there is no published research 384 

integrating the work of Carvalho Júnior et al. (2011) and Bovolo et al. (2012), despite the complementary 385 

nature of these descriptors of multi-dimensional change. 386 

A little-reported limitation of CVA is that both the magnitude and direction can be ambiguous (Johnson & 387 

Kasischke, 1998). Consider the three identified formulations of CVA displayed in Figure 3a, b & c. It is evident 388 

that the change vector itself can be translated within the feature space, while retaining the same measures of 389 

magnitude and direction. There is the possibility that multiple thematic changes may be described by identical 390 

measures of magnitude and direction, limiting the power of CVA as a change labelling tool. In appraising this 391 



   

limitation, Cohen & Fiorella (1998) concluded that a baseline reference vector, typically from the first time 392 

period, should be used when attempting to further classify CVA results. This limitation of CVA is easily 393 

surmountable but clearly increases the burden of the interpretation task, especially in the case of high 394 

dimensional datasets. 395 

 396 

Figure 3: An illustration in 2 dimensions of the geometry of three formulations of CVA. For each, the x and y 397 
axis represent the input features under analysis, typically spectral bands. Vector A and Vector B represent 398 
the value of a given analysis unit for a bi-temporal pair of images. (a) The ‘standard’ formulation of CVA 399 
describing the change vector by magnitude and a series of angular directions relative to each axis. (b) 400 
Spectral Angle Mapper (SAM) for CVA, after Carvalho Júnior et al. (2011). (c) n dimensional CVA, after 401 
Bovolo et al. (2012). 402 

Hybrid Change Detection 403 

A hybrid approach uses more than one comparison method in order to increase the understanding of 404 

identified change. At an elementary level it could be thought of in two stages: Locating change and identifying 405 

change. This approach identifies change candidates, minimising reference data collection (Lu et al., 2004). 406 

Hybrid change detection is often expressed as a layer arithmetic operation to identify changed elements, 407 

followed by a supervised or unsupervised direct classification of the changed features giving them meaning (Lu 408 

et al., 2004). For example, Seto et al. (2002) first established a CVA depicting the radiometric change 409 

magnitude and direction, and then used a supervised classification to label into specific land cover transitions. 410 

While Doxani et al. (2011) tackled urban change detection in VHR imagery by first applying a MAD transform to 411 

highlight changed areas, and then applied a knowledge-based classification to filter and classify the results. An 412 

interesting formulation of hybrid change detection has recently been presented by Bruzzone & Bovolo (2013). 413 

They argue that functional change detection must distinguish semantic change, relating to specific features 414 

from radiometric, or image change. This theory was experimentally implemented by combining pixel-based 415 



   

measures of shadow, radiometric change and noise within an object-based classification. These examples 416 

highlight a trend amongst research that seeks to use multiple stages of change comparison to solve particular 417 

problems, a trend which is likely to continue as workflows become ever more complex. 418 

4. Discussion 419 

Here, we consider some of the specific issues which underlie this review, and make some practical suggestions 420 

which may be adopted in future experimental and applied research. The organisation and nomenclature 421 

developed is a response to the burgeoning change detection literature, proliferated by the addition of object-422 

based methods. While OBCD has undoubted merits, the pixel as an analysis unit and allied comparison 423 

methods are still very relevant. Therefore, remotely sensed optical image change detection should be 424 

considered as a whole.  We further discuss this rationale starting with the recent rise of OBCD and why its use 425 

should be carefully considered on merit and better-organised in experimental research. We then discuss an 426 

application-driven framework to identify requirements, and inform the selection of an appropriate unit of 427 

analysis and comparison method based on scale and thematic objectives. We argue that a unit of analysis 428 

should be selected based on its representation of the application scale with respect to the available image 429 

resolution, and its ability to deliver the required comparison features. On the other hand the comparison 430 

method must fit the application’s thematic objectives. 431 

There is currently a debate in the remote sensing literature over the merits of object-based change detection 432 

(OBCD) verses traditional pixel-based methods. Some believe that OBCD is a more advanced solution, capable 433 

of producing more accurate estimates of change particularly when VHR imagery is used. For instance G Chen 434 

et al. (2012) and Hussain et al. (2013) argue that OBCD is an advancement beyond pixel-based change 435 

detection that generates fewer spurious results with an enhanced capability to model contextual information. 436 

Moreover, Boldt et al. (2012) describe pixel-based change detection of VHR imagery as inappropriate. Kuntz et 437 

al. (2011) comments that objects are less sensitive to geometric errors due to a greater potential for a majority 438 

overlap and Im et al. (2008) points to the fact that OBIA may be a more efficient means of making change 439 

comparisons. Crucially, objects are described as an intuitive vehicle to apply expert knowledge (Blaschke, 440 

2010; Vieira et al., 2012) which if operationalized would represent an opportunity to model specific change 441 

features.  442 



   

There is a significant technical overlap between object and pixel-based approaches. It is becoming increasing 443 

common in the literature to subdivide change detection methods into either pixel or object-based approaches 444 

followed by a range of sub-methods (Boldt et al., 2012; G. Chen et al., 2012; Hussain et al., 2013). This results 445 

in a very disparate and complicated set of change detection methods, making evaluation and selection 446 

extremely difficult. However, many of the sub-methods are very similar, if not identical, varying only by the 447 

analysis unit used for the comparison. For instance, post-classification change remains conceptually the same 448 

under pixel and object-based implementations as shown in a comparative analysis by Walter (2004). Simple 449 

arithmetic change operations such as differencing and ratios (Green et al., 1994; Jensen & Toll, 1982) -arguably 450 

the foundation of remote sensing change detection- may be applied equally to pixels or image-objects. More 451 

complicated procedures such as a multivariate correlation analysis may also be applied to pixels or objects (Im 452 

et al., 2008). Warner et al. (2009) suggests that any change detection technique that can be applied to pixels 453 

can also be applied to objects. While there are obvious merits to working with objects, it is not always useful to 454 

make a hard distinction between object and pixel-based change detection.  This can result in an overly 455 

complicated and disparate presentation of the available techniques. 456 

Focusing on OBCD may unnecessarily narrow the focus of a literature review or method selection because of a 457 

bias towards the unit of analysis, at the detriment of the comparison methodology. Although using image-458 

objects for change analysis has its undoubted merits and is a ‘hot topic’ for research (Blaschke, 2010), it is 459 

important to consider remote sensing change detection as a whole and be aware of advancements in both 460 

pixel and object-based methods since they are usually interchangeable. For instance, two recent reviews of 461 

change detection focusing on OBIA methods (G. Chen et al., 2012; Hussain et al., 2013) bypass recent 462 

important advancements in CVA (Bovolo & Bruzzone, 2007; Bovolo et al., 2012; Carvalho Júnior et al., 2011). 463 

CVA and the vast majority of comparison methodologies are not constrained to image pixels with a change 464 

analysis executable on pixels, primitive image-objects or meaningful image-objects (Bruzzone & Bovolo, 2013). 465 

In essence, change detection workflows are more often than not transferable between analysis units 466 

regardless of their initial conception. Ultimately, it is more useful to make a technique selection considering 467 

the merits of both the comparison methodology and analysis unit in relation to the task in hand. 468 

OBIA and by association OBCD is a means of generalising image pixels, with the segmentation scale directly 469 

controlling the size of detectable features. When segmenting at a particular scale the resultant objects are 470 



   

conveying statistical summaries of the underlying pixels. As highlighted by Walter (2004), regions of change 471 

must occupy a significant proportion of an object or exhibit extraordinary magnitude in order to be detectable. 472 

Therefore, the segmentation scale and image resolution must be carefully chosen so as to adequately define 473 

change features of interest (Hall & Hay, 2003). Dingle Robertson & King (2011) highlight that the selection of 474 

an appropriate segmentation scale is not straightforward. In their workflow they qualitatively identified a 475 

suitable segmentation scale but nonetheless found that smaller, less abundant classes were not retained in 476 

their post-classification change analysis. The generalising properties of OBIA are however actively used as a 477 

means of removing spurious, ‘salt and pepper’ features (Boldt et al., 2012; Im et al., 2008). This point would be 478 

of particular concern when seeking change at large cartographic scales. Clearly then, when considering an 479 

object-based unit of analysis, the size of the target change must be known prior to performing the analysis so 480 

that a suitable segmentation scale may be applied. 481 

Experimental methods aiming to test object-based methods against pixel-based counterparts are often flawed 482 

because several variables are under comparison. Research aiming to compare pixel-based classifications 483 

against object-based ones should then be designed with the analysis unit as the sole variable. Under the 484 

framework presented in this review, change detection analysis units could then be meaningfully compared 485 

while maintaining identical comparison methodologies. However, it is often the case that experiments are 486 

undertaken varying both the analysis unit and comparison or classification method. For instance, Dingle 487 

Robertson & King (2011) compared a maximum likelihood classification of pixels to a nearest neighbour 488 

classification of image-objects; While Myint et al. (2011) compared nearest neighbour and knowledge based 489 

classifications of image-objects to a maximum likelihood pixel classification. These experiments provide 490 

conclusions based on compounded variables with the effect of an analysis unit change confused with a change 491 

of classification algorithm. Conversely, interesting research by Duro et al. (2012) found that the differences in 492 

accuracy of pixel and object-based classifications were not statistically significant when executed with the 493 

same machine learning algorithm. There is then a case for caution before declaring object-based methods as 494 

superior. In the case of change detection it is hoped that the clearer demarcation between the analysis unit 495 

and comparison methodology presented in this review can help to steer research in this area, providing more 496 

reliable information as to the relative merits of each component. 497 



   

The nomenclature presented here may be used to help guide method selection in applied research. While this 498 

is an extremely complicated and non-prescriptive task, we believe that the breakdown of change detection 499 

into two discrete components does help to focus selection decisions more meaningfully. An application-driven 500 

framework is provided by which to build criteria for a technique selection. This framework, along with the key 501 

decisions and considerations are illustrated in Figure 4. A given change detection application will always start 502 

with thematic and scale objectives, which may be summarised by the required types of change and the spatial 503 

scale at which they must be identified and depicted. These objectives inform the selection of the unit of 504 

analysis and comparison method directly, but are also used in the selection of suitable imagery and the 505 

identification of classification features required to satisfy the thematic objectives. Comparison features are 506 

typically identified by expert knowledge and understanding of the anticipated change, which may develop into 507 

full ontological descriptions as explored by Arvor et al. (2013). Although not a scientific consideration, costs 508 

will inevitably constrain most change detection projects to some degree. Therefore, sensible substitutions 509 

must be made in lieu of techniques and data requirements that prove too resource intensive.  510 



   

 511 

Figure 4: An application driven framework for the selection of an appropriate change detection unit of 512 
analysis and comparison method. 513 

The application scale with respect to the resolution of the available imagery contributes to the selection of an 514 

appropriate unit of analysis. If we consider change targets as geo-objects  –abstractions of the reality on the 515 

ground at a particular scale (Castilla & Hay, 2008),  then the unit of analysis will seek to approximate geo-516 

objects to varying levels of spatial, morphological and contextual fidelity. Single pixels are still routinely used as 517 

the unit of analysis for change at moderate scales based on medium resolution imagery (Abd El-Kawy et al., 518 

2011; Schneider, 2012).  Moreover, urban change detection has been demonstrated at relatively large 519 

cartographic scales using sub-pixel analysis of medium resolution images (Lu et al., 2010; Xian & Homer, 2010). 520 

It is argued by Blaschke et al. (2014) that geo-objects are best represented by many pixels aggregated to image 521 

objects, irrespective of the image resolution. This is clearly present in the object-based change detection 522 

literature, with projects conducted using imagery at high (Chehata et al., 2011; Doxani et al., 2011; Ehlers et 523 

al., 2014), medium (Desclée et al., 2006; Dingle Robertson & King, 2011; Gamanya et al., 2009; Lizarazo, 2012) 524 

and even low (Bontemps et al., 2012) resolutions. Based on imagery licensing, storage and processing it is a fair 525 



   

assumption that the cost to conduct a change analysis will be related to the number of pixels under 526 

investigation. Therefore, the use of aggregated image-object units of analysis may represent a higher cost 527 

solution for a given application scale. For example, the sub-pixel detection of change at a relatively large 528 

cartographic scale employed by Xian & Homer (2010) presents a solution with ‘reasonable costs and 529 

production times’ (Xian & Homer, 2010, p1685). Given the huge variability present in the literature, it is not 530 

possible to recommend an appropriate unit of analysis based on the application scale and image resolution 531 

alone. Clearly, cost has influenced previous projects but the required comparable features, driven by an 532 

application’s thematic objectives is a crucial factor that completes the decision. 533 

The classification features required to make a meaningful change comparison are pivotal when selecting an 534 

appropriate unit of analysis. To illustrate this point, we consider the comparisons requirements for a specific 535 

change application, (the comparison of impervious surfaces) and then refer to instances in the literature that 536 

have addressed this problem.  The comprehensive identification of impervious surfaces, and the monitoring of 537 

their change over time using remotely sensed data, would require the comparison of multi-spectral image 538 

tone, supplemented by texture and context.  More specifically, this task might involve the analysis of: (1) Key 539 

absorption and reflection features present in the visible, near-infrared and especially short-wave infrared 540 

regions (Weng, 2012), (2) Fine scale textures (Perry & Nawaz, 2008), and lastly (3) The image scene’s 541 

contextual and 3D parameters (Herold, 2008). Interpreting these may imply an image-object comparison of 542 

hyperspectral imagery; which may be beyond the resources of most applications. Therefore, it is common to 543 

sensibly reduce the scope of a change analysis to meet the available resources. For example, while Landsat 544 

imagery does not have the spectral fidelity to model impervious spectral responses precisely, Landsat’s broad 545 

short wave infrared band is useful in the task. For example, Xian & Homer (2010) developed a sub-pixel 546 

method of estimating relatively large-scale impervious surface change derived from the spectral information of 547 

30m Landsat pixels alone. If there is an exploitable spectral signature associated with the change of interest, 548 

which may be identified in the available data, then a tonal comparison only is required. This opens up all 549 

available units of analysis. For instance, forest change has been detected by comparing image tone by pixel 550 

(Cohen & Fiorella, 1998; Hayes & Sader, 2001; Tan et al., 2013),  image-object overlay (Tian et al., 2013) or 551 

multi-temporal image-objects (Bontemps et al., 2012). Returning to the impervious surface change theme, 552 

Zhou, et al. (2008) found that their available VHR colour infrared images were insufficient to detect impervious 553 



   

surfaces spectrally. Therefore, 3D LiDAR information and auxiliary mapping was utilised to assist with the 554 

detection. Research by X. Chen et al. (2012) also found spectral confusion in change detection, this time 555 

between forest and cropland change. In these circumstances, the inclusion of additional classification features 556 

-facilitated by units of analysis other than the pixel- may be used to improve change detection results. For 557 

example, kernel based texture (He et al., 2011), multi-temporal image-object texture (Desclée et al., 2006), 558 

image-object shape comparison (Boldt et al., 2012), local image correlation from  kernel (Im & Jensen, 2005) 559 

and multi-temporal image-objects (Im et al., 2008) and lastly, context modelled with kernels (Volpi et al., 2013)  560 

and image-object comparison (Hazel, 2001). To summarise, if the target of interest is associated with a 561 

measurable spectral signature then the separation may be ‘trivial’ (Blaschke et al., 2014, p182), opening up all 562 

available units of analysis. In this case selection may be based on the application’s scale objectives and the 563 

available imagery. For more complex situations, the ability of the unit of analysis to model textural, 564 

morphological and contextual features over time should be used in the selection. Image-object comparison 565 

presents the most comprehensive framework, but the technical complications may limit its application. 566 

Therefore in such circumstances, image-object comparison and hybrid approaches offer simplified, albeit more 567 

limited frameworks. 568 

The thematic objectives of an application must be carefully considered when evaluating a comparison method. 569 

Consequently, it is important to distinguish between the two broad outcomes of a change analysis, namely the 570 

identification of radiometric change and semantic change (Bruzzone & Bovolo, 2013). Radiometric change 571 

relates to spectral or image change (Warner et al., 2009) and is simply an observed difference in image tone. 572 

Radiometric change relates to all changes indiscriminately to include actual changes on the ground and those 573 

associated with illumination, phenology or viewing geometry. Semantic change on the other hand is 574 

thematically subdivided into meaningful categories – be they differences in scene shading or specific land 575 

cover transitions. Clearly, semantic change is of greater value, directly informing the end user. Unfortunately, 576 

these two very different outcomes are normally presented jointly as ‘change detection’ (Johnson & Kasischke, 577 

1998) making comparisons between different research projects very difficult. Generally, simple layer 578 

arithmetic comparisons resulting in a difference image depict radiometric change only, leaving the end user to 579 

review all radiometric change prior to identifying features of interest. Bruzzone & Bovolo (2013) have argued 580 

strongly that change detection should identify different types of change in order to effectively remove noise 581 



   

and isolate targets of interest. The default choice of identifying semantic change for applications requiring 582 

meaningful, quantitative information is post-classification change (Abd El-Kawy et al., 2011; Rahman et al., 583 

2011; Torres-Vera et al., 2009) but this may be prohibitively expensive in some cases. In applications such as 584 

impervious surface change (Lu et al., 2010), layer arithmetic may be used to directly inform the thematic 585 

objectives. For more complicated requirements, a direct classification of a multi-temporal data stack shows 586 

great potential, especially when applied to a dense time series with suitable training data.  587 

5. Conclusions 588 

This review has presented optical image change detection techniques to a clear, succinct nomenclature based 589 

on the unit of analysis and the comparison methodology. This nomenclature significantly reduces conceptual 590 

overlap in modern change detection making a synoptic view of the field far more accessible. Furthermore, this 591 

approach will help to guide technique comparison research by placing a clear separation of variables between 592 

the analysis unit and classification method.  593 

The summary of analysis units shows that more research is required to identify optimum approaches for 594 

change detection. While image-object comparison is theoretically the most powerful unit, in light of 595 

inconsistent segmentations, matching image-objects over space and time requires far more sophisticated map 596 

conflation technology. Therefore, multi-temporal image-objects or a hybrid approach are likely the most 597 

robust analysis units, while the pixel is still suitable for many applications. It is recommended that future 598 

research in this area ensures a strict separation of analysis unit and comparison method variables in order to 599 

provide clearer information on the relative merits of each. 600 

Post-classification change is the most popular comparison method due to the descriptive nature of the results 601 

allowing specific thematic questions to be answered. A direct classification of a complicated data stack is also 602 

an effective method of identifying semantic changes. However, the required training data is extremely difficult 603 

to obtain since the location of change is usually not known prior to an analysis. As highlighted by Lu et al. 604 

(2004) a hybrid approach may inherit the benefits of a direct classification while simplifying training data 605 

collection. Recent developments in CVA provide a powerful framework to compare multi-dimensional data but 606 

remain largely untested in the literature. Therefore, more research is required exploring recent formulations of 607 

CVA, in particularly the effect of integrating object-based features and other contextual measures. 608 



   

The use of image-objects as the unit of analysis in a change detection workflow should be a carefully 609 

considered decision based on the application at hand rather than adopted as a default choice. The main factor 610 

in this decision should be the requirement to compare features inherent to image-objects such as morphology 611 

and context. This decision must also include the scale of the analysis and acceptable levels of generalisation to 612 

be applied with respect to the pixel size of the images under analysis. 613 

Remote sensing change detection is a vast subject that has evolved significantly in the last 30 years but more 614 

research is required to tackle persistent problems.  These include: scene illumination effects (Hussain et al., 615 

2013; Singh, 1989), changes in viewing geometry (Listner & Niemeyer, 2011a; Lu et al., 2004), scale and the 616 

identification of small, ‘sub-area’ change (G. Chen et al., 2012), objects based feature utilisation (G. Chen et al., 617 

2012; Hussain et al., 2013) and segmentation consistency and comparison (Hussain et al., 2013; Listner & 618 

Niemeyer, 2011a). This review makes a contribution by offering a clearer organisation by which to conduct 619 

research in this field. 620 
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