X3 University of

% Leicester

CMMI-CM COMPLIANCE CHECKING
OF FORMAL BPMN MODELS USING
MAUDE

Thesis submitted for the degree of
Doctor of Philosophy

at the University of Leicester

by
Nissreen A. S. El-Saber, MSc. (Cairo University)
Department of Computer Science

University of Leicester

December 2014

CMMI-CM COMPLIANCE CHECKING OF FORMAL BPMN
MODELS USING MAUDE
Nissreen El-Saber

ABSTRACT

From the perspective of business process improvement syaaldlusiness process
which is compliant with best practices and standards (eMMQ@ is necessary for defin-
ing almost all types of contracts and government collalmmat In this thesis, we pro-
pose a formal pre-appraisal approach for Capability Mativiodel Integration (CMMI)
compliance checking based on a Maude-based formalizafitbginess processes in
Business Process Model and Notation (BPMN). The approantbeaused to assess
the designed business process compliance with CMMI reangings as a step leading
to a full appraisal application. In particular, The BPMN nebd mapped into Maude,
and the CMMI compliance requirements are mapped into Lifearporal Logic (LTL)
then the Maude representation of the model is model cheakadst the LTL properties
using the Maude’s LTL model checker.

On the process model side, BPMN models may include strdaases that hinder
their design. In this thesis, we propose a formal charazan and semantics specifica-
tion of well-formed BPMN processes using the formalizatwdrewriting logic (Maude)
with a focus on data-based decision gateways and data sigiectantics. Our formal
specification adheres to the BPMN standards and enabled oimdking using Maude’s
LTL model checker. The proposed semantics is formally pldedoe sound based on the
classical workflow model soundness definition. On the coamgke requirements side,
CMMI configuration management process is used as a sourcengbl@nce require-
ments which then are mapped through compliance pattero&.Tit properties. Model
checking results of Maude based implementation are exgiddiased on a compliance
grading scheme. Examples of CMMI configuration managemetgsses are used to

illustrate the approach.

Acknowledgements

In the name of Allah, The Almighty, the Most Gracious, the Mbdterciful, | thank
Allah, who always bless me and provided me with great peapledrk with. | thank
them all who made this thesis possible. To my supervisoARur Boronat, who | have
learnt a lot from and without his support | would not be ablevtde this thesis. To Prof.
Reiko Heckel, | used to leave his office after our biannualtmge full of ideas and
possible solutions for my research obstacles. Many thamitsetteaching and adminis-
trative staff of the University of the Leicester, UK for piding a comfortable working
environment. In particular, | am thankful to Dr. Fer-Jan De¥ for his valuable discus-
sions, Mr. Gavin Hornsey and Ms Karen Smith for their suppodt cooperation during
my PhD. Many thanks to all my friends who were always theredtip Ime whenever |
needed them.

My loving husband, Mohamed Mansoura, who kept encouragiegnd believing
in me all the way. Thank you! My Zahia, the blessing Allah pd®d me with during
my PhD. Although the PhD took me from her most of the time, Zdhels me up with
determination, confidence and hope in our little time togetMy warmest gratitude to
Mahjabin Qadri, Aunty Siraad, Rahma nursery, CAPTA nursenp took care of Zahia
for over three years .. Jazakom Allah-u khayran!

To my mother, be happy and proud in the Heaven, Amen. To mefattho called
me Professor since | joined the university as an undergtaduadent. Well, | am not a
professor yet, but | am doing my best. | promise to do it oné dermen, nothing can
describe a sister like you, thank you, and it is your turn n@elieman, my soul mate,
| enjoyed our little helpful technical discussions. Nasg®u always made me smile
when we talk. The hope you fill me with is incomparable. To my taimily in Egypt
thank you for your prayers, encouragement and support.

Nissreen El-Saber

Leicester, March 2014

Contents

1 Introduction 1
1.1 Overview and Motivation 2

1.2 Research Hypotheses

1.4 A Brief Justification of Used Tools and Technigues 11
1.41 BPMN e 11

ILA.TM_O_daI_C_he_Qngle_thicJue 14

1.5 Contributions 15

1.6 Structure of the Documeént 16
2 PreJimina.Lifﬁl 18

2.1 BPMN e 18

2.2 Maude 23

3 BPMN Formal Syntax and Semantics 43
3.1 B.EM.N_H.OAALELem_enLS 46
3.1.1 ActivitieS e 46

CONTENTS iv

3.4.2 G_QD.QLa.LB_e.h.aMi.QLI.I’_R.LJleS 68

s Stmmr .

mecific Semantics, 87

3.5 ChapterSummary 91
4 Semantics Verification 92
R 03
4.1.1 AND Block Structure 93
4.1.2 XORBlock Structure 95
AJ.BJ.R_BJQ_Qs_SlLu_QLuLe 95
4.2 DeadlockPatterns 97
4.2.1 Structural and Domain-Specific Deadlocks 98

CONTENTS %

4.3 Soundnebs 105
4.4 Chapter SUMmary o o v v i e e e e 110
S MM_ 111
5.1 Compliance Checking as a Model Checking 112
5.1.1 Predicates 114

Wmumwmﬂons).116
5.2 Pr;éé;& ;é;;&ééngns 191

5.2.1 Linear TemporalLogic (LTL) 119
%&Jns 121
........................ 123
53 M (= 013
5.3.1 Compliance Grading Scheme 130
€S . 131
oN . .. 133
54 ChapterSummary 138
6 Related Work 139
6.1 BP Formalizations and Verification 140
6.2 Maude Applicatiols ... 144
6.3 BP Compliance Problem 145
6.4 ChapterSummary 151
7__Conclusions and Future Work 152

7.4 Future Work s 158
Appendices Lis 173
B CMMI-CM Process Are 174

CONTENTS

Vi
B.l SG 1EstablishBaselines 6 17
mol Changes 0 18
B.3 SG3Establishintegrity 831
C Ma.u.d.e_Eun.cliQni 186
C.1 Operations on Business Process Models186
@rs 187
@rs 189
Identifying Responsibilities 191
C.2 WESfuNCtions i 192
C.3 ANDRules Functions v ... 196
C__A._D_egi&i.Qn_G_aleAALa;@_LLu.e;Eun.Qﬂlons 197

Vi

List of Tables

2.2 Characteristics of CMMI appraisals and our approach
4.1 Deadlock Patterns and The Proposed Formalization

5.1 Compliance Patterns Mapped into LB[EHBB] e e e e e e

5.6 CMMI-CM Audit Requirements mapped using compliancegyal

ariance Handling Requirements mapped using comipatie

6 omparison of Related Work and Our Contributions

Vii

5.12 Summary compliance checking results for EX2m

NECKINQ appegac . . .

7.1 Characteristics of CMMI appraisals and our approach

List of Figures

1.1 The Proposed Compliance Checking Apprbach 9

BPMN Example 22
/ MMI representations, maturity levels and areas ofese. 34
MM aged Representation Icture 36
46
Mapping from BPMN Events to Maude Representation 48

Mappina from BPMN Gatewa 0 Maude Representation 50

4 Mapping from BPMN Data Obie 0 Maude Representation. .. 54

3.6 Mapping from BPMN Connecting Flow to Maude Represeatati. . . 57

3.16 ParallelJoinRule 74

3.17 Exclusive Data-based Decision (XOR) SplitRule 74
3.18 Exclusive Data-based Decision (XOR) Merge Rule 75

viii

LIST OF FIGURES IX

lit and merge gateways 76
e . .o 76
3.21 Inclusive Decision (OR) MergeRule 78

- ticRule. 86

- les . . L L e 86

pjec. 87

in- ifi ' BS . . 88

3.29 Maude Representation for DSR from (a) to (d) in Fi ... 89

3.30 Maude Representation for DSR from (e) to (h) in Fi ... 90

93

ure 94

4.3 Examples of XOR gateways block structure. 95

ure. 96

4.5 Structural deadlock pattervgﬂw] e e s 99

4.6 __Semantics Deadlock Examples 00 1

4.7 _Lack of Synchronization Example 102

4.8 More Deadlock Pattetnso 103

5.3 EX2m: Model EX2 afterupdate 137
6.1 Compliance Checking Approaches Classification 147
7.1 Potential Tool SupportDesign 160

bypheds function 187

C.2 Example model with XOR split and merge gateways 198

Abbreviations

BP BusinesgProcess

BPMN BusinesdrocesdM odel and\otation
CM ConfigurationM anagement

CMMI C apabilityM aturity M odell ntegration

CMMI-CM CMMI - ConfigurationM anagement process area
LTL L inearTemporalLogic

OMG ObjectManagemenGroup

Dedicated to Egypt ...

Declaration

The content of this submission was undertaken in the Dejgauttiof Computer Sci-
ence, University of Leicester, and supervised by Dr. Artardhat and Prof. Reiko
Heckel during the period of registration. | hereby decldrat tthe materials of this
submission have not previously been published for a degreptoma at any other
university or institute. All the materials submitted forsassment are from my own re-
search, except the reference work in any format by otheroasithwhich are properly
acknowledged in the content. Part of the research work ptedén the following:

1. Nissreen El-Saber and Artur BoronBEMN Formalization and Verification using
Maude The 6th Workshop on Behavioural Modelling - Foundations Applica-
tions (BM-FA 2014). York, United Kingdom, 22 July 2014. Inliadoration with
ECMFA 2014.

This paper presents the formal syntax and semantics for BdNels using
Maude. The resulting models are proved to be sound base@a@tessical sound-
ness for workflow models. The work included in the paper is im@erl 8 and

Chaptef4.

2. Nissreen El-Saber and Artur BoronatMaude based Formalization for BPMN
Models Post-proceedings of six International Workshops on BighwaWl odelling-
Foundations and Applications, LNCS, July 2015. (in progyes
This paper extends the BMFA 2014 paper with formalizing medeanents of the
BPMN. The formal syntax and semantics is used to model corafigun manage-
ment processes using Maude. The paper includes parts ot&2BpChapter4,
and Chapterls.

Introduction

Chapter 1

Introduction

This chapter presents the motivation for the research pteden this thesis in Section
[1.1, followed by the thesis main statement and hypothesgedtior 1.P. The proposed
approach for compliance checking of BPMN models is intredblinn Sectiofn 1)3. After
that we justify each language, tool, and technique used teodstrate the approach
in Section_1.4, followed by a list of contributions in Sect(@.5. Finally, Section 116

outlines the remaining chapters.

Introduction 2

1.1 Overview and Motivation

Compliance is defined in [32] as ascertaining and provingtiterence of business pro-
cesses to relevant accepted standards, code of pracagedations and laws, internal
policies and business partner contracts. Following statlsdend regulations allows busi-
nesses to have more disciplined and monitored activitiberdare many sources for the
standards and regulations; some are external and othenstaneal within the organi-
zation [34/ 32]. External compliance requirements can cbora laws and legislations
within the country or worldwide if trading globally, the imfmation security standards
(e.g. 1ISO 27001.[72]), or process improvement specificatimndels (e.g. CMMI[22],
IEEE [85]) while all the rules and procedures that are custedthby the company and
are used internally for efficiency are considered internatses.

Business process improvement models provide an identtfitahd understanding
of the designed process and its implementation in orderdarerthat it is aligned with
customer needs/expectations as well as the quality measArbusiness process (BP)
which adheres to some related improvement models is knowa taore effective, effi-
cient, and transparent [32, 6, 80]. In software developmerket, no matter how big or
small the organization is, it follows one or more processrmmpment models to improve
the quality of software (and/or services) developed.

For example, Capability Maturity Model Integration (CMMR22] is a collection
of best practices developed by Carnegie Mellon UniversBpftware Engineering In-
stitute (CMU-SEI) with members from industry, governmamnbrder to help software
organizations improve their processes. CMMI has a sped@tiofscompliance checking
methods (i.e. SCAMP| [83]) which proved to be expensive imteof costs to Small and
Medium-size Enterprises (SME) [66]. Configuration manageniCM) process area is
one business process aspect which the CMMI provides gogtefor. CM is concerned
with establishing, documenting and monitoring the chamjéise basic work items (i.e.
products and/or services) within an organization. Theteies are assessments which
check the existence of documents and evidences of follogengin standards as will be
explained later. This includes using observations, inégv8 and questionnaires which
normally consume huge amounts of the working hours withoodpction. In order to

increase the chances of successful appraisals and to réaeitiene and costs of un-

Introduction 3

derstanding the organization process to deliver its prisdservices and to adhere to its
contracts, we propose an algebraic automatic approachrnuafty check the compli-
ance of the organization BP design with the set of best pegtescribed by the CMMI
model in Configuration Management (CM) Process Area.

Despite the increasing number of compliance checking nasthad tools (e.g. [64,
80,149, 32| 6]), organizations are still facing difficulti@sfinding effective support to
ensure that their BPs comply with the improvement requirgsidn many cases, manual
solutions are being used to assure quality in BP and thessaseiming time and costs
and offer limited assurance for compliance [80, 42]. Phyta fully automating manual
BP inspections and audits would substantially reduce tkeeathcost of compliance [42].
For the automation to take place, the BP and the compliargqgresments should be
formally represented and a formal assessment procedutteetk ¢f a BP satisfies the
formalized requirements. Despite being formal, the pracedhould be accessible to
business people.

In Table[1.1, a comparison among the state-of-the-art @gpes in checking busi-
ness process compliance with standards and regulationsrimarized. It compares
them with respect to the formal languages used for systegifgjaion, property speci-
fication, and checking procedure. The classification colisrassigning each approach
with its type with respect to forward/backward complianteaking classification in
[80] and explained in Chaptér 6. The table provides inforomaabout the application
domain and automation means of each approach. As seen feotalile, the work re-
garding CMMI compliance checking is limited (e.g. [24]) athdles not include any for-
mal representation or tool automation. More details abloeitaipproaches are provided
in Chaptef 5.

Generally, BPs can be modelled using different notationsither formal or informal
representations. From a computer science point of viewmdbmodelling languages are
more reliable and verifiable, while from a business pointiefwy non-technical users
usually prefer to use informal graphical modelling langesmgNot all formal modelling
languages have accessible graphical representationsQ8R) [104Ji-calculus [75]),
while not all graphical languages have a comprehensivedization (e.g. BPMN. [68]).

The accessible graphical notations for modelling BPs neduave the back-end for-

Table 1.1: Summary comparison of some compliance checkipgaches

Ref. | System Spec Property Spec Check Proc. | Class.| App. Domain Automation
[6] BPMN 2 PetriNets| BPMN-Q 2 PLTL MC FD Banking Oryx, Lola
[33] | BPEL FCL 2 LTL MC F.B Sarbens-Oxley Act COMPAS
[94] | MXML LTL MC B event-logs ProM

[24] | MDD BPRE4OO SCAMPI FDT | CMMI-DEV NA

[38] | EPC 2 PetriNets | ITIL adopted modelg MC FD ITIL ProM

[106] | Z LTL MC F ISO/IEC 15408 FORVEST
[49] | BPEL 21-calculus| BPSL 2 LTL MC FR ITIL,COBIT OPAL

Legend D: Design-time, R: Run-time, MC: Model Checking, F: FordiaB: Backward, NA: Not Available, PM: Process Mining

uonoNPOoU|

Introduction 5

malization that allows for the validation and verificatiohtbe designed models [10].
Focusing on the BPMN as a modelling language, one can find dewai issues with
its standards and available formalizations (c.f. Sedfidh. In this work, we propose a
rewriting logic-based formalization in Maude for BPMN mdgle

On formally representing the compliance requirements, greewith the authors
in [64,32,/51, 42] on the need to separate the formalizatiathe designed BP from
the formalization of the requirements. Decoupling these &spects allows for more
clear, unbiased assessment of the BPs without possiblecerdahem to be compliant
as it is difficult for many companies to change their busin@ssess in short time for
the reasons of an assessment. Moreover, most SME does hyptneed to apply all
the requirements as they are advisory, however, by brealkong the requirements into
smaller requirements and checking their relevance ansfaetiion one by one can allow
the modeller to exclude the irrelevant requirements (edpa@ment which is not used
in the process being checked). The standards are usualienvin natural language
which makes the translation of the standards into formatesgions a time and effort
consuming process. Therefore, trying to add formality t® skandard requirements,
we use an intermediate step, i.e. mapping into complianterpa [33], to formally

represent the textual requirements in CMMI with Linear TenapLogic (LTL).

1.2 Research Hypotheses

The main research statements it possible to formally check the BPMN models com-
pliance against the CMMI Configuration Management requaats?

In order to provide an answer to the main research statenbeveawe need first
to identify the elements that we are going to deal with. Eottrg from the research
statement, there should be a formal BPMN model for a SME, mdbrepresentation
of the CMMI-CM requirements, and a formal compliance chegkiechnique. Based
on the following hypotheses, we introduce a compliance kingapproach for BPMN

models with CMMI-CM requirements.

Introduction 6

1. What formalization of BPMN models can be considered suitalibr compliance
checking? If there is no such formalization, what are the nracharacteristics
of a candidate formalization? Which formal language to use?

BPMN is a well-known modelling notation for BPs which is assile to busi-
ness users as well as computer scientists. It has been fpeshalsing different
formal languages (e.g. [27, 107, 104, 74, 28, 40]), howeverst of these for-
malizations suffer from unclear semantics [68], lack ofadalbject representation
[27,1107,.104, 74, 28, 40], and non-determinism in decisiaged gateways se-
mantics [10/7]. Therefore, a new formalization is requireldicl should cover
the following: (1) consider core BPMN elements|[68] (e.gtialies, gateways,
events, data objects), (2) a comprehensive semantics farotigects as process
resources, (3) a formal representation and evaluation @fide@-based gateways
guard expressions, and (4) a sound semantics for the BPMNIsiddaude is an
expressive declarative logical language for concurrentgsses based on rewrit-
ing logic which can formally represent BPMN models. Morepwehas its own

verification toolkit which includes variety of tools, e.gllL model checker.

2. What are the characteristics of the CMMI process improveniemodel that make
it an interesting area for compliance checking? Is it possto formally repre-
sent the CMMI requirements? How?

Process improvement models are generally described inatéanguages making
the measuring and assessment of their applications a sivbjpoocess [32, 6, 42].
Moreover, they are lengthy and complex which decreasesrsitashelability and
increases difficulties of manual compliance checking [&4d, CMMI [21], ISO
[45], and IEEE[85]. CMMI certified SMEs are believed to hatalde, continu-
ally improved BP as well as gaining more worldwide contragts other organi-
zations|[22, 24, 86, 37]. In particular, for its importanspecial focus on software
SMEs and due to the lack of comprehensive formal compliaheeling for it,
we are focusing on CMMI [21]. Nevertheless, formally rermeing the CMMI
requirements requires a property specification languagesi@ering their expres-
siveness and intuitive appeal and recommendations irecetasearch [6, 32, 96],

temporal logic can be used as the CMMI requirement specdditénguage.

Introduction 7

3. What is the verification technique to formally check comptiee of BP models
with formal requirements? Is it able to provide an explicinawer to the ques-
tion: "Is an input process compliant with the input set of przerties?"?

Model checking is popular for debugging and verificationgmses|[9, 46]. The
structure of the problem is more like a model checking probléhere the BP is
the system modeVl, the requirements are propert@sand the checking is mod-
elled asM = @ which is a model checking procedure. Model checking tealmiq
possibly can be unable to provide such decision. It givesuatevexample (i.e. a
possible trace where the property is not satisfied) but doegive details on the
nature of the property itself. Therefore, the compliancec&ing approach should

provide informal suggestions for the modeller to modifyitisP model.

4. What are the automation possibilities of the compliance ckeng approach?
Many challenges are facing the compliance checking auiomat general and
in particular designing this approach. For example, the GivBquirements may
have more than one formal representation. Furthermorerpréting the model
checking results (i.g¢rue or counterexamplan the context of compliance check-
ing requires a mapping grading scheme which represent desiaguirement
weight with respect to other requirements. Although thesgmkty for fully au-
tomating the compliance checking process is limited, therstill a promising
opportunity to automate parts of the compliance checkinggss to benefit from
formal specifications and automatic verification. We prevadMaude based tool
automating most of the approach steps. An overview of themaation of the

approach is discussed in Chapter 7.

1.3 Proposed Approach

We aim at giving an organization an idea about how matureussniess process model
is with respect to the CMMI reference model through apphamge-appraisalmethod

prior to going through the formal CMMI appraisals (e.g. SCRNM Our proposed ap-
proach is a formal automatic compliance checking methodHerCM process area.

This approach can be used apra-appraisalmethod to check how ready the designed

Introduction 8

business process is to go for the expensive appraisal nmethidte approach uses the
company’s designed BP process, transform it into Maudevotig the syntax and se-
mantics presented in Chapltér 3 and check its compliancethetMMI-CM practices.
Based on this check results, a designed process can be dezlreMMI-CM com-
pliant or not, indicating which practices need to be imphweith initial information
about which properties are not satisfied. This is illusttaneFigure 1.1.

Assuming that the SME is following their designed CM procéssthe designed
process reflects what is actually being done in the SME), tbpgsed approach allows
the SME to start building their stable CM process which carelaely for more advanced
form of appraisal (i.e. SCAMPI). In Figufe 1.1, the approadmsists of three basic
parts: (1) BPMN2MAUDE procedure which provides the systgrc#ications and is
presented in Chaptél 3, (2) CMMI-CM2LTL procedure whichvides the property
specifications in LTL for CMMI-CM process area and is presdrih Chaptelrls, and (3)
Model Checking procedure which we customised to fit into aampliance checking
domain of application in ChaptEr 5.

The compliance checking is considered a model checkinglgmbhence, three
components should be elaborated; the system specificati@property specifications
and the model checking procedure. On one side, the systeaifisggon part (i.e.
BPMN2MAUDE) starts with a BP model in BPMN which is then magpeto the pro-
posed BPMN syntax and semantics in Maude. The BP model in Meuthen checked
if well-formed based on the well-formedness property définiin Definition[3.3.2. The
well-formed BPMN models are proves to be sound in Chdgtef thel process model
is not well-formed, then the modeller will have informatiabhout which set of objects
in the model is not well-formed to update the model and runvib-formedness test
again. This part of the approach is explained in Chapter 3cabe the BP model is
well-formed, then it is ready for model checking.

On the other side lies the CMMI, which requirements (i.e-ptdctices) are the basic
component for the property specification (i.e. CMMI-CM2DTRAs will be explained in
Chaptef 2, CMMI staged representation maturity level (Mahsists of process areas
(PA), and each process area contains specific goals (SGyahdpecific goal contains

specific practices (SP), and each specific practice has aeroflsub-practices [21]

BPMN model
(BPMN)

BPMNsyntax.maude

BPMNsemaltics maude BPMN2MAUDE CMMI-CM2LTL
procedure procedure
BPMN model
(Maude)

BPMNwfs.maude

r
1
[
! Model Checking
well-formed I <—]
BPMN model : procedure
1 bp.maude LTLprop
I
Chapter 3 1 Chapter 5
I

Figure 1.1: The Proposed Compliance Checking Approach

CMMI Regs.
(subpractices)

Pattern-based
Requirements

PatternqLTL
Mappihg

LTL Formulae
(Properties)

uonoNPOoU|

Introduction 10

which are the textual requirements of the CMMI. These sw#zfores are extracted and
represented using the compliance patternsi[33, 64]. Asadkiemps has a direct map-
ping into LTL formulae (as in.[33]), the pattern-based reguments are represented as
LTL formulae, ready for the model checking. This part of tipp@ach is explained in
Chaptefb.

The sub-practices under a specific practice are modellecs&b af LTL properties
®Ppa=1{d1,02,...,6n} for nthe number of modelled properties while the mapping rela-
tion is not necessarily a one-to-one relationship. Thahsnumber of sub-practices in
a certain specific practice does not necessarily equal touhwer of properties formu-
lae modelled. A specific goal is satisfied if its underlyingafic practices are satisfied.
Therefore, for a system model representing the BP and the set of properties represent-
ing the specific goal, the model checking problem (i.e. &atign relation) becomes
MEdi1AdP2A ... Adn. Generally, the set of modelled properties for a process @.@.
CM) is represented adcy. A modelM satisfies the process area CM iff all properties
d; € i are satisfied iM, i.e.Vd € ey (M = ¢) = M |= Pep.

However, reference models such as process improvementsrardeadvisory and
some companies may try to focus more on some requiremem®thars, or are apply-
ing a subset of the requirements. That s, if checking thpgmees with the and operator
(i.e.N), then the result is going to lfalseif at least one property is not satisfied, although
the process might be compliant. Therefore, we introducaw@ptiance grading scheme
which allows for quantifying the model checking results. fglover, customization func-
tion is used to allow model checking for properties which @oéspurious as shown in
Sectiorf 5.3.2.

Finally, the well-formed BPMN model in Maude is fed into MaudTL model
checker|[30] as the system specification (i.e. the mddleland the LTL formal prop-
erties representing the CMMI requirements as the propettidoe checked against the
model. The model checking results are analysed for spufieidake) outputs as dis-

cussed in Chaptét 5.

10

Introduction 11

1.4 A Brief Justification of Used Tools and Techniques

In the compliance checking approach, certain tools, laggsiaand techniques are used.
In this section, we briefly describe the reasons which maela tbuitable to demonstrate
our contributions. We justify the use of BPMN, Maude, CMMhdamodel checking

technique.

1.4.1 BPMN

The Business Process Modelling Notation (BPMN) is a widedgdustandard notation
and model for representing business processes (BPs) ireiigndphase of systems de-
velopment. It has been the basis for many BPs formalizatesxs [27, 107, 104, 74, 75,

28,140]) which we believe are not fully representing its pdwleelements; such as data
objects and some control flow gateways (e.g. inclusive detisased OR gateways) as
explained later in Chaptér 6. According to the OMG![68], 72lementations of the

BPMN are reported for known businesses (for example, Ora8eme issues related

to BPMN formalizations allow for ambiguous and unstructuB® models [10, 27, 40],

such as:

1. The unclear semantics of different BPMN elements allomiricompatibility in

the design interpretations, analysis and use of BP madeé]s [1

2. In spit of their importance as process resources, datectbformalization and

usage are still under-represented (e.g.[2)7, 40,1105, 107])

3. Although the non-determinism attached with the decigateways representation
helps to consider all possible alternative flows (e.g..in X2, 90]), the ability to
evaluate a guard conditional expression is needed to sienalmore reliable and

effective gateway formal comprehensive representation.

These issues can be handled and/or avoided through a coengred formal syntax
and semantics specifications for BPMN models. That is, samadl restrictions can
be easily imposed on to the BPMN models that can reduce/dkieidtructural and be-
havioural problems (e.g. misinterpretations, documeck & representation, deadlock

and lack of synchronization).

11

Introduction 12

1.4.2 Maude

Maude is a logical declarative language based on rewrithggc! It is designed for
representing and reasoning about concurrent systems.ollbeihg reasons made the
tandem formed by rewriting logic and its Maude implemewoiat very convenient set-

ting for formalizing BPMN models.

1. Equational pattern matching, for example, if the leftdhaide pattern matched,
then the right hand side is applied when the conditionaldseatisfied in case of

conditional equations, memberships and rules.

2. User-definable syntax and data, i.e. Maude allows thetasksfine their own data

types as well as the structural relations among the compgenethe system.

3. Types, subtypes, and partiality, i.e. the sorting subsprelations allows for hi-
erarchy of data types which provides the user with flexible ofsoperators and

memberships.

4. Support for objects, i.e. Maude system modules supguetsse of object oriented
programming style with predefined class definitions. Moegpthe data types of

information into these objects are user defined and can lerigen

5. Maude has its verification toolkit [20, |30] which can be dise verify models
designed in Maude. The&ear ch command is used to locate certain states in the
model while the Maude LTL model checker [30] is used to vepfgperties of

unwanted behaviours in the model.

6. Reflection, meta-representations and computationsMieede has many meta-
language applications, in which Maude is used to createwtable environments

for different logics, theorem provers, languages, and nsoafecomputation.

7. Concurrent processes applications of Maude, i.e. thera@aleeady a number of
successful Maude implementations for processes (e.g2f8L3, 61, 13]) which

are promising and encouraging.

12

Introduction 13

1.4.3 CMMI-CM

Many SME are part of larger organizations which are activeslyng CMMI to support
their business goals. That is, the need for operationattfeness and efficiency in-
creases as the size of the organization grows. The samespprojects within organi-
zation. Moreover, expectations for CMMI-compliance piaes increases when partner-
ing or subcontracting with larger companies. Even whenpeddently bidding on some
government business, CMMI-based appraisals are requdidd CMMI can be a way
for the small organizations to gain better projects andasusts, by demonstrating their
competency in process management while preserving theibifiey. Emphasising on
the role of management in all its maturity levels, CMMI impes management visibility
in software development [86]. This is achieved by improvwogtrolling and monitor-
ing different changes and audit the documentation pro¢essigh reusing the already
existed process, after improving it, to develop organmresi software products/services
a higher level of quality. Our approach aims at encouragdieg3IMES to test their BPs
adherence with process improvement models (i.e. CMMI) oraél, yet less expensive
in terms of cost, pre-appraisal compliance checking.

From the CMMI process areas, we focus on the configurationagement (CM)
process area for several reasons. First, CM is a supporgs@rea shared by the three
areas of interest of the CMMI, i.e. development, servicad,acquisition, which makes
it a common requirement for any SME trying for CMMI apprassaBecond, CM is a
process area belongs to the second maturity level (ML2)arsthged representation of
the CMMlI, i.e. the first level of formal accreditation for a &Mo look for (more details
about CMMI maturity levels can be found in Chagiér 2). Thiedson comes from the
importance of a well-established CM process in the orgdioizdhat seeks any kind of
improvement as a basis for documenting, auditing and cliinyechanges in what could
be called SME process infrastructure (e.g. configuratiemst, change requests, audits).
Fourth, CM is a basic process area in most process improvemedels (e.g. IEEE
[85], ISO [45]) that are used by software companies. Althotige basic requirements

are identical, the detailed requirements may vary. We aresiog here on CMMI-CM.

13

Introduction 14

1.4.4 Model Checking Technique

Besides the general strengths of model checking technifpigs [9,/19]), there are
more specific motivations concerning using the model clmertar compliance checking

problems. We include details about model checking tecteigChapter 5.

1. Model checking is a fully automated procedure [46, 9] whioown to be fast
[9] compared to conventional testing and simulations. # thputs are ready,
then the verification procedure works automatically, itiated. For checking
the compliance of process improvement model (i.e. CMMI)aatomated formal
procedure would be suitable to reduce different kinds ofscasd benefiting from

the mathematical and temporal basis for the procedure.

2. Model checking supports partial verification |[46, 9]. Tis® the properties can
be checked one-by-one allowing for spotting the unwantddhbieur in details.
Looking at the compliance checking problem, the modellenidike to get re-
sults indicating which properties are satisfied by the madel which are not. It
makes the model checking a perfect candidate while it ismotase with other

verification techniques (for example, Theorem proving).

3. Model checking does not require proofs to verify the props 46, 9], which
make it a suitable choice when the people involved in the diamge checking
normally are not aware of proof methods or other formal veatfon techniques.

Model checking provide the balance in this case.

4. Model checking produces diagnostic counterexamplesse @ property is not
satisfied with respect to the model specifications [46, Yepresents the trace of
state transitions which can be used for debugging. Thisifedtelps the modeller

to investigate a possible trace of the model where the ptpdees not hold.

5. The property specifications in model checking is mainjyresented in Tempo-
ral logic, adding the powerful expressiveness of it in repreing properties over
traces generated by transition systems|[19, 96]. Besidesplkiance patterns have
been developed to facilitate the mapping between the testuapliance require-

ments and the LTL formulae (e.g. [33]).

14

Introduction 15

6. BP compliance checking is generally dealt with as a mdaetking problem (e.qg.
[64,80,49, 32,16]), where the BP model is the system spetiditabeing checked

and the compliance requirements are the properties chegiadst that system.

7. The formalization language, Maude, has its own LTL model&er|[30]. It com-
bines an expressive and general system specification lgadiveaude|[20]) with
an LTL model checking engine. Maude uses the recent advanaas-the-fly

explicit-state model checking techniques|[31].

8. The model checking applications are more control-interend less data-intensive
in nature due to the infinite range of data. Although the BiPs/zait for a decision
or a certain confirmation before proceeding in executiondaveot expect the sys-
tem models to simulate the data contained in the expectethars. For example,
the model may contain data objects (c.f. Chapter 2) whiclhghdts status during
execution. However, the data contained within these elésragr not processed in
our approach. As the approach is dealing with compliancéesdwe are more
concerned with the state changes for the data objects asresmeeontrolling the

flow.

1.5 Contributions

The following list summarizes the contributions of thisstse

e An automated pre-appraisal approach is introduced to geothe aid to SME
welling to apply CMMI software improvement model for the @igaration man-

agement process area.

e A comprehensive syntax and semantics formalization of @ergt of BPMN el-
ements in Maude is proposed with structural properties \iedl-structured and

well-formed) that allow for efficient verification proceds:.

e A Context-Free Grammar (CFG) for BPMN decision-based gayswguard ex-
pressions is introduced in Chaptér 3 with a mechanism taet@the guards and

decide the divergence and convergence of the flow in BPMN fsode

15

Introduction 16

e The formalization restricts the semantics of BPMN gatewayke block structure
avoiding many structural problems (e.g. deadlocks and ¢tdickynchronization).
The gateways block structure makes the merge gateway awateah split gate-
way caused the flow to diverge (i.e. using the attributeSpl i t and function
Ready2Mergéiscussed in Chapter 3), and how many branches had its coompan

split gateway activated earlier in the process.

e The formalization provides a comprehensive semantic$®data objects, which
consider the documents and files that are used as inputs gnaotor different
process activities in Chapter 3. Moreover, they are usedntral the flow based
on their state change. A set of domain-specific rewrite rales$ equations are

introduced to formally represent data objects state chandereation in the BP.

e A formal proof of soundness of the well-formed BPMN modelsisoduced in

Chaptef # following the definition of classical soundnegd]n

e A comprehensive LTL formalization of CMMI-CM requiremerttsrough map-
ping into compliance patterns is proposed in Chapter 5. ©hadlization of the
requirement is complete, i.e. all the CMMI-CM requiremeats mapped into
LTL properties, however, the mapping is not one-to-onetiaaas explained in
Chaptefb.

e A tool support prototype is discussed in Chapter 7 which Egteed to support

the automation of the approach making it accessible to basirelated people.

1.6 Structure of the Document

e (Chapter 1) : Introduction
The chapter illustrates our proposed compliance checkipgoach based on the
idea of using model checking technique to test the proe(tie. requirements).
The motivation, contributions, challenges and justifimatf reasons behind using

the tools, languages and techniques in the approach araimesg!

e (Chapter 2) : Preliminaries

A brief, yet essential, introduction of the used notatidasguages and models

16

Introduction 17

in this thesis for the purpose of making it self-containedhe Thapter presents

background of BPMN, Maude and CMMI.

e (Chapter 3) : BPMN Formal Syntax and Semantics
This chapter provides a comprehensive formalization ofdhmal syntax and se-
mantics of an excerpt of the BPMN elements using Maude. Ehisliowed by
introducing two structural properties; i.e. well-struetd and well-formed BPMN
models. The proposed behavioural semantics of BPMN elesmemodelled us-
ing Maude (possibly conditional) rules and equations satiog) the standards in

[68] for the well-formed BPMN models.

e (Chapter 4) : Semantics Verification
On verifying the proposed semantics, we discuss the pesdédddlock situations
and patterns besides the potential lack of synchronizatiimese concepts are
discussed using the notion of gateways block structure &fmbeating on how
this notion prevents many deadlock situations. In this tdrape provide a formal

proof for the soundness of the well-formed BPMN models.

e (Chapter 5) : Business Process Compliance Checking
In this chapter, we apply the proposed semantics of wethém BPMN models to
model check their compliance with the CMMI-CM requirementbese require-
ments are first mapped into compliance patterns and therthetoorresponding
LTL formulae. Finally, the properties are model checked @edresults are anal-

ysed providing potential improvement recommendations.

e (Chapter 6) : Related Work
In this chapter, we introduce the related published workdiacduss their relation-
ships with the proposed work in this thesis in three mainsggrea. BPs formal-
ization and verification, Maude applications for concutq@mocesses, and related

compliance checking approaches.

e (Chapter 7) : Conclusions and Future Work
This chapter contains a summary of the thesis contributiomsclusions and fu-

ture work.

17

Chapter 2 Preliminaries

Chapter 2

Preliminaries

The work presented in this thesis uses some notations anelsnetich need to be intro-
duced first. We use BPs which are built using the BusinessBsadglodelling Notation
(BPMN) and then formalize and verify them using Maude. Thenalization provides
a compliance checking procedures of BPs with CMMI requinet:esing model check-
ing technique. The chapter is organized as follows: a bestdption of the BPMN is
introduced in section 2.1, an introduction to Maude is pnes in section 212, and in

sectior 2.B, the CMMI model is explained focusing on the cpmfition management.

2.1 BPMN

The Business Process Modelling Notation (BPMN) is a stathdatation and model for
representing business processes in the design phase @nsydévelopment. Designed
by the Object Management Group (OMG), BPMN provides stashdeaphical notations
for designing BPs and defining their procedures, relatioitls @ther processes, as well
as an informal brief execution semantics.

The BPMN 2.0 standard specification[68] defines 50 condraiatl their attributes,
and according ta [63], less than 20 percent of its vocabutanged regularly in design-
ing BP models. As a result we are going to focus on the main esnof the BPMN
based on the metamodel described in Figure 2.1 and the elegmphical representa-
tion described in Figure_2.2. The main elements are the flodesoactivities, events

and gateways; the data objects: input, output and storesiecting flow elements: se-

18

Chapter 2 Preliminaries 19

BPMNElement

T T T 1 1

FlowNode Data Object ConnectingFlow Artifact Swimlane
Event Input Output Messa geFlow TxtAnnot.
Activity Gateway Store SequenceFlow Association Group Pool Lane

Figure 2.1: BPMN Meta-model

guence flows, message flows and associations; artefactgoggand text annotations and

swimlanes: pools and lanes.

Definition 2.1.1. A BPMN process O is a tuple of set®§ T), such that:
e OS=FOUDOQO; i.e. OSis the set of flow objectsO and data object®O,
e FO=AUEUG;i.e.FOis the set of activitie®,, eventsE, and gateways,
e A= ArsUAgsp, i.e.Ais the set of taskérsand sub-processdéssp,

e E=EsUE| UEg; i.e. E is the set of start eventss, intermediate events, and

end event&g,

e G=GanpUGxorUGoR; i.e. G is the set of AND gatewayGanp, XOR gateways
Gxor and OR gatewaySoR,

e T =TsUTyUTassg i.e. T is the set of connecting objects (transitions) of: se-

guence flowls, message flow)y and associationssg

An activity is a flow node which represents a process stepsagacuted automati-
cally or manually|[68]. Activities can be tasks or sub-presxs. Theaskis the atomic
form of an activity, while asub-processs an activity which contains other activities ei-

ther tasks or other sub-processes, i.e. it can be broken dwi set of activities and

19

Chapter 2 Preliminaries 20

Activity Event Connecting
al a2 Flows
subprocess
task
sequence
a3 0 =7 start intermediate end flow
o- -----
looping Multi- | Association .. TEXt message
O |nstlalnce Annotatlon flow
Gateway N e
association
data
object
Swimlanes
XOR-split AND-fork OR-split pool
A 9 Message
& W Flows
lane
lane
XOR-merge AND-join OR-merge

Figure 2.2: BPMN Main Elements

other BPMN elements [68]. Activities can have a marker tadate its type graphically
(e.g. see looping and multi-instance activities in Fiqu.2

An event is an action that makes changes in the process wihappiens. Events
normally affect the flow of the process by converting the floease of exceptions, ini-
tiating a process on receiving a message or even cancellmgcass!|[68]. As defined
in Definition[2,1.1, events can occur at the beginning of tlee@ss, i.e. start evenis;
at the end of the process, i.e. end evdfis or in-between the process start and end,
i.e. intermediate events, (see Figuré 2]2). A start event indicates where a particular
process starts. A process can be initialized by receivingeasage or initialized in a
pre-defined date or time. Intermediate events indicate evaerevent occur somewhere
between the start and end of a process. It will affect the flbth@process, but will not
start or (directly) terminate the process. BPMN has twelpes of intermediate events :
none, message, timer, escalation, error (known as exegptiancel, compensation, con-
ditional, link, signal, multiple, and parallel multiple.n® or more intermediate events
may be attached directly to the boundary of an activity, mgssage, timer, exception.
In our work, we focus on message and exception intermediatet® Finally, an end

event represents where a process terminates and it hascessars.

20

Chapter 2 Preliminaries 21

Gateways are flow nodes that control the divergence and opewvee of flows in
a process. They determine splitting, forking, merging,anipg of flow paths|[68].
The main BPMN gateways are illustrated in Figlrel 2.2. Formgda, AND gateways
(ANDgate$ are for parallel execution of more than one branch; dasethaxclusive
decision XOR gateways{(ORgate}yare for choosing exactly one branch, and inclusive
decision OR gatewaysORgate} are for choosing one or more branches at the same
time. Gateways are either splitting the flow to more than am@d¢h or merging more
than one flow branches into one flow.

Data objects carry information and represent documentlanptocess. This in-
formation may represent a singular object or a collectioolgécts. Data objects are
classified as data inputs, data outputs, and data storegaAngat provides the activity
with some information, while a data output represents sornegssed resulting infor-
mation from the activity which it is linked to. A data storeopides a mechanism for
activities to retrieve or update stored information thalt persist beyond the scope of
the process [68].

Artifacts provides the modeller with the capability of shog/additional information
about a process that is not directly related to the sequemws @ir message flows of the
process. There are two standard artifacts: groups andnextations|[68]. A group is
a grouping of graphical elements that are within the samegoay for documentation
and analysis. The group name appears on the diagram as thelgbl; e.g. the group
Account Checki ng in Figure[2.83. Text annotation is a mechanism for a modedler t
provide additional text information for the reader of a BPMidgram|[[63]. It is usually
connected to other flow objects by the associations.

Connecting flow elements are used to connect all the abovéioned components
together to form a BPMN model. Connecting objects can beesrpiflows (plain di-
rected arrows connecting events, activity, and gatewayether), message flows (dashed
arrows with circle attached to its beginning), or assocrai(dotted arrows). Sequence
flows can be: normal, uncontrolled, conditional, defaulerception flows. Message
flows show the communications through messages betweerdnticipants. It connects
two separate pools or two activities in two different podssociations are connecting

the data objects and text annotations to other elements.

21

Chapter 2 Preliminaries 22

Swimlanes are used to group the primary modelling elemémtaigh the model.
There are two components in a swimlane, pools and lanes. dita sub-partition
within a process, sometimes within a pool. They represennttion of roles and par-
ticipants in the business process. The communicationsdastwdifferent participants
are modelled as messages, and this is the only BPMN repatsenfor the means of
communications between two different participants (ieolp).

As an example of a BPMN model, we use Figlrel 2.3 which reptesemequest
handling process in a company, where the main participaetshe@ company and the
customer. In the company, two departments are involvedA¢eount i ng andSal es,
which are represented as two lanes into the @oapany. The messages intermediate
events between the company and the customerrarguest for a customer request,
det ai | s for customer’s bank details addknl dgmmt for the acknowledgement from the
company includes information about if the company is ablsetod the product or not.
The model shows example activities; suctRagi st er user andrequest product,
example XOR and AND gateways and example start and end evidrggext annotation

"AND j oi n gat eway" marks the AND gateway.

A ‘ Account Checking User]
cc ok?es is OK
ou Check
¢ | Account |
ol nt !
in Deatils
m Black list |
Pl | ok?No user
a
n S
y| a - -
| Receive product Register Send
C)> request > user Acknldgmnt %
e
: 7y y Y @
1] L}
: T :
request @ @ details Akenldgmnt @
1 L]
T
c ! O AND join H
u ' enter b_ank A gateway !
s A details K4 \ 4
.
t C)9 request ¢ enter delivery - receive
0 product address —>1 Acknldgmnt 90
m enter product
e)
quantity
r

Figure 2.3: BPMN Example

22

Chapter 2 Preliminaries 23

2.2 Maude

Maude [20] is a high-performance term rewriting engine firatvides support for both
equational and rewriting logic specification and prograngrof concurrent systems in
particular. Based on the definitions in [67], we define theo§&trms as the basic formal
representation in term rewriting. A term can be a variablepastant, or a function

defined with variables.

Definition 2.2.1. (Term): Let X be a countable set of variablés y,z ...}. Let ¥ be a
signature, i.e. a set of function symbdl§,g,...}, each having a fixedrity given by a
mappingar : F — N.

The set oftermsover the signaturgF with variables fromX is the least sef (¥, .X)
satisfying:

1-if xe X, thenx € T(F,X), i.e. avariable is a term,

2-if a€ ¥ is a constant symbol (i.ar(a) = 0), thenac T(F,X), i.e. a constant is a
term,

3-if f € ¥ is ak-ary function symbol (i.ek = ar(f) > 0) andty, ...,tx € T(F, X), then

f(ty,...,tx) € T(F,X), i.e. afunction of a term is a term.

Lett be aterm.Var(t) is the set of variables occurringirand if 7ar(t) = 0, thent
is ground.

The specifications in Maude are executable logical theamieswriting logic [56], a
logic which forms a flexible framework for expressing a widage of concurrency mod-
els and distributed systems [30]. Maude programs are coadpaisfunctional modules
and system modules. While functional modules representiggin membership equa-
tional logic, system modules represent theories in rengitbgic. A Maude’s functional
module is an equational-style functional program with tdefinable syntax specify-
ing an equational theory with initial algebra semanticg.[1ispecifies a membership
equational theory>, EqQUU) whereX is the signature of the specification of sorts, sub-
sorts, kinds, and operators in the modulg) is the collection of statements of equa-
tions and memberships(possibly conditional), &hés the set of equational attributes,
such as associativityagsoc) and commutativity §omn) declared for some operators

(i.e. extra equations that are treated in special way by thadd’s interpreter to sim-

23

Chapter 2 Preliminaries 24

plify modulo such attributes) [20]. A system modiMespecifies a rewrite theory ; i.e.

R = (£,EqQUU, @ R) where(Z,EqUU) is the membership equational theory specified
by the signature equational attributes and equations amdbeeship statements in the
module, @ is a function that assigns each operatoZithe number of its frozen (i.e.
rewrite with rules is forbidden) arguments, a@lds the collection of rewrite rules which
may be conditional. A functional module in Maude is declaasdnod and a system

module asmod with the following syntax:

f mod (ModuleNamei s (DeclationsAnd Statementandf m
mod (ModuleNamei s (DeclationsAndStatementsndm

A module can import other modules into it in three differeraiys;pr ot ect i ng (or pr),

I.e. preserving the sorts and subsorting relations of thpwmed moduleext endi ng (or

ex), i.e. the data of some sort extendedvith new data elements, yet not identifying
previously defined data, amcl udi ng (orin), i.e. the imported module is part of the
recent module and modifications in its sorts and relatioesadiowed. In the module
definition above{ModuleNamg represents the module name which is usually in cap-
itals and(DeclationsAnd Statementgepresents the set of sorting/subsorting relations,
operators, equations and rules in the module.

Maude functional modules support multiple sorts, subselgtions in its declara-
tions, as well as operator overloading, and assertions ofileeship in a sort. The
statements in functional modules are the equations and ersimps (possible condi-
tional). The conventions in Maude requires module’s namieet@ll capitals, the sort
name to start with a capital letter, while the operatorst stéh small letter and each
second word starts with a capital letter. An operator isated with the keyworap,
its name the list of sorts for its arguments (i.e. the operator'tsyasr domain sorts), >,
then the result’s sort (i.e. the operator’s coarity or rasgpt), optionally followed by an

attribute declaration, followed by a white space and a gerio
op (OpName : (Sort-1) ... (Sort-k) - > (Sort) [(OperatorAttributey] .

Operator attributes© peratorAttribute$) provide additional information about the op-

erator and are declared within a single pair of enclosin@sgbrackety, and] , after

24

Chapter 2 Preliminaries 25

the sort of the result and before the ending period. The ¢peattributes|[20] are cate-

gorized as fO||OWQ:

1. Equational Attributes: declaring certain kinds of equaal axioms for binary op-
erators to facilitate using them by Maude in a built-in wayannboth domain and
range sorts must belong to the same kind,ass.oc (associativity),comm(com-
mutativity), i dem (idempotency), andd: Ter m(identity, with the corresponding

term for the identity element).

2. Constructors:df or) are the operators appearing in canonical forms (i.e. assum
ing that the equations in a functional module are (groundyr€itRosser and
terminating, then every ground term in the module (that is, every ternmouit
variables) will be simplified to a canonical form, perhapsdumo some declared

equational attributes).

3. Ditto: (di tt o) specifies that this operator, being subsort overloadexyldhave
the same attributes as those appearing explicitly in a pvsvsubsort-overloaded
version, except for thet or attribute. See modul® MPLE- NUMBERS below for an

example (operator*).

4. Frozen Argumentsf ¢ ozen) Given a system moduld by declaring a given op-
erator, sayf, as frozen, rewriting with rules is always forbidden in atbper
subterms of a term havinig as its top operator. It is declared asop(f : Sl

Sn -> S [frozen]) specifying that all the arguments ofare frozen.

On introducing Maude syntax, we use an example functionaluteofor numbers
from [20]. The moduleSI MPLE- NUMBERS defines the addition and multiplication of
natural numbers and will be explained eventually in thidieac The term defined by
an operator can be: a constant if its list of arguments is gifgy.0), a one argument

function (e.gs_), or two arguments function (e.g+).

We introduce the attributes that are used later in the pepsgntax and semantics in Chagter 3. The

interested reader can refer to[20] for the complete list.
2discussed in Sectidn 2.2.2

25

Chapter 2 Preliminaries 26

fmod SI MPLE- NUMBERS i s
sort Nat .
op 0: -> Nat [ctor] .
op S_: Nat -> Nat [ctor] .
op _+ : Nat Nat -> Nat [assoc commi .
ops _+__* : Nat Nat -> Nat [ditto] .
op _+ : NzNat Nat -> NzNat [ditto] .
op _*_ : NzNat NzNat -> NzNat [ditto] .
vars N M: Nat .
e 0+ N=N.
e sSN+M=s (N+ M .
sort PostiveNat .
subsort PostiveNat < Nat .
cnb N: PostiveNat if N> 0 .

endf m

In order to define the behaviour of the plus operator, Maudeatons are used. The

general form of the unconditional equation is:
eq (Term1l) = (Term2) [(StatementAttributes)]

Maude variables can be defined on-the-fly too; i.e. definieg/ériable where it is being
used and not before it in the module. However, the scope ofrathefly variable
declaration is the declaration’s occurrence [20], e.gfitseequation of summation with
zero above can be representedeag) + X: Nat = X: Nat). The operatiomeduce is
used to reduce the input term. The commaneti¢ce {i n module:} term.) is used
with the possibility not to add the name of the module as iti®matically consider the
current module as all the commands which require module rdoms. This rewriting
command causes the specified term to be reduced in many siegshe equations and
membership axioms in the given module. The command can lre\dhted ta ed (e.g.
red in SSIMPLEENUMBERS : s s s 0 +s s s s s 0).

The statements attributes [20] (i{&tatementAttributes represent the attributes as-
sociated to module statements defining its features. Maaslédr statement attributes;
| abel , met adat a, nonexec, andow se. The first three can also be used in system

modules rules and attribubet adat a can be used in defining operators.

26

Chapter 2 Preliminaries 27

1. Labels: for tracing, debugging and can be used to hamamaxino metalevel.
For example, the axiom for idempotency for natural numbés san be labelled
in one of the two representations below. While the first statat follows the
defined syntax for equations, the second statement usestleead form of labels

as introduced in Maude 1 for equations and rules.

eq N; N = N/Jlabel natset-idenj .
eq [natset-idenf : N; N=N.

2. Metadata: for attaching string data to the statement asymmnts about it. In
module SI MPLE- NUMBERS, the distribution law can be added with the comment

documenting it as the distributive law as below:
e (N+M *1 =(N*1) + (M* |) [metadata "distributive law'] .

3. Nonexec: for including statements in a module that arerggh by the Maude
rewrite engine. A rule can be declared as non-executableyubie same at-
tribute in a system module. The above distributive law eXengan be made

non-executable as follows:

eq (N+M * 1 =(N* 1) + (M* |) [nonexec nmetadata "distributive

law'] .

4. Otherwise: for specifying that in all remaining casesjolhare not defined by
the functions for the same operator, do this statement cordnteor example, the
operator declaration below defines operatofor deciding if an objectis included
into a certain object set. The first equation defines thetsmuahere the objecd
is in the sef, giving at r ue. The second equation, which is more general, defines
all other cases akal se. That is, if the first equation does not match, then the

object in fact is not in the set, and the predicate should Ise fa

op _in_: Cbject QbjectSet -> Bool
var O: (oject .

var A : bjectSet .

eq Oin (O A =true .

eq Oin A =false [ow se] .

27

Chapter 2 Preliminaries 28

Equations could be conditional, i.e. limiting its applicat to certain cases. The
general form of the conditional equation in Maude is:
ceq (Term1) = (Term2) if (EqCondition-1) /\.../\(EqCondition-k)
[(Statement Attributes)]
TheEqCondi ti on has the following concrete syntax for the conditions wheasnd

t’ areterms:
e ordinary equation =1t’,
e matching equationts : = t’, and

e abbreviated Boolean equations of the farimwith t a term in the kind Bool |,

abbreviating the equatidn = true.

In Maude, sorts are user-defined, whleds(i.e. error supertypes) are implicitly asso-
ciated with the connected components of sarts [20]. Kindstlae equivalence classes
grouping the sorts which are belonging to the same connexeghonent. Uncondi-
tional membership axioms specify terms as having a giveth sbhis sort must al-
ways be in the same kind as that of the term. Conditional meshijpuses the same
EqCondi ti ons as above, like the conditional equations do. The general fifruncon-
ditional and conditional memberships are:

mb (Term) : (Sort) [(StatementAttributes)]

cmb (Term) : (Sort) if (EqCondition-1) /\.../\(EqCondition-k)

[(StatementAttributes)]

The exampl&l MPLE- NUMBERS above includes a conditional membership. The state-
ment specify that if the natural number is greater than zé&e) it is a positive number
of sortPosi ti veNat . Note the use of an abbreviated Boolean equatibsdf; assuming
that the operator (>_) has been defined in the mod@ieVPLE- NUVBERS.

2.2.1 Rewrite Rules

A rewrite theory has an underlying equational theory whiohtains its declarations
(sorts, kinds, and operators) and statements that can loigiooal (equations, member-

ships and rules). Therefore, Maude system modules inchuelsame declarations and

28

Chapter 2 Preliminaries 29

statements as functional modulgsisthe rules. Rewrite rules are the local concurrent

transitions for the systems or the logical inference rul€g.|

Definition 2.2.2. (Rewrite Rule): A rewrite ruler is an ordered pail — h, where
I,he T(F,X) are the left- and right-hand siddagandrhsfor short), respectively, and
1-1 ¢ X, i.e thelhs | is not a variable, and

2- Var(h) C Var(l), i.e. variables occurring on thealso occur inl.

A rewrite ruler is applicable to term: (t SN t’) if there is amatchingbetween théhs
pattern ofr and a part (or all) of the term being reduced (i)e.In this case the pattern
in therhs of the rewrite rule substituteghat part (or all) ot in thelhs of r producing
the new ternt’. Maude uses (possibly conditional) rules in the followiggtax where
the symbols | andcr| are used for unconditional rewrite rules and conditionaf ite
rules respectively.

rl [(Label)] : (Term1) => (Term2) [(StatenmentAttributes)]
crl [(Label)] : (Term1) => (Term2) if (Condition-1) /\.../\
(Condition-k) [(Statement Attributes)]

The conditions in Maude’s conditional rule (i@ndi ti on) are more general than
the equation condition&§Condi t i on) as it can include rewrite expressions with syntax
(t = t) besides equations and memberships. However, likBg@endi t i on equations,
the equations in the rules conditions can be matching oreaidied Boolean equations.

In the following we use example Maude system modliliPLE- VM[20] to represent
a vending machine which a user inserts a coin (i.e. a quargedollar) and the machine
returns an itema and it can return change for the user as the itepriced at three

quarters.

mod SI MPLE-VM i s
sorts Coin Item Marking .

subsorts Coin Item< Marking .

op nul'l : -> Marking .

op __ : Marking Marking -> Marking [assoc commid: null] .
op $: -> Coin .

op q: ->Coin .

opa: ->Iltem.

29

Chapter 2 Preliminaries 30

var M: Marking .

rl [add-q] : M=> Mq .

rl [add-$] : M=> M$.

rl [buy-a] : $=>agq.

rl [change] : qgqq=$%.

endm

The behaviour is simulated using the rules with lalagid- g for inserting a quarter,
add- $ for inserting a dollarbuy- a for retrieving an item and a quarter, aclsange for
computing the change of 4 quarters as one dollar. The regritdommandriew it e {|
bound] } {i n module:} term) causes the specified term to be rewritten using the rules,
equations, and membership axioms in the given module. Msauterpreter applies
the rules (if no equation can be applied) using rule-fairdogvn (lazy) strategy and
stops when the number of rule applications reaches the giwand [20]. If the upper
bound clause is omitted, infinity is assumed. The commandleabbreviated toew

as shown in the rewrite command for the vending machine elahgre.

Maude> rew [2] $ $qq .
rewite [2] in SMPLEEW : $ $qq .
rewites: 2 in Oms cpu (Onms real) (~ rew sec)

result Marking: $$$qqq

In order to explain how Maude obtained the result above, veeame of the de-
bugging and optimizing Maude programs approaches, i.@ngaThe tracing facilities
allow us to follow the execution of our specifications, tlgthe sequence of rewrites or
equational simplification reductions that take place. tiigtl be turned on first with the

commandset trace on . Then the above rewrite command will result in:

Maude> rew [2] $$qq .

rewite [2] in SMPLEEW : $ $qq .
sxxxexrerrr [yl e

rl M=>q M[label add-q] .
M-->$%qq

$$aq

30

Chapter 2 Preliminaries 31

-->

qg%$%$4qq

kkkkRRRRRRR [yl @
rl M=>$ M[label add-$] .
M-->$$dqq

$%$9qq

-->
$$%qaq
rewites: 2 in Oms cpu (Onms real) (~ rewites/second)

result Marking: $$$qqq

The configuratior$ $ q g is rewritteninto$ $ $ g q g in two rewrite steps. The
first is by applying rewrite ruladd- g and the second is by applying rewrite rakd- $
as shown in the code above. The tracing can be switched offjgemmandet trace
of f

2.2.2 Admissible Modules

In Maude modules, the equations must satisfy the requireodiveing Church-Rosser,
terminating, and sort decreasing. This is because the catipuis accomplished by
using the equations as rewrite rules until a canonical ferfound. As a result it guaran-
tees that all terms in an equivalence class modulo the emsawill rewrite to a unique
canonical form, and that this canonical form can be assignsatt that is smaller than
all other sorts assignable to terms in the class. To disbessiéa of admissible modules,
we introduce the basic properties based on the definitioj0ine.g. confluence, termi-
nation and Church-Rosser. A set of equati&ugs confluentwhen any two rewritings
of a term can always be unified by further rewritingt i>¢ t1 andt —¢, t2, then there
exists a ternt such that; —>eq’ andt; —>*,§qt’. A set of equation& q is terminating
when there is no infinite sequence of rewriting stepsigqty —gqt2 —eq.... If E

is both confluent and terminating, a tetnsan be reduced to a unique canonical form
t leq I.€. t0 @ unique term that can no longer be rewritten. A setopfationsEq is
Church-Rosser if it is confluent.

All conditional equationg =1t’ if C1 A... ACy in a functional moduleM have to

31

Chapter 2 Preliminaries 32

satisfy the following admissibility requirements, (ensgrthat all the extra variables

will become instantiated by matching):
1. varg(t’) C varg(t) U Uj_; vars(Cj).

2. 1f Gj is an equation; = U’j or a membership; : s, then
vars(Ci) C vars(t) U U} vars(C;).

3. If Gj is a matching equation := U/j, thenu; is anM-pattern and

vars(u) C vars(t) U U\ vars(C;).

The modules built for formalizing the syntax and semanticBBMN models are ad-
missible as they are terminating and Church-Rosser. Thidtris based on testing the
modules using the Maude verification toolkit, i.e. TermioatTool and Church-Rosser

Tool.

2.2.3 Model Checking

BPs as concurrent systems often require environment cttens and continuous exe-
cution with possible successful termination. One of thetrpopular techniques for rea-
soning about concurrent software systems and debuggmgde! checkingRecalling
the strengths of model checking mentioned in Chdgter 1, habaeking is considered
a powerful candidate for the compliance problem over otleeifigation techniques due
to the criticality of the systems that it can handle, the egpiveness of the used formal
languages and the automation [9]. Moreover, LTL model ceeckpart of the Maude
package![31] which makes it easier and straightforward ¢d the model checker with
our Maude formalization for the model under consideration.

In [1€], model checking is a collection of automatic techrgg used to verify finite
state concurrent systems. It contains basically three omairponents; (1) a model spec-
ification language used to build the system formal desaonipdis a finite-state transition
system, (2) a property specification language (normallethas a temporal logic) is
used to build the system properties which are needed to eketieand (3) a verifi-
cation procedure, i.e. exhaustive searching of the modes space in order to decide

whether the specified property is satisfied or not.

32

Chapter 2 Preliminaries 33

Some model checker verification procedures search thesgate for the negation
of the property specified (e.g. [97]) and others search feretkact property specified
which requires the user to enter the property in the neg#bion (e.g. [31]). The idea is
to search for the unwanted trace of transitions which veollae property. The algorithm,
in [97], assumes that the specification is an LTL formpldt concluded that checking
that the system satisfies that formula is equivalent to dhgdkat it satisfies its negation
—p. An automatorB_, that accepts the traces that satisfy is constructed. Then, this
automaton is composed with an automaton that accepts testod the system model
(M). If the composition is empty, thev satisfies the specificatigm Otherwise, any of
the traces recognized by the composite automator@iaterexampleA counterexam-
ple is a trace of the process execution that does not satisfgitecked property. On the
other hand, in on-the-fly LTL model checking, a Biichi autamnais constructed from
the negation of the property formula and then lazily seaghihe synchronous product
of the Blichi automaton and the system state transition amagm Kripke structure) for
a reachable accepting cycle [31] using depth-first seafain &ccepting runs exist, we
can conclude that every initial state satisfies the spetitita

For a rewriting theory®R, which represents a BPMN model, Maude’s LTL model
checker associates a Kripke structdeif the modules are Church-Rosser and termi-
nating. Kripke structure is a state transition graph whigpresent the computations of
systems (i.e. infinite sequence of states where each stabdamed from the previous
state by some transition [46]). They are the natural modwlpfopositional temporal

logic [20]. Then, the model checker solves a satisfactiadbiam of the form

K(RK)n. [t] = ¢ (2.1)

wherek is a kind of the states from the rewrite the®y I defines the state predicates,
[t] a kind of initial statesk is the kind of model states, anfilis the property to be
checked. The output of the model checking is eithag, i.e. the property is satisfied, or

acounterexamplg.e. the property is not satisfied.

33

Chapter 2 Preliminaries 34

2.3 CMMI

Capability Maturity Model Integration (CMMI) is a guide tmmplement a continuous
process improvement for developing products and serv@]s [The CMMI is devel-

oped by SEI-CMU to provide a collection of systematic higleledescriptive best prac-
tices that can be used as a reference model for softwar eht small and medium-
size enterprises (SME) in their process improvement ﬁ [A SME applies such
process improvement approach to improve the quality of éneldped software, by

following a well-organized reference process.

Representations
Staged Continuous

ML5
ML4
ML3
ML2
ML 1 Level 4

Organization Quantitatively

Process Managed
Level 3
Defined

Level 2
Managed

Level 5

Optimizing

Capability
012 3 435

PA PA PA

Level 1
Initial

Areas of Interest

Figure 2.4: CMMI representations, maturity levels and si@anterest

CMMI provides two representations: continuous and stageatustrated in Figure
[2.4. Thestagedrepresentation (in Figulfe 2.4) assesses the maturity tdvalwhole
development process across multiple process areas and tses thenaturity levels.
There are five maturity levels numbered 1 through 5 (i.e. Mbitial, ML2: Managed,
ML3: Defined, ML4: Quantitatively Managed, and ML5: Optinmg). Thecontinu-

ousrepresentation assesses the capability level of indiViBuzcess Areas (PAs) that

34

Chapter 2 Preliminaries 35

are selected based on the organization’s business goalseand usesapabilitylevels.
There are four capability levels numbered 0 through 3 (il€):Gncomplete, CL1: Per-
formed, CL2: Managed, CL3: Defined). In the continuous repngation, the process
areas are rated individually. Both capability levels andumty levels help to improve
the organization processes and measure how well it can @nohgdrove their processes.
However, [21] claims that experience has shown that orgdioizs do their best when
they focus their process improvement efforts on a manageabhber of process areas
at a time (i.e. staged representation). Hence we were emgedto focus on the staged
representation of the CMMI as a basis for the approach inthieisis. According to the

CMMI [22], the following is a brief idea about the staged regentation maturity levels.

e ML1 (Initial): processes are usually ad hoc and chaotic with no supparben
ment. The success depends on the people and not a stablegwatteinability to

repeat the success.

e ML2 (Managed: processes are planned and executed in accordance witly pol
employing skilled relevant people and the existing pradtiare retained during

times of stress using milestones (possibly for a specifieptp

e ML3 (Defined: processes are well characterized and understood, andeare
scribed in standards, procedures, tools, and methods. jagbsostandards and

procedures are tailored from the organization’s set ofdgtethprocesses.

e ML4 (Quantitatively Managed the organization and projects establish quanti-
tative objectives for quality and process performance a®elthem as criteria in

managing projects and assessing outcomes.

e ML5 (Optimizing: an organization continually improves its processes dasea

guantitative understanding of its business objectivespmnfbrmance needs.

A Process Area (PA) is a cluster of related practices in aa #rat, when imple-
mented collectively, satisfies a set of goals consideredrtapt for making improve-
ment in that area [21]. For each maturity level, there is a lmemof process areas
that describe the best practices related to it. A summarhefrélations among the

CMMI components in the staged representation we follow emesented in Figure

35

Chapter 2 Preliminaries 36

[2.3 (adapted from_[4]). The PAs can be classified into fourdoeategories for its areas
of impact on the company’s business process. These catsgane:process manage-
ment project managemenengineeringandsupport They allow the process elements
to have relationships among each others for integratioch s1$ sub-practices in one
PA that affects another PA. For example, the Decision Amslgsd Resolution (DAR)
process area (i.e. a support process area at ML3) contaogisgractices that address
the formal evaluation process used in the Technical Selyfi&) process area (i.e. an
engineering process area at ML3) for selecting a technatatisn from alternative so-

lutions.

[Maturity Levels]
/ \ \

[Process Area 1] [Process Area 2] [Process Arean]

Generic
Goals

Specific
Goals

Generic
Practices

Specific
Practices

Figure 2.5: CMMI Staged Representation Structure

CMMI has three basic areas of interest into BPs (c.f. Figuf®; ZZMMI for De-
velopment, CMMI for Services, CMMI for Acquisition. WhileNIMI for Development
(CMMI-DEV) focuses on product and service developmentesses, CMMI for Acqui-
sition (CMMI-ACQ) focuses on supply chain management, &itjon, and outsourcing
processes in government and industry, and CMMI for Ser\i€&MI-SVC) focuses
on delivering services within an organization and to exdeoustomers. In this work,
CMMI-DEV [21] is used as the reference model. The CMMI-DE¥férred to as CMMI
in the rest of the work) contains 22 process areas indicéttimgspects of product devel-

opment that are to be covered by company procés3eble 2.1 lists the process areas

316 process areas out of the 22 process areas in the CMMI-D&Zanmon among the three areas

36

Chapter 2 Preliminaries 37

(PAs) in each maturity level (ML) and its category.

Table 2.1: CMMI-DEV Process Areas

Process Area (PA) ML | Category
Configuration Management (CM) ML2 | Support
Measurement and Analysis (MA) ML2 | Support

Project Monitoring and Control (PMC) ML2 | Project Management
Project Planning (PP) ML2 | Project Management

Process and Product Quality Assurance (PPQAMLZ2 | Support

Requirements Management (REQM) ML2 | Project Management
Supplier Agreement Management (SAM) ML2 | Project Management
Decision Analysis and Resolution (DAR) ML3 | Support

Integrated Project Management (IPM) ML3 | Project Management
Organizational Process Definition (OPD) ML3 | Process Management
Organizational Process Focus (OPF) ML3 | Process Management
Organizational Training (OT) ML3 | Process Management
Product Integration (PI) ML3 | Engineering
Requirements Development (RD) ML3 | Engineering

Risk Management (RSKM) ML3 | Project Management
Technical Solution (TS) ML3 | Engineering
Validation (VAL) ML3 | Engineering
Verification (VER) ML3 | Engineering
Organizational Process Performance (OPP) | ML4 | Process Management
Quantitative Project Management (QPM) ML4 | Project Management
Causal Analysis and Resolution (CAR) ML5 | Support

Organizational Performance Management (ORNYJL5 | Support

CMMI uses the terminstitutionalizationfor ingraining the process in the way the
work is performed and there is commitment and consisten@etform (i.e. execute)
the process [21]. This is a way of making the designed BP arépieesentation of what

activities are conducted in real implementation. In casebquirements and objectives

of interest as illustrated in Figuie 2.4

37

Chapter 2 Preliminaries 38

for the process have changed, the implementation of theepsanay also need to change
to ensure that it remains effective. The generic practiessbe activities that address
these aspects of institutionalization and the genericgyasdlect this. Hence, the generic
goals (GG) are associated with a certain level of procesgression|[22] (i.e. maturity
level). While achieving the GG1 indicates a performed psscachieving GG2 indicates

a managed process and GG3 indicates a defined process.

2.3.1 Configuration Management

Configuration Management (CM) is a support process area & MIM is defined in
[21] as a discipline applying technical and administratirection and surveillance to
identify and document the functional and physical chargsttes of a configuration item,
control changes to those characteristics, record andtreppange processing and imple-
mentation status, and verify compliance with specified irequents. The CM impor-
tance appears in controlling quality, cost and schedulbebtganization’s products (or
services) throughout its life cycle. It includes three madtivities: (1) identification of
the product characteristics, (2) control of changes todlobaracteristics, and (3) record-
ing and reporting on change processing and implementai#buss Processes and tools
used to successfully complete these three activities irramyonment (e.g. CMMI[22],
ITIL [50], COBIT [101], ISO [45]) can be subdivided into fiveaditional CM functions
which have specific configuration purposes: (1) planninpid@ntification, (3) control,
(4) status accounting, (5) verification and audit.

All the components that are used to deliver a company’s mtooluservice are con-
sidered configuration items (Cls). According to the CMMIe tvork products placed
under configuration management (i.e. CIs) include the mtsdihat are delivered to the
customer, designated internal work products, acquiredymts, tools, and other items
used in creating and describing these work products. Howbeased on our observa-
tion, despite having similar configuration management gaaces, each organization

has their own customized definition for their Cls. The Cls bhaselined in order to

4There are more than 900 definitions and taxonomies for CMstyethe IFAIT onlt t p: // www.
i f4it.com SYNTHES| ZEDY FRAVEWORKS/ TAXONOWY/ confi gur ati on_managenent _t axonony. htm).

However, we will use the CMMI definitions here.

38

http://www.if4it.com/SYNTHESIZED/FRAMEWORKS/TAXONOMY/configuration_management_taxonomy.html
http://www.if4it.com/SYNTHESIZED/FRAMEWORKS/TAXONOMY/configuration_management_taxonomy.html

Chapter 2 Preliminaries 39

be used in the development process. A baseline [21] is a sgexffications or work
products that has been formally reviewed and agreed onhwhareafter serves as the
basis for further development, and which can be changedtontyigh change control
procedures. The CM process area consists of three specé#is gnder which seven
specific practices are defined as detailed in Appehndix C. Teéipe a number of best
practices that a CM should have in order to be compliant with@MMI. The three
specific goals are: (1) establish baselines for the used@)Isack and control changes,

and (3) establish integrity for records and audits.

2.3.2 CMMI Appraisals

A company should be qualified to a certain level of maturitysfprocess satisfies all
the related requirements in the process areas belong theteValuation (i.e. appraisal)
is done by the SEI itself or one of its trained partners worittbrand the results are cen-
trally published on their websHeAccording to the CMMI definition [21], an appraisal
is an examination of one or more processes by a trained te@mofafssionals using an
appraisal reference model (i.e. CMMI here) as the basisdterchining, at a minimum,
strengths and weaknesses. An organization cannot beegitifCMMI; instead, an or-
ganization isappraised Depending on the type of the appraisal, the organizatiarbea
awarded a maturity level rating or a capability level ackreent profile. The appraisal
is considered as an indicator of how well the company’s pses compare to CMMI
best practices, and important to identify areas where ingr@nt can be made in the
process. Moreover, external customers and suppliers gvdMmre of how well the orga-
nization’s processes compare to CMMI best practices, wdilichv for serious contracts
and collaborations, and some contractual requirementsi®foo more customers may
contains compliance to CMMI as a condition.

Appraisals of organizations using a CMMI model must conféorthe requirements
defined in the Appraisal Requirements for CMMI (ARC) docutrid]. There are three
classes of a CMMI appraisal, i.e. A, B and C. A class A apptassexpected to be the
most accurate, designed to maximize buy-in from the apgraerticipants, and offers

the organization the best understanding of its issues #wt to be fixed and its strengths

Shttps://sas.cmmiinstitute.com/pars/

39

Chapter 2 Preliminaries 40

that should be shared [|60]. Class B describes a smaller apgl@isal methodology,
sometimes called a mini-appraisal [60], which can be acdishngd with a smaller team
of expert appraisers over a reduced number of days. It carsée to spot-check the
organization between full appraisals. Class C describeddast intensive appraisal
methodology, sometimes called a micro-appraisal or queséire-based appraisal. A
class C appraisal can be used to get a rough idea of the catagabf the practice within
an organization [60]. The characteristics of the CMMI ajgakclasses are summarized
in Table[Z.2 which is adapted from |60].

The Standard CMMI Appraisal Method for Process Improvem{&@AMPI) de-
scribes a class A appraisal method [83]. The SCAMPI is desigmprovide benchmark-
quality ratings relative to CMMI models [33]. SCAMPI methddals with the consol-
idation of evidences (e.g. presentations, documents dardviews) related to the exe-
cution of the process in actual projectsi![24]. The assesstaam uses these evidences
to support the rating of practices, goals and, hence, taiatalthe PAs. However, an
appraisal is more expensive for a SME than for a larger onees@ltosts are usually
measured by considering the cost spent on appraisal refaiethg, approach verifi-
cation using SCAMPI Class C, deployment verification usi@A$IPI Class B, and
institutionalization verification using SCAMPI Class A apsals divided by the num-
ber of associates in the organizational unit per appraisabg 66]. They can be in
the form of hiring expert lead appraisers, and spending w&ggrking hours in staff
interviews and internal (and/or external) appraisal teagetmgs. Here, there is a need
to reduce the cost of the appraisals as they are being pextbenery two or three years.
One way of doing this is to use less expensive methods todalpre-appraisalformal
procedure aiming at saving the money, time and effort. Algiothe social cultural con-
cerns are not included in the scope of this thesis, this wtletiminate the need to spread
the CMMI culture among the organization staff in its earlgges by the managers.

In our proposed approach, we present a semi-automatic @msplchecking method
for the CM process area. We believe that this approach casdxt as gre-appraisal
formal method to check how ready the designed businessgsaséo go for the expen-
sive appraisal methods. The method we present uses thendd€¢ process and check

its compliance with the CMMI-CM practices. Based on thisatheesults, a designed

40

144

Table 2.2: Characteristics of CMMI appraisals and our aggino

Feature Class A Class B Class C
Usage Mode In-depth investigation Self appraisal Quick-look
Basis for improvement
Advantages Strengths and Weaknesses of PAA starting point focuses Inexpensive, rapid feedbag

Robust method with

Consistent, repeatable results

on areas that need

most attention

Short duration

Disadvantages

Demands significant

Not used for rating

Not used for rating

resources No deep coverage Less ownership of results
Sponsor Senior Manager Any Manager Any Internal Manager
Team Size 4-10 and ATI2 1-6 and ATL 1-2 and ATL

Team Composition

External and internal

External or internal

External or internal

aATL: Appraisal Team Leader.

salreulwIaldZ 1a1deyd

144

Chapter 2 Preliminaries 42

process can be judged as a CMMI-CM compliant or some certaictipes need to be
improved, with initial information about which propertiase not satisfied to look for
the possible improvement in the process. Assuming that ke S following their de-

signed CM process (or the designed process reflects whatuigligdoeing done in the
SME), the proposed method will allow the SME to start buigdiheir stable CM process

which can be ready for more advanced form of appraisal (CANPI A, B, or C).

2.4 Chapter Summary

In this chapter, the basic notions and tools used in thiggtee introduced. First the
BPMN notation for BPs is presented in Sectlon] 2.1, then ini&e@.2, the Maude
language is introduced. After that a brief introduction igeg for the CMMI; i.e. its
contents, appraisal method with focusing on the CM processas the application area
for the proposed approach in this thesis in Sedtioh 2.3. Meapter will present the

syntax and semantics of BPMN models using Maude language.

42

Chapter 3BPMN Formal Syntax and Semantics

Chapter 3

BPMN Formal Syntax and Semantics

BPMN elements have been formally mapped into many formagudages, e.g. Petri nets
[27], YAWL [91], and CSP[104]. However, as explained in Cteaf8, most of the for-
malizations do not provide a comprehensive formalizatippraach for handling data
objects, guard expressions, and possibility of deadloelsted to the decision based
gateways. In this chapter, we provide the details of the BRMNUDE procedure il-
lustrated in Figure 111 where the formal syntax and semsofian excerpt of the BPMN
elements is introduced using Maude. In the first part of thagpter, we present a formal
syntax in Maude for the BPMN 2.0 core elements; flow nodes gictivities, events,
and gateways), connecting flow (i.e. sequence flows, meskage and associations),
data objects (i.e. input, output and data stores), swirsldne. pools and lanes), and
artefacts (i.e. groups and text annotations) with a focuthergateways structure, guard
representation and data objects. The notion of well-forBBMN process models is
introduced and formalized to allow for formal sound modelswl be discussed in the
next chapter. In the second part of this chapter, the bebelisemantics of BPMN
elements is modelled using Maude (possibly conditiond§sand equations mapping

the behaviour standards in [68] for the well-formed BPMN reisd

43

Chapter 3BPMN Formal Syntax and Semantics 44

BPMN 2.0 has five main categories of elements: flow nodes,exmy flow, swim-
lanes, data and artefacts according to the metamodel indfyi. These elements are
dependently defined and used as each one of them should bectedito one (or more)
other elements in order to build the BPMN model (or diagraffhe main flow ele-
ments are modelled as soRsowNode, Dat aQbj ect , Connect i ngFl ow, Arti fact, and
Swi M ane while the object’s subsorts are definedasaSt or e, Dat al nput , Dat aQut put,
Activity, Event, Gat eway, SequenceFl ow, MessageFl ow, Associ ati on, G oup, Txt
Annot at i on, Pool , andLane. An activity is a flow node, but not all flow nodes are ac-
tivities and a message flow is a connecting flow but not all eating flows are sequence

flows. Therefore the subsorting relations should be e :

subsorts Datal nput DataQutput DataStore < DataChject .

subsorts Activity Event Gateway < Fl owNode .

subsorts Pool Lane < Sw niane .

subsorts SequenceFl ow MessageFl ow Associ ati on < Connecti ngFl ow .
subsorts TxtAnnotation Goup < Artifact

subsorts Fl owNode ConnectingFl ow Swi m ane DataChj ect Artefact

< Fl owEl enent

At the same time, these elements represent the objectsitypes main configura-
tion, i.e. theFl owEl enent is a subsort of sordbj ect . The set of objects that represent
the BPMN elements in a BPMN process is modelledgsct Set as the BPMN pro-

cess is a set of BPMN Flow elements.
subsorts Fl owEl ement < Chject < Cbject Set

It is worth saying that Maude appreciates the white spacegdes any two words
in the language, e.g. there should be a space before thedp@rihe end of a state-
ment, between an operator fixed sub-term and a variablet(e.ig. definition is used
ast Nin the semantics). Most of these spaces will be ignored s ¢hapter. How-

ever, the full working Maude code is available in the attacbede file (See Appendix

INotice that the swimlanes are not modelled as separatedtslijethis formalization. Instead they

are represented as attributes in their corresponding flemehts objects as descried in Secfion 3.1.5.

44

Chapter 3BPMN Formal Syntax and Semantics 45

[Alfor details). Basically, the flow nodes are representedb@scts in the general config-
uraton € Gd : GCd | AS >), whereQ d represents the object identifiéli, d rep-
resents the corresponding class identifier, ABdepresents the set of object attributes.
Object identifiers are represented by the symhofer the activitiesgi for the events,

gi for gateways, antli for flow transitions (defined agp t _: Nat - >Tr ansSynbol with

op notrans:->TransSynbol)4, wherei € N. The symbolsn, di andt anni are used
for messages, data objects and text annotations resggctiMeerefore, the following

subsorting relation holds in the specifications.

subsorts ActivitySymbol Event Synbol GateSynbol FlowG d
MsgSynbol Dat aSynbol Text Annot ationSynbol < O d .

Notice that in Maude representation of these symbols a spiameld be used be-
tween the symbol and the number (eei instead ofai used here in the text for presen-
tation purposes). The class identifier represents objggtés (sort) by using pre-defined
operators of the main sortg;gsk) for task activity, 6ubpr ocess) for sub-process ac-
tivity, (af or kgat e andaj oi ngat e) for AND fork and join gatewaysx6pl i t gat e and
xmer gegat e) for XOR split and merge gateways, arab|l i t gat e andoner gegat e)
for OR split and merge gateways respectively. The set abates AS) represents the
specific properties of the object assigned with correspandalues. For example, at-
tributes fane,i n andout) contain the object’s name, and transition identifiers fer th
input and output flows which connects the object with its poadsors and successors
respectively. Therefore, the relationships between ebgre implicitly represented into
the objects attributes § andout) which determine the exact place of an object with re-
spect to other objects in the process (i.e. its immediagmessors and successors). The
attributes are defined as operators which are assignedtimaridentifier(s) indicating

the object predecessors or successors.

op nane': . String -> Attribute .
op in‘:_: TransSymbol -> Attribute .
op out':_: TransSynbol -> Attribute .

2The full Maude modules are included into the attached codéSiée Appendix A for details).
3Similar attributes are used in several approaches (.40, 102])

45

Chapter 3BPMN Formal Syntax and Semantics 46

In the following sections a detailed description of the BPMMNments associated

with the proposed formal syntax mapping from BPMN elememits Maude.

3.1 BPMN Flow Elements

3.1.1 Activities

Activities are represented as objects ofthefarra i : ActivityCd | AS >, where

a i isthe objectidentifierActi vi t yGi d is the activity type. A task can be of tygend,

I.e. to send a message to an external participacgi ve, i.e. to wait for a message to ar-
rive from an external participaniser , i.e. a human performs the task with the assistance
of a software applicationtanual , i.e. performed without the aid of any BP execution
engines or any application, asdr vi ce, i.e. uses a web service or an automated appli-
cation [68]. The task type is represented as an attributatanglues as operators as

described below.

op taskType': _: TaskType -> Attribute .

ops send receive user manual service : -> TaskType .

BPMN Activity Maude Representation
al .
tl t2 <al:task| name: "Open Request" ; taskType:user;in:t1l;out:t2;cond: false;
s st ToBeActive : false ; active : true ; haslnput: d 1>

tl t2 <a3:subprocess | name: "Check Payment" ;in:t1;out:t2;contains: (al,a?2);

cond : true ; active : false ; ToBeActive : false >
[Check Payment

Figure 3.1: Mapping from BPMN Activities to Maude Represgitn

In our formalization, we use the same notion of activity neaskas attributear ker
giving further details of its type. We define the operatiossp andM to represent a
looping activity and a multi-instance activity respeclyvel he attributes of the activity
will determine if it is repeated or performed once. A loopexgivity has the attribute

| oopi ngno, and a multi-instance activity has the attributest ances which is assigned

46

Chapter 3BPMN Formal Syntax and Semantics 47

a Natural number value for each one of them indicating thebmrmof loops it should

make.

op marker‘: . Marker -> Attribute .
ops loop M AdHoc Conpensation : -> Marker .
op loopingno‘: : Nat -> Attribute .

op instances‘: : Nat -> Attribute .

An example of a ask object in Figurd 3]1 i1 as the activity symbotl; ask is
its sort type, andhane, i n, andout are attributes representing the object nade
Request), its incoming transitions1 and outgoing transitiori respectively. As a sub-
process can be decomposed into concrete tasks and other BR¥hENts, the attribute
cont ai ns is used to represent the activities in it. It contains a exfee to the set of
objects that contains the detailed elements in the subepspevhich in turn can contain
sub-processes. An example of a sub-process can be foungureB3.1 where attribute

cont ai ns represents the sub-process contedtanda2 which are other objects in the

same process (defined@s contains': _ : Od -> Attribute).
3.1.2 Events
An event is represented as an object of the foxme i : EventC d | AS >, where

Event G d represents the type of the event. Following Definifion 2.&vents can be
start to initiate a processnd to indicate process completion pnt er nedi at e for
triggering certain kinds of behaviour during the processhsas exceptions and mes-
sages. The operatossart Event, internedi at eEvent, endEvent defines the three

types. The symbolss andoe represents the start and end events respectively.

ops start end exception message : -> Typeof Event .
ops startEvent internedi ateEvent endEvent : -> EventCid [ctor] .

op event Type': : Typeof Event -> Attribute .

An example mapping from BPMN events to the correspondingdéaapresentation
is given in Figurd_3]2 wherel is a start event (i.e. a plain start in the first row and
message start in second roe?,is an end evené3 is an intermediate boundary-attached

error event (exception) amdl is an intermediate message event between two pools (i.e.

47

Chapter 3BPMN Formal Syntax and Semantics 48

participants) in a process. The start event can be of type glart , message orti mer.
Each type of the three event types can have different subtype attributevent Type

is declaring the specific type of the event. We are usiolg ans to represent the "no

incoming flow" situation.

BPMN Event Maude Representation

<el:startEvent | eventType : start ; in : notrans ; out: t 1; process : true;
cond : false ; ToBeActive : false ; active : false >

: t1
el
t1 <el: startEvent | eventType : message ; in : notrans ; out: t 1; process : false;
cond : true ; ToBeActive : false ; active : false >
e2
t1 O

<e2:endEvent|eventType:end;in:t1;out:notrans; cond: false;
ToBeActive : false ; active : false >

1 © <e 3:intermediateEvent | eventType : exception ;in:t1;out:t2; boundary : false;

cond : false ; ToBeActive : false ; active : false >

<e 3:intermediateEvent | eventType : exception ; in : notrans ; out : t 3;

ed t3
linkedObject : a1l ; boundary : true ; cond : true ;
>

ToBeActive : false ; active : false >

<m 1:intermediateEvent | eventType : message ; sourceObject : a 1; sourcePool : "pl";

% targetPool : "p2" ; targetObject : a 2 ; messagelnfo : "Infromation"
v
a2

cond : false ; ToBeActive : false ; active : false >

Figure 3.2: Mapping from BPMN Events to Maude Represematio

For the intermediate events, recall that there are twelpesyf them in BPMN. We
will focus onnessage anderror (i.e. exception) in this formalization. Exceptions can
occur as part of the gateway behaviour if no flow is availabledss the activation to, as
will be explained in Sectioh 3.4. An intermediate event qfetyerror (exception, as will
be called afterwords) is represented as an object witthatgevent Type with value
exception (e.g. in Figuré 3123 in the fifth row). Attributel i nkedCbj ect represents
the object which the exception is attached to its boundanyinéermediate event can be
in between other objects (i.e3 in the sixth row in Figurg_3]2), where it has an incoming
flow from its predecessor object.

Messages may be connected to the pool boundary or to a flowtotjhin the pool

boundary. However, they do not connect two objects withenxgame pool. The sym-

48

Chapter 3BPMN Formal Syntax and Semantics 49

bol m represents the message identifier. The message has theta#siour cePool

andt ar get Pool representing the message source and target participamsctesely.
The message can carry information which the modeller waspezify at design time

in the attributenessagel nf 0. If the message is sent by a certain activity in the source
pool to a certain activity in the target pool, then it shoukldpecified using attributes
sour ceCbj ect, andt ar get Qbj ect respectively. An example message object is mes-
sagenl in the last row of Figure 32. Finally, an end event can bgpéénd indicating

the termination point in the process. An example for an emehens evene?2 in the third
row of Figure 3.D.

3.1.3 Gateways

In our formalization, gateways are represented as objétheform:< g i : GteC d
| AS >, whereGat eCi d represents the type of the gateway to be one ofaherkgat e,
aj oingate, xsplitgate, xmergegate, osplitgate, onergegate)for AND fork
and join, XOR split and merge, and OR split and merge respeygti

AND fork gateway divides a path into two or more parallel paths whanhlee per-
formed concurrently, rather than sequentially widlie gateway combines two or more
parallel paths into one path (e.g. synchronizer). Wealiskgateandajoingatefor AND
fork and join gate respectively. Examples of a parallel famnki a parallel join argl and
g4 respectively in Figure_3.3 where the outgoing flows frginaret 2 andt 3 and the
incoming flows tog4 aret 2 andt 3.

A diverging decision-based exclusive gateway (XOR spit)sed to create alterna-
tive paths within a process flow based on conditional exprassontained within the
outgoing sequence flows [68], where only one of the altevaatwill be chosen. In this
formalization,xsplitgateand xmergegateare used for XOR split and merge gateways
respectively. An example of a XOR split and merge gatewaygiandg5 in Figure
[3.3. For the split gatewag2, a decision is made as a result of evaluating associated
expressions. To control the divergence, a guard shouldfireede We suppose that this
guard is part of the gateway itself and not the outgoing secgiow as the standards in
[68] suggests. So it has been defined as an object attribatgateway object. The ex-

pressions are boolean conditions built as part of the spléwgay. For example, in Petri

49

Chapter 3BPMN Formal Syntax and Semantics

controlValue : noControlValues ; cond : false ;
ToBeActive : false ; active : false >

50
BPMN Gateway Maude Representation
1 1 <g1l:aforkgate|in:t1;out:(t2,4t3);cond:false;
9 ToBeActive : false ; active : false >
t3
NO
<g2:xsplitgate|in:t1;out: (t2t3);defaultFlow:t2; error:t001;
verified 92 guard : ((verified =="YES", t 3) . (verified == "NO", t 2)) ;
t controlValue : noControlValues ; cond : false ;
3 ToBeActive : false ; active : false >
YES
no extras
<g 3:osplitgate|in:t1; out: (t2:t3); defaultFlow :t2; error:t002;
extras? guard : ((extras? =="no extras", t 2) . (extras? == "gift card", t 3)) ;

gift ci
t2
g4 t4 <g4:ajoingate|in: (t2,t3);out:t4;itsSplit:g1;cond:true;
ToBeActive : false ; active : false >
t3
g5 1 <g5:xmergegate |in: (t2,t3);out:t4;itsSplit: g 2; cond: false;
ToBeActive : false ; active : false >
t3
t2
6 t1 <g 6:omergegate |in: (t2,t3);out:tl;itsSplit: g 3;cond:true;
g ToBeActive : false ; active : false >
t3

Figure 3.3: Mapping from BPMN Gateways to Maude Represemtat

net based formalizations for BRs [102, 90, 27], they do nad@hthe conditions and the

decision of the flow choice is handled non-deterministicallhis allows for ambiguity

in interpretations for different executions and the resgltraces.

In order to formally define the guard expressions regardiésise gateway seman-

tics, we provide a Context-Free Grammar (CFG) for the guaptessions. A CFG

(sometimes called Backus-Naur Form grammar [16]) is a sedairsive rewriting rules

(or productions) used to generate patterns of strings. $tim@oduced by Chomsky in

[17] as a possible way of describing natural languages a@a llas turned out to be

important in describing programming languages (e.g. [8]JXbGOL). In a CFG, the

50

Chapter 3BPMN Formal Syntax and Semantics 51

strings are generated starting by a start symbol, followeaidplying one of the produc-
tion rules with the start symbol on the left hand side [16pjaeing the start symbol with
the right hand side of the production and the process coggiby selecting non-terminal
symbols in the string, and replacing them with the right hsidé of some corresponding

production until all non-terminals have been replaced byieal symbols.

Definition 3.1.1. (Guard Expression) EG = (N, Z, S, P) where

N = {ConExpr, Cond, X, Y, Z, OP1, OP2}
= {AV,==5, ==, <=, >3, < >}

S = Cond

P = {Cond — ConExpr A Cond | ConExpr,

Cond — ConExpr Vv Cond | ConExpr,
ConExpr — X OP1 Y|X OP2 Y|X OP2 Z,
OPl — <|>|<=|>=,

P2 —==|=/=}

The set of terminal& contains the symbols\(V,==, =/ =, <=, >=, <) for AND, OR,
equal, not equal, less than or equal, greater than or eaqsa than, and greater than
logical binary operators respectively. The set of nonteais contains the symbols
(ConExpr, Cond, X, Y, Z, OP1l, OP2)forconditionexpressions, conditions, expres-
sion variable name, numeric variable value, String vaeiallue and comparison oper-
ators defined as terminals. The start symbdloisd. The production rulesP) describe

the possible rewriting steps as follows:

e Cond — ConExpr A Cond | ConExpr andCond — ConExpr V Cond | ConExpr :

concatenation of two or more conditions with the logical rapersA or V.

e ConExpr — X OP1 Y| X OP2 Y| X OP2 Z: expression structure contains a vari-
able nameX), an operator@1 or OP2), then a variable value for either numeric

(Y) or string valuesZ),
e OP1 — <|>|<=|>=:the comparison operators for numeric values.

e OP2 — ==| =/ =: for comparison operators for string and numeric values.

51

Chapter 3BPMN Formal Syntax and Semantics 52

The proposedG is used to formalize the guard expressions for the splitvgmte
in our formalization. The guard is linked to a transition walinis marking the branch
it should follow. Therefore, the guard is a set of a pairs heawe contains the guard
expression as the pair first element and the associatedtiwarss the pair second el-
ement. We formalize the first part of the pair as the expressfosort Expr essi on
(which is following the above CFG), and the second part asfiseciated transition of
sortTransSynbol . The operatof _,) is used to define this in Maude as indicated be-
low. The operator. _is used to define the associativity and commutativity proger

of the guard expressionsoexp is the guard identity element.

op (_,_) : Expression TransSymbol -> Gexp .
op noexp : -> Gexp .
op _._ . Gexp Gexp -> Gexp [ctor assoc commid: noexp] .

op guard': _: Gexp -> Attribute .

Guard expressions need to be simple and clear to be evaluatezlexecution time
of a process. The expression contains a variable name antbdb® assigned a value
and it uses one of the boolean operators define@Ggs terminals wher&ari abl e,

below, represents the variable name andNdteandSt ri ng are types of the values of

the variable.
ops == =/= < <= > >= : Variable Nat -> Expression .
ops == _=/= Variable String -> Expression

This value is supposed to be compared with another valueeshtey the user to
conclude a decision. The second value is entered as andoptidl valueand it provides
information to the guard to control the flow. An attribwtent r ol Val ues is defined to
capture these values of sd@dnt r ol Val ue, and are associative and commutative with

noCont r ol Val ue as an ldentity element.

op noControl Value : -> Control Value [ctor] .
op _.._: ControlValue Control Val ue -> Control Val ue
[ctor assoc conmid: noControl Val ue] .

op control Values‘: _: Control Value -> Attribute .

52

Chapter 3BPMN Formal Syntax and Semantics 53

An example of an exclusive data-based gateway represamtati the gateway?2
in Figure[3.8 where the expression variable nameeis f i ed with two possible values
defines two expressions (iverified == "YES" andverified == "NO'). Split gate-
ways should have a default flow transition (i.e. an outgoraggition which is chosen
in case of no successful guard evaluation) and an error flamgiion (i.e. an outgoing,
graphically invisible, transition which is used in case obuccessful evaluation of all
the expressions and the absence of the default flow). Formramg2 in Figure 3.3,
attributesdef aul t Fl owanderror. Gatewayg2 has two outgoing transitions (or "se-
quence flows" as will be discussed later in Sedtion B.1.7¢ adsociated guard condition
value is the String value forerified? i.e. "NO' or "YES". The behavioural semantics for
the decision gateways is given later in Secfion 3.4.

A diverging inclusive decision gateway is used to creatéaojpd paths within a pro-
cess flow|[68] where the decision is based on conditionalesgions defined into the
OR split gateway. It should be designed so that at least otieipaaken. A default
condition could be used to ensure that at least one pathestdk our formalization,
osplitgateandomergegateare used for OR split and merge gateways respectively. The
representation of the OR split and merge gateways is sitoildre XOR split and merge
gateways representation (e.g. gatewg®sndg6 in Figure 3.8). The OR split gateway
(93) is defined by its incoming and outgoing transitions, guapressions and associ-
ated transitions, and control values, while the OR mergevgat (6) is defined by its

incoming and outgoing transitions and its correspondirid gateway.

3.1.4 Data Objects

A special symboldi, is used to represent the data object identifiers in this &timation.
Recall that data objects can be input, output or data staeseationed above. They
share common general attributes with other objects hk@e andi n/out transitions
which connect it to the other objects in the process. Théatti sCol | ecti on indi-
cates if the data object contains more than one data itenordent) or a single data
item, while the attributé i nkedQoj ect represents the object which the data object is
linked to through thessociation flowFor example, the data objett in Figure 3.4 has

the namd nvoi ce.

53

Chapter 3BPMN Formal Syntax and Semantics 54

BPMN Data Maude Representation

al
t1 t2

Taskl . . N . .
<d 1:dataobject | out:t3; name: "Invoice" ; status : initial ; linkedObject:a 1l >,
t3 <al:task|in:t1;out:t2;name: "Taskl"; active: false; cond : false;
@ ToBeActive : false ; hasinput : d 1>

Invoice
[initial]

al
t1 t2
<d 1:dataobject|in:t3; name: "Invoice" ; status : confirmed ;
3 linkedObject : al >,
dl <al:task|in:t1l;out:t2;name: "Taskl"; active: false; cond : false ;

ToBeActive : false ; hasOutput: d 1>

Invoice
[confirmed]

Figure 3.4: Mapping from BPMN Data Objects to Maude Repregam

A data object can be assigned a status which can be changed doe process
execution. The possible set of statuses for a data objeaedneed in the seDOsate
where they depend on the context of the process and defindeebyddeller. Attribute
st at us represent the data object status in our model. The examfdeotigect nvoi ce
in Figurel3.4 has two stateisyi ti al , confi rmed. The states of data objects are defined
syntactically as operators in the specifications and tharbeaassigned to the attribute

st at us, as ford1.

ops initial confirmed : -> DCstate .

op status‘: . DOstate -> Attribute .

The object linked to the data object has an attribute reterémthe data object using
the attributenasCQut put if the data object is produced by that activity (output; aghie
activity a2 in Figure[3.4) or the attributkas| nput if it is consumed by that activity
(input; as in the activityl in Figure 3.4).

3.1.5 Swimlanes

BPMN swimlanes represent participants in the businessegsocGenerally, lanes are
often used for internal roles (e.g. manager), systemsgge.gnterprise application), or an
internal department (e.g. shipping, finance), while poéien used for external entity

(e.g. company, third party, government). We model swindaae attributepool and

54

Chapter 3BPMN Formal Syntax and Semantics 55

| ane attached to each object in the process representing to \phiticipant they belong.

For example in Figure 3.2, the objext in the last row has the attribupeol : "pl".

3.1.6 Artifacts

Artifacts can be groups or text annotations [68]. The gra@psesent the boarders for
a set of related objects in the BP (e.g. for classification @damclimentation purposes),
without affecting the execution of the process. As a resit,group are represented in
our formalization as a String attribute referring to theugrmame (i.eop group’:

String -> Attribute).

BPMN Artifacts Maude Representation

Purchase Data Object
TNy <tann 1: textAnnotation | out:t7; name : "Data Object" ; linkedObject : d 1 ;
' dip v
'
L}
L)
1

group : "Purchase" >

Invoice
. [confirmed] M

-

Figure 3.5: Mapping from BPMN Artifacts to Maude Represénta

The text annotation is usually linked to a certain objecthe process and hence,
more specific information need to be modelled to describgtatenotation. A text anno-
tation is represented as an object wittmni as an object identifiet,ext Annot ati on as
its sort, and contains the attributes connecting it to aageudbject (i.esour ceCbj ect)
and the text it holds (i.enane) beside the association flow (i.@ut). For example, the

text annotation annl and the attributgr oup in Figure[3.5.

op tann_ : Nat -> Gd .
op textAnnotation : -> Cd .

3.1.7 Connecting Objects

Connecting objects are represented by unidjeev transitions"in the proposed formal-

ization, where each one forms a link between two objectserBiAMN process.

ops normal fl ow uncontrol | edf | ow conditional flow

defaul tfl ow exceptionflow : -> SequenceFlow [ctor] .

55

Chapter 3BPMN Formal Syntax and Semantics 56

op messageflow : -> MessageFlow [ctor] .

op associ ation dataAssociation : -> Association [ctor] .

A sequencef | owspecifies the order of flow elements in a process. Assumingitba
attributessour ceQbj ect andt ar get Obj ect indicate the source and target objects for a
transition object, the following are the sequence flows $ygecording tol[68]. Follow-
ing the items in Figure_316, (1) the normal flow originatesrirstart event and continues
through activities on alternative and parallel paths wartiend event is reached, etd.

It forms paths of sequence flow that do not start from an inggliate event attached
to the boundary of an activity. (2) uncontrolled flow proceedthout dependencies or
conditional expressions (e.g. a flow between two activiies do not have a conditional
indicator (mini-diamond) or an intervening gateway)),.¢ 2, (3) conditional flow pro-
ceeds from one flow object to another, via a sequence flow lhiakis subject to either
conditions or dependencies from other flow, ¢.8.in the figure, (4) default flow pro-
ceeds from a decision based gateway and used only if all ez otitgoing conditional
flow are not true at runtime, e.g4, (5) exception flow originates from an intermediate
event attached to the boundary of an activity. The process dot traverse this path
unless the activity is interrupted by the triggering of a hdary exception, e.d.5, (6)
message flow shows the flow of messages between two partisj@atnessagef | ow
represents its object sort as in the obje@t and (7) association links information and
artifacts with flow objects. Amassoci ati on is an object connects the text annotation
to other objects which may contain descriptive informa@dsout them, e.d.7 in Fig-
ure[3.6.

In Sectior 3.4, we are not using the transitions (conneaihjgcts) as a whole sep-
arated objects in the formalization. They are still reférte into the objects using at-
tributesi n andout , however, the process representation in Maude will ignioee full
object description for sake of simplicity. For the condii@ flow following the decision
gateways, we propose a novel approach to consider the coraliexpressions as part
of the gateway themselves, and to be evaluated into themlaasmbe domain specific

rules defining specific flow condition, as detailed in SedBah

56

Chapter 3BPMN Formal Syntax and Semantics 57

Connecting]
Maude Representation
Flow
t1 . .
el al <t1:sequenceFlow | flowType : normal ; sourceObject: e 1 ; targetObject: al>
t2
al > a2 <t2:sequenceFlow | flowType : uncontrolled ; sourceObject : a1 ; targetObject: a2 >
t3
al <t 3:sequenceFlow | flowType : conditional ; sourceObject : a 1 ; targetObject: a2 >

ol

al <t4:sequenceFlow | flowType : default ; sourceObject : g 1 ; targetObject: a1l >

el
5 ol <t5:sequenceFlow | flowType : exception ; sourceObject : e 1 ; targetObject: al>
ml
@;ﬁ <t 6: messageFlow | sourceObject: m 1; targetObject:al>
al
L <t 7:association | sourceObject: a 1; targetObject : tann 1 ; name : "Activity" >
t7
v tannl
1

\EActivity

Figure 3.6: Mapping from BPMN Connecting Flow to Maude Repreation

3.2 Introducing Example

In order to give a better explanation of the proposed forma#ibn, we introduce an
example in Figure 317 which will be used to demonstrate tbpgsed formalized BPMN
behaviour. It represents a process model caRetbase Baseline subprocess of the
Configuration Management (CM) process, where a configuratigmm (Cl) is an entity
designated for one or more related work products such aflaragsets (e.g. hardware)
and intangible assets (e.g. software, QS) [22]. A collecbb Cls that are used in a
project or a company may be baselined (i.e. considered ditas®cument) whenever
they are sufficiently stable, enabling a more strict corfoothanging them.

In the procesRelease Baselinaccess requests are check for being an authorized ac-
cess or not using the documeXthorization List If the access authorization is granted,
a change request (CR) is chosen and the authorized charegpassed through to the
(open CR) activity. While a specific CR is open, the related Cl is mted, changed,

and documented before the CR is closed. If there is more thailC® waiting, the same

57

Chapter 3BPMN Formal Syntax and Semantics 58

Retrieve CI Change CI Document CI |_>| Close CR

1 1
al
Authorized? h h
t1 Check YES 92
Authorization
A1 Cldoc.

Cldoc. Cldoc.
NO

N
B

N

A
|R .R

Authorization

i YES
List Choose CR Open CR

MoreCRs?

MoreCRs?

authorized
CR?

Ba;’ne Ba;'ne
.]
1 .
Release Make baseline
Baseline available to read @

Figure 3.7: Release Baseline Process - BPMN representation

procedure is repeated until no more CRs are left in the psoddter that the baseline is
released with all the changes. This is followed by makingéheased baseline available
for stakeholders (in case of updating tlie doc) or the latest approved baseline (in case
of declining the authorized access). Notice the block gayestructure for gatewaygl
andgl10, g2 andg9, g3 andg4, g5 andg8, g6 andg7. Structured loop gateway blocks
decide either to forward the process to later actions or thagk to the merge gateways
(i.e.g3 andg5). Figure 3.8 shows the Maude representation for the psodeghe fol-
lowing section, A well-formed BPMN model is defined and in &t3.4, we introduce

the BPMN process semantics.

3.3 Well-Formed BPMN Processes

In order to obtain a structured BPMN processes, the follgwequirements, which are
extracted from the BPMN standard document [68] are intreduevhere the symbol
|X| represents thaumberof elements inX and the functionsObjld, ObjCid, in, out,
sourceObjecttargetObject eventTypeandpool for: object identifier, class identifier,
input transitions, output transitions, source objecyetobject, type of an event, and
the pool name are operators defined as follows.

Function Objld : Object— Oid) is defined to return the object identifier for an ob-

58

Chapter 3BPMN Formal Syntax and Semantics 59

<< <el:startEvent | eventType : start ; in : notrans ; out : t 1 ; process : true ; cond : false ; ToBeActive : false ; active : false >,
<al:task | name : "Check Authorization";in:t1;out:t2;hasinput:d1; cond : false ; ToBeActive : false ; active : false >,
<d 1: dataobject | name : "Authorization List" ; out : t 444 ; linkedObject : a 1 ; status : none >,
<gl:xsplitgate |in:t2;out:(t3,t4); defaultFlow : t 3 ; guard : ((Authorized? == "NO", t 3) . (Authorized? =="YES", t 4)) ;
cond : false ; ToBeActive : false ; controlValues : noControlValue ; error : t 100 ; active : false >,
<g2:aforkgate | in:t4; out: (t5,t6);cond: false ; ToBeActive : false ; active : false >,
<g3:xmergegate | in: (t5,t12); out:t7;cond : false ; ToBeActive : false ; active : false >,
<a2:task | name : "Retrieve CI";in:t7;out:t8; haslnput:d 2 ; haslnput:d 3;cond: true ; ToBeActive : false ;
active : false >,
<a3:task | name: "Change CI";in:t8;out:t9;cond: false ; ToBeActive : false ; active : false >,
< a4 :task | name : "Document CI";in:t9;out:t10 ; hasOutput: d 3 ; cond : false ; ToBeActive : false ; active : false >,
<ab5:task|name: "Close CR";in:t10;out:t11; hasOutput:d 2 ; cond : false ; ToBeActive : false ; active : false >,
<d 2 : dataobject | name : "CR" ; out : t 445 ; linkedObject : (a 2, a 7) ; status : initial >,
<d 3 : dataobject | name : "Cl doc" ; out : t 446 ; linkedObject : (a 2, a 3, a4) ; status : initial >,
<g4:xsplitgate | in : t 11; out : (t 12,t 13); defaultFlow : t 13; guard : ((MoreCRs1?=="YES",t 12).(MoreCRs1?=="NO",t 13)) ;
cond : false ; ToBeActive : false ; controlValues : noControlValue ; error : t 100 ; active : false >,
<g5:xmergegate | in: (t6,t20); out:t14;cond: false ; ToBeActive : false ; active : false >,
<a6:task | name : "Choose CR";in:t 14 ;out:t15; hasOutput:d 2 ; cond : false ; ToBeActive : false ; active : false >,
< g6 : xsplitgate | in : t15; out : (t16,t17); defaultFlow:t16; guard : ((AuthorizedCR?=="YES",t17).(AuthorizedCR?=="NO",t16));
cond : false ; ToBeActive : false ; controlValues : noControlValue ; error : t 100 ; active : false >,
<a7:task|name:"Open CR";in:t17 ;out:t18; hasOutput:d 2 ; cond : true ; ToBeActive : false ; active : false >,
<g7:xmergegate |in: (t16,t18);out:t19; cond : false ; ToBeActive : false ; active : false >,
< g 8:xsplitgate | in : t19 ; out : (t20, t21) ; defaultFlow : t21 ; guard : ((MoreCRs2?=="YES",t20).(MoreCRs2?=="NO",t21));
cond : false ; ToBeActive : false ; controlValues : noControlValue ; error : t 100 ; active : false >,
<g9:ajoingate | in: (t 13,t21); out:t22;itsSplit: g 2 ; cond : true ; ToBeActive : false ; active : false >,
< a8:task | name : "Release Baseline" ; in:t22; out:t23; hasOutput : d 4 ; cond : false ; ToBeActive : false ; active : false >,
< g 10 : xmergegate | in: (t 3,t23) ; out: t 24 ; cond : false ; ToBeActive : false ; active : false >,
<a9:task | name : "Make Baseline Available to Read" ; in:t24 ; out: t 25 ; hasOutput : d 4 ; cond : false ; ToBeActive : false ;
active : false >,
<d 4 :dataobject | name : "Baseline" ; linkedObject : (a 8, a 9) ; out : t 447 ; cond : false ; ToBeActive : false ; active : false >,
<e2:endEvent|eventType : end;in:t25; out: notrans ; cond : false ; ToBeActive : false ; active : false > >> .

Figure 3.8: Release Baseline Process - Maude representatio

ject, whereOid is the set of objects’ identifiers in the process model. Fangxe,
Objld(< a; : taskname: " CheckAuthorizatioh in : t3; out: tp; active: true >) = a.

Function ObjCid : Object— Cid) is defined to return the object class identifier,
whereCid is the set of objects’ class identifiers (types) in the moBet.example,
ObjCid(< a; : taskname: " CheckAuthorizatioh in : t;; out: tp; active: true >) = task

Functionsn andout are defined adgr{ : Object— T) and put: Object— T), where
T is the set of connecting flows defined in Definition 2.1.1 anid the transition flows
in the proces® (refer to Definitio 2.1.11).

FunctionssourceObjectind targetObjectare defined asspurceObject Object—
Oid) and targetObject Object— Oid), whereQOid is the object identifier.

Functionpoolis defined asgool: Object— String), where it returns th&8tringname
of the pool which an input object belongs to.

FunctioneventTypes defined asgventType Object— TypeofEvent where it re-

turns the value of thevent Type attribute in an event object.

59

Chapter 3BPMN Formal Syntax and Semantics 60

Definition 3.3.1. (Well-Structured Procesg A Well-Structured BPMN process BPWN
is a BPMN proces® = (OS T)d whereo, 01,02, 03 are symbols for arbitrary objects in

OSsuch that the following hold.

1. Start and exception events have no incoming flows and heveutgoing flow; i.e.
Vo € OSObjCid(o) € {start Event ,exception} — (]in(o)| =0A |out(0)| =1))

and

2. An end event has no outgoing flows and has one incoming flew; i
Vo € O ObjCid(o) = endEvent — (]in(o)| = 1A|out(o)| =0)) and

3. A process that has an end event, must have a start event; i.e
Vo, € O§ObjCid(01) =endEvent — o, € OSObjCid(o1) =st art Event)) and

4. Message flows must connect two separate pools. They musbnoect two ob-
jects within the same pool; i.e.
Vo, € E| (eventTypgo;) = message — J0p,03 € O sourceObjedip;) = Objld(0z)
A targetObjecto;) = Objld(o3) A pool(oz) # pool(os))) and

5. An artifact must not be a target/source for a sequence ftaneessage flow; i.e.
Vo1 € OSObjCid(01) € {t xt Annot at i on,group} — =302 € TsUTm (sourceObject
(02) = Objld(o;) V targetObjectop) = Objld(01))).

Based on the definition above, a well-structured BPMN precas have more than
one start/end event, a split gateway without a correspgnaierge gateway, and a gate-
way can have multiple incoming and outgoing transitiondiatdame time, which con-
sidered ambiguity representation. In order to avoid thatunformal representation of
the BPMN processes, we introduce the well-formed BPMN. ihespbby the work in
[35,70,.1017], we define the well-formed core subset of the BRNements. A BPMN
process is said to be well-formed if its elements satisfypttoperties in Definition 3.3 1.
For these properties, an equationally-defined booleanqatedcharacterising them is in-
troduced afterwards. The operatoisSpl i t takes a merge gateway object identifier and
returns its corresponding split gateway object identifigsSplit: Object— Oid). The

well-formed BPMN process definition includes referenceshi functions in Maude

4DefinitionZ- 11

60

Chapter 3BPMN Formal Syntax and Semantics 61

implementing the conditions. The functions are defined ampdbéned in the rest of the

section. For example, points 1 ad 2 are implemented usingium(@f st ar t end).

Definition 3.3.2. (Well-formed BPMN model): A Well-Formed BPMN process\{ BPWN)
is a well-structured BPMN procesS-BPMWN) such that the following hold.

1. Aprocess should have one start eventdog.c OS ObjCid(o;) =st art Event —
—J0; € OS5 ObjCid(02) = st art Event A0j # 02)) (functionwf st art end) and

2. A process should have one end event;d@. € OSODbjCid(o;) = endEvent —
—302 € OSObjCid(02) = endEvent A0z # 02)) (functionwf st ar t end) and

3. Activities and non-exception intermediate events sthéwalve one input and one
output transition flows; i.e7o € AUE, \ except i on(3ty,t2 € T(in(0) =t; Aout(0)

=ty Aty #tp #notrans) (functionswf Excepti on,wf Activities)and

4. Fork and decision gateways should have one input trandibw and at least two
output transition flows; i.e7o € OSObjCid(o) € {ANDf or k, XORspl it, ORsplit}
— |in(0)| = 1A Jout(0)| > 1) (functionwf Gat es) and

5. Join and merge gateways should have one output tranfitwrand at least two
transition flows as inputs; i.&0 € OS ObjCid(0) € {ANDj oi n, XORner ge, ORer ge}
— |in(0)| > 1A Jout(o)| = 1) (functionwf Gat es) and

6. Block structure. Except for exception events, each gptiéway has a correspond-
ing merge gateway from the same type, formingi@ckin the model. Exception
objects attached to an activity boundary split the flow amuhttine flow is merged
with the normal flow using an XOR merge gateway, enforcingeways block

structure (functiomf Gat es). The following statements must hold:
(a) Vo1 € OSObjCid(o;1) = af orkgat e — Jop, € O ObjCid(02) = aj 0i ngate A
itsSplit (o2) =Objld(01)))

(b) Vo, € OSODbjCid(01) = xsplitgate — Jo, € OSODbjCid(02) = xmer gegat e A
itsSplit (o2) =Objld(01)))

(c) Vo1 € OSODbjCid(0;) = osplitgate — Jo, € OFObjCid(0z) = oner gegat e A
itsSplit (o) =Objld(01)))

61

Chapter 3BPMN Formal Syntax and Semantics 62

(d) Vo, € OSevent Type(01) = exception — Jop € OSObjCid(02) = xner gegat e
NitsSplit (o) =Objld(o1))),

7. Every object should be onamplete patlirom the start (or an exception event)
to the end event; i.evo; € OSJ0p,03 € OS (((ObjCid(oz) = start Event Vv
eventTypéoy) =excepti on) A ObjCid(oz) =endEvent) — (02 € predg0o;, O A
03 € succ$01,09))), (functionwf pat h).

In point (8) in Definition 3.3.2, gateways are required to bsigned, in our formal-
ization, as alockin the model, i.e. each split gateway should have an accoymman
merge gateway of the same type. A block has only one entrasinegnd one exit point,
e.g. the split gateway input flow and the merge gateway oudlpwtrespectively in the
case of acyclic models and the other way around in case ob&s#dcases (structured
loops). Notice that the definitions above does not excludddbp structure from being
a well-formed model (i.e. a XOR merge gateway followed, ahs@oint after it, by a
XOR split decision gateway). In poiritl(7), we use functigmedsandsuccsto retrieve

the set of predecessors and successors for a certain abjaetprocess respectively.

(@) (b)

Figure 3.9: (a) & BPMNmodel (b) aw BPMN model.

In Figure[3.9, an example of the differences between a welttired and a well-
formed model is graphically illustrated. The model in (a3 agateway with more than
one input and output transitions and more than one startaohdents at the same time,
while the model in (b) satisfies the well-formedness requéets above.

In order to describe the BPMN model with respect to the depeoyl relationships
among its objects, we define the notions of path and compkgte ip a well-formed

BPMN model. The elements of the procéﬁare represented by objedswhere 1<

S0 is defined in Definition 2.1]11 as the pdi®S T) of the set of object©Sand the set of transition

flowsT

62

Chapter 3BPMN Formal Syntax and Semantics 63

I < n,ando; € OS Objectsos € OSandoe € OSare a start and end events respectively.

Definition 3.3.3. (Path): A pathP from objecto; to 0, is a finite sequenc@;, 0, . .., 0n)

of objects such thatut(o;) Nin(0j+1) #0for 1 <i < n.

Definition 3.3.4. (Complete Path: A path is completedpP) if it starts with a start event

0s and ends with an end evemt.

In order to automate the check of the well-formedness cmmdif we introduce
equationally-defined predicatef s) for well-formed set of BPMN elements. It checks
whether the requirements are satisfied for each set of elsméintakes as inputs an
object and the process (set of objects) it belongs to anévet a boolean valugueif

the conditions satisfied, arfdlseif at least one of the conditions is not satisfied.

op Wfs : nject (bjectSet -> Bool

var O: Qbject .

var A: ObjectSet .

ceqg ws (O A =true

if wistartendTF((OQ A), noobject) /\ w ExceptionTF((O, A), noobject) /\
wf ActivityTF((O A), noobject) /\ w GatesTF((O A), noobject) /\
wf pat hTF(O, (O, A), noobj ect) .

eq WMs(Q A = false [ow se] .

A comparison is conducted between th@selnich contains the well-formed objects of
the same type and the set of the objects of that particula&r ityphe process. If these
two sets are identical, the condition is satisfied. OthesWiswi se] function above), it
returnsfalse The function condition above is broken down into smalleaded (more
intuitive) sub-conditions. That means, in casenb$ returnedfalse the modeller can
still know which object type exactly has the problem, by imgcahe results of the sub-
conditions in the function.

The condition contains a set of helpful functions, which we presenting the def-
inition of one of them (i.ewf startendTF) as an example and the rest are included

into AppendiXB. The functionvf st art endTF) takes two object sets and retuitinge

6We use the operatmoobj ect as the identity element for thabj ect Set

63

Chapter 3BPMN Formal Syntax and Semantics 64

if they are equal, anéhlseif they are not. The functions defined below are: function
startendCol | ect or to collect the start and end events, functist ar t end to collect
only the well-formed start and end events, while functidst art endTF to decide if
the two output set are equal (i.e. the start and end eventpriocass are well-formed).

In functionw st ar t endTF, if the two input sets are not equal, that means that not all
the start/end events are well-formed. There might be a start with more than one

outgoing transition, or an end event with outgoing transii

op startendCol | ector : ObjectSet (bjectSet -> QbjectSet .
eq startendCol l ector((< E1 : startEvent | AS1 > A), B)
= startendCol l ector(A, (< E1 : startEvent | ASl > B)) .
eq startendCol I ector((A < EL : endEvent | ASl >),B)

= startendCol I ector (A (< E1 : endEvent | ASl > B)) .
eq startendCol | ector (A B) = B [ow se] .

op Wstartend : CbjectSet ObjectSet -> (bject Set .

eq wistartend((<E1l:startEvent]|in:notrans;out:tNL; AS1>, A), B)

= wfstartend(A (<ELl:startEvent|in:notrans;out:tNl; AS1> B)) .
eq wistartend((<ELl:endEvent]|in:tNl;out:notrans;AS1>, A), B)

= wfstartend(A (<EL:endEvent|in:tNl; out:notrans; AS1> B)) .
eq wistartend(A B) = B [ow se] .

op WfstartendTF : ObjectSet hjectSet -> Bool

ceq W startendTF(A noobject) = true

i f startendCol | ector (A noobject) = wistartend(A, noobject) .

eq WstartendTF(A, B) = false [ow se] .

The same idea is applied to the exception events (i.e. fumetiExcept i onTF), the
activities (i.e. functiomf Act i vi t yTF), the gateways (i.e. functios Gat esTF), and the
complete paths for all the objects in a process (i.e. funatigat hTF). The definition
of the functions are included into Appendik B.

An example of a well-formed BPMN model tested using theseytesl Maude func-

tions is presented in Figute 3]110. Examplel represents laovaied model while Ex-

64

Chapter 3BPMN Formal Syntax and Semantics 65

ample2 is not. Example2 model has a dangling acti&gywhich has no output transi-
tion. Moreover, activitya3 has two incoming transitions which violates the second con
dition in Definition[3.3.2. By running the two models throufgimctionwf s, the results
shows that Examplel is well-formed and Example2 is not. largple2, the condition
wf Act i vi t yTF evaluates td alsebecause activitg3 has two incoming transitions and

has no outgoing transition.

Example 1 Example 2
az a2
el g1l g2 e2 el g1 g2 e2
al al -
& & R
N A
a3 [] a3)
A .
. ll
Maude> reduce in WFS-BPMN : Maude> reduce in WFS-BPMN :
wfs (<al:task|in:t1;out:t2> examplel). wfs (<al:task|in:t1l;out:t2> example2).
rewrites: 42 in Oms cpu (Oms real) (~ rewrites/second) rewrites: 129 in Oms cpu (Oms real) (~ rewrites/second)
result Bool: true. result Bool: false.

@ (b)

Figure 3.10.wfsresults for (a)¥ BPMN and (b) notW¥ BPMN models.

If the process satisfies the above well-formedness regeimesnwe can consider it
of type well-formed process instead of a set of objeCtsg €ct Set). On satisfying the
well-formedness requirements, a process\W@ ocess (i.e. a subsort of the main sort
bj ect Set). Following Maude’s conditional membership [58], an objean change its

sort during execution. The membership can be conditiokalthe one used below.

subsort WFprocess < bj ect Set Conf
op <<_>>: (bjectSet -> vjectSetConf [ctor].
cnb << O A >>: Wrprocess if wis(O A

The code above specifies that a set of objects is well-forrakdoft WFSpr ocess)
only if it satisfies the well-formedness conditions as diésct in Definition[3.3.2 and

coded inwf s function.

65

Chapter 3BPMN Formal Syntax and Semantics 66

3.4 BPMN Formal Semantics Specifications

Following the introduced BPMN syntax for well-formed moslai Section 31, this part
of the chapter focuses on the behavioural aspects of the BEIeINents and how the
models can be executed/simulated. Two categories of sexsanpiecification rules are
defined. The first category contains the general rules fomeompattern of behaviour
in a BPMN model (in Section_3.4.2), while the second categomtains more domain
specific rules (in Sectidn 3.4.7) for the introduced exampectiori 3.2. In addition, an
evaluation mechanism is proposed for guard expressiorexisidn-based gateways (i.e.
XOR and OR split gateways) based on the guard CFG introduc8ddtioni 3.1)3. This
is followed by a detailed formalization of the behaviouratied to the exception events,
message events, and data objects. In particular, the dpget®lormalization (in Sec-
tion[3.4.6) as a main resource in the business processfidsritie involved documents,
reports and forms which mark and document different stag#se business process. In
AppendiXB, Section Cl1 presents some helpful functionsddfto validate the BPMN

model formalization and introducing some operations orBA®N processes.

3.4.1 Process State Model

In our approach, the execution of well-formed BPMN processéased on the notion
of activation. A well-formed BPMN process &ctiveif one or more of its objects are
active. A well-formed BPMN process igactiveif all its objects are inactive. In the
BPMN process, each flow object has its own state which caacbee if the object is
being executednactive if the objects is not in execution, eeady2bActiveif the object
Is waiting for a condition to be fulfilled. The boolean attribact i ve is used to indicate
whether an object iactiveor inactiveand the boolean attribui®BeAct i ve to identify
theready2bActivestate. Therefore, we ha¥giae = {active inactive ready2bActive as
the set of the flow objects states. Data object states aredefieed values entered at
design time. Therefore, we halge = {Sqo/Sdo IS @ user-defined value of data objects
statuses in the modehs the set of the data objects states in a process model.

Given an objecb, we define the functions(: Object— Oxtate to take a flow (or

data) object and returns the object state &gor sqo) asactiveif the object is active,

66

Chapter 3BPMN Formal Syntax and Semantics 67

ready2bActivef the object is ready to be activatedactiveif the object is inactive or
data object status (i.gyo). For example,
s(< a; : task| name: " CheckAuthorizatidh in : t; out : ty; active: true >) = active
S(< dj : dataobjectname: ” AuthorizationList; linkedObject a;; status: declined>) = declined
wheredeclinede Dgtate

The union of both sets forms the set of object states in a BPMNahOstate), i.€.
Ostate = Fstate” Dstate Therefore Vo € FO(3sio € FstatdS(0) = S)) A V0 € DO(Isyp €
Dstate(S(0) = Sdo))-

In the following we define the process state, state space @neé special process

states.

Definition 3.4.1. (Process Statg For a BPMN proces® = (0OS T)H, where the set of
objectsOS= FOwWDO contains the set of flow objects and data objects, the pretates
Sosfor the proces® is defined as the set of pairs with the first element as the btigec
identifier and the second element as the obpacstate; i.e.

Sos= {(0id, So) | 0id = Objld(0),0 € FO, S, € Fstate} W {(0id,Sdo) | 0id = Objld(0),0 €
DO, sdo € Dstate} -

Definition 3.4.2. (Process State SpageFor a BPMN proces® = (OST) defined by
the rewrite theory® = (£,EqUU, $,R), the setP(O) of possible process states (i.e.
state space) dD is defined as the set of all possible states resulting fronyaqapthe

rewrite rulesRto the process, i.€.S,4|Sos S Soet-

Definition 3.4.3. (Special Process Statds For a W BPMN processO = (OST), the

following are special process states where OSis an arbitrary object in the process.

1. Active State at lease one object is active or ready to be active; i.e.

J(0id, Sto) € Sos(Sro € {active ready2bActive),
2. Inactive State all objects are inactive; i.&/(0i4, Sto) € Sos(So = inactive),

3. Start State (S): the only active object is the start event; i.e.
(3(0id, Si0) € Sos(0ig = Objld(0) A ObjCid(0) = st art Event A s, = active)A
—3(0ig, Sto) € Sos(0ig = Objld(0) A Sk € {active ready2bActivg) Ao # 0) =

Sos= S, and
"Definition 2.1.1 of a BPMN process in Chapter 2.

67

Chapter 3BPMN Formal Syntax and Semantics 68

4. End State(S;): the only active object is the end event; i.e.
(3(0id, Si0) € Sos(0ig = Objld(0) A ObjCid(0) = endEvent A s = active)A
-3(0ig,Sto) € Sos(0ig = Objld(d') A S, € {active ready2bActivg) Ao # o) =
Sos= S

For simplicity, we are going to usg¢andS instead ofSys and Syg in the remain-
ing of the thesis. Moreover, we can refer to the set of proseses (i.e. state space)
P(O) = {Sos1, %09, ---,S0snt asP(0) = {S1,S,...,S}. TheRelease Baselinpro-
cess model in Figurle_3.8 is in its inactive state, as all tHeatb are inactive. The next
section introduces the general behavioural semanticsPd®B elements following the
document[68]. This will cover the sequential, paralleklesive and inclusive decision-

based behaviours. The semantics is translated using Maude.

3.4.2 General Behaviour Rules

Generally, if a rewrite rule € R is applied to a process, it changes its state from state
S to another process stag In Maude, the rules are applied if there is a matching
found in a term with the left-hand side pattern of the ruleafTib, a state is transformed
into another state through the application of rewrite ruldéch model the behavioural
semantics of the process. A st&eis reachable from stat®if and only if S can be

obtained by applying zero or more rewrite rules to s&itiee. S— Sf.

Definition 3.4.4. (Execution Step: An execution stesis a triple(S;r, S) of an input
stateS, an applicable rewrite rule, and the resulting stat8. It can be represented as
(S5 9) (.e.Ir e R(SH 9)).

We write S — St OF Syo — Sdo Wheres,, andsq, are the states for an objextf-
fected by the rewrite rulg andSandS are the corresponding process states respectively.
A change in one object state can change the process state,amthange in a process
state may indicate that one or more objects have changedstiages (i.e. the general
behaviour rewrite rules, as will be explained below, arengag the state of more than

one object at the same time, while some of the domain spegiés changes the state of

8\We use the symbols to denote a sequence of zero or more rewrite steps and th@i;yiintn denote

asequence of one or more rewrite steps.

68

Chapter 3BPMN Formal Syntax and Semantics 69

a data object or an object at a time). Here we define the fumimurce: es— P(0O)),

and the functiont@rget: es— P(0O)), to return the source and target states in an input
execution step wherB(O) is the set of process states for a proc@ssFor example,
sourcé€Sr,S) = Sandtarget(Sr,S) = S. The set of execution steps for a BP model
forms the execution path for the process. So that, we defanexbcution path as the fi-
nite sequence of execution steps; where the source of antexestep equals the target

of its successor.

Definition 3.4.5. (Execution Path): An execution patfE?g of a proces® is a finite
sequencées, e, ...,es) of execution steps, such tharget(es) = sourcées. 1) for

all1<i<n.

We define the operatoSe@Set: Sequence» Se) to take a sequence of elements
and return the equivalent set containing the same elemdiriis. operator is used to
generate the seE? of the execution pattEPo (i.e. Se@Sel{‘EPo) = EP where if
EPo = (€9,€9,...,e5), thenEP = {eg,e9,...,e5}). Let Opansdenotes the set of

execution paths for a proce€s

Definition 3.4.6. (Complete Execution Path: An execution patrEPo of a proces©
iIs complete if it contains an execution step which is sourfceth a start stat&s and

another execution step which target is an end Sate

Using the operatde@Setwe define the setEP of all execution steps of a complete
execution patltEPg of O ascEP = Se@Se{CEPo).
In the following subsections, a Maude formalization for BRN.0 semantics is

introduced and detailed. The following are some of the \emwhich are used in the

rules.

vars XY Z: Od . vars KL M: Gd .

vars T1 T2 T3 : TransSymbol . vars AB C D : QObjectSet .
vars O0L @ : nject . vars NI N2 N3 : Nat .

vars S1 S2 S3 PNL : String . vars GL & : GateSynhol
var GCidl GGid2 : GateCGd . vars El : EventSynbol
vars D1 D2 : DataSymbol . var DT : DataType .

vars Gexpl : Gexp . var CVcol : Cvcollection .

69

Chapter 3BPMN Formal Syntax and Semantics 70

vars P Q: Bool . vars V1 V2 : Variable .
vars CVsl Cvs2 CVs3 : Control Val ue .
vars AS1 AS2 AS3 : AttributeSet

Initiating and Terminating the Process

According to the well-formed BPMN model requirements int88d3.3, a well-formed
process should have one start object which is supposed teeli@gt to execute if the
process is initiated. The start event is activated accgrttirihe rulel ni ti at eProcess
which assigns the valugue to the start evendct i ve attribute if there are no active
objects in the process initial state. This transition clesrite process state from inactive
to active. Ruld ni ti at ePr ocess activates the start event of the process if the function

i SActi ve retrievefalse

op isActive : (bjectSet -> Bool
eq isActive(< X: K| active : true ; ASL > A) =true .

eq isActive(A) = false [owise] .

crl [InitiateProcess] :
CVcol *<< A, <ELl: startEvent | eventType : start ; active : false ; AS1 > >>
=>
CVcol *<< A, <ELl: startEvent | eventType : start ; active : true ; AS1 > >>
if isActive (<< A >>) =false .

crl [InitiateProcesswithaMessage] :
CVcol *<< A, <ELl: startEvent | eventType : message ; active : false ; AS1 >>>
=>
CVcol *<< A, <El: startEvent | eventType : message ; active : true ; AS1 >>>
if isActive (<< A >>) =false .

i

Figure 3.11: Process Initiation Rules

In Figure[3.11, the rules are presented; i.e. if the starhteieinactive, the rule
rewrites it to be active after checking that nothing elsect&va in the process §Act i ve
retrievesfals@. The second rule in the figure assumes the start of a pros@sisiated
by receiving a message (i.e. message start event). Thatimitiprocedure is the same
in both cases. A process can start as a result of receivingsaage (e.g. receiving an
application form or arequest). In this case the messagé eveates the process. Hence
we have the ruléni ti at eProcessw t haMessage. This rule, in Figuré_3.11, acts like
the normal initiation rule for the proceksi t i at ePr ocess except that the type of event

is different.

70

Chapter 3BPMN Formal Syntax and Semantics 71

crl [TerminateProcess] :
CVcol *<< A, <E1:endEvent | eventType : end ; active : true ; AS1 > >>

>< > =>
ProcessTerminatedSuccessfully

if isActive (A) =false .

Figure 3.12: Process Termination Rule

In the other side of the process, the rilikx m nat ePr ocess terminates a process
if it is active and the only active object is the end objectchanges the process state
from active to inactive. The rule is applicable when the psxCis in its end stat& (c.f.
Definition[3.4.3). It rewrites the object set into a desavipstatement indicating process
termination (e.g. the term zero). The functicsct i ve should retrievdalsehere as a

condition of application.

Sequential Behaviour

An object s active if its attributect i ve istrue. For example, in Figule 3.13, in a certain
state of the process, the activiyis active while the activity is not active. Simulating
process behaviour can be thought of as if the activation ssquhfrom one object to
its immediate successor(s) if certain conditions satisfietbme cases. The next state
according to the rule in Figuie_3J13 is wheténactive andyY is active. The condition
that should be fulfilled here is the activityshould be the immediate successor for the
activity X. In a more general case, the successor can be another aagcgéteway,
activity, event, ... etc). Hence we can use the Gde (in Figure[3.18) to simulate the
sequential behaviour of objects can have in a process.XTaedY, are of sortQ d, K
andL are variables typed with the sdiitd, t N1 is the transition linking the two objects,
AS1 andAS2 representing the rest of the attributes that an object nhigie, andh is the
remaining objects in the process.

Sequential processes may have conditions restrictinggkecution, such as waiting
for a message to arrive or a data object to be updated. Thetisih can be modelled
as an execution precondition, in which the object is spetdEReady to be activbut
not actually active using the attributeBeAct i ve. At the same time, the attribut@nd
indicates this condition case, where it has the vaiueif there is an execution condition

for this object, orfalseif there is no attached conditions. Therefore, the Ggg- Cond

71

Chapter 3BPMN Formal Syntax and Semantics 72

rl [Seq] :

<<<X:K|out:tN1l;active:true; AS1>,<Y:L|in:tN1l; active:false; AS2>,A>>
=

<<<X:K|out:tN1l;active:false; AS1>,<Y:L|in:tN1l; active:true; AS2>,6A>>.

rl [Seq-Cond] :
<<<X:K|out:tN1;active:true; AS1>,

<Y:LJ|in:(tN1,T1); active : false ; cond : true ; ToBeActive : false ; AS2 >, A >>
=>

<<<X:K|out:tN1l; active: false; AS1 >,
<Y:LJin: (tN1,T1l); active : false ; cond : true ; ToBeActive : true ; AS2 >, A >>.

rl [Seg-unCond] :
<<<X:K|out:tN1; active:true; AS1>,
<Y:LJin: (t N1, T1); active : false ; cond : false ; ToBeActive : false ; AS2 >, A >>
=>
<<<X:K|out:tN1l;active: false; AS1>,
<Y:LJin: (t N1, T1); active: true; cond : false ; ToBeActive : false ; AS2 >, A >> .

Figure 3.13: Sequence Rule

in Figure[3.1B requires the obje¥tto have the valuérue in its attributecond, and
hence will transform its state teady to be activetate with a valuérue for the attribute
ToBeActive. In case of unconditional sequential execution of objettts, attributes
cond andToBeAct i ve should be included with valulalsein both sides of the rule as
shown in ruleSeq- unCond in Figure[3.18. We use the rul8sg- Cond andSeq- unCond

in our semantics and we removed r@eg from the Maude code as it represents a too

general case which we can handle using one of the other tws.rul

Parallel Behaviour

Fork gateway is used in the BPMN to refer to the dividing of &hgato two or more
parallel paths. When a fork gate is active, the ANBf or k can be applied to activate all

immediate successor objects.

rl [ANDFork] :
<< < Gl: aforkgate | out: T1; active : true ; AS1>, A >>
=
<< < Gl: aforkgate | out: T1; active : false ; AS1 >,
activateANDsuccessors(T1, A) >> .

Figure 3.14: Parallel Fork Rule

This rule fetches all the successors of the gateway andaéesithem concurrently
and deactivates the or kgat e gateway afterwards. In the rule above (in Fidure B.G4),

is a variable for the object identifieFl is a set of transitions that connects the objects to

72

Chapter 3BPMN Formal Syntax and Semantics 73

the gateway. Activating the immediate successors of tHedateway is achieved using
the functionact i vat eANDsuccessor s which takes the output transitions for the fork
gateway and the rest of the object set and produces the saewe sdt after activating the
immediate successors. The order of the activation does attenas they are supposed
to be executed concurrently with no such restriction. THenden of the function is in
AppendiXB.

In case of joining parallel activities, theg oi ngat e cannot be activated until all it
predecessors have finished (deactivated). It can happethéhpredecessor objects ex-
ecuted and finished in different times, i.e. in Figlre B.1&ivaty b may finish before
activity ¢ finish, then following theSeq- Cond rule, the AND join gateway should be
active. However, according to the AND join semantics, itiddavait for all its imme-
diate predecessors to be executed. Therefore, we markttimitcond to betrue
and the attribut@oBeAct i ve tof al se in its initial state. After that, the firstimmediate
predecessor to finish causes the attridioi@eAct i ve to be changed tor ue, however,

the gateway itself is still not active.

&

Figure 3.15: Example model with AND fork and join gateways

As explained above in Sectidn 3.4.2, if there are executioditions for the object,
then itscond attribute will betrue. In the case of AND join gateway, the trigger for
making it in theready to be activetate is having at least one active predecessor which
then will rewrite its attributeToBeAct i ve from falseto true as described in the rule
Seq- Cond- aj oi n in Figure[3.16.

The ANDJoi n rule activates the join gateway and then the immediate pe=sers
are fetched and deactivated using the functiaets vePr eds. The function checks if
there are any active objects in the gateway upstream (ijectsbbetween the AND

fork and the AND join gateways) using the functipneds to fetch the predecessor

73

Chapter 3BPMN Formal Syntax and Semantics 74

crl [ANDJoin] :

<< < Gl: ajoingate | in: T1; itsSplit : G2 ; active : false ; cond : true ; ToBeActive : true ;
AS1>,<G2: aforkgate | AS3 >, A >>

=>

<< < Gl: ajoingate | in: T1; itsSplit: G2 ; active : true ; cond : true ; ToBeActive : false ;
AS1>,<G2: aforkgate | AS3 >, A >>

if activePreds(T1, preds(< G2 : aforkgate | AS3 >, < G1: ajoingate | in : T1; itsSplit: G2 ;

active : true ; cond : true ; ToBeActive : false; AS1 >,

(A, < G2: aforkgate | AS3 >), noobject, noobject)) == false \

isActive (<< imPreds (T1, A, noobject) >>) == false .

rl [Seq-Cond-ajoin] :

<<<X:K|out:tN1l;active:true; AS1>,<Y:ajoingate|in: (t N1, T1); active : false;
cond : true ; ToBeActive : true ; AS2>, A >>

=>

<<<X:K|out:tN1;active: false; AS1>,<Y: ajoingate|in: (t N1, T1); active : false ;
cond : true ; ToBeActive : true ; AS2>, A >> .,

Figure 3.16: Parallel Join Rule

objects and then checks if they are atgivTéhe AND fork and join gateways are linked
through the attributét sSplit in the join gateway, which refer to the corresponding
fork gateway. The second condition is to ensure that by thgesin the execution all the

immediate predecessors for the join gateway are inactiveyuke functions nPr eds
andi sAct i ve respectively.

Exclusive Decision-Based Behaviour

Exclusive data-based decision gateways (XOR-split) isgtesl to choose only one al-
ternative to activate among its immediate successors [o&].ruleXORspl i t simulates

the behaviour of the split gateway and described in Figuk@.3.

rl [XORsplit] :
(CVsl) * << < G1: xsplitgate | out : T1 ; defaultFlow : T2 ; guard : GExpl; error : t N2 ;
controlValues : noControlValue ; active : true ; AS1>, A >>
=>
(CVsl) * << < G1: xsplitgate | out : T1 ; defaultFlow : T2 ; guard : GExpl; error : t N2 ;
controlValues : assignCVs(GExp1, CVsl) ; active : false ; AS1 >,
activateXORchild (T1, T2, t N2, GExp1, assignCVs(GExp1, CVsl), A) >>.

Figure 3.17: Exclusive Data-based Decision (XOR) SpliteRul

In order to determine the outgoing object that is going to ¢tevated, all the con-
ditions are evaluated as long as their control values haee passed through to the
gateway during the execution. Control valu€¥s) are used to provide information

to the gateways to be able to evaluate the guard expressmhgracess branching

9The definition of the function is in Appendix B

74

Chapter 3BPMN Formal Syntax and Semantics 75

decisions. The functioacti vat eXORchi | d is used to activate the successor object
that its guard expression evaluatedttoe in the evaluation function. The function
activat eXORchi | d definition is in AppendixB and the functiassi gnCVs is defined
later in this section.

For the merging behaviour of the exclusive gateways, theXORner ge, activates
anxmer gegat e object if it has one active immediate predecessor, and ttokades this
predecessor, as shown in Figlre 8.18. The application sfrthé requires an active
predecessor to an inactive XOR-merge gateway. Then thea#oti is toggled and the
process is ready for another rule application, which is radiynbe the sequential rule to

activate the XOR-merge successor.

crl [XORmerge] :
<<<X:K|out:(tN1,T2); active: true; AS1>,<G1: xmergegate | in: (t N1, T1);
active : false ; AS2 >, A >>
=>
<<<X:K]|out: (tN1,T2); active : false; AS1>,<G1: xmergegate | in: (tN1,T1);
active : true ; AS2 >, A >>
if K =/=xsplitgate .

Figure 3.18: Exclusive Data-based Decision (XOR) MergesRul

Notice the condition in the rule excludes the case of haviX@®& split predecessor
to the XOR merge gateway. That is to allow the guard evalnatiothe XOR split
gateway to take place and hence activating the right XORIckibr example, in case of
direct flow from a split gateway to a merge gateway as in Fiigut8 where the flow3
coming from the XOR split gateway and entering the XOR meigieway which may
cause the activation @R beforegl decides which branch to choose. At the same time,
it can happen that taskis executed and at the same ting@,is activated, which will
end up in the XOR merge gatewgg being executed twice (a lack of synchronization

situation) in the process.

Inclusive Decision-Based Behaviour

In BPMN, inclusive decision (OR) gateway is used to choose @nmore branches at
the same time. In our formalization, the constructor omesatsplitgateandomergegate
are used for OR split and merge gatew&yd respectively. For inclusive decision-

based pattern of behaviour, the OR gateway represents tliy &b activate oneor

75

Chapter 3BPMN Formal Syntax and Semantics 76

t2

gl g2

Figure 3.19: Example model with XOR split and merge gateways

more branches at the same time. Hence, the true evaluation of mmdition expres-
sion does not exclude the evaluation of other condition esgions. In the splitting
behaviour, the rul®Rspl i t is used to activate the OR-split successor(s) (using func-
tionacti vat eORchi | dren) according to the evaluation of the guard expressions in the

gateway.

rl [ORsplit] :
(CVs) * << < G1: osplitgate | out : (t N1, T1) ; defaultFlow : t N2 ; guard : GExp ; controlValues :
noControlValue ; error : t N3 ; active : true ; AS1>, A >>

=>

(CVs) * << < G1: osplitgate | out : (t N1, T1) ; defaultFlow : t N2 ; guard : GExp ; controlValues :
assignCVs (GExp, CVs) ; error : t N3 ; active : false ; AS1 >,
(activateORchildren(evalORguard(GExp1, assignCVs (GExp1, CVsl), notrans) , A)) >>.

Figure 3.20: Inclusive Decision (OR) Split Rule

The ruleORspl i t is applicable when the OR split gatewayaistive then the gate-
way’s cont r ol Val ues attribute value will be rewritten to the control values tlaa¢
contained into the input set\s), the rest of the objects in thébj ect Set (i.e. A)
are rewritten using the functioact i vat eORchi | dren, and finally the split gateway
itself is deactivatedacti ve: fal se). The functioneval ORGuar d helps the gateway
to decide which successors to activate as discussed latieisi®Section. The function
activat eORchi | dren is used to activate all OR successor objects which have incom
ing transition listed in the set of active transitions infitst argument Tr ansSynbol).
When it activates them all, it retrieves the full set of olge& which now has all the

active OR-split immediate successors.

op activateCRchildren : TransSynbol ObjectSet -> (bject Set
eq activateCORchildren (notrans, A) = A.
eq activateORchildren ((t Ni,T1),

76

Chapter 3BPMN Formal Syntax and Semantics 77

(< X: K] in:t Nl ; active : false ; ASl > A))
= activateORchildren (T1,
(<X: K] in: t Nl ; active : true; ASL > A)) [ow se] .

The merge OR gateway behaviour is not like an AND-join, whidows for sure
that all its predecessors are active objects and shoulddstidieted in order to give the
AND-join gateway the activation mode. Moreover, its bebaviis not like an XOR-
merge which knows for sure that only one active predecessthrere and it has to be
deactivated before activating the gateway. However, ic#ise of a OR-merge gateways,
how could a certain gateway decide if the coming flows areradsen (activated) by its
OR-split gateway? Notice, the number of active predeceffsas is unknown to the
OR-merge gateway. Therefore, there should be a link thatagl merge gateway to its
split gateway in the same block; in order to keep track of thvlper of activated flows
that need to be deactivated as an activation condition ®niarge gateway. To relate
the two gateway objects, an attributiesSpl i t is defined in the merge gateway which
pass this piece of information to the merge gateway. It iméefin the merge gateway
because it is the point in the process flow that should consaliecting and combining
all the split flows from a certain OR-split gateway. In the @fieation below, the rule
CRner ge rewrites the OR merge gateway object state from baiagtiveto beingactive
after satisfying the condition that the gateway is ready ¢oga (functiorReady2Mer ge
evaluatedrue). At the same time, the functioteact i vat eORpr eds deactivates the
immediate predecessors of the merge gateway as a resultivdteng the OR merge
gateway. This is to make sure that all the activated flows baem synchronized at this
point in the flow and no OR immediate predecessor objecttistive. If this function
is not used, a lack of synchronization can result, i.e. theliebe a situation when the
OR merge gateway is activated more than once as the activafi@ssed to it from more
than one predecessor, possibly in different points of tne ti

The functionReady2Mer ge is used to check if all the activated immediate predeces-
sors are active and ready for the merge. This is done by vatgérue when it counts
the number of activated branches by the corresponding QRgséway and finds the
same number of activated immediate predecessors to the @Qje gateway. Here, the
relation between the two gateways as one block facilitdtesetficient execution and

evaluation of the guards. It enables the merge gateway tav kriov many branches

77

Chapter 3BPMN Formal Syntax and Semantics 78

crl [ORmerge] :

<< < Gl:omergegate |in: (t N1, T1); itsSplit: G2 ; active : false ; AS1 >,

< G2 : osplitgate | active : false ; guard : GExp ; controlValues : CVs ; AS2 >, A >>
=>

<< < Gl:omergegate|in: (t N1, T1); itsSplit: G2 ; active : true ; AS1 >,

< G2 : osplitgate | active : false ; guard : GExp ; controlValues : CVs ; AS2 >,

deactivateOPreds((t N1, T1), A) >>

if Ready2Merge(evalORguard (GExp, CVs, notrans), (t N1, T1), A) ==true .

Figure 3.21: Inclusive Decision (OR) Merge Rule

have been activated after its corresponding OR-split gatew

op Ready2Merge : TransSynbol TransSynbol (hjectSet -> Bool
eq Ready2Merge((notrans), (T1), A = true .
eq Ready2Merge((t N1,T1), (t N2,T2),
(< X: K] out :t N ; active : true ; ASl > A))
= Ready2Merge((T1), (T2),
(< X: K] out : t N; active : true ; ASL > A)) [ow se]

It takes the set of OR split gateway successor transititressét of the OR merge
input transitions and the whole set of objects. In the @Reer ge, in Figure[3.211, this
boolean function is used to take the activated transitiesslited from the evaluation
function eval ORguar d and checks if the same number of predecessors is active and
ready to be merged. This prevents the occurrence of a déesltaation when the merge
gateway is waiting for an object to be activated while it is mothe execution path at
all. Moreover, it facilitate the processing of nested ORegatys by marking each merge
gateway with its OR-split companion avoiding mixing the lee&ed conditions from
different gateways.

In Rule ORner ge, the OR-merge gateway is activated and its immediate pesdec
sors are deactivated after fulfilling the condition of beRegdy2Mer ge. The function
deact i vat eOPr eds is used to deactivate the OR-merge immediate predecesdios-f
ing the definition in Appendik B. A detailed analysis of theadkck situation resulting
from the improper use of OR gateways (e.g. missed flows at grgegateway, a gate-
way is waiting for an inactive flow which will never be activand gateways with lack of
synchronization) is discussed in Chapter 4. In the follgsection, the guard expres-
sion evaluation mechanism is introduced and discussesiwibith describing the guard

definition and evaluation mechanismrasvelin the context of BPMN business process

78

Chapter 3BPMN Formal Syntax and Semantics 79

formalizations.

Evaluating Guard Expressions

Decision based gateways control the flow in BPMN processesout formalization,
decision-based (split) gateways hold the guard expressibich direct the flow in the
process based on the expressions evaluation. Using the €fitzdl in Section 3.11.3,
the guard expressions are set for evaluation. The evaluigtaione through the function
eval Guar d which take as inputs the gateway guard expression (whicbrisally one
expression), the set of control values (discussed in S€8ti#.2), and produces a set of
transitions referring to the branch associated with theessfully evaluated expression.
For example, if the expression uses the equality operatyy then the condition should
be checking if the two operands are equal using the equaditgiton in moduleNAT if
the operands are numbers and in modilBl NG if the operands are String characters.
For such reasons we use the commanaiecti ng NAT STRI NG) at the beginning of

the Maude module.

op eval Guard : Gexp Control Val ue TransSynbol -> TransSynhol
eq eval Quard(noexp, noControl Value, T1) = T1 .

ceq eval Guard(((V1 == NL,tN2).GExp), ((V1:N3)..CVs), T1) = tN2
if N3 == NL .

eq eval Quard(((V1 == N1,tN2).CGExp), ((V1:N3)..CVs), T1)

= eval Quard(((V1 == NIL,tN2).GExp), CVs, T1) [owi se] .

ceq eval Guard(((Vl == SI1,tNL).GExp), ((V1:S2)..CVvs), T1) = tNl

if S2 =81 .
eq eval GQuard(((V1 == S1,tNLl).GExp), ((V1:S2)..CVs), T1)
= eval Quard(((V1 == S1,tN1).GExp), CVs, T1) [owi se] .

The functioneval Guar d, defined above, takes the information needed to decide on
which successor object should be activated next from th&@ovaelues. For example,
in Figure[3.7, the XOR-split gateway; decides if the authorization is granted or de-
clined to modify the baselines, therefore, the gatewaywa®titgoing transitiong4,ts),
the guard expressions greAut hori zed?=="YES", t 3). (Aut hori zed?=="NO", t4)),
and the control value for this case(idut hori zed?: " YES") then the function retrieves

t 3 as the string control value (i.&ES in attributecont r ol Val ue) equalsthe String

79

Chapter 3BPMN Formal Syntax and Semantics 80

value in the guard expression (I¥ES in attributeguar d). Here, the modeller is respon-
sible for assuring that the expressions are mutually exdusiowever, the semantics
of an exclusive split gateway requires evaluation of therg@expressions one by one
and if an expression is successful, then no more expresarersvaluated, as it is only
one alternative to be chosen. If the expressions are notaityiexclusive for the XOR
split gateway guard, there is a possibility that the firstregpion evaluating ttrue is
the one considered in deciding the activation of the succedsject, leaving another
possible alternative remains unknown to the process. Time $anction is defined to
evaluate guard expressions with other logical comparipenaiors £=, =/ =) for Strings
and €/ =, <=, >=, <, >) for numbers (c.f. the CFG defined in Section 3.1.3) as detail
AppendiXB.

In the case of OR split guard expression evaluation, thetimmeval ORguar d is
introduced. The OR split semantics requires all the coowlitito be evaluated and, as a
result, can have as many output transitions as the OR-sfijbong transitions. There-
fore, the functioreval ORguar d takes the following arguments: the guard expressions
(CGExp) and the assigned control values resulting frass(gnCVs(GExp, CVs)) and re-

trieves the set of transitions whose associated guard €dpreevaluates tiwue.

op eval ORguard : Gexp Control Val ue TransSymbol -> TransSynbol
eq eval CRguar d(noexp, noControl Value, T1) = T1 .
eq eval ORguard(((V1 == N1,tN2) . GExp), ((VILI:Nl)..CVs), TI1)
= eval ORguard(Gexp, CVs, (tN2,T1)) .
ceq eval ORguard(((V1 == N1,tN2) . GExp), ((V1:N3)..CVs), TI1)
= eval ORguard(((V1 == NL,tN2) . GExp), Cvs, T1)
if NL =/=N3.
eq eval CRguard(((V1 == NL,tN2) . GExp), Cvs, T1)
= eval ORguard(Gexp, CVs, T1) [owi se]

The definition above of the functiceval ORguar d defines the equality relation over
the numeric values in guard expressions. A similar set oagguns can be used for the
equality relation over the string values in guard exprasslny changing the sort type to
STRI NGfor String characters. The evaluation considers the cbwitoes to match with
the variable values in the guard expressions. In the nexibsethe control values are

explained.

80

Chapter 3BPMN Formal Syntax and Semantics 81

Managing Control Values

In the formalization we presented so far, deciding which ftmning out from a split
gateway depends on the control values assigned to theudgtciint r ol Val ues. How-
ever, they are not yet automated in the formalization. Tharobvalues are normally
entered by the process modeller in the design time for eadwgg. Trying to mini-
mize the time and effort of managing the control values fogdaBPMN models, the
following mechanism is introduced using the configuration {, where the first under-
score is substituted by a collection of control values amdsétcond underscore with the

well-formed proces®¢ BPMN. The general form is defined as follows:

subsort Control Value < Cvcol l ection .
subsort QbjectSet < Trace(hject Set .
op _*_ : CVcollection (ojectSet -> Trace(hject Set .

The resulted configuration is considered one possible fadte model. Thus we
can consider all possible traces for the model if we listeds#t of all possible collections
of control values for a certain model. The process tracep@ssible execution paths for
the business process (c.f. Definition 314.5). In the prqodbsssplit gateway object has
the attribute ¢ont r ol Val ues) assigned the valueoCont r ol Val ue during the design
time. This value should be changed to the chosen controksatiuring the process
execution. There can be more than one split gateway in theepsp and therefore more
than one control value for the single execution (instané&)@process. The collection
of control values needed for a single process instance isatbfis an associative set of

control values separated by the operat9r (

op _,_: CVcollection Cvcollection -> CVcollection

[ctor assoc id: noControl Val ue]

On automating the procedure of assigning the control valnesitomatically gen-
erate the traces, our proposed Maude based tool does thinatitally. The idea is to
extract the guard expressions from the split gateways{O&R and OR) and then create
the corresponding control values for each guard expres$ios is conducted using the
operatorgyuar dExt ract andcr eat eCV respectively. For the first operator, we provide
part of the definition below. The arguments are the objecteggesenting the process
and an initially empty set of guard expressions. Once agaléway is found (e.g. XOR

split here), the guard expressions are copied to the settplibguard expressions. This

81

Chapter 3BPMN Formal Syntax and Semantics 82

happens until no more split gateways in the process, theogbetor returns the set of

collected guard expressions.

op guardeExtract : ChjectSet Gexp -> Gexp .

eq guardeExtract (A , GeExpl) = GExpl .

eq guardExtract(CVsl * << < GL : xsplitgate | guard : GExpl ;
ASl >, A>>, GExp2)

= guardExtract(CVsl * << < Gl : xsplitgate | guard : GExpl ;
AS1 >, A>>, (GExpl . GExp2)) [ow se] .

After that the control values are created from the extragteatd expressions using
the operatocr eat eCV defined below for the equality of string and numeric values as

example of the implementation.

op createCV : Cexp Control Value -> Control Val ue .

eq createCV (noexp , Cvsl) = Cvsl .

eq createCV (((V1I == S1, t N1) . Gexpl) , Cvsl)
= createCV (Gexpl , (Cvsl .. (V1 : S1))) [owise]
eq createCV (((V1 == NL, t N1) . GExpl) , Cvsl)
= createCV (Gexpl , (Cvsl .. (V1 : N1))) [owise]

There is still one thing missing, which is how these différeontrol values will be
assigned to the corresponding gateways during simulatiogegs execution. For that,
the functionassi gnCVs is defined to take the collection of control values and assign
them to their corresponding split gateway object attriloote r ol Val ues in the process.
This matching is performed using a combination of the cdntatues and the guard
conditions in the gateways. The function specificationgtierequality guard condition

in case of numeric and string values are:

op assignCVs : Gexp Control Val ue -> Control Val ue .
eq assi gnCvs(noexp, Cvs1l) = noControl Val ue .

eq assignCvs(((V1==NL,tN2).GExpl), ((V1:N3)..Cvsl))
eq assignCVvs(((Vv1==S1,tN1). Gexpl), ((V1:S2)..Cvsl))

VI:N3 .
V1:S2 .

The BPMN model which contains split gateways should now ldakthe example
in Figure[3.7. In particular, we want to show the process sigasng the control values

and how this is contributing in evaluating the guard expoess The Maude code in

82

Chapter 3BPMN Formal Syntax and Semantics 83

Figure[3.8 represents the BPMN diagram of the model with tiikection of control
values. The resulting configuration is one possible tracelfe model. In this case,
by simulating the process execution, it will result in the skall possible traces for
the model with respect to gateway routing, i.eC\{col 1 * A),(CVcol 2 * A),...)
whereCVcol 1, CVcol 2, . .. are the possible collections of control values for the psece
A created using the above mechanism. As an example of an axpatition path for

the process model in Figure B.7 can be represented as:

((Aut hori zed?:"YES"), (Aut hori zedCR?: "YES"), (MoreCRL?: "NO'),
(MoreCR2?:"NO')) * Rel easeBaseline

where Aut hori zed?, Aut hori zedCR?, MoreCRL?, andMr eCR2? are defined as
variable names antES, YES, NO andNO are possible values specifying access granted,
authorized change request, no more change requests teednoims and no more change

requests to apply respectively.

3.4.3 Exception Handling

An exception is activated if the exception error value in dleévity it is attached to is
evaluated tdrue. The exception error attributxcVal ue has a default value dalse

and it can be changed taueas a user input value for simulating the process behaviour in
this particular case (i.e. firing the exception). In thise;dbe ruleExcept i onHandl i ng

will be applied to pass activation to the exception rathanttihe normal flow objects.

rl [ExceptionHandling] :

] <<<X:K]error:tN1; excValue: true; active: true; AS1 >,

—> <E1:intermediateEvent | eventType : exception ; in : t N1; linkedObject : X ; active :
false ; AS2 >, A >>

=>

<<<X:K|error:tN1;excValue: false; active: false ; AS1 >,

< E1:intermediateEvent | eventType : exception ; in : t N1; linkedObject : X ; active :
true; AS2>,A>>.

Figure 3.22: General Exception Rule

In Figure[3.22, the rul&xcept i onHandl i ng is simulating the general exception be-
haviour where the exception is attached to the boundaryeobthectX. The attribute
excVal ue value indicates that the exception situation is active (iLee), the activation
is passed to the exception attached to it, with identifierin Maude representation, ob-

jects likeX (i.e. with boundary attached events) are linked to theset@@ects explicitly

83

Chapter 3BPMN Formal Syntax and Semantics 84

via the attributé i nkedbj ect in the corresponding event. Exceptions can also occur as
part of the gateway behaviour if no flows are available to gasactivation to due to lack

of information (control values/conditions). In this caagateway exception object is ac-
tivated. This can happen with an OR or XOR split gateways.hSitwiation has been

considered when designing tlet i vat eXCRchi | d andacti vat eORchi | dren func-

tions.
asd
ta Notify Card t5
verification
e 2 Failed
a3
t3) t6
—_— Booking > —
M

< a3 :subprocess | name : "Booking" ;in:t3;out:t6;error:t4, ... >,
< e 2:intermediateEvent | eventType : exception ; in : notrans ; out : t 4 ; linkedObject: a 3 >,
< a4 :task | name : "Notify Card Verification Failed" ;in:t4;out:t5,>

Figure 3.23: Example for Exception handling with Maude esgntation syntactically

To illustrate how our formalization deals with exceptiottai@hed to activity bound-
ary, the example is shown in Figure 3.23. It is part of a modelain airline system
(discussed in [104]), where the client choose the seatsdpfoceeding in the booking
process. In case the client payment card did not validdtedsytstem raises an exception
and notify the client of the reasons. The process then coegirhowever, we only use
this part to clarify the exception representation in thefalization. In our formalization,
the number of incoming flows for a merge gateway should belégua more than the
number of outgoing flows for its corresponding split gatewaym a semantic point of
view, an exception can take place in one of the split flow pptbglucing an extra flow.
This require thexcepti on fl owto be connected to the corresponding merge gateway

afterwards (e.g. with XOR merge gateway as in Figure]3.23).

3.4.4 Message Handling

Messages are intermediate events used to connect the flovergie in different pools,

where sequence flow cannot be used. For example, the comations between the

84

Chapter 3BPMN Formal Syntax and Semantics 85

purchaser and their supplier can be represented by messags.eEach message con-
nects two activities in two different pools. In order to siate the role of messages in
BPs, we model the messages as objects in the process olijeklesee it can be acti-
vated as a sign of having information to deliver. It can aksstnict the activation of the
linked object, which will be at that time waiting for someanfnation to be delivered in
that message to continue the process execution. A messpget adies not have a status
to be changed during the execution, however, it still hastiiwe attribute which define

its state as active or not active object.

rl [OutputMessage] :
<E1:intermediateEvent | eventType : message ; sourceObject : X ; sourcePool : S1;
targetPool : S2; active : false ; AS1 >,

D >() < X: K| linkedObject : E1; active : true ; pool : S1; AS2>, A

)

=

{

< E1:intermediateEvent | eventType : message ; sourceObject : X ; sourcePool : S1;
targetPool : S2; active : true ; AS1 >,
<X: K| linkedObject : E1; active : true ; pool : S1; AS2> A .

rl [InputMessage] :
<E1:intermediateEvent | eventType : message ; targetObject : Y ; sourcePool : S1;
targetPool : S2; active : true ; AS1 >,

@ >|:| <Y:K|linkedObject : E1; active : true ; pool : S1; AS2 >, A
I =>

<E1:intermediateEvent | eventType : message ; targetObject : Y ; sourcePool : S1;
targetPool : S2; active : false ; AS1 >,
<Y:K|linkedObject : E1; active : true ; pool : S1; AS2> A

Figure 3.24: Message Handling Rules: input and output ngessa

In the ruleQut pur Message in Figure[3.24, the message source activity is active,
then the rule activates the message itself. However, tleekegps the activity active to
allow for the normal flow to take place. In opposite, in theedulput Message in Figure
[3.24, the message is active and its target object is actiyehien the rule deactivate the
message while leaving the other object for the normal floesto take place. Notice that
attributessour cePool andt ar get Pool specifies the pools from which the message is
sentand is received. These two pools should be differeotdrt to the well-structured

business processes discussed in Definifion13.3.2.

3.4.5 Subprocess Semantics

A sub-process may contain other objects (i.e. events,itietiygateways and objects).
In this formalization we consider a dummy start and end es/Bnmtstarting and ending

a sub-process with the typesart Subpr ocess andendSubpr ocess. A sub-process is

85

Chapter 3BPMN Formal Syntax and Semantics

86

ready for initiation if its intermediate predecessor is\agtand it is initiated by activating

its dummy start event, as shown in rele er Subpr ocess in Figure[3.25.

rl [enterSubprocess] :
| | CVcol * << < X : subprocess | active : true ; contains : (E1:Y); AS1 >,
< E1: startSubprocess | active : false ; AS2 >, A >>
v =
| | CVcol * << < X: subprocess | active : false ; contains : (E1:Y); AS1 >,

< E1: startSubprocess | active : true ; AS2 >, A >>.

Figure 3.25: Enter Sub-process Semantic Rule

By completing the sub-process and while the dummy end egeattive, the rule

Ter m nat eSubpr ocess deactivates the dummy end event (i.e. sub-process is termi-

nated) and activates its successor as shown in Figure 3.26.

rl [exitSubprocess] :

=>

CVcol * << < X: subprocess | active :
< E1: endSubprocess | active : true ;
<Z:K|in: (tN1, T1); active : false;

CVcol * << < X : subprocess | active :
< E1:endSubprocess | active : false ; AS2 >,
<Z:K|in: (tN1, T1); active : true ; AS3>, A>>.

false ; contains : (E1:Y); out:tN1; AS1>,

AS2 >,
AS3 >, A>>

false ; contains : (E1:Y); out:tN1; AS1>,

Figure 3.26: Terminate Sub-process Rules

3.4.6 Data Handling

Data objects represents all sorts of documents that arengavound in the organization

and used by a BP. As described in Secfion 3.1, a data objeet $tasus which changes

as an effect of the activities using it. The semantics of gia dbjects behaviour in our

approach is specified using the rules in Fidure I3.27DalraQut put , the data object is

an output for the activityX. The link between the activity and the data object is formed

from the attributd i nkedQbj ect in the data object and the attributesCut put in the

activity. In Dat al nput , the data object is an input for the activity The link between

the activity and the data object from the attributekedObj ect in the data object and

the attributehasl nput in the activity.

The existence of data objects and other constructs in theddP restrictions to its

execution. These restrictions are important to be modefietie design time where

86

Chapter 3BPMN Formal Syntax and Semantics 87

rl [DataOutput] :
CI << < X:K|active: true ; hasOutput : D1 ; AS1 >,
N < D1: Output | linkedObject : X ; status : initial ; AS2 >, A >>
=
h << < X:K|active: false ; hasOutput : D1; AS1 >,
< D1: Output | linkedObject : X ; status : created ; AS2 >, A >> .
rl [Datalnput] :
I;l << < X:K|active: true; hasinput: D1; AS1 >,
A <D1: Input | linkedObject : X ; status : created ; AS2 > A >>
=>
D << < X:K|active: false ; hasinput : D1; AS1 >,
<D1: Input | linkedObject : X ; status : exist ; AS2 > A >> .

Figure 3.27: Data Object Handling Rules: input and outpte dajects

the process is more flexible to be modified than to enforce tinettme implementation
and deployment phase. In the following section, we intr@edseme domain specific

semantic rules for the example introduced in Sedfioh 3.2.

3.4.7 Domain Specific Semantics

Each BP represents a specific work procedure carrying itaictaistics, conditions and
constraints. This can be shown by specific patterns of bebgvassigned to process
elements, which are dependent on the corresponding besngsonment or other ele-
ments in the same process. In the proposed example in Figlirea8ks likeRet ri eve
Cl orChange Cl should be active only if a change requeR)(is open. Another exam-
ple exists when a data objedsel i ne status should be changedredeasedf the task
Rel ease Basel i ne is active (i.e. a new baseline is released). Such behaveouines
specific rules which are considered related to the domaiheobtisiness process under
consideration. We call these rulB®main Specific Rules (DSRyhich can be different
from one process to another. For the illustrated exampleati@[3.2, we provide the
following DSRs as an example of the formalization validitydomain specific require-
ments for business processes. In Figurel3.28, a set of silesdelled graphically for
presentation purposes while the corresponding term rewries are coded in Maude in
Figure[3.29 and Figufe 3.B0 using the syntactical notatiesgnted earlier in this chap-
ter. In Figurd_3.218, the black dot on a task indicates thatttsk is active and the white
dot on a task indicates that this task is inactive.

To start with, the possible status (defining their data dbjéscycle [102]) for a

Change Request (CR) data object angtial, openandclosed for a Configuration Item

87

Chapter 3BPMN Formal Syntax and Semantics

88

Check
Authorization

Check
Authorization
(a)

Authorization List

0

Authorization List

Check
Authorization
(b)

Check
Authorization

N

0

Authorization List

A

[

Authorization List

[none] [granted] [none] [declined]
Open CRJ Open CR I Close CR Close CRJ
- .ﬁ h (d) .
CR
[initial] [open] [open] [closed]

Retrieve Cls

Document Document
Cls Cls
(®
Cl doc.
[documented]

Retrieve Cls
I (e)
1,1 Ny

Cl doc.
[initial]

3-;U

o]
a
9]
5]

CR Cl doc.
[open] [inUse]

Release
Baseline

[open] [inUse]

Release J
Baseline
(9)

Make baseline
available to read

Make baseline
available to read

Baseline Baseline Baseline
[released] [released] [readOnly]

Figure 3.28: Domain-Specific Rewrite Rules

(Cl doc) data object areinitial, inUse and documentegfor Authorization List data
object are:grantedanddeclinedand for a Baseline data object arene releasedand
readOnly In Figure[3.28, some rules are applied when the correspgridsk is active
(marked by the black circle) such @ange CI and others are dependent on the status
of a connected data object, liketri eve Cl.

In the example (c.f. Sectidn 3.2), an authorization is regflin order to release the
baselines. The rule (af5fant Authorizedl checks if the access is being done by an au-
thorized role listed in th@ut hori zati on Li st and then changes the data object status
to granted The rule uses the control valgéut hori zed?: " YES") to grant permission
to change and release the baseline. If the access informatimt listed in the , or if

it is not listed in the documerfut hori zati on Li st, then the data object status will

88

Chapter 3BPMN Formal Syntax and Semantics 89

(a) Access Authorized
rl [GrantAuthorization] :
((Authorized? : "YES") .. CVs) * << < X : K| name : "Check Authorization" ; active : true ; AS1 >,
< D1: dataobject | name : "Authorization List" ; status : none ; AS2 >, A >>
=
((Authorized? : "YES") .. CVs) * << < X : K | name : "Check Authorization" ; active : true ; AS1 >,
< D1: dataobject | name : "Authorization List" ; status : granted ; AS2 >, A >>.

(b) Access Declined

rl [DeclineAuthroization] :

((Authorized? : "NO") .. CVs) * << < X : K| name : "Check Authorization" ; active : true ; AS1 >,
< D1: dataobject | name : "Authorization List" ; status : none ; AS2 >, A >>

=

((Authorized? : "NO") .. CVs) * << < X : K | name : "Check Authorization" ; active : true ; AS1 >,
< D1: dataobject | name : "Authorization List" ; status : declined ; AS2 >, A>>.

(c) Open a Change Request

rl [OpenCR1] :

CVs *<<< X : K| name: "Open CR" ; active : true ; hasOutput : D1 ; AS1 >,
< D1: dataobject | name : "CR" ; status : initial ; AS2 >, A >>

=

CVs *<< < X: K|name: "Open CR" ; active : true ; hasOutput : D1 ; AS1 >,
< D1: dataobject | name : "CR" ; status : open ; AS2 >, A >>.

(d) Close a Change Request

rl [CloseCR1p5] :

CVs *<< < X:K|name: "Close CR" ; active : true ; hasOutput : D1; AS1 >,
< D1: dataobject | status : open ; AS2 >, A >>

=

CVs *<<< X:K|name: "Close CR" ; active : true ; hasOutput : D1 ; AS1 >,
< D1: dataobject | status : closed ; AS2 >, A >>.

Figure 3.29: Maude Representation for DSR from (a) to (d)igufe[3.28

change to declined as specified by rule @g€line Authorizatioh

For each change request (CR) enters the process, its staiukl hange from
initial toopen toindicate its use. In Figute 3.29, rule (€gen a Change requess
simulating this behaviour. After the change request is asedchanges applied, it needs
to be closed. The status of the data object is changed dp@m to cl osed as declared
in rule (d) Close a Change Requést

While the change request is open, the corresponding coafigaritem CI is re-
trieved. In Figuré 317, the activityet ri eve Cl is activated if a change request is open,
i.e. the Cl is retrieved to be processed. This is modelledgutie rule (e) in Figure 3.28
and ruleRetrieve Clin Figure[3.30. At the same time, the retrieved CI status khou
be changed to indicate that it is in use (i.e. change itsstatumini tial toinUse)

as described in the same rule (rule (e) in Figurel3.28) aredusing Clin Figure[3.30.

89

Chapter 3BPMN Formal Syntax and Semantics

90

(e) Retrieve and Use CI

rl [RetrieveClp2] :

CVs *<< < X: task | name : "Retrieve CI" ; in : t N1 ; cond : true ; ToBeActive : true ;
active : false ; haslnput : D1 ; AS2 >, < D1 : dataobject | status : open ; AS3>, A >>
=>

CVs * << < X : task | name : "Retrieve CI" ; in : t N1 ; cond : true ; ToBeActive : false ;
active : true ; haslnput : D1 ; AS2 >, <D1: dataobject | status : open ; AS3 >, A >>.

rl [UsingClIp3] :

CVs * << < X : task | name : "Change CI" ; active : true ; AS1 >,

< D1: dataobject | name : "Cl doc" ; status : initial ; AS2 >, A >>
=>

CVs * << < X : task | name : "Change CI" ; active : true ; AS1 >,

< D1: dataobject | name : "Cl doc" ; status : inUse ; AS2 >, A >> .

(f) Document CI
rl [DocumentClp4] :
CVs *<< < X :task | name: "Document CIs" ; active : true ; AS1 >,
< D1: dataobject | name : "Cl doc" ; status : inUse ; AS2 >, A >>
=
CVs *<< < X :task | name: "Document CIs" ; active : true ; AS1 >,
< D1: dataobject | name : "Cl doc" ; status : documented ; AS2 >, A >>.

(9) Releasing Baseline

rl [ReleaseBaseling] :

CVs *<< < X: K| name: "Release Baseline" ; active : true ; hasOutput: D1 ; AS1>, A>>
=

CVs *<< < X : K| name : "Release Baseline" ; active : true ; hasOutput : D1 ; AS1 >,
CreateDO (d 4, "Baseline", released , X) , A >> .

(h) Baseline made Read Only
rl [BaselineReadOnly] :

AS1>,<D1: dataobject | name : "Baseline" ; status : released ; AS2 >, A >>
=

AS1>,<D1: dataobject | name : "Baseline" ; status : readOnly ; AS2 >, A >> .

CVs *<< < X: K| name : "Make Baseline Available to Read" ; active : true ; hasOutput : D1 ;

CVs *<< < X: K| name : "Make Baseline Available to Read" ; active : true ; hasOutput : D1 ;

Figure 3.30: Maude Representation for DSR from (e) to (h)igufe[3.28

The CI status is then changedupdat ed to indicate changes committed as a result of
the activityDocunent used ClI being active. The rule (f) in Figufe_3.28 and its Maude
representation in ruleDocument C) in Figure[3.30 simulate this behaviour.

The modifications applied to the configuration item CI areaskd as a baseline.

When the activityRel ease Basel i ne is active, a data obje@asel i ne is created with

status (el eased) as shown in rule (g) in Figurie_3.28 and Maude representatite

(Release Baselinén Figure[3.30. Finally, a baseline is made a read only d@surwith

through the activityMake baseline available to readVhile this activity is active, the

data objecBasel i ne status is changed fromel eased to r eadOnl y as shown in rule

90

Chapter 3BPMN Formal Syntax and Semantics 91

(h) in Figure[3.2B and its Maude representation in rlegseline made Read Ohin
Figure[3.30.

3.5 Chapter Summary

In this chapter we introduced our formalization in Maudetfa syntax and semantics of
the core BPMN elements. The proposed formalization corsitthat the guard expres-
sions are held by the split decision-based gateways andaeadaiutgoing flow attached
to them as the BPMN standards specifies. This allows the gatete be equipped with
the condition expressions as well as being ablddoideon the outgoing flow to con-
sider in the next step without having to actually visit theusence flows connected to
the gateway before the decision is taken. We proposed axtefnte grammar for the
guard expressions that can be used in evaluating the conslgind hence give the gate-
way the ability to decide on passing the flow to its childreheotion of well-formed
BPs is defined for the formalization for the purpose of vdlitathe structure of the
BPMN process models. That is, the well-structured and veeited BPMN processes
are established and the notion of gateways block is intredluc

Using examples with the corresponding formal represeta# set of rewriting rules
has been defined in this chapter to formally describe andraiotite behaviour of a
BPMN process. However, we found out that for real life busgnprocess models, the
execution restrictions are not limited to the syntax andas#ros of the modelling tool
elements (i.e. BPMN) and it is not enough to represent thewbebr of the basic ele-
ments without simulating the specific behaviour requiretsiér each business context.
Hence, we provided a set of domain specific behavioural fideSectiorf 3.4.]7).

In the next chapter the proposed formalization in this obigtverified by introduc-
ing the soundness analysis and checking for the well-folBfdN models. Moreover,

a simulation analysis with the Petri net mapping for the BPigINiscussed.

91

Chapter 4 Semantics Verification

Chapter 4

Semantics Verification

Verifying business process models aims at proving thatdneyree from errors that may
lead to unsuccessful execution of the process. Followiadabt that solving structural
conflicts in testing phases is much more expensive than titegethiem in the design
phase of business process life cycle [7, 81], the formafieation techniques are eagerly
motivated to be applied to the modelling languages.

We discuss soundness property for the proposed semantittsateon. The chapter
is organized as follows; in Section 4.1, a comprehensivergssn of the gateway block
structure is introduced. This is followed by describingdieak situations as a structural
problem [69] and as a context-related problem in Sedtionll4.Zhree new patterns
for OR gateways are introduced in Section 4.2.2, followedddgting all the deadlock
patterns to the introduced formalization of well-formedNB® models in Section 4.2,.3.

Finally, the soundness is formally proved in Secfion 4.3.

92

Chapter 4 Semantics Verification 93

4.1 Gateway Block Structure

The formalization adds a structural restriction in desigrBPMN models with gateways
to achieve sound business process models. Gateways ageetban ablock i.e. each
split gateway should have an accompanying merge gatewdeafame type. A block
has only one entrance point and one exit point. Figure 4 demits example AND, XOR,
OR blocks where the flow is splitted into two branches to até\activities X, Y or both
of them, then the flow is merged at the other side of the blothkercorresponding merge

gateway.

Figure 4.1: Examples of Gateways Block structure.

Exceptions represent a spacial case, where the exceptio(Higure 4.1 (d)) sourced
from a boundary-attached error event and the normal flow teée merged using an
XOR merge gateway. In Figufe 4.1 (d), the thick arrows regmetghe exception flows.
Notice that XOR merge gateway will expect only one incomiogfin order to get acti-
vated, and this matches the fact that either the normal flaieoexception flow only will
take place. In this particular case, the XOR merge gatewdyefer to the exception

event symbol ast sSpl it attribute value.

4.1.1 AND Block Structure

In case of AND gateway, the flow normally goes from the splitegay towards the
merge gateway (c.f. Figuke 4.2 (a)), however, in the feeklbase, when the merge gate-
way precedes the split gateway, the model will unsuccdgdiminate. This happens
when the AND join gateway tries to merge the input flow and wwgifor one of its input
flows which comes from the AND split gateway in Figlre|4.2 @)from activity X in
Figurel4.2 (c) which result in a deadlock situation.

93

Chapter 4 Semantics Verification 94

(a) W-BPMN (b) lll-formed (c) Ii-formed

Figure 4.2: Examples of AND gateways Block structure

To avoid this situation in well-formed BPMN models, we add tbllowing condition
to the specifications of a well-formed BPMN AND join gatewdyhe condition states
that the AND join gateway should not accept any flow from iedite block it makes. If
the AND join gets inputs from inside the block, i.e. a feedb#ilow, in which case the
AND join will be waiting for all its inputs to be activated, drthis will never happen
in this case. The following is the condition, where funci@mputTrans outputTrans
betweerare defined in the Maude code files (See Appehdix A for detdfishe condi-
tion above evaluates talsg then the AND join gateway is well-formed in the BPMN
model, otherwise deadlock situations are possible agrifitesl in Figuré 4]2 (b) and
Figurel4.2 (c).

inputTrans(< GL : ajoingate | in:(tNL, T1); out:tN3; ASl > notrans)
in outputTrans(between(< Gl:ajoingate | in:(tNL, T1); out:tN3; ASl >,
< :aforkgate | out:(tN2, T2); AS2 >,
(A < &:aforkgate | out:(tN2,T2); AS2 >,
< Gl:ajoingate | in:(tNL, T1); out:tN3; ASl >),
noobj ect, noobject), (tN2,T2))

Briefly, functionsi nput Tr ans andout put Tr ans take an object (or a set of objects)
and returns all the input and the output transitions forladl vbjects in the set respec-
tively. Functioni nput Tr ans is defined below. The operaton is a boolean operator
which takes two sets of transitions and retutme if the first set of transition isn the

second set of transitions, otherwise it retuiase

op inputTrans : CbjectSet TransSymbol -> TransSynbol
eq input Trans(noobject, T1) = T1 .

eq inputTrans((< XK | in:Tl; ASL >, A), T2)

= inputTrans(A (T1,T2)) [ow se] .

94

Chapter 4 Semantics Verification 95

4.1.2 XOR Block Structure

The situation is a little bit different in case of XOR blockcéording to the semantics
of the XOR merge gateway, it is activated if one of its inputviais coming from an
immediate active predecessor object, thus, it does notaliaitk other incoming flows.
In Figure[4.3, the XOR split and merge gateways in Figuré 4)3a0d Figuré 413 (b)
follow the block structure, however, Figure 4.3 (a) is a fardirepresentation and Figure
4.3 (b) contains feedback flow. In Figure 4.3 (b), the flow wik deadlock at the XOR
merge gateway as it needs only one active predecessor vatactihe merge gateway.
After thatY is activated then the XOR split gateway is activated. At gast, two cases
are possible: (1) if the XOR split guard allows the output fimateave the loop, then
the flow continues normally, or (2) if the XOR split guard a®the feedback flow,
then activityX is activated and after that the XOR merge gateway. Theseteps sire

repeated successively and the model enters an infinite loop.

......

(a) W-BPMN (b) W-BPMN (c) lii-formed

Figure 4.3: Examples of XOR gateways block structure.

In our semantics, the second case is not allowed by intradumain-specific rules
for the model semantics, in which the guard condition hasmition which terminates
the loop at certain point. This means that feedback is aliioteehappen in the well-
formed BPMN models which applies the block structure foegatys. If we do not use
the XOR gateways block structure, cases like Figure 4.3 (opssible, where as a result
of using a feedback flow from an XOR split gateway, an acti¥ityas two input flows,

which violates the well-formed BPMN models definition.

4.1.3 OR Block Structure

OR gateways should be represented in a block structure. garéfid.4 (a), the OR

gateways are in forward positioning; i.e. the split gatewegcedes the merge gateway

95

Chapter 4 Semantics Verification 96

and the two gateways forms the boundaries for the block. ddsse is well-formed and
does not contain structural errors.

Having feedback in OR gateways is possible in model reptatens, however, there
should be dimiting condition that prevent the model from entering an infiniedde.g. a
vicious circle). Examples of the feedback OR gateway blacksbe found in Figurie 4.4
(b) for feedback flow containing an activity and Figure4 yf¢e feedback flow without
activities. If the split gateway in each case has the guandliton allowing only the
feedback flow, then an infinite loop is entered unless a shgppoint is reached (e.g. a
counter is reset) or a new information came available to tResflit gateway to exit the
loop. In more details, the OR merge gatewgaywill wait to know how many incoming
flows it should expect to synchronize and get activated. iffiissmation comes from its
accompanying OR split gateway. Two examples with three situations are discussed
here and illustrated in Figurés #.4 (b) 4.4 (c).

Figure 4.4: Examples of OR gateways block structure.

Case One:in the first attemptgl will be active and therY is activated. This is
followed by activatingy2. If the condition ing2 allows only the feedback flow that goes
as input togl, thengl will be active. That is, the feedback flow will be feeding ittkwi
the required input flow forever creating an infinite loop.

Case Two:if the condition ing2 allows only the flow going outside the block, then
thegl will be active as it gets one input flow from outside the blogckhe first attempt
and activates activity, theng2 will be active and the flow proceeds out of the block
successfully. In this case activigwill not be executed in the model in Figure 4.4 (b).
However, there is no necessity to add the OR split and merigsvggs in such models,
otherwise an infinite loop is entered if the guard conditiioves the feedback flow.
We discussed this case as it may represent an incorrectrimeptation for the block

structure that may result in an infinite loop.

96

Chapter 4 Semantics Verification 97

Case Three: if the condition ing2 allows both the flow going outside the block,
and the feedback flow, then the merge gateglknows that it should expect two input
flows to synchronize and be activated. In the first executitamgt,g2 will receive only
one input from outside the block and will be waiting for the@ead flow to arrive and
this will not happen. A deadlock situation occurs, i.e. tRearition of this gateway is
repeated and allow for lack of synchronization.

In Figure[4.4 (d), the absence of a merge gateway to closelticl besults in an
activity with more than one input, and this is not allowed well-formed BPMN model
as discussed before. Moreover, this activtyill need two inputs which will not be
available at the same time; i.e. the incoming flow from owtglie block to activityX
and the outgoing flow from the OR split gateway.

In summary, OR gateways should be presented in a block steuict acyclic models
where the feedback flows are not allowed based on the abomgsdisn. One possible
solution for the feedback situation is to replace the ORways with XOR gateways
where only one flow is allowed at the split; i.e. either goingside the block or to
feedback with extra guard loop-exit condition . In ChapieDR join gateway semantics
introduced a mechanism that links the join gateway with it gateway in order to
keep information of how many activated branches shoulddhegateway waits for to

synchronize. This is still a valid specification for acyatimdels.

4.2 Deadlock Patterns

As defined in Definition 3.4]5, a BPMN process execution isgspnted by an execution
path (EP). If the process terminated in a state which is not an end dtan the process
is unsuccessfullyerminated|[102,|7].Deadlockis a situation where such behavioural
problem occurs in the business process execution paths. A&l can be designed
with these errors unintentionally and hence includes ttssipdity of being successfully
terminated in certain cases due to deadlocks [2]. A BP is iradbbck situation if
a certain state of the model (but not necessarily all) casnotessfully continue its
execution, while it has not yet reached the end st&tBPMN models which do not have

gateways cannot suffer from deadlocks. Formally, a de&ditate is the state where an

97

Chapter 4 Semantics Verification 98

object that is not an end event is active and it cannot pasacthetion to its successors
due to unwanted (possibly undefined) behaviour. The stdt@etifind a matching rule
left hand side in any of the (defined) semantics behaviout,tharefore the execution

will unsuccessfully terminate.
Definition 4.2.1. (Deadlock) The states; € P(O) is a deadlock state iff

(1) itis not an end state; i.& # S, and

r

(2) it does not have a successor stated R(—3S € P(O)(§ — 9))).

4.2.1 Structural and Domain-Specific Deadlocks

In the following we will distinguish between two types of dibacks; structural dead-
lock and domain specific deadlocks. In the structural dekdéituations, the cause of
the deadlock is a structural error caused by the impropeouB®MN elements result-
ing in errors. It can be a result of divergence and convergenhthe flow in the business
process (i.e. gateways). For example, if a model contaitysamivities which are exe-
cuted sequentially without restrictions or data objecisethelencies, then there will not
be any possibility for deadlocks. However, if the model eamd any splitting or merg-
ing behaviour, then the flow is blocked and only being passealigh the gateway on
successful evaluation of the the guard expressions. Edibumatch the split and merge
gateways of the same type (i.e. block structures introdiuc&ectior[4.11) may result in
gateways waiting for input flows that will not arrive, or gate/s where flow is not syn-
chronized. The second type of deadlocks is domain-speSiiice the business process
is well-structured and may be well-formed but still suffeorh unsuccessful termina-
tions due to objects waiting for a certain resource (i.ea @dject) which has not been
produced, or lack of exceptions definition for possible se&ta errors; e.g. a gateway
which all its guard expressions evaluatdatseand no exceptions are defined as part of
its semantics.

In [69], structural deadlock patternare classified into five main patterns based on
two concepts; i.e. reachability and absolute transfatgbReachabilitypetween nodes
A and B in a process graph means that there is at least onerpattifto B, whileabso-

lute transferabilitystates that a token (work item in [69]) can always be transéeirom

98

Chapter 4 Semantics Verification 99

node A to all input points of node B. Thus the absolute tranadiégity reduces reacha-
bility between two nodes if there exist routing control nedgateways) in between and
whenever there is a reachability without absolute traagiéty, there is a chance for a
deadlockl|[7]. The deadlock patterns according to [69] apdagmned in terms of AND-
split, AND-join, OR-split gateways and start event in Figidt5. In order, the patterns
are: Figuré_4J5(a) work item outflow deadlock type-1, Figdif(b) work item outflow
deadlock type-2, Figuie 4.5(c) work item deadlock typeiguFe[4.5(d) loop deadlock
type, and Figure 4]15(e), Figure ¥.5(f) multiple source daedtype. The thick lines rep-
resents absolute transferability (AT) and the dotted Inepsesents reachability between

two points in the model.

Reachablllty

_ _R_egc_hf\b_ili_ty_ . Reachability | S eiaeeeiaaa=
Reachablllty
Reachability
Reachability T | = —Sheccceaaaa-

@)
Reachability with AT
[) Reachability
* Reachabllny
+ O Reachability
\/eachabmty with AT

(d)

Figure 4.5: Structural deadlock patterns [69]

The first three patterns (a,b,c) in Figlrel4.5, represennvihe model has an OR-
split gateway which one or more of its outgoing flow has a rahdity relation to an
AND-join gateway. The semantics of the OR-split gatewag\alfor the activation of
one, more, or all of its outgoing flows, while the AND-join santics enforce the gate-
way to wait until all its incoming flows reached it, i.e. therj@ateway will be waiting
for one/more tokens to arrive to it while it is not activatgdthe OR split gateway from
the beginning. This results in a deadlock situation. Thikéssame case in patterns (a),
(b), and (c), no matter how many OR-split outgoing flows argvated, merging them
with an AND-join confuses the execution and the processgmateeadlock staté).

In pattern (d), loop deadlock type, AND-join precedes ititshND-split in the
model, allowing for a feedback flow to take place. The pattbscribes the deadlock

situation where the AND-join is reachable from the AND-sphirough the feedback

99

Chapter 4 Semantics Verification 100

flow, while the AND-split is reachable from the AND-join thugh one of its outflows.
The absolute transferability property is held here betwlenoin and fork gateways as
the token moves from the join gateway to all the input poirthe fork gateway (which
happens to be one input flow as it is a fork gateway). Howevescuion wise, the
AND-join gateway will be waiting for the other input flow whiawill not be active as it
is not part of the loop. In this case the deadlo§K (ccurs at the AND join gateway.

Finally, patterns (e) and (f) assume a model which has melsipurces for the AND-
join input flows. This may result because the model includesenthan one starting
events and one of them is the source for some input flows to Mig-30in (c.f. Figure
4.3 (e)), or one of the AND-join inputs sources from an XORtg3] (c.f. Figure[4.5
(f). In the case of multiple independent start events, iy im@ppen that one of the start
events only is activated and then the AND-join gateway wat gnly one of its input
flows and will be waiting for the other input while they will harrive (as their source
event has not been activated), then a deadlock occurs.a8iynivhen the input flow for
the AND-join is coming from an XOR-split gateway, that meainsre is a possibility
that the XOR-split activates another output flow and leakiesAND-join waiting for it
input which results in a deadlock situation.

d1

tax port <5

Prepare tax
Report

a3 ~. No of
-~ e
requesis
'

.-

a2

92 Prioratize
Requests

al Review tax

Report

al

a2

send asking for
extra staff

Prepare no-tax
Report

tax Report

d2

no-tax Report

@) (b)

Figure 4.6: Semantics Deadlock Examples

Domain-specific deadlock pattermsay occur as a result of not considering some
information (e.g. the data objects status change, the gagmassions and their control
values) used in the real process in the model design. Thesbtiomal restrictions are
normally represented in our formalization as domain-dpeniles (c.f. Sectioh 3.41.7).

In case of having restrictions on the execution of objects, & activity which has to

100

Chapter 4 Semantics Verification 101

wait for a report to be available and this report will neverbailable (Figuré 416), then
a deadlock can occur. The activity will be waiting in a statiéhaut a possible state
transformation (i.e. an applicable rewrite rule). For ep@nin Figure[4.6 (a) an ac-
tivity Revi ew t ax Report is waiting for a documerttax Report which will never be

ready. If we represent the process state by the active ¢fjaticontains and ignor-
ing other inactive objects, we can represent the rewritgsster the process in Figure

A6 (a) as follows'S; : (g1, active) % S, : {(ap, active), (dy. initial)} 1 S5

{(ap,active), (da, created } XORmergy S (g2, active [5e9, S {(ag,active), (dy,initial) }
2 S where we represent the object identifier (@.gl in Maude mode) asaf) in math
mode.

The application of ruléSeq (introduced in Section 3.4.2) is represented as:
{(X,active, (Y, inactive)} 2% £ (X inactive, (Y, active)}

with the left-hand side term as the set of states of the abputticipating in the rule, and
the right-hand side term as the set of the resulting objéates The rules names over
the rewrite arrows are the semantic rules labels from Ch&wwd the domain-specific
rules (i.e.[DSR1, [DSR2, and[DSR3J) are interpreted as below:

{(a1,active), (d, initial) } DSRa, {(ay,active), (di, created },

{(as,active), (di, created } m {(as,active), (di, reviewed},

{(ag,active), (dy, initial) } DSRa, {(ag,active), (dp, created }.

Another possible deadlock situation occurs when a gatewaydghas fed with a
value which is not defined in the designed expressions. Fample, in Figuré 416 (b),
the XOR gateway guard checks for the number of certain reg(des of requests),
if the number is less than five, then the requests will be jpized, or if they are greater
than five, the responsible is askedsend for extra staff to assist, then they can
prioritize requests. The deadlock happens if the number of requests is exactly fiv
in which case, there is no defined processing for such valdetrenprocess terminates
unsuccessfully% : (g1, active [XORsplY S). The BPMN semantics defined in [68]
defined an exception to be attached to each split gatewagethat the guard condition
did not evaluate to a defined value, i.e. all the guard camubtfailed to evaluate tioue.
This type of exceptions is essential to prevent such deksloc BPMN models. In

sectio 3.4.2 and Sectign 3.4.2, this type of exceptioni thi¢ gateway semantics has

101

Chapter 4 Semantics Verification 102

been defined.

. -

wrap the
gift

.
.
N
N
s
\
dipatch the]}
gift H
h
'
'

'
add a gift |
card

.

Figure 4.7: Lack of Synchronization Example

A related BPMN control flow error is the lack of synchronipati This happens
as a result of having a structural error in the BPMN model Wwtattows for an object
to be activated (executed) more than once without desigpgser, i.e. an XOR merge
gateway that merges the flow splitted by an AND fork. For exiamip Figure[4.7, the
parallel activitiesw ap the gi ft andadd a gift cardwill be executed concurrently,
however, the first to finish (assume it is actiwiyap t he gi ft) will activate the XOR
merge gate and then activate the actiditgpat ch the gi ft as the XOR merge needs
one active predecessor to be activated. At the same time thibeother activityddd a
gi ft card)is completed, it activates the XOR merge gateway again laenl éctivates
the activitydi spat ch the gift. This means the gift will be dispatched twice, which
is not a desired procedure for the business process. Tetlynibe synchronization of

the parallel activities failed at the XOR merge gateway.

4.2.2 More Deadlock Patterns with OR gateways

During our work for formalizing the BPMN models and the aboNscussion about the
block structure for the gateways, we found out that thereo#trer patterns which can
cause deadlock to occur in the models including OR gatewlaythis section we will
focus on the deadlock situations which the OR gateway maymdvied in. Figuré 4,8
illustrates these patterns graphically. The first patterh Figure[4.8 (a)) describes the
situation where the activity will need two input flows in order to be active. While thisis
not allowed as a well-formed BPMN model, having the OR gajemway seems to make
it a possible implementation, however, it is not as discdisdmve in Figuré 414 (d).

The second deadlock pattern in Figlre 4.8 (b) representtdbick situation in an
OR gateway block, which has been already explained in Figudréb). According to the

102

Chapter 4 Semantics Verification 103

(b) (©)

Figure 4.8: More Deadlock Patterns

OR merge gateway semantics, the gateway is activated whageites the same number
of activated input flows as its corresponding OR split gatea@ivated. In case that the
two output flows are activated by the split gateway, that méha merge gateway will
wait for two incoming flows while it will receive only one fromutside the block and
unsuccessfully terminates.

The third deadlock pattern in Figure #.8 (c) in case the exaeglow is merged
with the normal flow using an OR merge gateway. Again the $igelcsemantics for the
OR merge gateways assumes the block structure, and thgatgivay is preceding the
merge gateway in execution. In this case, the process walllidek as the OR merge
gateway will be waiting for the information from its corresuling OR split gateway,

which is missing already from the model.

4.2.3 Relating to The Proposed Formalization

In our proposed formalization, we tried to restrict the tesg models to avoid the dead-
lock patterns discussed above. Tdble 4.1 summarizes tlilfodkagatterns and relate
them to significant parts of our formalization. Refer to Digiim [3.3.2 and Section 4.1
for more details on the gateways block structure as a syatamtdition for well-formed

BPMN models. Pattern-5 is for multiple sources deadlock typerefore, a well-formed
BPMN model has only one start event, which avoids the first @ashis pattern. More-
over, the gateways are required to be represented in a btogoktige, i.e. each split
gateway has a companion merge gateway of the same type. édtigction prevents
the deadlock states in Pattern-1, Pattern-2, PatterneBPattern-6. The condition ex-
plained in Sectio 411 for AND join gateways, that it only epts input flows from

outside the block is aiming at avoiding Pattern-4. For Patfe the well-formed BPMN

models definition restricts the activities to have only areming flow and one outgoing

103

Chapter 4 Semantics Verification

104

Table 4.1: Deadlock Patterns and The Proposed Formaleatio

Pattern No. Figure Syntactic Condition
Pattern-1 ﬂé ------ %I}- Block structure (same type gateways)
Pattern-2 ﬂé%&- Block structure (same type gateways)
Pattern-3 é%—» Block structure (same type gateways)
Pattern-4 ‘)@_, Block structure (AND feedback conditior
Pattern-5 8: W BPMN models, Block structure
Pattern-6 »Qtt:?_) Block structure (same type gateways)
Pattern-7 3 o W BPMN models, Block structure
Pattern-8 Block structure, Domain-specific Rules
Pattern-9 %* W BPWN models, Block structure

)

flow, which will avoid such pattern. Pattern-8 is avoidablighwf the modeller defines

domain-specific rules that manage the flow in the feedbagktsiins. Finally, Pattern-9

is avoidable through the condition in the well-formed BPMMdels that exception flow

is merged with the normal flow using only an XOR merge gateway.

In the next section, we are formally proving the soundnesiseivell-formed BPMN

models based on the classical soundness definition in [23, 10

104

Chapter 4 Semantics Verification 105

4.3 Soundness

Soundness of workflow models has been proposed as a cogeanirion verifying
different BP formalizations (e.g. [92, /55, 102]). Howeulere are many different no-
tions of soundness in literature (the interested readereafanto [95] for a comprehen-
sive discussion on workflow soundness and its decidabil@y3cussing the Petri net’s
formalization for workflow models in [92], the authors definthe soundness as a cor-
rectness criterion for the resulting workflow models. Thedinition was referred to as
the classical soundnedater in [95], where the authors distinguished among sifedif
ent notions of soundness in literature. Generally, a bgsipeocess model is sound if it
can successfully terminate without left over active olgextd all the model objects can
be activated in one of the execution traces. The model sHmifdee from errors, e.g.
deadlocks, which cause unplanned termination of the eixatut

In [81,193,100], the sound model is free from control flow esroThe soundness
can be defined as freedom of deadlock and lack of synchriomizafs we explained,
informally, in Table[4.1l in Section 4.2.3, the proposed vietmed BPMN model can
guarantee deadlock freedom and provide mechanisms to laakdf structural syn-
chronization.

We are going to use a definition similar to the definitionlin,[2R2] for classical
soundness to prove that well-formed BPMN models are sounst, e update our def-

inition of reachability; a state staf® is reachablefrom stateS; if there is an execution

path fromS; t0 S (i.e. S — Szﬂ

1We use the symbof> to denote a sequence of zero or more rewrite steps, the syﬁattol denote
a sequence of one or more rewrite steps and the synrqabm specify the rewrite rule is applied in this

step.

105

Chapter 4 Semantics Verification 106

Definition 4.3.1. (Sound) A W BPMN model is sound iff:

(i) [option to completgFor every stat&reachable from the start steffg there exist

an execution path leading from S to the end s&tee.VSe P(O)(Ss st s),

(i) [proper completionlf the end event is active, then all other objects are ivaat
the same process state (i.e. process in §aje.e.
(3(0id, Si0) € S(0ig = Objld(0) A ObjCid(0) = endEvent A s, = active)/A
—3(0ig, Sto) € S(0'ig = Objld(0’) A St € {active ready2bActive) Ao # 0)
=S=3,

(i) [no dead objecisThere are no dead objects in the model, i.e. it should be pos-
sible to execute an arbitrary object in the model in one orawdithe traces; i.e.
¥(0id, Sto) € S(3(0id, Sto) € S(S— 5 SASo # Sto) and¥(0id, Sdo) € S(3(0'id, So) €
S(S5 4 S ASdo # Sdo)-

For proving the soundness of the well-formed BPMN models witedefine two
models. The first is the behaviouk&l|BPMN model which is defined by adding the set of
rewrite rulesR representing its behaviour and the set of process 4@ The second
one is an extended behavioural well-formed model to extbedoehavioural¥ BPMN
model with a feedback sequence flgyeconnects the end object and the start object and
a rewrite rulery that re-activates the process after it is completed. Thefsgates for
the extended model is the same for the original model as nostesws are added with

the extension (i.eP(O) = P(O)).

Definition 4.3.2. (¥ BPM\p): A well-formedW BPMN behavioural modelW BPM\y) is
a triple (O,R,P(O)) whereO = (OST) is a well-formed BPMN model that contains
BPMN objectsOSand the set of their connecting flow transitiohsR = {rq,...,rm} is
a finite set of rewrite rules defined in rewrite the@®y andP(O) is the set of process

states for the model.

Definition 4.3.3. W BPM\,): LetW BPM\, = (O, R, P(O)) be a well-formed behavioural
model. An extended well-formed behavioural BPMN modBIBPM\,) is defined as a

triple (O,R,P(0O)) whereO = (OST U {tx}), R= RU {ry}, andP(O) = P(O). The
sequence flowy is added to link the end objeadd) with the start objectds) and used

106

Chapter 4 Semantics Verification 107

in the soundness proof and rulg is defined below to deactivate the end object and

reactivate the start object.

rl[rx] :
<< < X : endEvent | active : true ; ASl >,
<Y : startBvent | active : false ; AS2 > A >>
=> << < X : endEvent | active : false ; ASl >

<Y : startBvent | active : true ; AS2 > A >> .

We define two properties for the well-formed models which reeessary for the

proof; i.e. live and path-complete properties.

Definition 4.3.4. (Live Property). A W BPM\, model is live iff, for every stat&, there
is a stateS which is reachable in one rewrite steps c P(0)(3S € P(O)(3r € R(S-

S)))-

Definition 4.3.5. (Complete-Path Propertyz A W BPM\, model is path-complete iff it

has at least one complete execution

Given that the state space is the same for the mad8RrRVN, andW BPMN,,, therefore,
the extended execution patE® can be defined a8EP = cEP U {(S: =)}

For arbitrary well-formed BPMN model and the correspondrtended model, we
prove:W BPM\, is sound if and only if¥ BPM\, is live and path-complete.

First, we prove the if direction,

Lemma 1. If WBPM\, is live and path-complete, thé& BPM\, is sound.

Proof. LetS;, & € P(O), whereSs is a start state an®& is an end state.
S; can be rewritten into a staf in one rewrite step, anf: can be a result of rewriting
a states, in one rewrite step:
oS LN S and$, Tm, S.
.- WBPMY, is path-complete
. Jesed € EP(sourcdes = SsAtarget(es) = S)).
which meansS;,r1,S) and(Sh,rm, &) € EP.
.- WBPMY, is live
2Refer to Definitio 3.416

107

Chapter 4 Semantics Verification 108

-.¥SeP(0)(38 e P(0)(3r e R(S- 9))).

. for an arbitrary stat&(i.e. S¢ {S, S}), we have(S, 1y, S) € EP. (Definitiond3.4.5).
.. Sisreachable frongs (i.e. S *y S).

Applying the same induction step f&andS;, we getS: is reachable frons (i.e. s5
S)-

+P(0)=P(0)

-.¥SeP(0)(S = S5 S) — [Req(i)]

.- WBPMY, is path-complete

. Jesed € EP(sourcdes = SsAtarget(ed) = S)).

.S €P(O).

- P(0) = P(0).

.S e P(0).

" CEP =CcEPU{(S,Ix,Ss)} by definition,

from [Req()]: Ss = S, from end state%) definition (Definition 3.4.3),

.. (3(0ig, S0) € Sos(0ig = Objld(0) A ObjCid(0) = endEvent A s, = active)A
-3(0i4,Sto) € Sos(0ig = Objld(0') A S, € {active ready2bActivé) Ao # o) = Sos=
Se. — [Req(ii)]

.- WBPMY, is live

~.¥SeP(0)(3S € P(O)(3r e RS S))), R=rU{ry}

*.» R contains two types of the possible rewrite rules for a mad&8PM\,; one set of
rules contains the general behaviour rules for flow objE€)((discussed in Section
[3.4.2) and the other contains the domain-specific rulecalisifor data objectsijO)
(discussed in Sectidn 3.4.7).

. V(0id, Sr0) € S(3(0ig; Sto) € S(S—>¢ S ASto # Sto) aNdV(0ig, Swo) € S(I(0'id, Seo) €
(S5 4 S ASdo # Sao). — [Req(ii)]

From Req(i), Req(ii), Req(iii) and the Soundness definifafinition[4.3.1),

.. WBPM\, is a sound BPMN model. O

Lemma 2. If WBPM\;, is sound, thef¥ BPM\, is path-complete.

Proof. .- W BPM\, is sound
- VSeP(0)(S 5 S5 S). —[Req(i)]
if WBPM\, is not path-complete, then

108

Chapter 4 Semantics Verification 109

—Jeses € EP(sourcées = SsAtargetes) = S,).

this contradicts the assumption and Req(i) in Definifion®.®@hich assumes that every
state reachable froi®; belongs to an execution path$e.

.. itis not possible that¥ BPM\, is sound and not path-complete at the same time,
So, if WBPM\, is sound, then it is path-complete.

ButcE? = cEPU{(S,rx,S)} by definition.

JCEP € Opgnd Jes es € CEP(sourcges = SsAtargetes) = S)).

.. WBPM\, is path-complete.

.. if WBPM\, is sound, theA¥ BPMY, is path-complete. O

Lemma 3. If WBPM\, is sound, thef¥ BPM\;, is live.

Proof. .- W BPM\, is sound

.. WBPM\,, is path-complete — [Lemmnid 2]

. Jeses € CEP(sourcées) = SAtargetes) =).

.- W BPM\, is a well-formed BPMN model by definition

. 35,5 € P(O).

- P(0) = P(0).

-.3%,S € P(O).

. W BPM\, is sound

- ¥SeP0)(Ss 5 S5 S), — [Req(i) in Definition 2.3.1]
" CEP =CEPU{(S,IxSs)} by definition

- ¥SeP(0)(3S € P(O)(3r e R(S— 9)))

.. WBPM\, is live — [Definition[4.3.4]. O

Theorem 1. A behavioural well-formed BPMN modeW BPM\,) is sound if and only
if (WBPMY,) is live and path-complete.

Proof. It follows directly from Lemmdl (the if direction), and fromemmal2 and
Lemma.3 (the only if direction)
.. W BPM\, is sound if and only i#¥ BPM\;, is live and path-complete. O

We have formally proved that the well-formed BPMN models smand based on
the classical soundness definition for workflow models [82]the well-formed BPMN

models are deadlock-free and do not suffer from lack of sgorahation.

109

Chapter 4 Semantics Verification 110

4.4 Chapter Summary

In this chapter we discussed the structural and modelfspeciors that leads to dead-
lock situations and hence unsuccessful termination of BBdets. A comprehensive
view on the BPMN models possible structural and semantmr&mvhich may lead to
unsuccessful termination of process through the probldrdsadlock and lack of syn-
chronization was introduced. A relevant set of deadloakasidns in which OR gateways
are involved are discussed.

Where the soundness can be defined as the absence of deadfid¢ésk of synchro-
nization, the proposed semantics showed, informally, Wedl-formed BPMN models
are sound. While following the classical soundness dedimjtive formally proved that
well-formed BPMN models (W-BPMN) are sound. These two rssallowed us to in-
troduce the application side of the semantics in the nexptenaA CMMI compliance

checking problem is introduced and we propose a solutioit ting model checking.

110

Chapter 5BPs Compliance Checking

Chapter 5

Business Processes Compliance

Checking

The problem of checking BPs compliance with certain stashdawdels or requirements
as a model checking problem (Section]5.1) has three mairedgais: first, the BP
modelling language discussed in the previous chapternsietioe formal mapping of re-
quirements into property specifications (Secfion 5.2),third, the checking procedure.
In this chapter, we provide the details of the CMMI-CM2LTLopedure and Model
Checking procedure illustrated in Figurell.1 where the sfiegthed BPMN models are
checked against the formally represented CMMI-CM requéeets. The requirements
are mapped into LTL properties through the use of compligratéerns|[33] (i.e. in-
specting the second challenge) in Secfion 5.2.3. Basedeofati that Maude has its
own LTL model checker and the reasons of choosing model ahgdkchnique men-
tioned in Chapter]l, we use the Maude LTL model checker asdimpliance checking
procedure (i.e. tackling the third challenge). In Subsedh.1.2 two examples are in-
troduced; (1Rel ease Basel i ne example introduced in Chapter 3 and EX, a CM
process based on IBM CCM Process (Tivoll) [3]. Finally, thedal checking results are
discussed in Sectidn 5.3.

111

Chapter 5BPs Compliance Checking 112

5.1 Compliance Checking as a Model Checking

Business process compliance checking has been in the focosfe than two decades
alongside with the rise of software quality assurance aodgss improvement mod-
els (e.q.[64, 80, 49, 32/ 6]). The urgency of studying sudfifigation approaches is
twofold; first, it helps the company to grow based on a solfcastructure BP which is
flexible enough to cope with the improvements over time, sdci is shown that busi-
nesses whose BPs are not compliant with some standards$atiegs or quality mea-
sures may experience some level of failure (e.g. Enron sdp{ff]. As discussed in
Section 2.3.2 and shown in Table2.2, the CMMI-based compéi@hecking approaches
(i.e. appraisals) can be expensive in terms of all kinds et {ice. time, effort, labour,
and money). This is due to the checking being dependent oim@nide evidences in the
SME that proves that it is following certain practices viadtng documents and inter-
viewing employees to reach the affirmations and artifactsipg these aspects. Having
awell-designed BP will allow the appraisal team to step Bohand start from the actual
implementation of the process and will not spend the timesveng the designed pro-
cesses. The output of the compliance checking is supposgdadhe formal evidence
for a business process that it obeys the legal, safety, mafgonal and/or technical re-
quirements of the reference standards and regulationshoWws how the company is
flexible and adaptable in the market in a way that guaranteassistainability.

Starting from a designed BP, and a set of textual compliaageirements, the prob-
lems becomes to check if the BP is compliant with (gatisfie} these requirements.
As we already have formalized the well-formed BPMN model€haptef B, then the
requirements should be formally represented into formaperties, and hence could
be checked. This structure of verification approaches issnapplicable with model
checking (refer to model checking explanation in Sedii@a3d). Therefore, this compli-
ance checking problem can be dealt with as a model checkotdem (e.qg.![49, 32, 6])
where the model checking technique can be used to automaterdduction of such
formal evidences based on the input BP model and properties.

Having the fact that model checkers suffer from some linutes, the majority of
them are not likely to affect the validity of the proposed ieggeh. In the following

points we discuss the known model checking limitations dritlay are affecting our

112

Chapter 5BPs Compliance Checking 113

approach or not.

1. Model checking does not provide correctness proofskerhe theorem proving
techniques/ |9, 46]. The application of model checking ondhdoes not require

automatic theorem proving. The core task is to check if a BRleheatisfies a

property.

2. Completeness of the checked system is not guaranieeg][2sAahe properties be-
ing checked can only be decided. However, other uncheclamepres cannot be
judged. Therefore, the proposed compliance approachgediie mechanism to
choose the relevant properties which are in a process aoteeti. This produces
convenient results to the compliance checking problem thgmeed to know only

the satisfaction status.

3. In case of infinite-state systems, abstraction is neexlbd applied to the original
system to get a relatively finite-state model to be checkdwerd is still a possi-
bility that the abstraction process is not accurate enoagbpresent the original

model [9, 46| 20]. Moreover, abstractions needs expertstiopn them,

4. State-explosion problem [19] forms an issue for modetkimg big models. In
some models, when the number of the states increases, th@esaiy of the ver-
ification procedure used in the model checker increasess]anéking it impos-
sible to be operated with computer memary| [19]. There arehaust that have
been developed to overcome this problem (e.g.![71, 36]) elvew realistic mod-
els, possibly BP models, may still suffer from it. There i8l $he fact that a
SME'’s BP is usually divided into (possibly cooperating) dnpaocesses which
model different aspect of work being conducted in the SMErtmipce a product
or a service. Moreover, the compliance requirements assified into process
areas to facilitate the focus, applicability and organarabf the related require-
ments for a specific BP area. Therefore, on checking the Bie(apliance with

requirements, we do not expect models to suffer from staeespxplosion.

113

Chapter 5BPs Compliance Checking 114

5.1.1 Predicates

The set of predicatds is used for defining the queries about the model (i.e. reptege

the properties). Here we present the predicates that weniieel properties afterwards.

e execut ed: for the active state of an activity (i.executenameo)) = true iff
3(0ig,S0) € S(0jg = Objld(0) Ao € FO). The function fame: Oid — String) is
defined to take an object identifier and returns its name. Taedd definition for
the function specifies that the function takes an object nangeretrievesrue in

case it is executed in one of the process states.

op executed : String -> Prop .
eq (CVcol * << < X: K| name : PNl ; active : true ; ASl > A >>)

| = executed (PN1) = true .

e st at us: for the data object status. Data objects change theirssthiting the
process execution, and sometimes the status change carebselance of certain
execution steps (i.estatugnameObjld(0)),Sq40) = true iff 3(0ig, Sgo) € S(0ig =
Objld(0o) Ao € DO). In the Maude definition below, the operatdrat us takes a
data object name and status, then retdrasif the state space contains a state in
which this data object has this status (DéS).

op status : String DOstatus -> Prop .
eq (<dNL: DT | name : Sl ; status : DOS; ASl > A
| = status (S1, DOS) = true .

e condi ti onGuar d: for a control value which is used in the process execu-
tion (i.e. if a certain decision is made during the processcetion). The op-
eratorcondi ti onCuar d takes the control value and returtige if a split gate-
way has it as its assigned control value (i.e. the correspgnguard expres-
sion evaluated to true). Letv be a control value for some decision gateway
objecto € G, thenconditionGuardcv) = true iff 3(0i4,S0) € S(J0 € G(0jg =
Objld(0) A so = activeA cv € controlValue$o)). The function ¢ontrolValues
Object— ControlValug takes the gateway object and retrieves its assigned con-

trol values.

114

Chapter 5BPs Compliance Checking 115

op conditionGuard : Control Value -> Prop .

eq << < Gl : xsplitgate | controlValues : (CVvsl .. CVs2) ; ASl > A >>
| = conditionGuard(CVsl) = true .

eq << < Gl : osplitgate | controlValues : (Cvsl .. CVs2) ; ASl > A >>
| = conditionCGuard(CVsl) = true .

e Thef al se case for the predicates propositions is defined as olleerwise

equation.
eq TO|= PR = false [owise] .

For example if the property requires that an object with nafiielease Baselines")
is being executed in a certain state, then the unary preceatut ed will be used as
follows: execut ed(" Rel ease Basel i nes"). As a binary predicate example, we use
st at us, which takes the data object name and status. For the daetQlif with a sta-
tusopen the predicate should bet at us ("CR', open). We use the introduced predi-
cates in formalizing the properties in LTL as will discusbetbw. This is to demonstrate
the applicability of the proposed business process fomatiin in checking their com-
pliance with standard process improvement requiremegt GMMI).

The state predicates are typically not related to the seosanitthe business process
models, however, they represent certain states of thersygpecified by the modé¥
and they are used to specify some properties [20], henceatteepart of the property
specification. For this purpose, the modMePREDS is designed tgrotectthe well-
formed BPMN semantics (in moduB®M\- SEMANTI CS) and toincludethe Maude’s pre-
definedSATI SFACTI ONmodule. The later defines the satisfaction relation sercsfar

a model and LTL properties.

mod M PREDS is
protecting BPM\- SEMANTI CS .
i ncl udi ng SATI SFACTI ON .

The moduleSATI SFACTI ON, below, defines the satisfaction relations (operdter),
wherest at e andPr op are unspecified sorts adol is for the sort of boolean values

which will hold the answer from the property checking. Thegtor has the attribute

115

Chapter 5BPs Compliance Checking 116

frozen which indicate that are no sub-terms included into the team loe evaluated

using this operator.

f mod SATI SFACTION i s
protecting BOOL .
sorts State Prop .
op _|=_: State Prop -> Bool [frozen] .

endf m

In Maude’s notation, the model checker uses the followingrmand to check if the

property is satisfied in the model.
reduce i n (ModuleName: (nodel Check(InitialState), (LTLproperty)

The commandrodel Check takes the initial state of the systemm{ti al), where the
process ignactiveand the LTL formula for the property. The model checker ismthe
perform an extensive state space search for the negatidre @roperty. If a matching
for the negation is found, then it returns one trace of statesh starts by the initial state
and ends with the state where the property is violated (ceuaterexample). Otherwise,
it returnstrue indicating that the available finite state space does ndtdiecany state

which violates this property.

5.1.2 BPs Model Examples (System Specifications)

Well-formed BPMN models introduced in Chapiér 3 represkatstystem specifications
for the compliance problem we address. Recall the exampéedle Baselines" which
was introduced in Chaptel 3 with Figurels.1. The model reprissa sub-process of the
CM process in a software company. It acts as the model sps®ins specified by the
rewrite theory®_ earlier in Chaptelrl3, while the property specificatignare modelled
from the CMMI best practices [22] as explained later in Suth.2.

Another example of the CM process (EX2) is the one repredentd-igure[5.2,
which is our interpretation for the IBM Change and ConfigiaiManagement in Tivoli
[3]. We used the IBM online materistor the IBM CCM process included in the
Tivoli tool to produce the BPMN example below. The Change @odfiguration Man-

agement process contains two sub-procesdmiat e Cl s sub-process andudit Cl's

Documentation can be found in: [3]

116

Chapter 5BPs Compliance Checking 117

Retrieve CI Change CI Document CI |_>| Close CR

al
Authorized?
t1 Check YES 92
Authorization
o1 Cldoc.

NO

N

B
N
A
[i :

Authorization

i YES
List Choose CR Open CR

U MoreCRs?

O DO

Cldoc. Cldoc. CR

MoreCRs?

authorized
CR?

Ba;’ne Ba;'ne
1 L}
1 N
Release Make baseline
Baseline available to read @

Figure 5.1: EX1 : Release Baseline Model

sub-process. The first starts with validating a receivechgbaequestr. If it is valid,
theCRis open and the included changes are prioritized, the vel@ti doc is retrieved
and updated, then tH&R is closed. Otherwise, if th€R is not valid, then it is simply
closed. In the second sub-process,Aadi t document is open, the stakeholders are
informed of either the change or invalidity of the requespob this, the audit is inves-
tigated for variances (e.g. inconsistencies). On actingasiances, the relativé doc

is retrieved and the variances are specified. If the valilaédues are consistent with
the actual values, then another check is conducted if thiggeoation item is protected
then a problem in audit is reported, or if they are not pr&gcthen the changes in the
Cl doc are documented. In both cases, a repott on-vari ance Report is created.
After that the audit document is reported and closed. Rinadlthe main process, the
Basel i ne document is released.

The example EX2 is modelled in BPMN in Figure [5.2. The dataectsj status
changes are as follows: change request docun@@nti(nitial -> open -> cl osed),
the audit document which is created at run tileel{(t: open -> cl osed), the baseline
document which is created at run tinBagel ine: initial -> rel eased), the config-
uration item documentC(doc: initial -> inUse -> updated -> docunented), the
variance handling document which is created at run tifge- on- Vari ance Report:

created). The full Maude representation and the corresponding dosyecific rules

117

8T1

O% Update ClI > Audit CI —>| Release Baseline

ezl x|

CR Audit Baseline
[open] [closed] [released]

Update Cls Subprocess
No

AuthofizedCR?

Validate
CR

Close
Audit

Prioritize Retrieve Cl Change CI Close CR
Yes Changes
CR
[open]
Cl doc Cl doc CR
) [inUse] updated losed
Audit Cls subprocess [up | [closed]
No
- varianges? inconsistent
Create Inform Investigate
Audit stakeholders Results
ValidateglvsActual?
Yes| verify CI Determine Report Report
existence variances Problem in Results
Actual CI
Audit
[open]
ProtectedCls?
Document Act-on-Variance
Cldoc R
Cl eport
[updated] [created]
Cldoc
[documented]

Figure 5.2: EX2 : An interpretation for IBM CCM Process

Audit
[closed]

Burosyd aoueldwo) sdgg Ja1deyd

81T

Chapter 5BPs Compliance Checking 119

(DSR) for this example is given in the attached Maude cods (e AppendikA for

details). We will refer to this example &2 in the following discussion.

5.2 Property Specifications

In this section, we introduce the Linear Temporal Logic tiotg in Sectioi 5.2]1, which
we use in defining the properties later. The CMMI Configuratibanagement process
area requirements are formalized in LTL in Secfion 5.2.3psing an application of the
BPMN semantics introduced in Chaplér 3 and the predicatisedein Sectiori 5.1]1.
The approach uses Maude’s LTL model checker to perform tingptiance checking
after that in Sectioh 5l 3.

In order to formalize the mapping from the CMMI requiremeini® LTL proper-
ties, we are using the Compliance Request Language (CRL)viB2re the compliance
constraints are represented ciympliance patternbased on the property specification
patterns for finite-state verification in_[29]. The complarpatterns are classified into
four sub-classes of patterns, namatpmic resource composite andtimed As long
as we are not considering the timed (i.e. ititnedpatterns) and collaboration (i.e. into
resourcepatterns) properties of BPs in this stage of formalizatiea will focus on the
atomic and composite patterns in mapping the CMMI requirgsimto LTL properties
as will be discussed in the Sectidns 512.3. First, we inttedhe LTL in Section 5.2]1,
and second, the atomic and composite patterns in Séctighfblbwed by the mapping
rules from atomic patterns to LTL. Third, in Sectibn 512.8e tCMMI properties are

formalized using the compliance patterns and then mappged.irL. properties.

5.2.1 Linear Temporal Logic (LTL)

Temporal logic is used to specify properties related to itgfinehaviour; e.g. a behaviour
that depends on certain object state occurrence or disapueathrough the traces. It
allows specification of properties such as safety prope(@asuring that something bad
never happens) and liveness properties (ensuring thattemmeyood eventually hap-

pens). There are different temporal logics that are usedasan about temporal prop-

erties for systems [18, 96]; we focus on linear temporaldd@B, |52], because of its

119

Chapter 5BPs Compliance Checking 120

intuitive appeall[96,.6, 32], widespread use, and well-tyed proof methods and de-
cision procedures [20].

Although they are expressively incomparable as they reptesvo distinct views
of time, an interesting comparison between Linear Temgdargic (LTL) and Compu-
tational Tree Logic (CTL) has been introduced |in/[96]. Thedstshows that on the
verification side, CTL is more difficult than LTL due to the hching nature of CTL.
However, the main advantage of CTL over LTL is its computaiacomplexity [96, 32].
In [96], the author argued that this advantage for CTL isdalider worst case scenarios,
which are unlikely in real life applications. In [32], thethor provided a comparison
between different logics used in defining the compliancaiiregnents and argued that
using LTL is preferable agreeing with [96] and in order to i@s$d the usability concern
of LTL, they introduced the Compliance Request LanguagelL{JB2] as a high-level
pattern-based specification language that enables theaetospecification of legal and
organizational compliance requirements. In addition,approach in [6] was designed
to use the Past Linear Temporal Logic (PLTL), i.e. PLTL exi®the LTL to allow for
representing the past events, as property specificatigquéage beside representing the
compliance requirements patterns using a graphical qaegulage (Q-BPMN).

As we are focusing on the compliance problem, and due to theadoof compli-
ance requirements as CMMI which is more concerned with m®aBprovement more
than the legal and contractual aspect of the business, wegoamg to use the LTL as
the property specification language. Moreover, Maude Isaswin LTL model checker
which accepts Maude modules as system modules and LTL fasvad properties.

An LTL formula consists of: the atomic propositions (statdlsp € AP), the
Boolean connectors (like conjunction and negatiom), and two basic temporal modal-

ities (O or next) and (U or until).[9].

Definition 5.2.1. (Abstract Syntax of LTL) LTL formulae over the set oAP of atomic

proposition are formed according to the following grammjar:=T | L | p | d1 A P2 |
b1V | =0 | O | 01Ud2 [1 — d2| 06 [LI | 91Rp2 | 91 W2 wherep € AP

Most of the LTL boolean and temporal connectives can be défiméerms of the
minimal set of connectivesI(, p, ¢, b1V ¢2, O, p1Ud2) as explained above. Some

temporal properties are:

120

Chapter 5BPs Compliance Checking 121

e Safety properties: something bad will not happen. For examp
O-(statug”CR’,closed A statug”CR’,open) specifying that for a change re-

quest CR data object status will not be open and closed aathe Eime.

e Liveness properties: something good will happen. For examp
Qexecuted’CheckAuthorizatioh), for specifying that Authorization checking will

eventuallybe executed.

e Fairness properties: if something is attempted arbitranfinitely often, then it
must eventually succeed, elg{statug”CR’,open — O¢statug”CR’, closed
to specify that whenever generally eventually a changeasigs open, it is gen-

erally eventually closed.

The goal is to check if the model satisfies each property byirspkhe satisfiability
relation (Equation 2]1) using Maude’s LTL model checkerthiis work, we use the LTL
to formalize the properties of the CMMI requirements in arecheck them against the

well-formed BPMN model representing the configuration nggamaent process area.

5.2.2 Compliance Patterns

Based on[29, 64, 33gtomic patternsre used to describe the requirements that involve
basic occurrence and ordering of BP elements, wdolaposite patternare used to en-
able nesting of multiple patterns, i.e. complex requiretsighrough the Boolean logical
operators (Not, And, Or, Xor, Imply, and Iff). For exampRCoEXxists Qoattern is an
Imply composition ofP Existsimplies Q Exists which indicates that the presence of
P mandates tha is also present, giveR, Q, S, andT as operands representing a BP
element, which is then put into a suitable predicate to thisdL TL formulae. Table 5]1
summarizes a relevant subset of the compliance patterredoged in [29] 33] and the
mapping from these patterns into LTL formulae whBr&), S, andT are operands that
indicate BP elements (e.g. activity, data object).

In Table[5.1, the following are occurrence atomic pattefissU niversalpattern
specifies thaP should always hold throughout the BP model, &l xistspattern spec-
ifies thatP must hold at least once within the BP model. The second sedtténns are

the order atomic patterns, and they appear in Table 5.R Bsecedes Qattern which

121

Chapter 5BPs Compliance Checking 122

Table 5.1: Compliance Patterns Mapped into LTL [29, 33]

Compliance Pattern LTL Formula

Atomic Patterns: Occurrence Patterns

P isUniversal[29] 0P

P Exists[29] OP

Atomic Patterns: Order patterns

P Precedes (29] QW P

P PrecedesS T) [33] (O(SAOQT)) —» (-SUP)
(ST) Precedes B33] | (OP — (=P U (SA-PAO(-PUT)))
P LeadsTo Q29] OP — 0Q)

Composite Patterns

P CoExists J33] OP — 0Q

indicates tha@Q must always be preceded ByP PrecedesS T) (or Chain— Precedep
pattern specifies that a sequenc&df must be preceded B, while P, (S T) Precedes

P (another form ofChain— Precede} pattern indicates th& must be preceded by a
sequence 08, T, andP LeadsTo Qpattern indicates thd& must always be followed by
Q. The third set of patterns are the composite patterns, vitnerer more of the atomic
patterns are used to represent them, sucR &oExists Qpattern requires that presence
of P mandates thaD is also present.

An expression built from compliance patterns and operamdsahdirect mapping
to LTL formulas [33]. The formal description of the CRL grarandefining its syntax
can be found inl[32]. The second column in Tablel 5.1 gives ef lidiea about the
mapping from the compliance patterns into LTL formulae whiéce used to formally
present the CMMI-CM requirements into LTL properties. |r thext subsection, we
introduce a novel mapping from the CMMI-CM requirement®ilfL formulae through

the compliance patterns introduced in this subsection.

122

Chapter 5BPs Compliance Checking 123

5.2.3 CMMI-CMin LTL

In this subsection, the CMMI Configuration Management (CMBM) process area re-
quirements are interpreted using the compliance pattetnsdiuced in Sectionh 5.2.2,
and then mapped into LTL formulae according to the mappipgesented in Table 5.1.
CMMI-CM has three specific goals (i.e. SG1, SG2, and SG3) amdrsspecific prac-
tices (i.e. SP1.1, SP1.2, SP1.3, SP2.1, SP2.2, SP3.1, &#d)SHhe requirements
considered below are the sub-practices under each spewititqe and acting towards
fulfilling one of the specific goats The numbers in the parentheses are references to
the source in/[21], for example, (1.2.3) refers to the firgcsiic goal, second specific
practice, and third sub-practice in CM Process Area. In tilewing, the CMMI-CM
requirements are categorized according to their specifictise and addressing related
elements in the model.

In Table[5.2, a subset of the sub-practices under SP1.12SBP3.1 and SP3.2
which are related to the Cl document statuses in the procesa@delled using compli-
ance patterns and then mapped into LTL formulae. The firsbfsétese requirements
specifies theexistenceof a list of activities regarding identifying the CI by selieg
them based on pre-defined criteria, assigning them IDs,ifgpeg their key feature,
when they should enter the Configuration Management Systéns], the stakeholders
and owners involved, and define the relationships amongxiséireg Cls. Therefore,
they are represented usiBxistspattern for each one of them with the conjunction of
their existence predicates. The second set of requirenegptains the need to docu-
ment the Cls every time they are used, which is modelled us&zglsTopattern. The
third set of requirements specifies that each CI includederbiaseline should be recog-
nizable (i.e. documented into the CMS). TBeExistspattern is used here to emphasis
on the necessity of the existence of both operands, i.e.dbendented Cl and the ac-
tivity of releasing baseline. Finally, the fourth set of giaes specifies the ability to
retrieve and change Cls before they are documented. Therdfeey are represented
using theChainPrecedepattern to identify that the Cls are retrieved, changed had t

documented.

2More details about the CMMI-CM can be found in Apperidix B, whee attach the CM section in the

CMMI-DEV 1.3 document[21] for the reader reference for takesof making this thesis self-contained.

123

Chapter 5BPs Compliance Checking 124

Table 5.2: CMMI-CM CI Requirements mapped using compligoeiterns

CMMI-CM Requirements Elements Involved

(1.1.1) Select Cls based on the pre-defined criteria. | IdentifyCls

(1.1.2) Assign unique identifiers to Cls. AssignClids

(1.1.3) Specify the important characteristics of each CEpecifyCharacteristics
(1.1.4) Specify when each Cl is placed under CMS. | SpecifyDate

(1.1.5) Identify the owner responsible for each CI. IdentifyOwners

(1.1.6) Specify relationships among CI. DefineRelationships

Pattern-based Expression IdentifyClsExists A AssignClidsExists A
SpecifyCharacteristicExists A SpecifyDateéxists A ldenti fyOwner€Exists
A DefineRelationship&xists

LTL(1) : OexecuteddentifyCl9 A QexecutedfssignClid$ A

Qexecuted pecifyCharacteristigsn Qexecutedd pecifyDatg A
QexecuteddentifyOwnery A QexecutedDe fineRelationship$

(2.2.3) Check in and check out Cls in the CMS. Cldoc:inUse

(3.1.6) Revise the status of each CI. Cldoc:documented

(3.2.2) Confirm that CM records correctly identify Cls.

Pattern-based Expression (CldoginUse)LeadsTo(Cldogdocumented)
LTL(2) : O(statusCldoginUse)— {statusCldocdocumented)

_ _ Cldoc:documented
(3.1.1) Record CM actions so each Cl’s status is known.
ReleaseBaseline

Pattern-based Expression (CldocdocumentediCoEXxistsReleaseBaseline

LTL(3) : OstatusCldocdocumented)s ¢executedReleaseBaseline

(1.2.2) Store and retrieve Cls in a CMS. RetrieveCl

(1.2.5) Store and recover archived versions of Cls. | ChangeCl

(1.3.3) Document the set of Cls that are in a baseling. DocumentCl

Pattern-based Expression (RetrieveCJChangeC) ChainPrecede®ocumentCl

LTL(4) : O executedpocumentC) — (—executedDocumentC) U (executedRetrieveC)

A —executedDocumentC) A O(—executedDocumentC) U executedChangeC))))

124

Chapter 5BPs Compliance Checking 125

In Table[5.3, a subset of the sub-practices under SP1.23%Adl. SP2.2 which are
related to obtaining authorized access before releasisglibas. The requirements are
represented using compliance patterns and then mappddiibformulae. These prac-
tices specify the necessity of having the appropriate aisthad access in order to be able
to create or release the Cls baselines. Therefore, theg@aresented using th&recedes
pattern to identify that the Cls baselines are created easeld only if the appropriate
authorized access is granted. The second set of requirsrspetifies that authoriza-
tion to change Cls is followed by being able to share the mftdion that a Cl is being

used/updated in the CMS. Hence, tleadsTgattern in used to model this requirement.

Table 5.3: CMMI-CM Access Requirements mapped using canp patterns

CMMI-CM Requirements Elements Involved

(1.2.1) Establish a mechanism to manage control levels.| Authorized?,YES
(1.2.3) Provide access control to CMS. ReleaseBaseline

(1.3.1) Obtain authorization before releasing baselines.

(2.2.2) Obtain authorization to enter changed Cls into CMS.

Pattern-based Expression (Authorize®:YES)PrecededfkeleaseBaseline

LTL(5) : — executedReleaseBaselin&V conditionGuardfuthorize® : "YES")

Authorized?,YES
(1.2.4) Share and transfer Cls in the CMS.
Cldoc:inUse

Pattern-based Expression (Authorize®:YES)LeadsTo(CldoginUse)

LTL(6) : O(conditionGuardfuthorize®, "YES") — {statusCldocinUse))

Table[5.4 presents two subsets of the sub-practices unde8,Sihd SP3.1 which
are related to baselines. The first set of requirements isid¢enng that documenting
the Cls into the CMS must exist and releasing the relatedibasxists. The second set
of requirements in the table refer to the fact that the relédmseline should be made
readily available for stakeholders. The requirements epeesented using compliance
patterns and then mapped into LTL formulae. Therefore, tisé $et are represented
using theCoExistspattern to identify that the documenting Cls mandates tleaseng

of the updated baseline. For the second set of requirentbetsgadsT gattern is used

125

Chapter 5BPs Compliance Checking 126

to specify that releasing a baseline should be followed blinggit accessible for the

relevant stakeholders.

Table 5.4: CMMI-CM Baseline Requirements mapped using d@mge patterns

CMMI-CM Requirements Elements Involved

(1.3.2) Release baselines only from Cls in the CMS. ReleaseBaseline

(3.1.3) Identify the version of Cls in a particular baseline| DocumentCls

Pattern-based Expression (DocumentClsCoExistsReleaseBaseline

LTL(7) : OexecutedDocumentC) — QexecutedReleaseBaseline

(1.3.4) Make the current set of baselines readily availableMakeBaseline
(3.1.2) Ensure that relevant stakeholders have accesstg @vailable

(3.1.5) Specify the latest version of baselines. Baseline,released

(3.1.4) Describe differences between successive baseline

Pattern-based Expressior(Baselinereleased).eadsToMakeBaselineAvailableToRedad

LTL(8) :O (statusBaselinereleased)— ¢ executed{lakeBaselineAvailableToRepd

In Table[5.5, four subsets of the sub-practices under SBP2,2, and SP3.2 which
are related to the change requests (CR) are mapped. Theefirspecifies that each
opened CR should be closed later in the BPs. This is modedied the patterheadsTo
and mapped into the corresponding LTL formula. The secohdfsequirements in the
table refer to that releasing baseline must always be peecby validating the CR as
an authorized CR. It is modelled usiRgecedegattern. The third set of requirements
represents the necessity of prioritizing the available ,Gi&l hence, modelled using
Existspattern and mapped into the LTL formula shown in the tablee fiimal require-
ment specifies that opening a CR leads to investigating thenaes of the updated Cls.
Therefore, thé.eadsTgattern is used.

In Table[5.6, a subset of the sub-practices under SP1.22%RAd. SP3.2 which are
related to the audit document is modelled. They are spegfthat an audit document
should be tracked from opening until closure in the CMS. Tinditanormally contains
information documenting, evaluating, and confirming thes@tus in the CMS. The
audit requirements are represented udiegdsTopattern and then mapped into LTL

formulae to identify that the an audit document should beeticafter it is opened.

126

Chapter 5BPs Compliance Checking 127

Table 5.5: CMMI-CM CR Requirements mapped using compligratéerns

CMMI-CM Requirements Elements Involved

(2.1.1) Initiate and record CRs in the CMS. CR,open
(2.1.5) Track the status of CRs to closure. CR,closed

(2.2.1) Control changes to CRs in its lifecycle.

Pattern-based Expression (CRopen)LeadsTo(CR closed)
LTL(9) : O(statusCR open)— ¢statusCR closed))

(2.1.2) Analyze the impact of CRs. AuthorizedCR?:YES

(2.1.4) Review CRs with relevant stakeholders| ReleaseBaseline

Pattern-based Expression (AuthorizedCR:YES)PrecededReleaseBaseling

LTL(10) :(—executedReleaseBaselin&V conditionGuardduthorizedCR:YES)

(2.1.3) Categorize and prioritize CRs. PrioritizeChanges

Pattern-based Expression PrioritizeChange<xists

LTL(11) : OexecutedPrioritizeChange}

_ CR:open
(3.2.4) Confirm the correctness of approved CRs.
InvestigateResults

Pattern-based Expression (CRopen)LeadsTolnvestigateResults

LTL(12) :0(statusCR open)— ¢executedfivestigateResuljd

Table 5.6: CMMI-CM Audit Requirements mapped using compi@patterns

CMMI-CM Requirements Elements Involved

(1.2.7) Create CM reports from the CMS. Audit:open
(2.2.5) Record changes to Cls and reasons for theAudit:closed

(3.2.6) Track action items from the audit to closure.

Pattern-based Expression (Audit,open)LeadsTo(Audit,closed)

LTL(13) : O(statusfudit,open)— ¢statusfudit,closed))

127

Chapter 5BPs Compliance Checking 128

In Table[5.7, a subset of the sub-practices under SP1.223R8. SP3.2 which is
related to the variance handling is modelled. The first setegtiirements specifies
the necessity of working on the variances once they are anconder to preserve the
structure of the CMS components. Therefore lthadsTacompliance pattern is used to
represent that determining the variances should followdileg the existence of them.
The second set of requirements specifies that once a chamgestas open, then the
variances are investigated for the possible solutions. pateernPrecedess used to

model the requirement and the corresponding LTL formulaasipced.

Table 5.7: Variance Handling Requirements mapped usingbtante patterns

CMMI-CM Requirements Elements Involved
(1.2.8) Preserve the contents of CMS. variances?:Yes
(1.2.9) Revise the CM structure as necessary. DetermineVariances
(3.2.5) Confirm compliance with standards.

Pattern-based Expression (variance®:Yes)LeadsToDetermineVariances

LTL(14) :0O(conditionGuardfariancesYes) — {executedDetermineVariance}

(2.2.4) Ensure changes have not compromised CMSR,open
(3.2.1) Assess integrity of Baseline. InvestigateResults

(3.2.3) Review the structure and integrity of CMS.

Pattern-based Expression (CRopen)PrecedednvestigateResults

LTL(15) : — executednvestigateResulj8V statusCR,open)

The property specificationg) for the CMMI-CM requirements are now mapped
into LTL. In the following section, they are checked agaiti& example models (EX1
in Figurel5.1, and EX2 in Figufe 3.2) and the results are dised. Notice the numbers
beside LTL in the Tables 5.2, 513, 5[4,159.5,15.6] 5.7 is rafgrto the property number
which will be used to link the results with the correspondifid. property. Therefore,
the plan is to check if the model satisfies each propertg)oy solving the satisfiability
relation (Equatior_2]1) using Maude’s LTL model checker. igt bf the above LTL
properties is given in Table 5.8.

128

Chapter 5BPs Compliance Checking 129

Table 5.8: CMMI-CM Requirements into LTL

CMMI-CM Requirements

Configuration Items Requirements
LTL(1) : Oexecuted@dentifyCl) A QexecutedfssignClig A
QexecutedppecifyCharacteristigs\ (executedbpecifyDateA

Qexecuted@entifyOwnery A QexecutedDefineRelationshipk

LTL(2) : O(statusCldoc inUse — {statusCldoc, documenteqd

LTL(3) : ¢statusCldoc documented— (executedReleaseBaseline

LTL(4) : ¢ executedDocumentC) — (—executedDocumentC) U
(executedRetrieveC) A —executedDocumentC) A O(—executedPocumentC)
U executedChangeC))))

Access Control Requirements
LTL(5) : — executedReleaseBaselin&V conditionGuardfuthorize®: "YES)
LTL(6) : C(conditionGuardfuthorize®: "YES) — {statusCldoc,inUsg)

Baselines Requirements

LTL(7) : OexecutedpocumentC) — (executedReleaseBaseline

LTL(8) : C(statusBaselinereleased— ¢ executed{lakeBaselineAvailableToReqd

Change Requests Requirements

LTL(9) : O(statusCR oper) — {statusCR closeq)

LTL(10) : —executedReleaseBaselingV conditionGuardduthorizedCR: "YES)
LTL(11) : QexecutedPriotarizeChanges

LTL(12) : C(statusCR open — QexecutedfivestigateResulls

Audit Requirements

LTL(13) : (statushudit oper) — {statusfudit, closed)

Variance Handling Requirements

LTL(14) : O(conditionGuardgariances " Yes$) — {executedDetermineVariance}

LTL(15) : — executedfivestigateResult$V statusCR open)

129

Chapter 5BPs Compliance Checking 130

5.3 Model Checking Procedure

For the CM process area, satisfying all the included spegdals supports, along with
other CMMI process areas (which are not discussed in thig)mgranting maturity level
2 (ML2) to the process. Hence the requirements for configamahanagement should
be satisfied by the BP model according to the proposed regairegrading scheme. In
this section, we discuss the results of checking the prigseidrmalized in Sectidn 5.2.3
against the two introduced example models (i.e. EX1 and EX2ompliance grading
scheme is introduced to explain the model checking resattsrding to the domain of
application (i.e. CMMI-CM compliance checking). Based amsidering compliance
checking a model checking problem (c.f. Secfion 5.1), thegicmn M = ¢ simulates the
formal checking process. In the following, we introduced¢benpliance grading scheme
to interpret the results in Subsection 513.1. After that veeuss some features of the
properties which might affect the model checking resultSubsection 5.312.

5.3.1 Compliance Grading Scheme

For the purpose of identifying the compliance results, weootuce the following re-
quirements satisfaction grading scheme. It is summarizddhbleg 5.9, where each LTL
property has been assigned a weight based on the number-pfactices it represents
based on the mapping presented in Tables[5.2[5.4 5|3, 5,6.3. If the summation
of the total weights of the properties which the model scéges than 12 points, then
the model isNot Complian} if between 12 and 24, then the modelHartially Com-
pliant, if between 25 and 35, then the modelliargely Compliant and if at least 36

point of weights are gained, then the modeFidly Compliant The total number of

Table 5.9: Requirements Satisfaction Grading Scheme

Grade Label Grade% Grade Points Explanation

Fully Compliant 90%-100% at least 36 weight points

Largely Compliant | 60%-less than 90% 25-35 weight points

Partially Compliant | 30%-less than 60% 12-24 weight points

Not Compliant 0%-less than 30%| less than 12 weight points

130

Chapter 5BPs Compliance Checking 131

sub-practices in the CMMI-CM process area is 41 sub-practldence, we can con-
clude that if a modeM satisfies the property LTL(2), then it will score 3 weight ipisi
The total number of weight points a model scores determieshacompliance grade it
should be assigned based on Tablé 5.9.

5.3.2 Spurious Properties

The result of model checking is eithgue or a counterexampleln the first case (i.e.
true), the propertyd is satisfied by the modéll. The other case (i.eounterexample
specifies that the property is not satisfied by at least one trace of the moltekxe-
cution. In this work, the first case can be interpreted as dipeproperty compliance
indicator while the other case can be interpreted as a wvegatbperty compliance indi-
cator. ThereforelM = ¢ results intrue can be explained as : the modélis compliant
with the requirement formally representeddas Similarly, M |~ ¢ results in acoun-
terexamplecan be explained as : the modélis NOT compliant with the requirement
formally represented as. However, having counterexamples in our case can be mis-
leading. It might not be a result of the model does not satisfyproperty, but the model
lacking the objects which the property define their tempretationship.

Irrelevant 6purioug properties normally result from the absence of one or mbre o
jects that are involved into the property specified, or duaéouse of different naming
words specific to the company. The process modeller has ideléthe elements rep-
resented by these missing objects are important for theepsoand are unintentionally
missed, then they have to be added to the process and réstg@roperty checking. In
our approach, we limit the application of model checking toperties which are not
spurious with respect to the documents or activities it kke®©n one hand, this help
to avoid spurious results. On the other hand, it reducesdh®gatation cost incurred
when a model checking procedure is performed for a spurioysepty. Therefore, we
manipulated our model checking procedure to consider thiatson and defined a third
possible model checking result @ ¢ument DoesNot Exi st).

The main checking operator used herehisckPr op which takes a formula and a BP
model and performs the model checking using operaidel Check if and only if the

objects being tested in the formula are into the BP model.

131

Chapter 5BPs Compliance Checking 132

op Docunent DoesNot Exi st : -> Mdel CheckResult .

op checkProp : Fornula TraceOject Set -> Mdel CheckResul t
ceq checkProp (F, A) = nodel Check(A, F) if CE(F, A) == true .
eq checkProp (F, A) = Document DoesNot Exi st [owise] .

The operato€E checks if all the objects involved in a property do alreadgtx the
model being checked or not as defined below. The operatos takeoperty Kor nul a)
representing one of the fifteen LTL formulae of the CMMI-CMTiable[5.8 and the BP
model (r acehj ect Set) represented by variabke It returnstrue if the objects exist in
the BP model andalseif at least one of the objects does not exist. As an example par
of the definition, we provide the equation for the fifth LTL pesty in Tabld 5.8 which

includes activityrel ease Basel i ne and guard variabl@ut hori zed?.

op CE: Fornula TraceQbjectSet -> Bool
ceq CE(F, A =true
if (F==LTL(5)) /\ ("Release Baseline" into A) /\ (Authorized? into A) .

eq CE(F,A) = false [owi se]

The above definition uses functiont o which is defined to take a string value for
an object name (i.&st ri ng) or a defined variable name as part of guard expression (i.e.
Vari abl e) and a process model. It returtise if there is an object with the same name
(or a guard uses the input variable name as part of its exprgssto the process model.
Otherwise, it returngalse i.e. if the object (or a guard expression variable namedis n

in the process model.

op _into_: String TraceChjectSet -> Bool

op _into_: Variable TraceQhjectSet -> Bool

eq Sl into (Cvcol * << < X: K| name : S1; AS1 >, B >>) =true .
eq Sl into A = false [ow se]

eq V1 into (((Vl: Sl) .. Cvol) * B) =true .

eq V1 into A = false [ow se]

Another issue here is that properties like LTL(6), LTL(8)[L(12), LTL(13) and
LTL(14) are presented using (LeadsTo Qpattern, which is mapped into LTL aSI(P

— ¢Q)) and its result depends on thepliesoperator (i.e—) result. According to the

132

Chapter 5BPs Compliance Checking 133

(—) truth table, the result igue if the two operands art&ue, if the two operands are
false and if the first isfalseand the second isue. That is, if the two elements be-
ing checked are not included into the model, and hence thedigates result ilfalsg,
the model checking result of the properties would stille. For example, in property
LTL(12), the predicatexecuted’ InvestigateResult$ would be rewritten tdalsefol-
lowing the [owi se] statement defined in Section 5J1.1 while the object is nohé t

model.

5.3.3 Results Representation

As the example models EX1 and EX2 specify releasing basebased on controlling
change requests and not adding new CIs, we expect some @ fr@ferties modelled
for the CMMI-CM to be spurious. However, in order to make thpr@ach complete, i.e.
in terms of checking all the requirements in the CMMI-CM prss area, we are check-
ing all the modelled properties here. The main commandes ¢heckProp(LTL(5),
initial) .) for the property LTL(5). In Tablé 5.10, the weight columriems to the
number of sub-practices that are represented into the Ldpgaty. Hence, if a model
M satisfies the property LTL(5), then it will score 4 weight ppisi According to the
proposed grading scheme in Tablel5.9 and the model checksgdts represented in
Table[5.10, we can conclude that model EXIPextially Compliantand model EX2
is Partially Compliantas well. Although it seems that the model EX1 is smaller than
the model in EX2, but EX1 scored seven more points than theeiied2 in the model
checking procedure.

Our approach has been implemented using Maude’s modulegsah@lL model
checker via the Eclipse platform. Both of the software ig faed available to download
from the Internet. The cost in terms of time of execution feecking the compliance of
EX1 and EX2 is detailed in Table 5]11. The longest rewriteetior a trace in a process
is consumed in rewriting from start state to the end statemrhe table, we can see

that the rewrite time for the properties that we considepdisus is relatively smaller

3Note that the predicates definition in Section 5.1.1 hassefehse definition to rewrite the predicate
into falsein all other cases than the defined ones. That why operatenstat attributd owi se] was

used.

133

Chapter 5BPs Compliance Checking 134

Table 5.10: Model Checking Results for EX1 and EX2

Property | Weight EX1 Points EX2 Points
LTL(2) 6 Docunent DoesNot Exi st 0 Docunent DoesNot Exi st 0
LTL(2) 3 true 3 true 3
LTL(3) 1 true 1 true 1
LTL(4) 3 true 3 true 3
LTL(5) 4 true 4 Docunent DoesNot Exi st 0
LTL(6) 1 CE1l.6 0 Docurnent DoesNot Exi st 0
LTL(7) 2 true 2 CE2.7 0
LTL(8) 4 true 4 Docunent DoesNot Exi st 0
LTL(9) 3 true 3 true 3
LTL(10) 2 true 2 CE2.10 0
LTL(11) 1 Docurnent DoesNot Exi st 0 true 1
LTL(12) 1 Docurnent DoesNot Exi st 0 true 1
LTL(13) 3 Docunent DoesNot Exi st 0 true 3
LTL(14) 4 Docurnent DoesNot Exi st 0 CE2.14 0
LTL(15) 3 Docurnent DoesNot Exi st 0 CE2.15 0
Total 41 22 15

Results Partially Compliant Partially Compliant

than the rewrite time for the properties passed to the mdasller. These properties are
LTL(1,11,12,13,14,15) for EX1 and LTL(1,5,6,8) for EX2. &lotal number of rewrites
for checking the 15 properties for EX1 was 105906 rewritesotal of about 673 ms
and for EX2 was 12339 in total of about 380 ms. Given the faat ttonfiguration
management processes are normally of the same size as owxammples EX1 and
EX2, one can see that these results as an indication of tHeapipity of the designed
tool to a wide range of CM processes.

Following the approach introduced in Chagtér 1, at thisestége modeller has an
idea about what requirement exactly the process violatese®er, the modeller can de-
cide if certain properties are relevant to the process bategked or can be ignored. For

example, a possible modification in model EX2 could be to khke authorization for

134

Chapter 5BPs Compliance Checking

135

Table 5.11: Summary Rewrite time for EX1 and EX2

EX1 (rewrites in ms)| EX2 (rewrites in ms)
Process Exec Time 204 in 1ms 95 in 5ms
Property EX1(rewrites in ms)| EX2(rewrites in ms)
LTL(2) 106 in Oms 106 in Oms
LTL(2) 34195 in 230ms 909 in 33ms
LTL(3) 15368 in 73ms 959 in 31ms
LTL(4) 3710 in 37ms 134 in 5ms
LTL(5) 91in1ms 103 in Oms
LTL(6) 2212 in 22ms 103 in Oms
LTL(7) 15086 in 75ms 1635 in 44ms
LTL(8) 103 in Oms 103 in Oms
LTL(9) 34234 in 228ms 953 in 39ms
LTL(10) 288in 7ms 1965 in 53ms
LTL(11) 101 in Oms 117 in 3ms
LTL(12) 104 in Oms 971 in 38ms
LTL(13) 103 in Oms 975in 33ms
LTL(14) 103 in Oms 1641 in 51ms
LTL(15) 102 in Oms 1665 in 50ms
Total compliancecheckingTimg 105906 in 673ms 12339 in 380ms

conducting a change in the configuration management datdle&sre it is actually open,
used and documented. An authorization check can be addedlomprocess started as
in the updated version of EX2 in Figure 5.3. In the model EX2ine, activity 'Make
Basel i ne Avail abl e to Read" has been moved to after the baseline is released, an
authorization check is added using the XOR gateway afteptbeess starts and before
reading and updating any Cls. After implementing these gbarnto the model EX2,
the model checking results changes for properties (5,68) Docunent DoesNot Exi st

tot rue with added weights of (4,1,4) respectively. Now the modeRPEXscores 24 out

of 41 and according to the grading scheme in Table 5.9 the hiwdgll partially com-

pliant with CMMI-CM requirements, however, with a higheose points. This is an

135

Chapter 5BPs Compliance Checking 136

example of how some changes in the designed model checkbdwitapproach can
easily change its compliance grade score points to a higlegiving better chances in

an appraisal.

Table 5.12: Summary compliance checking results for EX2m

EX2m (rewrites in ms)

Exec Time 106 in 3ms
Property MC Result(points) EX2m (rewrites in ms)
LTL(1) Docunent DoesNot Exi st (0) 106 in Oms
LTL(2) true (3) 1124 in 47ms
LTL(3) true (1) 945 in 31ms
LTL(4) true (3) 144 in 6ms
LTL(5) true (4) 2123 in 60ms
LTL(6) true (1) 1147 in 45ms
LTL(7) CE2m.7 (0) 1752 in 52ms
LTL(8) true (4) 919in 31ms
LTL(9) true (3) 928 in 34ms
LTL(10) CE2m.10 (0) 1455 in 27ms
LTL(11) true (1) 126 in 3ms
LTL(12) true (1) 1186 in 47ms
LTL(13) true (3) 1190 in 40ms
LTL(14) CE2m.14 (0) 1758 in 56ms
LTL(15) CE2m.15 (0) 1782 in 55ms

Points (24) Total complianceCheckingTimel 6685 in 534ms

An interesting challenge is the naming of the objects whi@y ine different from
the pre-defined properties. It can be due to the use of sompayis jargon to name
the activities and/or properties, hence, there might basinterpretationn the model
checker results side about same activities with differearhes in the model and the
properties. In the compliance checking research, thislpnolforce most researchers
to use manual mapping between activities having the sanwidmality but differs in

names (e.g.[38]). For example, tdsk or m St akehol der s in EX2 which has the same

136

LET

NO

Authorizeq?
. Release Make Baseline
Update CI > Audit CI —> . —>]
s Baseline Available To Read
| |
CR Audit Baseline Baseline
[open] [closed] [released] [readOnly]
Update Cls Subprocess
No

AuthofizedCR?

Prioritize }
5 Retrieve CI Change ClI Close CR
Yes Changes > 9 ‘>O

Cl doc Cl doc CR
[inUse] [updated] [closed]

Validate
CR

CR
[open]

Audit Cls subprocess

No

varianges?

y inconsistent
Create Investigate
Audit > Results

ValidateglvsActual?

Yes - - Report Report
D Yes .
Veﬁfy “ > etfarmme Problem in Results
existence variances
Actual CI
Audit consigent
[open]
ProtectedCls?
Document Act-on-Variance
C! doc Cl Report
[updated] [created]
Cl doc
[documented]

Figure 5.3: EX2m : Model EX2 after update

Close
Audit

Audit
[closed]

Burosyd aoueldwo) sdgg Ja1deyd

LET

Chapter 5BPs Compliance Checking 138

functionality asMake Basel i ne Avail abl e to Read but obviously different names.
Therefore, in the updated EX2 process model in Figure 5e3attivity name has been
changed to match the property. Alternatively, one can kbeptocess model naming
convention and update the LTL properties accordingly.

The CMMI appraisal is concerned with two aspects of the BRe Srihe evidences
of the existence of some documentations and reports thaidregery step in the process
and form part of its inputs and outputs as well in order to poeda product or a service.
The other aspect is confirming that the BP is following a vipidinned procedures which
guarantee its sustainability, accessibility, safety aektbpment. As we are proposing
a pre-appraisal approach for CMMI-CM compliance checkungfocused on these two
aspects and proposed how to formally assess them in thengesigP, which in turn
will allow for a confident application for a SCAMPI A appraisa he first aspect, i.e.
documents checking, can be automatically conducted falesgned BP in the form of
checking if certain set of documents are included into theT#s ha been considered
in the model checking procedure by limiting the applicatodrihe properties checking
to the properties which objects are in the model being chieckiéerefore, checking if
the documents (as being objects) are represented in thel prodédes the evidence of
their existence in the designed BP. The second aspeche.process is following a well-
planned procedure, is tackled in this chapter by formajitive CMMI-CM requirements
into LTL formulae through compliance patterns to formallyeck them using Maude

LTL model checker.

5.4 Chapter Summary

In this chapter we introduced a novel formalization for thRINII-CM process area
requirements in LTL based on the compliance patterns|[2P, B8is is followed by

using Maude LTL Model Checker to check if the introduced twaraple models of CM
processes are compliant with the formalized propertieotwlode our approach with
analysing and reasoning about the model checking resudtet ¢thapter will present the

related work.

138

Chapter 6 Related Work

Chapter 6

Related Work

In this chapter, we introduce the related published workdisduss their relations with
the contributions of this thesis. As there have been pubtisiesearch in different ar-
eas related to this work, we categorized them in three gectim Section 6]1, the BPs
different formalization and verification approaches asedssed. Then the Maude appli-
cations for concurrent processes in Sedtioh 6.2. Fin&léyré¢lated compliance checking

approaches are discussed in Sedfioh 6.3.

139

Chapter 6 Related Work 140

6.1 BP Formalizations and Verification

There are many attempts to transform the BPMN as a graplaogubge into more
formal languages, such as: Petri nets [27], YAWL [107], C$@4] 105],-Calculus

[74,[75], and graphs [28, 40]. Takle 6.1 gives a brief sumnudrthe formalizations
compared to our proposed formalization.

BPMN core flow elements have been mapped into Petri nets ijn R humber of
modelling deficiencies have been identified but not solvedh sis models with multiple
start events, and OR-join gateway semantics. Although'lasg defined a well-formed
BPMN process to facilitate the mapping, classical Pets has limitations in represent-
ing certain constructs and behaviaur/[28] (i.e. OR joined®itnistic choice). Generally,
the resulting models of Petri net mappings are verified uBirgM for the absence of
dead transitions, deadlocks, and livelocks. Then the(®ig][presenting a formal map-
ping from BPMN to YAWL [91] based on a well-formed subset of BR to establish
the mapped models into YAWL-nets. However, the OR join gatesand data objects
have not been discussed.

Process Algebra Communicating Sequential Processes (@SR)een used to for-
malize the syntax and semantics for a subset of the BPMN amsecllements and mod-
els into CSP in[[104, 105]. Basically, tasks are mapped irS® @rocesses and flow
transitions are mapped into CSP events. A similar notiondt-fermed BPMN models
is used, which is well-configured sets of well-formed sté#®€F), was used to describe
a more restricted and well-formed elements..In [104], CSBe&d to define the process
state-based specification syntax and behavioural semsdnti@a subset of the BPMN.
This facilitates the use of the CSP-based model checkeF@dR) for property analysis
of business processes for refinement, soundness and gropedking of BPMN mod-
els. Nevertheless, the OR join gateways and guard evatuatioe not considered as
part of the formalization. The work was extended to handégtitned models in [105].

In [74,|75], the workflow patterns [103] have been formalize T-calculus (i.e.
an algebra for modelling concurrent communicating proegss order to check the
soundness of resulting workflow models. In|[74], they showet therrcalculus is
indeed able to handle all of the behavioural workflow requigats given by workflow

patterns. Inl[75], process representatiormi@alculus is used to formalize the BPMN

140

Chapter 6 Related Work 141

models aiming at verifying the semantics (i.e. using laaynsimess). Nevertheless, the
approach did not consider the well-formed property and didoonsider data objects
and guard evaluation.

In [28,140], a subset of the BPMN control flow semantics hasnldeemalized as
graph rewrite rules. In [28], GrGen, a graph rewrite toolswaroduced for the execu-
tion semantics. However, the notion of a well-formed BPMNd®&ls has not been used,
which allow for models which are not sound. An in-place tokased approach was
introduced in|[40] for defining BPMN execution semanticsemts of graph transfor-
mation rules. The produced semantics is then verified usiitgand integration testing.
Nevertheless, the data objects and well-formed notion weteised. While the formal-
ization goal was to have a deadlock-free and sound mode23jriD7], the conformance
to specifications and visualization were the targets in428,

An Al approach was followed in [48] to give a logical model fosubset of BPMN
elements discussing some correctness criteria, e.g.adafteedom, termination and
determinism. The approach utilized the notion of well-fedrBPMN elements to rep-
resent BP models. However, no formalization of the dataaibjer guard evaluation
mechanism were introduced. A formal syntax for the busipessess work-flow pat-
terns was introduced using Maude in/[43]. BPMN was used axampgle application
domain for using Maude strategies for a catalogue inforonaglystem. While the ap-
proach used Maude strategies, the notion of well-formedgs® has not been used and
the data objects have not been modelled.

In [103], the notion of structured BPMN work-flow was used tlweess the need to
have an OR merge gateway to every OR split to synchronizedte Tlhis may be sim-
ilar to our block structure condition for the well-formed BR models, however, in our
proposed formalization, we require all the well-formedsgetys to have the block struc-
ture and not only the OR gateways, discussed in Section 8.%actior 4.1L. Moreover,
the idea of well-formed models was used in the Petri netsGhWhere the well-formed
elementary system net was defined as a weakly live (i.e. fdr gransition there exist a
reachable marking that enables it), terminable net (i.}mfeach reachable marking, the
final marking can be reached) and having a unique final marking

In Table[6.1, a summarized comparison between the stateeedirt research and our

141

A"

Table 6.1: Comparison of Related Work and Our Contributions

Ref. [68] [27] [107] [75] [104] [28, 40] [48] [43] this work
Formalism English PetriNets YAWL m-Calculus CSP Graph Trans. Prolog Maude Maugde

OR-Join . o o o . . o ° °
Guard Evaluationn o o o o o o o o o
Data Objects . o o o o o o o °
Well-Structured . o o o o o o o °
Well-Formed o . . o o o ° o o

Verification o cs cs Is r,cs c,t cr pv cc

Legend o - (NO), e - (YES), cs - (classical soundness), Is - (lazy soundnessfrefinement), ¢ - (conformance to semantic specificatiansjunit and

integration testing), vis - (visualisation), cr - (cormeess), pv - (property verification) and cc - (compliance &hex).

YIOM pareay 9 Jardeyd

A4

Chapter 6 Related Work 143

proposed approach is presented. The criteria in the firsihwolare, in order, the for-
malization language, modelling OR-join behaviour, guaraeation, data objects mod-
elling, the notion of well-structured BPMN processes, thgan of well-formed BPMN
processes, and the verification/application methods. ®hedlization language used
in these approaches are, in order, natural language Ef@ti$hPetri nets|[27], YAWL
[107], Tecalculus|[75], CSP_[104], Graph transformationi [28, 40hWMde [43], BPMN-
Q [€], and ours uses Maude. The legend for the table infoonmasi o: (NO), e: (YES),
cs: (classical soundness), Is: (lazy soundness), r: (reén®, c: (conformance to se-
mantic specifications), t: (unit and integration testimg; (visualisation), pv: (property
verification) and cc: (compliance checking). To the bestwflonowledge, no approach
has introduced a mechanism to evaluate the guards in thevayseas our approach
proposes. Moreover, our approach provides a sound sermdntie/ell-formed BPMN
models, which may include OR gateways, as described in €hdpbeside checking
the well-formedness property as part of the semantics azibed in Chaptel|3. The
semantics introduced in this thesis differs from the otleéated semantics with respect
to the formalization language that is used and the prospegse of the semantics in the
application domain. We use the Maude as the formalizatiogdage and aiming at for-
malizing the BPMN models into sound processes to check thptance with process
improvement models.

On verifying the formalized business process models, soesglproperty is proved
to be the most checked property among the scanned liter@ugre[81, 100, 95, 92, 25,
75]). In |81], two structural conflicts in process models éiscussed,; i.e. deadlock
and lack of synchronization. These two important strudtpraperties disappearance
from a model indicate that this model s®undwith respect to the specifications; i.e.
soundness = no deadlock + no lack of synchronizationl [100][9%], different types
of soundness were discussed for workflow mod€lassical soundneg82,/102] states
that each activity should be on a path from the initial to thalfactivity, that after the fi-
nal activity has been reached no other activities shouldinecactive, and that there are
no unreachable activities. The other notions of workflowgmess ranges from a more
relaxed or weaker versiowgak soundneg§3], lazy soundneds5], relaxed soundness

[25]) of the classical soundness to more stronger vergiendralized soundnef#4]).

143

Chapter 6 Related Work 144

A formal proof of soundness is in Chaptér 4 based on the clalssbundness definition.
k-soundnespi4] restricts the workflow net to have a start node and an exde and that
each object reachable from start node is on a path to the edelWeak soundneg$S3]
allows unreachable activitiesRelaxed soundneg$85] softens the original soundness
notion claiming to be more easily applicable to applicatwwiented modelling. It states
that each activity should be able to participate in the bessrprocess, i.e. for each tran-
sition there exists a sequence that takes the initial steteetfinal state without leaving
any spare tokens in the net. Hence, it does not avoid sitgtiath dangling tokens or
livelocks/deadlocks [95]Lazy soundned35] requires the end event to be semantically
reachable from every node semantically reachable fromténeevent until the end event

has been executed and that the end event is executed exactly o

6.2 Maude Applications

Maude, as a logical semantics framework is used to definexs\arid semantics of a
wide range of languages and logics![57], e.g. CCS [88Jalculus|[83], UML [61/| 12],
Petri nets|[87] and BPMN [43].

In [9€], an implementation of the CCS operational semantcklaude is given,
where transitions are rewrites and inference rules areitiondl rewrite rules, possibly
with rewrite rules in the conditions. Moreover, the authmm@posed an implementation
of the Hennessy-Milner modal logic for describing processeth comments on exten-
sions to the LOTOS language [99]. In [88], an executableifipation of the operational
semantics of an asynchronous version ofmihealculus was introduced in Maude using
conditional rewrite rules with rewrites in the condition®t

UML diagrams have been modelled in Maude and formally vetitising Maude
LTL model checker in/[61]. Moreover, on checking the coresisy of UML model
design, the authors in [12] formally classified inconsistes, resolution rules conditions
and conclusions for UML models using equational logic arliad in Maude. Petri nets
were given conceptual and executable rewriting semamntif&] where they could also
be formally analysed and model checked by means of rewrdiragjegies that explore

and analyse at the meta-level the different rewriting cotajpons of a given rewrite

144

Chapter 6 Related Work 145

specification.

For domain-specific languages, Maude proved to be efficreproviding formal
rewriting semantics for them (e.g._[14, 78]). The fact thaude provides object ori-
ented facilities that can be used to implement metamodelsnaodels has been ex-
perimented by several research![78, 198, 78] and implemdateskample in the MO-
MENT [11] project. In [14], a formal semantics was introddder CBabel (i.e. a soft-
ware architecture description languages (ADLS)) in rengilogic using Maude. This
is followed by formally verifying the producer-consumartter problem using model
checking and state search. Inl[78], a formal approach fodéiimition and analysis of
domain-specific modelling languages was introduced basestandard model-driven
engineering artifacts for defining a language’s syntaxngsnetamodels) and its op-
erational semantics (using model transformations) bystedimg them to the Maude.
Therefore, meta-models and models are mapped to equasipecifications, and model
transformations are mapped to rewrite rules between siegtifgfations due to Maude’s
reflective capabilities [20].

A number of interesting puzzles have been modelled anddolsig rewriting logic
language, Maude, in Chapter 7 In[20]. Moreover, Maude islusesolve the sudoku
puzzlg in [82] using Maude strategies, where elimination was thenmsgrategy and
three processes for scanning, marking up, and analysiseaddhsical techniques for
solving sudoku were followed. For a comprehensive list ofriting logic founda-
tions, logical and semantic framework, languages, tootkapplications, we forward

the reader to [54].

6.3 BP Compliance Problem

As for compliance problem, many approaches have been pedgos BP compliance
[80] either enforcing the models to be compliant by desidi],[8r checking if designed
model behaves as expected through the use of event logs ditd [@4,/47]. A semi-

automatic framework for managing compliance requiremantsensuring compliance

throughout the BP lifecycle was introduced in/[89]. In![4&]metamodel compliance

Lhttp://en.wikipedia.org/wiki/Sudoku

145

Chapter 6 Related Work 146

checking was implemented in the tool Requirements Engingérhrough Hypertext
(RETH) which supports an object-oriented hypertext regmégtion of requirements.
Process mining techniques are also applied on process Bgmtand real-time data
to monitor the behaviour of processes|[94]. BPMN is used atesy specifications
in [6] where BPMN-Q, a graph-based query language based &iNBRs introduced,

used and integrated with Oryx, a web-based graphical madethol and repository, to
model-check business rules compliance in PLTL.

To the best of our knowledge, the formal research on chedkiaggompliance of
BP models with CMMI process areas is still not enough to faliyomate the procedure
(e.g. [24,23]). An interesting work in_[24] investigategtrelation between software
guality models and businesses applying Model-Driven Digualent (MDD) using goal-
oriented software approach. The degree of compliance aifidustrially applied MDD
approach with the CMMI-DEV quality model is analysed by detming the character-
istics that meet the technical solution process area of CIOEYV and identify improve-
ment opportunities to obtain a proper alignment of the MDPrapch with the model.
The check is done based on SCAMPI assessment evidencesiadifiins (e.g. expert
statements) and artifcats (e.g. tangible evidences). &heesdea was applied to the
requirement engineering process area in the CMMI-DEV ii}.[BB[62], a formal com-
pliance checking approach is introduced using Z notatiosystems specifications and
LTL for properties and NuSMV for model checking based on camruriteria. Apply-
ing this approach to the international security stand&®(IEC 15408), a tool support
called FORVEST was proposed in [106]. It provides informatior the modeller on the
formalization languages and tools to make the approach mxressible for business
people.

There are many classifications for the compliance checkinigerature. Figuré 611
gives an idea about the classification of BPs compliancekihgapproaches. The
reader can recall Table 6.2 for a summary comparison of nfdkeaelated compliance
checking approaches. We provide the table below as Table@eerally, automated
compliance checking has two approaches; forward and badkeganpliance checking
[8Q,134]. In forward compliance checking approaches, themg@nce rules are veri-

fied during design time or execution time of the process afigwnly for the complaint

146

Chapter 6 Related Work 147

behaviour to be carried out later [34]. Forward compliancec&ing approaches aims
at preventing the non-compliant behaviour from occurrimghie process execution. In
backward compliance checking approaches, the check istas#etect that some non-
compliant behaviour has occurred by checking the businesseps execution history
(e.g. event logs). While forward compliance checking apph@s can prevent non-
complaint behaviour form happening, the backward comp#arhecking approaches

cannot.

Compliance Checking
Approaches

[
v v

Automated Compliance
Checking Approaches

Manual Compliance
Checking Approaches

L\

Forward Compliance
Checking Approaches

v

v

v

Backward Compliance
Checking Approaches

Compliance-aware
Design

Run-time Compliance
Verification

Figure 6.1: Compliance Checking Approaches Classification

There are two types of forward compliance checking appressatompliance-aware
design and run-time compliance checking. Compliance-awasign approaches work
at design time; i.e. before the process is actually beingpgted in real projects. The ma-
jority of recent approaches lies in this category such as43933, 41, 79, 84, 89] and it
provides larger space for automation in defining the modedslae compliance require-
ments. Moreover, the implementation of this approach is épensive as the process
is examined at the design-time. In design-time compliai@eking approaches, either
the design process is guided by the compliance requirenoetit® model checkers are
used to verify that certain properties have been designadapproach based on defin-
ing and using compliance patterns to compute the deviafiargoven business process
model to a certain compliance pattern was introduced_in. [¥8sed on control pat-
terns, a formal definition of the compliance checking wasenéed inl[65] and in [33],

a semantic layer was added to the business process mandgtackrin which process

147

Chapter 6 Related Work 148

instances are interpreted based on pre-defined set of tonfte work in [51] presents
a support method which allows the modeller to quantitagiveeasure the compliance
degree of a given process model based on a set of controtivegdn [41], the authors
proposed a formalization approach for the business cdstsgenantics as well as their
violations using Formal Contract Language (FCL) based amtielogic. Although the
authors in|[41] built their approach based on deontic lotjie,work in [79] shows the
need for stronger logics to formalize the modelling of commmpte controls. Moreover,
they emphasis on the importance of automating the commiahecking and its rela-
tive regulations semantics. The approach in [84] proposeahapliance ontology and
integrate it into the BP models. A comprehensive frameworksemi-automatically
managing compliance requirements which ensures complidgancughout all the phases
of BP lifecycle was introduced in [39].

On the specification of compliance requirements, [79] pses@n approach for mod-
elling control objectives within BP structures. Their wantroduced a basic model to
capture compliance requirements. In order to realize vd@aimpliance-by-desigrBP
models are enriched with control tags. They propose a modat based approach us-
ing FCL, which separates the prescriptive modelling of psses and the descriptive
nature of compliance requirements. However, the complexXithe adopted formal lan-
guage poses critical problems in practice. In [38], the angtiprovides a forward design
compliance checking approach. The approach is basicadly piocess models in EPCs
which is mapped into Petri nets to check their complianceekegnd maturity with an
adopted model of the ITIL reference model on a designed pluoniProM. The authors
discussed the difference between process equivalencerandsg compliance as two
process models can be compliant and not equivalent at the sara. That is the idea
of having a general reference model which can be interprieteshny process models
customized to specific business needs.

Run-time compliance checking approaches deal with exbitausiness process
models. In this case, compliance requirements can be defmedhe business pro-
cess models (as control flows) or can be dependent on a renitiimrmation (as user
or process input). The need to separate compliance moglélbm process modelling

is identified in [49], where business process models in BPELt@nsformed intar

148

671

Table 6.2: Summary comparison of some compliance checkipgaches

Ref. | System Spec Property Spec Check Proc. | Class.| App. Domain Automation
[6] BPMN 2 PetriNets| BPMN-Q 2 PLTL MC FD Banking Oryx, Lola
[33] | BPEL FCL 2 LTL MC F.B Sarbens-Oxley Act COMPAS
[94] | MXML LTL MC B event-logs ProM

[24] | MDD BPRE4OO SCAMPI FDT | CMMI-DEV NA

[38] | EPC 2 PetriNets | ITIL adopted modelg MC FD ITIL ProM

[106] | Z LTL MC F ISO/IEC 15408 FORVEST
[49] | BPEL 21-calculus| BPSL 2 LTL MC FR ITIL,COBIT OPAL

Legend D: Design-time, R: Run-time, MC: Model Checking, F: FordiaB: Backward, NA: Not Available, PM: Process Mining

YIOM pareay 9 Jardeyd

671

Chapter 6 Related Work 150

calculus and compliance rules into graphical Businessé?tpspecification Language
(BPSL) are translated into LTL, then model checked| In [@#]approach is proposed to
ensure effectiveness of controls during business processigon and a reaction strat-
egy was designed in case of rules violation. The authors3hdéfined the BP models
in a declarative way and argued that constraint-based woavkfiodels are more expres-
sive and flexible than procedural ones. The compliance ypdkdinitions are integrated
into the BP models in [59]. They are modelled within the psscenodel events and
transactions to monitor run-time compliance. This raisesneed for formal defini-

tion of some of the important BPMN constructs, i.e. evenignétriggers, and related
resources, event patterns, message handling as well asretangement [30].

Backward compliance checking aims at verifying that a bessrmprocess execution
iIs compliant with certain requirements and rules. |In [7/Ag &uthors proposed a con-
formance checking technique to decide on how much a buspresgss behaviour is
similar to registered in process instances in a certaiotyisbg. The approach indicates
where the differences exist using the business proceskigedpepresentation, though
it did not handle data fields or user inputs. Another appraoatztbduced in{[94] where
an LTL checker is introduced to check if an LTL formula holds & certain process
instance with references to the rule information sourcdse dpproach is formal and
lacks graphical representation which make it inacces$iblbusiness users. In[15] and
[5] the authors combines the power of formality and gradhidas representation using
GOSpelL for graphical rule representation and translatedSCIFF (i.e. a declarative
language based on computational logic) in order to produoegss instances.

Manual approaches are traditionally used after runningtbeess; i.e. retrospective
reporting [42], by reviewing the resulting audits and logkis approach largely depends
on manual checks done by experts to figure out the non-comdhiasiness process
behaviour (violations). A small area of automation can bedus this case and turns
the approach to be a backward automated approach by usiagrdiaing techniques
[94] to detect violations from workflow logs using temporagic. The authors in [94]
used process mining techniques to monitor the behaviouramigsses by using process
eventlogs and real-time data. Possible deviations witbgg®definition and compliance

requirements are then detected and resolved.

150

Chapter 6 Related Work 151

The proposed compliance checking approach is consideresigrdtime forward
automated compliance checking approach. WM\ models are checked using model

checking technique for compliance with CMMI-CM propertezscoded in LTL.

6.4 Chapter Summary

In this chapter, the related work is presented in differelsted areas: BPMN formaliza-
tion and verification, Maude applications for BPs, and BRegitance checking. There
are different categories under which the compliance chestudied and used to provide
practical solutions for processes quality questions. Emastics in this work differs
from the discussed related work with respect to the undeglyogic (rewriting logic),
and formal language (Maude), and the prospective use oéthaistics in the application
domain (compliance checking). The approach uses the LTproperty specifications
of pattern-based requirements because Maude supportsidrhas its own LTL model

checker which motivates the application side of the thesis.

151

Chapter 7 Conclusions and Future Work

Chapter 7

Conclusions and Future Work

This chapter concludes the thesis of compliance checkingetifformed BPMN mod-
els using Maude. In Sectidn 7.1 we represent a summary of tinke proposed in the
thesis, Sectioh 7|.2 presents the conclusions of the wokininthem with the original
hypothesis in Chaptérd 1, while in Sectibn]7.3 the set of aggrdimitations are dis-
cussed. Finally, in Sectidn 7.4, some of the future reseapgortunities related to the

work in this thesis are mentioned.

152

Chapter 7 Conclusions and Future Work 153

7.1 Summary

Inthis thesis, a semi-automated pre-appraisal approa&Mdi1-CM compliance check-
ing with formal BPMN models is proposed. The compliance &exis modelled as
a model checking problem where the system specificationpiesented by the well-
formed BPMN models in Maude and the property specificatisngpresented by the
LTL properties mapped from the CMMI-CM compliance patteaséd requirements.
First, we present the formal syntax and behavioural seicsafur a subset of the BPMN.
The syntax is obtained by mapping the graphical elementselBPMN into terms us-
ing the term rewriting system Maude. A number of BPMN chaiieg issues related
to its ambiguity specifications and possibilities of deaklland lack of synchronization
models has been discussed. Moreover, a set of domain-spedés are introduced
for simulating the behaviour of BPMN data objects as the gseassential resources
using Maude (possibly conditional) rules. Unlike most o BPMN formalizations,
the proposed formalization defines a CFG for the guards egjmes for decision based
gateways in the gateways and not in the outgoing sequencgfil@sder to allow for a
decision to be made before considering any outgoing segutws. A comprehensive
semantics for inclusive decision-based (OR) gatewaygnsdaced by using bock struc-
ture. We introduced the well-formed BPMN model definitiorhigh introduces design
restrictions reducing the possibility of deadlocks. Thedtionwf s is defined to check
the consistency with well-formedness conditions in a BPMoUel. Moreover, the for-
malization has proved to be sound based on the classicatisess definition. Sec-
ond, the CMMI-CM requirements are formally represented IdEL properties. They
mapped into LTL properties through the compliance patteilriee LTL properties are
model checked using Maude LTL model checker against wethém BPMN models
one by one. In order to interpret the results of mode checkitggmeaningful compli-
ance checking related results, we introduce a satisfagtiading scheme based on the

number of sub-practices represented by the property.

153

Chapter 7 Conclusions and Future Work 154

7.2 Conclusions

Referring to the hypotheses introduced in Chdpter 1, weladedhe thesis based on the
results and discussions proposed throughout the thesthislisection, the hypotheses

are listed with the related contributions and referencekeahapters.

1. What formalization of BPMN models can be considered suitalibr compliance
checking? If there is no such formalization, what are the nracharacteristics
of a candidate formalization? Which formal language to use?

The existing BPs formalizations lacks essential conssrwtiich are necessary for
compliance checking problem, e.g. data objects (c.f. timepawison in Tablé 6]1
in Chapte.6). Therefore a new formalization is developedafoexcerpt of the
BPMN elements using Maude in Chaptér 3 (e.g. activitiesways, events, data
objects, swimlanes, connecting flows). Data objects arengiormal semantic be-
haviour allowing for status change and dependency relstiips through domain-
specific rules. A CFG and evaluation mechanism are propasethé BPMN
decision-based gateways which allow for more specific bebaspecifications.
Moreover, the mapping from BPMN into Maude is verified and skenantics is
proved to produce sound BP models to ensure that they areffasadlocks and
lack of synchronization in Chaptel 4. In order to avoid pokesstructural errors
in the formalized BPMN models, we introduced the notion oflsi@med BPMN
models, where the model is parsed for elements that are howfog the syntac-
tic constraints specified in Definition 3.8.2 for well-frocdBPMN models besides
the standard description in the BPMN [68]. An introductidritaude, as a for-
malization language, is in Chapfer 2 and our Maude moduleBRMN syntax
and semantics are presented in the attached code files (peadig A for details)
and explained in Chaptel 3. Due to the availability of Maudié imodel checker
as part of Maude’s verification toolkit, a model checkingqadure is used to per-
form the compliance checking in Chaptér 5 where Maude reptation for the
BPs is the model being checked against a set of LTL propestiesh represent
the CMMI-CM requirements.

154

Chapter 7 Conclusions and Future Work 155

2. What are the characteristics of the CMMI process improveniemodel that make
it an interesting area for compliance checking? Is it possto formally repre-
sent the CMMI requirements? How?

The CMMI [21] process improvement model is used as the saafrcempliance

requirements in this thesis. We believe this is the first fdrnepresentation for
CMMI-CM requirements into LTL properties. CMMI is designéar software

SMEs and its appraisal methods are time, effort and monesuroimg. The CM

process area was chosen as an example for the reasons radntian Section

[1.4. A brief idea about the CMMI is introduced in Sectlonl h3haptef 2. A
comparison among the CMMI appraisals and our pre-appraggadoach is dis-
cussed into Sectidn 2.3.2 in Chapliér 2. We agreed with [698Bthat the LTL

is suitable for the property specifications. The LTL is inlmoed in Section 5.2.1.
On formalizing the CMMI requirements, they had to be mapped compliance
patterns based expressions and then mapped into the LTlenieso(in Section
[5.2.3) which are model checked in Sectiofn in 5.3 in Chapgter 5.

3. What is the verification technique to formally check comptiee of BP models
with formal requirements? Is it able to provide an explicinawer to the ques-
tion: "Is an input process compliant with the input set of prerties?"?

The verification technique used in this thesis and explaine@hapte b is the
model checking. The main reasons for that choice are list&#ction 1.4. As the
model checkers normally returns a YES/NO answerst(ue.or counterexample
the output of the model checker in our approach had to be s@@lio check the
validity and real representation of the BP on hand. We hawpgsed a mechanism
to check the existence of certain documents or objects imitdel before taking
it to be model checked in Sectign 5.3.2 in order to avoid susiresults. More-
over, a compliance checking grading scheme is proposeddmiet the model

checking results.

4. What are the automation possibilities of the compliance ckeng approach?
The possibility of automating the compliance checking apph is promising as
it allows the business people to be able to efficiently usesémei-automated ap-

proach. What encourages the automation of the approachisxtual compliance

155

Chapter 7 Conclusions and Future Work 156

requirements which can be mapped into compliance patterthshen into LTL
properties. An overview of the automation of the approaahidgsussed in Section
[7.4 in Chaptef]7.

Recalling the main thesis statemdstit possible to formally check the BPMN mod-
els compliance against the CMMI Configuration Managementggirements? we can
provide an answer to it. Yes, it is possible through impletimgra formal pre-appraisal
compliance checking approach using Maude as a formalizéitguage for the system
specifications and LTL for property specifications of the CM&M requirements. Us-
ing Maude LTL model checker we propose a possible formaltgsiuo ensure that a
designed configuration management business process igiantwath CMMI-CM pro-
cess area requirements as shown in this thesis. Table 7idh ishrecalled from Chapter
with adding our approach to it, shows a summary comparistweéen the appraisal
methods and our approach. The proposed approach is forrdalses a customized
automated model checking based on Maude LTL model checkessess the business

process compliance checking.

7.3 Limitations

Although we have tried our best to work on producing a comgmnelve approach and
method to add the formality to the compliance checking pohlthere are number of
drawbacks and limitations which the reader should be awar&lrese limitations are

listed below.

1. Atthe moment, a prior knowledge of some formal technigrabtools is required
in order to apply the approach in real life cases. That isseothe method, verifiers

have to be familiar with BPMN, Maude, LTL, model checkingda@MMI.

2. The use of model checking as a verification tool has its ovamvdacks which
may affect the results of the approach, i.e. state spacensixpa[19]. Abstrac-
tion techniques |2, 20] may be used to solve the state spgmnsion in model
checkers. However, we believe that the BPMN model for thdigaration man-
agement process in a software company is of relatively redde size which will

not normally cause the number of states to be a problem.

156

LST

Table 7.1: Characteristics of CMMI appraisals and our aggino

Feature Class A Class B Class C Our Approach
Usage Mode In-depth investigation Self appraisal Quick-look Internal check for the

Basis for improvement Designed Process
Advantages Strengths and Weaknesses of PAA starting point focuses Inexpensive, rapid feedbagklnexpensive, semi-automated

Robust method with

Consistent, repeatable results

on areas that need

most attention

Short duration

Formal

Disadvantages

Demands significant

Not used for rating

Not used for rating

Maude and BPMN are require

o

resources No deep coverage Less ownership of results | Designed process only
Sponsor Senior Manager Any Manager Any Internal Manager Process Modeller
Team Size 4-10 and ATI2 1-6 and ATL 1-2 and ATL 1
Team Composition External and internal External or internal External or internal Internal

aATL: Appraisal Team Leader.

YO\ 8InIN4 pue suoisnjouoyy /. Jaydeyd

LST

Chapter 7 Conclusions and Future Work 158

3. The approach is not fully automated, however, the coretionality of the Maude-
based formalization is fully provided. That is, the modeds e verified to be
well-formed, and therefore smﬂ]dnodel checked against the LTL properties of
CMMI requirements automaticaHy Other possible automation points are left as

future work and explained in Sectibn1.4.

7.4 Future Work

The proposed approach can be extended in many ways; onehg &PMN formaliza-
tion side and the other is on property (CMMI requirementsifalization side.

(BPMN Collaboration Model$ The formalization can be extended to model more
BPMN elements for modelling the collaboration between ntben one participants.
The BP collaboration requires communications among diffeiparties in the same
company or in different organizations. In BPMN, such sitag are modelled using
swimlanes and message transfer. Although we presentedfasipntax for representing
swimlanes and messages, a comprehensive semantics fas$iblp cases is still to be
completed based on the proposed syntax and semantics inetBap

(More BPMN Event3 An interesting family of BPMN constructs is the events, as
BPMN has twelve different events, e.g. exception, cancel,tamer. Defining the pos-
sible errors or unexpected situations in design phase ofia Bssential to guarantee its
accessibility and sustainability in all situations. Themts can be part of a subprocess
boundary event affecting the flow inside the subprocess antarmediate event affect-
ing its predecessor and successor elements. The basicumissre already included
into the proposed semantics, however, the formalizatimersoonly the plain start, and
end events, the intermediate error (exception), and messag

(More BPMN Gateways The formalization provided for the BPMN semantics in
Chaptei B is applicable to parallel AND, decision-based X@ml decision-based OR
gateways while the BPMN has also complex and event-basesvggs which are es-
sential for applications which use different events to oarthe flow. This point of en-

hancement in more related to the above point where the dawelot of comprehensive

1See Chaptérl4 for details.
2See Chaptérl5 for details.

158

Chapter 7 Conclusions and Future Work 159

events semantics will aid the formalization of event-baga@ways.

(Bisimulation) There is a study on progress to investigate the bisimulgpossibly
weak) relation between the proposed semantics and the rigtthased formalization
of BPMN in [27]. A well-formed BPMN modeW BPMWN is mapped into a transition
system and produced the possible traces of the state tomssitThe workflow models
in classical Petri nets have been formalized as a transyetem inl[90]. However, our
semantics is not identically following the Petri nets setitanas some rules defining the
behaviour of gateways are considered as one step whileithere or more transitions
on the other side in the Petri net model, e.g. AND fork. Moegothe state definition in
our semantics depends on the concept of activation, i.¢at®3an objeci is inactive
and then at stat8 the same object is active, while in Petri net based formedina,
the states are the markings where the objects are trarssaiwh the markings are only
marking the places and not the transitions (i.e. transisognabled if each of it its all
input places have at least one token, and then it is fired @&fteenabled). Therefore,
a detailed investigation is still needed to decide if theiRet formalization is suitable
to be simulated with the proposed semantics, and if so, hewvdiference in the state
definitions may affect the simulation relation.

(Tool Suppor) The current proposed approach provides the formalizati@PMN
models in Maude and we are planning its integration withinadefling environment
(e.g. Eclipse) using the mapping introduced in Chdgter 3R¥IBl elements into Maude
objects according to the proposed semantics to allow favraatic verification using
Maude verification toolkit. A potential design for the toalgport is given in Figure 711.
Automation point (1) in the figure represents the mappingnftbe BPMN elements
into Maude objects, while automation point (2) represeinésmapping from the com-
pliance pattern based requirements into the LTL formul&¢ @d automation point (3)
represent the option to automatically choose propertiesadel check them.

(More CMMI) The approach is still applicable for different processaaref the
CMMI. Based on the fact that the appraisals are looking imécetvailability of evidences
that certain components are part of the process and thattieeysed effectively, then
the proposed approach allows the company to know which dentsyare part of their

BP and which are not (using functi@k) and then checks if these documents are used

159

Chapter 7 Conclusions and Future Work 160

BP Model
in BPMN
bp.bymn
@ T BPMN2Maude
Pattern2LTL & Mapping
. Mapping
Pattern based |~ """ w»| LTL Properties Well-formed BP | BP in Maude
Requirements [... >
@ E Model Checking bp.maude
H wf-bp.
. LTL P

maude

E Legend need automation
Check M‘:ﬁ !’.’.’.E?.'E'.‘?? ann Check Result already Automatic >
—)

Figure 7.1: Potential Tool Support Design

properly (i.e. in a compliant way with the requirements)ia process through checking
the related temporal properties. In the staged represemtat the CMMI, the process
area requirements in ML2 can be formalized using the compéigpatterns and then
mapped into LTL formulae and model checked against the spording BP models to
decide on the company or project compliance with the CMMaddtls the formality to
the appraisals used for compliance checking in SMEs.
(Real Scenarigp Applying the approach to a real life scenario was not pdssibring

the development of this approach. However, the assessrtrd approach with a real
scenario is one of the essential future work to place theagmbrand enhance it to match

the real scenarios features.

160

Chapter 7 Conclusions and Future Work

Bibliography

[1]

[2]

W. M. P. Aalst. Workflow Verification: Finding Control-Biv Errors Using Petri-
Net-Based Techniques. In W. M. P. Aalst, J. Desel, and A. ®bis; editors,
Business Process Managemertdlume 1806 o.NCS pages 161-183. Springer
Berlin Heidelberg, 2000.

S. Abramsky, S. Gay, and R. Nagarajan. A Specificationc@tre for Deadlock-
Freedom of Synchronous Processékeoretical Computer Scienc222(1-2):1-
53, 1999.

[3] Y. K. Agarwal, B. Cary, S. Cash, L. Cassa, B. Demartini, Mplantis, A. N.

[4]

[5]

de Godoi, D. B. Gomes, V. Gucer, M. Kipel, A. O. Neto, C. SaadS@ah, P. D.
Tamarindo, and K. Venkitasubramanian. IBM Tivoli Change &onfiguration
Management Database (CCMDB) V7.2.1 Implementation Guigehnical Re-
port SG24-7879-00, IBM, 2010.

D. M. Ahern, J. Armstrong, A. Clouse, J. R. Ferguson, andH\K. E. Nidiffer.
CMMI SCAMPI Distilled: Appraisals for Process Improvemeftidison-Wesley

Professional, 2005.

M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Melldl. Montali, and
P. Torroni. Expressing and Verifying Business Contract wibductive Logic

Programminglnt. J. Electron. Commercd 2(4):9-38, July 2008.

[6] A. Awad. A Compliance Management Framework for Business Proces&l&lod

PhD thesis, Hasso-Plattner-Institute, Potsdam, Gernmaay,2010.

[7] A. Awad and F. Puhlmann. Structural Detection of Deal#itt Business Process

161

Models. In W. Abramowicz and D. Fensel, editd8$$, volume 7 ofLNBIP, pages
239-250. Springer, 2008.

[8] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthydur, A. J. Perlis,

[9]

[10]

[11]

[12]

[13]

[14]

[15]

H. Rutishauser, K. Samelson, B. Vauquois, J. H. WegsteiWi#ngaarden, and
M. Woodger. Report on the Algorithmic Language ALGOL 60lumerische
Mathematik 2(1):106-136, 1960.

C. Baier and J.-P. KatoenPrinciples of Model Checking (Representation and

Mind Series) The MIT Press, 2008.

E. Borger. Approaches to Modeling Business Processe<ritical Analy-
sis of BPMN, Workflow Patterns and YAWL.Software & Systems Modeling
11(3):305-318, 2012.

A. Boronat. MOMENT: A Formal Framework for MOdel managemMENAhD

thesis, Universitat Politécnica de Valéncia, June 2007.

A. Boronat and J. Meseguer. Automated Model Synchiation: A Case Study
on UML with Maude. Electronic Communications of the EASST, Graph Trans-
formation and Visual Modeling Techniqued., 2011.

K. Boukhelfa, F. Belala, A. Choutri, and H. Douibi. Fordve Understandable
UML Diagrams. InProceedings of the ACS/IEEE International Conference on
Computer Systems and Applicatip@ddCCSA'10, pages 1-7. IEEE Computer
Society, 2010.

C. Braga and A. Sztajnberg. Towards a Rewriting Sengaritr a Software Ar-
chitecture Description LanguagENTCS 95(0):149-168, 2004. Proceedings of

the Brazilian Workshop on Formal Methods.

F. Chesani, P. Mello, M. Montali, and S. Storari. Tegt®areflow Process Execu-
tion Conformance by Translating a Graphical Language to iidational Logic.

In R. Bellazzi, A. Abu-Hanna, and J. Hunter, editofstificial Intelligence in
Medicing volume 4594 ofLNCS pages 479-488. Springer Berlin Heidelberg,
2007.

[16] I. M. Chiswell. Context-free Languages. k Course in Formal Languages,

Automata and GroupdJniversitext, pages 1-33. Springer London, 2009.

[17] N. Chomsky. Three Models for The Description of Langeialpformation The-
ory, IRE Transactions qr2(3):113-124, 1956.

[18] E. M. Clarke and E. A. Emerson. Design and Synthesis at8gonization Skele-
tons Using Branching-Time Temporal Logic. In D. Kozen, editogic of Pro-

grams volume 131 olLNCS pages 52—-71. Springer, 1981.

[19] E. M. Clarke, W. Klieber, M. Novéek, and P. Zuliani. Model Checking and the
State Explosion Problem. In B. Meyer and M. Nordio, editdiapls for Prac-
tical Software Verificationvolume 7682 olLNCS pages 1-30. Springer Berlin
Heidelberg, 2012.

[20] M. Clavel, F. Durén, S. Eker, P. Lincoln, N. Marti-Oligt Meseguer, and C. Tal-
cott. All About Maude - a High-Performance Logical Framework: HmwSpecify,
Program and Verify Systems in Rewriting Lag&pringer, 2007.

[21] CMU-SEI. CMMI for Development, Version 1.3. Technidaéport CMU/SEI-
2010-TR-033, Software Engineering Institute, CarnegiddndJniversity, 2010.

[22] CMU-SEI. Capability Maturity Model Integration. Teoltal report, Carnegie

Mellon University, Software Engineering Institution, 201

[23] A. M. L. de Vasconcelos, J. L. de la Vara, J. Sanchez, anBd3tor. Towards
CMMI-compliant Business Process-Driven Requirementsitgeging. In J. P.
Faria, A. R. da Silva, and R. J. Machado, edit@SIATIC, pages 193-198. IEEE
Computer Society, 2012.

[24] A. M. L. de Vasconcelos, G. Giachetti, B. Marin, and Ostea Towards a CMMI-
Compliant Goal-Oriented Software Process through Modeldd Development.
In P. Johannesson, J. Krogstie, and A. L. Opdahl, ediftogM, volume 92 of
LNBIP, pages 253-267. Springer, 2011.

[25] J. Dehnert and P. Rittgen. Relaxed Soundness of Busipexesses. In K. R.

Dittrich, A. Geppert, and M. C. Norrie, editorddvanced Information Systems

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Engineeringvolume 2068 oL NCS pages 157-170. Springer Berlin Heidelberg,
2001.

G. Denker, J. Meseguer, and C. Talcott. Formal Spetificeand Analysis of
Active Networks and Communication Protocols: the Maudedfignce. InProc.

of DISCEX’0Q volume 1, pages 251-265, 2000.

R. M. Dijkman, M. Dumas, and C. Ouyang. Semantics andlysis of Business
Process Models in BPMNInformation and Software Technolgdy0(12):1281—
1294, Nov. 2008.

R. M. Dijkman and P. V. Gorp. BPMN 2.0 Execution Semastiormalized
as Graph Rewrite Rules. In J. Mendling, M. Weidlich, and M.sWé& editors,
Business Process Modeling Notation - Second Internatidvakshop, BPMN
2010 volume 67 ofLNBIP, pages 16—-30. Springer, 2010.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. PatternBmoperty Specifications
for Finite-state Verification. IfProceedings of the 21st International Conference
on Software EngineeringCSE '99, pages 411-420, New York, NY, USA, 1999.
ACM.

S. Eker, J. Meseguer, and A. Sridharanarayanan. Thel®&alL Model Checker.
In F. Gaducci and U. Montanari, editoiBroceedings of WRLA 2002olume 71
of ENTCS Amsterdam, September 2002. Elsevier.

S. Eker, J. Meseguer, and A. Sridharanarayanan. Thel®alL Model Checker
and its Implementation. lin Model Checking Software: Proc. 10 th Intl. SPIN
Workshoppages 230-234. Springer LNCS, 2003.

A. Elgammal. Towards A Comprehensive Framework for Business Process Com

pliance PhD thesis, Tilburg University, April 2012.

A. Elgammal, O. Turetken, W.-J. Heuvel, and M. PapaaaglFormalizing and
Appling Compliance Patterns for Business Process Conmg#iéBoftware & Sys-
tems Modelingpages 1-28, 2014.

[34] M. ElIKharbili, A. K. A. de Medeiros, S. Stein, and W. M. Yan der Aalst. Busi-
ness Process Compliance Checking: Current State and FOhakenges. In
P. Loos, M. Nuttgens, K. Turowski, and D. Werth, editdvgblS volume 141 of
LNI, pages 107-113. GlI, 2008.

[35] H. Endert, B. Hirsch, T. Kuster, and S. Albayrak. TowsaedMapping from BPMN
to Agents. InProceedings of the 2007 AAMAS international workshop and SO
CASE 2007 conference on Service-oriented computing: agsamantics, and

engineering AAMAS’07/SOCASE’07, pages 92-106. Springer-Verlag, 200

[36] A. Farzan and J. Meseguer. State Space Reduction ofifReWireories Using
Invisible Transitions. In M. Johnson and V. Vene, editdigiebraic Methodology
and Software Technologyolume 4019 o£ NCS pages 142-157. Springer Berlin
Heidelberg, 2006.

[37] S. Garcia-Miller. Thoughts on Applying CMMI in Small 8mgs. Technical
report, Carnegie Mellon, SEI, 2005.

[38] K. Gerke, J. Cardoso, and A. Claus. Measuring the Campk of Processes with
Reference Models. In R. Meersman, T. Dillon, and P. Herreditors,On the
Move to Meaningful Internet Systems: OTM 20@8ume 5870 oLNCS pages
76-93. Springer Berlin Heidelberg, 2009.

[39] A. Ghose and G. Koliadis. Auditing Business Process @l@ance. In B. Kramer,
K.-J. Lin, and P. Narasimhan, edito&grvice-Oriented Computing, ICSOC 2007
volume 4749 olLNCS chapter 14, pages 169-180. Springer Berlin, Heidelberg,
2007.

[40] P. V. Gorp and R. M. Dijkman. A Visual token-based Forization of BPMN
2.0 based on in-place Transformationsnformation & Software Technology
55(2):365-394, 2013.

[41] G. Governatori, Z. Milosevic, and S. Sadiq. Compliad@decking Between Busi-
ness Processes and Business Contract®rdoeedings of the 10th IEEE Inter-
national Enterprise Distributed Object Computing Confere EDOC '06, pages
221-232, Washington, DC, USA, 2006. IEEE Computer Society.

[42] G. Governatori and S. Sadiq. The Journey to Businesse8sCompliance.

Handbook of Research on BRlglages 426—-454, 2009.

[43] L. H. Grande. Introduccion a la notacion BPMN vy su refeccon las estrategias

del lenguaje Maude. Master’s thesis, Universidad Compkéeele Madrid, 2009.

[44] K. Hee, N. Sidorova, and M. Voorhoeve. Soundness andiabpity of Workflow
Nets in the Stepwise Refinement Approach. In W. M. P. Aalstiarigest, editors,
Applications and Theory of Petri Nets 2Q0&lume 2679 ofLecture Notes in
Computer Scieng@ages 337-356. Springer Berlin Heidelberg, 2003.

[45] 1SO. ISO 10007:2003 Quality Management Systems Gundslfor Configuration

Management. Accessed online in 06-03-2014.

[46] E. M. C. Jr., O. Grumberg, and D. A. Peledllodel Checking MIT Press, Cam-
bridge, MA, USA, 1999.

[47] K. S. H. M. H. V. Kaindl, H. Metamodel-Compliance Chengiof Requirements
in a Semiformal Representation.thre 15th Conference on Advanced Information

Systems Engineeringolume 74 ofCAISE '03 2003.

[48] A.Ligeza, K. Kluza, and T. Potempa. Al Approach to Fotaalysis of BPMN
Models. Towards a Logical Model for BPMN Diagrams.Hederated Conference

on Computer Science and Information Systems (FedCg8¢s 931-934, 2012.

[49] Y. Liu, S. Mdller, and K. Xu. A Static Compliance-Cheadkj Framework for
Business Process Model&M Systems Journagft6(2):335-361, Apr. 2007.

[50] J. O. Long.ITIL Version 3 at a Glance Information Quick Referen@pringer-
Verlag US, 2008.

[51] R. Lu, S. Sadiq, and G. Governatori. Compliance AwareiBess Process Design.
In Proceedings of the 2007 international conference on Bgsirocess Man-
agementBPM’'07, pages 120-131, Berlin, Heidelberg, 2008. Sprindelag.

[52] Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent Sys-

tems Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[53] A. Martens. On Compatibility of Web ServiceBetri Net Newsletter65:12—-20,
2003.

[54] N. MartiOliet, M. Palomino, and A. Verdejo. Rewritingohic Bibliography by
Topic: 1990-2011. The Journal of Logic and Algebraic Programming1(7-
8):782-815, 2012. Rewriting Logic and its Applications.

[55] J. Mendling Detection and Prediction of Errors in EPC Business Processléls
PhD thesis, Institute of Information Systems and New Medianna University

of Economics and Business Administration, May 2007.

[56] J. Meseguer. Conditional Rewriting Logic As a Unified ti&b of Concurrency.
Theoretical Computer Scienc@6(1):73-155, Apr. 1992.

[57] J. Meseguer. Rewriting Logic as a Semantic FrameworkC(oncurrency: a
Progress Report. In U. Montanari and V. Sassone, ed@DCUR '96: Con-
currency Theoryvolume 1119 of.ecture Notes in Computer Scienpages 331—

372. Springer Berlin Heidelberg, 1996.

[58] J. Meseguer. Membership Algebra as a Logical FramewarEquational Speci-
fication. Inthe 12th International Workshop on Recent Trends in Algetidavel-

opment Techniques Proceedingd$ADT’97, pages 18—61. Springer-Verlag, 1997.

[59] Z. Milosevic. Towards Integrating Business PolicieghvBusiness Processes. In
Proceedings of the 3rd international conference on Busrig®cess Manage-
ment BPM'05, pages 404-409, Berlin, Heidelberg, 2005. Springelag.

[60] 1. Minnich. CMMI Appraisal Methodologies: Choosing Whis Right for You.
CROSSTALK, The Journal of Defense Software Engineetb(@):7—8, 2002.

[61] F. Mokhati, P. Gagnon, and M. Badri. Verifying UML Diagns with Model
Checking: A Rewriting Logic Based Approach. Quality Software, 2007. QSIC
'07. Seventh International Conference, gages 356—-362, Oct 2007.

[62] S. Morimoto, S. Shigematsu, Y. Goto, and J. Cheng. FbNeafication of Se-
curity Specifications with Common Criteria. Proceedings of the 2007 ACM

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

Symposium on Applied Computjri§AC '07, pages 1506-1512, New York, NY,
USA, 2007. ACM.

M. Muehlen and J. Recker. How Much Language Is Enough®@ofétical and
Practical Use of the Business Process Modeling NotatiorZ. Bellahséne and
M. Léonard, editorsAdvanced Information Systems Engineerimgilume 5074
of LNCS pages 465-479. Springer, 2008.

K. Namiri and N. Stojanovic. Pattern-based Design aatiddtion of Business
Process Compliance. IRroceedings of the 2007 OTM Confederated interna-
tional conference on On the move to meaningful interneegyst CooplS, DOA,
ODBASE, GADA, and IS - Volume PaylOTM’07, pages 59-76, Berlin, Heidel-
berg, 2007. Springer-Verlag.

K. Namiri and N. Stojanovic. Towards A Formal Framewé&wk Business Process
Compliance. In M. Bichler, T. Hess, H. Krcmar, U. LechneiViatthes, A. Picot,
B. Speitkamp, and P. Wolf, editorslultikonferenz WirtschaftsinformatilsI TO-
Verlag, Berlin, 2008.

R. S. NandyalMaking Sense of Software Quality AssurantBS, 2008.
E. OhlebuschAdvanced Topics in Term Rewritin§pringer, 2002.

OMG. Business Process Model and Notation (BPMN) Vers2d. Technical
Report formal/2011-01-03, OMG, 2011.

S. Onoda, Y. lkkai, T. Kobayashi, and N. Komoda. Defontiof Deadlock
Patterns for Business Processes Workflow ModelsSystems Sciences, 1999.
HICSS-32. Proceedings of the 32nd Annual Hawaii IntermaticConference on
volume Track 5, pages 1-11, 1999.

C. Ouyang, M. Dumas, S. Breutel, and A. ter Hofsteden3laing Standard Pro-
cess Models to BPEL. IRroceedings of the 18th International Conference on Ad-
vanced Information Systems Engineeri@AISE’06, pages 417-432. Springer-
Verlag, 2006.

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

R. Pelanek. Fighting State Space Explosion: Reviewtraluation. In D. Cofer
and A. Fantechi, editorsprmal Methods for Industrial Critical Systemslume
5596 ofLNCS pages 37-52. Springer Berlin Heidelberg, 2009.

J. R. PersseProcess Improvement Essentials: CMMI, Six SIGMA, and IST1.90
Theory in Practice. O’'Reilly Media, Inc., 2006.

M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P. ar Aalst.
Constraint-based Workflow Models: Change Made EasyPrbteedings of the
2007 OTM Confederated international conference on On theento meaning-
ful internet systems: CooplS, DOA, ODBASE, GADA, and IS urivelPart |
OTM’07, pages 77-94, Berlin, Heidelberg, 2007. Springeriag.

F. Puhlmann and M. Weske. Using thmecalculus for Formalizing Workflow
Patterns. IrProceedings of the 3rd International Conference on Busifrscess

ManagementBPM’'05, pages 153-168. Springer-Verlag, 2005.

F. Puhlmann and M. Weske. Investigations on Soundnegmiing Lazy Ac-
tivities. In Proceedings of the 4th international conference on Busif¥scess

ManagementBPM’'06, pages 145-160. Springer-Verlag, 2006.

W. Reisig. Undersanding Petri Nets: Modeling Techniques, Analysishigigs,
Case StudiesSpringer-Verlag Berlin Heidelberg, 2013.

A. Rozinat and W. M. P. van der Aalst. Conformance Chegkof Processes
Based on Monitoring Real Behavidnf. Syst. 33(1):64-95, 2008.

V. Rusu. Embedding Domain-Specific Modelling LanguageMaude Specifi-
cations.Software & Systems Modeling2(4):847-869, 2013.

S. Sadiqg, G. Governatori, and K. Namiri. Modeling Cahtdbjectives for Busi-
ness Process Compliance. In G. Alonso, P. Dadam, and M. Rwsgreditors,
Business Process Managemariume 4714 of. NCS pages 149-164. Springer-
Verlag, 2007.

[80] S. W. Sadig. A Roadmap for Research in Business Processpliance. In
W. Abramowicz, L. Maciaszek, and K. Wecel, editoBlS (Workshops)vol-
ume 97 ofLNBIP, pages 1-4. Springer, 2011.

[81] W. Sadig and M. E. Orlowska. Analyzing Process Modelmg&raph Reduction
Techniquesinformation System25(2):117-134, 2000.

[82] G. Santos-Garcia and M. Palomino. Solving Sudoku Fszglith Rewriting
Rules.ENTCS 176(4):79-93, July 2007.

[83] SCAMPI-Upgrade-Team. Standard CMMI Appraisal MetHod Process Im-
provement (SCAMPI) A, Version 1.3: Method Definition Documhe Technical
Report CMU/SEI-2011-HB-001, Software Engineering Ing&t Carnegie Mel-
lon University, Pittsburgh, PA, 2011.

[84] R. Schmidt, C. Bartsch, and R. Oberhauser. Ontologetid&Representation of
Compliance Requirements for Service Processes. In M. HepHjnkelmann,
D. Karagiannis, R. Klein, and N. Stojanovic, editd88PM volume 251 o CEUR
Workshop Proceeding€EUR-WS.org, 2007.

[85] I. C. Society. IEEE Standard for Configuration Managatie Systems and Soft-
ware EngineeringlEEE Std 828B¢-2012 pages i—58, 2012.

[86] M. Staples and M. Niazi. Two Case Studies on Small EmigepMotivation and
Readiness for CMMI. IrProceedings of the 11th International Conference on
Product Focused Softwaré®ROFES '10, pages 63—66, New York, NY, USA,
2010. ACM.

[87] M.-O. Stehr, J. Meseguer, and P. C. Olveczky. Rewritiogic as a Unifying
Framework for Petri Nets. In H. Ehrig, J. Padberg, G. Juhdd,& Rozenberg,
editors, Unifying Petri Nets volume 2128 ofLNCS pages 250-303. Springer
Berlin Heidelberg, 2001.

[88] P. Thati, K. Sen, and N. Marti-Oliet. An Executable Sfieation of Asyn-
chronous Pi-Calculus Semantics and May Testing in MaudeENOCS 71:261—
281, 2002.

[89] O. Turetken, A. Elgammal, W.-J. van den Heuvel, and MP&pazoglou. En-
forcing Compliance on Business Processes through the uRettarns. In V. K.

Tuunainen, M. Rossi, and J. Nandhakumar, edite€dS 2011.

[90] W.van der Aalstand C. StatModeling Business Processes: A Petri Net-Oriented
Approach Massachusetts Institute of Technology, 2011.

[91] W. M. van der Aalst and A. H. M. T. Hofstede. YAWL: Yet Arfugr Workflow
LanguageInformation Systems Journ&0:245-275, 2003.

[92] W. M. P. van der Aalst. Verification of Workflow Nets. In®zéma and G. Balbo,
editors,ICATPN volume 1248 of. NCS pages 407-426. Springer, 1997.

[93] W. M. P. van der Aalst. Making Work Flow: On the Applicati of Petri Nets
to Business Process Management. In J. Esparza and C. LakimssdCATPN
volume 2360 oLNCS pages 1-22. Springer, 2002.

[94] W. M. P. van der Aalst, H. T. de Beer, and B. F. van Dongernoc€ss Mining
and Verification of Properties: An Approach based on Temdargic. In Pro-
ceedings of the 2005 Confederated International ConferemcOn the Move to
Meaningful Internet Systems - Volume ParOTM’'05, pages 130-147, Berlin,
Heidelberg, 2005. Springer-Verlag.

[95] W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter Hofsted¥, Sidorova,
H. M. W. Verbeek, M. Voorhoeve, and M. T. Wynn. Soundness ofkffow Nets:
Classification, Decidability, and AnalysiBormal Aspe. Compuyt23(3):333—-363,
2011.

[96] M. Y. Vardi. Branching vs. Linear Time: Final Showdowim T. Margaria and
W. Yi, editors, TACAS volume 2031 oL NCS pages 1-22. Springer, 2001.

[97] M. Y. Vardi and P. Wolper. An Automata-Theoretic Appabeto Automatic Pro-
gram Verification (Preliminary Report). IICS pages 332-344. IEEE Computer
Society, 1986.

[98] A. Verdejo and N. Marti-Oliet. Implementing CCS in Mau@. Electr. Notes
Theor. Comput. Sgi71:282-300, 2002.

[99] A. Verdejo and N. Marti-Oliet. Two Case Studies of Seti@nExecution in
Maude: CCS and LOTOSormal Methods in System Desid?7(1-2):113-172,
2005.

[100] H. Volzer. A New Semantics for The Inclusive Convergi@ateway in Safe Pro-
cesses. IProceedings of the 8th International Conference on Busif¥ecess

ManagementBPM’'10, pages 294-309. Springer-Verlag, 2010.

[101] K. V. Wal. ISACA and IT Governance Institute Annual Rep http: // wwv.
i saca. or g/ COBI T/ Pages/ def aul t . aspx?ci d=1003566&Appeal =PR, 2011.
Accessed online in 4-12-2013.

[102] M. Weske.Business Process Management: Concepts, Languages, &utthés

Springer-Verlag Berlin Heidelberg, 2012.

[103] P. Wohed, W. M. van der Aalst, M. Dumas, A. H. ter Hofgiednd N. Russell.
Pattern-based Analysis of BPMN : An Extensive Evaluatiothef Control-flow,

the Data and the Resource PerspectiBfM Center Report BPM-05-2@005.

[104] P. Wong and J. Gibbons. A Process Semantics for BPMNPrérteedings of
the 10th International Conference on Formal Methods andv&oe Engineering

ICFEM’08, pages 355-374. Springer-Verlag, 2008.

[105] P. Wong and J. Gibbons. Formalisations and Applicetiof BPMN. Science of
Computer Programming/6(8):633—-650, Aug. 2011.

[106] K. Yajima, S. Morimoto, D. Horie, N. S. Azreen, Y. Gotand J. Cheng. FOR-
VEST: A Support Tool for Formal Verification of Security Spfgzations with
ISO/IEC 15408. Innternational Conference on Availability, Reliability drse-
curity (ARES’09) pages 624—-629, March 20009.

[107] J. Ye and W. Song. Transformation of bpmn diagrams tel yeets. Journal of
Software 5(4):396-404, 2010.

http://www.isaca.org/COBIT/Pages/default.aspx?cid=1003566&Appeal=PR
http://www.isaca.org/COBIT/Pages/default.aspx?cid=1003566&Appeal=PR

Appendices List

Appendix A

Appendices List

The appendices of this thesis include the following:

1. CMMI Configuration Management PA. A copy of the CMMI CM pess area
guidelines is included in Appendix B.

2. Designed Maude Functions. In Appenfix C, the functiorexdua the semantics

and well-formed checking are defined and explained.

3. Maude Modules. The code files can be downloaded from theesity of Le-
icester research archive at the same page the thesis daledlbam. The files in-
cludes modules (BPMN-SYNTAX, BPMN-SEMANTICS, WFS-BPMNPBIN-
EXAMPLES, CM-PREDS, CM-CHECK and Maude model checking medu
A file named (Counterexamples.txt) includes all the cowxamples we have
when running the model checker for EX1 and EX2. Note thatcthenterexample
file is a collection of counterexamples and not readable bydéa Moreover, a
read metext file is giving some suggested steps to run the modulesininary
link to the file is: https://lra.le.ac. uk/ handl e/ 2381/ 385, then search by

the thesis title or the author name.

173

https://lra.le.ac.uk/handle/2381/385

Appendix B.CMMI Configuration Management PA

Appendix B

CMMI-CM Process Area

Configuration Management is a support process area at Maltiesrel 2 in CMMI. The following
is the description of the process area in the CMMI-DEV 1.3utoent by [21].

Purpose The purpose of Configuration Management (CM) is to estaldisd maintain the
integrity of work products using configuration identifiaatj configuration control, configuration
status accounting, and configuration audits.

Introductory Notes: The Configuration Management process area involves tianfiolg

activities:

o |dentifying the configuration of selected work productsttb@mpose baselines at given

points in time
e Controlling changes to configuration items

e Building or providing specifications to build work produdtem the configuration man-

agement system
e Maintaining the integrity of baselines

e Providing accurate status and current configuration datete@lopers, end users, and

customers

The work products placed under configuration managemehtdadhe products that are deliv-
ered to the customer, designated internal work productgiiged products, tools, and other items
used in creating and describing these work products.

Examples of work products that can be placed under configuration memagt include:

Hardware and equipment, Drawings, Product specificatidas| configurations, Code and li-

174

braries, Compilers, Test tools and test scripts, Instatidbgs, Product data files, Product tech-
nical publications, Plans, User stories, Iteration bag&ld®rocess descriptions, Requirements,
Architecture documentation and design data, Product limesp processes, and core assets.

Acquired products may need to be placed under configuratemagement by both the sup-
plier and the project. Provisions for conducting configimratmanagement should be established
in supplier agreements. Methods to ensure that data arele@md consistent should be estab-
lished and maintained. Configuration management of worlymts can be performed at several
levels of granularity. Configuration items can be decom@ds& configuration components
and configuration units. Only the teroonfiguration itemis used in this process area. There-
fore, in these practicesonfiguration item(Cl) may be interpreted as configuration component
or configuration unit as appropriate.

Baselines provide a stable basis for the continuing evautf configuration items. An
example of a baseline is an approved description of a pratiatincludes internally consistent
versions of requirements, requirement traceability roas; design, discipline-specific items, and
end-user documentation. Baselines are added to the catfgumanagement system as they
are developed. Changes to baselines and the release of sedicps built from the configuration
management system are systematically controlled and areditvia the configuration control,
change management, and configuration auditing functioosmfiguration management.

This process area applies not only to configuration manageameprojects but also to con-
figuration management of organizational work products saagchtandards, procedures, reuse li-
braries, and other shared supporting assets. ConfiguraBoagement is focused on the rigorous
control of the managerial and technical aspects of workysts] including the delivered product
or service. This process area covers the practices formparfg the configuration management
function and is applicable to all work products that are gthander configuration management.

For product lines, configuration management involves aiidit considerations due to the
sharing of core assets across the products in the prodeditid across multiple versions of core
assets and products.

Specific Goal and Practice Summary
SG 1 Establish Baselines

SP 1.1 Identify Configuration Items
SP 1.2 Establish a Configuration Management System

SP 1.3 Create or Release Baselines

SG 2 Track and Control Changes

SP 2.1 Track Change Requests
SP 2.2 Control Configuration Items

SG 3 Establish Integrity

SP 3.1 Establish Configuration Management Records

SP 3.2 Perform Configuration Audits

B.1 SG 1 Establish Baselines

Baselines of identified work products are established. iBpgwactices to establish baselines
are covered by this specific goal. The specific practices ruth@eTrack and Control Changes
specific goal serve to maintain the baselines. The specifictipes of the Establish Integrity

specific goal document and audit the integrity of the baeslin

SP 1.1 Identify Configuration Items

Identify configuration items, components, and related workproducts to be placed under
configuration management.

Configuration identification is the selection and speciioraof the following:
e Products delivered to the customer
e Designated internal work products
e Acquired products
e Tools and other capital assets of the project’s work envirent
e Other items used in creating and describing these work jgtedu

Configuration items (Cls) can include hardware, equipmemd, tangible assets as well as soft-
ware and documentation. Documentation can include regeints specifications and interface
documents. Other documents that serve to identify the aanafiigpn of the product or service,
such as test results, may also be included. A Cl is an entitigdated for configuration man-
agement, which may consist of multiple related work proglicat form a baseline. This logical

grouping provides ease of identification and controlledeasc The selection of work products

for configuration management should be based on criterééksited during planning. Example

Work Products is Identified configuration items.

Subpractices

(1.1.1) Select configuration items and work products thatmuse them based on documented

criteria.
(1.1.2) Assign unique identifiers to configuration items.
(1.1.3) Specify the important characteristics of each gométion item.
(1.1.4) Specify when each configuration item is placed urdafiguration management.
(1.1.5) ldentify the owner responsible for each configorattem.

(1.1.6) Specify relationships among configuration items.

Example criteria for selecting configuration items at thprapriate work product level in-

clude the following:
e Work products that can be used by two or more groups

e Work products that are expected to change over time eitteause of errors or changes

in requirements

e Work products that are dependent on each other (i.e., a eHar@pe mandates a change

in the others)
e Work products critical to project success
Examples of work products that may be part of a configuratiem include the following:

e Design

Test plans and procedures

Test results

Interface descriptions

Drawings

Source code

User stories or story cards

The declared business case, logic, or value

Tools (e.g., compilers)

Process descriptions
e Requirements

Example characteristics of configuration items includéhaytdocument or file type, program-
ming language for software code files, minimum marketalkd¢ufes, and the purpose the con-
figuration item serves.

Example criteria for determining when to place work produatder configuration manage-

ment include the following:
e When the work product is ready for test
e Stage of the project lifecycle
e Degree of control desired on the work product
e Cost and schedule limitations
e Stakeholder requirements

Incorporating the types of relationships (e.g., parelitdctdependency) that exist among
configuration items into the configuration management sirade.g., configuration management

database) assists in managing the effects and impacts mjeha

SP 1.2 Establish a Configuration Management System

Establish and maintain a configuration management and charng management system for
controlling work products.

A configuration management system includes the storageampaicedures, and tools for
accessing the system. A configuration management systemocaist of multiple subsystems
with different implementations that are appropriate foclreaonfiguration management envi-
ronment. A change management system includes the storadgje,peocedures, and tools for
recording and accessing change requests.

Example Work Products

e Configuration management system with controlled work petslu
¢ Configuration management system access control procedures

e Change request database

Subpractices
(1.2.1) Establish a mechanism to manage multiple levelswtrol.
(1.2.2) Store and retrieve configuration items in a confifjpmamanagement system.

(2.2.3) Provide access control to ensure authorized atogke configuration management sys-

tem.

(1.2.4) Share and transfer configuration items betweerraoetels in the configuration man-

agement system.
(1.2.5) Store and recover archived versions of configuratams.
(1.2.6) Store, update, and retrieve configuration managereeords.
(1.2.7) Create configuration management reports from théguoration management system.
(1.2.8) Preserve the contents of the configuration managgesystem.
(1.2.9) Revise the configuration management structure Gesaary.

The level of control is typically selected based on projduectives, risk, and resources.
Control levels can vary in relation to the project lifecyctgpe of system under development,

and specific project requirements. Example levels of cbmotude the following:

e Uncontrolled: Anyone can make changes.
e Work-in-progress: Authors control changes.

e Released: A designated authority authorizes and contnalsges and relevant stakehold-

ers are notified when changes are made.

Levels of control can range from informal control that signfsacks changes made when config-
uration items are being developed to formal configuratiomtrod using baselines that can only
be changed as part of a formal configuration managementgsoce

Examples of preservation functions of the configuration agg@ment system include the

following:

e Backup and restoration of configuration management files
e Archive of configuration management files

e Recovery from configuration management errors

SP 1.3 Create or Release Baselines

Create or release baselines for internal use and for deliverto the customer.

A baseline is represented by the assignment of an identifiarconfiguration item or a col-
lection of configuration items and associated entities astindt point in time. As a product or
service evolves, multiple baselines can be used to conav#ldpment and testing. Hardware
products as well as software and documentation should alsachuded in baselines for infras-
tructure related configurations (e.g., software, hardiane in preparation for system tests that
include interfacing hardware and software. One common fsbaselines includes the system
level requirements, system element level design requinésnand the product definition at the
end of development/beginning of production. These baselare typically referred to respec-
tively as thefunctional baselingallocated baselineandproduct baseline

A software baseline can be a set of requirements, desigrgesoade files and the associated
executable code, build files, and user documentation (@tede@ntities) that have been assigned

a unique identifier. Example work products are: baselinesgiiption of baselines.

Subpractices

(2.3.1) Obtain authorization from the CCB before creatingeteasing baselines of configuration

items.

(1.3.2) Create or release baselines only from configurétions in the configuration management

system.
(1.3.3) Document the set of configuration items that areaioat in a baseline.

(1.3.4) Make the current set of baselines readily available

B.2 SG 2 Track and Control Changes

Changes to the work products under configuration manageaneritacked and controlled. The

specific practices under this specific goal serve to mairiiagelines after they are established

by specific practices under the Establish Baselines speét

SP 2.1 Track Change Requests

Track change requests for configuration items.

Change requests address not only new or changed requitemérdlso failures and defects
in work products. Change requests are analyzed to deterttmngnpact that the change will
have on the work product, related work products, the budget,the schedule. Example work

products: Change requests.

Subpractices
(2.1.1) Initiate and record change requests in the chamyest database.
(2.1.2) Analyze the impact of changes and fixes proposedangdrequests.
(2.1.3) Categorize and prioritize change requests.

(2.1.4) Review change requests to be addressed in the nextifsawith relevant stakeholders

and get their agreement.

(2.1.5) Track the status of change requests to closure.

Changes are evaluated through activities that ensurdiatre consistent with all technical
and project requirements. Changes are evaluated for thpmdt beyond immediate project or
contract requirements. Changes to an item used in multijgléyets can resolve an immediate
issue while causing a problem in other applications. Chsauage evaluated for their impact on
release plans.

Emergency requests are identified and referred to an enmwgrganhority if appropriate.
Changes are allocated to future baselines.

Conduct the change request review with appropriate ppatits. Record the disposition of
each change request and the rationale for the decisiomding success criteria, a brief action
plan if appropriate, and needs met or unmet by the changéorRethe actions required in the
disposition and report results to relevant stakeholders.

Change requests brought into the system should be handdedkifficient and timely manner.
Once a change request has been processed, it is criticalge tle request with the appropriate
approved action as soon as it is practical. Actions left agsalt in larger than necessary status

lists, which in turn result in added costs and confusion.

SP 2.2 Control Configuration Items

Control changes to configuration items.

Control is maintained over the configuration of the work pretdbaseline. This control
includes tracking the configuration of each configuratiemit approving a new configuration if
necessary, and updating the baseline. Example work pradRetsision history of configuration

items, and Archives of baselines.

Subpractices

(2.2.1) Control changes to configuration items throughbetife of the product or service.

(2.2.2) Obtain appropriate authorization before changediguration items are entered into the
configuration management system (e.g. authorization flen€CCB, the project manager,

product owner, or the customer).

(2.2.3) Check in and check out configuration items in the goméition management system for
incorporation of changes in a manner that maintains theecoress and integrity of con-

figuration items.

(2.2.4) Perform reviews to ensure that changes have notdausntended effects on the baselines

(e.g., ensure that changes have not compromised the safedgurity of the system).

(2.2.5) Record changes to configuration items and reasomhémges as appropriate.

Examples of check-in and check-out steps include the fatigw

Confirming that the revisions are authorized

Updating the configuration items

Archiving the replaced baseline and retrieving the new lbase

Commenting on the changes made to the item

Tying changes to related work products such as requiremeses stories, and tests

If a proposed change to the work product is accepted, a sthiddentified for incorporat-
ing the change into the work product and other affected a@asfiguration control mechanisms
can be tailored to categories of changes. For example, v considerations could be less

stringent for component changes that do not affect othermpoments. Changed configuration

items are released after review and approval of configuratimnges. Changes are not official

until they are released.

B.3 SG 3 Establish Integrity

Integrity of baselines is established and maintained.
The integrity of baselines, established by processes iassdavith the Establish Baselines
specific goal, and maintained by processes associatedheithrack and Control Changes spe-

cific goal, is addressed by the specific practices under plaisific goal.

SP 3.1 Establish Configuration Management Records

Establish and maintain records describing configuration iems. Example work products:

e Revision history of configuration items

Change log

Change request records

Status of configuration items

Differences between baselines

Subpractices

(3.1.1) Record configuration management actions in suficdetail so the content and status of

each configuration item is known and previous versions caedmvered.

(3.1.2) Ensure that relevant stakeholders have access tmawledge of the configuration status

of configuration items.
(3.1.3) Identify the version of configuration items that stituite a particular baseline.
(3.1.4) Describe differences between successive baseline
(3.1.5) Specify the latest version of baselines.

(3.1.6) Revise the status and history (i.e., changes, atttavns) of each configuration item as

necessary.

Examples of activities for communicating configuratiortssanclude the following:
e Providing access permissions to authorized end users
e Making baseline copies readily available to authorized ws®ts

o Automatically alerting relevant stakeholders when itemescliecked in or out or changed,

or of decisions made regarding change requests

SP 3.2 Perform Configuration Audits

Perform configuration audits to maintain the integrity of configuration baselines.
Configuration audits confirm that the resulting baseline$ @@cumentation conform to a
specified standard or requirement. Configuration item edlatcords can exist in multiple
databases or configuration management systems. In suahdest configuration audits should
extend to these other databases as appropriate to ensura@gconsistency, and completeness
of configuration item information. Example work products:a€onfiguration audit results and

Action items. Examples of audit types include the following

e Functional configuration audits (FCAsAudits conducted to verify that the development
of a configuration item has been completed satisfactotilgt the item has achieved the
functional and quality attribute characteristics spedifiethe functional or allocated base-

line, and that its operational and support documents ar@leteand satisfactory.

e Physical configuration audits (PCAsAudits conducted to verify that a configuration

item, as built, conforms to the technical documentation defines and describes it.
e Configuration management auditdudits conducted to confirm that configuration man-

agement records and configuration items are complete, stensiand accurate.

Subpractices

(3.2.1) Assess the integrity of baselines.
(3.2.2) Confirm that configuration management records ctiyralentify configuration items.

(3.2.3) Review the structure and integrity of items in thaefgguration management system.

(3.2.4) Confirm the completeness, correctness, and censjsbof items in the configuration man-
agement system. Completeness, correctness, and coogisifethe configuration man-
agement system’s content are based on requirements akistéte plan and the disposi-

tion of approved change requests.
(3.2.5) Confirm compliance with applicable configuratiomagement standards and procedures.

(3.2.6) Track action items from the audit to closure

Appendix C.Designed Maude Functions

Appendix C

Maude Functions

In this appendix we present explanations of the semantiasaedfunctions in Maude. In Section
[C.1, functionspr eds, succs, andQ nP are defined for returning an object’s predecessor, succes-
sors and pool name. Followed by the functions used to defsmeéi-formed BPMN models in
Sectio C.R. The function used to define the semantic rulegdteways are defined in Section

for AND related functions and in Sectibn €.4 for the diecigyateway related functions.

C.1 Operations on Business Process Models

We present here some useful functions that operate on thedglelsnand are build upon the pro-
posed formalization of BPMN syntax and semantics in Mauderkilig on finding the paths for-
ward and backward leads us to have equations that retrieteoéad| objects that are before/after
a certain object (or its predecessors/successors). Inofagrictured cycles, the approach we
propose is still able to return the predecessors and sureassan object, but it will not be appli-
cable for the arbitrary cycles, because they will violatestrod the well-formedness requirements
discussed in Chaptel 3. The functions introduced belowsed in other rules introduced earlier
in this chapter with some restrictions. For example, thetionspr eds, i nPr eds, acti vePr eds
used in rule\NDFor k (in Sectiori:3.4.2) and has similar structure of the conceptliffers in the
aim, i.e.pr eds retrieves the object’'s predecessarPr eds retrieves the immediate predecessors
for an object,act i vePr eds retrieves a true if one (or more) of the predecessors iseacdind
preds which is discussed below retrieves the set of all predecestarting from an object till

the start event is reached.

186

Predecessors

In preds functions, a depth-first search mechanism is used in ordeztton all the predeces-
sors of an object. It is defined to take the following arguraeminChj ect , which we want its
predecessors, and tBhj ect Set in which the object is a member. Moreover, the function takes
two object sets as arguments with the valoeopj ect) in its initial state; first one to use as a
temporary storage for objects with more than one predereés@. a merge gateway with more
than one predecessor) till all the predecessors are fetelneldthe other one is used to store the
output objects till the procedure is finished. The functieturns the set of predecessor objects if
thest art object is reached with no objects in the temporary storagecbbet, as defined below

and as shown graphically in Figdre C.1 (c).

op preds : Chject ChjectSet (bjectSet QbjectSet -> (bject Set
eq preds(O noobject, noobject, A = A.
eq preds(< X : startEvent | AS1 > A noobject, B) = B.

The first equation above assumes that all the process ohpatsbeen retrieved (e.g. starting
from the end event, and retrieving all the predecessotbdilstart event). In that case, the process
object set will be empty (i.e100bj ect operator) and the temporary storage is also empty, and the
function returns the output set of objectd ¢ontaining the set of all the predecessors. The second
equation above assumes another scenario, where the stattieweached and the temporary

storage is empty (i.e100bj ect operator), hence, the function returns the set of predersess

@ (b) © (d) (e)

Figure C.1: BPMN illustration for different cases consitby thepr eds function

The preds function considers many cases for the precedence relhtm$n a business
process model. The general forms of these cases are deatedstrsing BPMN notation in
Figure[C.1 which will be used below to explain the functioriimiéon. The cases in (a) and (b)
in Figure[C.1 show the predecessor of an activity (or an eedtewhich is a single object. The

function checks here that the input transition for the dbjeis the same as the output transition

of the objecty and this declared them #gs the immediate predecessonofThe equation below
shows that object is the query object, objeatis its predecessor, we know that becaXisénput
transition is the same &% output transition, (i.et N1), andAis the rest of th&bj ect Set . The
equation proceeds by copyingto the output object set, and replacingl by Y as the query
object. In this cas& has only one predecessd.(Notice that the equation below rewritgéito

Y asX has only one predecessor (i¥g.and it isY’s turn to bring its predecessors.

eq preds(< X : K| intNL;ASL > (<Y : L | out:tNl;AS2 > A),B,Q
= preds(< Y : L | out:tNL;AS2 > AB (<Y : L | out:tNL;AS2 > Q))

The following equation definition supposes that the objgtas more than one predecessors
(e.g. a merge gateway like the one in FiglrelC.1 (e)) m&one of them. In this cas¢,is
being copied to the output object s&as part of the output, and Bas an object waiting to get
its predecessors afterwards. Objgatays in the query object position after removing the input
transition which fetchY as a predecessor. As we still ha¥eas a query object and removing
one of its input transitions each step we fetch one of its gredsors, after some steps it will
have no other transition®idt r ans). In this case we need to remo¥eas a query object and
put one of it predecessors stored withNote that we are not addingto the output object set
C, because it is already there from a previous step. Also, tipub transitions forY is a set
of transitions(t N1, T1) giving the possibility ofY being a splitting gateway with more than one
output transitions. In the Figure C.1 we used the XOR gatewagses (d) and (e) for illustrating
the idea and the same concept applies to the AND and OR gateway

eq preds(<X: K| in:(tNL, T1); AS1>, (<Y:L|out:tNl;AS2>, A), B, O
= preds(<X: K|in:T1; AS1> A (<Y:L|out:tNl; AS2>, B),
(<Y:L|out:tNL; AS2>, C)) [owi se] .
eq preds(<X: K|in:notrans; AS1> A (<Y:L|out:(tNL, T1);AS2>, B), C)
= preds(<Y:L|out: (tNL, T1); AS2>, A B, O

If the predecessorY(in the equations below) has more than one output transifiewgs the
XOR split gateway in Figure_Cl.1 (d)), then it will be referedcin more than one object prede-
cessor sets while it is already in the output set of predecgssn the first checky is the only
predecessor faX, so theX is removed from the query anéhas been rewritten to the query and
added to the output set of predecessardhis illustrated by the first equation below. This is
followed by adding the split gateway into the temporary ag@B to return all the objects that it

is a predecessor for as shown in the second equation belasvddine by removing one transition

at a time when its connected obiject is retrieved. Finallg,tttird equation below checks, with
the last predecessor, if it is already in the output set arifittis in the output set, then it is not

duplicated and the object in query is updated to the first®fétrieved predecessors

eq preds(< X : K| in: t Nl ; ASL >
(<Y: L]out: (tN, Tl : AS2> A, B O
= preds(< Y : L] out : (t N, T1) ; AS2 > A B,
(<Y:LJ|]out: (tN, T1) ; A2 > Q) .
eq preds(< X: K| in: (t NL, T1) ; ASl >,
(<Y: Ljout: (tN, T2 ; A2> A, B O
= preds(< X: K| in: Tl ; ASl > A
(Y: L] out: (tN, T2 ; A2 > B),
(<Y:LJ]out: (tN, T2 ; A2> Q) .
eq preds(< X : K| in: t NL; ASLl > A
(<Y:LJ|] out: (tN, Tl ; A2 > B),
(<Y: L] out: (t N, T ; AS2 > Q)
= preds(< Y : L] out : (t N, T1) ; AS2 > A B,
(<Y: LJ|] out: (t N, T1) ; AS2 > C)) [ow se] .

If the start event is reached while the temporary storagebgsts in it, then the start event
is moved to the output object set and one of the objects instingporary storage is moved to the
guery to bring its predecessors. Check the case (c) in Higdland the rule below which model

this particular situation.

eq preds(< X : startEvent | ASl >, A

(<Y: L| A2 > B),

(< X: startEvent | ASL > <Y: L| A2 >C)
= preds(<Y: L | AS2 >, A B,

(< X: startEvent | ASL1 > <Y : L| A2 > Q) .

Successors

A similar approach, as the one used in defininggheds function above, is followed in defin-
ing thesuccs function. However, thesuccs function is mainly used to retrieve the set of all
successors of an object in the business process till thevermd. eA depth-first approach is used

to find the set of objects that comes after an object (its fswre). The stopping condition of

the function is when it reaches the end event without remginbjects in its temporary storage
object set taking into account that according to the weitaied BPMN definition in Section 3.3,
a BPMN process has only one end event. The function is defotké as arguments the object

in query, the whole object set, the temporary storage obgctand the output storage object set.

op succs : (nject hjectSet QbjectSet ChjectSet -> hject Set
eq succs(O noobject, noobject, A = A.

eq succs(< X : endEvent | AS1 >, A noobject, B) = B.
a similar definition is given below for the functiGuccs.

eq succs(< X : K| out : t NL; AS1 >,
(<Y:L]in:t N ; AS2> A, B O

=suces(<Y: L] in: t Nl ; AS2 > A B,
(<Y:L]in:t N ; AS2> Q) .
eq succs(< X : K| out : (t NL, T1) ; ASl >
(<Y: L] in:t N ,; A2> A, B O
= succs(< X: K| out : T1; ASL > A

(<Y: L] in:t N ; AS2 > B,

(<Y: L] in:t Nl ,; A2 > Q) [owse] .

eq succs(< X : K| out : t NL; AS1 >,

(<Y: L]in: (tN, Tl ; A2 > A, B 0O
=suces(<Y: L| in: (t NL, T1) ; AS2 >, A B,

(<Y:L]in: (tN, T ; AS2> Q) .

eq suces(< X : K| out : (t NL, T1) ; ASl >,

(<Y: L]in: (tN, T2 ; A2 > A, B 0

= succs(< X: K| out : T1; ASL > A
(<Y:LJ|]in: (t N, T2 ; AS2 > B),

(<Y: L] in: (t NN, T2) ; AS2 > C)) [owise] .

eq succs(< X : K| out : t NL; AS1 > A noobject,
(<Y: L] in: (t NN, T1) ; AS2 > Q)

= <Y:L]|in: (t N, T1) ; AS2 > C.

eq suces(< X : K| out : (t NL, T1) ; AS1l > A B,

(<Y: L]in: (t N, T2 ; AS2 > Q)
= succs(< X: K| out : T1; ASL > A B,
(<Y:LJ]in: (t N, T2 ; A2 > C) [ow se]

eq succs(< X : K| out : t NL; ASL > A
(<Y:LJ|in: (t NN, T1) ; AS2 > B),
(<Y: L] in: (t NN, Tl ; AS2 > Q)
=suces(<Y: L|in: (t NL, T1) ; AS2 >, A B,
(<Y: L] in: (t NN, T1) ; AS2 > Q) .
eq succs(< X : K| out : notrans ; ASl > A
(<Y: L] in: (tN, Tl ; AS2 > B), O
=suces(<Y: L|in: (t N, T1) ; AS2 > A B O .
eq succs(< X : endEvent | eventType : end ; ASl >, A
(<Y: L| A2 > B),
(< X : endEvent | eventType : end ; ASL > <Y : L | AS2 > Q)
= suces(< Y: L | AS2 >, A B,
(< X : endEvent | eventType : end ; ASL > <Y : L | AS2 > Q) .

Identifying Responsibilities

In order to retrieve all the objects in a certain pool, or tevaer a question of what are the
activities that a certain participant is responsible fa lbusiness process, we defined the function
A nP. This function takes the name of the pool (participant) atriagand the set of all objects
that included into the process under consideration. lienats the set of objects which do belong

to that specific pool in query. The definition in Maude is below

op OnP : String QbjectSet ChjectSet -> Cbject Set

eq O nP(S1, noobject, B) = B.

eq OnP(SL, (< X: K| pool : S1; ASL > A),B)
= OnP(SL,A (< X: K| pool : SL; ASl > B)) .
eq GnP(SL, (< X: K| pool : S2; ASL > A),B)
= G nP(S1, A B) [ow se]

The functionQ nP, defined above, takes the name of the pool (i.e. a participding process,
which can be a person, arole, a department, or a companylh@mhole process objects. It uses

the secondXj ect Set argument as a storage for the output objects. The first equdgfines

the situation of having no objects in the process, and theifuiiction retrieves the set of objects
in the output storag8. The second equation above, matchespiité value in an object in the
process with the String valugl in query. If there is a match, then the objects moved to
the output storage and removed from the process. Finallerthird equation, the otherwise
situation is defined owi se]). If an object in the process does not have the matgbiot) name,
then it is removed from the process object set and will notdaked to the output storage as well.
Functioni nt o is used to check the existence of an object into an objectrgetafined as

follows.

op into : Object QbjectSet -> Bool
eq into(Q (QA) =true .

eq into(Q A = false [owise] .

C.2 WES functions

The well-formedness check introduced in Secfion 3.3 was:

subsort Wrprocess < Chject Set

op wWfs : (bject (bjectSet ~> Bool

var O: nject

var A : (bject Set

ceq Ws (O A =true
if wistartendTF((O A), noobject) /\ wfExceptionTF((Q A), noobject) /\
wf ActivityTF((O A), noobject) /\ wGatesTF((O A), noobject) /\
wf pat hTF(O (O, A), noobj ect)

eq Wis(O A = false [owise] .

In the second part of the condition, functishExcept i onTF is about the exception events; that
an exception event should have no incoming transitions ahdame outgoing transition. Func-
tionsexceptionCol | ect or, wf Excepti on andwf Excepti onTF are used to collect the excep-
tion events in the process, collect the well-formed exoepévents in the process and check the
equality of the two sets of object respectively. The conditevaluates tarue if the two sets
have the same elements; hence all the exception events prdbess satisfies the well-formed

exception requirements.

op exceptionCollector : QObjectSet ChjectSet -> Qbject Set

eq exceptionCol | ector ((<EL:internediateEvent|event Type: excepti on;
AS1> A), B)
= exceptionCol | ector (A (<EL:intermedi at eEvent | event Type: excepti on;
AS1>, B)).
eq exceptionColl ector (A B) = B [owi se]

op W Exception : QbjectSet ChjectSet -> Qbject Set

eq W Exception((<EZ1:intermedi at eEvent | event Type: excepti on;
sourceChject:Y;in:notrans;out:tNL; AS1> <Y: K| error:tNL; AS2>, A), B)

= wf Exception(A (<ELl:internediateEvent|event Type: excepti on;
sourceChbj ect: Y;in:notrans;out:tNl; AS1> B))

eq W Exception(A B) = B [owi se]

op W ExceptionTF : (bjectSet CbjectSet -> Bool

ceq W ExceptionTF(A, noobject) = true

i f wfException(A noobject) = exceptionCollector(A noobject)
eq W ExceptionTF(A B) = fal se [owi se]

The third part of the condition contains the functieihAct i viti esTF and covers the sec-
ond requirement in Definition_3.3.2 about the number of inc@rand outgoing transitions
of an activity or non-exception event. The functiokg i vityCol | ector, wf Activity and
wf Acti vi t yTF are used to collect the activities and non-exception evaritee process, collect
the well-formed ones in the process and check the equalityeatfivo sets of object respectively.
The condition evaluates tioue if the two sets have the same elements; hence all the agsiviti

and non-exception events in the process are well-formed.

op ActivityCollector : ChjectSet (bjectSet -> hject Set
(< task | AS1 > A), B)

A (B,< X: task | ASL >)) .

(< X : subprocess | ASl > A),B)

A (B,< X : subprocess | ASl >)) .

eq ActivityCollector(
= ActivityCollector(
eq ActivityCollector(
= ActivityCollector(
eq ActivityCollector((< i ntermedi at eEvent | event Type : nessage;
ASL > A),B)
= ActivityCollector(A (B, < X : internediateEvent | eventType :
message; AS1>))

eq ActivityCollector(A B) = B [owi se]

op WActivity : CbjectSet hjectSet -> Qbject Set

--- atask

eq WActivity((< X: task | in: tNL; out : tN2 ; ASL > A),B)

= wActivity(A (< X: task | in: tNL; out : tN2; ASl > B)) .

--- a subporcess

eq WActivity((< X : subprocess | in: tNL; out : tN2 ; ASl > A),B)
= wfActivity(A (< X : subprocess | in: tNL; out : tN2 ; ASl > B)) .

--- a nessage

eq WActivity((< X : intermediateEvent | event Type: message ; in:tNi;
out : tN2 ; sourceChject : Y ; targetQbject : Z; ASl > A),B)

= wlActivity(A (< X : internmedi ateEvent | eventType: message ; in:tNi;
out : tN2 ; source(hject : Y ; targetChject : Z; ASL > B))

eq WActivity(A B) = B [owse] .

op WActivityTF : CbjectSet (bjectSet -> Bool

ceq W ActivityTF(A noobject) = true

if wfActivity(A noobject) = ActivityCollector(A noobject)
eq WActivityTF(A B) = fal se [owi se]

For the gateways well-formedness, we use a similar appreackpt it has different cases for
different gateways. Functiogat eCol | ect or collects all the gateways in the process. Function
wf Gat es collects the well-formed gateways from the process. It bdsilfil the requirements for
each gateway type. For example, the AND-fork gateway shioavg one incoming transition and
more than one outgoing transitions to be considered waihéa. The following is the related
wf Gat es function. It restricts the transfer of the gateway from tihecgss set of objects to the
well-formed set of gateways by having exactly one incomnagditiont N1, and more than one
outgoing transitiort N2, T1 whereT1 is a set of transitions that should not be empty €/ =

notrans).

op gateCollector : ObjectSet ChjectSet -> Qbject Set
eq gateCollector((< GL : G| ASL > A),B)

= gateCollector(A (< GL : G| ASl > B))

eq gateCollector(A B) = B [ow se] .

op W Gates : ChjectSet (bjectSet -> (hject Set
ceq WGates((< GL : aforkgate | in:tNL;out:(tN2,T1);ASL > A),B)
= wGates(A (< Gl : aforkgate | in:tNL; out:(tN2, T1);ASl >, B))
if TL =/= notrans .
ceq WGates((< GL : xsplitgate | in:tNL;out:(tN2, T1); AS1 > A), B)
= wGtes(A (< GL : xsplitgate | in:tNL;out:(tN2, T1); ASL > B))
if TL =/= notrans .
ceq WGates((< GL : osplitgate | in:tNL;out:(tN2, T1); AS1 > A), B)
= wGates(A (< GL : osplitgate | in:tNL;out:(tN2,T1); ASL > B))

if T1 =/= notrans .

XOR-split and OR-split gateways have the same conditiorwfeli-formedness (see third
and fourth requirement in Definitidn_3.3.2). In case of joiefge gateways, the gateway should

have exactly one outgoing transition and more than one imapiransitions.

ceq WMGates((< GL : ajoingate | in:(tN2,T1);out:tNLl; ASL > A),B)
= wfGates(A (< GL : ajoingate | in:(tN2,T1); out:tNL; AS1 > B))
if TL =/= notrans .

ceq WGates((< GL : xmergegate | in:(tN2, T1);out:tNL; AS1 > A), B)
= wfGates(A (< GL : xnmergegate | in:(tN2, T1);out:tNL; ASL > B))
if TL =/= notrans .

ceq WGates((< GL : omergegate | in:(tN2, T1);out:tNL; AS1 > A), B)
= wfGates(A (< GL : onergegate | in:(tN2, T1);out:tNL; ASL > B))

if T1 =/= notrans .

After that we apply the functiomf Gat esTF, which tests if the two resulted sets of objects

(from functionsgat eCol | ect or andwf Gat es) are the same (i.e. well-formed gateways) or not.

op W GatesTF : QbjectSet (hjectSet -> Bool

ceq W GatesTF(A, noobject) = true

if wfGates(A noobject) == gateCol |l ector(A, noobject)
eq W GatesTF(A, B) = false [owise] .

Finally, functionwf pat hTF in used in the last condition in the main well-formednessrgue
It retrievestrue if the set of object’s predecessors contains the start edgatt and the set of

object’s successors contains the end event object. Théggmetiest all the objects in a process to

follow the requirement of being on a path from the start eterthe end event. That means, if a
process has a dangling edge (or activity) or does not hawetéestd event, this will be discovered
with at least one object in the process query. This will ghe modeller an idea about where is

the problem to fix.

op jGd: hject -> Gd .
eq Mjdd (< X: K| AS1l > =K.
op W pathTF : Cbject QbjectSet (bjectSet -> Bool
ceq wipathTF(O, (0L, A, @), noobject) = true
if (wjCGd (0L) == startEvent) /\
OL in (preds(Q (COL, A), noobj ect, noobject)) /\
(jGd (@) == endEvent) /\
@ in (succs(Q (2, A), noobj ect, noobj ect))
eq W pathTF(O, A, B) = false [owise] .

C.3 AND Rules Functions

Theact i vat eANDsuccessors function definition specifies that the function will search the
objects which has incoming flow matches the outgoing flow ftbemAND fork gateway. If a
matching is found, then its object’s states is changed framtive to active if there are no execu-
tion conditions exist (i.econd: f al se). If there are execution conditions found (icend: t r ue),
the object status is changed from inactivegady2bActivei.e. ToBeAct i ve: true). Otherwise
state [owi se]) if the object does not form a match, then it is left with no mhe of its state.
Finally, the function retrieves the updated object/Asétthere is no more transitions in the first

argument, meaning no other immediate successors for the jaAQate to activate.

op activat eANDsuccessors : TransSynbol ObjectSet -> Cbject Set

eq activat eANDsuccessors(notrans,A) = A .

eq activat eANDsuccessors((tNL, T1),(< X : K| in:(tNL, T2); active:
fal se; cond : false; ToBeActive : false; ASL > A))

= activat eANDsuccessors((T1),(< X : K| in:(tNL, T2); active:true;
cond : false; ToBeActive : false; ASL > A)) .

eq activat eANDsuccessors((tNL, T1), (< X : K| in:(tNL, T2); active:
false; cond : true; ToBeActive : false; ASl > A))

= activat eANDsuccessors((T1),(< X : K| in:(tNL, T2); active:false;

cond : true; ToBeActive : true; ASL > A)) [owise]

In order to apply théNDj oi n rule in Sectiorh 3.4]2, the AND join object should be iready
to be activestate, which indicated using the attributesr(d: t r ue andToBeAct i ve :true). The
functionact i vePreds used in the ruléNDj oi n is used to assure thall the predecessors of an
AND join gateway are active. It takes the set of input traosg (t N1, T1) for the AND join
gateway and the whole object set. If the connected predarcisssnact i ve (or ToBeAct i ve),

the function retrievefalse otherwise, it retrievetue, as detailed below.

op activePreds : TransSynbol ObjectSet -> Bool

eq activePreds(notrans, A) = true .

eq activePreds((tNL, T1),(< X : K| out:(tNL, T2);active:fal se;
ToBeActive : false ; ASL > A)) = false .

eq activePreds((tNL, T1),(< X : K| out:(tNL, T2);active:fal se;
ToBeActive : true ; AS1 > A)) = false .

eq activePreds((tNL, T1), (< X : K| out:tNl;active:true; AS1> A))

= activePreds(T1, (< X : K| out:tNl;active:true;AS1> A))

eq activePreds(T1,A) = false [owise] .

C.4 Decision Gateways rules Functions

InruleXORspl i t, we use the functioact i vat eXORchi | d to activate the XOR chosen child. The
arguments are in order: the outgoing transitions of the X$pR-gateway (sorfr ansSynbol),

the default transition defined in the XOR-split gateway {doransSymbol), the error transi-
tion defined in the XOR-split gateway (softansSynbol), the associated guard expressions
(sort Gexp), the control values (soont rol Val ue), and the set of all objects in the process
(sortQbj ect Set). It retrieves the set of objects in the process after aitigeghe corresponding
XOR-split child. The following conditional equation is ukto activate the XOR-split gateway
successor after evaluating the guard expressions. Forpdeaim Figurd C.P, if the flow contain-
ing the guard expression for the flow entering actiatis successfully evaluated (toue), then

the activitya is activated next.

op activateXORchild : TransSynbol TransSymbol TransSymnbol
CGexp Control Val ue bjectSet -> hj ect Set
ceq activateXORchild((t Ni,T1),(T3),(T2), GExp, CVs,

(<< < X: K| in: t N active : false; ASL > A >>))
= << <X: K] in:t Nl ; active: true; ASL > A >>
if eval GQuard (CGExp,CVs, T3) =t NL .

To evaluate the guard expression in an XOR gateway we usetisidneval Quar d which
will be discussed later in Section 3.4.2. In the functaan i vat eXORchi | d, a default flowis
activated if and only if none of the conditions evaluatestie. In case all conditions evaluates

to false and a default flow has not been specified, an exceigtibnown.

t2
aéb

gl g2

Figure C.2: Example model with XOR split and merge gateways

The first equation below defines the case of only one remainamgition (of the XOR split
outgoing transitions) and it is the pre-defined defaultgiteon at the same time (activity in
Figure[C.2). In this case the object attached to that tiansis activated as the XOR-split

successor (child).

eq activateXORchild((t N1),(t N1), (notrans), Gexp, CVs,
(<< < X: K] in: t N ; active : false; AS1l > A >>))
= << < X: K] in: t Nl ; active : true; ASl >, A > .

The following equation is also targeting the default flonwewer, it is applied if no condition
is evaluated tdrue, notice thenot r ans for the first function argument. In this case a default
flow is the only choice. In Figure_Q.2, the default flow is thenlcontaining activityc, and it is

supposed to have no conditional expressions.

eq activateXORchild(notrans, (t N1),(T1), GExp, CVs),
(< X: K] in:t Nl ; active : false ; ASl > A))
= << < X: K] in: t Nl ; active : true; ASlL >, A > .

Another form of theact i avt eXORchi | d equation deals with a scenario of no condition is eval-

uated totrue and no pre-defined default flow in the gateway at the same ftiinbeaves nothing

but throwing an exception event, which is attached to thevgay. Activating the exception may
lead to unsuccessfully terminating the process, as thee vssible exception flow in the model.

This case is not described in Figlire IC.2.

eq activat eXORchild((notrans), (notrans), (t N1), (CGExp),
(CVs), (<< < El : internediateEvent | eventType : exception ;
in: notrans ; out : t Nl ; active : false ; ASlL > A >>))
= << < E1 : intermediateEvent | eventType : exception; in : notrans;

out : t N1 ; active : true ; AS1 > A >> .

The last form of the function is thetherwiseform (owi se) which completes the definition of the
function to consider defined values for all possibilitietefefore, if the function did not match

any of the above forms, it will proceed to the next XOR sucgesas defined below.

eq activateXORchild((t Ni,T1),(T2),(T3), Gxp, CVs, A
= activateXORchild((T1),(T2),(T3), Gexp, CVs, A) [owi se] .

In rule CRrer ge, the merge gateway predecessors should be deactivatedeintormake the
gateway active (i.e. completing the merge). The functiaddor this is functiordeact i vat eOPr eds

defined below.

var Q: Bool
op deactivateOPreds : TransSynbol CbjectSet -> Chject Set
eq deactivateCPreds(notrans, A = A.
eq deactivateOPreds((t N1, T1),
(< X: K] out : tNl ; active : Q; ASL > A)
= deactivat eOPreds((T1),
(< X: K] out :t Nl ; active : false ; ASl > A)) [owi se] .

	Introduction
	Overview and Motivation
	Research Hypotheses
	Proposed Approach
	A Brief Justification of Used Tools and Techniques
	BPMN
	Maude
	CMMI-CM
	Model Checking Technique

	Contributions
	Structure of the Document

	Preliminaries
	BPMN
	Maude
	Rewrite Rules
	Admissible Modules
	Model Checking

	CMMI
	Configuration Management
	CMMI Appraisals

	Chapter Summary

	BPMN Formal Syntax and Semantics
	BPMN Flow Elements
	Activities
	Events
	Gateways
	Data Objects
	Swimlanes
	Artifacts
	Connecting Objects

	Introducing Example
	Well-Formed BPMN Processes
	BPMN Formal Semantics Specifications
	Process State Model
	General Behaviour Rules
	Initiating and Terminating the Process
	Sequential Behaviour
	Parallel Behaviour
	Exclusive Decision-Based Behaviour
	Inclusive Decision-Based Behaviour
	Evaluating Guard Expressions
	Managing Control Values

	Exception Handling
	Message Handling
	Subprocess Semantics
	Data Handling
	Domain Specific Semantics

	Chapter Summary

	Semantics Verification
	Gateway Block Structure
	AND Block Structure
	XOR Block Structure
	OR Block Structure

	Deadlock Patterns
	Structural and Domain-Specific Deadlocks
	More Deadlock Patterns with OR gateways
	Relating to The Proposed Formalization

	Soundness
	Chapter Summary

	Business Processes Compliance Checking
	Compliance Checking as a Model Checking
	Predicates
	BPs Model Examples (System Specifications)

	Property Specifications
	Linear Temporal Logic (LTL)
	Compliance Patterns
	CMMI-CM in LTL

	Model Checking Procedure
	Compliance Grading Scheme
	Spurious Properties
	Results Representation

	Chapter Summary

	Related Work
	BP Formalizations and Verification
	Maude Applications
	BP Compliance Problem
	Chapter Summary

	Conclusions and Future Work
	Summary
	Conclusions
	Limitations
	Future Work

	Appendices List
	CMMI-CM Process Area
	SG 1 Establish Baselines
	SG 2 Track and Control Changes
	SG 3 Establish Integrity

	Maude Functions
	Operations on Business Process Models
	Predecessors
	Successors
	Identifying Responsibilities

	WFS functions
	AND Rules Functions
	Decision Gateways rules Functions

