
CMMI-CM COMPLIANCE CHECKING
OF FORMAL BPMN MODELS USING

MAUDE

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Nissreen A. S. El-Saber, MSc. (Cairo University)

Department of Computer Science

University of Leicester

December 2014

CMMI-CM COMPLIANCE CHECKING OF FORMAL BPMN

MODELS USING MAUDE

Nissreen El-Saber

ABSTRACT

From the perspective of business process improvement models, a business process

which is compliant with best practices and standards (e.g. CMMI) is necessary for defin-

ing almost all types of contracts and government collaborations. In this thesis, we pro-

pose a formal pre-appraisal approach for Capability Maturity Model Integration (CMMI)

compliance checking based on a Maude-based formalization of business processes in

Business Process Model and Notation (BPMN). The approach can be used to assess

the designed business process compliance with CMMI requirements as a step leading

to a full appraisal application. In particular, The BPMN model is mapped into Maude,

and the CMMI compliance requirements are mapped into LinearTemporal Logic (LTL)

then the Maude representation of the model is model checked against the LTL properties

using the Maude’s LTL model checker.

On the process model side, BPMN models may include structural issues that hinder

their design. In this thesis, we propose a formal characterization and semantics specifica-

tion of well-formed BPMN processes using the formalizationof rewriting logic (Maude)

with a focus on data-based decision gateways and data objects semantics. Our formal

specification adheres to the BPMN standards and enables model checking using Maude’s

LTL model checker. The proposed semantics is formally proved to be sound based on the

classical workflow model soundness definition. On the compliance requirements side,

CMMI configuration management process is used as a source of compliance require-

ments which then are mapped through compliance patterns into LTL properties. Model

checking results of Maude based implementation are explained based on a compliance

grading scheme. Examples of CMMI configuration management processes are used to

illustrate the approach.

Acknowledgements

In the name of Allah, The Almighty, the Most Gracious, the Most Merciful, I thank

Allah, who always bless me and provided me with great people to work with. I thank

them all who made this thesis possible. To my supervisor, Dr.Artur Boronat, who I have

learnt a lot from and without his support I would not be able towrite this thesis. To Prof.

Reiko Heckel, I used to leave his office after our biannual meetings full of ideas and

possible solutions for my research obstacles. Many thanks to the teaching and adminis-

trative staff of the University of the Leicester, UK for providing a comfortable working

environment. In particular, I am thankful to Dr. Fer-Jan De Vries for his valuable discus-

sions, Mr. Gavin Hornsey and Ms Karen Smith for their supportand cooperation during

my PhD. Many thanks to all my friends who were always there to help me whenever I

needed them.

My loving husband, Mohamed Mansoura, who kept encouraging me and believing

in me all the way. Thank you! My Zahia, the blessing Allah provided me with during

my PhD. Although the PhD took me from her most of the time, Zahia fuels me up with

determination, confidence and hope in our little time together. My warmest gratitude to

Mahjabin Qadri, Aunty Siraad, Rahma nursery, CAPTA nurserywho took care of Zahia

for over three years .. Jazakom Allah-u khayran!

To my mother, be happy and proud in the Heaven, Amen. To my father, who called

me Professor since I joined the university as an undergraduate student. Well, I am not a

professor yet, but I am doing my best. I promise to do it one day! Nermen, nothing can

describe a sister like you, thank you, and it is your turn now!Solieman, my soul mate,

I enjoyed our little helpful technical discussions. Nasser, you always made me smile

when we talk. The hope you fill me with is incomparable. To my big family in Egypt

thank you for your prayers, encouragement and support.

Nissreen El-Saber

Leicester, March 2014

Contents

1 Introduction 1

1.1 Overview and Motivation . 2

1.2 Research Hypotheses . 5

1.3 Proposed Approach . 7

1.4 A Brief Justification of Used Tools and Techniques 11

1.4.1 BPMN . 11

1.4.2 Maude . 12

1.4.3 CMMI-CM . 13

1.4.4 Model Checking Technique 14

1.5 Contributions . 15

1.6 Structure of the Document . 16

2 Preliminaries 18

2.1 BPMN . 18

2.2 Maude . 23

2.2.1 Rewrite Rules . 28

2.2.2 Admissible Modules . 31

2.2.3 Model Checking . 32

2.3 CMMI . 34

2.3.1 Configuration Management 38

2.3.2 CMMI Appraisals . 39

2.4 Chapter Summary . 42

3 BPMN Formal Syntax and Semantics 43

3.1 BPMN Flow Elements . 46

3.1.1 Activities . 46

iii

CONTENTS iv

3.1.2 Events . 47

3.1.3 Gateways . 49

3.1.4 Data Objects . 53

3.1.5 Swimlanes . 54

3.1.6 Artifacts . 55

3.1.7 Connecting Objects . 55

3.2 Introducing Example . 57

3.3 Well-Formed BPMN Processes . 58

3.4 BPMN Formal Semantics Specifications 66

3.4.1 Process State Model . 66

3.4.2 General Behaviour Rules . 68

Initiating and Terminating the Process 70

Sequential Behaviour . 71

Parallel Behaviour . 72

Exclusive Decision-Based Behaviour 74

Inclusive Decision-Based Behaviour 75

Evaluating Guard Expressions 79

Managing Control Values . 81

3.4.3 Exception Handling . 83

3.4.4 Message Handling . 84

3.4.5 Subprocess Semantics . 85

3.4.6 Data Handling . 86

3.4.7 Domain Specific Semantics 87

3.5 Chapter Summary . 91

4 Semantics Verification 92

4.1 Gateway Block Structure . 93

4.1.1 AND Block Structure . 93

4.1.2 XOR Block Structure . 95

4.1.3 OR Block Structure . 95

4.2 Deadlock Patterns . 97

4.2.1 Structural and Domain-Specific Deadlocks 98

iv

CONTENTS v

4.2.2 More Deadlock Patterns with OR gateways 102

4.2.3 Relating to The Proposed Formalization 103

4.3 Soundness . 105

4.4 Chapter Summary . 110

5 Business Processes Compliance Checking 111

5.1 Compliance Checking as a Model Checking 112

5.1.1 Predicates . 114

5.1.2 BPs Model Examples (System Specifications) 116

5.2 Property Specifications . 119

5.2.1 Linear Temporal Logic (LTL) 119

5.2.2 Compliance Patterns . 121

5.2.3 CMMI-CM in LTL . 123

5.3 Model Checking Procedure . 130

5.3.1 Compliance Grading Scheme 130

5.3.2 Spurious Properties . 131

5.3.3 Results Representation . 133

5.4 Chapter Summary . 138

6 Related Work 139

6.1 BP Formalizations and Verification 140

6.2 Maude Applications . 144

6.3 BP Compliance Problem . 145

6.4 Chapter Summary . 151

7 Conclusions and Future Work 152

7.1 Summary . 153

7.2 Conclusions . 154

7.3 Limitations . 156

7.4 Future Work . 158

A Appendices List 173

B CMMI-CM Process Area 174

v

CONTENTS vi

B.1 SG 1 Establish Baselines . 176

B.2 SG 2 Track and Control Changes . 180

B.3 SG 3 Establish Integrity . 183

C Maude Functions 186

C.1 Operations on Business Process Models 186

Predecessors . 187

Successors . 189

Identifying Responsibilities 191

C.2 WFS functions . 192

C.3 AND Rules Functions . 196

C.4 Decision Gateways rules Functions 197

vi

List of Tables

1.1 Summary comparison of some compliance checking approaches 4

2.1 CMMI-DEV Process Areas . 37

2.2 Characteristics of CMMI appraisals and our approach 41

4.1 Deadlock Patterns and The Proposed Formalization 104

5.1 Compliance Patterns Mapped into LTL [29, 33] 122

5.2 CMMI-CM CI Requirements mapped using compliance patterns 124

5.3 CMMI-CM Access Requirements mapped using compliance patterns . . 125

5.4 CMMI-CM Baseline Requirements mapped using compliancepatterns . 126

5.5 CMMI-CM CR Requirements mapped using compliance patterns 127

5.6 CMMI-CM Audit Requirements mapped using compliance patterns . . 127

5.7 Variance Handling Requirements mapped using compliance patterns . . 128

5.8 CMMI-CM Requirements into LTL 129

5.9 Requirements Satisfaction Grading Scheme 130

5.10 Model Checking Results for EX1 and EX2 134

5.11 Summary Rewrite time for EX1 and EX2 135

5.12 Summary compliance checking results for EX2m 136

6.1 Comparison of Related Work and Our Contributions 142

6.2 Summary comparison of some compliance checking approaches 149

7.1 Characteristics of CMMI appraisals and our approach 157

vii

List of Figures

1.1 The Proposed Compliance Checking Approach 9

2.1 BPMN Meta-model . 19

2.2 BPMN Main Elements . 20

2.3 BPMN Example . 22

2.4 CMMI representations, maturity levels and areas of interest 34

2.5 CMMI Staged Representation Structure 36

3.1 Mapping from BPMN Activities to Maude Representation 46

3.2 Mapping from BPMN Events to Maude Representation 48

3.3 Mapping from BPMN Gateways to Maude Representation 50

3.4 Mapping from BPMN Data Objects to Maude Representation 54

3.5 Mapping from BPMN Artifacts to Maude Representation 55

3.6 Mapping from BPMN Connecting Flow to Maude Representation . . . 57

3.7 Release Baseline Process - BPMN representation 58

3.8 Release Baseline Process - Maude representation 59

3.9 (a) aS-BPMN model (b) aW-BPMN model. 62

3.10 w f sresults for (a)W-BPMN and (b) notW-BPMN models. 65

3.11 Process Initiation Rules .. 70

3.12 Process Termination Rule .71

3.13 Sequence Rule . 72

3.14 Parallel Fork Rule . 72

3.15 Example model with AND fork and join gateways 73

3.16 Parallel Join Rule . 74

3.17 Exclusive Data-based Decision (XOR) Split Rule 74

3.18 Exclusive Data-based Decision (XOR) Merge Rule 75

viii

LIST OF FIGURES ix

3.19 Example model with XOR split and merge gateways 76

3.20 Inclusive Decision (OR) Split Rule 76

3.21 Inclusive Decision (OR) Merge Rule 78

3.22 General Exception Rule . 83

3.23 Example for Exception handling with Maude representation syntactically 84

3.24 Message Handling Rules: input and output messages 85

3.25 Enter Sub-process Semantic Rule 86

3.26 Terminate Sub-process Rules .. 86

3.27 Data Object Handling Rules: input and output data objects 87

3.28 Domain-Specific Rewrite Rules .. 88

3.29 Maude Representation for DSR from (a) to (d) in Figure 3.28 89

3.30 Maude Representation for DSR from (e) to (h) in Figure 3.28 90

4.1 Examples of Gateways Block structure. 93

4.2 Examples of AND gateways Block structure 94

4.3 Examples of XOR gateways block structure. 95

4.4 Examples of OR gateways block structure. 96

4.5 Structural deadlock patterns [69] 99

4.6 Semantics Deadlock Examples . 100

4.7 Lack of Synchronization Example .102

4.8 More Deadlock Patterns . 103

5.1 EX1 : Release Baseline Model . 117

5.2 EX2 : An interpretation for IBM CCM Process 118

5.3 EX2m : Model EX2 after update . 137

6.1 Compliance Checking Approaches Classification 147

7.1 Potential Tool Support Design .160

C.1 BPMN illustration for different cases considered by thepreds function 187

C.2 Example model with XOR split and merge gateways 198

ix

Abbreviations

BP BusinessProcess

BPMN BusinessProcessModel andNotation

CM ConfigurationManagement

CMMI C apabilityMaturityModelIntegration

CMMI-CM CMMI - ConfigurationManagement process area

LTL L inearTemporalLogic

OMG ObjectManagementGroup

Dedicated to Egypt . . .

Declaration

The content of this submission was undertaken in the Department of Computer Sci-

ence, University of Leicester, and supervised by Dr. Artur Boronat and Prof. Reiko

Heckel during the period of registration. I hereby declare that the materials of this

submission have not previously been published for a degree or diploma at any other

university or institute. All the materials submitted for assessment are from my own re-

search, except the reference work in any format by other authors, which are properly

acknowledged in the content. Part of the research work presented in the following:

1. Nissreen El-Saber and Artur Boronat,BPMN Formalization and Verification using

Maude. The 6th Workshop on Behavioural Modelling - Foundations and Applica-

tions (BM-FA 2014). York, United Kingdom, 22 July 2014. In collaboration with

ECMFA 2014.

This paper presents the formal syntax and semantics for BPMNmodels using

Maude. The resulting models are proved to be sound based on the classical sound-

ness for workflow models. The work included in the paper is in Chapter 3 and

Chapter 4.

2. Nissreen El-Saber and Artur Boronat,A Maude based Formalization for BPMN

Models. Post-proceedings of six International Workshops on Behaviour Modelling-

Foundations and Applications, LNCS, July 2015. (in progress)

This paper extends the BMFA 2014 paper with formalizing moreelements of the

BPMN. The formal syntax and semantics is used to model configuration manage-

ment processes using Maude. The paper includes parts of Chapter 3, Chapter 4,

and Chapter 5.

Introduction

Chapter 1

Introduction

This chapter presents the motivation for the research presented in this thesis in Section

1.1, followed by the thesis main statement and hypotheses inSection 1.2. The proposed

approach for compliance checking of BPMN models is introduced in Section 1.3. After

that we justify each language, tool, and technique used to demonstrate the approach

in Section 1.4, followed by a list of contributions in Section 1.5. Finally, Section 1.6

outlines the remaining chapters.

1

Introduction 2

1.1 Overview and Motivation

Compliance is defined in [32] as ascertaining and proving theadherence of business pro-

cesses to relevant accepted standards, code of practices, legislations and laws, internal

policies and business partner contracts. Following standards and regulations allows busi-

nesses to have more disciplined and monitored activities. There are many sources for the

standards and regulations; some are external and others areinternal within the organi-

zation [34, 32]. External compliance requirements can comefrom laws and legislations

within the country or worldwide if trading globally, the information security standards

(e.g. ISO 27001 [72]), or process improvement specifications models (e.g. CMMI [22],

IEEE [85]) while all the rules and procedures that are customized by the company and

are used internally for efficiency are considered internal sources.

Business process improvement models provide an identification and understanding

of the designed process and its implementation in order to ensure that it is aligned with

customer needs/expectations as well as the quality measures. A business process (BP)

which adheres to some related improvement models is known tobe more effective, effi-

cient, and transparent [32, 6, 80]. In software developmentmarket, no matter how big or

small the organization is, it follows one or more process improvement models to improve

the quality of software (and/or services) developed.

For example, Capability Maturity Model Integration (CMMI)[22] is a collection

of best practices developed by Carnegie Mellon University -Software Engineering In-

stitute (CMU-SEI) with members from industry, government in order to help software

organizations improve their processes. CMMI has a specific set of compliance checking

methods (i.e. SCAMPI [83]) which proved to be expensive in terms of costs to Small and

Medium-size Enterprises (SME) [66]. Configuration management (CM) process area is

one business process aspect which the CMMI provides guidelines for. CM is concerned

with establishing, documenting and monitoring the changesof the basic work items (i.e.

products and/or services) within an organization. These activities are assessments which

check the existence of documents and evidences of followingcertain standards as will be

explained later. This includes using observations, interviews and questionnaires which

normally consume huge amounts of the working hours without production. In order to

increase the chances of successful appraisals and to reducethe time and costs of un-

2

Introduction 3

derstanding the organization process to deliver its products/services and to adhere to its

contracts, we propose an algebraic automatic approach to formally check the compli-

ance of the organization BP design with the set of best practices described by the CMMI

model in Configuration Management (CM) Process Area.

Despite the increasing number of compliance checking methods and tools (e.g. [64,

80, 49, 32, 6]), organizations are still facing difficultiesin finding effective support to

ensure that their BPs comply with the improvement requirements. In many cases, manual

solutions are being used to assure quality in BP and these areconsuming time and costs

and offer limited assurance for compliance [80, 42]. Partially or fully automating manual

BP inspections and audits would substantially reduce the overall cost of compliance [42].

For the automation to take place, the BP and the compliance requirements should be

formally represented and a formal assessment procedure to check if a BP satisfies the

formalized requirements. Despite being formal, the procedure should be accessible to

business people.

In Table 1.1, a comparison among the state-of-the-art approaches in checking busi-

ness process compliance with standards and regulations is summarized. It compares

them with respect to the formal languages used for system specification, property speci-

fication, and checking procedure. The classification columnis assigning each approach

with its type with respect to forward/backward compliance checking classification in

[80] and explained in Chapter 6. The table provides information about the application

domain and automation means of each approach. As seen from the table, the work re-

garding CMMI compliance checking is limited (e.g. [24]) anddoes not include any for-

mal representation or tool automation. More details about the approaches are provided

in Chapter 6.

Generally, BPs can be modelled using different notations, in either formal or informal

representations. From a computer science point of view, formal modelling languages are

more reliable and verifiable, while from a business point of view, non-technical users

usually prefer to use informal graphical modelling languages. Not all formal modelling

languages have accessible graphical representations (e.g. CSP [104],π-calculus [75]),

while not all graphical languages have a comprehensive formalization (e.g. BPMN [68]).

The accessible graphical notations for modelling BPs need to have the back-end for-

3

In
tro

d
u

ctio
n

4

Table 1.1: Summary comparison of some compliance checking approaches

Ref. System Spec Property Spec Check Proc. Class. App. Domain Automation

[6] BPMN 2 PetriNets BPMN-Q 2 PLTL MC FD Banking Oryx, Lola

[33] BPEL FCL 2 LTL MC F,B Sarbens-Oxley Act COMPAS

[94] MXML LTL MC B event-logs ProM

[24] MDD BPRE4OO SCAMPI FDT CMMI-DEV NA

[38] EPC 2 PetriNets ITIL adopted models MC FD ITIL ProM

[106] Z LTL MC F ISO/IEC 15408 FORVEST

[49] BPEL 2π-calculus BPSL 2 LTL MC FR ITIL,COBIT OPAL

Legend: D: Design-time, R: Run-time, MC: Model Checking, F: Forward, B: Backward, NA: Not Available, PM: Process Mining

4

Introduction 5

malization that allows for the validation and verification of the designed models [10].

Focusing on the BPMN as a modelling language, one can find a number of issues with

its standards and available formalizations (c.f. Section 1.4). In this work, we propose a

rewriting logic-based formalization in Maude for BPMN models.

On formally representing the compliance requirements, we agree with the authors

in [64, 32, 51, 42] on the need to separate the formalization of the designed BP from

the formalization of the requirements. Decoupling these two aspects allows for more

clear, unbiased assessment of the BPs without possible enforcing them to be compliant

as it is difficult for many companies to change their businessprocess in short time for

the reasons of an assessment. Moreover, most SME does not really need to apply all

the requirements as they are advisory, however, by breakingdown the requirements into

smaller requirements and checking their relevance and satisfaction one by one can allow

the modeller to exclude the irrelevant requirements (e.g. adocument which is not used

in the process being checked). The standards are usually written in natural language

which makes the translation of the standards into formal expressions a time and effort

consuming process. Therefore, trying to add formality to the standard requirements,

we use an intermediate step, i.e. mapping into compliance patterns [33], to formally

represent the textual requirements in CMMI with Linear Temporal Logic (LTL).

1.2 Research Hypotheses

The main research statement: Is it possible to formally check the BPMN models com-

pliance against the CMMI Configuration Management requirements?

In order to provide an answer to the main research statement above, we need first

to identify the elements that we are going to deal with. Extracting from the research

statement, there should be a formal BPMN model for a SME, a formal representation

of the CMMI-CM requirements, and a formal compliance checking technique. Based

on the following hypotheses, we introduce a compliance checking approach for BPMN

models with CMMI-CM requirements.

5

Introduction 6

1. What formalization of BPMN models can be considered suitable for compliance

checking? If there is no such formalization, what are the main characteristics

of a candidate formalization? Which formal language to use?

BPMN is a well-known modelling notation for BPs which is accessible to busi-

ness users as well as computer scientists. It has been formalized using different

formal languages (e.g. [27, 107, 104, 74, 28, 40]), however,most of these for-

malizations suffer from unclear semantics [68], lack of data object representation

[27, 107, 104, 74, 28, 40], and non-determinism in decision-based gateways se-

mantics [107]. Therefore, a new formalization is required which should cover

the following: (1) consider core BPMN elements [68] (e.g. activities, gateways,

events, data objects), (2) a comprehensive semantics for data objects as process

resources, (3) a formal representation and evaluation of decision-based gateways

guard expressions, and (4) a sound semantics for the BPMN models. Maude is an

expressive declarative logical language for concurrent processes based on rewrit-

ing logic which can formally represent BPMN models. Moreover, it has its own

verification toolkit which includes variety of tools, e.g. LTL model checker.

2. What are the characteristics of the CMMI process improvement model that make

it an interesting area for compliance checking? Is it possible to formally repre-

sent the CMMI requirements? How?

Process improvement models are generally described in natural languages making

the measuring and assessment of their applications a subjective process [32, 6, 42].

Moreover, they are lengthy and complex which decreases understandability and

increases difficulties of manual compliance checking [64],e.g. CMMI [21], ISO

[45], and IEEE [85]. CMMI certified SMEs are believed to have stable, continu-

ally improved BP as well as gaining more worldwide contractswith other organi-

zations [22, 24, 86, 37]. In particular, for its importance,special focus on software

SMEs and due to the lack of comprehensive formal compliance checking for it,

we are focusing on CMMI [21]. Nevertheless, formally representing the CMMI

requirements requires a property specification language. Considering their expres-

siveness and intuitive appeal and recommendations in related research [6, 32, 96],

temporal logic can be used as the CMMI requirement specification language.

6

Introduction 7

3. What is the verification technique to formally check compliance of BP models

with formal requirements? Is it able to provide an explicit answer to the ques-

tion: "Is an input process compliant with the input set of properties?"?

Model checking is popular for debugging and verification purposes [9, 46]. The

structure of the problem is more like a model checking problem where the BP is

the system modelM, the requirements are propertiesΦ, and the checking is mod-

elled asM |= Φ which is a model checking procedure. Model checking technique

possibly can be unable to provide such decision. It gives a counterexample (i.e. a

possible trace where the property is not satisfied) but does not give details on the

nature of the property itself. Therefore, the compliance checking approach should

provide informal suggestions for the modeller to modify their BP model.

4. What are the automation possibilities of the compliance checking approach?

Many challenges are facing the compliance checking automation in general and

in particular designing this approach. For example, the CMMI requirements may

have more than one formal representation. Furthermore, interpreting the model

checking results (i.e.trueor counterexample) in the context of compliance check-

ing requires a mapping grading scheme which represent a single requirement

weight with respect to other requirements. Although the possibility for fully au-

tomating the compliance checking process is limited, thereis still a promising

opportunity to automate parts of the compliance checking process to benefit from

formal specifications and automatic verification. We provide a Maude based tool

automating most of the approach steps. An overview of the automation of the

approach is discussed in Chapter 7.

1.3 Proposed Approach

We aim at giving an organization an idea about how mature its business process model

is with respect to the CMMI reference model through applyinga pre-appraisalmethod

prior to going through the formal CMMI appraisals (e.g. SCAMPI). Our proposed ap-

proach is a formal automatic compliance checking method forthe CM process area.

This approach can be used as apre-appraisalmethod to check how ready the designed

7

Introduction 8

business process is to go for the expensive appraisal methods. The approach uses the

company’s designed BP process, transform it into Maude following the syntax and se-

mantics presented in Chapter 3 and check its compliance withthe CMMI-CM practices.

Based on this check results, a designed process can be deemedto be CMMI-CM com-

pliant or not, indicating which practices need to be improved, with initial information

about which properties are not satisfied. This is illustrated in Figure 1.1.

Assuming that the SME is following their designed CM process(or the designed

process reflects what is actually being done in the SME), the proposed approach allows

the SME to start building their stable CM process which can beready for more advanced

form of appraisal (i.e. SCAMPI). In Figure 1.1, the approachconsists of three basic

parts: (1) BPMN2MAUDE procedure which provides the system specifications and is

presented in Chapter 3, (2) CMMI-CM2LTL procedure which provides the property

specifications in LTL for CMMI-CM process area and is presented in Chapter 5, and (3)

Model Checking procedure which we customised to fit into our compliance checking

domain of application in Chapter 5.

The compliance checking is considered a model checking problem, hence, three

components should be elaborated; the system specifications, the property specifications

and the model checking procedure. On one side, the system specification part (i.e.

BPMN2MAUDE) starts with a BP model in BPMN which is then mapped into the pro-

posed BPMN syntax and semantics in Maude. The BP model in Maude is then checked

if well-formed based on the well-formedness property definition in Definition 3.3.2. The

well-formed BPMN models are proves to be sound in Chapter 4. If the process model

is not well-formed, then the modeller will have informationabout which set of objects

in the model is not well-formed to update the model and run thewell-formedness test

again. This part of the approach is explained in Chapter 3. Incase the BP model is

well-formed, then it is ready for model checking.

On the other side lies the CMMI, which requirements (i.e. sub-practices) are the basic

component for the property specification (i.e. CMMI-CM2LTL). As will be explained in

Chapter 2, CMMI staged representation maturity level (ML) consists of process areas

(PA), and each process area contains specific goals (SG) and each specific goal contains

specific practices (SP), and each specific practice has a number of sub-practices [21]

8

In
tro

d
u

ctio
n

9

Model Checking
procedure

bp.maude

bp.bpmn

BPMN2MAUDE
procedure

CMMI-CM2LTL
procedure

LTLprop

CMMI Req.

Pattern-based
Requirements

LTL Formulae
(Properties)

Apply Compliance
patterns

Pattern2LTL
Mapping

CMMI Reqs.
(subpractices)

BPMN model
(BPMN)

well-formed
BPMN model

BPMNsyntax.maude
BPMNsemantics.maude

BPMN model
(Maude)

BPMNwfs.maude

Chapter 2

Chapter 3 Chapter 5

Figure 1.1: The Proposed Compliance Checking Approach

9

Introduction 10

which are the textual requirements of the CMMI. These sub-practices are extracted and

represented using the compliance patterns [33, 64]. As the patterns has a direct map-

ping into LTL formulae (as in [33]), the pattern-based requirements are represented as

LTL formulae, ready for the model checking. This part of the approach is explained in

Chapter 5.

The sub-practices under a specific practice are modelled to aset of LTL properties

ΦPA= {ϕ1,ϕ2, . . . ,ϕn} for n the number of modelled properties while the mapping rela-

tion is not necessarily a one-to-one relationship. That is,the number of sub-practices in

a certain specific practice does not necessarily equal to thenumber of properties formu-

lae modelled. A specific goal is satisfied if its underlying specific practices are satisfied.

Therefore, for a system modelM representing the BP and the set of properties represent-

ing the specific goal, the model checking problem (i.e. satisfaction relation) becomes

M |= ϕ1∧ϕ2∧ . . .∧ϕn. Generally, the set of modelled properties for a process area (e.g.

CM) is represented asΦCM. A modelM satisfies the process area CM iff all properties

ϕi ∈ ΦCM are satisfied inM, i.e.∀ϕ ∈ ΦCM (M |= ϕ) ⇒ M |= ΦCM.

However, reference models such as process improvement models are advisory and

some companies may try to focus more on some requirements than others, or are apply-

ing a subset of the requirements. That is, if checking the properties with the and operator

(i.e.∧), then the result is going to befalseif at least one property is not satisfied, although

the process might be compliant. Therefore, we introduce a compliance grading scheme

which allows for quantifying the model checking results. Moreover, customization func-

tion is used to allow model checking for properties which arenot spurious as shown in

Section 5.3.2.

Finally, the well-formed BPMN model in Maude is fed into Maude LTL model

checker [30] as the system specification (i.e. the modelM), and the LTL formal prop-

erties representing the CMMI requirements as the properties to be checked against the

model. The model checking results are analysed for spurious(i.e. fake) outputs as dis-

cussed in Chapter 5.

10

Introduction 11

1.4 A Brief Justification of Used Tools and Techniques

In the compliance checking approach, certain tools, languages, and techniques are used.

In this section, we briefly describe the reasons which made them suitable to demonstrate

our contributions. We justify the use of BPMN, Maude, CMMI, and model checking

technique.

1.4.1 BPMN

The Business Process Modelling Notation (BPMN) is a widely used standard notation

and model for representing business processes (BPs) in the design phase of systems de-

velopment. It has been the basis for many BPs formalizations(e.g. [27, 107, 104, 74, 75,

28, 40]) which we believe are not fully representing its powerful elements; such as data

objects and some control flow gateways (e.g. inclusive decision-based OR gateways) as

explained later in Chapter 6. According to the OMG [68], 72 implementations of the

BPMN are reported for known businesses (for example, Oracle). Some issues related

to BPMN formalizations allow for ambiguous and unstructured BP models [10, 27, 40],

such as:

1. The unclear semantics of different BPMN elements allow for incompatibility in

the design interpretations, analysis and use of BP models [10],

2. In spit of their importance as process resources, data objects formalization and

usage are still under-represented (e.g. [27, 40, 105, 107]),

3. Although the non-determinism attached with the decisiongateways representation

helps to consider all possible alternative flows (e.g. in [27, 102, 90]), the ability to

evaluate a guard conditional expression is needed to simulate a more reliable and

effective gateway formal comprehensive representation.

These issues can be handled and/or avoided through a comprehensive formal syntax

and semantics specifications for BPMN models. That is, some formal restrictions can

be easily imposed on to the BPMN models that can reduce/avoidthe structural and be-

havioural problems (e.g. misinterpretations, document lack of representation, deadlock

and lack of synchronization).

11

Introduction 12

1.4.2 Maude

Maude is a logical declarative language based on rewriting logic. It is designed for

representing and reasoning about concurrent systems. The following reasons made the

tandem formed by rewriting logic and its Maude implementation a very convenient set-

ting for formalizing BPMN models.

1. Equational pattern matching, for example, if the left hand side pattern matched,

then the right hand side is applied when the conditional being satisfied in case of

conditional equations, memberships and rules.

2. User-definable syntax and data, i.e. Maude allows the userto define their own data

types as well as the structural relations among the components in the system.

3. Types, subtypes, and partiality, i.e. the sorting subsorting relations allows for hi-

erarchy of data types which provides the user with flexible use of operators and

memberships.

4. Support for objects, i.e. Maude system modules supports the use of object oriented

programming style with predefined class definitions. Moreover, the data types of

information into these objects are user defined and can be generic.

5. Maude has its verification toolkit [20, 30] which can be used to verify models

designed in Maude. TheSearch command is used to locate certain states in the

model while the Maude LTL model checker [30] is used to verifyproperties of

unwanted behaviours in the model.

6. Reflection, meta-representations and computations, i.e. Maude has many meta-

language applications, in which Maude is used to create executable environments

for different logics, theorem provers, languages, and models of computation.

7. Concurrent processes applications of Maude, i.e. there are already a number of

successful Maude implementations for processes (e.g. [98,26, 43, 61, 13]) which

are promising and encouraging.

12

Introduction 13

1.4.3 CMMI-CM

Many SME are part of larger organizations which are activelyusing CMMI to support

their business goals. That is, the need for operational effectiveness and efficiency in-

creases as the size of the organization grows. The same applies to projects within organi-

zation. Moreover, expectations for CMMI-compliance practices increases when partner-

ing or subcontracting with larger companies. Even when independently bidding on some

government business, CMMI-based appraisals are required [37]. CMMI can be a way

for the small organizations to gain better projects and customers, by demonstrating their

competency in process management while preserving their flexibility. Emphasising on

the role of management in all its maturity levels, CMMI improves management visibility

in software development [86]. This is achieved by improvingcontrolling and monitor-

ing different changes and audit the documentation process through reusing the already

existed process, after improving it, to develop organization’s software products/services

a higher level of quality. Our approach aims at encouraging the SMEs to test their BPs

adherence with process improvement models (i.e. CMMI) in a formal, yet less expensive

in terms of cost, pre-appraisal compliance checking.

From the CMMI process areas, we focus on the configuration management (CM)

process area for several reasons. First, CM is a support process area shared by the three

areas of interest of the CMMI, i.e. development, services, and acquisition, which makes

it a common requirement for any SME trying for CMMI appraisals. Second, CM is a

process area belongs to the second maturity level (ML2) in the staged representation of

the CMMI, i.e. the first level of formal accreditation for a SME to look for (more details

about CMMI maturity levels can be found in Chapter 2). Third reason comes from the

importance of a well-established CM process in the organization that seeks any kind of

improvement as a basis for documenting, auditing and controlling changes in what could

be called SME process infrastructure (e.g. configuration items, change requests, audits).

Fourth, CM is a basic process area in most process improvement models (e.g. IEEE

[85], ISO [45]) that are used by software companies. Although the basic requirements

are identical, the detailed requirements may vary. We are focusing here on CMMI-CM.

13

Introduction 14

1.4.4 Model Checking Technique

Besides the general strengths of model checking techniques(e.g. [9, 19]), there are

more specific motivations concerning using the model checking for compliance checking

problems. We include details about model checking technique in Chapter 5.

1. Model checking is a fully automated procedure [46, 9] which known to be fast

[9] compared to conventional testing and simulations. If the inputs are ready,

then the verification procedure works automatically, if initiated. For checking

the compliance of process improvement model (i.e. CMMI), anautomated formal

procedure would be suitable to reduce different kinds of costs and benefiting from

the mathematical and temporal basis for the procedure.

2. Model checking supports partial verification [46, 9]. That is, the properties can

be checked one-by-one allowing for spotting the unwanted behaviour in details.

Looking at the compliance checking problem, the modeller would like to get re-

sults indicating which properties are satisfied by the modeland which are not. It

makes the model checking a perfect candidate while it is not the case with other

verification techniques (for example, Theorem proving).

3. Model checking does not require proofs to verify the properties [46, 9], which

make it a suitable choice when the people involved in the compliance checking

normally are not aware of proof methods or other formal verification techniques.

Model checking provide the balance in this case.

4. Model checking produces diagnostic counterexamples in case a property is not

satisfied with respect to the model specifications [46, 9]. Itrepresents the trace of

state transitions which can be used for debugging. This feature helps the modeller

to investigate a possible trace of the model where the property does not hold.

5. The property specifications in model checking is mainly represented in Tempo-

ral logic, adding the powerful expressiveness of it in representing properties over

traces generated by transition systems [19, 96]. Besides, compliance patterns have

been developed to facilitate the mapping between the textual compliance require-

ments and the LTL formulae (e.g. [33]).

14

Introduction 15

6. BP compliance checking is generally dealt with as a model checking problem (e.g.

[64, 80, 49, 32, 6]), where the BP model is the system specifications being checked

and the compliance requirements are the properties checkedagainst that system.

7. The formalization language, Maude, has its own LTL model checker [30]. It com-

bines an expressive and general system specification language (Maude [20]) with

an LTL model checking engine. Maude uses the recent advancesin on-the-fly

explicit-state model checking techniques [31].

8. The model checking applications are more control-intensive and less data-intensive

in nature due to the infinite range of data. Although the BPs can wait for a decision

or a certain confirmation before proceeding in execution, wedo not expect the sys-

tem models to simulate the data contained in the expected artefacts. For example,

the model may contain data objects (c.f. Chapter 2) which change its status during

execution. However, the data contained within these elements are not processed in

our approach. As the approach is dealing with compliance context, we are more

concerned with the state changes for the data objects as a means of controlling the

flow.

1.5 Contributions

The following list summarizes the contributions of this thesis.

• An automated pre-appraisal approach is introduced to provide the aid to SME

welling to apply CMMI software improvement model for the configuration man-

agement process area.

• A comprehensive syntax and semantics formalization of an excerpt of BPMN el-

ements in Maude is proposed with structural properties (i.e. well-structured and

well-formed) that allow for efficient verification procedures.

• A Context-Free Grammar (CFG) for BPMN decision-based gateways guard ex-

pressions is introduced in Chapter 3 with a mechanism to evaluate the guards and

decide the divergence and convergence of the flow in BPMN models.

15

Introduction 16

• The formalization restricts the semantics of BPMN gatewaysto the block structure

avoiding many structural problems (e.g. deadlocks and lackof synchronization).

The gateways block structure makes the merge gateway aware of which split gate-

way caused the flow to diverge (i.e. using the attributeitsSplit and function

Ready2Mergediscussed in Chapter 3), and how many branches had its companion

split gateway activated earlier in the process.

• The formalization provides a comprehensive semantics for the data objects, which

consider the documents and files that are used as inputs and outputs for different

process activities in Chapter 3. Moreover, they are used to control the flow based

on their state change. A set of domain-specific rewrite rulesand equations are

introduced to formally represent data objects state changeand creation in the BP.

• A formal proof of soundness of the well-formed BPMN models isintroduced in

Chapter 4 following the definition of classical soundness in[1].

• A comprehensive LTL formalization of CMMI-CM requirementsthrough map-

ping into compliance patterns is proposed in Chapter 5. The formalization of the

requirement is complete, i.e. all the CMMI-CM requirementsare mapped into

LTL properties, however, the mapping is not one-to-one relation as explained in

Chapter 5.

• A tool support prototype is discussed in Chapter 7 which is designed to support

the automation of the approach making it accessible to business related people.

1.6 Structure of the Document

• (Chapter 1) : Introduction

The chapter illustrates our proposed compliance checking approach based on the

idea of using model checking technique to test the properties (i.e. requirements).

The motivation, contributions, challenges and justification of reasons behind using

the tools, languages and techniques in the approach are explained.

• (Chapter 2) : Preliminaries

A brief, yet essential, introduction of the used notations,languages and models

16

Introduction 17

in this thesis for the purpose of making it self-contained. The chapter presents

background of BPMN, Maude and CMMI.

• (Chapter 3) : BPMN Formal Syntax and Semantics

This chapter provides a comprehensive formalization of theformal syntax and se-

mantics of an excerpt of the BPMN elements using Maude. This is followed by

introducing two structural properties; i.e. well-structured and well-formed BPMN

models. The proposed behavioural semantics of BPMN elements is modelled us-

ing Maude (possibly conditional) rules and equations simulating the standards in

[68] for the well-formed BPMN models.

• (Chapter 4) : Semantics Verification

On verifying the proposed semantics, we discuss the possible deadlock situations

and patterns besides the potential lack of synchronization. These concepts are

discussed using the notion of gateways block structure and elaborating on how

this notion prevents many deadlock situations. In this chapter we provide a formal

proof for the soundness of the well-formed BPMN models.

• (Chapter 5) : Business Process Compliance Checking

In this chapter, we apply the proposed semantics of well-formed BPMN models to

model check their compliance with the CMMI-CM requirements. These require-

ments are first mapped into compliance patterns and then intothe corresponding

LTL formulae. Finally, the properties are model checked andthe results are anal-

ysed providing potential improvement recommendations.

• (Chapter 6) : Related Work

In this chapter, we introduce the related published work anddiscuss their relation-

ships with the proposed work in this thesis in three main areas; i.e. BPs formal-

ization and verification, Maude applications for concurrent processes, and related

compliance checking approaches.

• (Chapter 7) : Conclusions and Future Work

This chapter contains a summary of the thesis contributions, conclusions and fu-

ture work.

17

Chapter 2.Preliminaries

Chapter 2

Preliminaries

The work presented in this thesis uses some notations and models which need to be intro-

duced first. We use BPs which are built using the Business Process Modelling Notation

(BPMN) and then formalize and verify them using Maude. The formalization provides

a compliance checking procedures of BPs with CMMI requirements using model check-

ing technique. The chapter is organized as follows: a brief description of the BPMN is

introduced in section 2.1, an introduction to Maude is presented in section 2.2, and in

section 2.3, the CMMI model is explained focusing on the configuration management.

2.1 BPMN

The Business Process Modelling Notation (BPMN) is a standard notation and model for

representing business processes in the design phase of systems development. Designed

by the Object Management Group (OMG), BPMN provides standard graphical notations

for designing BPs and defining their procedures, relations with other processes, as well

as an informal brief execution semantics.

The BPMN 2.0 standard specification [68] defines 50 constructs and their attributes,

and according to [63], less than 20 percent of its vocabularyis used regularly in design-

ing BP models. As a result we are going to focus on the main elements of the BPMN

based on the metamodel described in Figure 2.1 and the elements graphical representa-

tion described in Figure 2.2. The main elements are the flow nodes: activities, events

and gateways; the data objects: input, output and stores; connecting flow elements: se-

18

Chapter 2.Preliminaries 19

FlowNode ConnectingFlow

 BPMNElement

Activity

Event

Gateway

Data Object Swimlane Artifact

SequenceFlow

MessageFlow

Association

TxtAnnot.

Group Pool Lane

Input

Store

Output

Figure 2.1: BPMN Meta-model

quence flows, message flows and associations; artefacts: groups and text annotations and

swimlanes: pools and lanes.

Definition 2.1.1. A BPMN process O is a tuple of sets (OS, T), such that:

• OS= FO∪DO; i.e. OSis the set of flow objectsFO and data objectsDO,

• FO= A∪E∪G; i.e.FO is the set of activitiesA, eventsE, and gatewaysG,

• A= ATS∪ASP; i.e. A is the set of tasksATS and sub-processesASP,

• E = ES∪EI ∪EE; i.e. E is the set of start eventsES, intermediate eventsEI and

end eventsEE,

• G= GAND∪GXOR∪GOR; i.e.G is the set of AND gatewaysGAND, XOR gateways

GXOR, and OR gatewaysGOR,

• T = TS∪TM ∪TASSC; i.e. T is the set of connecting objects (transitions) of: se-

quence flowTS, message flowTM and associationsTASSC.

An activity is a flow node which represents a process step and is executed automati-

cally or manually [68]. Activities can be tasks or sub-processes. Thetaskis the atomic

form of an activity, while asub-processis an activity which contains other activities ei-

ther tasks or other sub-processes, i.e. it can be broken downinto a set of activities and

19

Chapter 2.Preliminaries 20

Activity Event

Gateway

start intermediate end

task

XOR-split AND-fork OR-split

XOR-merge AND-join OR-merge

subprocess

looping
Multi-

instance
Text

Annotation

Association message
 flow

Connecting
 Flows

sequence
 flow

... ...
...

...

a1 a2

a3 a4

data
object

Message
 Flows

pool

Swimlanes

lane

lane

association

Figure 2.2: BPMN Main Elements

other BPMN elements [68]. Activities can have a marker to indicate its type graphically

(e.g. see looping and multi-instance activities in Figure 2.2).

An event is an action that makes changes in the process when ithappens. Events

normally affect the flow of the process by converting the flow in case of exceptions, ini-

tiating a process on receiving a message or even cancelling aprocess [68]. As defined

in Definition 2.1.1, events can occur at the beginning of the process, i.e. start eventsES,

at the end of the process, i.e. end eventsEE, or in-between the process start and end,

i.e. intermediate eventsEI (see Figure 2.2). A start event indicates where a particular

process starts. A process can be initialized by receiving a message or initialized in a

pre-defined date or time. Intermediate events indicate where an event occur somewhere

between the start and end of a process. It will affect the flow of the process, but will not

start or (directly) terminate the process. BPMN has twelve types of intermediate events :

none, message, timer, escalation, error (known as exception), cancel, compensation, con-

ditional, link, signal, multiple, and parallel multiple. One or more intermediate events

may be attached directly to the boundary of an activity, e.g.message, timer, exception.

In our work, we focus on message and exception intermediate events. Finally, an end

event represents where a process terminates and it has no successors.

20

Chapter 2.Preliminaries 21

Gateways are flow nodes that control the divergence and convergence of flows in

a process. They determine splitting, forking, merging, or joining of flow paths [68].

The main BPMN gateways are illustrated in Figure 2.2. For example, AND gateways

(ANDgates) are for parallel execution of more than one branch; data-based exclusive

decision XOR gateways (XORgates) are for choosing exactly one branch, and inclusive

decision OR gateways (ORgates) are for choosing one or more branches at the same

time. Gateways are either splitting the flow to more than one branch or merging more

than one flow branches into one flow.

Data objects carry information and represent documents in the process. This in-

formation may represent a singular object or a collection ofobjects. Data objects are

classified as data inputs, data outputs, and data stores. A data input provides the activity

with some information, while a data output represents some processed resulting infor-

mation from the activity which it is linked to. A data store provides a mechanism for

activities to retrieve or update stored information that will persist beyond the scope of

the process [68].

Artifacts provides the modeller with the capability of showing additional information

about a process that is not directly related to the sequence flows or message flows of the

process. There are two standard artifacts: groups and text annotations [68]. A group is

a grouping of graphical elements that are within the same category for documentation

and analysis. The group name appears on the diagram as the group label; e.g. the group

Account Checking in Figure 2.3. Text annotation is a mechanism for a modeller to

provide additional text information for the reader of a BPMNdiagram [68]. It is usually

connected to other flow objects by the associations.

Connecting flow elements are used to connect all the above mentioned components

together to form a BPMN model. Connecting objects can be sequence flows (plain di-

rected arrows connecting events, activity, and gateways together), message flows (dashed

arrows with circle attached to its beginning), or associations (dotted arrows). Sequence

flows can be: normal, uncontrolled, conditional, default orexception flows. Message

flows show the communications through messages between two participants. It connects

two separate pools or two activities in two different pools.Associations are connecting

the data objects and text annotations to other elements.

21

Chapter 2.Preliminaries 22

Swimlanes are used to group the primary modelling elements through the model.

There are two components in a swimlane, pools and lanes. A lane is a sub-partition

within a process, sometimes within a pool. They represent the notion of roles and par-

ticipants in the business process. The communications between different participants

are modelled as messages, and this is the only BPMN representation for the means of

communications between two different participants (i.e. pools).

As an example of a BPMN model, we use Figure 2.3 which represents a request

handling process in a company, where the main participants are the company and the

customer. In the company, two departments are involved; i.e. Accounting andSales,

which are represented as two lanes into the poolCompany. The messages intermediate

events between the company and the customer are:request for a customer request,

details for customer’s bank details andAcknldgmnt for the acknowledgement from the

company includes information about if the company is able tosend the product or not.

The model shows example activities; such asRegister user andrequest product,

example XOR and AND gateways and example start and end events. The text annotation

"AND join gateway" marks the AND gateway.

C
u
s
t
o
m
e
r

request
product

enter bank
details

enter product
quantity

enter delivery
address

receive
Acknldgmnt

A
cc
ou
nt
in
g

S
a
l
e
s

Check
Account
Deatils

User
is OK

Black list
user

Receive product
request

Register
user

Send
Acknldgmnt

C
o
m
p
a
n
y

request details Akcnldgmnt

AND join
gateway

Account Checking

ok?Yes

ok?No

Figure 2.3: BPMN Example

22

Chapter 2.Preliminaries 23

2.2 Maude

Maude [20] is a high-performance term rewriting engine thatprovides support for both

equational and rewriting logic specification and programming of concurrent systems in

particular. Based on the definitions in [67], we define the setof terms as the basic formal

representation in term rewriting. A term can be a variable, aconstant, or a function

defined with variables.

Definition 2.2.1. (Term): Let X be a countable set of variables{x,y,z, ...}. LetF be a

signature, i.e. a set of function symbols{ f ,g, ...}, each having a fixedarity given by a

mappingar : F → N.

The set oftermsover the signatureF with variables fromX is the least setT (F ,X)

satisfying:

1- if x∈ X , thenx∈ T (F ,X), i.e. a variable is a term,

2- if a∈ F is a constant symbol (i.e.ar(a) = 0), thena∈ T (F ,X), i.e. a constant is a

term,

3- if f ∈ F is ak-ary function symbol (i.e.k= ar(f)> 0) andt1, ..., tk ∈ T (F ,X), then

f (t1, ..., tk) ∈ T (F ,X), i.e. a function of a term is a term.

Let t be a term.V ar(t) is the set of variables occurring int and ifV ar(t) = /0, thent

is ground.

The specifications in Maude are executable logical theoriesin rewriting logic [56], a

logic which forms a flexible framework for expressing a wide range of concurrency mod-

els and distributed systems [30]. Maude programs are composed of functional modules

and system modules. While functional modules represent theories in membership equa-

tional logic, system modules represent theories in rewriting logic. A Maude’s functional

module is an equational-style functional program with user-definable syntax specify-

ing an equational theory with initial algebra semantics [11]. It specifies a membership

equational theory(Σ,Eq∪U) whereΣ is the signature of the specification of sorts, sub-

sorts, kinds, and operators in the module,Eq is the collection of statements of equa-

tions and memberships(possibly conditional), andU is the set of equational attributes,

such as associativity (assoc) and commutativity (comm) declared for some operators

(i.e. extra equations that are treated in special way by the Maude’s interpreter to sim-

23

Chapter 2.Preliminaries 24

plify modulo such attributes) [20]. A system moduleM specifies a rewrite theoryR ; i.e.

R = (Σ,Eq∪U,φ,R) where(Σ,Eq∪U) is the membership equational theory specified

by the signature equational attributes and equations and membership statements in the

module,φ is a function that assigns each operator inΣ the number of its frozen (i.e.

rewrite with rules is forbidden) arguments, andR is the collection of rewrite rules which

may be conditional. A functional module in Maude is declaredasfmod and a system

module asmod with the following syntax:

fmod 〈ModuleName〉 is 〈DeclationsAndStatements〉 endfm

mod 〈ModuleName〉 is 〈DeclationsAndStatements〉 endm

A module can import other modules into it in three different ways;protecting (or pr),

i.e. preserving the sorts and subsorting relations of the imported module,extending (or

ex), i.e. the data of some sort isextendedwith new data elements, yet not identifying

previously defined data, orincluding (or in), i.e. the imported module is part of the

recent module and modifications in its sorts and relations are allowed. In the module

definition above,〈ModuleName〉 represents the module name which is usually in cap-

itals and〈DeclationsAndStatements〉 represents the set of sorting/subsorting relations,

operators, equations and rules in the module.

Maude functional modules support multiple sorts, subsort relations in its declara-

tions, as well as operator overloading, and assertions of membership in a sort. The

statements in functional modules are the equations and memberships (possible condi-

tional). The conventions in Maude requires module’s name tobe all capitals, the sort

name to start with a capital letter, while the operators start with small letter and each

second word starts with a capital letter. An operator is declared with the keywordop,

its name, the list of sorts for its arguments (i.e. the operator’s arity or domain sorts),->,

then the result’s sort (i.e. the operator’s coarity or rangesort), optionally followed by an

attribute declaration, followed by a white space and a period.

op 〈OpName〉 : 〈Sort-1〉 ... 〈Sort-k〉 -> 〈Sort〉 [〈OperatorAttributes〉] .

Operator attributes (〈OperatorAttributes〉) provide additional information about the op-

erator and are declared within a single pair of enclosing square brackets,[and], after

24

Chapter 2.Preliminaries 25

the sort of the result and before the ending period. The operator attributes [20] are cate-

gorized as follows1:

1. Equational Attributes: declaring certain kinds of equational axioms for binary op-

erators to facilitate using them by Maude in a built-in way where both domain and

range sorts must belong to the same kind, i.e.assoc (associativity),comm (com-

mutativity), idem (idempotency), andid:Term (identity, with the corresponding

term for the identity element).

2. Constructors: (ctor) are the operators appearing in canonical forms (i.e. assum-

ing that the equations in a functional module are (ground) Church-Rosser and

terminating2, then every ground term in the module (that is, every term without

variables) will be simplified to a canonical form, perhaps modulo some declared

equational attributes).

3. Ditto: (ditto) specifies that this operator, being subsort overloaded, should have

the same attributes as those appearing explicitly in a previous subsort-overloaded

version, except for thector attribute. See moduleSIMPLE-NUMBERS below for an

example (operator_*_).

4. Frozen Arguments: (frozen) Given a system moduleM, by declaring a given op-

erator, sayf, as frozen, rewriting with rules is always forbidden in all proper

subterms of a term havingf as its top operator. It is declared as : (op f : S1

... Sn -> S [frozen]) specifying that all the arguments off are frozen.

On introducing Maude syntax, we use an example functional module for numbers

from [20]. The moduleSIMPLE-NUMBERS defines the addition and multiplication of

natural numbers and will be explained eventually in this section. The term defined by

an operator can be: a constant if its list of arguments is empty (e.g.0), a one argument

function (e.g.s_), or two arguments function (e.g._+_).

1We introduce the attributes that are used later in the proposed syntax and semantics in Chapter 3. The

interested reader can refer to [20] for the complete list.
2discussed in Section 2.2.2

25

Chapter 2.Preliminaries 26

fmod SIMPLE-NUMBERS is

sort Nat .

op 0 : -> Nat [ctor] .

op s_ : Nat -> Nat [ctor] .

op _+_ : Nat Nat -> Nat [assoc comm] .

ops _+_ _*_ : Nat Nat -> Nat [ditto] .

op _+_ : NzNat Nat -> NzNat [ditto] .

op _*_ : NzNat NzNat -> NzNat [ditto] .

vars N M : Nat .

eq 0 + N = N .

eq s N + M = s (N + M) .

sort PostiveNat .

subsort PostiveNat < Nat .

cmb N : PostiveNat if N > 0 .

endfm

In order to define the behaviour of the plus operator, Maude equations are used. The

general form of the unconditional equation is:

eq 〈Term-1〉 = 〈Term-2〉 [〈StatementAttributes〉]

Maude variables can be defined on-the-fly too; i.e. defining the variable where it is being

used and not before it in the module. However, the scope of an on-the-fly variable

declaration is the declaration’s occurrence [20], e.g. thefirst equation of summation with

zero above can be represented as (eq 0 + X:Nat = X:Nat). The operationreduce is

used to reduce the input term. The command (reduce {in module:} term .) is used

with the possibility not to add the name of the module as it is automatically consider the

current module as all the commands which require module namedoes. This rewriting

command causes the specified term to be reduced in many steps using the equations and

membership axioms in the given module. The command can be abbreviated tored (e.g.

red in SIMPLE-NUMBERS : s s s 0 + s s s s s 0).

The statements attributes [20] (i.e.〈StatementAttributes〉) represent the attributes as-

sociated to module statements defining its features. Maude has four statement attributes;

label, metadata, nonexec, andowise. The first three can also be used in system

modules rules and attributemetadata can be used in defining operators.

26

Chapter 2.Preliminaries 27

1. Labels: for tracing, debugging and can be used to name axioms in metalevel.

For example, the axiom for idempotency for natural number sets can be labelled

in one of the two representations below. While the first statement follows the

defined syntax for equations, the second statement uses the general form of labels

as introduced in Maude 1 for equations and rules.

eq N ; N = N [label natset-idem] .

eq [natset-idem] : N ; N = N .

2. Metadata: for attaching string data to the statement as comments about it. In

moduleSIMPLE-NUMBERS, the distribution law can be added with the comment

documenting it as the distributive law as below:

eq (N + M) * I = (N * I) + (M * I) [metadata "distributive law"] .

3. Nonexec: for including statements in a module that are ignored by the Maude

rewrite engine. A rule can be declared as non-executable using the same at-

tribute in a system module. The above distributive law example can be made

non-executable as follows:

eq (N + M) * I = (N * I) + (M * I) [nonexec metadata "distributive

law"] .

4. Otherwise: for specifying that in all remaining cases, which are not defined by

the functions for the same operator, do this statement command. For example, the

operator declaration below defines operatorin for deciding if an object is included

into a certain object set. The first equation defines the situation where the objectO

is in the setA, giving atrue. The second equation, which is more general, defines

all other cases asfalse. That is, if the first equation does not match, then the

object in fact is not in the set, and the predicate should be false.

op _in_ : Object ObjectSet -> Bool .

var O : Object .

var A : ObjectSet .

eq O in (O, A) = true .

eq O in A = false [owise] .

27

Chapter 2.Preliminaries 28

Equations could be conditional, i.e. limiting its application to certain cases. The

general form of the conditional equation in Maude is:

ceq 〈Term-1〉 = 〈Term-2〉 if 〈EqCondition-1〉 /\.../\〈EqCondition-k〉

[〈StatementAttributes〉]

TheEqCondition has the following concrete syntax for the conditions wheret and

t’ are terms:

• ordinary equationt = t’,

• matching equationst := t’, and

• abbreviated Boolean equations of the formt, with t a term in the kind[Bool],

abbreviating the equationt = true.

In Maude, sorts are user-defined, whileKinds(i.e. error supertypes) are implicitly asso-

ciated with the connected components of sorts [20]. Kinds are the equivalence classes

grouping the sorts which are belonging to the same connectedcomponent. Uncondi-

tional membership axioms specify terms as having a given sort. This sort must al-

ways be in the same kind as that of the term. Conditional membership uses the same

EqConditions as above, like the conditional equations do. The general form of uncon-

ditional and conditional memberships are:

mb 〈Term〉 : 〈Sort〉 [〈StatementAttributes〉]

cmb 〈Term〉 : 〈Sort〉 if 〈EqCondition-1〉 /\.../\〈EqCondition-k〉

[〈StatementAttributes〉]

The exampleSIMPLE-NUMBERS above includes a conditional membership. The state-

ment specify that if the natural number is greater than zero,then it is a positive number

of sortPositiveNat. Note the use of an abbreviated Boolean equation (N>0); assuming

that the operator (_>_) has been defined in the moduleSIMPLE-NUMBERS.

2.2.1 Rewrite Rules

A rewrite theory has an underlying equational theory which contains its declarations

(sorts, kinds, and operators) and statements that can be conditional (equations, member-

ships and rules). Therefore, Maude system modules include the same declarations and

28

Chapter 2.Preliminaries 29

statements as functional modulesplus the rules. Rewrite rules are the local concurrent

transitions for the systems or the logical inference rules [20].

Definition 2.2.2. (Rewrite Rule): A rewrite rule r is an ordered pairl → h, where

l ,h∈ T (F ,X) are the left- and right-hand sides (lhsandrhs for short), respectively, and

1- l /∈ X , i.e thelhs l is not a variable, and

2-V ar(h)⊆ V ar(l), i.e. variables occurring on theh also occur inl .

A rewrite ruler is applicable to termt : (t
r
=⇒ t ′) if there is amatchingbetween thelhs

pattern ofr and a part (or all) of the term being reduced (i.e.t). In this case the pattern

in the rhs of the rewrite ruler substitutesthat part (or all) oft in the lhs of r producing

the new termt ′. Maude uses (possibly conditional) rules in the following syntax where

the symbolsrl andcrl are used for unconditional rewrite rules and conditional rewrite

rules respectively.

rl [〈Label〉] : 〈Term-1〉 => 〈Term-2〉 [〈StatementAttributes〉]

crl [〈Label〉] : 〈Term-1〉 => 〈Term-2〉 if 〈Condition-1〉 /\.../\

〈Condition-k〉 [〈StatementAttributes〉]

The conditions in Maude’s conditional rule (i.e.Condition) are more general than

the equation conditions (EqCondition) as it can include rewrite expressions with syntax

(t ⇒ t ′) besides equations and memberships. However, like theEqCondition equations,

the equations in the rules conditions can be matching or abbreviated Boolean equations.

In the following we use example Maude system moduleSIMPLE-VM [20] to represent

a vending machine which a user inserts a coin (i.e. a quarter or a dollar) and the machine

returns an itema and it can return change for the user as the itema priced at three

quarters.

mod SIMPLE-VM is

sorts Coin Item Marking .

subsorts Coin Item < Marking .

op null : -> Marking .

op __ : Marking Marking -> Marking [assoc comm id: null] .

op $: -> Coin .

op q : -> Coin .

op a : -> Item .

29

Chapter 2.Preliminaries 30

var M : Marking .

rl [add-q] : M => M q .

rl [add-$] : M => M $.

rl [buy-a] : $ => a q .

rl [change] : q q q q => $.

endm

The behaviour is simulated using the rules with labelsadd-q for inserting a quarter,

add-$ for inserting a dollar,buy-a for retrieving an item and a quarter, andchange for

computing the change of 4 quarters as one dollar. The rewriting command (rewrite {[

bound]} {in module:} term) causes the specified term to be rewritten using the rules,

equations, and membership axioms in the given module. Maude’s interpreter applies

the rules (if no equation can be applied) using rule-fair top-down (lazy) strategy and

stops when the number of rule applications reaches the givenbound [20]. If the upper

bound clause is omitted, infinity is assumed. The command maybe abbreviated torew

as shown in the rewrite command for the vending machine example here.

Maude> rew [2] $ $ q q .

rewrite [2] in SIMPLE-VM : $ $ q q .

rewrites: 2 in 0ms cpu (0ms real) (~ rew/sec)

result Marking: $ $ $ q q q

In order to explain how Maude obtained the result above, we use one of the de-

bugging and optimizing Maude programs approaches, i.e. tracing. The tracing facilities

allow us to follow the execution of our specifications, that is, the sequence of rewrites or

equational simplification reductions that take place. It should be turned on first with the

commandset trace on . Then the above rewrite command will result in:

Maude> rew [2] $ $ q q .

rewrite [2] in SIMPLE-VM : $ $ q q .

*********** rule

rl M => q M [label add-q] .

M --> $ $ q q

$ $ q q

30

Chapter 2.Preliminaries 31

--->

q $ $ q q

*********** rule

rl M => $ M [label add-$] .

M --> $ $ q q q

$ $ q q q

--->

$ $ $ q q q

rewrites: 2 in 0ms cpu (0ms real) (~ rewrites/second)

result Marking: $ $ $ q q q

The configuration$ $ q q is rewritten into$ $ $ q q q in two rewrite steps. The

first is by applying rewrite ruleadd-q and the second is by applying rewrite ruleadd-$

as shown in the code above. The tracing can be switched off using commandset trace

off .

2.2.2 Admissible Modules

In Maude modules, the equations must satisfy the requirements of being Church-Rosser,

terminating, and sort decreasing. This is because the computation is accomplished by

using the equations as rewrite rules until a canonical form is found. As a result it guaran-

tees that all terms in an equivalence class modulo the equations will rewrite to a unique

canonical form, and that this canonical form can be assigneda sort that is smaller than

all other sorts assignable to terms in the class. To discuss the idea of admissible modules,

we introduce the basic properties based on the definitions in[20], e.g. confluence, termi-

nation and Church-Rosser. A set of equationsEq is confluentwhen any two rewritings

of a term can always be unified by further rewriting: ift →∗
E t1 andt →∗

Eq t2, then there

exists a termt such thatt1 →∗
Eq t ′ andt2 →∗

Eq t ′. A set of equationsEq is terminating

when there is no infinite sequence of rewriting stepst0 →Eq t1 →Eq t2 →Eq If E

is both confluent and terminating, a termt can be reduced to a unique canonical form

t ↓Eq, i.e. to a unique term that can no longer be rewritten. A set ofequationsEq is

Church-Rosser if it is confluent.

All conditional equationst = t ′ if C1 ∧ . . .∧Cn in a functional moduleM have to

31

Chapter 2.Preliminaries 32

satisfy the following admissibility requirements, (ensuring that all the extra variables

will become instantiated by matching):

1. vars(t ′)⊆ vars(t) ∪
⋃n

j=1vars(Cj).

2. If Ci is an equationui = u′i or a membershipui : s, then

vars(Ci)⊆ vars(t) ∪
⋃i−1

j=1vars(Cj).

3. If Ci is a matching equationui := u′i , thenui is anM-pattern and

vars(u′i)⊆ vars(t) ∪
⋃i−1

j=1vars(Cj).

The modules built for formalizing the syntax and semantics of BPMN models are ad-

missible as they are terminating and Church-Rosser. This result is based on testing the

modules using the Maude verification toolkit, i.e. Termination Tool and Church-Rosser

Tool.

2.2.3 Model Checking

BPs as concurrent systems often require environment interactions and continuous exe-

cution with possible successful termination. One of the most popular techniques for rea-

soning about concurrent software systems and debugging ismodel checking. Recalling

the strengths of model checking mentioned in Chapter 1, model checking is considered

a powerful candidate for the compliance problem over other verification techniques due

to the criticality of the systems that it can handle, the expressiveness of the used formal

languages and the automation [9]. Moreover, LTL model checker is part of the Maude

package [31] which makes it easier and straightforward to feed the model checker with

our Maude formalization for the model under consideration.

In [19], model checking is a collection of automatic techniques used to verify finite

state concurrent systems. It contains basically three maincomponents; (1) a model spec-

ification language used to build the system formal description as a finite-state transition

system, (2) a property specification language (normally based on a temporal logic) is

used to build the system properties which are needed to be checked, and (3) a verifi-

cation procedure, i.e. exhaustive searching of the model state space in order to decide

whether the specified property is satisfied or not.

32

Chapter 2.Preliminaries 33

Some model checker verification procedures search the statespace for the negation

of the property specified (e.g. [97]) and others search for the exact property specified

which requires the user to enter the property in the negationform (e.g. [31]). The idea is

to search for the unwanted trace of transitions which violate the property. The algorithm,

in [97], assumes that the specification is an LTL formulap. It concluded that checking

that the system satisfies that formula is equivalent to checking that it satisfies its negation

¬p. An automatonB¬p that accepts the traces that satisfy¬p is constructed. Then, this

automaton is composed with an automaton that accepts the traces of the system model

(M). If the composition is empty, thenM satisfies the specificationp. Otherwise, any of

the traces recognized by the composite automaton is acounterexample. A counterexam-

ple is a trace of the process execution that does not satisfy the checked property. On the

other hand, in on-the-fly LTL model checking, a Büchi automaton is constructed from

the negation of the property formula and then lazily searching the synchronous product

of the Büchi automaton and the system state transition diagram (in Kripke structure) for

a reachable accepting cycle [31] using depth-first search. If no accepting runs exist, we

can conclude that every initial state satisfies the specification.

For a rewriting theoryR , which represents a BPMN model, Maude’s LTL model

checker associates a Kripke structureK if the modules are Church-Rosser and termi-

nating. Kripke structure is a state transition graph which represent the computations of

systems (i.e. infinite sequence of states where each state isobtained from the previous

state by some transition [46]). They are the natural models for propositional temporal

logic [20]. Then, the model checker solves a satisfaction problem of the form

K (R ,k)Π, [t] |= ϕ (2.1)

wherek is a kind of the states from the rewrite theoryR , Π defines the state predicates,

[t] a kind of initial states,k is the kind of model states, andϕ is the property to be

checked. The output of the model checking is eithertrue, i.e. the property is satisfied, or

acounterexample, i.e. the property is not satisfied.

33

Chapter 2.Preliminaries 34

2.3 CMMI

Capability Maturity Model Integration (CMMI) is a guide to implement a continuous

process improvement for developing products and services [24]. The CMMI is devel-

oped by SEI-CMU to provide a collection of systematic high level descriptive best prac-

tices that can be used as a reference model for software development small and medium-

size enterprises (SME) in their process improvement cycle [21]. A SME applies such

process improvement approach to improve the quality of the developed software, by

following a well-organized reference process.

Areas of Interest

Representations

CMMI-DEV

CMMI-ACQCMMI-SVC

16
PAs

7 PAs

1 PA

6 PAs

5 PAs

Figure 2.4: CMMI representations, maturity levels and areas of interest

CMMI provides two representations: continuous and staged as illustrated in Figure

2.4. Thestagedrepresentation (in Figure 2.4) assesses the maturity levelof a whole

development process across multiple process areas and hence uses thematurity levels.

There are five maturity levels numbered 1 through 5 (i.e. ML1:Initial, ML2: Managed,

ML3: Defined, ML4: Quantitatively Managed, and ML5: Optimizing). Thecontinu-

ous representation assesses the capability level of individual Process Areas (PAs) that

34

Chapter 2.Preliminaries 35

are selected based on the organization’s business goals andhence usescapabilitylevels.

There are four capability levels numbered 0 through 3 (i.e. CL0: Incomplete, CL1: Per-

formed, CL2: Managed, CL3: Defined). In the continuous representation, the process

areas are rated individually. Both capability levels and maturity levels help to improve

the organization processes and measure how well it can (and do) improve their processes.

However, [21] claims that experience has shown that organizations do their best when

they focus their process improvement efforts on a manageable number of process areas

at a time (i.e. staged representation). Hence we were encouraged to focus on the staged

representation of the CMMI as a basis for the approach in thisthesis. According to the

CMMI [22], the following is a brief idea about the staged representation maturity levels.

• ML1 (Initial): processes are usually ad hoc and chaotic with no support environ-

ment. The success depends on the people and not a stable process with inability to

repeat the success.

• ML2 (Managed): processes are planned and executed in accordance with policy

employing skilled relevant people and the existing practices are retained during

times of stress using milestones (possibly for a specific project).

• ML3 (Defined): processes are well characterized and understood, and arede-

scribed in standards, procedures, tools, and methods. A project’s standards and

procedures are tailored from the organization’s set of standard processes.

• ML4 (Quantitatively Managed): the organization and projects establish quanti-

tative objectives for quality and process performance and use them as criteria in

managing projects and assessing outcomes.

• ML5 (Optimizing): an organization continually improves its processes based on a

quantitative understanding of its business objectives andperformance needs.

A Process Area (PA) is a cluster of related practices in an area that, when imple-

mented collectively, satisfies a set of goals considered important for making improve-

ment in that area [21]. For each maturity level, there is a number of process areas

that describe the best practices related to it. A summary of the relations among the

CMMI components in the staged representation we follow hereis presented in Figure

35

Chapter 2.Preliminaries 36

2.5 (adapted from [4]). The PAs can be classified into four basic categories for its areas

of impact on the company’s business process. These categories are:process manage-

ment, project management, engineeringandsupport. They allow the process elements

to have relationships among each others for integration, such as sub-practices in one

PA that affects another PA. For example, the Decision Analysis and Resolution (DAR)

process area (i.e. a support process area at ML3) contains specific practices that address

the formal evaluation process used in the Technical Solution (TS) process area (i.e. an

engineering process area at ML3) for selecting a technical solution from alternative so-

lutions.

Maturity Levels

Process Area 1 Process Area 2 Process Area n

Specific
Goals

Generic
Goals

Specific
Practices

Generic
Practices

Figure 2.5: CMMI Staged Representation Structure

CMMI has three basic areas of interest into BPs (c.f. Figure 2.4); CMMI for De-

velopment, CMMI for Services, CMMI for Acquisition. While CMMI for Development

(CMMI-DEV) focuses on product and service development processes, CMMI for Acqui-

sition (CMMI-ACQ) focuses on supply chain management, acquisition, and outsourcing

processes in government and industry, and CMMI for Services(CMMI-SVC) focuses

on delivering services within an organization and to external customers. In this work,

CMMI-DEV [21] is used as the reference model. The CMMI-DEV (referred to as CMMI

in the rest of the work) contains 22 process areas indicatingthe aspects of product devel-

opment that are to be covered by company processes3. Table 2.1 lists the process areas

316 process areas out of the 22 process areas in the CMMI-DEV are common among the three areas

36

Chapter 2.Preliminaries 37

(PAs) in each maturity level (ML) and its category.

Table 2.1: CMMI-DEV Process Areas

Process Area (PA) ML Category

Configuration Management (CM) ML2 Support

Measurement and Analysis (MA) ML2 Support

Project Monitoring and Control (PMC) ML2 Project Management

Project Planning (PP) ML2 Project Management

Process and Product Quality Assurance (PPQA)ML2 Support

Requirements Management (REQM) ML2 Project Management

Supplier Agreement Management (SAM) ML2 Project Management

Decision Analysis and Resolution (DAR) ML3 Support

Integrated Project Management (IPM) ML3 Project Management

Organizational Process Definition (OPD) ML3 Process Management

Organizational Process Focus (OPF) ML3 Process Management

Organizational Training (OT) ML3 Process Management

Product Integration (PI) ML3 Engineering

Requirements Development (RD) ML3 Engineering

Risk Management (RSKM) ML3 Project Management

Technical Solution (TS) ML3 Engineering

Validation (VAL) ML3 Engineering

Verification (VER) ML3 Engineering

Organizational Process Performance (OPP) ML4 Process Management

Quantitative Project Management (QPM) ML4 Project Management

Causal Analysis and Resolution (CAR) ML5 Support

Organizational Performance Management (OPM)ML5 Support

CMMI uses the termInstitutionalizationfor ingraining the process in the way the

work is performed and there is commitment and consistency toperform (i.e. execute)

the process [21]. This is a way of making the designed BP a truerepresentation of what

activities are conducted in real implementation. In case that requirements and objectives

of interest as illustrated in Figure 2.4

37

Chapter 2.Preliminaries 38

for the process have changed, the implementation of the process may also need to change

to ensure that it remains effective. The generic practices describe activities that address

these aspects of institutionalization and the generic goals reflect this. Hence, the generic

goals (GG) are associated with a certain level of process progression [22] (i.e. maturity

level). While achieving the GG1 indicates a performed process, achieving GG2 indicates

a managed process and GG3 indicates a defined process.

2.3.1 Configuration Management

Configuration Management (CM) is a support process area at ML2. CM is defined in

[21] as a discipline applying technical and administrativedirection and surveillance to

identify and document the functional and physical characteristics of a configuration item,

control changes to those characteristics, record and report change processing and imple-

mentation status, and verify compliance with specified requirements4. The CM impor-

tance appears in controlling quality, cost and schedule of the organization’s products (or

services) throughout its life cycle. It includes three mainactivities: (1) identification of

the product characteristics, (2) control of changes to those characteristics, and (3) record-

ing and reporting on change processing and implementation status. Processes and tools

used to successfully complete these three activities in anyenvironment (e.g. CMMI [22],

ITIL [50], COBIT [101], ISO [45]) can be subdivided into five traditional CM functions

which have specific configuration purposes: (1) planning, (2) identification, (3) control,

(4) status accounting, (5) verification and audit.

All the components that are used to deliver a company’s product or service are con-

sidered configuration items (CIs). According to the CMMI, the work products placed

under configuration management (i.e. CIs) include the products that are delivered to the

customer, designated internal work products, acquired products, tools, and other items

used in creating and describing these work products. However, based on our observa-

tion, despite having similar configuration management procedures, each organization

has their own customized definition for their CIs. The CIs arebaselined in order to
4There are more than 900 definitions and taxonomies for CM types on the IF4IT on (http://www.

if4it.com/SYNTHESIZED/FRAMEWORKS/TAXONOMY/configuration_management_taxonomy.html).

However, we will use the CMMI definitions here.

38

http://www.if4it.com/SYNTHESIZED/FRAMEWORKS/TAXONOMY/configuration_management_taxonomy.html
http://www.if4it.com/SYNTHESIZED/FRAMEWORKS/TAXONOMY/configuration_management_taxonomy.html

Chapter 2.Preliminaries 39

be used in the development process. A baseline [21] is a set ofspecifications or work

products that has been formally reviewed and agreed on, which thereafter serves as the

basis for further development, and which can be changed onlythrough change control

procedures. The CM process area consists of three specific goals under which seven

specific practices are defined as detailed in Appendix C. Theydefine a number of best

practices that a CM should have in order to be compliant with the CMMI. The three

specific goals are: (1) establish baselines for the used CIs,(2) track and control changes,

and (3) establish integrity for records and audits.

2.3.2 CMMI Appraisals

A company should be qualified to a certain level of maturity ifits process satisfies all

the related requirements in the process areas belong to it. The evaluation (i.e. appraisal)

is done by the SEI itself or one of its trained partners worldwide and the results are cen-

trally published on their website5. According to the CMMI definition [21], an appraisal

is an examination of one or more processes by a trained team ofprofessionals using an

appraisal reference model (i.e. CMMI here) as the basis for determining, at a minimum,

strengths and weaknesses. An organization cannot be certified in CMMI; instead, an or-

ganization isappraised. Depending on the type of the appraisal, the organization can be

awarded a maturity level rating or a capability level achievement profile. The appraisal

is considered as an indicator of how well the company’s processes compare to CMMI

best practices, and important to identify areas where improvement can be made in the

process. Moreover, external customers and suppliers will be aware of how well the orga-

nization’s processes compare to CMMI best practices, whichallow for serious contracts

and collaborations, and some contractual requirements of one or more customers may

contains compliance to CMMI as a condition.

Appraisals of organizations using a CMMI model must conformto the requirements

defined in the Appraisal Requirements for CMMI (ARC) document [21]. There are three

classes of a CMMI appraisal, i.e. A, B and C. A class A appraisal is expected to be the

most accurate, designed to maximize buy-in from the appraisal participants, and offers

the organization the best understanding of its issues that need to be fixed and its strengths

5https://sas.cmmiinstitute.com/pars/

39

Chapter 2.Preliminaries 40

that should be shared [60]. Class B describes a smaller scaleappraisal methodology,

sometimes called a mini-appraisal [60], which can be accomplished with a smaller team

of expert appraisers over a reduced number of days. It can be used to spot-check the

organization between full appraisals. Class C describes the least intensive appraisal

methodology, sometimes called a micro-appraisal or questionnaire-based appraisal. A

class C appraisal can be used to get a rough idea of the currentstate of the practice within

an organization [60]. The characteristics of the CMMI appraisal classes are summarized

in Table 2.2 which is adapted from [60].

The Standard CMMI Appraisal Method for Process Improvement(SCAMPI) de-

scribes a class A appraisal method [83]. The SCAMPI is designed to provide benchmark-

quality ratings relative to CMMI models [83]. SCAMPI methoddeals with the consol-

idation of evidences (e.g. presentations, documents and interviews) related to the exe-

cution of the process in actual projects [24]. The assessment team uses these evidences

to support the rating of practices, goals and, hence, to evaluate the PAs. However, an

appraisal is more expensive for a SME than for a larger one. These costs are usually

measured by considering the cost spent on appraisal relatedtraining, approach verifi-

cation using SCAMPI Class C, deployment verification using SCAMPI Class B, and

institutionalization verification using SCAMPI Class A appraisals divided by the num-

ber of associates in the organizational unit per appraisal period [66]. They can be in

the form of hiring expert lead appraisers, and spending massive working hours in staff

interviews and internal (and/or external) appraisal team meetings. Here, there is a need

to reduce the cost of the appraisals as they are being performed every two or three years.

One way of doing this is to use less expensive methods to follow apre-appraisalformal

procedure aiming at saving the money, time and effort. Although the social cultural con-

cerns are not included in the scope of this thesis, this will not eliminate the need to spread

the CMMI culture among the organization staff in its early stages by the managers.

In our proposed approach, we present a semi-automatic compliance checking method

for the CM process area. We believe that this approach can be used as apre-appraisal

formal method to check how ready the designed business process is to go for the expen-

sive appraisal methods. The method we present uses the designed BP process and check

its compliance with the CMMI-CM practices. Based on this check results, a designed

40

C
h

ap
ter

2
.P

re
lim

in
a

rie
s

4
1

Table 2.2: Characteristics of CMMI appraisals and our approach

Feature Class A Class B Class C

Usage Mode In-depth investigation Self appraisal Quick-look

Basis for improvement

Advantages Strengths and Weaknesses of PAsA starting point focuses Inexpensive, rapid feedback

Robust method with on areas that need Short duration

Consistent, repeatable results most attention

Disadvantages Demands significant Not used for rating Not used for rating

resources No deep coverage Less ownership of results

Sponsor Senior Manager Any Manager Any Internal Manager

Team Size 4-10 and ATLa 1-6 and ATL 1-2 and ATL

Team Composition External and internal External or internal External or internal

aATL: Appraisal Team Leader.

4
1

Chapter 2.Preliminaries 42

process can be judged as a CMMI-CM compliant or some certain practices need to be

improved, with initial information about which propertiesare not satisfied to look for

the possible improvement in the process. Assuming that the SME is following their de-

signed CM process (or the designed process reflects what is actually being done in the

SME), the proposed method will allow the SME to start building their stable CM process

which can be ready for more advanced form of appraisal (i.e. SCAMPI A, B, or C).

2.4 Chapter Summary

In this chapter, the basic notions and tools used in this thesis are introduced. First the

BPMN notation for BPs is presented in Section 2.1, then in Section 2.2, the Maude

language is introduced. After that a brief introduction is given for the CMMI; i.e. its

contents, appraisal method with focusing on the CM process area as the application area

for the proposed approach in this thesis in Section 2.3. Nextchapter will present the

syntax and semantics of BPMN models using Maude language.

42

Chapter 3.BPMN Formal Syntax and Semantics

Chapter 3

BPMN Formal Syntax and Semantics

BPMN elements have been formally mapped into many formal languages, e.g. Petri nets

[27], YAWL [91], and CSP [104]. However, as explained in Chapter 6, most of the for-

malizations do not provide a comprehensive formalization approach for handling data

objects, guard expressions, and possibility of deadlocks related to the decision based

gateways. In this chapter, we provide the details of the BPMN2MAUDE procedure il-

lustrated in Figure 1.1 where the formal syntax and semantics of an excerpt of the BPMN

elements is introduced using Maude. In the first part of this chapter, we present a formal

syntax in Maude for the BPMN 2.0 core elements; flow nodes (i.e. activities, events,

and gateways), connecting flow (i.e. sequence flows, messageflows, and associations),

data objects (i.e. input, output and data stores), swimlanes (i.e. pools and lanes), and

artefacts (i.e. groups and text annotations) with a focus onthe gateways structure, guard

representation and data objects. The notion of well-formedBPMN process models is

introduced and formalized to allow for formal sound models as will be discussed in the

next chapter. In the second part of this chapter, the behavioural semantics of BPMN

elements is modelled using Maude (possibly conditional) rules and equations mapping

the behaviour standards in [68] for the well-formed BPMN models.

43

Chapter 3.BPMN Formal Syntax and Semantics 44

BPMN 2.0 has five main categories of elements: flow nodes, connecting flow, swim-

lanes, data and artefacts according to the metamodel in Figure 2.1. These elements are

dependently defined and used as each one of them should be connected to one (or more)

other elements in order to build the BPMN model (or diagram).The main flow ele-

ments are modelled as sortsFlowNode, DataObject, ConnectingFlow, Artifact, and

Swimlanewhile the object’s subsorts are defined asDataStore, DataInput, DataOutput,

Activity, Event, Gateway, SequenceFlow, MessageFlow, Association, Group, Txt

Annotation, Pool, andLane. An activity is a flow node, but not all flow nodes are ac-

tivities and a message flow is a connecting flow but not all connecting flows are sequence

flows. Therefore the subsorting relations should be established1.

subsorts DataInput DataOutput DataStore < DataObject .

subsorts Activity Event Gateway < FlowNode .

subsorts Pool Lane < Swimlane .

subsorts SequenceFlow MessageFlow Association < ConnectingFlow .

subsorts TxtAnnotation Group < Artifact .

subsorts FlowNode ConnectingFlow Swimlane DataObject Artefact

< FlowElement .

At the same time, these elements represent the objects typesin our main configura-

tion, i.e. theFlowElement is a subsort of sortobject. The set of objects that represent

the BPMN elements in a BPMN process is modelled asObjectSet as the BPMN pro-

cess is a set of BPMN Flow elements.

subsorts FlowElement < Object < ObjectSet .

It is worth saying that Maude appreciates the white spaces between any two words

in the language, e.g. there should be a space before the period at the end of a state-

ment, between an operator fixed sub-term and a variable (e.g.t_ in definition is used

ast N in the semantics). Most of these spaces will be ignored in this chapter. How-

ever, the full working Maude code is available in the attached code file (See Appendix

1Notice that the swimlanes are not modelled as separated objects in this formalization. Instead they

are represented as attributes in their corresponding flow elements objects as descried in Section 3.1.5.

44

Chapter 3.BPMN Formal Syntax and Semantics 45

A for details). Basically, the flow nodes are represented as objects in the general config-

uration (< Oid : Cid | AS >), whereOid represents the object identifier,Cid rep-

resents the corresponding class identifier, andAS represents the set of object attributes.

Object identifiers are represented by the symbolsai for the activities,ei for the events,

gi for gateways, andti for flow transitions (defined asop t_:Nat->TransSymbol with

op notrans:->TransSymbol)2, wherei ∈ N. The symbolsmi, di andtanni are used

for messages, data objects and text annotations respectively. Therefore, the following

subsorting relation holds in the specifications.

subsorts ActivitySymbol EventSymbol GateSymbol FlowOid

MsgSymbol DataSymbol TextAnnotationSymbol < Oid .

Notice that in Maude representation of these symbols a spaceshould be used be-

tween the symbol and the number (i.e.a i instead ofai used here in the text for presen-

tation purposes). The class identifier represents object’stype (sort) by using pre-defined

operators of the main sorts; (task) for task activity, (subprocess) for sub-process ac-

tivity, (aforkgate andajoingate) for AND fork and join gateways, (xsplitgate and

xmergegate) for XOR split and merge gateways, and (osplitgate andomergegate)

for OR split and merge gateways respectively. The set of attributes (AS) represents the

specific properties of the object assigned with corresponding values. For example, at-

tributes (name,in andout)3 contain the object’s name, and transition identifiers for the

input and output flows which connects the object with its predecessors and successors

respectively. Therefore, the relationships between objects are implicitly represented into

the objects attributes (in andout) which determine the exact place of an object with re-

spect to other objects in the process (i.e. its immediate predecessors and successors). The

attributes are defined as operators which are assigned transition identifier(s) indicating

the object predecessors or successors.

op name‘:_ : String -> Attribute .

op in‘:_ : TransSymbol -> Attribute .

op out‘:_ : TransSymbol -> Attribute .

2The full Maude modules are included into the attached code file (See Appendix A for details).
3Similar attributes are used in several approaches (e.g. [6,104, 102])

45

Chapter 3.BPMN Formal Syntax and Semantics 46

In the following sections a detailed description of the BPMNelements associated

with the proposed formal syntax mapping from BPMN elements into Maude.

3.1 BPMN Flow Elements

3.1.1 Activities

Activities are represented as objects of the form< a i : ActivityCid | AS >, where

a i is the object identifier,ActivityCid is the activity type. A task can be of typesend,

i.e. to send a message to an external participant,receive, i.e. to wait for a message to ar-

rive from an external participant,user, i.e. a human performs the task with the assistance

of a software application,manual, i.e. performed without the aid of any BP execution

engines or any application, andservice, i.e. uses a web service or an automated appli-

cation [68]. The task type is represented as an attribute andits values as operators as

described below.

op taskType‘:_ : TaskType -> Attribute .

ops send receive user manual service : -> TaskType .

< a 3 : subprocess | name : "Check Payment" ; in : t 1 ; out : t 2 ; contains : (a 1,a 2) ;
 cond : true ; active : false ; ToBeActive : false >

< a 1 : task | name : "Open Request" ; taskType : user ; in : t 1 ; out : t 2 ; cond : false ;
 ToBeActive : false ; active : true ; hasInput : d 1 >

BPMN Activity Maude Representation

t2
a1

t1
Open
Request

a1 a2

a3

t1 t2

Check Payment

Figure 3.1: Mapping from BPMN Activities to Maude Representation

In our formalization, we use the same notion of activity markers as attributemarker

giving further details of its type. We define the operatorsloop andMI to represent a

looping activity and a multi-instance activity respectively. The attributes of the activity

will determine if it is repeated or performed once. A loopingactivity has the attribute

loopingno, and a multi-instance activity has the attributeinstances which is assigned

46

Chapter 3.BPMN Formal Syntax and Semantics 47

a Natural number value for each one of them indicating the number of loops it should

make.

op marker‘:_ : Marker -> Attribute .

ops loop MI AdHoc Compensation : -> Marker .

op loopingno‘:_ : Nat -> Attribute .

op instances‘:_ : Nat -> Attribute .

An example of atask object in Figure 3.1 isa1 as the activity symbol,task is

its sort type, andname, in, andout are attributes representing the object name (Open

Request), its incoming transitionst1 and outgoing transitionst2 respectively. As a sub-

process can be decomposed into concrete tasks and other BPMNelements, the attribute

contains is used to represent the activities in it. It contains a reference to the set of

objects that contains the detailed elements in the sub-process, which in turn can contain

sub-processes. An example of a sub-process can be found in Figure 3.1 where attribute

contains represents the sub-process contentsa1 anda2 which are other objects in the

same process (defined asop contains‘:_ : Oid -> Attribute).

3.1.2 Events

An event is represented as an object of the form:< e i : EventCid | AS >, where

EventCid represents the type of the event. Following Definition 2.1.1, events can be

start to initiate a process,end to indicate process completion orintermediate for

triggering certain kinds of behaviour during the process, such as exceptions and mes-

sages. The operatorsstartEvent, intermediateEvent, endEvent defines the three

types. The symbolsos andoe represents the start and end events respectively.

ops start end exception message : -> TypeofEvent .

ops startEvent intermediateEvent endEvent : -> EventCid [ctor] .

op eventType‘:_ : TypeofEvent -> Attribute .

An example mapping from BPMN events to the corresponding Maude representation

is given in Figure 3.2 wheree1 is a start event (i.e. a plain start in the first row and

message start in second row),e2 is an end event,e3 is an intermediate boundary-attached

error event (exception) andm1 is an intermediate message event between two pools (i.e.

47

Chapter 3.BPMN Formal Syntax and Semantics 48

participants) in a process. The start event can be of type plain start, message or timer.

Each type of the three event types can have different subtypes, the attributeeventType

is declaring the specific type of the event. We are usingnotrans to represent the "no

incoming flow" situation.

< m 1 : intermediateEvent | eventType : message ; sourceObject : a 1 ; sourcePool : "p1" ;
 targetPool : "p2" ; targetObject : a 2 ; messageInfo : "Infromation" ;
 cond : false ; ToBeActive : false ; active : false >

 < e 1 : startEvent | eventType : start ; in : notrans ; out : t 1 ; process : true ;
 cond : false ; ToBeActive : false ; active : false >

e1
t1

< e 2 : endEvent | eventType : end ; in : t 1 ; out : notrans ; cond : false ;
 ToBeActive : false ; active : false >

e2
t1

< e 1 : startEvent | eventType : message ; in : notrans ; out : t 1 ; process : false ;
 cond : true ; ToBeActive : false ; active : false >

e1
t1

< e 3 : intermediateEvent | eventType : exception ; in : t 1 ; out : t 2 ; boundary : false ;
 cond : false ; ToBeActive : false ; active : false >

e3
t1 t2

< e 3 : intermediateEvent | eventType : exception ; in : notrans ; out : t 3 ;
 linkedObject : a 1 ; boundary : true ; cond : true ;
 ToBeActive : false ; active : false >

t3e3

a1

p1 a1

p2 a2

m1

BPMN Event Maude Representation

Figure 3.2: Mapping from BPMN Events to Maude Representation

For the intermediate events, recall that there are twelve types of them in BPMN. We

will focus onmessage anderror (i.e. exception) in this formalization. Exceptions can

occur as part of the gateway behaviour if no flow is available to pass the activation to, as

will be explained in Section 3.4. An intermediate event of type error (exception, as will

be called afterwords) is represented as an object with attributeeventType with value

exception (e.g. in Figure 3.2e3 in the fifth row). AttributelinkedObject represents

the object which the exception is attached to its boundary. An intermediate event can be

in between other objects (i.e.e3 in the sixth row in Figure 3.2), where it has an incoming

flow from its predecessor object.

Messages may be connected to the pool boundary or to a flow object within the pool

boundary. However, they do not connect two objects within the same pool. The sym-

48

Chapter 3.BPMN Formal Syntax and Semantics 49

bol mi represents the message identifier. The message has the attributessourcePool

andtargetPool representing the message source and target participants respectively.

The message can carry information which the modeller want tospecify at design time

in the attributemessageInfo. If the message is sent by a certain activity in the source

pool to a certain activity in the target pool, then it should be specified using attributes

sourceObject, andtargetObject respectively. An example message object is mes-

sagem1 in the last row of Figure 3.2. Finally, an end event can be of typeend indicating

the termination point in the process. An example for an end event is evente2 in the third

row of Figure 3.2.

3.1.3 Gateways

In our formalization, gateways are represented as objects of the form:< g i : GateCid

| AS >, whereGateCid represents the type of the gateway to be one of the (aforkgate,

ajoingate, xsplitgate, xmergegate, osplitgate, omergegate) for AND fork

and join, XOR split and merge, and OR split and merge respectively.

AND fork gateway divides a path into two or more parallel paths which can be per-

formed concurrently, rather than sequentially whilejoin gateway combines two or more

parallel paths into one path (e.g. synchronizer). We useaforkgateandajoingatefor AND

fork and join gate respectively. Examples of a parallel forkand a parallel join areg1 and

g4 respectively in Figure 3.3 where the outgoing flows fromg1 aret2 andt3 and the

incoming flows tog4 aret2 andt3.

A diverging decision-based exclusive gateway (XOR split) is used to create alterna-

tive paths within a process flow based on conditional expressions contained within the

outgoing sequence flows [68], where only one of the alternatives will be chosen. In this

formalization,xsplitgateandxmergegateare used for XOR split and merge gateways

respectively. An example of a XOR split and merge gateways isg2 andg5 in Figure

3.3. For the split gatewayg2, a decision is made as a result of evaluating associated

expressions. To control the divergence, a guard should be defined. We suppose that this

guard is part of the gateway itself and not the outgoing sequence flow as the standards in

[68] suggests. So it has been defined as an object attribute ofa gateway object. The ex-

pressions are boolean conditions built as part of the split gateway. For example, in Petri

49

Chapter 3.BPMN Formal Syntax and Semantics 50

BPMN Gateway Maude Representation

< g 1 : aforkgate | in : t 1 ; out : (t 2,t 3) ; cond : false ;
 ToBeActive : false ; active : false >

t2

t1

t3

g1

< g 2 : xsplitgate | in : t 1 ; out : (t 2,t 3) ; defaultFlow : t 2 ; error : t 001 ;
 guard : ((verified == "YES", t 3) . (verified == "NO", t 2)) ;
 controlValue : noControlValues ; cond : false ;
 ToBeActive : false ; active : false >

< g 3 : osplitgate | in : t 1 ; out : (t 2,t 3) ; defaultFlow : t 2 ; error : t 002 ;
 guard : ((extras? == "no extras", t 2) . (extras? == "gift card", t 3)) ;
 controlValue : noControlValues ; cond : false ;
 ToBeActive : false ; active : false >

< g 4 : ajoingate | in : (t 2,t 3) ; out : t 4 ; itsSplit : g 1 ; cond : true ;
 ToBeActive : false ; active : false >

< g 5 : xmergegate | in : (t 2,t 3) ; out : t 4 ; itsSplit : g 2 ; cond : false ;
 ToBeActive : false ; active : false >

< g 6 : omergegate | in : (t 2,t 3) ; out : t 1 ; itsSplit : g 3 ; cond : true ;
 ToBeActive : false ; active : false >

t2
t1

t3

g6

t2

t4

t3

g5

t2

t4

t3

g4

t2

t1

t3

g3
extras?

no extras

gift card

t2

t1

t3

g2
verified

NO

YES

Figure 3.3: Mapping from BPMN Gateways to Maude Representation

net based formalizations for BPs [102, 90, 27], they do not model the conditions and the

decision of the flow choice is handled non-deterministically. This allows for ambiguity

in interpretations for different executions and the resulting traces.

In order to formally define the guard expressions regardlessof the gateway seman-

tics, we provide a Context-Free Grammar (CFG) for the guard expressions. A CFG

(sometimes called Backus-Naur Form grammar [16]) is a set ofrecursive rewriting rules

(or productions) used to generate patterns of strings. It was introduced by Chomsky in

[17] as a possible way of describing natural languages and then has turned out to be

important in describing programming languages (e.g. [8] for ALGOL). In a CFG, the

50

Chapter 3.BPMN Formal Syntax and Semantics 51

strings are generated starting by a start symbol, followed by applying one of the produc-

tion rules with the start symbol on the left hand side [16], replacing the start symbol with

the right hand side of the production and the process continues by selecting non-terminal

symbols in the string, and replacing them with the right handside of some corresponding

production until all non-terminals have been replaced by terminal symbols.

Definition 3.1.1. (Guard Expression) EG = (N,Σ,S,P) where

N = {ConExpr, Cond, X, Y, Z, OP1, OP2}

Σ = {∧, ∨, ==, =/=, <=, >=, <, >}

S = Cond

P = {Cond→ ConExpr ∧ Cond | ConExpr,

Cond→ ConExpr ∨ Cond | ConExpr,

ConExpr→ X OP1 Y | X OP2 Y | X OP2 Z,

OP1→ < | > | <= | >=,

OP2→ == | =/= }

The set of terminalsΣ contains the symbols (∧,∨,==,=/=,<=,>=,<) for AND, OR,

equal, not equal, less than or equal, greater than or equal, less than, and greater than

logical binary operators respectively. The set of nonterminals contains the symbols

(ConExpr, Cond, X, Y, Z, OP1, OP2) for condition expressions, conditions, expres-

sion variable name, numeric variable value, String variable value and comparison oper-

ators defined as terminals. The start symbol isCond. The production rules (P) describe

the possible rewriting steps as follows:

• Cond → ConExpr ∧ Cond | ConExpr andCond → ConExpr ∨ Cond | ConExpr:

concatenation of two or more conditions with the logical operators∧ or∨.

• ConExpr → X OP1 Y | X OP2 Y | X OP2 Z: expression structure contains a vari-

able name (X), an operator (OP1 or OP2), then a variable value for either numeric

(Y) or string values (Z),

• OP1→ < | > | <= | >= : the comparison operators for numeric values.

• OP2→ == | =/=: for comparison operators for string and numeric values.

51

Chapter 3.BPMN Formal Syntax and Semantics 52

The proposedEG is used to formalize the guard expressions for the split gateways

in our formalization. The guard is linked to a transition which is marking the branch

it should follow. Therefore, the guard is a set of a pairs, each one contains the guard

expression as the pair first element and the associated transition as the pair second el-

ement. We formalize the first part of the pair as the expression of sortExpression

(which is following the above CFG), and the second part as theassociated transition of

sortTransSymbol. The operator(_,_) is used to define this in Maude as indicated be-

low. The operator_._ is used to define the associativity and commutativity properties

of the guard expressions.noexp is the guard identity element.

op (_,_) : Expression TransSymbol -> Gexp .

op noexp : -> Gexp .

op _._ : Gexp Gexp -> Gexp [ctor assoc comm id: noexp] .

op guard‘:_ : Gexp -> Attribute .

Guard expressions need to be simple and clear to be evaluatedin the execution time

of a process. The expression contains a variable name and should be assigned a value

and it uses one of the boolean operators defined byEG as terminals whereVariable,

below, represents the variable name and theNat andString are types of the values of

the variable.

ops _==_ _=/=_ _<_ _<=_ _>_ _>=_ : Variable Nat -> Expression .

ops _==_ _=/=_ : Variable String -> Expression .

This value is supposed to be compared with another value entered by the user to

conclude a decision. The second value is entered as an inputcontrol valueand it provides

information to the guard to control the flow. An attributecontrolValues is defined to

capture these values of sortControlValue, and are associative and commutative with

noControlValue as an Identity element.

op noControlValue : -> ControlValue [ctor] .

op _.._ : ControlValue ControlValue -> ControlValue

[ctor assoc comm id: noControlValue] .

op controlValues‘:_ : ControlValue -> Attribute .

52

Chapter 3.BPMN Formal Syntax and Semantics 53

An example of an exclusive data-based gateway representation for the gatewayg2

in Figure 3.3 where the expression variable name isverified with two possible values

defines two expressions (i.e.verified == "YES" andverified == "NO"). Split gate-

ways should have a default flow transition (i.e. an outgoing transition which is chosen

in case of no successful guard evaluation) and an error flow transition (i.e. an outgoing,

graphically invisible, transition which is used in case of unsuccessful evaluation of all

the expressions and the absence of the default flow). For example, ing2 in Figure 3.3,

attributesdefaultFlow anderror. Gatewayg2 has two outgoing transitions (or "se-

quence flows" as will be discussed later in Section 3.1.7). The associated guard condition

value is the String value forverified?, i.e. "NO" or "YES". The behavioural semantics for

the decision gateways is given later in Section 3.4.

A diverging inclusive decision gateway is used to create optional paths within a pro-

cess flow [68] where the decision is based on conditional expressions defined into the

OR split gateway. It should be designed so that at least one path is taken. A default

condition could be used to ensure that at least one path is taken. In our formalization,

osplitgateandomergegateare used for OR split and merge gateways respectively. The

representation of the OR split and merge gateways is similarto the XOR split and merge

gateways representation (e.g. gatewaysg3 andg6 in Figure 3.3). The OR split gateway

(g3) is defined by its incoming and outgoing transitions, guardexpressions and associ-

ated transitions, and control values, while the OR merge gateway (g6) is defined by its

incoming and outgoing transitions and its corresponding split gateway.

3.1.4 Data Objects

A special symbol,di, is used to represent the data object identifiers in this formalization.

Recall that data objects can be input, output or data stores as mentioned above. They

share common general attributes with other objects like,name andin/out transitions

which connect it to the other objects in the process. The attributeisCollection indi-

cates if the data object contains more than one data item (or document) or a single data

item, while the attributelinkedObject represents the object which the data object is

linked to through theassociation flow. For example, the data objectd1 in Figure 3.4 has

the nameInvoice.

53

Chapter 3.BPMN Formal Syntax and Semantics 54

BPMN Data Maude Representation

< d 1 : dataobject | out : t 3 ; name : "Invoice" ; status : initial ; linkedObject : a 1 > ,
< a 1 : task | in : t 1 ; out : t 2 ; name : "Task1" ; active : false ; cond : false ;
 ToBeActive : false ; hasInput : d 1 >

Task1

Invoice
[initial]

a1

d1

t3

t1 t2

Task1

Invoice
[confirmed]

a1

d1

t3

t1 t2

< d 1 : dataobject | in : t 3 ; name : "Invoice" ; status : confirmed ;
 linkedObject : a1 > ,
< a 1 : task | in : t 1 ; out : t 2 ; name : "Task1" ; active : false ; cond : false ;
 ToBeActive : false ; hasOutput : d 1 >

Figure 3.4: Mapping from BPMN Data Objects to Maude Representation

A data object can be assigned a status which can be changed during the process

execution. The possible set of statuses for a data object aredefined in the setDOstate,

where they depend on the context of the process and defined by the modeller. Attribute

status represent the data object status in our model. The example data objectInvoice

in Figure 3.4 has two states;initial, confirmed. The states of data objects are defined

syntactically as operators in the specifications and then can be assigned to the attribute

status, as ford1.

ops initial confirmed : -> DOstate .

op status‘:_ : DOstate -> Attribute .

The object linked to the data object has an attribute reference to the data object using

the attributehasOutput if the data object is produced by that activity (output; as inthe

activity a2 in Figure 3.4) or the attributehasInput if it is consumed by that activity

(input; as in the activitya1 in Figure 3.4).

3.1.5 Swimlanes

BPMN swimlanes represent participants in the business process. Generally, lanes are

often used for internal roles (e.g. manager), systems (e.g.an enterprise application), or an

internal department (e.g. shipping, finance), while pools are often used for external entity

(e.g. company, third party, government). We model swimlanes as attributespool and

54

Chapter 3.BPMN Formal Syntax and Semantics 55

lane attached to each object in the process representing to whichparticipant they belong.

For example in Figure 3.2, the objecta1 in the last row has the attributepool:"p1".

3.1.6 Artifacts

Artifacts can be groups or text annotations [68]. The groupsrepresent the boarders for

a set of related objects in the BP (e.g. for classification anddocumentation purposes),

without affecting the execution of the process. As a result,the group are represented in

our formalization as a String attribute referring to the group name (i.e.op group‘:_ :

String -> Attribute).

BPMN Artifacts Maude Representation

< tann 1 : textAnnotation | out : t 7 ; name : "Data Object" ; linkedObject : d 1 ;
 group : "Purchase" >

Invoice
[confirmed]

d1

Data ObjectPurchase

t7

Figure 3.5: Mapping from BPMN Artifacts to Maude Representation

The text annotation is usually linked to a certain object in the process and hence,

more specific information need to be modelled to describe a text annotation. A text anno-

tation is represented as an object withtanni as an object identifier,textAnnotation as

its sort, and contains the attributes connecting it to a certain object (i.e.sourceObject)

and the text it holds (i.e.name) beside the association flow (i.e.out). For example, the

text annotationtann1 and the attributegroup in Figure 3.5.

op tann_ : Nat -> Oid .

op textAnnotation : -> Cid .

3.1.7 Connecting Objects

Connecting objects are represented by unique"flow transitions"in the proposed formal-

ization, where each one forms a link between two objects in the BPMN process.

ops normalflow uncontrolledflow conditionalflow

defaultflow exceptionflow : -> SequenceFlow [ctor] .

55

Chapter 3.BPMN Formal Syntax and Semantics 56

op messageflow : -> MessageFlow [ctor] .

op association dataAssociation : -> Association [ctor] .

A sequenceflow specifies the order of flow elements in a process. Assuming that the

attributessourceObject andtargetObject indicate the source and target objects for a

transition object, the following are the sequence flows types according to [68]. Follow-

ing the items in Figure 3.6, (1) the normal flow originates from start event and continues

through activities on alternative and parallel paths untilan end event is reached, e.g.t1.

It forms paths of sequence flow that do not start from an intermediate event attached

to the boundary of an activity. (2) uncontrolled flow proceeds without dependencies or

conditional expressions (e.g. a flow between two activitiesthat do not have a conditional

indicator (mini-diamond) or an intervening gateway)), e.g. t2, (3) conditional flow pro-

ceeds from one flow object to another, via a sequence flow link,but is subject to either

conditions or dependencies from other flow, e.g.t3 in the figure, (4) default flow pro-

ceeds from a decision based gateway and used only if all the other outgoing conditional

flow are not true at runtime, e.g.t4, (5) exception flow originates from an intermediate

event attached to the boundary of an activity. The process does not traverse this path

unless the activity is interrupted by the triggering of a boundary exception, e.g.t5, (6)

message flow shows the flow of messages between two participants, andmessageflow

represents its object sort as in the objectt6, and (7) association links information and

artifacts with flow objects. Anassociation is an object connects the text annotation

to other objects which may contain descriptive informationabout them, e.g.t7 in Fig-

ure 3.6.

In Section 3.4, we are not using the transitions (connectingobjects) as a whole sep-

arated objects in the formalization. They are still referred to into the objects using at-

tributesin andout, however, the process representation in Maude will ignore their full

object description for sake of simplicity. For the conditional flow following the decision

gateways, we propose a novel approach to consider the conditional expressions as part

of the gateway themselves, and to be evaluated into them as well as the domain specific

rules defining specific flow condition, as detailed in Section3.4.

56

Chapter 3.BPMN Formal Syntax and Semantics 57

 < t 1 : sequenceFlow | flowType : normal ; sourceObject : e 1 ; targetObject : a 1 >

< t 3 : sequenceFlow | flowType : conditional ; sourceObject : a 1 ; targetObject : a 2 >

< t 2 : sequenceFlow | flowType : uncontrolled ; sourceObject : a 1 ; targetObject : a 2 >

< t 4 : sequenceFlow | flowType : default ; sourceObject : g 1 ; targetObject : a 1 >

Connecting
Flow

Maude Representation

< t 6 : messageFlow | sourceObject : m 1 ; targetObject : a 1 >

< t 7 : association | sourceObject : a 1 ; targetObject : tann 1 ; name : "Activity" >

< t 5 : sequenceFlow | flowType : exception ; sourceObject : e 1 ; targetObject : a 1 >

t1
e1 a1

t2
a2a1

t3
a1

t4g1
a1

t6
a1

m1

a1
t5

e1

t7

Activity

a1

tann1

Figure 3.6: Mapping from BPMN Connecting Flow to Maude Representation

3.2 Introducing Example

In order to give a better explanation of the proposed formalization, we introduce an

example in Figure 3.7 which will be used to demonstrate the proposed formalized BPMN

behaviour. It represents a process model calledRelease Baseline, a subprocess of the

Configuration Management (CM) process, where a configuration item (CI) is an entity

designated for one or more related work products such as tangible assets (e.g. hardware)

and intangible assets (e.g. software, OS) [22]. A collection of CIs that are used in a

project or a company may be baselined (i.e. considered a baseline document) whenever

they are sufficiently stable, enabling a more strict controlfor changing them.

In the processRelease Baseline, access requests are check for being an authorized ac-

cess or not using the documentAuthorization List. If the access authorization is granted,

a change request (CR) is chosen and the authorized changes are passed through to the

(open CR) activity. While a specific CR is open, the related CI is retrieved, changed,

and documented before the CR is closed. If there is more than one CR waiting, the same

57

Chapter 3.BPMN Formal Syntax and Semantics 58

Release
Baseline

Make baseline
available to read

Retrieve CI

Choose CR Open CR

YES

NO

Authorized?

 CR

CI doc.

Baseline Baseline

e1
Check

Authorization

a1

Authorization
List

e 2

Document CI

CI doc.

Change CI Close CR

CR

 CR
MoreCRs?

MoreCRs?

YES

YES

NO

NO

g2

YES

NO

authorized
 CR?

CRg1

t1

d1

g9

CI doc.

Figure 3.7: Release Baseline Process - BPMN representation

procedure is repeated until no more CRs are left in the process. After that the baseline is

released with all the changes. This is followed by making thereleased baseline available

for stakeholders (in case of updating theCI doc) or the latest approved baseline (in case

of declining the authorized access). Notice the block gateway structure for gateways:g1

andg10, g2 andg9, g3 andg4, g5 andg8, g6 andg7. Structured loop gateway blocks

decide either to forward the process to later actions or to goback to the merge gateways

(i.e. g3 andg5). Figure 3.8 shows the Maude representation for the process. In the fol-

lowing section, A well-formed BPMN model is defined and in Section 3.4, we introduce

the BPMN process semantics.

3.3 Well-Formed BPMN Processes

In order to obtain a structured BPMN processes, the following requirements, which are

extracted from the BPMN standard document [68] are introduced, where the symbol

|X| represents thenumberof elements inX and the functions:ObjId, ObjCid, in, out,

sourceObject, targetObject, eventType, andpool for: object identifier, class identifier,

input transitions, output transitions, source object, target object, type of an event, and

the pool name are operators defined as follows.

Function (ObjId : Object→ Oid) is defined to return the object identifier for an ob-

58

Chapter 3.BPMN Formal Syntax and Semantics 59

<< < e 1 : startEvent | eventType : start ; in : notrans ; out : t 1 ; process : true ; cond : false ; ToBeActive : false ; active : false > ,
 < a 1 : task | name : "Check Authorization" ; in : t 1 ; out : t 2 ; hasInput : d 1 ; cond : false ; ToBeActive : false ; active : false > ,
 < d 1 : dataobject | name : "Authorization List" ; out : t 444 ; linkedObject : a 1 ; status : none > ,
 < g 1 : xsplitgate | in : t 2 ; out : (t 3, t 4) ; defaultFlow : t 3 ; guard : ((Authorized? == "NO", t 3) . (Authorized? == "YES", t 4)) ;
 cond : false ; ToBeActive : false ; controlValues : noControlValue ; error : t 100 ; active : false > ,
 < g 2 : aforkgate | in : t 4 ; out : (t 5, t 6) ; cond : false ; ToBeActive : false ; active : false > ,
 < g 3 : xmergegate | in : (t 5, t 12) ; out : t 7 ; cond : false ; ToBeActive : false ; active : false > ,
 < a 2 : task | name : "Retrieve CI" ; in : t 7 ; out : t 8 ; hasInput : d 2 ; hasInput : d 3 ; cond : true ; ToBeActive : false ;
 active : false > ,
 < a 3 : task | name : "Change CI" ; in : t 8 ; out : t 9 ; cond : false ; ToBeActive : false ; active : false > ,
 < a 4 : task | name : "Document CI" ; in : t 9 ; out : t 10 ; hasOutput : d 3 ; cond : false ; ToBeActive : false ; active : false >,
 < a 5 : task | name : "Close CR" ; in : t 10 ; out : t 11 ; hasOutput : d 2 ; cond : false ; ToBeActive : false ; active : false > ,
 < d 2 : dataobject | name : "CR" ; out : t 445 ; linkedObject : (a 2, a 7) ; status : initial > ,
 < d 3 : dataobject | name : "CI doc" ; out : t 446 ; linkedObject : (a 2, a 3, a4) ; status : initial > ,
 < g 4 : xsplitgate | in : t 11; out : (t 12,t 13); defaultFlow : t 13; guard : ((MoreCRs1?=="YES",t 12).(MoreCRs1?=="NO",t 13)) ;
 cond : false ; ToBeActive : false ; controlValues : noControlValue ; error : t 100 ; active : false > ,
 < g 5 : xmergegate | in : (t 6, t 20) ; out : t 14 ; cond : false ; ToBeActive : false ; active : false > ,
 < a 6 : task | name : "Choose CR" ; in : t 14 ; out : t 15 ; hasOutput : d 2 ; cond : false ; ToBeActive : false ; active : false > ,
 < g 6 : xsplitgate | in : t15; out : (t16,t17); defaultFlow:t16; guard : ((AuthorizedCR?=="YES",t17).(AuthorizedCR?=="NO",t16));
 cond : false ; ToBeActive : false ; controlValues : noControlValue ; error : t 100 ; active : false > ,
 < a 7 : task | name : "Open CR" ; in : t 17 ; out : t 18 ; hasOutput : d 2 ; cond : true ; ToBeActive : false ; active : false > ,
 < g 7 : xmergegate | in : (t 16, t 18) ; out : t 19 ; cond : false ; ToBeActive : false ; active : false > ,
 < g 8 : xsplitgate | in : t19 ; out : (t20, t21) ; defaultFlow : t21 ; guard : ((MoreCRs2?=="YES",t20).(MoreCRs2?=="NO",t21));
 cond : false ; ToBeActive : false ; controlValues : noControlValue ; error : t 100 ; active : false > ,
 < g 9 : ajoingate | in : (t 13, t 21) ; out : t 22 ; itsSplit : g 2 ; cond : true ; ToBeActive : false ; active : false > ,
 < a 8 : task | name : "Release Baseline" ; in : t 22 ; out : t 23 ; hasOutput : d 4 ; cond : false ; ToBeActive : false ; active : false > ,
 < g 10 : xmergegate | in : (t 3, t 23) ; out : t 24 ; cond : false ; ToBeActive : false ; active : false > ,
 < a 9 : task | name : "Make Baseline Available to Read" ; in : t 24 ; out : t 25 ; hasOutput : d 4 ; cond : false ; ToBeActive : false ;
 active : false > ,
 < d 4 : dataobject | name : "Baseline" ; linkedObject : (a 8, a 9) ; out : t 447 ; cond : false ; ToBeActive : false ; active : false > ,
< e 2 : endEvent | eventType : end ; in : t 25 ; out : notrans ; cond : false ; ToBeActive : false ; active : false > >> .

Figure 3.8: Release Baseline Process - Maude representation

ject, whereOid is the set of objects’ identifiers in the process model. For example,

ObjId(< a1 : task|name: ”CheckAuthorization”; in : t1;out : t2;active: true>) = a1.

Function (ObjCid : Object→ Cid) is defined to return the object class identifier,

whereCid is the set of objects’ class identifiers (types) in the model.For example,

ObjCid(< a1 : task|name: ”CheckAuthorization”; in : t1;out : t2;active: true>) = task.

Functionsin andout are defined as (in : Object→ T) and (out : Object→ T), where

T is the set of connecting flows defined in Definition 2.1.1 andT is the transition flows

in the processO (refer to Definition 2.1.1).

FunctionssourceObjectand targetObjectare defined as (sourceObject: Object→

Oid) and (targetObject: Object→ Oid), whereOid is the object identifier.

Functionpool is defined as (pool: Object→String), where it returns theStringname

of the pool which an input object belongs to.

FunctioneventTypeis defined as (eventType: Object→ TypeofEvent), where it re-

turns the value of theeventType attribute in an event object.

59

Chapter 3.BPMN Formal Syntax and Semantics 60

Definition 3.3.1. (Well-Structured Process) A Well-Structured BPMN processS-BPMN

is a BPMN processO= (OS,T)4 whereo,o1,o2,o3 are symbols for arbitrary objects in

OSsuch that the following hold.

1. Start and exception events have no incoming flows and have one outgoing flow; i.e.

∀o∈ OS(ObjCid(o)∈ {startEvent,exception}→ (|in(o)|= 0∧|out(o)|= 1))

and

2. An end event has no outgoing flows and has one incoming flow; i.e.

∀o∈ OS(ObjCid(o) = endEvent→ (|in(o)|= 1∧|out(o)|= 0)) and

3. A process that has an end event, must have a start event; i.e.

∀o1∈OS(ObjCid(o1)= endEvent→∃o2∈OS(ObjCid(o1)= startEvent)) and

4. Message flows must connect two separate pools. They must not connect two ob-

jects within the same pool; i.e.

∀o1∈EI (eventType(o1)= message→∃o2,o3∈OS(sourceObject(o1)=ObjId(o2)

∧ targetObject(o1) = ObjId(o3)∧pool(o2) 6= pool(o3))) and

5. An artifact must not be a target/source for a sequence flow or a message flow; i.e.

∀o1∈OS(ObjCid(o1)∈{txtAnnotation,group}→¬∃o2∈TS∪TM(sourceObject

(o2) = ObjId(o1)∨ targetObject(o2) = ObjId(o1))).

Based on the definition above, a well-structured BPMN process can have more than

one start/end event, a split gateway without a corresponding merge gateway, and a gate-

way can have multiple incoming and outgoing transitions at the same time, which con-

sidered ambiguity representation. In order to avoid that inour formal representation of

the BPMN processes, we introduce the well-formed BPMN. Inspired by the work in

[35, 70, 107], we define the well-formed core subset of the BPMN elements. A BPMN

process is said to be well-formed if its elements satisfy theproperties in Definition 3.3.1.

For these properties, an equationally-defined boolean predicate characterising them is in-

troduced afterwards. The operatoritsSplit takes a merge gateway object identifier and

returns its corresponding split gateway object identifier,(itsSplit: Object→ Oid). The

well-formed BPMN process definition includes references tothe functions in Maude

4Definition 2.1.1

60

Chapter 3.BPMN Formal Syntax and Semantics 61

implementing the conditions. The functions are defined and explained in the rest of the

section. For example, points 1 ad 2 are implemented using function (wfstartend).

Definition 3.3.2. (Well-formed BPMN model): A Well-Formed BPMN process (W-BPMN)

is a well-structured BPMN process (S-BPMN) such that the following hold.

1. A process should have one start event; i.e.∃o1∈OS(ObjCid(o1)= startEvent→

¬∃o2 ∈ OS(ObjCid(o2) = startEvent∧o1 6= o2)) (functionwfstartend) and

2. A process should have one end event; i.e.∃o1 ∈ OS(ObjCid(o1) = endEvent→

¬∃o2 ∈ OS(ObjCid(o2) = endEvent∧o1 6= o2)) (functionwfstartend) and

3. Activities and non-exception intermediate events should have one input and one

output transition flows; i.e.∀o∈A∪EI \exception(∃t1, t2∈ T(in(o)= t1∧out(o)

= t2∧ t1 6= t2 6= notrans) (functionswfException,wfActivities) and

4. Fork and decision gateways should have one input transition flow and at least two

output transition flows; i.e.∀o∈OS(ObjCid(o)∈{ANDfork,XORsplit,ORsplit}

→ |in(o)|= 1∧|out(o)|> 1) (functionwfGates) and

5. Join and merge gateways should have one output transitionflow and at least two

transition flows as inputs; i.e.∀o∈OS(ObjCid(o)∈{ANDjoin,XORmerge,ORmerge}

→ |in(o)|> 1∧|out(o)|= 1) (functionwfGates) and

6. Block structure. Except for exception events, each splitgateway has a correspond-

ing merge gateway from the same type, forming ablock in the model. Exception

objects attached to an activity boundary split the flow and then the flow is merged

with the normal flow using an XOR merge gateway, enforcing gateways block

structure (functionwfGates). The following statements must hold:

(a) ∀o1 ∈ OS(ObjCid(o1) = aforkgate →∃o2 ∈ OS(ObjCid(o2) = ajoingate ∧

itsSplit(o2) = ObjId(o1)))

(b) ∀o1 ∈ OS(ObjCid(o1) = xsplitgate → ∃o2 ∈ OS(ObjCid(o2) = xmergegate ∧

itsSplit(o2) = ObjId(o1)))

(c) ∀o1 ∈ OS(ObjCid(o1) = osplitgate → ∃o2 ∈ OS(ObjCid(o2) = omergegate ∧

itsSplit(o2) = ObjId(o1)))

61

Chapter 3.BPMN Formal Syntax and Semantics 62

(d) ∀o1 ∈ OS(eventType(o1) = exception → ∃o2 ∈ OS(ObjCid(o2) = xmergegate

∧itsSplit(o2) = ObjId(o1))),

7. Every object should be on acomplete pathfrom the start (or an exception event)

to the end event; i.e.∀o1 ∈ OS(∃o2,o3 ∈ OS (((ObjCid(o2) = startEvent∨

eventType(o2)= exception)∧ObjCid(o3)= endEvent)→ (o2∈ preds(o1,OS)∧

o3 ∈ succs(o1,OS))), (functionwfpath).

In point (6) in Definition 3.3.2, gateways are required to be designed, in our formal-

ization, as ablock in the model, i.e. each split gateway should have an accompanying

merge gateway of the same type. A block has only one entrance point and one exit point,

e.g. the split gateway input flow and the merge gateway outputflow respectively in the

case of acyclic models and the other way around in case of feedback cases (structured

loops). Notice that the definitions above does not exclude the loop structure from being

a well-formed model (i.e. a XOR merge gateway followed, at some point after it, by a

XOR split decision gateway). In point (7), we use functionspredsandsuccsto retrieve

the set of predecessors and successors for a certain object in the process respectively.

(a) (b)

Figure 3.9: (a) aS-BPMN model (b) aW-BPMN model.

In Figure 3.9, an example of the differences between a well-structured and a well-

formed model is graphically illustrated. The model in (a) has a gateway with more than

one input and output transitions and more than one start and end events at the same time,

while the model in (b) satisfies the well-formedness requirements above.

In order to describe the BPMN model with respect to the dependency relationships

among its objects, we define the notions of path and complete path in a well-formed

BPMN model. The elements of the processO5 are represented by objectsoi where 1≤

5O is defined in Definition 2.1.1 as the pair(OS,T) of the set of objectsOSand the set of transition

flowsT

62

Chapter 3.BPMN Formal Syntax and Semantics 63

i < n, andoi ∈ OS. Objectsos∈ OSandoe ∈ OSare a start and end events respectively.

Definition 3.3.3. (Path): A pathP from objecto1 toon is a finite sequence(o1,o2, . . . ,on)

of objects such thatout(oi)∩ in(oi+1) 6= /0 for 1≤ i < n.

Definition 3.3.4. (Complete Path): A path is complete (cP) if it starts with a start event

os and ends with an end eventoe.

In order to automate the check of the well-formedness conditions, we introduce

equationally-defined predicate(wfs) for well-formed set of BPMN elements. It checks

whether the requirements are satisfied for each set of elements. It takes as inputs an

object and the process (set of objects) it belongs to and retrieves a boolean value;true if

the conditions satisfied, andfalseif at least one of the conditions is not satisfied.

op wfs : Object ObjectSet -> Bool .

var O : Object .

var A : ObjectSet .

ceq wfs (O,A) = true

if wfstartendTF((O,A),noobject) /\ wfExceptionTF((O,A),noobject) /\

wfActivityTF((O,A),noobject) /\ wfGatesTF((O,A),noobject) /\

wfpathTF(O,(O,A),noobject) .

eq wfs(O,A) = false [owise] .

A comparison is conducted between the set6 which contains the well-formed objects of

the same type and the set of the objects of that particular type in the process. If these

two sets are identical, the condition is satisfied. Otherwise ([owise] function above), it

returnsfalse. The function condition above is broken down into smaller detailed (more

intuitive) sub-conditions. That means, in case ofwfs returnedfalse, the modeller can

still know which object type exactly has the problem, by tracing the results of the sub-

conditions in the function.

The condition contains a set of helpful functions, which we are presenting the def-

inition of one of them (i.e.wfstartendTF) as an example and the rest are included

into Appendix B. The function (wfstartendTF) takes two object sets and returnstrue

6We use the operatornoobject as the identity element for theobjectSet

63

Chapter 3.BPMN Formal Syntax and Semantics 64

if they are equal, andfalse if they are not. The functions defined below are: function

startendCollector to collect the start and end events, functionwfstartend to collect

only the well-formed start and end events, while functionwfstartendTF to decide if

the two output set are equal (i.e. the start and end events in aprocess are well-formed).

In functionwfstartendTF, if the two input sets are not equal, that means that not all

the start/end events are well-formed. There might be a startevent with more than one

outgoing transition, or an end event with outgoing transitions.

op startendCollector : ObjectSet ObjectSet -> ObjectSet .

eq startendCollector((< E1 : startEvent | AS1 >, A), B)

= startendCollector(A, (< E1 : startEvent | AS1 >, B)) .

eq startendCollector((A,< E1 : endEvent | AS1 >),B)

= startendCollector(A,(< E1 : endEvent | AS1 >,B)) .

eq startendCollector(A,B) = B [owise] .

op wfstartend : ObjectSet ObjectSet -> ObjectSet .

eq wfstartend((<E1:startEvent|in:notrans;out:tN1;AS1>,A),B)

= wfstartend(A,(<E1:startEvent|in:notrans;out:tN1;AS1>,B)) .

eq wfstartend((<E1:endEvent|in:tN1;out:notrans;AS1>,A),B)

= wfstartend(A,(<E1:endEvent|in:tN1;out:notrans;AS1>,B)) .

eq wfstartend(A,B) = B [owise] .

op wfstartendTF : ObjectSet ObjectSet -> Bool .

ceq wfstartendTF(A,noobject) = true

if startendCollector(A,noobject) = wfstartend(A,noobject) .

eq wfstartendTF(A,B) = false [owise] .

The same idea is applied to the exception events (i.e. functionwfExceptionTF), the

activities (i.e. functionwfActivityTF), the gateways (i.e. functionwfGatesTF), and the

complete paths for all the objects in a process (i.e. function wfpathTF). The definition

of the functions are included into Appendix B.

An example of a well-formed BPMN model tested using these designed Maude func-

tions is presented in Figure 3.10. Example1 represents a well-formed model while Ex-

64

Chapter 3.BPMN Formal Syntax and Semantics 65

ample2 is not. Example2 model has a dangling activitya3 which has no output transi-

tion. Moreover, activitya3 has two incoming transitions which violates the second con-

dition in Definition 3.3.2. By running the two models throughfunctionwfs, the results

shows that Example1 is well-formed and Example2 is not. In Example2, the condition

wfActivityTF evaluates tof alsebecause activitya3 has two incoming transitions and

has no outgoing transition.

Maude> reduce in WFS-BPMN :
wfs (< a 1 : task | in : t 1 ; out : t 2 >, example1) .
rewrites: 42 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: true.

a 1

a 2

a 3

g 1 g 2e 1 e 2

Example 2

a 1

a 2

a 3

g 1 g 2e 1 e 2

Example 1

Maude> reduce in WFS-BPMN :
wfs (< a 1 : task | in : t 1 ; out : t 2 >, example2) .
rewrites: 129 in 0ms cpu (0ms real) (~ rewrites/second)
result Bool: false.

(a) (b)

Figure 3.10:w f sresults for (a)W-BPMN and (b) notW-BPMN models.

If the process satisfies the above well-formedness requirements, we can consider it

of type well-formed process instead of a set of objects (ObjectSet). On satisfying the

well-formedness requirements, a process is aWFprocess (i.e. a subsort of the main sort

ObjectSet). Following Maude’s conditional membership [58], an object can change its

sort during execution. The membership can be conditional like the one used below.

subsort WFprocess < ObjectSetConf .

op <<_>> : ObjectSet -> ObjectSetConf [ctor].

cmb << O, A >> : WFprocess if wfs(O,A) .

The code above specifies that a set of objects is well-formed (of sortWFSprocess)

only if it satisfies the well-formedness conditions as described in Definition 3.3.2 and

coded inwfs function.

65

Chapter 3.BPMN Formal Syntax and Semantics 66

3.4 BPMN Formal Semantics Specifications

Following the introduced BPMN syntax for well-formed models in Section 3.1, this part

of the chapter focuses on the behavioural aspects of the BPMNelements and how the

models can be executed/simulated. Two categories of semantics specification rules are

defined. The first category contains the general rules for common pattern of behaviour

in a BPMN model (in Section 3.4.2), while the second categorycontains more domain

specific rules (in Section 3.4.7) for the introduced examplein Section 3.2. In addition, an

evaluation mechanism is proposed for guard expressions in decision-based gateways (i.e.

XOR and OR split gateways) based on the guard CFG introduced in Section 3.1.3. This

is followed by a detailed formalization of the behaviour attached to the exception events,

message events, and data objects. In particular, the data objects formalization (in Sec-

tion 3.4.6) as a main resource in the business process identifies the involved documents,

reports and forms which mark and document different stages in the business process. In

Appendix B, Section C.1 presents some helpful functions defined to validate the BPMN

model formalization and introducing some operations on theBPMN processes.

3.4.1 Process State Model

In our approach, the execution of well-formed BPMN processes is based on the notion

of activation. A well-formed BPMN process isactive if one or more of its objects are

active. A well-formed BPMN process isinactive if all its objects are inactive. In the

BPMN process, each flow object has its own state which can beactive, if the object is

being executed,inactive, if the objects is not in execution, orready2bActive, if the object

is waiting for a condition to be fulfilled. The boolean attributeactive is used to indicate

whether an object isactiveor inactiveand the boolean attributeToBeActive to identify

theready2bActivestate. Therefore, we haveFstate= {active, inactive, ready2bActive} as

the set of the flow objects states. Data object states are user-defined values entered at

design time. Therefore, we haveDstate= {sdo|sdo is a user-defined value of data objects

statuses in the model} as the set of the data objects states in a process model.

Given an objecto, we define the function (s : Object→ Ostate) to take a flow (or

data) object and returns the object state (i.e.sfo or sdo) asactive if the object is active,

66

Chapter 3.BPMN Formal Syntax and Semantics 67

ready2bActiveif the object is ready to be activated,inactive if the object is inactive or

data object status (i.e.sdo). For example,

s(< a1 : task| name: ”CheckAuthorization”; in : t1;out : t2;active: true>) = active

s(< d1 : dataobject|name: ”AuthorizationList”; linkedObject: a1;status: declined>)= declined,

wheredeclined∈ Dstate.

The union of both sets forms the set of object states in a BPMN model (Ostate), i.e.

Ostate= Fstate⊎Dstate. Therefore,∀o∈ FO(∃sfo ∈ Fstate(s(o) = sfo))∧∀o∈ DO(∃sdo ∈

Dstate(s(o) = sdo)).

In the following we define the process state, state space and some special process

states.

Definition 3.4.1. (Process State): For a BPMN processO= (OS,T)7, where the set of

objectsOS= FO⊎DO contains the set of flow objects and data objects, the processstate

SOS for the processO is defined as the set of pairs with the first element as the object o’s

identifier and the second element as the objecto’s state; i.e.

SOS= {(oid,sfo) | oid = ObjId(o),o∈ FO,sfo ∈ Fstate} ⊎ {(oid,sdo) | oid = ObjId(o),o∈

DO,sdo∈ Dstate}.

Definition 3.4.2. (Process State Space): For a BPMN processO= (OS,T) defined by

the rewrite theoryR = (Σ,Eq∪U,ϕ,R), the setP(O) of possible process states (i.e.

state space) ofO is defined as the set of all possible states resulting from applying the

rewrite rulesR to the process, i.e.{S
OS′

|SOS
∗
−→R S

OS′
}.

Definition 3.4.3. (Special Process States): For a W-BPMN processO = (OS,T), the

following are special process states whereo∈ OSis an arbitrary object in the process.

1. Active State: at lease one object is active or ready to be active; i.e.

∃(oid,sfo) ∈ SOS(sfo ∈ {active, ready2bActive}),

2. Inactive State: all objects are inactive; i.e.∀(oid,sfo) ∈ SOS(sfo = inactive),

3. Start State (Ss): the only active object is the start event; i.e.

(∃(oid,sfo) ∈ SOS(oid = ObjId(o)∧ObjCid(o) = startEvent∧sfo = active)∧

¬∃(o′id,s′fo) ∈ SOS(o′id = ObjId(o′)∧s′fo ∈ {active, ready2bActive})∧o 6= o′)⇒

SOS= Ss, and
7Definition 2.1.1 of a BPMN process in Chapter 2.

67

Chapter 3.BPMN Formal Syntax and Semantics 68

4. End State(Se): the only active object is the end event; i.e.

(∃(oid,sfo) ∈ SOS(oid = ObjId(o)∧ObjCid(o) = endEvent∧sfo = active)∧

¬∃(o′id,s′fo) ∈ SOS(o′id = ObjId(o′)∧s′fo ∈ {active, ready2bActive})∧o 6= o′)⇒

SOS= Se.

For simplicity, we are going to useS andS′ instead ofSOS andSOS′ in the remain-

ing of the thesis. Moreover, we can refer to the set of processstates (i.e. state space)

P(O) = {SOS1,SOS2, . . . ,SOSn} asP(O) = {S1,S2, . . . ,Sn}. TheRelease Baselinepro-

cess model in Figure 3.8 is in its inactive state, as all the objects are inactive. The next

section introduces the general behavioural semantics for BPMN elements following the

document [68]. This will cover the sequential, parallel, exclusive and inclusive decision-

based behaviours. The semantics is translated using Maude.

3.4.2 General Behaviour Rules

Generally, if a rewrite ruler ∈ R is applied to a process, it changes its state from state

S to another process stateS′. In Maude, the rules are applied if there is a matching

found in a term with the left-hand side pattern of the rule. That is, a state is transformed

into another state through the application of rewrite ruleswhich model the behavioural

semantics of the process. A stateS′ is reachable from stateS if and only if S′ can be

obtained by applying zero or more rewrite rules to stateS; i.e. S
∗
−→ S′8.

Definition 3.4.4. (Execution Step): An execution stepesis a triple(S, r,S′) of an input

stateS, an applicable rewrite ruler, and the resulting stateS′. It can be represented as

(S
r
−→ S′) (i.e.∃r ∈ R(S

r
−→ S′)).

We writesfo
r
−→ s′fo or sdo

r
−→ s′do wheresfo ands′do are the states for an objecto af-

fected by the rewrite ruler, andSandS′ are the corresponding process states respectively.

A change in one object state can change the process state, while a change in a process

state may indicate that one or more objects have changed their states (i.e. the general

behaviour rewrite rules, as will be explained below, are changing the state of more than

one object at the same time, while some of the domain specific rules changes the state of

8We use the symbol
∗
−→ to denote a sequence of zero or more rewrite steps and the symbol

+
−→ to denote

a sequence of one or more rewrite steps.

68

Chapter 3.BPMN Formal Syntax and Semantics 69

a data object or an object at a time). Here we define the function (source: es→ P(O)),

and the function (target : es→ P(O)), to return the source and target states in an input

execution step whereP(O) is the set of process states for a processO. For example,

source(S, r,S′) = S andtarget(S, r,S′) = S′. The set of execution steps for a BP model

forms the execution path for the process. So that, we define the execution path as the fi-

nite sequence of execution steps; where the source of an execution step equals the target

of its successor.

Definition 3.4.5. (Execution Path): An execution pathEPO of a processO is a finite

sequence(es1,es2, . . . ,esn) of execution steps, such thattarget(esi) = source(esi+1) for

all 1≤ i < n.

We define the operator (Seq2Set: Sequence→ Set) to take a sequence of elements

and return the equivalent set containing the same elements.The operator is used to

generate the setEP of the execution pathEPO (i.e. Seq2Set(EPO) = EP where if

EPO = (es1,es2, . . . ,esn), thenEP = {es1,es2, . . . ,esn}). Let OPathsdenotes the set of

execution paths for a processO.

Definition 3.4.6. (Complete Execution Path): An execution pathEPO of a processO

is complete if it contains an execution step which is sourcedfrom a start stateSs and

another execution step which target is an end stateSe.

Using the operatorSeq2Setwe define the setcEP of all execution steps of a complete

execution pathcEPO of O ascEP = Seq2Set(cEPO).

In the following subsections, a Maude formalization for BPMN 2.0 semantics is

introduced and detailed. The following are some of the variables which are used in the

rules.

vars X Y Z : Oid . vars K L M : Cid .

vars T1 T2 T3 : TransSymbol . vars A B C D : ObjectSet .

vars O O1 O2 : Object . vars N1 N2 N3 : Nat .

vars S1 S2 S3 PN1 : String . vars G1 G2 : GateSymbol .

var GCid1 GCid2 : GateCid . vars E1 : EventSymbol .

vars D1 D2 : DataSymbol . var DT : DataType .

vars GExp1 : Gexp . var CVcol : CVcollection .

69

Chapter 3.BPMN Formal Syntax and Semantics 70

vars P Q : Bool . vars V1 V2 : Variable .

vars CVs1 CVs2 CVs3 : ControlValue .

vars AS1 AS2 AS3 : AttributeSet .

Initiating and Terminating the Process

According to the well-formed BPMN model requirements in Section 3.3, a well-formed

process should have one start object which is supposed to be the first to execute if the

process is initiated. The start event is activated according to the ruleInitiateProcess

which assigns the valuetrue to the start eventactive attribute if there are no active

objects in the process initial state. This transition changes the process state from inactive

to active. RuleInitiateProcess activates the start event of the process if the function

isActive retrievefalse.

op isActive : ObjectSet -> Bool .

eq isActive(< X : K | active : true ; AS1 >, A) = true .

eq isActive(A) = false [owise] .

crl [InitiateProcess] :
 CVcol * << A , < E1 : startEvent | eventType : start ; active : false ; AS1 > >>
 =>
 CVcol * << A , < E1 : startEvent | eventType : start ; active : true ; AS1 > >>
 if isActive (<< A >>) = false .

crl [InitiateProcesswithaMessage] :
 CVcol * << A , < E1 : startEvent | eventType : message ; active : false ; AS1 > >>
 =>
 CVcol * << A , < E1 : startEvent | eventType : message ; active : true ; AS1 > >>
 if isActive (<< A >>) = false .

Figure 3.11: Process Initiation Rules

In Figure 3.11, the rules are presented; i.e. if the start event is inactive, the rule

rewrites it to be active after checking that nothing else is active in the process (isActive

retrievesfalse). The second rule in the figure assumes the start of a process is initiated

by receiving a message (i.e. message start event). The initiation procedure is the same

in both cases. A process can start as a result of receiving a message (e.g. receiving an

application form or a request). In this case the message event initiates the process. Hence

we have the ruleInitiateProcesswithaMessage. This rule, in Figure 3.11, acts like

the normal initiation rule for the processInitiateProcess except that the type of event

is different.

70

Chapter 3.BPMN Formal Syntax and Semantics 71

crl [TerminateProcess] :
 CVcol * << A , < E1 : endEvent | eventType : end ; active : true ; AS1 > >>
 =>
 ProcessTerminatedSuccessfully
 if isActive (A) = false .

Figure 3.12: Process Termination Rule

In the other side of the process, the ruleTerminateProcess terminates a process

if it is active and the only active object is the end object. Itchanges the process state

from active to inactive. The rule is applicable when the process is in its end stateSe (c.f.

Definition 3.4.3). It rewrites the object set into a descriptive statement indicating process

termination (e.g. the term zero). The functionisActive should retrievefalsehere as a

condition of application.

Sequential Behaviour

An object is active if its attributeactive is true. For example, in Figure 3.13, in a certain

state of the process, the activityX is active while the activityY is not active. Simulating

process behaviour can be thought of as if the activation is passed from one object to

its immediate successor(s) if certain conditions satisfiedin come cases. The next state

according to the rule in Figure 3.13 is whereX inactive andY is active. The condition

that should be fulfilled here is the activityY should be the immediate successor for the

activity X. In a more general case, the successor can be another object (e.g. gateway,

activity, event, ... etc). Hence we can use the ruleSeq (in Figure 3.13) to simulate the

sequential behaviour of objects can have in a process. TheX, andY, are of sortOid, K

andL are variables typed with the sortCid, t N1 is the transition linking the two objects,

AS1 andAS2 representing the rest of the attributes that an object mighthave, andA is the

remaining objects in the process.

Sequential processes may have conditions restricting their execution, such as waiting

for a message to arrive or a data object to be updated. This situation can be modelled

as an execution precondition, in which the object is specified asReady to be activebut

not actually active using the attributeToBeActive. At the same time, the attributecond

indicates this condition case, where it has the valuetrue if there is an execution condition

for this object, orfalseif there is no attached conditions. Therefore, the ruleSeq-Cond

71

Chapter 3.BPMN Formal Syntax and Semantics 72

rl [Seq] :
<< < X : K | out : t N1 ; active : true ; AS1 > , < Y : L | in : t N1 ; active : false ; AS2 > , A >>
=>
<< < X : K | out : t N1 ; active : false ; AS1 > , < Y : L | in : t N1 ; active : true ; AS2 > , A >> .

rl [Seq-Cond] :
 << < X : K | out : t N1 ; active : true ; AS1 > ,
 < Y : L | in : (t N1, T1) ; active : false ; cond : true ; ToBeActive : false ; AS2 > , A >>
 =>
 << < X : K | out : t N1 ; active : false ; AS1 > ,
 < Y : L | in : (t N1, T1) ; active : false ; cond : true ; ToBeActive : true ; AS2 > , A >> .

 rl [Seq-unCond] :
 << < X : K | out : t N1 ; active : true ; AS1 > ,
 < Y : L | in : (t N1, T1) ; active : false ; cond : false ; ToBeActive : false ; AS2 > , A >>
 =>
 << < X : K | out : t N1 ; active : false ; AS1 > ,
 < Y : L | in : (t N1, T1) ; active : true ; cond : false ; ToBeActive : false ; AS2 > , A >> .

X Y

Figure 3.13: Sequence Rule

in Figure 3.13 requires the objectY to have the valuetrue in its attributecond, and

hence will transform its state toready to be activestate with a valuetrue for the attribute

ToBeActive. In case of unconditional sequential execution of objects,the attributes

cond andToBeActive should be included with valuefalse in both sides of the rule as

shown in ruleSeq-unCond in Figure 3.13. We use the rulesSeq-Cond andSeq-unCond

in our semantics and we removed ruleSeq from the Maude code as it represents a too

general case which we can handle using one of the other two rules.

Parallel Behaviour

Fork gateway is used in the BPMN to refer to the dividing of a path into two or more

parallel paths. When a fork gate is active, the ruleANDfork can be applied to activate all

immediate successor objects.

rl [ANDFork] :
 << < G1 : aforkgate | out : T1 ; active : true ; AS1 > , A >>
 =>
 << < G1 : aforkgate | out : T1 ; active : false ; AS1 > ,
 activateANDsuccessors(T1, A) >> .

...

Figure 3.14: Parallel Fork Rule

This rule fetches all the successors of the gateway and activates them concurrently

and deactivates theaforkgate gateway afterwards. In the rule above (in Figure 3.14),G1

is a variable for the object identifier,T1 is a set of transitions that connects the objects to

72

Chapter 3.BPMN Formal Syntax and Semantics 73

the gateway. Activating the immediate successors of the fork gateway is achieved using

the functionactivateANDsuccessors which takes the output transitions for the fork

gateway and the rest of the object set and produces the same object set after activating the

immediate successors. The order of the activation does not matter as they are supposed

to be executed concurrently with no such restriction. The definition of the function is in

Appendix B.

In case of joining parallel activities, theajoingate cannot be activated until all it

predecessors have finished (deactivated). It can happen that the predecessor objects ex-

ecuted and finished in different times, i.e. in Figure 3.15, activity b may finish before

activity c finish, then following theSeq-Cond rule, the AND join gateway should be

active. However, according to the AND join semantics, it should wait for all its imme-

diate predecessors to be executed. Therefore, we mark the attribute cond to betrue

and the attributeToBeActive to false in its initial state. After that, the first immediate

predecessor to finish causes the attributeToBeActive to be changed totrue, however,

the gateway itself is still not active.

a

c

b

Figure 3.15: Example model with AND fork and join gateways

As explained above in Section 3.4.2, if there are execution conditions for the object,

then itscond attribute will betrue. In the case of AND join gateway, the trigger for

making it in theready to be activestate is having at least one active predecessor which

then will rewrite its attributeToBeActive from false to true as described in the rule

Seq-Cond-ajoin in Figure 3.16.

The ANDJoin rule activates the join gateway and then the immediate predecessors

are fetched and deactivated using the functionsactivePreds. The function checks if

there are any active objects in the gateway upstream (i.e. objects between the AND

fork and the AND join gateways) using the functionpreds to fetch the predecessor

73

Chapter 3.BPMN Formal Syntax and Semantics 74

crl [ANDJoin] :
 << < G1 : ajoingate | in : T1 ; itsSplit : G2 ; active : false ; cond : true ; ToBeActive : true ;
 AS1 > , < G2 : aforkgate | AS3 > , A >>
=>
 << < G1 : ajoingate | in : T1 ; itsSplit : G2 ; active : true ; cond : true ; ToBeActive : false ;
 AS1 > , < G2 : aforkgate | AS3 > , A >>
if activePreds(T1, preds(< G2 : aforkgate | AS3 > , < G1 : ajoingate | in : T1 ; itsSplit : G2 ;
 active : true ; cond : true ; ToBeActive : false ; AS1 >,
 (A, < G2 : aforkgate | AS3 >), noobject, noobject)) == false /\
 isActive (<< imPreds (T1, A, noobject) >>) == false .

...

 rl [Seq-Cond-ajoin] :
 << < X : K | out : t N1 ; active : true ; AS1 > , < Y : ajoingate | in : (t N1, T1) ; active : false ;
 cond : true ; ToBeActive : true ; AS2 > , A >>
 =>
 << < X : K | out : t N1 ; active : false ; AS1 > , < Y : ajoingate | in : (t N1, T1) ; active : false ;
 cond : true ; ToBeActive : true ; AS2 > , A >> .

Figure 3.16: Parallel Join Rule

objects and then checks if they are active9. The AND fork and join gateways are linked

through the attributeitsSplit in the join gateway, which refer to the corresponding

fork gateway. The second condition is to ensure that by this stage in the execution all the

immediate predecessors for the join gateway are inactive using the functionsimPreds

andisActive respectively.

Exclusive Decision-Based Behaviour

Exclusive data-based decision gateways (XOR-split) is designed to choose only one al-

ternative to activate among its immediate successors [68].The ruleXORsplit simulates

the behaviour of the split gateway and described in Figure 3.17.

rl [XORsplit] :
 (CVs1) * << < G1 : xsplitgate | out : T1 ; defaultFlow : T2 ; guard : GExp1 ; error : t N2 ;
 controlValues : noControlValue ; active : true ; AS1 > , A >>
 =>
 (CVs1) * << < G1 : xsplitgate | out : T1 ; defaultFlow : T2 ; guard : GExp1 ; error : t N2 ;
 controlValues : assignCVs(GExp1, CVs1) ; active : false ; AS1 > ,
 activateXORchild (T1, T2, t N2, GExp1, assignCVs(GExp1, CVs1), A) >> .

...

Figure 3.17: Exclusive Data-based Decision (XOR) Split Rule

In order to determine the outgoing object that is going to be activated, all the con-

ditions are evaluated as long as their control values have been passed through to the

gateway during the execution. Control values (CVs) are used to provide information

to the gateways to be able to evaluate the guard expressions and process branching

9The definition of the function is in Appendix B

74

Chapter 3.BPMN Formal Syntax and Semantics 75

decisions. The functionactivateXORchild is used to activate the successor object

that its guard expression evaluated totrue in the evaluation function. The function

activateXORchild definition is in Appendix B and the functionassignCVs is defined

later in this section.

For the merging behaviour of the exclusive gateways, the rule XORmerge, activates

anxmergegate object if it has one active immediate predecessor, and it deactivates this

predecessor, as shown in Figure 3.18. The application of this rule requires an active

predecessor to an inactive XOR-merge gateway. Then the activation is toggled and the

process is ready for another rule application, which is normally be the sequential rule to

activate the XOR-merge successor.

crl [XORmerge] :
 << < X : K | out : (t N1, T2) ; active : true ; AS1 > , < G1 : xmergegate | in : (t N1 , T1) ;
 active : false ; AS2 > , A >>
 =>
 << < X : K | out : (t N1, T2) ; active : false ; AS1 > , < G1 : xmergegate | in : (t N1 , T1) ;
 active : true ; AS2 > , A >>
 if K =/= xsplitgate .

...

Figure 3.18: Exclusive Data-based Decision (XOR) Merge Rule

Notice the condition in the rule excludes the case of having aXOR split predecessor

to the XOR merge gateway. That is to allow the guard evaluation in the XOR split

gateway to take place and hence activating the right XOR child. For example, in case of

direct flow from a split gateway to a merge gateway as in Figure3.19 where the flowt3

coming from the XOR split gateway and entering the XOR merge gateway which may

cause the activation ofg2 beforeg1 decides which branch to choose. At the same time,

it can happen that taska is executed and at the same time,g2 is activated, which will

end up in the XOR merge gatewayg2 being executed twice (a lack of synchronization

situation) in the process.

Inclusive Decision-Based Behaviour

In BPMN, inclusive decision (OR) gateway is used to choose one or more branches at

the same time. In our formalization, the constructor operatorsosplitgateandomergegate

are used for OR split and merge gatewaysCid respectively. For inclusive decision-

based pattern of behaviour, the OR gateway represents the ability to activate oneor

75

Chapter 3.BPMN Formal Syntax and Semantics 76

a

c

b
t 2

t 3

t 4

g 2g 1

Figure 3.19: Example model with XOR split and merge gateways

morebranches at the same time. Hence, the true evaluation of one condition expres-

sion does not exclude the evaluation of other condition expressions. In the splitting

behaviour, the ruleORsplit is used to activate the OR-split successor(s) (using func-

tion activateORchildren) according to the evaluation of the guard expressions in the

gateway.

rl [ORsplit] :
 (CVs) * << < G1 : osplitgate | out : (t N1 , T1) ; defaultFlow : t N2 ; guard : GExp ; controlValues :
 noControlValue ; error : t N3 ; active : true ; AS1 > , A >>
 =>
 (CVs) * << < G1 : osplitgate | out : (t N1 , T1) ; defaultFlow : t N2 ; guard : GExp ; controlValues :
 assignCVs (GExp, CVs) ; error : t N3 ; active : false ; AS1 > ,
 (activateORchildren(evalORguard(GExp1, assignCVs (GExp1, CVs1), notrans) , A)) >> .

...

Figure 3.20: Inclusive Decision (OR) Split Rule

The ruleORsplit is applicable when the OR split gateway isactive, then the gate-

way’s controlValues attribute value will be rewritten to the control values thatare

contained into the input set (CVs), the rest of the objects in theObjectSet (i.e. A)

are rewritten using the functionactivateORchildren, and finally the split gateway

itself is deactivated (active:false). The functionevalORGuard helps the gateway

to decide which successors to activate as discussed later inthis Section. The function

activateORchildren is used to activate all OR successor objects which have incom-

ing transition listed in the set of active transitions in itsfirst argument (TransSymbol).

When it activates them all, it retrieves the full set of objects A, which now has all the

active OR-split immediate successors.

op activateORchildren : TransSymbol ObjectSet -> ObjectSet .

eq activateORchildren (notrans, A) = A .

eq activateORchildren ((t N1,T1),

76

Chapter 3.BPMN Formal Syntax and Semantics 77

(< X : K | in : t N1 ; active : false ; AS1 >, A))

= activateORchildren (T1,

(< X : K | in : t N1 ; active : true ; AS1 >, A)) [owise] .

The merge OR gateway behaviour is not like an AND-join, whichknows for sure

that all its predecessors are active objects and should be deactivated in order to give the

AND-join gateway the activation mode. Moreover, its behaviour is not like an XOR-

merge which knows for sure that only one active predecessor is there and it has to be

deactivated before activating the gateway. However, in thecase of a OR-merge gateways,

how could a certain gateway decide if the coming flows are all chosen (activated) by its

OR-split gateway? Notice, the number of active predecessorflows is unknown to the

OR-merge gateway. Therefore, there should be a link that relates a merge gateway to its

split gateway in the same block; in order to keep track of the number of activated flows

that need to be deactivated as an activation condition for the merge gateway. To relate

the two gateway objects, an attributeitsSplit is defined in the merge gateway which

pass this piece of information to the merge gateway. It is defined in the merge gateway

because it is the point in the process flow that should consider collecting and combining

all the split flows from a certain OR-split gateway. In the specification below, the rule

ORmerge rewrites the OR merge gateway object state from beinginactiveto beingactive

after satisfying the condition that the gateway is ready to merge (functionReady2Merge

evaluatestrue). At the same time, the functiondeactivateORpreds deactivates the

immediate predecessors of the merge gateway as a result of activating the OR merge

gateway. This is to make sure that all the activated flows havebeen synchronized at this

point in the flow and no OR immediate predecessor object is left active. If this function

is not used, a lack of synchronization can result, i.e. therewill be a situation when the

OR merge gateway is activated more than once as the activation is passed to it from more

than one predecessor, possibly in different points of the time.

The functionReady2Merge is used to check if all the activated immediate predeces-

sors are active and ready for the merge. This is done by retrieving true when it counts

the number of activated branches by the corresponding OR split gateway and finds the

same number of activated immediate predecessors to the OR merge gateway. Here, the

relation between the two gateways as one block facilitates the efficient execution and

evaluation of the guards. It enables the merge gateway to know how many branches

77

Chapter 3.BPMN Formal Syntax and Semantics 78

crl [ORmerge] :
 << < G1 : omergegate | in : (t N1 , T1) ; itsSplit : G2 ; active : false ; AS1 > ,
 < G2 : osplitgate | active : false ; guard : GExp ; controlValues : CVs ; AS2 > , A >>
 =>
 << < G1 : omergegate | in : (t N1 , T1) ; itsSplit : G2 ; active : true ; AS1 > ,
 < G2 : osplitgate | active : false ; guard : GExp ; controlValues : CVs ; AS2 > ,
 deactivateOPreds((t N1, T1), A) >>
 if Ready2Merge(evalORguard (GExp, CVs, notrans), (t N1, T1), A) == true .

...

Figure 3.21: Inclusive Decision (OR) Merge Rule

have been activated after its corresponding OR-split gateway.

op Ready2Merge : TransSymbol TransSymbol ObjectSet -> Bool .

eq Ready2Merge((notrans), (T1), A) = true .

eq Ready2Merge((t N1,T1), (t N2,T2),

(< X : K | out : t N2 ; active : true ; AS1 >, A))

= Ready2Merge((T1), (T2),

(< X : K | out : t N2 ; active : true ; AS1 >, A)) [owise] .

It takes the set of OR split gateway successor transitions, the set of the OR merge

input transitions and the whole set of objects. In the ruleORmerge, in Figure 3.21, this

boolean function is used to take the activated transitions resulted from the evaluation

function evalORguard and checks if the same number of predecessors is active and

ready to be merged. This prevents the occurrence of a deadlock situation when the merge

gateway is waiting for an object to be activated while it is not in the execution path at

all. Moreover, it facilitate the processing of nested OR gateways by marking each merge

gateway with its OR-split companion avoiding mixing the evaluated conditions from

different gateways.

In Rule ORmerge, the OR-merge gateway is activated and its immediate predeces-

sors are deactivated after fulfilling the condition of beingReady2Merge. The function

deactivateOPreds is used to deactivate the OR-merge immediate predecessors follow-

ing the definition in Appendix B. A detailed analysis of the deadlock situation resulting

from the improper use of OR gateways (e.g. missed flows at the merge gateway, a gate-

way is waiting for an inactive flow which will never be active,and gateways with lack of

synchronization) is discussed in Chapter 4. In the following section, the guard expres-

sion evaluation mechanism is introduced and discussed. It is worth describing the guard

definition and evaluation mechanism asnovelin the context of BPMN business process

78

Chapter 3.BPMN Formal Syntax and Semantics 79

formalizations.

Evaluating Guard Expressions

Decision based gateways control the flow in BPMN processes. In our formalization,

decision-based (split) gateways hold the guard expressions which direct the flow in the

process based on the expressions evaluation. Using the CFG defined in Section 3.1.3,

the guard expressions are set for evaluation. The evaluation is done through the function

evalGuard which take as inputs the gateway guard expression (which is normally one

expression), the set of control values (discussed in Section 3.4.2), and produces a set of

transitions referring to the branch associated with the successfully evaluated expression.

For example, if the expression uses the equality operator (==), then the condition should

be checking if the two operands are equal using the equality definition in moduleNAT if

the operands are numbers and in moduleSTRING if the operands are String characters.

For such reasons we use the command (protecting NAT STRING) at the beginning of

the Maude module.

op evalGuard : Gexp ControlValue TransSymbol -> TransSymbol .

eq evalGuard(noexp, noControlValue, T1) = T1 .

ceq evalGuard(((V1 == N1,tN2).GExp),((V1:N3)..CVs),T1) = tN2

if N3 == N1 .

eq evalGuard(((V1 == N1,tN2).GExp),((V1:N3)..CVs),T1)

= evalGuard(((V1 == N1,tN2).GExp),CVs,T1) [owise] .

ceq evalGuard(((V1 == S1,tN1).GExp),((V1:S2)..CVs),T1) = tN1

if S2 == S1 .

eq evalGuard(((V1 == S1,tN1).GExp),((V1:S2)..CVs),T1)

= evalGuard(((V1 == S1,tN1).GExp),CVs,T1) [owise] .

The functionevalGuard, defined above, takes the information needed to decide on

which successor object should be activated next from the control values. For example,

in Figure 3.7, the XOR-split gatewayg1 decides if the authorization is granted or de-

clined to modify the baselines, therefore, the gateway has two outgoing transitions (t3,t4),

the guard expressions are((Authorized?=="YES",t3).(Authorized?=="NO",t4)),

and the control value for this case is(Authorized?:"YES") then the function retrieves

t3 as the string control value (i.e.YES in attributecontrolValue) equalsthe String

79

Chapter 3.BPMN Formal Syntax and Semantics 80

value in the guard expression (i.e.YES in attributeguard). Here, the modeller is respon-

sible for assuring that the expressions are mutually exclusive, however, the semantics

of an exclusive split gateway requires evaluation of the guard expressions one by one

and if an expression is successful, then no more expressionsare evaluated, as it is only

one alternative to be chosen. If the expressions are not mutually exclusive for the XOR

split gateway guard, there is a possibility that the first expression evaluating totrue is

the one considered in deciding the activation of the successor object, leaving another

possible alternative remains unknown to the process. The same function is defined to

evaluate guard expressions with other logical comparison operators (==,=/=) for Strings

and (=/=,<=,>=,<,>) for numbers (c.f. the CFG defined in Section 3.1.3) as detailed in

Appendix B.

In the case of OR split guard expression evaluation, the function evalORguard is

introduced. The OR split semantics requires all the conditions to be evaluated and, as a

result, can have as many output transitions as the OR-split outgoing transitions. There-

fore, the functionevalORguard takes the following arguments: the guard expressions

(GExp) and the assigned control values resulting from (assignCVs(GExp,CVs)) and re-

trieves the set of transitions whose associated guard expression evaluates totrue.

op evalORguard : Gexp ControlValue TransSymbol -> TransSymbol .

eq evalORguard(noexp, noControlValue, T1) = T1 .

eq evalORguard(((V1 == N1,tN2) . GExp), ((V1:N1)..CVs), T1)

= evalORguard(GExp, CVs, (tN2,T1)) .

ceq evalORguard(((V1 == N1,tN2) . GExp), ((V1:N3)..CVs), T1)

= evalORguard(((V1 == N1,tN2) . GExp), CVs, T1)

if N1 =/= N3 .

eq evalORguard(((V1 == N1,tN2) . GExp), CVs, T1)

= evalORguard(GExp, CVs, T1) [owise] .

The definition above of the functionevalORguard defines the equality relation over

the numeric values in guard expressions. A similar set of equations can be used for the

equality relation over the string values in guard expressions by changing the sort type to

STRING for String characters. The evaluation considers the control values to match with

the variable values in the guard expressions. In the next section, the control values are

explained.

80

Chapter 3.BPMN Formal Syntax and Semantics 81

Managing Control Values

In the formalization we presented so far, deciding which flowcoming out from a split

gateway depends on the control values assigned to the attributecontrolValues. How-

ever, they are not yet automated in the formalization. The control values are normally

entered by the process modeller in the design time for each gateway. Trying to mini-

mize the time and effort of managing the control values for large BPMN models, the

following mechanism is introduced using the configuration (_*_), where the first under-

score is substituted by a collection of control values and the second underscore with the

well-formed processW-BPMN. The general form is defined as follows:

subsort ControlValue < CVcollection .

subsort ObjectSet < TraceObjectSet .

op _*_ : CVcollection ObjectSet -> TraceObjectSet .

The resulted configuration is considered one possible tracefor the model. Thus we

can consider all possible traces for the model if we listed the set of all possible collections

of control values for a certain model. The process traces arepossible execution paths for

the business process (c.f. Definition 3.4.5). In the process, the split gateway object has

the attribute (controlValues) assigned the valuenoControlValue during the design

time. This value should be changed to the chosen control values during the process

execution. There can be more than one split gateway in the process, and therefore more

than one control value for the single execution (instance) of the process. The collection

of control values needed for a single process instance is defined as an associative set of

control values separated by the operator (,).

op _,_ : CVcollection CVcollection -> CVcollection

[ctor assoc id: noControlValue] .

On automating the procedure of assigning the control valuesto automatically gen-

erate the traces, our proposed Maude based tool does this automatically. The idea is to

extract the guard expressions from the split gateways (i.e.XOR and OR) and then create

the corresponding control values for each guard expression. This is conducted using the

operatorsguardExtract andcreateCV respectively. For the first operator, we provide

part of the definition below. The arguments are the object setrepresenting the process

and an initially empty set of guard expressions. Once a splitgateway is found (e.g. XOR

split here), the guard expressions are copied to the set of output guard expressions. This

81

Chapter 3.BPMN Formal Syntax and Semantics 82

happens until no more split gateways in the process, then theoperator returns the set of

collected guard expressions.

op guardExtract : ObjectSet Gexp -> Gexp .

eq guardExtract(A , GExp1) = GExp1 .

eq guardExtract(CVs1 * << < G1 : xsplitgate | guard : GExp1 ;

AS1 > , A >> , GExp2)

= guardExtract(CVs1 * << < G1 : xsplitgate | guard : GExp1 ;

AS1 > , A >> , (GExp1 . GExp2)) [owise] .

After that the control values are created from the extractedguard expressions using

the operatorcreateCV defined below for the equality of string and numeric values as

example of the implementation.

op createCV : Gexp ControlValue -> ControlValue .

eq createCV (noexp , CVs1) = CVs1 .

eq createCV (((V1 == S1 , t N1) . GExp1) , CVs1)

= createCV (GExp1 , (CVs1 .. (V1 : S1))) [owise] .

eq createCV (((V1 == N1 , t N1) . GExp1) , CVs1)

= createCV (GExp1 , (CVs1 .. (V1 : N1))) [owise] .

There is still one thing missing, which is how these different control values will be

assigned to the corresponding gateways during simulating process execution. For that,

the functionassignCVs is defined to take the collection of control values and assign

them to their corresponding split gateway object attributecontrolValues in the process.

This matching is performed using a combination of the control values and the guard

conditions in the gateways. The function specifications forthe equality guard condition

in case of numeric and string values are:

op assignCVs : Gexp ControlValue -> ControlValue .

eq assignCVs(noexp,CVs1) = noControlValue .

eq assignCVs(((V1==N1,tN2).GExp1),((V1:N3)..CVs1)) = V1:N3 .

eq assignCVs(((V1==S1,tN1).GExp1),((V1:S2)..CVs1)) = V1:S2 .

The BPMN model which contains split gateways should now looklike the example

in Figure 3.7. In particular, we want to show the process of assigning the control values

and how this is contributing in evaluating the guard expressions. The Maude code in

82

Chapter 3.BPMN Formal Syntax and Semantics 83

Figure 3.8 represents the BPMN diagram of the model with the collection of control

values. The resulting configuration is one possible trace for the model. In this case,

by simulating the process execution, it will result in the set of all possible traces for

the model with respect to gateway routing, i.e. ((CVcol1 * A),(CVcol2 * A),...)

whereCVcol1,CVcol2,... are the possible collections of control values for the process

A created using the above mechanism. As an example of an outputexecution path for

the process model in Figure 3.7 can be represented as:

((Authorized?:"YES"),(AuthorizedCR?:"YES"),(MoreCR1?:"NO"),

(MoreCR2?:"NO")) * ReleaseBaseline

whereAuthorized?, AuthorizedCR?, MoreCR1?, andMoreCR2? are defined as

variable names andYES, YES, NO andNO are possible values specifying access granted,

authorized change request, no more change requests to choose from, and no more change

requests to apply respectively.

3.4.3 Exception Handling

An exception is activated if the exception error value in theactivity it is attached to is

evaluated totrue. The exception error attributeexcValue has a default value offalse,

and it can be changed totrueas a user input value for simulating the process behaviour in

this particular case (i.e. firing the exception). In this case, the ruleExceptionHandling

will be applied to pass activation to the exception rather than the normal flow objects.

rl [ExceptionHandling] :
 << < X : K | error : t N1 ; excValue : true ; active : true ; AS1 >,
 < E1 : intermediateEvent | eventType : exception ; in : t N1 ; linkedObject : X ; active :
 false ; AS2 > , A >>
 =>
 << < X : K | error : t N1 ; excValue : false ; active : false ; AS1 >,
 < E1 : intermediateEvent | eventType : exception ; in : t N1 ; linkedObject : X ; active :
 true ; AS2 > , A >> .

...

...

Figure 3.22: General Exception Rule

In Figure 3.22, the ruleExceptionHandling is simulating the general exception be-

haviour where the exception is attached to the boundary of the objectX. The attribute

excValue value indicates that the exception situation is active (i.e. true), the activation

is passed to the exception attached to it, with identifierE1. In Maude representation, ob-

jects likeX (i.e. with boundary attached events) are linked to these event objects explicitly

83

Chapter 3.BPMN Formal Syntax and Semantics 84

via the attributelinkedObject in the corresponding event. Exceptions can also occur as

part of the gateway behaviour if no flows are available to passthe activation to due to lack

of information (control values/conditions). In this case,a gateway exception object is ac-

tivated. This can happen with an OR or XOR split gateways. Such situation has been

considered when designing theactivateXORchild andactivateORchildren func-

tions.

Booking
t 3

Notify Card
 verification

Failed

t 4 t 5

t 6

e 2

< a 3 : subprocess | name : "Booking" ; in : t 3 ; out : t 6 ; error : t 4 , ... > ,
< e 2 : intermediateEvent | eventType : exception ; in : notrans ; out : t 4 ; linkedObject : a 3 > ,
< a 4 : task | name : "Notify Card Verification Failed" ; in : t 4 ; out : t 5 , >

a 3

a 4

Figure 3.23: Example for Exception handling with Maude representation syntactically

To illustrate how our formalization deals with exceptions attached to activity bound-

ary, the example is shown in Figure 3.23. It is part of a model for an airline system

(discussed in [104]), where the client choose the seats before proceeding in the booking

process. In case the client payment card did not validated, the system raises an exception

and notify the client of the reasons. The process then continues, however, we only use

this part to clarify the exception representation in the formalization. In our formalization,

the number of incoming flows for a merge gateway should be equal to or more than the

number of outgoing flows for its corresponding split gateway. From a semantic point of

view, an exception can take place in one of the split flow pathsproducing an extra flow.

This require theexception flow to be connected to the corresponding merge gateway

afterwards (e.g. with XOR merge gateway as in Figure 3.23).

3.4.4 Message Handling

Messages are intermediate events used to connect the flow elements in different pools,

where sequence flow cannot be used. For example, the communications between the

84

Chapter 3.BPMN Formal Syntax and Semantics 85

purchaser and their supplier can be represented by message events. Each message con-

nects two activities in two different pools. In order to simulate the role of messages in

BPs, we model the messages as objects in the process object set. Hence it can be acti-

vated as a sign of having information to deliver. It can also restrict the activation of the

linked object, which will be at that time waiting for some information to be delivered in

that message to continue the process execution. A message object does not have a status

to be changed during the execution, however, it still has theactive attribute which define

its state as active or not active object.

rl [OutputMessage] :
 < E1 : intermediateEvent | eventType : message ; sourceObject : X ; sourcePool : S1 ;
 targetPool : S2 ; active : false ; AS1 >,
 < X : K | linkedObject : E1 ; active : true ; pool : S1 ; AS2 >, A
 =>
 < E1 : intermediateEvent | eventType : message ; sourceObject : X ; sourcePool : S1 ;
 targetPool : S2 ; active : true ; AS1 >,
 < X : K | linkedObject : E1 ; active : true ; pool : S1 ; AS2 >, A .

rl [InputMessage] :
 < E1 : intermediateEvent | eventType : message ; targetObject : Y ; sourcePool : S1 ;
 targetPool : S2 ; active : true ; AS1 >,
 < Y : K | linkedObject : E1 ; active : true ; pool : S1 ; AS2 >, A
 =>
 < E1 : intermediateEvent | eventType : message ; targetObject : Y ; sourcePool : S1 ;
 targetPool : S2 ; active : false ; AS1 >,
 < Y : K | linkedObject : E1 ; active : true ; pool : S1 ; AS2 >, A .

Figure 3.24: Message Handling Rules: input and output messages

In the ruleOutpurMessage in Figure 3.24, the message source activity is active,

then the rule activates the message itself. However, the rule keeps the activity active to

allow for the normal flow to take place. In opposite, in the ruleInputMessage in Figure

3.24, the message is active and its target object is active too, then the rule deactivate the

message while leaving the other object for the normal flow rules to take place. Notice that

attributessourcePool andtargetPool specifies the pools from which the message is

sent and is received. These two pools should be different according to the well-structured

business processes discussed in Definition 3.3.2.

3.4.5 Subprocess Semantics

A sub-process may contain other objects (i.e. events, activities, gateways and objects).

In this formalization we consider a dummy start and end events for starting and ending

a sub-process with the typesstartSubprocess andendSubprocess. A sub-process is

85

Chapter 3.BPMN Formal Syntax and Semantics 86

ready for initiation if its intermediate predecessor is active, and it is initiated by activating

its dummy start event, as shown in ruleenterSubprocess in Figure 3.25.

rl [enterSubprocess] :
 CVcol * << < X : subprocess | active : true ; contains : (E1 : Y) ; AS1 > ,
 < E1 : startSubprocess | active : false ; AS2 > , A >>
 =>
 CVcol * << < X : subprocess | active : false ; contains : (E1 : Y) ; AS1 > ,
 < E1 : startSubprocess | active : true ; AS2 > , A >> .

Figure 3.25: Enter Sub-process Semantic Rule

By completing the sub-process and while the dummy end event is active, the rule

TerminateSubprocess deactivates the dummy end event (i.e. sub-process is termi-

nated) and activates its successor as shown in Figure 3.26.

 rl [exitSubprocess] :
 CVcol * << < X : subprocess | active : false ; contains : (E1 : Y) ; out : t N1 ; AS1 > ,
 < E1 : endSubprocess | active : true ; AS2 > ,
 < Z : K | in : (t N1, T1) ; active : false ; AS3 > , A >>
 =>
 CVcol * << < X : subprocess | active : false ; contains : (E1 : Y) ; out : t N1 ; AS1 > ,
 < E1 : endSubprocess | active : false ; AS2 > ,
 < Z : K | in : (t N1, T1) ; active : true ; AS3 > , A >> .

Figure 3.26: Terminate Sub-process Rules

3.4.6 Data Handling

Data objects represents all sorts of documents that are moving around in the organization

and used by a BP. As described in Section 3.1, a data object hasa status which changes

as an effect of the activities using it. The semantics of the data objects behaviour in our

approach is specified using the rules in Figure 3.27. InDataOutput, the data object is

an output for the activityX. The link between the activity and the data object is formed

from the attributelinkedObject in the data object and the attributehasOutput in the

activity. In DataInput, the data object is an input for the activityX. The link between

the activity and the data object from the attributelinkedObject in the data object and

the attributehasInput in the activity.

The existence of data objects and other constructs in the BP adds restrictions to its

execution. These restrictions are important to be modelledin the design time where

86

Chapter 3.BPMN Formal Syntax and Semantics 87

 rl [DataOutput] :
 << < X : K | active : true ; hasOutput : D1 ; AS1 >,
 < D1 : Output | linkedObject : X ; status : initial ; AS2 >, A >>
 =>
 << < X : K | active : false ; hasOutput : D1 ; AS1 >,
 < D1 : Output | linkedObject : X ; status : created ; AS2 >, A >> .

 rl [DataInput] :
 << < X : K | active : true ; hasInput : D1 ; AS1 > ,
 < D1 : Input | linkedObject : X ; status : created ; AS2 >,A >>
 =>
 << < X : K | active : false ; hasInput : D1 ; AS1 > ,
 < D1 : Input | linkedObject : X ; status : exist ; AS2 >,A >> .

Figure 3.27: Data Object Handling Rules: input and output data objects

the process is more flexible to be modified than to enforce themin the implementation

and deployment phase. In the following section, we introduce some domain specific

semantic rules for the example introduced in Section 3.2.

3.4.7 Domain Specific Semantics

Each BP represents a specific work procedure carrying its characteristics, conditions and

constraints. This can be shown by specific patterns of behaviour, assigned to process

elements, which are dependent on the corresponding business environment or other ele-

ments in the same process. In the proposed example in Figure 3.7, tasks likeRetrieve

CI or Change CI should be active only if a change request (CR) is open. Another exam-

ple exists when a data objectBaseline status should be changed toreleasedif the task

Release Baseline is active (i.e. a new baseline is released). Such behaviour requires

specific rules which are considered related to the domain of the business process under

consideration. We call these rulesDomain Specific Rules (DSR), which can be different

from one process to another. For the illustrated example in Section 3.2, we provide the

following DSRs as an example of the formalization validity in domain specific require-

ments for business processes. In Figure 3.28, a set of rules is modelled graphically for

presentation purposes while the corresponding term rewrite rules are coded in Maude in

Figure 3.29 and Figure 3.30 using the syntactical notation presented earlier in this chap-

ter. In Figure 3.28, the black dot on a task indicates that this task is active and the white

dot on a task indicates that this task is inactive.

To start with, the possible status (defining their data object lifecycle [102]) for a

Change Request (CR) data object are:initial , openandclosed; for a Configuration Item

87

Chapter 3.BPMN Formal Syntax and Semantics 88

Document
CIs

CI doc.
[inUse]

Document
CIs

CI doc.
[documented]

(f)

Release
Baseline

Release
Baseline

Baseline
[released]

(g)

Make baseline
available to read

Baseline
[released]

Make baseline
available to read

Baseline
[readOnly]

(h)

Retrieve CIs

CI doc.
[initial]

CR
[open]

Retrieve CIs

CI doc.
[inUse]

CR
[open]

(e)

Open CR

CR
[initial]

Open CR

CR
[open]

(c)

 Close CR

CR
[open]

Close CR

CR
[closed]

(d)

Check
Authorization

Authorization List
[none]

Authorization List
[granted]

Check
Authorization

(a)

Check
Authorization

Authorization List
[none]

Authorization List
[declined]

Check
Authorization

(b)

Figure 3.28: Domain-Specific Rewrite Rules

(CI doc) data object are:initial , inUse and documented; for Authorization List data

object are:grantedanddeclinedand for a Baseline data object are:none, releasedand

readOnly. In Figure 3.28, some rules are applied when the corresponding task is active

(marked by the black circle) such asChange CI and others are dependent on the status

of a connected data object, likeRetrieve CI.

In the example (c.f. Section 3.2), an authorization is required in order to release the

baselines. The rule (a) (Grant Authorized) checks if the access is being done by an au-

thorized role listed in theAuthorization List and then changes the data object status

to granted. The rule uses the control value(Authorized?:"YES") to grant permission

to change and release the baseline. If the access information is not listed in the , or if

it is not listed in the documentAuthorization List, then the data object status will

88

Chapter 3.BPMN Formal Syntax and Semantics 89

 (a) Access Authorized
 rl [GrantAuthorization] :
 ((Authorized? : "YES") .. CVs) * << < X : K | name : "Check Authorization" ; active : true ; AS1 > ,
 < D1 : dataobject | name : "Authorization List" ; status : none ; AS2 > , A >>
 =>
 ((Authorized? : "YES") .. CVs) * << < X : K | name : "Check Authorization" ; active : true ; AS1 > ,
 < D1 : dataobject | name : "Authorization List" ; status : granted ; AS2 > , A >> .

 (b) Access Declined
 rl [DeclineAuthroization] :
 ((Authorized? : "NO") .. CVs) * << < X : K | name : "Check Authorization" ; active : true ; AS1 > ,
 < D1 : dataobject | name : "Authorization List" ; status : none ; AS2 > , A >>
 =>
 ((Authorized? : "NO") .. CVs) * << < X : K | name : "Check Authorization" ; active : true ; AS1 > ,
 < D1 : dataobject | name : "Authorization List" ; status : declined ; AS2 > , A >> .

 (c) Open a Change Request
 rl [OpenCR1] :
 CVs * << < X : K | name : "Open CR" ; active : true ; hasOutput : D1 ; AS1 > ,
 < D1 : dataobject | name : "CR" ; status : initial ; AS2 > , A >>
 =>
 CVs * << < X : K | name : "Open CR" ; active : true ; hasOutput : D1 ; AS1 > ,
 < D1 : dataobject | name : "CR" ; status : open ; AS2 > , A >> .

 (d) Close a Change Request
 rl [CloseCR1p5] : 				
 CVs * << < X : K | name : "Close CR" ; active : true ; hasOutput : D1 ; AS1 > ,
 < D1 : dataobject | status : open ; AS2 > , A >>
 =>
 CVs * << < X : K | name : "Close CR" ; active : true ; hasOutput : D1 ; AS1 > ,
 < D1 : dataobject | status : closed ; AS2 > , A >> .

Figure 3.29: Maude Representation for DSR from (a) to (d) in Figure 3.28

change to declined as specified by rule (b) (Decline Authorization).

For each change request (CR) enters the process, its status should change from

initial to open to indicate its use. In Figure 3.29, rule (c) (Open a Change request) is

simulating this behaviour. After the change request is usedand changes applied, it needs

to be closed. The status of the data object is changed fromopen to closed as declared

in rule (d) (Close a Change Request).

While the change request is open, the corresponding configuration item CI is re-

trieved. In Figure 3.7, the activityRetrieve CI is activated if a change request is open,

i.e. the CI is retrieved to be processed. This is modelled using the rule (e) in Figure 3.28

and ruleRetrieve CIin Figure 3.30. At the same time, the retrieved CI status should

be changed to indicate that it is in use (i.e. change its status from initial to inUse)

as described in the same rule (rule (e) in Figure 3.28) and rule Using CI in Figure 3.30.

89

Chapter 3.BPMN Formal Syntax and Semantics 90

(e) Retrieve and Use CI
 rl [RetrieveCIp2] :
 CVs * << < X : task | name : "Retrieve CI" ; in : t N1 ; cond : true ; ToBeActive : true ;
 active : false ; hasInput : D1 ; AS2 > , < D1 : dataobject | status : open ; AS3 > , A >>
 =>
 CVs * << < X : task | name : "Retrieve CI" ; in : t N1 ; cond : true ; ToBeActive : false ;
 active : true ; hasInput : D1 ; AS2 > , < D1 : dataobject | status : open ; AS3 > , A >> .

 rl [UsingCIp3] :
 CVs * << < X : task | name : "Change CI" ; active : true ; AS1 > ,
 < D1 : dataobject | name : "CI doc" ; status : initial ; AS2 > , A >>
 =>
 CVs * << < X : task | name : "Change CI" ; active : true ; AS1 > ,
 < D1 : dataobject | name : "CI doc" ; status : inUse ; AS2 > , A >> .

(f) Document CI
 rl [DocumentCIp4] :
 CVs * << < X : task | name : "Document CIs" ; active : true ; AS1 > ,
 < D1 : dataobject | name : "CI doc" ; status : inUse ; AS2 > , A >>
 =>
 CVs * << < X : task | name : "Document CIs" ; active : true ; AS1 > ,
 < D1 : dataobject | name : "CI doc" ; status : documented ; AS2 > , A >> .

 (g) Releasing Baseline
 rl [ReleaseBaseline] :
 CVs * << < X : K | name : "Release Baseline" ; active : true ; hasOutput : D1 ; AS1 > , A >>
 =>
 CVs * << < X : K | name : "Release Baseline" ; active : true ; hasOutput : D1 ; AS1 > ,
 CreateDO (d 4, "Baseline", released , X) , A >> .

 (h) Baseline made Read Only
 rl [BaselineReadOnly] :
 CVs * << < X : K | name : "Make Baseline Available to Read" ; active : true ; hasOutput : D1 ;
 AS1 > , < D1 : dataobject | name : "Baseline" ; status : released ; AS2 > , A >>
 =>
 CVs * << < X : K | name : "Make Baseline Available to Read" ; active : true ; hasOutput : D1 ;
 AS1 > , < D1 : dataobject | name : "Baseline" ; status : readOnly ; AS2 > , A >> .

Figure 3.30: Maude Representation for DSR from (e) to (h) in Figure 3.28

The CI status is then changed toupdated to indicate changes committed as a result of

the activityDocument used CI being active. The rule (f) in Figure 3.28 and its Maude

representation in rule (Document CI) in Figure 3.30 simulate this behaviour.

The modifications applied to the configuration item CI are released as a baseline.

When the activityRelease Baseline is active, a data objectBaseline is created with

status (released) as shown in rule (g) in Figure 3.28 and Maude representationrule

(Release Baseline) in Figure 3.30. Finally, a baseline is made a read only document with

through the activityMake baseline available to read. While this activity is active, the

data objectBaseline status is changed fromreleased to readOnly as shown in rule

90

Chapter 3.BPMN Formal Syntax and Semantics 91

(h) in Figure 3.28 and its Maude representation in rule (Beaseline made Read Only) in

Figure 3.30.

3.5 Chapter Summary

In this chapter we introduced our formalization in Maude forthe syntax and semantics of

the core BPMN elements. The proposed formalization considers that the guard expres-

sions are held by the split decision-based gateways and not the outgoing flow attached

to them as the BPMN standards specifies. This allows the gateways to be equipped with

the condition expressions as well as being able todecideon the outgoing flow to con-

sider in the next step without having to actually visit the sequence flows connected to

the gateway before the decision is taken. We proposed a context-free grammar for the

guard expressions that can be used in evaluating the conditions and hence give the gate-

way the ability to decide on passing the flow to its children. The notion of well-formed

BPs is defined for the formalization for the purpose of validating the structure of the

BPMN process models. That is, the well-structured and well-formed BPMN processes

are established and the notion of gateways block is introduced.

Using examples with the corresponding formal representation, a set of rewriting rules

has been defined in this chapter to formally describe and control the behaviour of a

BPMN process. However, we found out that for real life business process models, the

execution restrictions are not limited to the syntax and semantics of the modelling tool

elements (i.e. BPMN) and it is not enough to represent the behaviour of the basic ele-

ments without simulating the specific behaviour requirements for each business context.

Hence, we provided a set of domain specific behavioural rules(in Section 3.4.7).

In the next chapter the proposed formalization in this chapter is verified by introduc-

ing the soundness analysis and checking for the well-formedBPMN models. Moreover,

a simulation analysis with the Petri net mapping for the BPMNis discussed.

91

Chapter 4.Semantics Verification

Chapter 4

Semantics Verification

Verifying business process models aims at proving that theyare free from errors that may

lead to unsuccessful execution of the process. Following the fact that solving structural

conflicts in testing phases is much more expensive than detecting them in the design

phase of business process life cycle [7, 81], the formal verification techniques are eagerly

motivated to be applied to the modelling languages.

We discuss soundness property for the proposed semantics verification. The chapter

is organized as follows; in Section 4.1, a comprehensive description of the gateway block

structure is introduced. This is followed by describing deadlock situations as a structural

problem [69] and as a context-related problem in Section 4.2.1. Three new patterns

for OR gateways are introduced in Section 4.2.2, followed byrelating all the deadlock

patterns to the introduced formalization of well-formed BPMN models in Section 4.2.3.

Finally, the soundness is formally proved in Section 4.3.

92

Chapter 4.Semantics Verification 93

4.1 Gateway Block Structure

The formalization adds a structural restriction in designing BPMN models with gateways

to achieve sound business process models. Gateways are designed in ablock, i.e. each

split gateway should have an accompanying merge gateway of the same type. A block

has only one entrance point and one exit point. Figure 4.1 presents example AND, XOR,

OR blocks where the flow is splitted into two branches to activate activities X, Y or both

of them, then the flow is merged at the other side of the block inthe corresponding merge

gateway.

A

B

C

(d)

X

Y

(b)

X

Y

(a)

X

Y

(c)

Figure 4.1: Examples of Gateways Block structure.

Exceptions represent a spacial case, where the exception flow (Figure 4.1 (d)) sourced

from a boundary-attached error event and the normal flow needto be merged using an

XOR merge gateway. In Figure 4.1 (d), the thick arrows represent the exception flows.

Notice that XOR merge gateway will expect only one incoming flow in order to get acti-

vated, and this matches the fact that either the normal flow orthe exception flow only will

take place. In this particular case, the XOR merge gateway will refer to the exception

event symbol asitsSplit attribute value.

4.1.1 AND Block Structure

In case of AND gateway, the flow normally goes from the split gateway towards the

merge gateway (c.f. Figure 4.2 (a)), however, in the feedback case, when the merge gate-

way precedes the split gateway, the model will unsuccessfully terminate. This happens

when the AND join gateway tries to merge the input flow and waiting for one of its input

flows which comes from the AND split gateway in Figure 4.2 (b),or from activityX in

Figure 4.2 (c) which result in a deadlock situation.

93

Chapter 4.Semantics Verification 94

(b) Ill-formed

X

Y

(a) W-BPMN (c) Ill-formed

Y

X

Y

Figure 4.2: Examples of AND gateways Block structure

To avoid this situation in well-formed BPMN models, we add the following condition

to the specifications of a well-formed BPMN AND join gateway.The condition states

that the AND join gateway should not accept any flow from inside the block it makes. If

the AND join gets inputs from inside the block, i.e. a feedback flow, in which case the

AND join will be waiting for all its inputs to be activated, and this will never happen

in this case. The following is the condition, where functions inputTrans, outputTrans,

betweenare defined in the Maude code files (See Appendix A for details). If the condi-

tion above evaluates tofalse, then the AND join gateway is well-formed in the BPMN

model, otherwise deadlock situations are possible as illustrated in Figure 4.2 (b) and

Figure 4.2 (c).

inputTrans(< G1 : ajoingate | in:(tN1,T1); out:tN3; AS1 >, notrans)

in outputTrans(between(< G1:ajoingate | in:(tN1,T1); out:tN3; AS1 >,

< G2:aforkgate | out:(tN2,T2); AS2 >,

(A,< G2:aforkgate | out:(tN2,T2); AS2 >,

< G1:ajoingate | in:(tN1,T1); out:tN3; AS1 >),

noobject, noobject), (tN2,T2))

Briefly, functionsinputTrans andoutputTrans take an object (or a set of objects)

and returns all the input and the output transitions for all the objects in the set respec-

tively. FunctioninputTrans is defined below. The operatorin is a boolean operator

which takes two sets of transitions and returnstrue if the first set of transition isin the

second set of transitions, otherwise it returnsfalse.

op inputTrans : ObjectSet TransSymbol -> TransSymbol .

eq inputTrans(noobject,T1) = T1 .

eq inputTrans((< X:K | in:T1; AS1 >, A), T2)

= inputTrans(A,(T1,T2)) [owise] .

94

Chapter 4.Semantics Verification 95

4.1.2 XOR Block Structure

The situation is a little bit different in case of XOR block. According to the semantics

of the XOR merge gateway, it is activated if one of its input flows is coming from an

immediate active predecessor object, thus, it does not wait/check other incoming flows.

In Figure 4.3, the XOR split and merge gateways in Figure 4.3 (a) and Figure 4.3 (b)

follow the block structure, however, Figure 4.3 (a) is a forward representation and Figure

4.3 (b) contains feedback flow. In Figure 4.3 (b), the flow willnot deadlock at the XOR

merge gateway as it needs only one active predecessor to activate the merge gateway.

After thatY is activated then the XOR split gateway is activated. At thispoint, two cases

are possible: (1) if the XOR split guard allows the output flowto leave the loop, then

the flow continues normally, or (2) if the XOR split guard allows the feedback flow,

then activityX is activated and after that the XOR merge gateway. These two steps are

repeated successively and the model enters an infinite loop.

(b) W-BPMN

X

Y

(a) W-BPMN (c) Ill-formed

Y

X

Y

X

Figure 4.3: Examples of XOR gateways block structure.

In our semantics, the second case is not allowed by introducing domain-specific rules

for the model semantics, in which the guard condition has a condition which terminates

the loop at certain point. This means that feedback is allowed to happen in the well-

formed BPMN models which applies the block structure for gateways. If we do not use

the XOR gateways block structure, cases like Figure 4.3 (c) is possible, where as a result

of using a feedback flow from an XOR split gateway, an activityX has two input flows,

which violates the well-formed BPMN models definition.

4.1.3 OR Block Structure

OR gateways should be represented in a block structure. In Figure 4.4 (a), the OR

gateways are in forward positioning; i.e. the split gatewayprecedes the merge gateway

95

Chapter 4.Semantics Verification 96

and the two gateways forms the boundaries for the block. Thiscase is well-formed and

does not contain structural errors.

Having feedback in OR gateways is possible in model representations, however, there

should be alimiting condition that prevent the model from entering an infinite loop (e.g. a

vicious circle). Examples of the feedback OR gateway blockscan be found in Figure 4.4

(b) for feedback flow containing an activity and Figure4.4 (c) for feedback flow without

activities. If the split gateway in each case has the guard condition allowing only the

feedback flow, then an infinite loop is entered unless a stopping point is reached (e.g. a

counter is reset) or a new information came available to the OR split gateway to exit the

loop. In more details, the OR merge gatewayg1 will wait to know how many incoming

flows it should expect to synchronize and get activated. Thisinformation comes from its

accompanying OR split gatewayg2. Two examples with three situations are discussed

here and illustrated in Figures 4.4 (b) and 4.4 (c).

(b)

X

Y

(a) (c)

X

Y Y Y

X

(d)

g1 g2 g1 g2

Figure 4.4: Examples of OR gateways block structure.

Case One: in the first attempt,g1 will be active and thenY is activated. This is

followed by activatingg2. If the condition ing2 allows only the feedback flow that goes

as input tog1, theng1 will be active. That is, the feedback flow will be feeding it with

the required input flow forever creating an infinite loop.

Case Two: if the condition ing2 allows only the flow going outside the block, then

theg1 will be active as it gets one input flow from outside the block in the first attempt

and activates activityY, theng2 will be active and the flow proceeds out of the block

successfully. In this case activityX will not be executed in the model in Figure 4.4 (b).

However, there is no necessity to add the OR split and merge gateways in such models,

otherwise an infinite loop is entered if the guard condition allows the feedback flow.

We discussed this case as it may represent an incorrect implementation for the block

structure that may result in an infinite loop.

96

Chapter 4.Semantics Verification 97

Case Three: if the condition ing2 allows both the flow going outside the block,

and the feedback flow, then the merge gatewayg1 knows that it should expect two input

flows to synchronize and be activated. In the first execution attempt,g2 will receive only

one input from outside the block and will be waiting for the second flow to arrive and

this will not happen. A deadlock situation occurs, i.e. the execution of this gateway is

repeated and allow for lack of synchronization.

In Figure 4.4 (d), the absence of a merge gateway to close the block results in an

activity with more than one input, and this is not allowed in awell-formed BPMN model

as discussed before. Moreover, this activityX will need two inputs which will not be

available at the same time; i.e. the incoming flow from outside the block to activityX

and the outgoing flow from the OR split gateway.

In summary, OR gateways should be presented in a block structure in acyclic models

where the feedback flows are not allowed based on the above discussion. One possible

solution for the feedback situation is to replace the OR gateways with XOR gateways

where only one flow is allowed at the split; i.e. either going outside the block or to

feedback with extra guard loop-exit condition . In Chapter 3, OR join gateway semantics

introduced a mechanism that links the join gateway with its split gateway in order to

keep information of how many activated branches should the join gateway waits for to

synchronize. This is still a valid specification for acyclicmodels.

4.2 Deadlock Patterns

As defined in Definition 3.4.5, a BPMN process execution is represented by an execution

path (EP). If the process terminated in a state which is not an end state, then the process

is unsuccessfullyterminated [102, 7].Deadlockis a situation where such behavioural

problem occurs in the business process execution paths. A BPmodel can be designed

with these errors unintentionally and hence includes the possibility of being successfully

terminated in certain cases due to deadlocks [2]. A BP is in a deadlock situation if

a certain state of the model (but not necessarily all) cannotsuccessfully continue its

execution, while it has not yet reached the end state.W-BPMN models which do not have

gateways cannot suffer from deadlocks. Formally, a deadlock state is the state where an

97

Chapter 4.Semantics Verification 98

object that is not an end event is active and it cannot pass theactivation to its successors

due to unwanted (possibly undefined) behaviour. The state will not find a matching rule

left hand side in any of the (defined) semantics behaviour, and therefore the execution

will unsuccessfully terminate.

Definition 4.2.1. (Deadlock): The stateSd ∈ P(O) is a deadlock state iff

(1) it is not an end state; i.e.Sd 6= Se, and

(2) it does not have a successor state (∀r ∈ R(¬∃S′ ∈ P(O)(Sd
r
−→ S′))).

4.2.1 Structural and Domain-Specific Deadlocks

In the following we will distinguish between two types of deadlocks; structural dead-

lock and domain specific deadlocks. In the structural deadlock situations, the cause of

the deadlock is a structural error caused by the improper useof BPMN elements result-

ing in errors. It can be a result of divergence and convergence of the flow in the business

process (i.e. gateways). For example, if a model contains only activities which are exe-

cuted sequentially without restrictions or data objects dependencies, then there will not

be any possibility for deadlocks. However, if the model contains any splitting or merg-

ing behaviour, then the flow is blocked and only being passed through the gateway on

successful evaluation of the the guard expressions. Failure to match the split and merge

gateways of the same type (i.e. block structures introducedin Section 4.1) may result in

gateways waiting for input flows that will not arrive, or gateways where flow is not syn-

chronized. The second type of deadlocks is domain-specific.Since the business process

is well-structured and may be well-formed but still suffer from unsuccessful termina-

tions due to objects waiting for a certain resource (i.e. data object) which has not been

produced, or lack of exceptions definition for possible semantics errors; e.g. a gateway

which all its guard expressions evaluate tofalseand no exceptions are defined as part of

its semantics.

In [69], structural deadlock patternsare classified into five main patterns based on

two concepts; i.e. reachability and absolute transferability. Reachabilitybetween nodes

A and B in a process graph means that there is at least one path from A to B, whileabso-

lute transferabilitystates that a token (work item in [69]) can always be transferred from

98

Chapter 4.Semantics Verification 99

node A to all input points of node B. Thus the absolute transferability reduces reacha-

bility between two nodes if there exist routing control nodes (gateways) in between and

whenever there is a reachability without absolute transferability, there is a chance for a

deadlock [7]. The deadlock patterns according to [69] are explained in terms of AND-

split, AND-join, OR-split gateways and start event in Figure 4.5. In order, the patterns

are: Figure 4.5(a) work item outflow deadlock type-1, Figure4.5(b) work item outflow

deadlock type-2, Figure 4.5(c) work item deadlock type-3, Figure 4.5(d) loop deadlock

type, and Figure 4.5(e), Figure 4.5(f) multiple source deadlock type. The thick lines rep-

resents absolute transferability (AT) and the dotted linesrepresents reachability between

two points in the model.

Reachability

(a)

Reachability

Reachability

Reachability

Reachability

Reachability

(b) (c)

Reachability with AT

(d)

Reachability with AT

Reachability

(e) (f)

Reachability

Reachability

Figure 4.5: Structural deadlock patterns [69]

The first three patterns (a,b,c) in Figure 4.5, represent when the model has an OR-

split gateway which one or more of its outgoing flow has a reachability relation to an

AND-join gateway. The semantics of the OR-split gateway allow for the activation of

one, more, or all of its outgoing flows, while the AND-join semantics enforce the gate-

way to wait until all its incoming flows reached it, i.e. the join gateway will be waiting

for one/more tokens to arrive to it while it is not activated by the OR split gateway from

the beginning. This results in a deadlock situation. This isthe same case in patterns (a),

(b), and (c), no matter how many OR-split outgoing flows are activated, merging them

with an AND-join confuses the execution and the process enters a deadlock state (Sd).

In pattern (d), loop deadlock type, AND-join precedes its split AND-split in the

model, allowing for a feedback flow to take place. The patterndescribes the deadlock

situation where the AND-join is reachable from the AND-split through the feedback

99

Chapter 4.Semantics Verification 100

flow, while the AND-split is reachable from the AND-join through one of its outflows.

The absolute transferability property is held here betweenthe join and fork gateways as

the token moves from the join gateway to all the input points of the fork gateway (which

happens to be one input flow as it is a fork gateway). However, execution wise, the

AND-join gateway will be waiting for the other input flow which will not be active as it

is not part of the loop. In this case the deadlock (Sd) occurs at the AND join gateway.

Finally, patterns (e) and (f) assume a model which has multiple sources for the AND-

join input flows. This may result because the model includes more than one starting

events and one of them is the source for some input flows to the AND-Join (c.f. Figure

4.5 (e)), or one of the AND-join inputs sources from an XOR-split [7] (c.f. Figure 4.5

(f)). In the case of multiple independent start events, it may happen that one of the start

events only is activated and then the AND-join gateway will get only one of its input

flows and will be waiting for the other input while they will not arrive (as their source

event has not been activated), then a deadlock occurs. Similarly, when the input flow for

the AND-join is coming from an XOR-split gateway, that meansthere is a possibility

that the XOR-split activates another output flow and leaves the AND-join waiting for it

input which results in a deadlock situation.

Prepare tax
Report

Prepare no-tax
Report

Review tax
Report

Yes

No

Need
Tax Report

tax Report

no-tax Report

tax Report

send asking for
extra staff

< 5

> 5

No of
requests

Prioratize
Requests

(a) (b)

a2

a1

d1

d2

d1

a3

g1

g2

a1

a2

g1

g2

Figure 4.6: Semantics Deadlock Examples

Domain-specific deadlock patternsmay occur as a result of not considering some

information (e.g. the data objects status change, the guardexpressions and their control

values) used in the real process in the model design. These conditional restrictions are

normally represented in our formalization as domain-specific rules (c.f. Section 3.4.7).

In case of having restrictions on the execution of objects, e.g. an activity which has to

100

Chapter 4.Semantics Verification 101

wait for a report to be available and this report will never beavailable (Figure 4.6), then

a deadlock can occur. The activity will be waiting in a state without a possible state

transformation (i.e. an applicable rewrite rule). For example, in Figure 4.6 (a) an ac-

tivity Review tax Report is waiting for a documenttax Report which will never be

ready. If we represent the process state by the active object(s) it contains and ignor-

ing other inactive objects, we can represent the rewrite steps for the process in Figure

4.6 (a) as follows:S1 : (g1,active)
[XORsplit]
−−−−−→ S2 : {(a2,active),(d1, initial)}

[DSR2]
−−−→ S3 :

{(a2,active),(d2,created)}
[XORmerge]
−−−−−−→S4 : (g2,active)

[Seq]
−−→S5 : {(a3,active),(d1, initial)}

?
−→ Sd where we represent the object identifier (e.g.a 1 in Maude mode) as (a1) in math

mode.

The application of rule[Seq] (introduced in Section 3.4.2) is represented as:

{(X,active),(Y, inactive)}
[Seq]
−−→ {(X, inactive),(Y,active)}

with the left-hand side term as the set of states of the objects participating in the rule, and

the right-hand side term as the set of the resulting objects states. The rules names over

the rewrite arrows are the semantic rules labels from Chapter 3 and the domain-specific

rules (i.e.[DSR1], [DSR2], and[DSR3]) are interpreted as below:

{(a1,active),(d1, initial)}
[DSR1]
−−−→ {(a1,active),(d1,created)},

{(a3,active),(d1,created)}
[DSR3]
−−−→ {(a3,active),(d1, reviewed)},

{(a2,active),(d2, initial)}
[DSR2]
−−−→ {(a2,active),(d2,created)}.

Another possible deadlock situation occurs when a gateway guard has fed with a

value which is not defined in the designed expressions. For example, in Figure 4.6 (b),

the XOR gateway guard checks for the number of certain requests (No. of requests),

if the number is less than five, then the requests will be prioritized, or if they are greater

than five, the responsible is asked tosend for extra staff to assist, then they can

prioritize requests. The deadlock happens if the number of requests is exactly five,

in which case, there is no defined processing for such value and the process terminates

unsuccessfully (S1 : (g1,active)
[XORsplit]
−−−−−→ Sd). The BPMN semantics defined in [68]

defined an exception to be attached to each split gateway in case that the guard condition

did not evaluate to a defined value, i.e. all the guard conditions failed to evaluate totrue.

This type of exceptions is essential to prevent such deadlocks in BPMN models. In

section 3.4.2 and Section 3.4.2, this type of exceptions with the gateway semantics has

101

Chapter 4.Semantics Verification 102

been defined.

wrap the
gift

add a gift
card

dipatch the
gift

Figure 4.7: Lack of Synchronization Example

A related BPMN control flow error is the lack of synchronization. This happens

as a result of having a structural error in the BPMN model which allows for an object

to be activated (executed) more than once without design purpose, i.e. an XOR merge

gateway that merges the flow splitted by an AND fork. For example, in Figure 4.7, the

parallel activitieswrap the gift andadd a gift cardwill be executed concurrently,

however, the first to finish (assume it is activitywrap the gift) will activate the XOR

merge gate and then activate the activitydispatch the gift as the XOR merge needs

one active predecessor to be activated. At the same time, when the other activity (add a

gift card) is completed, it activates the XOR merge gateway again and then activates

the activitydispatch the gift. This means the gift will be dispatched twice, which

is not a desired procedure for the business process. Technically, the synchronization of

the parallel activities failed at the XOR merge gateway.

4.2.2 More Deadlock Patterns with OR gateways

During our work for formalizing the BPMN models and the abovediscussion about the

block structure for the gateways, we found out that there areother patterns which can

cause deadlock to occur in the models including OR gateways.In this section we will

focus on the deadlock situations which the OR gateway may be involved in. Figure 4.8

illustrates these patterns graphically. The first pattern (c.f. Figure 4.8 (a)) describes the

situation where the activityX will need two input flows in order to be active. While this is

not allowed as a well-formed BPMN model, having the OR gateway may seems to make

it a possible implementation, however, it is not as discussed above in Figure 4.4 (d).

The second deadlock pattern in Figure 4.8 (b) represent the feedback situation in an

OR gateway block, which has been already explained in Figure4.4 (b). According to the

102

Chapter 4.Semantics Verification 103

...

X

(a)

...

...

(b) (c)

X

...

...

Figure 4.8: More Deadlock Patterns

OR merge gateway semantics, the gateway is activated when itreceives the same number

of activated input flows as its corresponding OR split gateway activated. In case that the

two output flows are activated by the split gateway, that means the merge gateway will

wait for two incoming flows while it will receive only one fromoutside the block and

unsuccessfully terminates.

The third deadlock pattern in Figure 4.8 (c) in case the exception flow is merged

with the normal flow using an OR merge gateway. Again the specified semantics for the

OR merge gateways assumes the block structure, and the splitgateway is preceding the

merge gateway in execution. In this case, the process will deadlock as the OR merge

gateway will be waiting for the information from its corresponding OR split gateway,

which is missing already from the model.

4.2.3 Relating to The Proposed Formalization

In our proposed formalization, we tried to restrict the resulting models to avoid the dead-

lock patterns discussed above. Table 4.1 summarizes the deadlock patterns and relate

them to significant parts of our formalization. Refer to Definition 3.3.2 and Section 4.1

for more details on the gateways block structure as a syntactic condition for well-formed

BPMN models. Pattern-5 is for multiple sources deadlock type, therefore, a well-formed

BPMN model has only one start event, which avoids the first case in this pattern. More-

over, the gateways are required to be represented in a block structure, i.e. each split

gateway has a companion merge gateway of the same type. This restriction prevents

the deadlock states in Pattern-1, Pattern-2, Pattern-3, and Pattern-6. The condition ex-

plained in Section 4.1 for AND join gateways, that it only accepts input flows from

outside the block is aiming at avoiding Pattern-4. For Pattern-7, the well-formed BPMN

models definition restricts the activities to have only one incoming flow and one outgoing

103

Chapter 4.Semantics Verification 104

Table 4.1: Deadlock Patterns and The Proposed Formalization

Pattern No. Figure Syntactic Condition

Pattern-1 Block structure (same type gateways)

Pattern-2 Block structure (same type gateways)

Pattern-3 Block structure (same type gateways)

Pattern-4 Block structure (AND feedback condition)

Pattern-5 W-BPMN models, Block structure

Pattern-6 Block structure (same type gateways)

Pattern-7
...

X

W-BPMN models, Block structure

Pattern-8
...

...

Block structure, Domain-specific Rules

Pattern-9
X

...

...

W-BPMN models, Block structure

flow, which will avoid such pattern. Pattern-8 is avoidable with if the modeller defines

domain-specific rules that manage the flow in the feedback situations. Finally, Pattern-9

is avoidable through the condition in the well-formed BPMN models that exception flow

is merged with the normal flow using only an XOR merge gateway.

In the next section, we are formally proving the soundness ofthe well-formed BPMN

models based on the classical soundness definition in [92, 102].

104

Chapter 4.Semantics Verification 105

4.3 Soundness

Soundness of workflow models has been proposed as a correctness criterion verifying

different BP formalizations (e.g. [92, 55, 102]). However,there are many different no-

tions of soundness in literature (the interested reader canrefer to [95] for a comprehen-

sive discussion on workflow soundness and its decidability). Discussing the Petri net’s

formalization for workflow models in [92], the authors defined the soundness as a cor-

rectness criterion for the resulting workflow models. This definition was referred to as

theclassical soundnesslater in [95], where the authors distinguished among six differ-

ent notions of soundness in literature. Generally, a business process model is sound if it

can successfully terminate without left over active objects and all the model objects can

be activated in one of the execution traces. The model shouldbe free from errors, e.g.

deadlocks, which cause unplanned termination of the execution.

In [81, 93, 100], the sound model is free from control flow errors. The soundness

can be defined as freedom of deadlock and lack of synchronization. As we explained,

informally, in Table 4.1 in Section 4.2.3, the proposed well-formed BPMN model can

guarantee deadlock freedom and provide mechanisms to avoidlack of structural syn-

chronization.

We are going to use a definition similar to the definition in [92, 102] for classical

soundness to prove that well-formed BPMN models are sound. First, we update our def-

inition of reachability; a state stateS2 is reachablefrom stateS1 if there is an execution

path fromS1 to S2 (i.e. S1
∗
−→ S2)1.

1We use the symbol
∗
−→ to denote a sequence of zero or more rewrite steps, the symbol

+
−→ to denote

a sequence of one or more rewrite steps and the symbol
r
−→ to specify the rewrite ruler is applied in this

step.

105

Chapter 4.Semantics Verification 106

Definition 4.3.1. (Sound): A W-BPMN model is sound iff:

(i) [option to complete] For every stateSreachable from the start stateSs, there exist

an execution path leading from S to the end stateSe; i.e.∀S∈P(O)(Ss
+
−→ S

+
−→ Se),

(ii) [proper completion] If the end event is active, then all other objects are inactive in

the same process state (i.e. process in stateSe); i.e.

(∃(oid,sfo) ∈ S(oid = ObjId(o)∧ObjCid(o) = endEvent∧sfo = active)∧

¬∃(o′id,s′fo) ∈ S(o′id = ObjId(o′)∧s′fo ∈ {active, ready2bActive})∧o 6= o′)

⇒ S= Se,

(iii) [no dead objects] There are no dead objects in the model, i.e. it should be pos-

sible to execute an arbitrary object in the model in one or more of the traces; i.e.

∀(oid,sfo)∈S(∃(o′id,s′fo)∈S′(S
∗
−→R S′∧sfo 6= s′fo) and∀(oid,sdo)∈S(∃(o′id,s′do)∈

S′(S
∗
−→R S′∧sdo 6= s′do).

For proving the soundness of the well-formed BPMN models, wewill define two

models. The first is the behaviouralW-BPMN model which is defined by adding the set of

rewrite rulesR representing its behaviour and the set of process statesP(O). The second

one is an extended behavioural well-formed model to extend the behaviouralW-BPMN

model with a feedback sequence flowtx connects the end object and the start object and

a rewrite rulerx that re-activates the process after it is completed. The setof states for

the extended model is the same for the original model as no newstates are added with

the extension (i.e.P(O) = P(O)).

Definition 4.3.2. (W-BPMNb): A well-formedW-BPMN behavioural model (W-BPMNb) is

a triple (O,R,P(O)) whereO = (OS,T) is a well-formed BPMN model that contains

BPMN objectsOSand the set of their connecting flow transitionsT, R= {r1, . . . , rm} is

a finite set of rewrite rules defined in rewrite theoryR , andP(O) is the set of process

states for the model.

Definition 4.3.3. (W-BPMNb): LetW-BPMNb = (O,R,P(O)) be a well-formed behavioural

model. An extended well-formed behavioural BPMN model (W-BPMNb) is defined as a

triple (O,R,P(O)) whereO = (OS,T ∪ {tx}), R= R∪ {rx}, andP(O) = P(O). The

sequence flowtx is added to link the end object (oe) with the start object (os) and used

106

Chapter 4.Semantics Verification 107

in the soundness proof and rulerx is defined below to deactivate the end object and

reactivate the start object.

rl [rx] :

<< < X : endEvent | active : true ; AS1 > ,

< Y : startEvent | active : false ; AS2 >,A >>

=> << < X : endEvent | active : false ; AS1 > ,

< Y : startEvent | active : true ; AS2 >,A >> .

We define two properties for the well-formed models which arenecessary for the

proof; i.e. live and path-complete properties.

Definition 4.3.4. (Live Property): A W-BPMNb model is live iff, for every stateS, there

is a stateS′ which is reachable in one rewrite step:∀S∈ P(O)(∃S′ ∈ P(O)(∃r ∈ R(S
r
−→

S′))).

Definition 4.3.5. (Complete-Path Property): A W-BPMNb model is path-complete iff it

has at least one complete execution pathcEP 2.

Given that the state space is the same for the modelsW-BPMNb andW-BPMNb, therefore,

the extended execution pathcEP can be defined ascEP = cEP ∪{(Se
rx−→ Ss)}.

For arbitrary well-formed BPMN model and the correspondingextended model, we

prove:W-BPMNb is sound if and only ifW-BPMNb is live and path-complete.

First, we prove the if direction,

Lemma 1. If W-BPMNb is live and path-complete, thenW-BPMNb is sound.

Proof. Let Ss,Se∈ P(O), whereSs is a start state andSe is an end state.

Ss can be rewritten into a stateS1 in one rewrite step, andSe can be a result of rewriting

a stateSn in one rewrite step:

∴ Ss
r1−→ S1 andSn

rm−→ Se.

∵ W-BPMNb is path-complete

∴ ∃es,es′ ∈ EP (source(es) = Ss∧ target(es′) = Se)).

which means(Ss, r1,S1) and(Sn, rm,Se) ∈ EP .

∵ W-BPMNb is live

2Refer to Definition 3.4.6

107

Chapter 4.Semantics Verification 108

∴ ∀S∈ P(O)(∃S′ ∈ P(O)(∃r ∈ R(S
r
−→ S′))).

∴ for an arbitrary stateS(i.e.S/∈ {Ss,Se}), we have(Sk, rk,S)∈EP . (Definitions 3.4.5).

∴ S is reachable fromSs (i.e. Ss
+
−→ S).

Applying the same induction step forSandSe, we getSe is reachable fromS (i.e. S
+
−→

Se).

∵ P(O) = P(O)

∴ ∀S∈ P(O)(Ss
+
−→ S

+
−→ Se) — [Req(i)]

∵ W-BPMNb is path-complete

∴ ∃es,es′ ∈ EP (source(es) = Ss∧ target(es′) = Se)).

∴ Se∈ P(O).

∵ P(O) = P(O).

∴ Se∈ P(O).

∵ cEP = cEP ∪{(Se, rx,Ss)} by definition,

from [Req(i)]: Ss
+
−→ Se, from end state (Se) definition (Definition 3.4.3),

∴ (∃(oid,sfo) ∈ SOS(oid = ObjId(o)∧ObjCid(o) = endEvent∧sfo = active)∧

¬∃(o′id,s′fo) ∈ SOS(o′id = ObjId(o′)∧s′fo ∈ {active, ready2bActive})∧o 6= o′)⇒ SOS=

Se. — [Req(ii)]

∵ W-BPMNb is live

∴ ∀S∈ P(O)(∃S′ ∈ P(O)(∃r ∈ R(S
r
−→ S′))), R= r ∪{rx}

∵ R contains two types of the possible rewrite rules for a modelW-BPMNb; one set of

rules contains the general behaviour rules for flow object (FO) (discussed in Section

3.4.2) and the other contains the domain-specific rules basically for data objects (DO)

(discussed in Section 3.4.7).

∴ ∀(oid,sfo) ∈ S(∃(o′id,s′fo) ∈ S′(S
∗
−→R S′∧sfo 6= s′fo) and∀(oid,sdo) ∈ S(∃(o′id,s′do) ∈

S′(S
∗
−→R S′∧sdo 6= s′do). — [Req(iii)]

From Req(i), Req(ii), Req(iii) and the Soundness definition(Definition 4.3.1),

∴ W-BPMNb is a sound BPMN model.

Lemma 2. If W-BPMNb is sound, thenW-BPMNb is path-complete.

Proof. ∵ W-BPMNb is sound

∴ ∀S∈ P(O)(Ss
+
−→ S

+
−→ Se). — [Req(i)]

if W-BPMNb is not path-complete, then

108

Chapter 4.Semantics Verification 109

¬∃es,es′ ∈ EP (source(es) = Ss∧ target(es′) = Se).

this contradicts the assumption and Req(i) in Definition 4.3.1, which assumes that every

state reachable fromSs belongs to an execution path toSe.

∴ it is not possible thatW-BPMNb is sound and not path-complete at the same time,

So, if W-BPMNb is sound, then it is path-complete.

But cEP = cEP ∪{(Se, rx,Ss)} by definition.

∃cEP ∈ OPaths(∃es,es′ ∈ cEP (source(es) = Ss∧ target(es′) = Se)).

∴ W-BPMNb is path-complete.

∴ if W-BPMNb is sound, thenW-BPMNb is path-complete.

Lemma 3. If W-BPMNb is sound, thenW-BPMNb is live.

Proof. ∵ W-BPMNb is sound

∴ W-BPMNb is path-complete — [Lemma 2]

∴ ∃es,es′ ∈ cEP (source(es) = Ss∧ target(es′) = Se).

∵ W-BPMNb is a well-formed BPMN model by definition

∴ ∃Ss,Se∈ P(O).

∵ P(O) = P(O).

∴ ∃Ss,Se∈ P(O).

∵ W-BPMNb is sound

∴ ∀S∈ P(O)(Ss
+
−→ S

+
−→ Se), — [Req(i) in Definition 4.3.1]

∵ cEP = cEP ∪{(Se, rx,Ss)} by definition

∴ ∀S∈ P(O)(∃S′ ∈ P(O)(∃r ∈ R(S
r
−→ S′)))

∴ W-BPMNb is live — [Definition 4.3.4].

Theorem 1. A behavioural well-formed BPMN model (W-BPMNb) is sound if and only

if (W-BPMNb) is live and path-complete.

Proof. It follows directly from Lemma 1 (the if direction), and fromLemma 2 and

Lemma 3 (the only if direction)

∴ W-BPMNb is sound if and only ifW-BPMNb is live and path-complete.

We have formally proved that the well-formed BPMN models aresound based on

the classical soundness definition for workflow models [92];i.e the well-formed BPMN

models are deadlock-free and do not suffer from lack of synchronization.

109

Chapter 4.Semantics Verification 110

4.4 Chapter Summary

In this chapter we discussed the structural and model-specific errors that leads to dead-

lock situations and hence unsuccessful termination of BPs models. A comprehensive

view on the BPMN models possible structural and semantic errors which may lead to

unsuccessful termination of process through the problems of deadlock and lack of syn-

chronization was introduced. A relevant set of deadlock situations in which OR gateways

are involved are discussed.

Where the soundness can be defined as the absence of deadlocksand lack of synchro-

nization, the proposed semantics showed, informally, thatwell-formed BPMN models

are sound. While following the classical soundness definition, we formally proved that

well-formed BPMN models (W-BPMN) are sound. These two results allowed us to in-

troduce the application side of the semantics in the next chapter. A CMMI compliance

checking problem is introduced and we propose a solution forit using model checking.

110

Chapter 5.BPs Compliance Checking

Chapter 5

Business Processes Compliance

Checking

The problem of checking BPs compliance with certain standard models or requirements

as a model checking problem (Section 5.1) has three main challenges: first, the BP

modelling language discussed in the previous chapter, second, the formal mapping of re-

quirements into property specifications (Section 5.2), andthird, the checking procedure.

In this chapter, we provide the details of the CMMI-CM2LTL procedure and Model

Checking procedure illustrated in Figure 1.1 where the well-formed BPMN models are

checked against the formally represented CMMI-CM requirements. The requirements

are mapped into LTL properties through the use of compliancepatterns [33] (i.e. in-

specting the second challenge) in Section 5.2.3. Based on the fact that Maude has its

own LTL model checker and the reasons of choosing model checking technique men-

tioned in Chapter 1, we use the Maude LTL model checker as the compliance checking

procedure (i.e. tackling the third challenge). In Subsection 5.1.2 two examples are in-

troduced; (1)Release Baseline example introduced in Chapter 3 and (2)EX2, a CM

process based on IBM CCM Process (Tivoli) [3]. Finally, the model checking results are

discussed in Section 5.3.

111

Chapter 5.BPs Compliance Checking 112

5.1 Compliance Checking as a Model Checking

Business process compliance checking has been in the focus for more than two decades

alongside with the rise of software quality assurance and process improvement mod-

els (e.g. [64, 80, 49, 32, 6]). The urgency of studying such verification approaches is

twofold; first, it helps the company to grow based on a solid infrastructure BP which is

flexible enough to cope with the improvements over time, second, it is shown that busi-

nesses whose BPs are not compliant with some standards, regulations or quality mea-

sures may experience some level of failure (e.g. Enron scandal) [32]. As discussed in

Section 2.3.2 and shown in Table 2.2, the CMMI-based compliance checking approaches

(i.e. appraisals) can be expensive in terms of all kinds of cost (i.e. time, effort, labour,

and money). This is due to the checking being dependent on finding the evidences in the

SME that proves that it is following certain practices via locating documents and inter-

viewing employees to reach the affirmations and artifacts proving these aspects. Having

a well-designed BP will allow the appraisal team to step forward and start from the actual

implementation of the process and will not spend the time reviewing the designed pro-

cesses. The output of the compliance checking is supposed togive the formal evidence

for a business process that it obeys the legal, safety, organizational and/or technical re-

quirements of the reference standards and regulations. It shows how the company is

flexible and adaptable in the market in a way that guarantees its sustainability.

Starting from a designed BP, and a set of textual compliance requirements, the prob-

lems becomes to check if the BP is compliant with (i.e.satisfies) these requirements.

As we already have formalized the well-formed BPMN models inChapter 3, then the

requirements should be formally represented into formal properties, and hence could

be checked. This structure of verification approaches is more applicable with model

checking (refer to model checking explanation in Section 2.2.3). Therefore, this compli-

ance checking problem can be dealt with as a model checking problem (e.g. [49, 32, 6])

where the model checking technique can be used to automate the production of such

formal evidences based on the input BP model and properties.

Having the fact that model checkers suffer from some limitations, the majority of

them are not likely to affect the validity of the proposed approach. In the following

points we discuss the known model checking limitations and if they are affecting our

112

Chapter 5.BPs Compliance Checking 113

approach or not.

1. Model checking does not provide correctness proofs, unlike the theorem proving

techniques [9, 46]. The application of model checking on hand does not require

automatic theorem proving. The core task is to check if a BP model satisfies a

property.

2. Completeness of the checked system is not guaranteed [9, 46], as the properties be-

ing checked can only be decided. However, other unchecked properties cannot be

judged. Therefore, the proposed compliance approach provide the mechanism to

choose the relevant properties which are in a process area tocheck. This produces

convenient results to the compliance checking problem withthe need to know only

the satisfaction status.

3. In case of infinite-state systems, abstraction is needed to be applied to the original

system to get a relatively finite-state model to be checked. There is still a possi-

bility that the abstraction process is not accurate enough to represent the original

model [9, 46, 20]. Moreover, abstractions needs experts to perform them,

4. State-explosion problem [19] forms an issue for model checking big models. In

some models, when the number of the states increases, the complexity of the ver-

ification procedure used in the model checker increases [9, 46] making it impos-

sible to be operated with computer memory [19]. There are methods that have

been developed to overcome this problem (e.g. [71, 36]), however, realistic mod-

els, possibly BP models, may still suffer from it. There is still the fact that a

SME’s BP is usually divided into (possibly cooperating) small processes which

model different aspect of work being conducted in the SME to produce a product

or a service. Moreover, the compliance requirements are classified into process

areas to facilitate the focus, applicability and organization of the related require-

ments for a specific BP area. Therefore, on checking the BP(s)compliance with

requirements, we do not expect models to suffer from state space explosion.

113

Chapter 5.BPs Compliance Checking 114

5.1.1 Predicates

The set of predicatesΠ is used for defining the queries about the model (i.e. representing

the properties). Here we present the predicates that we usedin the properties afterwards.

• executed: for the active state of an activity (i.e.executed(name(o)) = true iff

∃(oid,sfo) ∈ S(oid = ObjId(o)∧o∈ FO). The function (name: Oid → String) is

defined to take an object identifier and returns its name. The Maude definition for

the function specifies that the function takes an object nameand retrievestrue in

case it is executed in one of the process states.

op executed : String -> Prop .

eq (CVcol * << < X : K | name : PN1 ; active : true ; AS1 >, A >>)

|= executed (PN1) = true .

• status: for the data object status. Data objects change their status during the

process execution, and sometimes the status change can be anevidence of certain

execution steps (i.e.status(name(ObjId(o)),sdo) = true iff ∃(oid,sdo) ∈ S(oid =

ObjId(o)∧o∈ DO). In the Maude definition below, the operatorstatus takes a

data object name and status, then returnstrue if the state space contains a state in

which this data object has this status (i.e.DOS).

op status : String DOstatus -> Prop .

eq (< d N1 : DT | name : S1 ; status : DOS ; AS1 >, A)

|= status (S1, DOS) = true .

• conditionGuard: for a control value which is used in the process execu-

tion (i.e. if a certain decision is made during the process execution). The op-

eratorconditionGuard takes the control value and returnstrue if a split gate-

way has it as its assigned control value (i.e. the corresponding guard expres-

sion evaluated to true). Letcv be a control value for some decision gateway

object o ∈ G, thenconditionGuard(cv) = true iff ∃(oid,sfo) ∈ S(∃o ∈ G(oid =

ObjId(o)∧ sfo = active∧ cv∈ controlValues(o)). The function (controlValues:

Object→ ControlValue) takes the gateway object and retrieves its assigned con-

trol values.

114

Chapter 5.BPs Compliance Checking 115

op conditionGuard : ControlValue -> Prop .

eq << < G1 : xsplitgate | controlValues : (CVs1 .. CVs2) ; AS1 >, A >>

|= conditionGuard(CVs1) = true .

eq << < G1 : osplitgate | controlValues : (CVs1 .. CVs2) ; AS1 >, A >>

|= conditionGuard(CVs1) = true .

• The false case for the predicates propositions is defined as theotherwise

equation.

eq TO |= PR = false [owise] .

For example if the property requires that an object with name: "Release Baselines")

is being executed in a certain state, then the unary predicate executed will be used as

follows: executed("Release Baselines"). As a binary predicate example, we use

status, which takes the data object name and status. For the data objectCRwith a sta-

tusopen, the predicate should be:status ("CR", open). We use the introduced predi-

cates in formalizing the properties in LTL as will discussedbelow. This is to demonstrate

the applicability of the proposed business process formalization in checking their com-

pliance with standard process improvement requirement (e.g. CMMI).

The state predicates are typically not related to the semantics of the business process

models, however, they represent certain states of the system specified by the modelM

and they are used to specify some properties [20], hence theyare part of the property

specification. For this purpose, the moduleM-PREDS is designed toprotect the well-

formed BPMN semantics (in moduleBPMN-SEMANTICS) and toincludethe Maude’s pre-

definedSATISFACTION module. The later defines the satisfaction relation semantics for

a model and LTL properties.

mod M-PREDS is

protecting BPMN-SEMANTICS .

including SATISFACTION

The moduleSATISFACTION, below, defines the satisfaction relations (operator_|=_),

wherestate andProp are unspecified sorts andBool is for the sort of boolean values

which will hold the answer from the property checking. The operator has the attribute

115

Chapter 5.BPs Compliance Checking 116

frozen which indicate that are no sub-terms included into the term can be evaluated

using this operator.

fmod SATISFACTION is

protecting BOOL .

sorts State Prop .

op _|=_ : State Prop -> Bool [frozen] .

endfm

In Maude’s notation, the model checker uses the following command to check if the

property is satisfied in the model.

reduce in 〈ModuleName〉 : (modelCheck〈InitialState〉, 〈LTLproperty〉)

The commandmodelCheck takes the initial state of the system (initial), where the

process isinactiveand the LTL formula for the property. The model checker is then

perform an extensive state space search for the negation of the property. If a matching

for the negation is found, then it returns one trace of stateswhich starts by the initial state

and ends with the state where the property is violated (i.e. acounterexample). Otherwise,

it returnstrue indicating that the available finite state space does not include any state

which violates this property.

5.1.2 BPs Model Examples (System Specifications)

Well-formed BPMN models introduced in Chapter 3 represent the system specifications

for the compliance problem we address. Recall the example "Release Baselines" which

was introduced in Chapter 3 with Figure 5.1. The model represents a sub-process of the

CM process in a software company. It acts as the model specifications specified by the

rewrite theoryR earlier in Chapter 3, while the property specificationsϕ are modelled

from the CMMI best practices [22] as explained later in Section 5.2.

Another example of the CM process (EX2) is the one represented in Figure 5.2,

which is our interpretation for the IBM Change and Configuration Management in Tivoli

[3]. We used the IBM online materials1 for the IBM CCM process included in the

Tivoli tool to produce the BPMN example below. The Change andConfiguration Man-

agement process contains two sub-processes:Update CIs sub-process andAudit CIs

1Documentation can be found in: [3]

116

Chapter 5.BPs Compliance Checking 117

Release
Baseline

Make baseline
available to read

Retrieve CI

Choose CR Open CR

YES

NO

Authorized?

 CR

CI doc.

Baseline Baseline

e1
Check

Authorization

a1

Authorization
List

e 2

Document CI

CI doc.

Change CI Close CR

CR

 CR
MoreCRs?

MoreCRs?

YES

YES

NO

NO

g2

YES

NO

authorized
 CR?

CRg1

t1

d1

g9

CI doc.

Figure 5.1: EX1 : Release Baseline Model

sub-process. The first starts with validating a received change requestCR. If it is valid,

theCR is open and the included changes are prioritized, the relativeCI doc is retrieved

and updated, then theCR is closed. Otherwise, if theCR is not valid, then it is simply

closed. In the second sub-process, anAudit document is open, the stakeholders are

informed of either the change or invalidity of the request. Upon this, the audit is inves-

tigated for variances (e.g. inconsistencies). On acting onvariances, the relativeCI doc

is retrieved and the variances are specified. If the validated values are consistent with

the actual values, then another check is conducted if the configuration item is protected

then a problem in audit is reported, or if they are not protected, then the changes in the

CI doc are documented. In both cases, a reportAct-on-variance Report is created.

After that the audit document is reported and closed. Finally, in the main process, the

Baseline document is released.

The example EX2 is modelled in BPMN in Figure 5.2. The data objects status

changes are as follows: change request document (CR: initial -> open -> closed),

the audit document which is created at run time (Audit: open -> closed), the baseline

document which is created at run time (Baseline: initial -> released), the config-

uration item document (CI doc: initial -> inUse -> updated -> documented), the

variance handling document which is created at run time (Act-on-Variance Report:

created). The full Maude representation and the corresponding domain specific rules

117

C
h

ap
ter

5
.B

P
s

C
o

m
p

lia
n

ce
C

h
e
ckin

g
1

1
8

Audit CIs subprocess

Create
Audit

Inform
stakeholders

Investigate
Results

Close
Audit

Audit
[closed]

Audit
[open]

Update CIs Subprocess

Validate
CR

Prioritize
Changes

Retrieve CI Change CI Close CR

CR
[closed]

Update CI Audit CI

CR
[open]

Verify CI
existence

Determine
variances

Report
Problem in
Actual CI

Document
CI

Report
Results

Act-on-Variance
Report

[created]

inconsistent

consistent

ProtectedCIs?

Yes

No
CI doc

[updated]

CI doc
[documented]

CR
[open]

CI doc
[updated]

AuthorizedCR?

No

Yes

CI doc
[inUse]

ValidatedvsActual?

Audit
[closed]

Release Baseline

Baseline
[released]

variances?

No

Yes

Figure 5.2: EX2 : An interpretation for IBM CCM Process

1
1

8

Chapter 5.BPs Compliance Checking 119

(DSR) for this example is given in the attached Maude code files (See Appendix A for

details). We will refer to this example asEX2 in the following discussion.

5.2 Property Specifications

In this section, we introduce the Linear Temporal Logic notation, in Section 5.2.1, which

we use in defining the properties later. The CMMI Configuration Management process

area requirements are formalized in LTL in Section 5.2.3 proposing an application of the

BPMN semantics introduced in Chapter 3 and the predicates defined in Section 5.1.1.

The approach uses Maude’s LTL model checker to perform the compliance checking

after that in Section 5.3.

In order to formalize the mapping from the CMMI requirementsinto LTL proper-

ties, we are using the Compliance Request Language (CRL) [32], where the compliance

constraints are represented bycompliance patternsbased on the property specification

patterns for finite-state verification in [29]. The compliance patterns are classified into

four sub-classes of patterns, namelyatomic, resource, composite, andtimed. As long

as we are not considering the timed (i.e. intotimedpatterns) and collaboration (i.e. into

resourcepatterns) properties of BPs in this stage of formalization,we will focus on the

atomic and composite patterns in mapping the CMMI requirements into LTL properties

as will be discussed in the Sections 5.2.3. First, we introduce the LTL in Section 5.2.1,

and second, the atomic and composite patterns in Section 5.2.2 followed by the mapping

rules from atomic patterns to LTL. Third, in Section 5.2.3, the CMMI properties are

formalized using the compliance patterns and then mapped into LTL properties.

5.2.1 Linear Temporal Logic (LTL)

Temporal logic is used to specify properties related to infinite behaviour; e.g. a behaviour

that depends on certain object state occurrence or disappearance through the traces. It

allows specification of properties such as safety properties (ensuring that something bad

never happens) and liveness properties (ensuring that something good eventually hap-

pens). There are different temporal logics that are used to reason about temporal prop-

erties for systems [18, 96]; we focus on linear temporal logic [18, 52], because of its

119

Chapter 5.BPs Compliance Checking 120

intuitive appeal [96, 6, 32], widespread use, and well-developed proof methods and de-

cision procedures [20].

Although they are expressively incomparable as they represent two distinct views

of time, an interesting comparison between Linear TemporalLogic (LTL) and Compu-

tational Tree Logic (CTL) has been introduced in [96]. The study shows that on the

verification side, CTL is more difficult than LTL due to the branching nature of CTL.

However, the main advantage of CTL over LTL is its computational complexity [96, 32].

In [96], the author argued that this advantage for CTL is valid under worst case scenarios,

which are unlikely in real life applications. In [32], the author provided a comparison

between different logics used in defining the compliance requirements and argued that

using LTL is preferable agreeing with [96] and in order to address the usability concern

of LTL, they introduced the Compliance Request Language (CRL) [32] as a high-level

pattern-based specification language that enables the abstract specification of legal and

organizational compliance requirements. In addition, theapproach in [6] was designed

to use the Past Linear Temporal Logic (PLTL), i.e. PLTL extends the LTL to allow for

representing the past events, as property specification language beside representing the

compliance requirements patterns using a graphical query language (Q-BPMN).

As we are focusing on the compliance problem, and due to the domain of compli-

ance requirements as CMMI which is more concerned with process improvement more

than the legal and contractual aspect of the business, we aregoing to use the LTL as

the property specification language. Moreover, Maude has its own LTL model checker

which accepts Maude modules as system modules and LTL formulae as properties.

An LTL formula consists of: the atomic propositions (state labels p ∈ AP), the

Boolean connectors (like conjunction∧, and negation¬), and two basic temporal modal-

ities (© or next) and (U or until) [9].

Definition 5.2.1. (Abstract Syntax of LTL) LTL formulae over the set ofAPof atomic

proposition are formed according to the following grammar:ϕ ::= ⊤ | ⊥ | p | ϕ1∧ϕ2 |

ϕ1∨ϕ2 | ¬ϕ | ©ϕ | ϕ1Uϕ2 | ϕ1 → ϕ2 | ♦ϕ | �ϕ | ϕ1Rϕ2 | ϕ1Wϕ2 wherep∈ AP

Most of the LTL boolean and temporal connectives can be defined in terms of the

minimal set of connectives (⊤, p, ¬ϕ, ϕ1∨ϕ2, ©ϕ, ϕ1Uϕ2) as explained above. Some

temporal properties are:

120

Chapter 5.BPs Compliance Checking 121

• Safety properties: something bad will not happen. For example,

�¬(status(”CR” ,closed)∧ status(”CR” ,open)) specifying that for a change re-

quest CR data object status will not be open and closed at the same time.

• Liveness properties: something good will happen. For example,

♦executed(”CheckAuthorization”), for specifying that Authorization checking will

eventuallybe executed.

• Fairness properties: if something is attempted arbitrarily infinitely often, then it

must eventually succeed, e.g.�♦status(”CR” ,open)→ �♦status(”CR” ,closed)

to specify that whenever generally eventually a change request is open, it is gen-

erally eventually closed.

The goal is to check if the model satisfies each property by solving the satisfiability

relation (Equation 2.1) using Maude’s LTL model checker. Inthis work, we use the LTL

to formalize the properties of the CMMI requirements in order to check them against the

well-formed BPMN model representing the configuration management process area.

5.2.2 Compliance Patterns

Based on [29, 64, 33],atomic patternsare used to describe the requirements that involve

basic occurrence and ordering of BP elements, whilecomposite patternsare used to en-

able nesting of multiple patterns, i.e. complex requirements, through the Boolean logical

operators (Not, And, Or, Xor, Imply, and Iff). For example,P CoExists Qpattern is an

Imply composition ofP ExistsImplies Q Exists, which indicates that the presence of

P mandates thatQ is also present, givenP, Q, S, andT as operands representing a BP

element, which is then put into a suitable predicate to buildthe LTL formulae. Table 5.1

summarizes a relevant subset of the compliance patterns developed in [29, 33] and the

mapping from these patterns into LTL formulae whereP, Q, S, andT are operands that

indicate BP elements (e.g. activity, data object).

In Table 5.1, the following are occurrence atomic patterns;P isUniversalpattern

specifies thatP should always hold throughout the BP model, andP Existspattern spec-

ifies thatP must hold at least once within the BP model. The second set of patterns are

the order atomic patterns, and they appear in Table 5.1 as,P Precedes Qpattern which

121

Chapter 5.BPs Compliance Checking 122

Table 5.1: Compliance Patterns Mapped into LTL [29, 33]

Compliance Pattern LTL Formula

Atomic Patterns: Occurrence Patterns

P isUniversal[29] �P

P Exists[29] ♦P

Atomic Patterns: Order patterns

P Precedes Q[29] ¬Q W P

P Precedes(S,T) [33] (♦(S∧O♦T))→ (¬S U P)

(S,T) Precedes P[33] (♦P → (¬P U (S∧¬P∧O(¬PUT)))

P LeadsTo Q[29] �(P→ ♦Q)

Composite Patterns

P CoExists Q[33] ♦P→ ♦Q

indicates thatQ must always be preceded byP, P Precedes(S,T) (orChain−Precedes)

pattern specifies that a sequence ofS,T must be preceded byP, whileP, (S,T) Precedes

P (another form ofChain−Precedes) pattern indicates thatP must be preceded by a

sequence ofS,T, andP LeadsTo Qpattern indicates thatP must always be followed by

Q. The third set of patterns are the composite patterns, wheretwo or more of the atomic

patterns are used to represent them, such as:P CoExists Qpattern requires that presence

of P mandates thatQ is also present.

An expression built from compliance patterns and operands has a direct mapping

to LTL formulas [33]. The formal description of the CRL grammar defining its syntax

can be found in [32]. The second column in Table 5.1 gives a brief idea about the

mapping from the compliance patterns into LTL formulae which are used to formally

present the CMMI-CM requirements into LTL properties. In the next subsection, we

introduce a novel mapping from the CMMI-CM requirements into LTL formulae through

the compliance patterns introduced in this subsection.

122

Chapter 5.BPs Compliance Checking 123

5.2.3 CMMI-CM in LTL

In this subsection, the CMMI Configuration Management (CMMI-CM) process area re-

quirements are interpreted using the compliance patterns introduced in Section 5.2.2,

and then mapped into LTL formulae according to the mapping represented in Table 5.1.

CMMI-CM has three specific goals (i.e. SG1, SG2, and SG3) and seven specific prac-

tices (i.e. SP1.1, SP1.2, SP1.3, SP2.1, SP2.2, SP3.1, and SP3.2). The requirements

considered below are the sub-practices under each specific practice and acting towards

fulfilling one of the specific goals2. The numbers in the parentheses are references to

the source in [21], for example, (1.2.3) refers to the first specific goal, second specific

practice, and third sub-practice in CM Process Area. In the following, the CMMI-CM

requirements are categorized according to their specific practice and addressing related

elements in the model.

In Table 5.2, a subset of the sub-practices under SP1.1, SP2.2, SP3.1 and SP3.2

which are related to the CI document statuses in the process are modelled using compli-

ance patterns and then mapped into LTL formulae. The first setof these requirements

specifies theexistenceof a list of activities regarding identifying the CI by selecting

them based on pre-defined criteria, assigning them IDs, specifying their key feature,

when they should enter the Configuration Management System (CMS), the stakeholders

and owners involved, and define the relationships among the existing CIs. Therefore,

they are represented usingExistspattern for each one of them with the conjunction of

their existence predicates. The second set of requirementsexplains the need to docu-

ment the CIs every time they are used, which is modelled usingLeadsTopattern. The

third set of requirements specifies that each CI included in the baseline should be recog-

nizable (i.e. documented into the CMS). TheCoExistspattern is used here to emphasis

on the necessity of the existence of both operands, i.e. the documented CI and the ac-

tivity of releasing baseline. Finally, the fourth set of practices specifies the ability to

retrieve and change CIs before they are documented. Therefore, they are represented

using theChainPrecedespattern to identify that the CIs are retrieved, changed and then

documented.
2More details about the CMMI-CM can be found in Appendix B, where we attach the CM section in the

CMMI-DEV 1.3 document [21] for the reader reference for the sake of making this thesis self-contained.

123

Chapter 5.BPs Compliance Checking 124

Table 5.2: CMMI-CM CI Requirements mapped using compliancepatterns

CMMI-CM Requirements Elements Involved

(1.1.1) Select CIs based on the pre-defined criteria. IdentifyCIs

(1.1.2) Assign unique identifiers to CIs. AssignCIids

(1.1.3) Specify the important characteristics of each CI.SpecifyCharacteristics

(1.1.4) Specify when each CI is placed under CMS. SpecifyDate

(1.1.5) Identify the owner responsible for each CI. IdentifyOwners

(1.1.6) Specify relationships among CI. DefineRelationships

Pattern-based Expression: Identi f yCIsExists∧ AssignCIidsExists∧

Speci f yCharacteristicsExists∧ Speci f yDateExists∧ Identi f yOwnersExists

∧ De f ineRelationshipsExists

LTL(1) : ♦executed(Identi f yCIs) ∧ ♦executed(AssignCIids) ∧

♦executed(Speci f yCharacteristics) ∧ ♦executed(Speci f yDate) ∧

♦executed(Identi f yOwners) ∧ ♦executed(De f ineRelationships))

(2.2.3) Check in and check out CIs in the CMS. CIdoc:inUse

(3.1.6) Revise the status of each CI. CIdoc:documented

(3.2.2) Confirm that CM records correctly identify CIs.

Pattern-based Expression: (CIdoc,inUse)LeadsTo(CIdoc,documented)

LTL(2) : �(status(CIdoc,inUse)→ ♦status(CIdoc,documented)

(3.1.1) Record CM actions so each CI’s status is known.
CIdoc:documented

ReleaseBaseline

Pattern-based Expression: (CIdoc,documented)CoExistsReleaseBaseline

LTL(3) : ♦status(CIdoc,documented)→ ♦executed(ReleaseBaseline)

(1.2.2) Store and retrieve CIs in a CMS. RetrieveCI

(1.2.5) Store and recover archived versions of CIs. ChangeCI

(1.3.3) Document the set of CIs that are in a baseline. DocumentCI

Pattern-based Expression: (RetrieveCI,ChangeCI) ChainPrecedesDocumentCI

LTL(4) : ♦ executed(DocumentCI) → (¬executed(DocumentCI) U (executed(RetrieveCI)

∧ ¬executed(DocumentCI) ∧ O(¬executed(DocumentCI) U executed(ChangeCI))))

124

Chapter 5.BPs Compliance Checking 125

In Table 5.3, a subset of the sub-practices under SP1.2, SP1.3 and SP2.2 which are

related to obtaining authorized access before releasing baselines. The requirements are

represented using compliance patterns and then mapped intoLTL formulae. These prac-

tices specify the necessity of having the appropriate authorized access in order to be able

to create or release the CIs baselines. Therefore, they are represented using thePrecedes

pattern to identify that the CIs baselines are created or released only if the appropriate

authorized access is granted. The second set of requirements specifies that authoriza-

tion to change CIs is followed by being able to share the information that a CI is being

used/updated in the CMS. Hence, theLeadsTopattern in used to model this requirement.

Table 5.3: CMMI-CM Access Requirements mapped using compliance patterns

CMMI-CM Requirements Elements Involved

(1.2.1) Establish a mechanism to manage control levels. Authorized?,YES

(1.2.3) Provide access control to CMS. ReleaseBaseline

(1.3.1) Obtain authorization before releasing baselines.

(2.2.2) Obtain authorization to enter changed CIs into CMS.

Pattern-based Expression: (Authorized?:YES)PrecedesReleaseBaseline

LTL(5) : ¬ executed(ReleaseBaseline) W conditionGuard(Authorized? : "YES")

(1.2.4) Share and transfer CIs in the CMS.
Authorized?,YES

CIdoc:inUse

Pattern-based Expression: (Authorized?:YES)LeadsTo(CIdoc,inUse)

LTL(6) : �(conditionGuard(Authorized?, "YES")→ ♦status(CIdoc,inUse))

Table 5.4 presents two subsets of the sub-practices under SP1.3, and SP3.1 which

are related to baselines. The first set of requirements is considering that documenting

the CIs into the CMS must exist and releasing the related baseline exists. The second set

of requirements in the table refer to the fact that the released baseline should be made

readily available for stakeholders. The requirements are represented using compliance

patterns and then mapped into LTL formulae. Therefore, the first set are represented

using theCoExistspattern to identify that the documenting CIs mandates the releasing

of the updated baseline. For the second set of requirements,theLeadsTopattern is used

125

Chapter 5.BPs Compliance Checking 126

to specify that releasing a baseline should be followed by making it accessible for the

relevant stakeholders.

Table 5.4: CMMI-CM Baseline Requirements mapped using compliance patterns

CMMI-CM Requirements Elements Involved

(1.3.2) Release baselines only from CIs in the CMS. ReleaseBaseline

(3.1.3) Identify the version of CIs in a particular baseline. DocumentCIs

Pattern-based Expression: (DocumentCIs) CoExistsReleaseBaseline

LTL(7) : ♦executed(DocumentCI) → ♦executed(ReleaseBaseline)

(1.3.4) Make the current set of baselines readily available. MakeBaseline

(3.1.2) Ensure that relevant stakeholders have access to CIs. Available

(3.1.5) Specify the latest version of baselines. Baseline,released

(3.1.4) Describe differences between successive baselines.

Pattern-based Expression:(Baseline,released)LeadsToMakeBaselineAvailableToRead

LTL(8) :� (status(Baseline,released)→ ♦ executed(MakeBaselineAvailableToRead))

In Table 5.5, four subsets of the sub-practices under SP2.1,SP2.2, and SP3.2 which

are related to the change requests (CR) are mapped. The first set specifies that each

opened CR should be closed later in the BPs. This is modelled using the patternLeadsTo

and mapped into the corresponding LTL formula. The second set of requirements in the

table refer to that releasing baseline must always be preceded by validating the CR as

an authorized CR. It is modelled usingPrecedespattern. The third set of requirements

represents the necessity of prioritizing the available CRs, and hence, modelled using

Existspattern and mapped into the LTL formula shown in the table. The final require-

ment specifies that opening a CR leads to investigating the variances of the updated CIs.

Therefore, theLeadsTopattern is used.

In Table 5.6, a subset of the sub-practices under SP1.2, SP2.2 and SP3.2 which are

related to the audit document is modelled. They are specifying that an audit document

should be tracked from opening until closure in the CMS. The audit normally contains

information documenting, evaluating, and confirming the CIstatus in the CMS. The

audit requirements are represented usingLeadsTopattern and then mapped into LTL

formulae to identify that the an audit document should be closed after it is opened.

126

Chapter 5.BPs Compliance Checking 127

Table 5.5: CMMI-CM CR Requirements mapped using compliancepatterns

CMMI-CM Requirements Elements Involved

(2.1.1) Initiate and record CRs in the CMS. CR,open

(2.1.5) Track the status of CRs to closure. CR,closed

(2.2.1) Control changes to CRs in its lifecycle.

Pattern-based Expression: (CR,open)LeadsTo(CR,closed)

LTL(9) : �(status(CR,open)→ ♦status(CR,closed))

(2.1.2) Analyze the impact of CRs. AuthorizedCR?:YES

(2.1.4) Review CRs with relevant stakeholders. ReleaseBaseline

Pattern-based Expression: (AuthorizedCR?:YES)PrecedesReleaseBaseline

LTL(10) :¬executed(ReleaseBaseline) W conditionGuard(authorizedCR?:YES)

(2.1.3) Categorize and prioritize CRs. PrioritizeChanges

Pattern-based Expression: PrioritizeChangesExists

LTL(11) : ♦executed(PrioritizeChanges)

(3.2.4) Confirm the correctness of approved CRs.
CR:open

InvestigateResults

Pattern-based Expression: (CR,open)LeadsToInvestigateResults

LTL(12) :�(status(CR,open)→ ♦executed(InvestigateResults))

Table 5.6: CMMI-CM Audit Requirements mapped using compliance patterns

CMMI-CM Requirements Elements Involved

(1.2.7) Create CM reports from the CMS. Audit:open

(2.2.5) Record changes to CIs and reasons for them.Audit:closed

(3.2.6) Track action items from the audit to closure.

Pattern-based Expression: (Audit,open)LeadsTo(Audit,closed)

LTL(13) : �(status(Audit,open)→ ♦status(Audit,closed))

127

Chapter 5.BPs Compliance Checking 128

In Table 5.7, a subset of the sub-practices under SP1.2, SP2.2 and SP3.2 which is

related to the variance handling is modelled. The first set ofrequirements specifies

the necessity of working on the variances once they are occurin order to preserve the

structure of the CMS components. Therefore, theLeadsTocompliance pattern is used to

represent that determining the variances should follow deciding the existence of them.

The second set of requirements specifies that once a change request is open, then the

variances are investigated for the possible solutions. ThepatternPrecedesis used to

model the requirement and the corresponding LTL formula is produced.

Table 5.7: Variance Handling Requirements mapped using compliance patterns

CMMI-CM Requirements Elements Involved

(1.2.8) Preserve the contents of CMS. variances?:Yes

(1.2.9) Revise the CM structure as necessary. DetermineVariances

(3.2.5) Confirm compliance with standards.

Pattern-based Expression: (variances?:Yes)LeadsToDetermineVariances

LTL(14) :�(conditionGuard(variances:Yes)→ ♦executed(DetermineVariances))

(2.2.4) Ensure changes have not compromised CMS.CR,open

(3.2.1) Assess integrity of Baseline. InvestigateResults

(3.2.3) Review the structure and integrity of CMS.

Pattern-based Expression: (CR,open)PrecedesInvestigateResults

LTL(15) : ¬ executed(InvestigateResults) W status(CR,open)

The property specifications (ϕ) for the CMMI-CM requirements are now mapped

into LTL. In the following section, they are checked againstthe example models (EX1

in Figure 5.1, and EX2 in Figure 5.2) and the results are discussed. Notice the numbers

beside LTL in the Tables 5.2, 5.3, 5.4, 5.5, 5.6, 5.7 is referring to the property number

which will be used to link the results with the correspondingLTL property. Therefore,

the plan is to check if the model satisfies each property in (ϕ) by solving the satisfiability

relation (Equation 2.1) using Maude’s LTL model checker. A list of the above LTL

properties is given in Table 5.8.

128

Chapter 5.BPs Compliance Checking 129

Table 5.8: CMMI-CM Requirements into LTL

CMMI-CM Requirements

Configuration Items Requirements

LTL(1) : ♦executed(IdentifyCI) ∧ ♦executed(AssignCIid) ∧

♦executed(SpecifyCharacteristics) ∧ ♦executed(SpecifyDate) ∧

♦executed(IdentifyOwners) ∧ ♦executed(DefineRelationships))

LTL(2) : �(status(CIdoc, inUse) → ♦status(CIdoc,documented)

LTL(3) : ♦status(CIdoc,documented) → ♦executed(ReleaseBaseline)

LTL(4) : ♦ executed(DocumentCI) → (¬executed(DocumentCI) U

(executed(RetrieveCI) ∧ ¬executed(DocumentCI) ∧ O(¬executed(DocumentCI)

U executed(ChangeCI))))

Access Control Requirements

LTL(5) : ¬ executed(ReleaseBaseline) W conditionGuard(Authorized?: ”YES”)

LTL(6) : �(conditionGuard(Authorized?: ”YES”) → ♦status(CIdoc, inUse))

Baselines Requirements

LTL(7) : ♦executed(DocumentCI) → ♦executed(ReleaseBaseline)

LTL(8) : �(status(Baseline, released)→ ♦ executed(MakeBaselineAvailableToRead))

Change Requests Requirements

LTL(9) : �(status(CR,open) → ♦status(CR,closed))

LTL(10) : ¬executed(ReleaseBaseline) W conditionGuard(authorizedCR?: ”YES”)

LTL(11) : ♦executed(PriotarizeChanges)

LTL(12) : �(status(CR,open) → ♦executed(InvestigateResults))

Audit Requirements

LTL(13) : �(status(Audit,open) → ♦status(Audit,closed))

Variance Handling Requirements

LTL(14) : �(conditionGuard(variances: ”Yes”) → ♦executed(DetermineVariances))

LTL(15) : ¬ executed(InvestigateResults) W status(CR,open)

129

Chapter 5.BPs Compliance Checking 130

5.3 Model Checking Procedure

For the CM process area, satisfying all the included specificgoals supports, along with

other CMMI process areas (which are not discussed in this work), granting maturity level

2 (ML2) to the process. Hence the requirements for configuration management should

be satisfied by the BP model according to the proposed requirement grading scheme. In

this section, we discuss the results of checking the properties formalized in Section 5.2.3

against the two introduced example models (i.e. EX1 and EX2). A compliance grading

scheme is introduced to explain the model checking results according to the domain of

application (i.e. CMMI-CM compliance checking). Based on considering compliance

checking a model checking problem (c.f. Section 5.1), the relationM |= ϕ simulates the

formal checking process. In the following, we introduce thecompliance grading scheme

to interpret the results in Subsection 5.3.1. After that we discuss some features of the

properties which might affect the model checking results inSubsection 5.3.2.

5.3.1 Compliance Grading Scheme

For the purpose of identifying the compliance results, we introduce the following re-

quirements satisfaction grading scheme. It is summarized in Table 5.9, where each LTL

property has been assigned a weight based on the number of sub-practices it represents

based on the mapping presented in Tables 5.2, 5.4, 5.3, 5.6, 5.5, 5.7. If the summation

of the total weights of the properties which the model scoresless than 12 points, then

the model isNot Compliant, if between 12 and 24, then the model isPartially Com-

pliant, if between 25 and 35, then the model isLargely Compliant, and if at least 36

point of weights are gained, then the model isFully Compliant. The total number of

Table 5.9: Requirements Satisfaction Grading Scheme

Grade Label Grade% Grade Points Explanation

Fully Compliant 90%-100% at least 36 weight points

Largely Compliant 60%-less than 90% 25-35 weight points

Partially Compliant 30%-less than 60% 12-24 weight points

Not Compliant 0%-less than 30% less than 12 weight points

130

Chapter 5.BPs Compliance Checking 131

sub-practices in the CMMI-CM process area is 41 sub-practice. Hence, we can con-

clude that if a modelM satisfies the property LTL(2), then it will score 3 weight points.

The total number of weight points a model scores determines which compliance grade it

should be assigned based on Table 5.9.

5.3.2 Spurious Properties

The result of model checking is eithertrue or a counterexample. In the first case (i.e.

true), the propertyϕ is satisfied by the modelM. The other case (i.e.counterexample)

specifies that the propertyϕ is not satisfied by at least one trace of the modelM exe-

cution. In this work, the first case can be interpreted as a positive property compliance

indicator while the other case can be interpreted as a negative property compliance indi-

cator. Therefore,M |= ϕ results intrue can be explained as : the modelM is compliant

with the requirement formally represented asϕ. Similarly, M 6|= ϕ results in acoun-

terexamplecan be explained as : the modelM is NOT compliant with the requirement

formally represented asϕ. However, having counterexamples in our case can be mis-

leading. It might not be a result of the model does not satisfythe property, but the model

lacking the objects which the property define their temporalrelationship.

Irrelevant (spurious) properties normally result from the absence of one or more ob-

jects that are involved into the property specified, or due tothe use of different naming

words specific to the company. The process modeller has to decide if the elements rep-

resented by these missing objects are important for the process and are unintentionally

missed, then they have to be added to the process and restart the property checking. In

our approach, we limit the application of model checking to properties which are not

spurious with respect to the documents or activities it checks. On one hand, this help

to avoid spurious results. On the other hand, it reduces the computation cost incurred

when a model checking procedure is performed for a spurious property. Therefore, we

manipulated our model checking procedure to consider this situation and defined a third

possible model checking result as (DocumentDoesNotExist).

The main checking operator used here ischeckProp which takes a formula and a BP

model and performs the model checking using operatormodelCheck if and only if the

objects being tested in the formula are into the BP model.

131

Chapter 5.BPs Compliance Checking 132

op DocumentDoesNotExist : -> ModelCheckResult .

op checkProp : Formula TraceObjectSet -> ModelCheckResult .

ceq checkProp (F, A) = modelCheck(A, F) if CE(F, A) == true .

eq checkProp (F, A) = DocumentDoesNotExist [owise] .

The operatorCE checks if all the objects involved in a property do already exist in the

model being checked or not as defined below. The operator takes a property (Formula)

representing one of the fifteen LTL formulae of the CMMI-CM inTable 5.8 and the BP

model (TraceObjectSet) represented by variableA. It returnstrue if the objects exist in

the BP model andfalseif at least one of the objects does not exist. As an example part

of the definition, we provide the equation for the fifth LTL property in Table 5.8 which

includes activityRelease Baseline and guard variableAuthorized?.

op CE : Formula TraceObjectSet -> Bool .

ceq CE(F, A) = true

if (F == LTL(5)) /\ ("Release Baseline" into A) /\ (Authorized? into A) .

...

eq CE(F,A) = false [owise] .

The above definition uses functioninto which is defined to take a string value for

an object name (i.e.String) or a defined variable name as part of guard expression (i.e.

Variable) and a process model. It returnstrue if there is an object with the same name

(or a guard uses the input variable name as part of its expression) into the process model.

Otherwise, it returnsf alse, i.e. if the object (or a guard expression variable name) is not

in the process model.

op _into_ : String TraceObjectSet -> Bool .

op _into_ : Variable TraceObjectSet -> Bool .

eq S1 into (CVcol * << < X : K | name : S1 ; AS1 > , B >>) = true .

eq S1 into A = false [owise] .

eq V1 into (((V1 : S1) .. CVcol) * B) = true .

eq V1 into A = false [owise] .

Another issue here is that properties like LTL(6), LTL(8), LTL(12), LTL(13) and

LTL(14) are presented using (P LeadsTo Q) pattern, which is mapped into LTL as (�(P

→ ♦Q)) and its result depends on theimpliesoperator (i.e.→) result. According to the

132

Chapter 5.BPs Compliance Checking 133

(→) truth table, the result istrue if the two operands aretrue, if the two operands are

false, and if the first isfalseand the second istrue. That is, if the two elements be-

ing checked are not included into the model, and hence their predicates result infalse3,

the model checking result of the properties would stilltrue. For example, in property

LTL(12), the predicateexecuted(” InvestigateResults”) would be rewritten tofalsefol-

lowing the[owise] statement defined in Section 5.1.1 while the object is not in the

model.

5.3.3 Results Representation

As the example models EX1 and EX2 specify releasing baselines based on controlling

change requests and not adding new CIs, we expect some of the 15 properties modelled

for the CMMI-CM to be spurious. However, in order to make the approach complete, i.e.

in terms of checking all the requirements in the CMMI-CM process area, we are check-

ing all the modelled properties here. The main command is (red checkProp(LTL(5),

initial) .) for the property LTL(5). In Table 5.10, the weight column refers to the

number of sub-practices that are represented into the LTL property. Hence, if a model

M satisfies the property LTL(5), then it will score 4 weight points. According to the

proposed grading scheme in Table 5.9 and the model checking results represented in

Table 5.10, we can conclude that model EX1 isPartially Compliantand model EX2

is Partially Compliantas well. Although it seems that the model EX1 is smaller than

the model in EX2, but EX1 scored seven more points than the model EX2 in the model

checking procedure.

Our approach has been implemented using Maude’s modules andits LTL model

checker via the Eclipse platform. Both of the software is free and available to download

from the Internet. The cost in terms of time of execution for checking the compliance of

EX1 and EX2 is detailed in Table 5.11. The longest rewrite time for a trace in a process

is consumed in rewriting from start state to the end state. From the table, we can see

that the rewrite time for the properties that we considered spurious is relatively smaller

3Note that the predicates definition in Section 5.1.1 has a false case definition to rewrite the predicate

into false in all other cases than the defined ones. That why operator statement attribute[owise] was

used.

133

Chapter 5.BPs Compliance Checking 134

Table 5.10: Model Checking Results for EX1 and EX2

Property Weight EX1 Points EX2 Points

LTL(1) 6 DocumentDoesNotExist 0 DocumentDoesNotExist 0

LTL(2) 3 true 3 true 3

LTL(3) 1 true 1 true 1

LTL(4) 3 true 3 true 3

LTL(5) 4 true 4 DocumentDoesNotExist 0

LTL(6) 1 CE1.6 0 DocumentDoesNotExist 0

LTL(7) 2 true 2 CE2.7 0

LTL(8) 4 true 4 DocumentDoesNotExist 0

LTL(9) 3 true 3 true 3

LTL(10) 2 true 2 CE2.10 0

LTL(11) 1 DocumentDoesNotExist 0 true 1

LTL(12) 1 DocumentDoesNotExist 0 true 1

LTL(13) 3 DocumentDoesNotExist 0 true 3

LTL(14) 4 DocumentDoesNotExist 0 CE2.14 0

LTL(15) 3 DocumentDoesNotExist 0 CE2.15 0

Total 41 22 15

Results Partially Compliant Partially Compliant

than the rewrite time for the properties passed to the model checker. These properties are

LTL(1,11,12,13,14,15) for EX1 and LTL(1,5,6,8) for EX2. The total number of rewrites

for checking the 15 properties for EX1 was 105906 rewrites intotal of about 673 ms

and for EX2 was 12339 in total of about 380 ms. Given the fact that configuration

management processes are normally of the same size as our twoexamples EX1 and

EX2, one can see that these results as an indication of the applicability of the designed

tool to a wide range of CM processes.

Following the approach introduced in Chapter 1, at this stage, the modeller has an

idea about what requirement exactly the process violates. Moreover, the modeller can de-

cide if certain properties are relevant to the process beingchecked or can be ignored. For

example, a possible modification in model EX2 could be to check the authorization for

134

Chapter 5.BPs Compliance Checking 135

Table 5.11: Summary Rewrite time for EX1 and EX2

EX1 (rewrites in ms) EX2 (rewrites in ms)

Process Exec Time 204 in 1ms 95 in 5ms

Property EX1(rewrites in ms) EX2(rewrites in ms)

LTL(1) 106 in 0ms 106 in 0ms

LTL(2) 34195 in 230ms 909 in 33ms

LTL(3) 15368 in 73ms 959 in 31ms

LTL(4) 3710 in 37ms 134 in 5ms

LTL(5) 91 in 1ms 103 in 0ms

LTL(6) 2212 in 22ms 103 in 0ms

LTL(7) 15086 in 75ms 1635 in 44ms

LTL(8) 103 in 0ms 103 in 0ms

LTL(9) 34234 in 228ms 953 in 39ms

LTL(10) 288 in 7ms 1965 in 53ms

LTL(11) 101 in 0ms 117 in 3ms

LTL(12) 104 in 0ms 971 in 38ms

LTL(13) 103 in 0ms 975 in 33ms

LTL(14) 103 in 0ms 1641 in 51ms

LTL(15) 102 in 0ms 1665 in 50ms

TotalComplianceCheckingTime 105906 in 673ms 12339 in 380ms

conducting a change in the configuration management database before it is actually open,

used and documented. An authorization check can be added once the process started as

in the updated version of EX2 in Figure 5.3. In the model EX2m,the activity "Make

Baseline Available to Read" has been moved to after the baseline is released, an

authorization check is added using the XOR gateway after theprocess starts and before

reading and updating any CIs. After implementing these changes into the model EX2,

the model checking results changes for properties (5,6,8) fromDocumentDoesNotExist

to true with added weights of (4,1,4) respectively. Now the model EX2m scores 24 out

of 41 and according to the grading scheme in Table 5.9 the model is still partially com-

pliant with CMMI-CM requirements, however, with a higher score points. This is an

135

Chapter 5.BPs Compliance Checking 136

example of how some changes in the designed model checked with our approach can

easily change its compliance grade score points to a higher one giving better chances in

an appraisal.

Table 5.12: Summary compliance checking results for EX2m

EX2m (rewrites in ms)

Exec Time 106 in 3ms

Property MC Result(points) EX2m (rewrites in ms)

LTL(1) DocumentDoesNotExist(0) 106 in 0ms

LTL(2) true (3) 1124 in 47ms

LTL(3) true (1) 945 in 31ms

LTL(4) true (3) 144 in 6ms

LTL(5) true (4) 2123 in 60ms

LTL(6) true (1) 1147 in 45ms

LTL(7) CE2m.7 (0) 1752 in 52ms

LTL(8) true (4) 919 in 31ms

LTL(9) true (3) 928 in 34ms

LTL(10) CE2m.10 (0) 1455 in 27ms

LTL(11) true (1) 126 in 3ms

LTL(12) true (1) 1186 in 47ms

LTL(13) true (3) 1190 in 40ms

LTL(14) CE2m.14 (0) 1758 in 56ms

LTL(15) CE2m.15 (0) 1782 in 55ms

Points (24) TotalComplianceCheckingTime: 16685 in 534ms

An interesting challenge is the naming of the objects which may be different from

the pre-defined properties. It can be due to the use of some company’s jargon to name

the activities and/or properties, hence, there might be amisinterpretationin the model

checker results side about same activities with different names in the model and the

properties. In the compliance checking research, this problem force most researchers

to use manual mapping between activities having the same functionality but differs in

names (e.g.[38]). For example, taskInform Stakeholders in EX2 which has the same

136

C
h

ap
ter

5
.B

P
s

C
o

m
p

lia
n

ce
C

h
e
ckin

g
1

3
7

Audit CIs subprocess

Create
Audit

Investigate
Results

Close
Audit

Audit
[closed]

Audit
[open]

Update CIs Subprocess

Validate
CR

Prioritize
Changes

Retrieve CI Change CI Close CR

CR
[closed]

Update CI Audit CI

CR
[open]

Verify CI
existence

Determine
variances

Report
Problem in
Actual CI

Document
CI

Report
Results

Act-on-Variance
Report

[created]

inconsistent

consistent

ProtectedCIs?

Yes

No
CI doc

[updated]

CI doc
[documented]

CR
[open]

CI doc
[updated]

AuthorizedCR?

No

Yes

CI doc
[inUse]

ValidatedvsActual?

Audit
[closed]

Release
Baseline

Baseline
[released]

variances?

No

Yes

Make Baseline
Available To Read

Baseline
[readOnly]

Authorized?

NO

Yes

Figure 5.3: EX2m : Model EX2 after update

1
3

7

Chapter 5.BPs Compliance Checking 138

functionality asMake Baseline Available to Read but obviously different names.

Therefore, in the updated EX2 process model in Figure 5.3, the activity name has been

changed to match the property. Alternatively, one can keep the process model naming

convention and update the LTL properties accordingly.

The CMMI appraisal is concerned with two aspects of the BP. One is the evidences

of the existence of some documentations and reports that record every step in the process

and form part of its inputs and outputs as well in order to produce a product or a service.

The other aspect is confirming that the BP is following a well-planned procedures which

guarantee its sustainability, accessibility, safety and development. As we are proposing

a pre-appraisal approach for CMMI-CM compliance checking,we focused on these two

aspects and proposed how to formally assess them in the designed BP, which in turn

will allow for a confident application for a SCAMPI A appraisal. The first aspect, i.e.

documents checking, can be automatically conducted for thedesigned BP in the form of

checking if certain set of documents are included into the BP. This ha been considered

in the model checking procedure by limiting the applicationof the properties checking

to the properties which objects are in the model being checked. Therefore, checking if

the documents (as being objects) are represented in the model provides the evidence of

their existence in the designed BP. The second aspect, i.e. the process is following a well-

planned procedure, is tackled in this chapter by formalizing the CMMI-CM requirements

into LTL formulae through compliance patterns to formally check them using Maude

LTL model checker.

5.4 Chapter Summary

In this chapter we introduced a novel formalization for the CMMI-CM process area

requirements in LTL based on the compliance patterns [29, 33]. This is followed by

using Maude LTL Model Checker to check if the introduced two example models of CM

processes are compliant with the formalized properties to conclude our approach with

analysing and reasoning about the model checking results. Next chapter will present the

related work.

138

Chapter 6.Related Work

Chapter 6

Related Work

In this chapter, we introduce the related published work anddiscuss their relations with

the contributions of this thesis. As there have been published research in different ar-

eas related to this work, we categorized them in three sections. In Section 6.1, the BPs

different formalization and verification approaches are discussed. Then the Maude appli-

cations for concurrent processes in Section 6.2. Finally, the related compliance checking

approaches are discussed in Section 6.3.

139

Chapter 6.Related Work 140

6.1 BP Formalizations and Verification

There are many attempts to transform the BPMN as a graphical language into more

formal languages, such as: Petri nets [27], YAWL [107], CSP [104, 105],π-Calculus

[74, 75], and graphs [28, 40]. Table 6.1 gives a brief summaryof the formalizations

compared to our proposed formalization.

BPMN core flow elements have been mapped into Petri nets in [27]. A number of

modelling deficiencies have been identified but not solved; such as models with multiple

start events, and OR-join gateway semantics. Although theyhave defined a well-formed

BPMN process to facilitate the mapping, classical Petri nets has limitations in represent-

ing certain constructs and behaviour [28] (i.e. OR join, deterministic choice). Generally,

the resulting models of Petri net mappings are verified usingProM for the absence of

dead transitions, deadlocks, and livelocks. Then there is [107] presenting a formal map-

ping from BPMN to YAWL [91] based on a well-formed subset of BPMN to establish

the mapped models into YAWL-nets. However, the OR join gateways and data objects

have not been discussed.

Process Algebra Communicating Sequential Processes (CSP)has been used to for-

malize the syntax and semantics for a subset of the BPMN core flow elements and mod-

els into CSP in [104, 105]. Basically, tasks are mapped into CSP processes and flow

transitions are mapped into CSP events. A similar notion to well-formed BPMN models

is used, which is well-configured sets of well-formed states(WCF), was used to describe

a more restricted and well-formed elements. In [104], CSP isused to define the process

state-based specification syntax and behavioural semantics for a subset of the BPMN.

This facilitates the use of the CSP-based model checker (i.e. FDR) for property analysis

of business processes for refinement, soundness and property checking of BPMN mod-

els. Nevertheless, the OR join gateways and guard evaluation were not considered as

part of the formalization. The work was extended to handle the timed models in [105].

In [74, 75], the workflow patterns [103] have been formalizedinto π-calculus (i.e.

an algebra for modelling concurrent communicating processes) in order to check the

soundness of resulting workflow models. In [74], they showedthat theπ-calculus is

indeed able to handle all of the behavioural workflow requirements given by workflow

patterns. In [75], process representation inπ-Calculus is used to formalize the BPMN

140

Chapter 6.Related Work 141

models aiming at verifying the semantics (i.e. using lazy soundness). Nevertheless, the

approach did not consider the well-formed property and did not consider data objects

and guard evaluation.

In [28, 40], a subset of the BPMN control flow semantics has been formalized as

graph rewrite rules. In [28], GrGen, a graph rewrite tool, was introduced for the execu-

tion semantics. However, the notion of a well-formed BPMN models has not been used,

which allow for models which are not sound. An in-place token-based approach was

introduced in [40] for defining BPMN execution semantics in terms of graph transfor-

mation rules. The produced semantics is then verified using unit and integration testing.

Nevertheless, the data objects and well-formed notion werenot used. While the formal-

ization goal was to have a deadlock-free and sound models in [27, 107], the conformance

to specifications and visualization were the targets in [28,40].

An AI approach was followed in [48] to give a logical model fora subset of BPMN

elements discussing some correctness criteria, e.g. deadlock freedom, termination and

determinism. The approach utilized the notion of well-formed BPMN elements to rep-

resent BP models. However, no formalization of the data objects or guard evaluation

mechanism were introduced. A formal syntax for the businessprocess work-flow pat-

terns was introduced using Maude in [43]. BPMN was used as an example application

domain for using Maude strategies for a catalogue information system. While the ap-

proach used Maude strategies, the notion of well-formed process has not been used and

the data objects have not been modelled.

In [103], the notion of structured BPMN work-flow was used to address the need to

have an OR merge gateway to every OR split to synchronize the flow. This may be sim-

ilar to our block structure condition for the well-formed BPMN models, however, in our

proposed formalization, we require all the well-formed gateways to have the block struc-

ture and not only the OR gateways, discussed in Section 3.3 and Section 4.1. Moreover,

the idea of well-formed models was used in the Petri nets in [76] where the well-formed

elementary system net was defined as a weakly live (i.e. for each transition there exist a

reachable marking that enables it), terminable net (i.e from each reachable marking, the

final marking can be reached) and having a unique final marking.

In Table 6.1, a summarized comparison between the state-of-the-art research and our

141

C
h

ap
ter

6
.R

e
la

te
d

W
o

rk
1

4
2

Table 6.1: Comparison of Related Work and Our Contributions

Ref. [68] [27] [107] [75] [104] [28, 40] [48] [43] this work

Formalism English Petri Nets YAWL π -Calculus CSP Graph Trans. Prolog Maude Maude

OR-Join • ◦ ◦ ◦ • • ◦ • •

Guard Evaluation ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Data Objects • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Well-Structured • ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

Well-Formed ◦ • • ◦ ◦ ◦ • ◦ •

Verification ◦ cs cs ls r,cs c,t cr pv cc

Legend: ◦ - (NO), • - (YES), cs - (classical soundness), ls - (lazy soundness), r- (refinement), c - (conformance to semantic specifications), t - (unit and

integration testing), vis - (visualisation), cr - (correctness), pv - (property verification) and cc - (compliance checking).

1
4

2

Chapter 6.Related Work 143

proposed approach is presented. The criteria in the first column are, in order, the for-

malization language, modelling OR-join behaviour, guard evaluation, data objects mod-

elling, the notion of well-structured BPMN processes, the notion of well-formed BPMN

processes, and the verification/application methods. The formalization language used

in these approaches are, in order, natural language English[68], Petri nets [27], YAWL

[107], π-calculus [75], CSP [104], Graph transformation [28, 40], Maude [43], BPMN-

Q [6], and ours uses Maude. The legend for the table information is:◦: (NO), •: (YES),

cs: (classical soundness), ls: (lazy soundness), r: (refinement), c: (conformance to se-

mantic specifications), t: (unit and integration testing),vis: (visualisation), pv: (property

verification) and cc: (compliance checking). To the best of our knowledge, no approach

has introduced a mechanism to evaluate the guards in the gateways as our approach

proposes. Moreover, our approach provides a sound semantics for well-formed BPMN

models, which may include OR gateways, as described in Chapter 4 beside checking

the well-formedness property as part of the semantics as described in Chapter 3. The

semantics introduced in this thesis differs from the other related semantics with respect

to the formalization language that is used and the prospective use of the semantics in the

application domain. We use the Maude as the formalization language and aiming at for-

malizing the BPMN models into sound processes to check the compliance with process

improvement models.

On verifying the formalized business process models, soundness property is proved

to be the most checked property among the scanned literature(e.g. [81, 100, 95, 92, 25,

75]). In [81], two structural conflicts in process models were discussed; i.e. deadlock

and lack of synchronization. These two important structural properties disappearance

from a model indicate that this model issoundwith respect to the specifications; i.e.

soundness = no deadlock + no lack of synchronization [100]. In [95], different types

of soundness were discussed for workflow models.Classical soundness[92, 102] states

that each activity should be on a path from the initial to the final activity, that after the fi-

nal activity has been reached no other activities should become active, and that there are

no unreachable activities. The other notions of workflow soundness ranges from a more

relaxed or weaker version (weak soundness[53], lazy soundness[75], relaxed soundness

[25]) of the classical soundness to more stronger version (generalized soundness[44]).

143

Chapter 6.Related Work 144

A formal proof of soundness is in Chapter 4 based on the classical soundness definition.

k-soundness[44] restricts the workflow net to have a start node and an end node and that

each object reachable from start node is on a path to the end node,Weak soundness[53]

allows unreachable activities.Relaxed soundness[25] softens the original soundness

notion claiming to be more easily applicable to application-oriented modelling. It states

that each activity should be able to participate in the business process, i.e. for each tran-

sition there exists a sequence that takes the initial state to the final state without leaving

any spare tokens in the net. Hence, it does not avoid situations with dangling tokens or

livelocks/deadlocks [95].Lazy soundness[75] requires the end event to be semantically

reachable from every node semantically reachable from the start event until the end event

has been executed and that the end event is executed exactly once.

6.2 Maude Applications

Maude, as a logical semantics framework is used to define syntax and semantics of a

wide range of languages and logics [57], e.g. CCS [98],π-calculus [88], UML [61, 12],

Petri nets [87] and BPMN [43].

In [98], an implementation of the CCS operational semanticsin Maude is given,

where transitions are rewrites and inference rules are conditional rewrite rules, possibly

with rewrite rules in the conditions. Moreover, the authorsproposed an implementation

of the Hennessy-Milner modal logic for describing processes, with comments on exten-

sions to the LOTOS language [99]. In [88], an executable specification of the operational

semantics of an asynchronous version of theπ-calculus was introduced in Maude using

conditional rewrite rules with rewrites in the conditions too.

UML diagrams have been modelled in Maude and formally verified using Maude

LTL model checker in [61]. Moreover, on checking the consistency of UML model

design, the authors in [12] formally classified inconsistencies, resolution rules conditions

and conclusions for UML models using equational logic and applied in Maude. Petri nets

were given conceptual and executable rewriting semantics in [87] where they could also

be formally analysed and model checked by means of rewritingstrategies that explore

and analyse at the meta-level the different rewriting computations of a given rewrite

144

Chapter 6.Related Work 145

specification.

For domain-specific languages, Maude proved to be efficient in providing formal

rewriting semantics for them (e.g. [14, 78]). The fact that Maude provides object ori-

ented facilities that can be used to implement metamodels and models has been ex-

perimented by several research [78, 98, 78] and implementedfor example in the MO-

MENT [11] project. In [14], a formal semantics was introduced for CBabel (i.e. a soft-

ware architecture description languages (ADLs)) in rewriting logic using Maude. This

is followed by formally verifying the producer-consumer-buffer problem using model

checking and state search. In [78], a formal approach for thedefinition and analysis of

domain-specific modelling languages was introduced based on standard model-driven

engineering artifacts for defining a language’s syntax (using metamodels) and its op-

erational semantics (using model transformations) by translating them to the Maude.

Therefore, meta-models and models are mapped to equationalspecifications, and model

transformations are mapped to rewrite rules between such specifications due to Maude’s

reflective capabilities [20].

A number of interesting puzzles have been modelled and solved using rewriting logic

language, Maude, in Chapter 7 in [20]. Moreover, Maude is used to solve the sudoku

puzzle1 in [82] using Maude strategies, where elimination was the main strategy and

three processes for scanning, marking up, and analysis as the classical techniques for

solving sudoku were followed. For a comprehensive list of rewriting logic founda-

tions, logical and semantic framework, languages, tools and applications, we forward

the reader to [54].

6.3 BP Compliance Problem

As for compliance problem, many approaches have been proposed for BP compliance

[80] either enforcing the models to be compliant by design [89], or checking if designed

model behaves as expected through the use of event logs and audits [94, 47]. A semi-

automatic framework for managing compliance requirementsand ensuring compliance

throughout the BP lifecycle was introduced in [89]. In [47],a metamodel compliance

1http://en.wikipedia.org/wiki/Sudoku

145

Chapter 6.Related Work 146

checking was implemented in the tool Requirements Engineering Through Hypertext

(RETH) which supports an object-oriented hypertext representation of requirements.

Process mining techniques are also applied on process eventlogs and real-time data

to monitor the behaviour of processes [94]. BPMN is used as system specifications

in [6] where BPMN-Q, a graph-based query language based on BPMN, is introduced,

used and integrated with Oryx, a web-based graphical modelling tool and repository, to

model-check business rules compliance in PLTL.

To the best of our knowledge, the formal research on checkingthe compliance of

BP models with CMMI process areas is still not enough to fullyautomate the procedure

(e.g. [24, 23]). An interesting work in [24] investigates the relation between software

quality models and businesses applying Model-Driven Development (MDD) using goal-

oriented software approach. The degree of compliance of an industrially applied MDD

approach with the CMMI-DEV quality model is analysed by determining the character-

istics that meet the technical solution process area of CMMI-DEV and identify improve-

ment opportunities to obtain a proper alignment of the MDD approach with the model.

The check is done based on SCAMPI assessment evidences; affirmations (e.g. expert

statements) and artifcats (e.g. tangible evidences). The same idea was applied to the

requirement engineering process area in the CMMI-DEV in [23]. In [62], a formal com-

pliance checking approach is introduced using Z notation for systems specifications and

LTL for properties and NuSMV for model checking based on common criteria. Apply-

ing this approach to the international security standard (ISO/IEC 15408), a tool support

called FORVEST was proposed in [106]. It provides information for the modeller on the

formalization languages and tools to make the approach moreaccessible for business

people.

There are many classifications for the compliance checking in literature. Figure 6.1

gives an idea about the classification of BPs compliance checking approaches. The

reader can recall Table 6.2 for a summary comparison of most of the related compliance

checking approaches. We provide the table below as Table 6.2. Generally, automated

compliance checking has two approaches; forward and backward compliance checking

[80, 34]. In forward compliance checking approaches, the compliance rules are veri-

fied during design time or execution time of the process allowing only for the complaint

146

Chapter 6.Related Work 147

behaviour to be carried out later [34]. Forward compliance checking approaches aims

at preventing the non-compliant behaviour from occurring in the process execution. In

backward compliance checking approaches, the check is usedto detect that some non-

compliant behaviour has occurred by checking the business process execution history

(e.g. event logs). While forward compliance checking approaches can prevent non-

complaint behaviour form happening, the backward compliance checking approaches

cannot.

Automated Compliance
Checking Approaches

Forward Compliance
Checking Approaches

Compliance-aware
Design

Run-time Compliance
Verification

Backward Compliance
Checking Approaches

Manual Compliance
Checking Approaches

Compliance Checking
Approaches

Figure 6.1: Compliance Checking Approaches Classification

There are two types of forward compliance checking approaches; compliance-aware

design and run-time compliance checking. Compliance-aware design approaches work

at design time; i.e. before the process is actually being deployed in real projects. The ma-

jority of recent approaches lies in this category such as [39, 51, 33, 41, 79, 84, 89] and it

provides larger space for automation in defining the models and the compliance require-

ments. Moreover, the implementation of this approach is less expensive as the process

is examined at the design-time. In design-time compliance checking approaches, either

the design process is guided by the compliance requirementsor the model checkers are

used to verify that certain properties have been designed. An approach based on defin-

ing and using compliance patterns to compute the deviation of a given business process

model to a certain compliance pattern was introduced in [39]. Based on control pat-

terns, a formal definition of the compliance checking was presented in [65] and in [33],

a semantic layer was added to the business process management stack in which process

147

Chapter 6.Related Work 148

instances are interpreted based on pre-defined set of controls. The work in [51] presents

a support method which allows the modeller to quantitatively measure the compliance

degree of a given process model based on a set of control objectives. In [41], the authors

proposed a formalization approach for the business contracts semantics as well as their

violations using Formal Contract Language (FCL) based on deontic logic. Although the

authors in [41] built their approach based on deontic logic,the work in [79] shows the

need for stronger logics to formalize the modelling of compliance controls. Moreover,

they emphasis on the importance of automating the compliance checking and its rela-

tive regulations semantics. The approach in [84] proposed acompliance ontology and

integrate it into the BP models. A comprehensive framework for semi-automatically

managing compliance requirements which ensures compliance throughout all the phases

of BP lifecycle was introduced in [89].

On the specification of compliance requirements, [79] proposes an approach for mod-

elling control objectives within BP structures. Their workintroduced a basic model to

capture compliance requirements. In order to realize what is compliance-by-design, BP

models are enriched with control tags. They propose a modal logic based approach us-

ing FCL, which separates the prescriptive modelling of processes and the descriptive

nature of compliance requirements. However, the complexity of the adopted formal lan-

guage poses critical problems in practice. In [38], the authors provides a forward design

compliance checking approach. The approach is basically uses process models in EPCs

which is mapped into Petri nets to check their compliance degree and maturity with an

adopted model of the ITIL reference model on a designed plug in on ProM. The authors

discussed the difference between process equivalence and process compliance as two

process models can be compliant and not equivalent at the same time. That is the idea

of having a general reference model which can be interpretedin many process models

customized to specific business needs.

Run-time compliance checking approaches deal with executable business process

models. In this case, compliance requirements can be definedinto the business pro-

cess models (as control flows) or can be dependent on a run-time information (as user

or process input). The need to separate compliance modelling from process modelling

is identified in [49], where business process models in BPEL are transformed intoπ-

148

C
h

ap
ter

6
.R

e
la

te
d

W
o

rk
1

4
9

Table 6.2: Summary comparison of some compliance checking approaches

Ref. System Spec Property Spec Check Proc. Class. App. Domain Automation

[6] BPMN 2 PetriNets BPMN-Q 2 PLTL MC FD Banking Oryx, Lola

[33] BPEL FCL 2 LTL MC F,B Sarbens-Oxley Act COMPAS

[94] MXML LTL MC B event-logs ProM

[24] MDD BPRE4OO SCAMPI FDT CMMI-DEV NA

[38] EPC 2 PetriNets ITIL adopted models MC FD ITIL ProM

[106] Z LTL MC F ISO/IEC 15408 FORVEST

[49] BPEL 2π-calculus BPSL 2 LTL MC FR ITIL,COBIT OPAL

Legend: D: Design-time, R: Run-time, MC: Model Checking, F: Forward, B: Backward, NA: Not Available, PM: Process Mining

1
4

9

Chapter 6.Related Work 150

calculus and compliance rules into graphical Business Property Specification Language

(BPSL) are translated into LTL, then model checked. In [64],an approach is proposed to

ensure effectiveness of controls during business process execution and a reaction strat-

egy was designed in case of rules violation. The authors in [73] defined the BP models

in a declarative way and argued that constraint-based workflow models are more expres-

sive and flexible than procedural ones. The compliance policy definitions are integrated

into the BP models in [59]. They are modelled within the process model events and

transactions to monitor run-time compliance. This raises the need for formal defini-

tion of some of the important BPMN constructs, i.e. events, event triggers, and related

resources, event patterns, message handling as well as state management [80].

Backward compliance checking aims at verifying that a business process execution

is compliant with certain requirements and rules. In [77], the authors proposed a con-

formance checking technique to decide on how much a businessprocess behaviour is

similar to registered in process instances in a certain history log. The approach indicates

where the differences exist using the business process graphical representation, though

it did not handle data fields or user inputs. Another approachintroduced in [94] where

an LTL checker is introduced to check if an LTL formula holds for a certain process

instance with references to the rule information sources. The approach is formal and

lacks graphical representation which make it inaccessiblefor business users. In [15] and

[5] the authors combines the power of formality and graphical rules representation using

GOSpeL for graphical rule representation and translated into SCIFF (i.e. a declarative

language based on computational logic) in order to produce process instances.

Manual approaches are traditionally used after running theprocess; i.e. retrospective

reporting [42], by reviewing the resulting audits and logs.This approach largely depends

on manual checks done by experts to figure out the non-compliant business process

behaviour (violations). A small area of automation can be used in this case and turns

the approach to be a backward automated approach by using data mining techniques

[94] to detect violations from workflow logs using temporal logic. The authors in [94]

used process mining techniques to monitor the behaviour of processes by using process

event logs and real-time data. Possible deviations with process definition and compliance

requirements are then detected and resolved.

150

Chapter 6.Related Work 151

The proposed compliance checking approach is considered a design-time forward

automated compliance checking approach. TheW-BPMN models are checked using model

checking technique for compliance with CMMI-CM propertiesencoded in LTL.

6.4 Chapter Summary

In this chapter, the related work is presented in different related areas: BPMN formaliza-

tion and verification, Maude applications for BPs, and BPs compliance checking. There

are different categories under which the compliance check is studied and used to provide

practical solutions for processes quality questions. The semantics in this work differs

from the discussed related work with respect to the underlying logic (rewriting logic),

and formal language (Maude), and the prospective use of the semantics in the application

domain (compliance checking). The approach uses the LTL forproperty specifications

of pattern-based requirements because Maude supports LTL and has its own LTL model

checker which motivates the application side of the thesis.

151

Chapter 7.Conclusions and Future Work

Chapter 7

Conclusions and Future Work

This chapter concludes the thesis of compliance checking ofwell-formed BPMN mod-

els using Maude. In Section 7.1 we represent a summary of the work proposed in the

thesis, Section 7.2 presents the conclusions of the work linking them with the original

hypothesis in Chapter 1, while in Section 7.3 the set of approach limitations are dis-

cussed. Finally, in Section 7.4, some of the future researchopportunities related to the

work in this thesis are mentioned.

152

Chapter 7.Conclusions and Future Work 153

7.1 Summary

In this thesis, a semi-automated pre-appraisal approach for CMMI-CM compliance check-

ing with formal BPMN models is proposed. The compliance checking is modelled as

a model checking problem where the system specification is represented by the well-

formed BPMN models in Maude and the property specifications is represented by the

LTL properties mapped from the CMMI-CM compliance pattern based requirements.

First, we present the formal syntax and behavioural semantics for a subset of the BPMN.

The syntax is obtained by mapping the graphical elements in the BPMN into terms us-

ing the term rewriting system Maude. A number of BPMN challenging issues related

to its ambiguity specifications and possibilities of deadlock and lack of synchronization

models has been discussed. Moreover, a set of domain-specific rules are introduced

for simulating the behaviour of BPMN data objects as the process essential resources

using Maude (possibly conditional) rules. Unlike most of the BPMN formalizations,

the proposed formalization defines a CFG for the guards expressions for decision based

gateways in the gateways and not in the outgoing sequence flow, in order to allow for a

decision to be made before considering any outgoing sequence flows. A comprehensive

semantics for inclusive decision-based (OR) gateways is introduced by using bock struc-

ture. We introduced the well-formed BPMN model definition, which introduces design

restrictions reducing the possibility of deadlocks. The functionwfs is defined to check

the consistency with well-formedness conditions in a BPMN model. Moreover, the for-

malization has proved to be sound based on the classical soundness definition. Sec-

ond, the CMMI-CM requirements are formally represented into LTL properties. They

mapped into LTL properties through the compliance patterns. The LTL properties are

model checked using Maude LTL model checker against well-formed BPMN models

one by one. In order to interpret the results of mode checkinginto meaningful compli-

ance checking related results, we introduce a satisfactiongrading scheme based on the

number of sub-practices represented by the property.

153

Chapter 7.Conclusions and Future Work 154

7.2 Conclusions

Referring to the hypotheses introduced in Chapter 1, we conclude the thesis based on the

results and discussions proposed throughout the thesis. Inthis section, the hypotheses

are listed with the related contributions and references tothe chapters.

1. What formalization of BPMN models can be considered suitable for compliance

checking? If there is no such formalization, what are the main characteristics

of a candidate formalization? Which formal language to use?

The existing BPs formalizations lacks essential constructs which are necessary for

compliance checking problem, e.g. data objects (c.f. the comparison in Table 6.1

in Chapter 6). Therefore a new formalization is developed for an excerpt of the

BPMN elements using Maude in Chapter 3 (e.g. activities, gateways, events, data

objects, swimlanes, connecting flows). Data objects are given formal semantic be-

haviour allowing for status change and dependency relationships through domain-

specific rules. A CFG and evaluation mechanism are proposed for the BPMN

decision-based gateways which allow for more specific behaviour specifications.

Moreover, the mapping from BPMN into Maude is verified and thesemantics is

proved to produce sound BP models to ensure that they are freeof deadlocks and

lack of synchronization in Chapter 4. In order to avoid possible structural errors

in the formalized BPMN models, we introduced the notion of well-formed BPMN

models, where the model is parsed for elements that are not following the syntac-

tic constraints specified in Definition 3.3.2 for well-fromed BPMN models besides

the standard description in the BPMN [68]. An introduction of Maude, as a for-

malization language, is in Chapter 2 and our Maude modules for BPMN syntax

and semantics are presented in the attached code files (See Appendix A for details)

and explained in Chapter 3. Due to the availability of Maude LTL model checker

as part of Maude’s verification toolkit, a model checking procedure is used to per-

form the compliance checking in Chapter 5 where Maude representation for the

BPs is the model being checked against a set of LTL propertieswhich represent

the CMMI-CM requirements.

154

Chapter 7.Conclusions and Future Work 155

2. What are the characteristics of the CMMI process improvement model that make

it an interesting area for compliance checking? Is it possible to formally repre-

sent the CMMI requirements? How?

The CMMI [21] process improvement model is used as the sourceof compliance

requirements in this thesis. We believe this is the first formal representation for

CMMI-CM requirements into LTL properties. CMMI is designedfor software

SMEs and its appraisal methods are time, effort and money consuming. The CM

process area was chosen as an example for the reasons mentioned in in Section

1.4. A brief idea about the CMMI is introduced in Section 2.3 in Chapter 2. A

comparison among the CMMI appraisals and our pre-appraisalapproach is dis-

cussed into Section 2.3.2 in Chapter 2. We agreed with [6, 33,96] that the LTL

is suitable for the property specifications. The LTL is introduced in Section 5.2.1.

On formalizing the CMMI requirements, they had to be mapped into compliance

patterns based expressions and then mapped into the LTL properties (in Section

5.2.3) which are model checked in Section in 5.3 in Chapter 5.

3. What is the verification technique to formally check compliance of BP models

with formal requirements? Is it able to provide an explicit answer to the ques-

tion: "Is an input process compliant with the input set of properties?"?

The verification technique used in this thesis and explainedin Chapter 5 is the

model checking. The main reasons for that choice are listed in Section 1.4. As the

model checkers normally returns a YES/NO answers (i.e.trueorcounterexample),

the output of the model checker in our approach had to be analysed to check the

validity and real representation of the BP on hand. We have proposed a mechanism

to check the existence of certain documents or objects in themodel before taking

it to be model checked in Section 5.3.2 in order to avoid spurious results. More-

over, a compliance checking grading scheme is proposed to interpret the model

checking results.

4. What are the automation possibilities of the compliance checking approach?

The possibility of automating the compliance checking approach is promising as

it allows the business people to be able to efficiently use thesemi-automated ap-

proach. What encourages the automation of the approach is the textual compliance

155

Chapter 7.Conclusions and Future Work 156

requirements which can be mapped into compliance patterns and then into LTL

properties. An overview of the automation of the approach isdiscussed in Section

7.4 in Chapter 7.

Recalling the main thesis statement,Is it possible to formally check the BPMN mod-

els compliance against the CMMI Configuration Management requirements?, we can

provide an answer to it. Yes, it is possible through implementing a formal pre-appraisal

compliance checking approach using Maude as a formalization language for the system

specifications and LTL for property specifications of the CMMI-CM requirements. Us-

ing Maude LTL model checker we propose a possible formal solution to ensure that a

designed configuration management business process is compliant with CMMI-CM pro-

cess area requirements as shown in this thesis. Table 7.1, which is recalled from Chapter

2 with adding our approach to it, shows a summary comparison between the appraisal

methods and our approach. The proposed approach is formal and uses a customized

automated model checking based on Maude LTL model checker toassess the business

process compliance checking.

7.3 Limitations

Although we have tried our best to work on producing a comprehensive approach and

method to add the formality to the compliance checking problem, there are number of

drawbacks and limitations which the reader should be aware of. These limitations are

listed below.

1. At the moment, a prior knowledge of some formal techniquesand tools is required

in order to apply the approach in real life cases. That is, to use the method, verifiers

have to be familiar with BPMN, Maude, LTL, model checking, and CMMI.

2. The use of model checking as a verification tool has its own drawbacks which

may affect the results of the approach, i.e. state space expansion [19]. Abstrac-

tion techniques [9, 20] may be used to solve the state space expansion in model

checkers. However, we believe that the BPMN model for the configuration man-

agement process in a software company is of relatively reasonable size which will

not normally cause the number of states to be a problem.

156

C
h

ap
ter

7
.C

o
n

clu
sio

n
s

a
n

d
F

u
tu

re
W

o
rk

1
5

7

Table 7.1: Characteristics of CMMI appraisals and our approach

Feature Class A Class B Class C Our Approach

Usage Mode In-depth investigation Self appraisal Quick-look Internal check for the

Basis for improvement Designed Process

Advantages Strengths and Weaknesses of PAsA starting point focuses Inexpensive, rapid feedbackInexpensive, semi-automated

Robust method with on areas that need Short duration Formal

Consistent, repeatable results most attention

Disadvantages Demands significant Not used for rating Not used for rating Maude and BPMN are required

resources No deep coverage Less ownership of results Designed process only

Sponsor Senior Manager Any Manager Any Internal Manager Process Modeller

Team Size 4-10 and ATLa 1-6 and ATL 1-2 and ATL 1

Team Composition External and internal External or internal External or internal Internal

aATL: Appraisal Team Leader.

1
5

7

Chapter 7.Conclusions and Future Work 158

3. The approach is not fully automated, however, the core functionality of the Maude-

based formalization is fully provided. That is, the models can be verified to be

well-formed, and therefore sound1, model checked against the LTL properties of

CMMI requirements automatically2. Other possible automation points are left as

future work and explained in Section 7.4.

7.4 Future Work

The proposed approach can be extended in many ways; one is on the BPMN formaliza-

tion side and the other is on property (CMMI requirements) formalization side.

(BPMN Collaboration Models) The formalization can be extended to model more

BPMN elements for modelling the collaboration between morethan one participants.

The BP collaboration requires communications among different parties in the same

company or in different organizations. In BPMN, such situations are modelled using

swimlanes and message transfer. Although we presented a brief syntax for representing

swimlanes and messages, a comprehensive semantics for the possible cases is still to be

completed based on the proposed syntax and semantics in Chapter 3.

(More BPMN Events) An interesting family of BPMN constructs is the events, as

BPMN has twelve different events, e.g. exception, cancel, and timer. Defining the pos-

sible errors or unexpected situations in design phase of a BPis essential to guarantee its

accessibility and sustainability in all situations. The events can be part of a subprocess

boundary event affecting the flow inside the subprocess or anintermediate event affect-

ing its predecessor and successor elements. The basic constructs are already included

into the proposed semantics, however, the formalization covers only the plain start, and

end events, the intermediate error (exception), and messages.

(More BPMN Gateways) The formalization provided for the BPMN semantics in

Chapter 3 is applicable to parallel AND, decision-based XOR, and decision-based OR

gateways while the BPMN has also complex and event-based gateways which are es-

sential for applications which use different events to control the flow. This point of en-

hancement in more related to the above point where the development of comprehensive

1See Chapter 4 for details.
2See Chapter 5 for details.

158

Chapter 7.Conclusions and Future Work 159

events semantics will aid the formalization of event-basedgateways.

(Bisimulation) There is a study on progress to investigate the bisimulation (possibly

weak) relation between the proposed semantics and the Petrinet based formalization

of BPMN in [27]. A well-formed BPMN modelW-BPMN is mapped into a transition

system and produced the possible traces of the state transitions. The workflow models

in classical Petri nets have been formalized as a transitionsystem in [90]. However, our

semantics is not identically following the Petri nets semantics, as some rules defining the

behaviour of gateways are considered as one step while thereis one or more transitions

on the other side in the Petri net model, e.g. AND fork. Moreover, the state definition in

our semantics depends on the concept of activation, i.e. at stateSan objecto is inactive

and then at stateS′ the same object is active, while in Petri net based formalizations,

the states are the markings where the objects are transitions and the markings are only

marking the places and not the transitions (i.e. transitionis enabled if each of it its all

input places have at least one token, and then it is fired afterit is enabled). Therefore,

a detailed investigation is still needed to decide if the Petri net formalization is suitable

to be simulated with the proposed semantics, and if so, how the difference in the state

definitions may affect the simulation relation.

(Tool Support) The current proposed approach provides the formalizationof BPMN

models in Maude and we are planning its integration within a modelling environment

(e.g. Eclipse) using the mapping introduced in Chapter 3 of BPMN elements into Maude

objects according to the proposed semantics to allow for automatic verification using

Maude verification toolkit. A potential design for the tool support is given in Figure 7.1.

Automation point (1) in the figure represents the mapping from the BPMN elements

into Maude objects, while automation point (2) represents the mapping from the com-

pliance pattern based requirements into the LTL formulae [33], and automation point (3)

represent the option to automatically choose properties tomodel check them.

(More CMMI) The approach is still applicable for different process areas of the

CMMI. Based on the fact that the appraisals are looking into the availability of evidences

that certain components are part of the process and that theyare used effectively, then

the proposed approach allows the company to know which documents are part of their

BP and which are not (using functionCE) and then checks if these documents are used

159

Chapter 7.Conclusions and Future Work 160

Pattern-based
Requirements

LTL Properties

BP Model
 in BPMN

BP in MaudeWell-formed BP

Model Checking

Check Result

bp.maude

wf-bp.
maude

Pattern2LTL
Mapping

BPMN2Maude
Mapping

LTL

bp.bpmn

Legend need automation

already Automatic

1
2

3

Figure 7.1: Potential Tool Support Design

properly (i.e. in a compliant way with the requirements) in the process through checking

the related temporal properties. In the staged representation of the CMMI, the process

area requirements in ML2 can be formalized using the compliance patterns and then

mapped into LTL formulae and model checked against the corresponding BP models to

decide on the company or project compliance with the CMMI. Itadds the formality to

the appraisals used for compliance checking in SMEs.

(Real Scenario) Applying the approach to a real life scenario was not possible during

the development of this approach. However, the assessment of the approach with a real

scenario is one of the essential future work to place the approach and enhance it to match

the real scenarios features.

160

Chapter 7.Conclusions and Future Work

Bibliography

[1] W. M. P. Aalst. Workflow Verification: Finding Control-Flow Errors Using Petri-

Net-Based Techniques. In W. M. P. Aalst, J. Desel, and A. Oberweis, editors,

Business Process Management, volume 1806 ofLNCS, pages 161–183. Springer

Berlin Heidelberg, 2000.

[2] S. Abramsky, S. Gay, and R. Nagarajan. A Specification Structure for Deadlock-

Freedom of Synchronous Processes.Theoretical Computer Science, 222(1-2):1–

53, 1999.

[3] Y. K. Agarwal, B. Cary, S. Cash, L. Cassa, B. Demartini, C.Duplantis, A. N.

de Godoi, D. B. Gomes, V. Gucer, M. Kipel, A. O. Neto, C. Saad, G. Shah, P. D.

Tamarindo, and K. Venkitasubramanian. IBM Tivoli Change and Configuration

Management Database (CCMDB) V7.2.1 Implementation Guide.Technical Re-

port SG24-7879-00, IBM, 2010.

[4] D. M. Ahern, J. Armstrong, A. Clouse, J. R. Ferguson, and W. H. K. E. Nidiffer.

CMMI SCAMPI Distilled: Appraisals for Process Improvement. Addison-Wesley

Professional, 2005.

[5] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello,M. Montali, and

P. Torroni. Expressing and Verifying Business Contracts with Abductive Logic

Programming.Int. J. Electron. Commerce, 12(4):9–38, July 2008.

[6] A. Awad. A Compliance Management Framework for Business Process Models.

PhD thesis, Hasso-Plattner-Institute, Potsdam, Germany,may 2010.

[7] A. Awad and F. Puhlmann. Structural Detection of Deadlocks in Business Process

161

Models. In W. Abramowicz and D. Fensel, editors,BIS, volume 7 ofLNBIP, pages

239–250. Springer, 2008.

[8] J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A. J. Perlis,

H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A.Wijngaarden, and

M. Woodger. Report on the Algorithmic Language ALGOL 60.Numerische

Mathematik, 2(1):106–136, 1960.

[9] C. Baier and J.-P. Katoen.Principles of Model Checking (Representation and

Mind Series). The MIT Press, 2008.

[10] E. Börger. Approaches to Modeling Business Processes:a Critical Analy-

sis of BPMN, Workflow Patterns and YAWL.Software & Systems Modeling,

11(3):305–318, 2012.

[11] A. Boronat. MOMENT: A Formal Framework for MOdel managemMENT. PhD

thesis, Universitat Politécnica de Valéncia, June 2007.

[12] A. Boronat and J. Meseguer. Automated Model Synchronization: A Case Study

on UML with Maude. Electronic Communications of the EASST, Graph Trans-

formation and Visual Modeling Techniques, 41, 2011.

[13] K. Boukhelfa, F. Belala, A. Choutri, and H. Douibi. For More Understandable

UML Diagrams. InProceedings of the ACS/IEEE International Conference on

Computer Systems and Applications, AICCSA’10, pages 1–7. IEEE Computer

Society, 2010.

[14] C. Braga and A. Sztajnberg. Towards a Rewriting Semantics for a Software Ar-

chitecture Description Language.ENTCS, 95(0):149–168, 2004. Proceedings of

the Brazilian Workshop on Formal Methods.

[15] F. Chesani, P. Mello, M. Montali, and S. Storari. Testing Careflow Process Execu-

tion Conformance by Translating a Graphical Language to Computational Logic.

In R. Bellazzi, A. Abu-Hanna, and J. Hunter, editors,Artificial Intelligence in

Medicine, volume 4594 ofLNCS, pages 479–488. Springer Berlin Heidelberg,

2007.

[16] I. M. Chiswell. Context-free Languages. InA Course in Formal Languages,

Automata and Groups, Universitext, pages 1–33. Springer London, 2009.

[17] N. Chomsky. Three Models for The Description of Language. Information The-

ory, IRE Transactions on, 2(3):113–124, 1956.

[18] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skele-

tons Using Branching-Time Temporal Logic. In D. Kozen, editor, Logic of Pro-

grams, volume 131 ofLNCS, pages 52–71. Springer, 1981.

[19] E. M. Clarke, W. Klieber, M. Nová̌cek, and P. Zuliani. Model Checking and the

State Explosion Problem. In B. Meyer and M. Nordio, editors,Tools for Prac-

tical Software Verification, volume 7682 ofLNCS, pages 1–30. Springer Berlin

Heidelberg, 2012.

[20] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and C. Tal-

cott.All About Maude - a High-Performance Logical Framework: Howto Specify,

Program and Verify Systems in Rewriting Logic. Springer, 2007.

[21] CMU-SEI. CMMI for Development, Version 1.3. TechnicalReport CMU/SEI-

2010-TR-033, Software Engineering Institute, Carnegie Mellon University, 2010.

[22] CMU-SEI. Capability Maturity Model Integration. Technical report, Carnegie

Mellon University, Software Engineering Institution, 2011.

[23] A. M. L. de Vasconcelos, J. L. de la Vara, J. Sánchez, and O. Pastor. Towards

CMMI-compliant Business Process-Driven Requirements Engineering. In J. P.

Faria, A. R. da Silva, and R. J. Machado, editors,QUATIC, pages 193–198. IEEE

Computer Society, 2012.

[24] A. M. L. de Vasconcelos, G. Giachetti, B. Marín, and O. Pastor. Towards a CMMI-

Compliant Goal-Oriented Software Process through Model-Driven Development.

In P. Johannesson, J. Krogstie, and A. L. Opdahl, editors,PoEM, volume 92 of

LNBIP, pages 253–267. Springer, 2011.

[25] J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K. R.

Dittrich, A. Geppert, and M. C. Norrie, editors,Advanced Information Systems

Engineering, volume 2068 ofLNCS, pages 157–170. Springer Berlin Heidelberg,

2001.

[26] G. Denker, J. Meseguer, and C. Talcott. Formal Specification and Analysis of

Active Networks and Communication Protocols: the Maude Experience. InProc.

of DISCEX’00, volume 1, pages 251–265, 2000.

[27] R. M. Dijkman, M. Dumas, and C. Ouyang. Semantics and Analysis of Business

Process Models in BPMN.Information and Software Technology, 50(12):1281–

1294, Nov. 2008.

[28] R. M. Dijkman and P. V. Gorp. BPMN 2.0 Execution Semantics Formalized

as Graph Rewrite Rules. In J. Mendling, M. Weidlich, and M. Weske, editors,

Business Process Modeling Notation - Second InternationalWorkshop, BPMN

2010, volume 67 ofLNBIP, pages 16–30. Springer, 2010.

[29] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns inProperty Specifications

for Finite-state Verification. InProceedings of the 21st International Conference

on Software Engineering, ICSE ’99, pages 411–420, New York, NY, USA, 1999.

ACM.

[30] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL Model Checker.

In F. Gaducci and U. Montanari, editors,Proceedings of WRLA 2002, volume 71

of ENTCS, Amsterdam, September 2002. Elsevier.

[31] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL Model Checker

and its Implementation. InIn Model Checking Software: Proc. 10 th Intl. SPIN

Workshop, pages 230–234. Springer LNCS, 2003.

[32] A. Elgammal.Towards A Comprehensive Framework for Business Process Com-

pliance. PhD thesis, Tilburg University, April 2012.

[33] A. Elgammal, O. Turetken, W.-J. Heuvel, and M. Papazoglou. Formalizing and

Appling Compliance Patterns for Business Process Compliance. Software & Sys-

tems Modeling, pages 1–28, 2014.

[34] M. ElKharbili, A. K. A. de Medeiros, S. Stein, and W. M. P.van der Aalst. Busi-

ness Process Compliance Checking: Current State and FutureChallenges. In

P. Loos, M. Nüttgens, K. Turowski, and D. Werth, editors,MobIS, volume 141 of

LNI, pages 107–113. GI, 2008.

[35] H. Endert, B. Hirsch, T. Küster, and S. Albayrak. Towards a Mapping from BPMN

to Agents. InProceedings of the 2007 AAMAS international workshop and SO-

CASE 2007 conference on Service-oriented computing: agents, semantics, and

engineering, AAMAS’07/SOCASE’07, pages 92–106. Springer-Verlag, 2007.

[36] A. Farzan and J. Meseguer. State Space Reduction of Rewrite Theories Using

Invisible Transitions. In M. Johnson and V. Vene, editors,Algebraic Methodology

and Software Technology, volume 4019 ofLNCS, pages 142–157. Springer Berlin

Heidelberg, 2006.

[37] S. Garcia-Miller. Thoughts on Applying CMMI in Small Settings. Technical

report, Carnegie Mellon, SEI, 2005.

[38] K. Gerke, J. Cardoso, and A. Claus. Measuring the Compliance of Processes with

Reference Models. In R. Meersman, T. Dillon, and P. Herrero,editors,On the

Move to Meaningful Internet Systems: OTM 2009, volume 5870 ofLNCS, pages

76–93. Springer Berlin Heidelberg, 2009.

[39] A. Ghose and G. Koliadis. Auditing Business Process Compliance. In B. Krämer,

K.-J. Lin, and P. Narasimhan, editors,Service-Oriented Computing, ICSOC 2007,

volume 4749 ofLNCS, chapter 14, pages 169–180. Springer Berlin, Heidelberg,

2007.

[40] P. V. Gorp and R. M. Dijkman. A Visual token-based Formalization of BPMN

2.0 based on in-place Transformations.Information & Software Technology,

55(2):365–394, 2013.

[41] G. Governatori, Z. Milosevic, and S. Sadiq. ComplianceChecking Between Busi-

ness Processes and Business Contracts. InProceedings of the 10th IEEE Inter-

national Enterprise Distributed Object Computing Conference, EDOC ’06, pages

221–232, Washington, DC, USA, 2006. IEEE Computer Society.

[42] G. Governatori and S. Sadiq. The Journey to Business Process Compliance.

Handbook of Research on BPM, pages 426–454, 2009.

[43] L. H. Grande. Introducción a la notación BPMN y su relación con las estrategias

del lenguaje Maude. Master’s thesis, Universidad Complutense de Madrid, 2009.

[44] K. Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of Workflow

Nets in the Stepwise Refinement Approach. In W. M. P. Aalst andE. Best, editors,

Applications and Theory of Petri Nets 2003, volume 2679 ofLecture Notes in

Computer Science, pages 337–356. Springer Berlin Heidelberg, 2003.

[45] ISO. ISO 10007:2003 Quality Management Systems Guidelines for Configuration

Management. Accessed online in 06-03-2014.

[46] E. M. C. Jr., O. Grumberg, and D. A. Peled.Model Checking. MIT Press, Cam-

bridge, MA, USA, 1999.

[47] K. S. H. M. H. V. Kaindl, H. Metamodel-Compliance Checking of Requirements

in a Semiformal Representation. Inthe 15th Conference on Advanced Information

Systems Engineering, volume 74 ofCAiSE ’03, 2003.

[48] A. Ligeza, K. Kluza, and T. Potempa. AI Approach to Formal Analysis of BPMN

Models. Towards a Logical Model for BPMN Diagrams. InFederated Conference

on Computer Science and Information Systems (FedCSIS), pages 931–934, 2012.

[49] Y. Liu, S. Müller, and K. Xu. A Static Compliance-Checking Framework for

Business Process Models.IBM Systems Journal, 46(2):335–361, Apr. 2007.

[50] J. O. Long. ITIL Version 3 at a Glance Information Quick Reference. Springer-

Verlag US, 2008.

[51] R. Lu, S. Sadiq, and G. Governatori. Compliance Aware Business Process Design.

In Proceedings of the 2007 international conference on Business Process Man-

agement, BPM’07, pages 120–131, Berlin, Heidelberg, 2008. Springer-Verlag.

[52] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Sys-

tems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[53] A. Martens. On Compatibility of Web Services.Petri Net Newsletter, 65:12–20,

2003.

[54] N. MartíOliet, M. Palomino, and A. Verdejo. Rewriting Logic Bibliography by

Topic: 1990-2011. The Journal of Logic and Algebraic Programming, 81(7-

8):782–815, 2012. Rewriting Logic and its Applications.

[55] J. Mendling.Detection and Prediction of Errors in EPC Business Process Models.

PhD thesis, Institute of Information Systems and New Media,Vienna University

of Economics and Business Administration, May 2007.

[56] J. Meseguer. Conditional Rewriting Logic As a Unified Model of Concurrency.

Theoretical Computer Science, 96(1):73–155, Apr. 1992.

[57] J. Meseguer. Rewriting Logic as a Semantic Framework for Concurrency: a

Progress Report. In U. Montanari and V. Sassone, editors,CONCUR ’96: Con-

currency Theory, volume 1119 ofLecture Notes in Computer Science, pages 331–

372. Springer Berlin Heidelberg, 1996.

[58] J. Meseguer. Membership Algebra as a Logical Frameworkfor Equational Speci-

fication. Inthe 12th International Workshop on Recent Trends in Algebraic Devel-

opment Techniques Proceedings, WADT’97, pages 18–61. Springer-Verlag, 1997.

[59] Z. Milosevic. Towards Integrating Business Policies with Business Processes. In

Proceedings of the 3rd international conference on Business Process Manage-

ment, BPM’05, pages 404–409, Berlin, Heidelberg, 2005. Springer-Verlag.

[60] I. Minnich. CMMI Appraisal Methodologies: Choosing What Is Right for You.

CROSSTALK, The Journal of Defense Software Engineering, 15(2):7–8, 2002.

[61] F. Mokhati, P. Gagnon, and M. Badri. Verifying UML Diagrams with Model

Checking: A Rewriting Logic Based Approach. InQuality Software, 2007. QSIC

’07. Seventh International Conference on, pages 356–362, Oct 2007.

[62] S. Morimoto, S. Shigematsu, Y. Goto, and J. Cheng. Formal Verification of Se-

curity Specifications with Common Criteria. InProceedings of the 2007 ACM

Symposium on Applied Computing, SAC ’07, pages 1506–1512, New York, NY,

USA, 2007. ACM.

[63] M. Muehlen and J. Recker. How Much Language Is Enough? Theoretical and

Practical Use of the Business Process Modeling Notation. InZ. Bellahséne and

M. Léonard, editors,Advanced Information Systems Engineering, volume 5074

of LNCS, pages 465–479. Springer, 2008.

[64] K. Namiri and N. Stojanovic. Pattern-based Design and Validation of Business

Process Compliance. InProceedings of the 2007 OTM Confederated interna-

tional conference on On the move to meaningful internet systems: CoopIS, DOA,

ODBASE, GADA, and IS - Volume Part I, OTM’07, pages 59–76, Berlin, Heidel-

berg, 2007. Springer-Verlag.

[65] K. Namiri and N. Stojanovic. Towards A Formal Frameworkfor Business Process

Compliance. In M. Bichler, T. Hess, H. Krcmar, U. Lechner, F.Matthes, A. Picot,

B. Speitkamp, and P. Wolf, editors,Multikonferenz Wirtschaftsinformatik. GITO-

Verlag, Berlin, 2008.

[66] R. S. Nandyal.Making Sense of Software Quality Assurance. TBS, 2008.

[67] E. Ohlebusch.Advanced Topics in Term Rewriting. Springer, 2002.

[68] OMG. Business Process Model and Notation (BPMN) Version 2.0. Technical

Report formal/2011-01-03, OMG, 2011.

[69] S. Onoda, Y. Ikkai, T. Kobayashi, and N. Komoda. Definition of Deadlock

Patterns for Business Processes Workflow Models. InSystems Sciences, 1999.

HICSS-32. Proceedings of the 32nd Annual Hawaii International Conference on,

volume Track 5, pages 1–11, 1999.

[70] C. Ouyang, M. Dumas, S. Breutel, and A. ter Hofstede. Translating Standard Pro-

cess Models to BPEL. InProceedings of the 18th International Conference on Ad-

vanced Information Systems Engineering, CAiSE’06, pages 417–432. Springer-

Verlag, 2006.

[71] R. Pelánek. Fighting State Space Explosion: Review andEvaluation. In D. Cofer

and A. Fantechi, editors,Formal Methods for Industrial Critical Systems, volume

5596 ofLNCS, pages 37–52. Springer Berlin Heidelberg, 2009.

[72] J. R. Persse.Process Improvement Essentials: CMMI, Six SIGMA, and ISO 9001.

Theory in Practice. O’Reilly Media, Inc., 2006.

[73] M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P. vanDer Aalst.

Constraint-based Workflow Models: Change Made Easy. InProceedings of the

2007 OTM Confederated international conference on On the move to meaning-

ful internet systems: CoopIS, DOA, ODBASE, GADA, and IS - Volume Part I,

OTM’07, pages 77–94, Berlin, Heidelberg, 2007. Springer-Verlag.

[74] F. Puhlmann and M. Weske. Using theπ-calculus for Formalizing Workflow

Patterns. InProceedings of the 3rd International Conference on Business Process

Management, BPM’05, pages 153–168. Springer-Verlag, 2005.

[75] F. Puhlmann and M. Weske. Investigations on Soundness Regarding Lazy Ac-

tivities. In Proceedings of the 4th international conference on Business Process

Management, BPM’06, pages 145–160. Springer-Verlag, 2006.

[76] W. Reisig. Undersanding Petri Nets: Modeling Techniques, Analysis Methods,

Case Studies. Springer-Verlag Berlin Heidelberg, 2013.

[77] A. Rozinat and W. M. P. van der Aalst. Conformance Checking of Processes

Based on Monitoring Real Behavior.Inf. Syst., 33(1):64–95, 2008.

[78] V. Rusu. Embedding Domain-Specific Modelling Languages in Maude Specifi-

cations.Software & Systems Modeling, 12(4):847–869, 2013.

[79] S. Sadiq, G. Governatori, and K. Namiri. Modeling Control Objectives for Busi-

ness Process Compliance. In G. Alonso, P. Dadam, and M. Rosemann, editors,

Business Process Management, volume 4714 ofLNCS, pages 149–164. Springer-

Verlag, 2007.

[80] S. W. Sadiq. A Roadmap for Research in Business Process Compliance. In

W. Abramowicz, L. Maciaszek, and K. Wecel, editors,BIS (Workshops), vol-

ume 97 ofLNBIP, pages 1–4. Springer, 2011.

[81] W. Sadiq and M. E. Orlowska. Analyzing Process Models Using Graph Reduction

Techniques.Information Systems, 25(2):117–134, 2000.

[82] G. Santos-García and M. Palomino. Solving Sudoku Puzzles with Rewriting

Rules.ENTCS, 176(4):79–93, July 2007.

[83] SCAMPI-Upgrade-Team. Standard CMMI Appraisal Methodfor Process Im-

provement (SCAMPI) A, Version 1.3: Method Definition Document. Technical

Report CMU/SEI-2011-HB-001, Software Engineering Institute, Carnegie Mel-

lon University, Pittsburgh, PA, 2011.

[84] R. Schmidt, C. Bartsch, and R. Oberhauser. Ontology-based Representation of

Compliance Requirements for Service Processes. In M. Hepp,K. Hinkelmann,

D. Karagiannis, R. Klein, and N. Stojanovic, editors,SBPM, volume 251 ofCEUR

Workshop Proceedings. CEUR-WS.org, 2007.

[85] I. C. Society. IEEE Standard for Configuration Management in Systems and Soft-

ware Engineering.IEEE Std 828â̌Dć-2012, pages i–58, 2012.

[86] M. Staples and M. Niazi. Two Case Studies on Small Enterprise Motivation and

Readiness for CMMI. InProceedings of the 11th International Conference on

Product Focused Software, PROFES ’10, pages 63–66, New York, NY, USA,

2010. ACM.

[87] M.-O. Stehr, J. Meseguer, and P. C. Ölveczky. RewritingLogic as a Unifying

Framework for Petri Nets. In H. Ehrig, J. Padberg, G. Juhás, and G. Rozenberg,

editors,Unifying Petri Nets, volume 2128 ofLNCS, pages 250–303. Springer

Berlin Heidelberg, 2001.

[88] P. Thati, K. Sen, and N. Martí-Oliet. An Executable Specification of Asyn-

chronous Pi-Calculus Semantics and May Testing in Maude 2.0. ENTCS, 71:261–

281, 2002.

[89] O. Türetken, A. Elgammal, W.-J. van den Heuvel, and M. P.Papazoglou. En-

forcing Compliance on Business Processes through the use ofPatterns. In V. K.

Tuunainen, M. Rossi, and J. Nandhakumar, editors,ECIS, 2011.

[90] W. van der Aalst and C. Stahl.Modeling Business Processes: A Petri Net-Oriented

Approach. Massachusetts Institute of Technology, 2011.

[91] W. M. van der Aalst and A. H. M. T. Hofstede. YAWL: Yet Another Workflow

Language.Information Systems Journal, 30:245–275, 2003.

[92] W. M. P. van der Aalst. Verification of Workflow Nets. In P.Azéma and G. Balbo,

editors,ICATPN, volume 1248 ofLNCS, pages 407–426. Springer, 1997.

[93] W. M. P. van der Aalst. Making Work Flow: On the Application of Petri Nets

to Business Process Management. In J. Esparza and C. Lakos, editors,ICATPN,

volume 2360 ofLNCS, pages 1–22. Springer, 2002.

[94] W. M. P. van der Aalst, H. T. de Beer, and B. F. van Dongen. Process Mining

and Verification of Properties: An Approach based on Temporal Logic. In Pro-

ceedings of the 2005 Confederated International Conference on On the Move to

Meaningful Internet Systems - Volume Part I, OTM’05, pages 130–147, Berlin,

Heidelberg, 2005. Springer-Verlag.

[95] W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter Hofstede,N. Sidorova,

H. M. W. Verbeek, M. Voorhoeve, and M. T. Wynn. Soundness of Workflow Nets:

Classification, Decidability, and Analysis.Formal Aspe. Comput., 23(3):333–363,

2011.

[96] M. Y. Vardi. Branching vs. Linear Time: Final Showdown.In T. Margaria and

W. Yi, editors,TACAS, volume 2031 ofLNCS, pages 1–22. Springer, 2001.

[97] M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to Automatic Pro-

gram Verification (Preliminary Report). InLICS, pages 332–344. IEEE Computer

Society, 1986.

[98] A. Verdejo and N. Martí-Oliet. Implementing CCS in Maude 2. Electr. Notes

Theor. Comput. Sci., 71:282–300, 2002.

[99] A. Verdejo and N. Martí-Oliet. Two Case Studies of Semantics Execution in

Maude: CCS and LOTOS.Formal Methods in System Design, 27(1-2):113–172,

2005.

[100] H. Völzer. A New Semantics for The Inclusive Converging Gateway in Safe Pro-

cesses. InProceedings of the 8th International Conference on Business Process

Management, BPM’10, pages 294–309. Springer-Verlag, 2010.

[101] K. V. Wal. ISACA and IT Governance Institute Annual Report. http://www.

isaca.org/COBIT/Pages/default.aspx?cid=1003566&Appeal=PR, 2011.

Accessed online in 4-12-2013.

[102] M. Weske.Business Process Management: Concepts, Languages, Architectures.

Springer-Verlag Berlin Heidelberg, 2012.

[103] P. Wohed, W. M. van der Aalst, M. Dumas, A. H. ter Hofstede, and N. Russell.

Pattern-based Analysis of BPMN : An Extensive Evaluation ofthe Control-flow,

the Data and the Resource Perspectives.BPM Center Report BPM-05-26, 2005.

[104] P. Wong and J. Gibbons. A Process Semantics for BPMN. InProceedings of

the 10th International Conference on Formal Methods and Software Engineering,

ICFEM’08, pages 355–374. Springer-Verlag, 2008.

[105] P. Wong and J. Gibbons. Formalisations and Applications of BPMN. Science of

Computer Programming, 76(8):633–650, Aug. 2011.

[106] K. Yajima, S. Morimoto, D. Horie, N. S. Azreen, Y. Goto,and J. Cheng. FOR-

VEST: A Support Tool for Formal Verification of Security Specifications with

ISO/IEC 15408. InInternational Conference on Availability, Reliability and Se-

curity (ARES’09), pages 624–629, March 2009.

[107] J. Ye and W. Song. Transformation of bpmn diagrams to yawl nets. Journal of

Software, 5(4):396–404, 2010.

http://www.isaca.org/COBIT/Pages/default.aspx?cid=1003566&Appeal=PR
http://www.isaca.org/COBIT/Pages/default.aspx?cid=1003566&Appeal=PR

Appendices List

Appendix A

Appendices List

The appendices of this thesis include the following:

1. CMMI Configuration Management PA. A copy of the CMMI CM process area

guidelines is included in Appendix B.

2. Designed Maude Functions. In Appendix C, the functions used in the semantics

and well-formed checking are defined and explained.

3. Maude Modules. The code files can be downloaded from the University of Le-

icester research archive at the same page the thesis downloaded from. The files in-

cludes modules (BPMN-SYNTAX, BPMN-SEMANTICS, WFS-BPMN, BPMN-

EXAMPLES, CM-PREDS, CM-CHECK and Maude model checking modules).

A file named (Counterexamples.txt) includes all the counterexamples we have

when running the model checker for EX1 and EX2. Note that, thecounterexample

file is a collection of counterexamples and not readable by Maude. Moreover, a

read metext file is giving some suggested steps to run the modules. Preliminary

link to the file is: https://lra.le.ac.uk/handle/2381/385, then search by

the thesis title or the author name.

173

https://lra.le.ac.uk/handle/2381/385

Appendix B.CMMI Configuration Management PA

Appendix B

CMMI-CM Process Area

Configuration Management is a support process area at Maturity Level 2 in CMMI. The following

is the description of the process area in the CMMI-DEV 1.3 document by [21].

Purpose: The purpose of Configuration Management (CM) is to establish and maintain the

integrity of work products using configuration identification, configuration control, configuration

status accounting, and configuration audits.

Introductory Notes: The Configuration Management process area involves the following

activities:

• Identifying the configuration of selected work products that compose baselines at given

points in time

• Controlling changes to configuration items

• Building or providing specifications to build work productsfrom the configuration man-

agement system

• Maintaining the integrity of baselines

• Providing accurate status and current configuration data todevelopers, end users, and

customers

The work products placed under configuration management include the products that are deliv-

ered to the customer, designated internal work products, acquired products, tools, and other items

used in creating and describing these work products.

Examples of work products that can be placed under configuration management include:

Hardware and equipment, Drawings, Product specifications,Tool configurations, Code and li-

174

braries, Compilers, Test tools and test scripts, Installation logs, Product data files, Product tech-

nical publications, Plans, User stories, Iteration backlogs, Process descriptions, Requirements,

Architecture documentation and design data, Product line plans, processes, and core assets.

Acquired products may need to be placed under configuration management by both the sup-

plier and the project. Provisions for conducting configuration management should be established

in supplier agreements. Methods to ensure that data are complete and consistent should be estab-

lished and maintained. Configuration management of work products can be performed at several

levels of granularity. Configuration items can be decomposed into configuration components

and configuration units. Only the termconfiguration itemis used in this process area. There-

fore, in these practices,configuration item(CI) may be interpreted as configuration component

or configuration unit as appropriate.

Baselines provide a stable basis for the continuing evolution of configuration items. An

example of a baseline is an approved description of a productthat includes internally consistent

versions of requirements, requirement traceability matrices, design, discipline-specific items, and

end-user documentation. Baselines are added to the configuration management system as they

are developed. Changes to baselines and the release of work products built from the configuration

management system are systematically controlled and monitored via the configuration control,

change management, and configuration auditing functions ofconfiguration management.

This process area applies not only to configuration management on projects but also to con-

figuration management of organizational work products suchas standards, procedures, reuse li-

braries, and other shared supporting assets. Configurationmanagement is focused on the rigorous

control of the managerial and technical aspects of work products, including the delivered product

or service. This process area covers the practices for performing the configuration management

function and is applicable to all work products that are placed under configuration management.

For product lines, configuration management involves additional considerations due to the

sharing of core assets across the products in the product line and across multiple versions of core

assets and products.

Specific Goal and Practice Summary

SG 1 Establish Baselines

SP 1.1 Identify Configuration Items

SP 1.2 Establish a Configuration Management System

SP 1.3 Create or Release Baselines

SG 2 Track and Control Changes

SP 2.1 Track Change Requests

SP 2.2 Control Configuration Items

SG 3 Establish Integrity

SP 3.1 Establish Configuration Management Records

SP 3.2 Perform Configuration Audits

B.1 SG 1 Establish Baselines

Baselines of identified work products are established. Specific practices to establish baselines

are covered by this specific goal. The specific practices under the Track and Control Changes

specific goal serve to maintain the baselines. The specific practices of the Establish Integrity

specific goal document and audit the integrity of the baselines.

SP 1.1 Identify Configuration Items

Identify configuration items, components, and related workproducts to be placed under

configuration management.

Configuration identification is the selection and specification of the following:

• Products delivered to the customer

• Designated internal work products

• Acquired products

• Tools and other capital assets of the project’s work environment

• Other items used in creating and describing these work products

Configuration items (CIs) can include hardware, equipment,and tangible assets as well as soft-

ware and documentation. Documentation can include requirements specifications and interface

documents. Other documents that serve to identify the configuration of the product or service,

such as test results, may also be included. A CI is an entity designated for configuration man-

agement, which may consist of multiple related work products that form a baseline. This logical

grouping provides ease of identification and controlled access. The selection of work products

for configuration management should be based on criteria established during planning. Example

Work Products is Identified configuration items.

Subpractices

(1.1.1) Select configuration items and work products that compose them based on documented

criteria.

(1.1.2) Assign unique identifiers to configuration items.

(1.1.3) Specify the important characteristics of each configuration item.

(1.1.4) Specify when each configuration item is placed underconfiguration management.

(1.1.5) Identify the owner responsible for each configuration item.

(1.1.6) Specify relationships among configuration items.

Example criteria for selecting configuration items at the appropriate work product level in-

clude the following:

• Work products that can be used by two or more groups

• Work products that are expected to change over time either because of errors or changes

in requirements

• Work products that are dependent on each other (i.e., a change in one mandates a change

in the others)

• Work products critical to project success

Examples of work products that may be part of a configuration item include the following:

• Design

• Test plans and procedures

• Test results

• Interface descriptions

• Drawings

• Source code

• User stories or story cards

• The declared business case, logic, or value

• Tools (e.g., compilers)

• Process descriptions

• Requirements

Example characteristics of configuration items include author, document or file type, program-

ming language for software code files, minimum marketable features, and the purpose the con-

figuration item serves.

Example criteria for determining when to place work products under configuration manage-

ment include the following:

• When the work product is ready for test

• Stage of the project lifecycle

• Degree of control desired on the work product

• Cost and schedule limitations

• Stakeholder requirements

Incorporating the types of relationships (e.g., parent-child, dependency) that exist among

configuration items into the configuration management structure (e.g., configuration management

database) assists in managing the effects and impacts of changes.

SP 1.2 Establish a Configuration Management System

Establish and maintain a configuration management and change management system for

controlling work products.

A configuration management system includes the storage media, procedures, and tools for

accessing the system. A configuration management system canconsist of multiple subsystems

with different implementations that are appropriate for each configuration management envi-

ronment. A change management system includes the storage media, procedures, and tools for

recording and accessing change requests.

Example Work Products

• Configuration management system with controlled work products

• Configuration management system access control procedures

• Change request database

Subpractices

(1.2.1) Establish a mechanism to manage multiple levels of control.

(1.2.2) Store and retrieve configuration items in a configuration management system.

(1.2.3) Provide access control to ensure authorized accessto the configuration management sys-

tem.

(1.2.4) Share and transfer configuration items between control levels in the configuration man-

agement system.

(1.2.5) Store and recover archived versions of configuration items.

(1.2.6) Store, update, and retrieve configuration management records.

(1.2.7) Create configuration management reports from the configuration management system.

(1.2.8) Preserve the contents of the configuration management system.

(1.2.9) Revise the configuration management structure as necessary.

The level of control is typically selected based on project objectives, risk, and resources.

Control levels can vary in relation to the project lifecycle, type of system under development,

and specific project requirements. Example levels of control include the following:

• Uncontrolled: Anyone can make changes.

• Work-in-progress: Authors control changes.

• Released: A designated authority authorizes and controls changes and relevant stakehold-

ers are notified when changes are made.

Levels of control can range from informal control that simply tracks changes made when config-

uration items are being developed to formal configuration control using baselines that can only

be changed as part of a formal configuration management process.

Examples of preservation functions of the configuration management system include the

following:

• Backup and restoration of configuration management files

• Archive of configuration management files

• Recovery from configuration management errors

SP 1.3 Create or Release Baselines

Create or release baselines for internal use and for delivery to the customer.

A baseline is represented by the assignment of an identifier to a configuration item or a col-

lection of configuration items and associated entities at a distinct point in time. As a product or

service evolves, multiple baselines can be used to control development and testing. Hardware

products as well as software and documentation should also be included in baselines for infras-

tructure related configurations (e.g., software, hardware) and in preparation for system tests that

include interfacing hardware and software. One common set of baselines includes the system

level requirements, system element level design requirements, and the product definition at the

end of development/beginning of production. These baselines are typically referred to respec-

tively as thefunctional baseline, allocated baseline, andproduct baseline.

A software baseline can be a set of requirements, design, source code files and the associated

executable code, build files, and user documentation (associated entities) that have been assigned

a unique identifier. Example work products are: baselines, description of baselines.

Subpractices

(1.3.1) Obtain authorization from the CCB before creating or releasing baselines of configuration

items.

(1.3.2) Create or release baselines only from configurationitems in the configuration management

system.

(1.3.3) Document the set of configuration items that are contained in a baseline.

(1.3.4) Make the current set of baselines readily available.

B.2 SG 2 Track and Control Changes

Changes to the work products under configuration managementare tracked and controlled. The

specific practices under this specific goal serve to maintainbaselines after they are established

by specific practices under the Establish Baselines specificgoal.

SP 2.1 Track Change Requests

Track change requests for configuration items.

Change requests address not only new or changed requirements but also failures and defects

in work products. Change requests are analyzed to determinethe impact that the change will

have on the work product, related work products, the budget,and the schedule. Example work

products: Change requests.

Subpractices

(2.1.1) Initiate and record change requests in the change request database.

(2.1.2) Analyze the impact of changes and fixes proposed in change requests.

(2.1.3) Categorize and prioritize change requests.

(2.1.4) Review change requests to be addressed in the next baseline with relevant stakeholders

and get their agreement.

(2.1.5) Track the status of change requests to closure.

Changes are evaluated through activities that ensure that they are consistent with all technical

and project requirements. Changes are evaluated for their impact beyond immediate project or

contract requirements. Changes to an item used in multiple products can resolve an immediate

issue while causing a problem in other applications. Changes are evaluated for their impact on

release plans.

Emergency requests are identified and referred to an emergency authority if appropriate.

Changes are allocated to future baselines.

Conduct the change request review with appropriate participants. Record the disposition of

each change request and the rationale for the decision, including success criteria, a brief action

plan if appropriate, and needs met or unmet by the change. Perform the actions required in the

disposition and report results to relevant stakeholders.

Change requests brought into the system should be handled inan efficient and timely manner.

Once a change request has been processed, it is critical to close the request with the appropriate

approved action as soon as it is practical. Actions left openresult in larger than necessary status

lists, which in turn result in added costs and confusion.

SP 2.2 Control Configuration Items

Control changes to configuration items.

Control is maintained over the configuration of the work product baseline. This control

includes tracking the configuration of each configuration item, approving a new configuration if

necessary, and updating the baseline. Example work products: Revision history of configuration

items, and Archives of baselines.

Subpractices

(2.2.1) Control changes to configuration items throughout the life of the product or service.

(2.2.2) Obtain appropriate authorization before changed configuration items are entered into the

configuration management system (e.g. authorization from the CCB, the project manager,

product owner, or the customer).

(2.2.3) Check in and check out configuration items in the configuration management system for

incorporation of changes in a manner that maintains the correctness and integrity of con-

figuration items.

(2.2.4) Perform reviews to ensure that changes have not caused unintended effects on the baselines

(e.g., ensure that changes have not compromised the safety or security of the system).

(2.2.5) Record changes to configuration items and reasons for changes as appropriate.

Examples of check-in and check-out steps include the following:

• Confirming that the revisions are authorized

• Updating the configuration items

• Archiving the replaced baseline and retrieving the new baseline

• Commenting on the changes made to the item

• Tying changes to related work products such as requirements, user stories, and tests

If a proposed change to the work product is accepted, a schedule is identified for incorporat-

ing the change into the work product and other affected areas. Configuration control mechanisms

can be tailored to categories of changes. For example, the approval considerations could be less

stringent for component changes that do not affect other components. Changed configuration

items are released after review and approval of configuration changes. Changes are not official

until they are released.

B.3 SG 3 Establish Integrity

Integrity of baselines is established and maintained.

The integrity of baselines, established by processes associated with the Establish Baselines

specific goal, and maintained by processes associated with the Track and Control Changes spe-

cific goal, is addressed by the specific practices under this specific goal.

SP 3.1 Establish Configuration Management Records

Establish and maintain records describing configuration items.Example work products:

• Revision history of configuration items

• Change log

• Change request records

• Status of configuration items

• Differences between baselines

Subpractices

(3.1.1) Record configuration management actions in sufficient detail so the content and status of

each configuration item is known and previous versions can berecovered.

(3.1.2) Ensure that relevant stakeholders have access to and knowledge of the configuration status

of configuration items.

(3.1.3) Identify the version of configuration items that constitute a particular baseline.

(3.1.4) Describe differences between successive baselines.

(3.1.5) Specify the latest version of baselines.

(3.1.6) Revise the status and history (i.e., changes, otheractions) of each configuration item as

necessary.

Examples of activities for communicating configuration status include the following:

• Providing access permissions to authorized end users

• Making baseline copies readily available to authorized endusers

• Automatically alerting relevant stakeholders when items are checked in or out or changed,

or of decisions made regarding change requests

SP 3.2 Perform Configuration Audits

Perform configuration audits to maintain the integrity of configuration baselines.

Configuration audits confirm that the resulting baselines and documentation conform to a

specified standard or requirement. Configuration item related records can exist in multiple

databases or configuration management systems. In such instances, configuration audits should

extend to these other databases as appropriate to ensure accuracy, consistency, and completeness

of configuration item information. Example work products are: Configuration audit results and

Action items. Examples of audit types include the following:

• Functional configuration audits (FCAs): Audits conducted to verify that the development

of a configuration item has been completed satisfactorily, that the item has achieved the

functional and quality attribute characteristics specified in the functional or allocated base-

line, and that its operational and support documents are complete and satisfactory.

• Physical configuration audits (PCAs): Audits conducted to verify that a configuration

item, as built, conforms to the technical documentation that defines and describes it.

• Configuration management audits: Audits conducted to confirm that configuration man-

agement records and configuration items are complete, consistent, and accurate.

Subpractices

(3.2.1) Assess the integrity of baselines.

(3.2.2) Confirm that configuration management records correctly identify configuration items.

(3.2.3) Review the structure and integrity of items in the configuration management system.

(3.2.4) Confirm the completeness, correctness, and consistency of items in the configuration man-

agement system. Completeness, correctness, and consistency of the configuration man-

agement system’s content are based on requirements as stated in the plan and the disposi-

tion of approved change requests.

(3.2.5) Confirm compliance with applicable configuration management standards and procedures.

(3.2.6) Track action items from the audit to closure

Appendix C.Designed Maude Functions

Appendix C

Maude Functions

In this appendix we present explanations of the semantics defined functions in Maude. In Section

C.1, functionspreds, succs, andOinP are defined for returning an object’s predecessor, succes-

sors and pool name. Followed by the functions used to define the well-formed BPMN models in

Section C.2. The function used to define the semantic rules for gateways are defined in Section

C.3 for AND related functions and in Section C.4 for the decision gateway related functions.

C.1 Operations on Business Process Models

We present here some useful functions that operate on the BP models and are build upon the pro-

posed formalization of BPMN syntax and semantics in Maude. Working on finding the paths for-

ward and backward leads us to have equations that retrieve a set ofall objects that are before/after

a certain object (or its predecessors/successors). In caseof structured cycles, the approach we

propose is still able to return the predecessors and successors of an object, but it will not be appli-

cable for the arbitrary cycles, because they will violate most of the well-formedness requirements

discussed in Chapter 3. The functions introduced below are used in other rules introduced earlier

in this chapter with some restrictions. For example, the functionspreds, imPreds, activePreds

used in rulesANDFork (in Section 3.4.2) and has similar structure of the concept but differs in the

aim, i.e.preds retrieves the object’s predecessor,imPreds retrieves the immediate predecessors

for an object,activePreds retrieves a true if one (or more) of the predecessors is active, and

preds which is discussed below retrieves the set of all predecessors starting from an object till

the start event is reached.

186

Predecessors

In preds functions, a depth-first search mechanism is used in order toreturn all the predeces-

sors of an object. It is defined to take the following arguments: anObject, which we want its

predecessors, and theObjectSet in which the object is a member. Moreover, the function takes

two object sets as arguments with the value (noobject) in its initial state; first one to use as a

temporary storage for objects with more than one predecessors (e.g. a merge gateway with more

than one predecessor) till all the predecessors are fetched, and the other one is used to store the

output objects till the procedure is finished. The function returns the set of predecessor objects if

thestart object is reached with no objects in the temporary storage object set, as defined below

and as shown graphically in Figure C.1 (c).

op preds : Object ObjectSet ObjectSet ObjectSet -> ObjectSet .

eq preds(O, noobject, noobject, A) = A .

eq preds(< X : startEvent | AS1 >, A, noobject, B) = B .

The first equation above assumes that all the process objectshave been retrieved (e.g. starting

from the end event, and retrieving all the predecessors tillthe start event). In that case, the process

object set will be empty (i.e.noobject operator) and the temporary storage is also empty, and the

function returns the output set of objects (A) containing the set of all the predecessors. The second

equation above assumes another scenario, where the start event is reached and the temporary

storage is empty (i.e.noobject operator), hence, the function returns the set of predecessors.

(b)(a) (c)

Y

...

X

...

XY XY

(d) (e)

XY

Figure C.1: BPMN illustration for different cases considered by thepreds function

The preds function considers many cases for the precedence relationships in a business

process model. The general forms of these cases are demonstrated using BPMN notation in

Figure C.1 which will be used below to explain the function definition. The cases in (a) and (b)

in Figure C.1 show the predecessor of an activity (or an end event) which is a single object. The

function checks here that the input transition for the object X is the same as the output transition

of the objectY and this declared them asY is the immediate predecessor ofX. The equation below

shows that objectX is the query object, objectY is its predecessor, we know that becauseX’s input

transition is the same asY’s output transition, (i.e.t N1), andA is the rest of theObjectSet. The

equation proceeds by copyingY to the output object setC, and replacingX by Y as the query

object. In this caseX has only one predecessor (Y). Notice that the equation below rewritesX into

Y asX has only one predecessor (i.e.Y) and it isY’s turn to bring its predecessors.

eq preds(< X : K | in:tN1;AS1 >,(< Y : L | out:tN1;AS2 >,A),B,C)

= preds(< Y : L | out:tN1;AS2 >,A,B,(< Y : L | out:tN1;AS2 >,C)) .

The following equation definition supposes that the objectX has more than one predecessors

(e.g. a merge gateway like the one in Figure C.1 (e)) andY is one of them. In this case,Y is

being copied to the output object setC as part of the output, and toB as an object waiting to get

its predecessors afterwards. ObjectX stays in the query object position after removing the input

transition which fetchY as a predecessor. As we still haveX as a query object and removing

one of its input transitions each step we fetch one of its predecessors, after some steps it will

have no other transitions (notrans). In this case we need to removeX as a query object and

put one of it predecessors stored withB. Note that we are not addingY to the output object set

C, because it is already there from a previous step. Also, the output transitions forY is a set

of transitions(tN1,T1) giving the possibility ofY being a splitting gateway with more than one

output transitions. In the Figure C.1 we used the XOR gatewayin cases (d) and (e) for illustrating

the idea and the same concept applies to the AND and OR gateways.

eq preds(<X:K|in:(tN1,T1);AS1>,(<Y:L|out:tN1;AS2>,A),B,C)

= preds(<X:K|in:T1;AS1>,A,(<Y:L|out:tN1;AS2>,B),

(<Y:L|out:tN1;AS2>,C)) [owise] .

eq preds(<X:K|in:notrans;AS1>,A,(<Y:L|out:(tN1,T1);AS2>,B),C)

= preds(<Y:L|out:(tN1,T1);AS2>,A,B,C) .

If the predecessor (Y in the equations below) has more than one output transitions(e.g. the

XOR split gateway in Figure C.1 (d)), then it will be referenced in more than one object prede-

cessor sets while it is already in the output set of predecessors. In the first check,Y is the only

predecessor forX, so theX is removed from the query andY has been rewritten to the query and

added to the output set of predecessorsC. This illustrated by the first equation below. This is

followed by adding the split gateway into the temporary storageB to return all the objects that it

is a predecessor for as shown in the second equation below. This done by removing one transition

at a time when its connected object is retrieved. Finally, the third equation below checks, with

the last predecessor, if it is already in the output set or not, if it is in the output set, then it is not

duplicated and the object in query is updated to the first of the retrieved predecessorsY.

eq preds(< X : K | in : t N1 ; AS1 >,

(< Y : L | out : (t N1 , T1) ; AS2 >, A), B, C)

= preds(< Y : L | out : (t N1 , T1) ; AS2 >, A, B,

(< Y : L | out : (t N1 , T1) ; AS2 >, C)) .

eq preds(< X : K | in : (t N1 , T1) ; AS1 >,

(< Y : L | out : (t N1 , T2) ; AS2 >, A), B, C)

= preds(< X : K | in : T1 ; AS1 >, A,

(< Y : L | out : (t N1 , T2) ; AS2 >, B),

(< Y : L | out : (t N1 , T2) ; AS2 >, C)) .

eq preds(< X : K | in : t N1 ; AS1 >, A,

(< Y : L | out : (t N1 , T1) ; AS2 >, B),

(< Y : L | out : (t N1 , T1) ; AS2 >, C))

= preds(< Y : L | out : (t N1 , T1) ; AS2 >, A, B,

(< Y : L | out : (t N1 , T1) ; AS2 >, C)) [owise] .

If the start event is reached while the temporary storage hasobjects in it, then the start event

is moved to the output object set and one of the objects in the temporary storage is moved to the

query to bring its predecessors. Check the case (c) in FigureC.1 and the rule below which model

this particular situation.

eq preds(< X : startEvent | AS1 >, A,

(< Y : L | AS2 >,B),

(< X : startEvent | AS1 >, < Y : L | AS2 >,C))

= preds(< Y : L | AS2 >, A, B,

(< X : startEvent | AS1 >, < Y : L | AS2 >, C)) .

Successors

A similar approach, as the one used in defining thepreds function above, is followed in defin-

ing thesuccs function. However, thesuccs function is mainly used to retrieve the set of all

successors of an object in the business process till the end event. A depth-first approach is used

to find the set of objects that comes after an object (its successors). The stopping condition of

the function is when it reaches the end event without remaining objects in its temporary storage

object set taking into account that according to the well-formed BPMN definition in Section 3.3,

a BPMN process has only one end event. The function is defined to take as arguments the object

in query, the whole object set, the temporary storage objectset, and the output storage object set.

op succs : Object ObjectSet ObjectSet ObjectSet -> ObjectSet .

eq succs(O, noobject, noobject, A) = A .

eq succs(< X : endEvent | AS1 >, A, noobject, B) = B .

a similar definition is given below for the functionsuccs.

eq succs(< X : K | out : t N1 ; AS1 >,

(< Y : L | in : t N1 ; AS2 >, A), B, C)

= succs(< Y : L | in : t N1 ; AS2 >, A, B,

(< Y : L | in : t N1 ; AS2 >, C)) .

eq succs(< X : K | out : (t N1 , T1) ; AS1 >,

(< Y : L | in : t N1 ; AS2 >, A), B, C)

= succs(< X : K | out : T1 ; AS1 >, A,

(< Y : L | in : t N1 ; AS2 >, B),

(< Y : L | in : t N1 ; AS2 >, C)) [owise] .

eq succs(< X : K | out : t N1 ; AS1 >,

(< Y : L | in : (t N1 , T1) ; AS2 >, A), B, C)

= succs(< Y : L | in : (t N1 , T1) ; AS2 >, A, B,

(< Y : L | in : (t N1 , T1) ; AS2 >, C)) .

eq succs(< X : K | out : (t N1 , T1) ; AS1 >,

(< Y : L | in : (t N1 , T2) ; AS2 >, A), B, C)

= succs(< X : K | out : T1 ; AS1 >, A,

(< Y : L | in : (t N1 , T2) ; AS2 >, B),

(< Y : L | in : (t N1 , T2) ; AS2 >, C)) [owise] .

eq succs(< X : K | out : t N1 ; AS1 >, A, noobject,

(< Y : L | in : (t N1 , T1) ; AS2 >, C))

= < Y : L | in : (t N1 , T1) ; AS2 >, C .

eq succs(< X : K | out : (t N1 , T1) ; AS1 >, A, B,

(< Y : L | in : (t N1 , T2) ; AS2 >, C))

= succs(< X : K | out : T1 ; AS1 >, A, B,

(< Y : L | in : (t N1 , T2) ; AS2 >, C)) [owise] .

eq succs(< X : K | out : t N1 ; AS1 >, A,

(< Y : L | in : (t N1 , T1) ; AS2 >, B),

(< Y : L | in : (t N1 , T1) ; AS2 >, C))

= succs(< Y : L | in : (t N1 , T1) ; AS2 >, A, B,

(< Y : L | in : (t N1 , T1) ; AS2 >, C)) .

eq succs(< X : K | out : notrans ; AS1 >, A,

(< Y : L | in : (t N1 , T1) ; AS2 >, B), C)

= succs(< Y : L | in : (t N1 , T1) ; AS2 >, A, B, C) .

eq succs(< X : endEvent | eventType : end ; AS1 >, A,

(< Y : L | AS2 >, B),

(< X : endEvent | eventType : end ; AS1 >,< Y : L | AS2 >,C))

= succs(< Y : L | AS2 >, A, B,

(< X : endEvent | eventType : end ; AS1 >,< Y : L | AS2 >,C)) .

Identifying Responsibilities

In order to retrieve all the objects in a certain pool, or to answer a question of what are the

activities that a certain participant is responsible for ina business process, we defined the function

OinP. This function takes the name of the pool (participant) as a String and the set of all objects

that included into the process under consideration. It retrieves the set of objects which do belong

to that specific pool in query. The definition in Maude is below.

op OinP : String ObjectSet ObjectSet -> ObjectSet .

eq OinP(S1, noobject, B) = B .

eq OinP(S1,(< X : K | pool : S1 ; AS1 >,A),B)

= OinP(S1,A,(< X : K | pool : S1 ; AS1 >,B)) .

eq OinP(S1,(< X : K | pool : S2 ; AS1 >,A),B)

= OinP(S1,A,B) [owise] .

The functionOinP, defined above, takes the name of the pool (i.e. a participantin the process,

which can be a person, a role, a department, or a company), andthe whole process objects. It uses

the secondObjectSet argument as a storage for the output objects. The first equation defines

the situation of having no objects in the process, and thus the function retrieves the set of objects

in the output storageB. The second equation above, matches thepool value in an object in the

process with the String valueS1 in query. If there is a match, then the objectX is moved to

the output storage and removed from the process. Finally, inthe third equation, the otherwise

situation is defined ([owise]). If an object in the process does not have the matchingpool name,

then it is removed from the process object set and will not be added to the output storage as well.

Functioninto is used to check the existence of an object into an object set and defined as

follows.

op into : Object ObjectSet -> Bool .

eq into(O, (O,A)) = true .

eq into(O,A) = false [owise] .

C.2 WFS functions

The well-formedness check introduced in Section 3.3 was:

subsort WFprocess < ObjectSet .

op wfs : Object ObjectSet ~> Bool .

var O : Object .

var A : ObjectSet .

ceq wfs (O,A) = true

if wfstartendTF((O,A),noobject) /\ wfExceptionTF((O,A),noobject) /\

wfActivityTF((O,A),noobject) /\ wfGatesTF((O,A),noobject) /\

wfpathTF(O,(O,A),noobject) .

eq wfs(O,A) = false [owise] .

In the second part of the condition, functionwfExceptionTF is about the exception events; that

an exception event should have no incoming transitions and only one outgoing transition. Func-

tionsexceptionCollector, wfException andwfExceptionTF are used to collect the excep-

tion events in the process, collect the well-formed exception events in the process and check the

equality of the two sets of object respectively. The condition evaluates totrue if the two sets

have the same elements; hence all the exception events in theprocess satisfies the well-formed

exception requirements.

op exceptionCollector : ObjectSet ObjectSet -> ObjectSet .

eq exceptionCollector((<E1:intermediateEvent|eventType:exception;

AS1>,A),B)

= exceptionCollector(A,(<E1:intermediateEvent|eventType:exception;

AS1>,B)).

eq exceptionCollector(A,B) = B [owise] .

op wfException : ObjectSet ObjectSet -> ObjectSet .

eq wfException((<E1:intermediateEvent|eventType:exception;

sourceObject:Y;in:notrans;out:tN1;AS1>,<Y:K|error:tN1;AS2>,A),B)

= wfException(A,(<E1:intermediateEvent|eventType:exception;

sourceObject:Y;in:notrans;out:tN1;AS1>,B)) .

eq wfException(A,B) = B [owise] .

op wfExceptionTF : ObjectSet ObjectSet -> Bool .

ceq wfExceptionTF(A,noobject) = true

if wfException(A,noobject) = exceptionCollector(A,noobject) .

eq wfExceptionTF(A,B) = false [owise] .

The third part of the condition contains the functionwfActivitiesTF and covers the sec-

ond requirement in Definition 3.3.2 about the number of incoming and outgoing transitions

of an activity or non-exception event. The functionsActivityCollector, wfActivity and

wfActivityTF are used to collect the activities and non-exception eventsin the process, collect

the well-formed ones in the process and check the equality ofthe two sets of object respectively.

The condition evaluates totrue if the two sets have the same elements; hence all the activities

and non-exception events in the process are well-formed.

op ActivityCollector : ObjectSet ObjectSet -> ObjectSet .

eq ActivityCollector((< X : task | AS1 >,A),B)

= ActivityCollector(A,(B,< X : task | AS1 >)) .

eq ActivityCollector((< X : subprocess | AS1 >,A),B)

= ActivityCollector(A,(B,< X : subprocess | AS1 >)) .

eq ActivityCollector((< X : intermediateEvent | eventType : message;

AS1 >,A),B)

= ActivityCollector(A,(B,< X : intermediateEvent | eventType :

message;AS1>)) .

eq ActivityCollector(A,B) = B [owise] .

op wfActivity : ObjectSet ObjectSet -> ObjectSet .

--- a task

eq wfActivity((< X : task | in : tN1 ; out : tN2 ; AS1 >,A),B)

= wfActivity(A,(< X : task | in : tN1 ; out : tN2 ; AS1 >,B)) .

--- a subporcess

eq wfActivity((< X : subprocess | in : tN1 ; out : tN2 ; AS1 >,A),B)

= wfActivity(A,(< X : subprocess | in : tN1 ; out : tN2 ; AS1 >,B)) .

--- a message

eq wfActivity((< X : intermediateEvent | eventType:message ; in:tN1;

out : tN2 ; sourceObject : Y ; targetObject : Z ; AS1 >,A),B)

= wfActivity(A,(< X : intermediateEvent | eventType:message ; in:tN1;

out : tN2 ; sourceObject : Y ; targetObject : Z ; AS1 >,B)) .

eq wfActivity(A,B) = B [owise] .

op wfActivityTF : ObjectSet ObjectSet -> Bool .

ceq wfActivityTF(A,noobject) = true

if wfActivity(A,noobject) = ActivityCollector(A,noobject) .

eq wfActivityTF(A,B) = false [owise] .

For the gateways well-formedness, we use a similar approach, except it has different cases for

different gateways. FunctiongateCollector collects all the gateways in the process. Function

wfGates collects the well-formed gateways from the process. It has to fulfil the requirements for

each gateway type. For example, the AND-fork gateway shouldhave one incoming transition and

more than one outgoing transitions to be considered well-formed. The following is the related

wfGates function. It restricts the transfer of the gateway from the process set of objects to the

well-formed set of gateways by having exactly one incoming transitiontN1, and more than one

outgoing transitiontN2,T1 whereT1 is a set of transitions that should not be empty (T1 =/=

notrans).

op gateCollector : ObjectSet ObjectSet -> ObjectSet .

eq gateCollector((< G1 : G | AS1 >,A),B)

= gateCollector(A,(< G1 : G | AS1 >,B)) .

eq gateCollector(A,B) = B [owise] .

op wfGates : ObjectSet ObjectSet -> ObjectSet .

ceq wfGates((< G1 : aforkgate | in:tN1;out:(tN2,T1);AS1 >,A),B)

= wfGates(A,(< G1 : aforkgate | in:tN1;out:(tN2,T1);AS1 >,B))

if T1 =/= notrans .

ceq wfGates((< G1 : xsplitgate | in:tN1;out:(tN2,T1);AS1 >,A),B)

= wfGates(A,(< G1 : xsplitgate | in:tN1;out:(tN2,T1);AS1 >,B))

if T1 =/= notrans .

ceq wfGates((< G1 : osplitgate | in:tN1;out:(tN2,T1);AS1 >,A),B)

= wfGates(A,(< G1 : osplitgate | in:tN1;out:(tN2,T1);AS1 >,B))

if T1 =/= notrans .

XOR-split and OR-split gateways have the same condition forwell-formedness (see third

and fourth requirement in Definition 3.3.2). In case of join/merge gateways, the gateway should

have exactly one outgoing transition and more than one incoming transitions.

ceq wfGates((< G1 : ajoingate | in:(tN2,T1);out:tN1;AS1 >,A),B)

= wfGates(A,(< G1 : ajoingate | in:(tN2,T1);out:tN1;AS1 >,B))

if T1 =/= notrans .

ceq wfGates((< G1 : xmergegate | in:(tN2,T1);out:tN1;AS1 >,A),B)

= wfGates(A,(< G1 : xmergegate | in:(tN2,T1);out:tN1;AS1 >,B))

if T1 =/= notrans .

ceq wfGates((< G1 : omergegate | in:(tN2,T1);out:tN1;AS1 >,A),B)

= wfGates(A,(< G1 : omergegate | in:(tN2,T1);out:tN1;AS1 >,B))

if T1 =/= notrans .

After that we apply the functionwfGatesTF, which tests if the two resulted sets of objects

(from functionsgateCollector andwfGates) are the same (i.e. well-formed gateways) or not.

op wfGatesTF : ObjectSet ObjectSet -> Bool .

ceq wfGatesTF(A, noobject) = true

if wfGates(A, noobject) == gateCollector(A, noobject) .

eq wfGatesTF(A, B) = false [owise] .

Finally, functionwfpathTF in used in the last condition in the main well-formedness query.

It retrievestrue if the set of object’s predecessors contains the start eventobject and the set of

object’s successors contains the end event object. The goalis to test all the objects in a process to

follow the requirement of being on a path from the start eventto the end event. That means, if a

process has a dangling edge (or activity) or does not have a start/end event, this will be discovered

with at least one object in the process query. This will give the modeller an idea about where is

the problem to fix.

op ObjCid : Object -> Cid .

eq ObjCid (< X : K | AS1 >) = K .

op wfpathTF : Object ObjectSet ObjectSet -> Bool .

ceq wfpathTF(O, (O1, A, O2), noobject) = true

if (ObjCid (O1) == startEvent) /\

O1 in (preds(O,(O1,A),noobject,noobject)) /\

(ObjCid (O2) == endEvent) /\

O2 in (succs(O,(O2,A),noobject,noobject)) .

eq wfpathTF(O, A, B) = false [owise] .

C.3 AND Rules Functions

TheactivateANDsuccessors function definition specifies that the function will search for the

objects which has incoming flow matches the outgoing flow fromthe AND fork gateway. If a

matching is found, then its object’s states is changed from inactive to active if there are no execu-

tion conditions exist (i.e.cond:false). If there are execution conditions found (i.e.cond:true),

the object status is changed from inactive toready2bActive(i.e. ToBeActive:true). Otherwise

state ([owise]) if the object does not form a match, then it is left with no change of its state.

Finally, the function retrieves the updated object setA if there is no more transitions in the first

argument, meaning no other immediate successors for the ANDjoin gate to activate.

op activateANDsuccessors : TransSymbol ObjectSet -> ObjectSet .

eq activateANDsuccessors(notrans,A) = A .

eq activateANDsuccessors((tN1,T1),(< X : K | in:(tN1,T2); active:

false; cond : false; ToBeActive : false; AS1 >,A))

= activateANDsuccessors((T1),(< X : K | in:(tN1,T2); active:true;

cond : false; ToBeActive : false; AS1 >,A)) .

eq activateANDsuccessors((tN1,T1),(< X : K | in:(tN1,T2); active:

false; cond : true; ToBeActive : false; AS1 >,A))

= activateANDsuccessors((T1),(< X : K | in:(tN1,T2); active:false;

cond : true; ToBeActive : true; AS1 >, A)) [owise] .

In order to apply theANDjoin rule in Section 3.4.2, the AND join object should be in aready

to be activestate, which indicated using the attributes (cond:true andToBeActive :true). The

functionactivePreds used in the ruleANDjoin is used to assure thatall the predecessors of an

AND join gateway are active. It takes the set of input transitions (t N1,T1) for the AND join

gateway and the whole object set. If the connected predecessor is inactive (or ToBeActive),

the function retrievesfalse, otherwise, it retrievestrue, as detailed below.

op activePreds : TransSymbol ObjectSet -> Bool .

eq activePreds(notrans,A) = true .

eq activePreds((tN1,T1),(< X : K | out:(tN1,T2);active:false;

ToBeActive : false ; AS1 >,A)) = false .

eq activePreds((tN1,T1),(< X : K | out:(tN1,T2);active:false;

ToBeActive : true ; AS1 >,A)) = false .

eq activePreds((tN1,T1),(< X : K | out:tN1;active:true;AS1>,A))

= activePreds(T1,(< X : K | out:tN1;active:true;AS1>,A)) .

eq activePreds(T1,A) = false [owise] .

C.4 Decision Gateways rules Functions

In ruleXORsplit, we use the functionactivateXORchild to activate the XOR chosen child. The

arguments are in order: the outgoing transitions of the XOR-split gateway (sortTransSymbol),

the default transition defined in the XOR-split gateway (sort TransSymbol), the error transi-

tion defined in the XOR-split gateway (sortTransSymbol), the associated guard expressions

(sort Gexp), the control values (sortControlValue), and the set of all objects in the process

(sortObjectSet). It retrieves the set of objects in the process after activating the corresponding

XOR-split child. The following conditional equation is used to activate the XOR-split gateway

successor after evaluating the guard expressions. For example, in Figure C.2, if the flow contain-

ing the guard expression for the flow entering activitya is successfully evaluated (totrue), then

the activitya is activated next.

op activateXORchild : TransSymbol TransSymbol TransSymbol

Gexp ControlValue ObjectSet -> ObjectSet .

ceq activateXORchild((t N1,T1),(T3),(T2),GExp,CVs,

(<< < X : K | in : t N1; active : false; AS1 >, A >>))

= << < X : K | in : t N1 ; active : true ; AS1 >, A >>

if evalGuard (GExp,CVs,T3) = t N1 .

To evaluate the guard expression in an XOR gateway we use the functionevalGuard which

will be discussed later in Section 3.4.2. In the functionactivateXORchild, a default flowis

activated if and only if none of the conditions evaluates totrue. In case all conditions evaluates

to false and a default flow has not been specified, an exceptionis thrown.

a

c

b
t 2

t 3

t 4

g 2g 1

Figure C.2: Example model with XOR split and merge gateways

The first equation below defines the case of only one remainingtransition (of the XOR split

outgoing transitions) and it is the pre-defined default transition at the same time (activityc in

Figure C.2). In this case the object attached to that transition is activated as the XOR-split

successor (child).

eq activateXORchild((t N1),(t N1),(notrans),GExp,CVs,

(<< < X : K | in : t N1 ; active : false ; AS1 >, A >>))

= << < X : K | in : t N1 ; active : true ; AS1 > , A >> .

The following equation is also targeting the default flow, however, it is applied if no condition

is evaluated totrue, notice thenotrans for the first function argument. In this case a default

flow is the only choice. In Figure C.2, the default flow is the flow containing activityc, and it is

supposed to have no conditional expressions.

eq activateXORchild(notrans,(t N1),(T1),GExp,CVs),

(< X : K | in : t N1 ; active : false ; AS1 >, A))

= << < X : K | in : t N1 ; active : true ; AS1 > , A >> .

Another form of theactiavteXORchild equation deals with a scenario of no condition is eval-

uated totrue and no pre-defined default flow in the gateway at the same time.It leaves nothing

but throwing an exception event, which is attached to the gateway. Activating the exception may

lead to unsuccessfully terminating the process, as there isno visible exception flow in the model.

This case is not described in Figure C.2.

eq activateXORchild((notrans), (notrans), (t N1), (GExp),

(CVs), (<< < E1 : intermediateEvent | eventType : exception ;

in : notrans ; out : t N1 ; active : false ; AS1 >, A >>))

= << < E1 : intermediateEvent | eventType : exception; in : notrans;

out : t N1 ; active : true ; AS1 >, A >> .

The last form of the function is theotherwiseform (owise) which completes the definition of the

function to consider defined values for all possibilities. Therefore, if the function did not match

any of the above forms, it will proceed to the next XOR successor as defined below.

eq activateXORchild((t N1,T1),(T2),(T3),GExp,CVs,A)

= activateXORchild((T1),(T2),(T3),GExp,CVs,A) [owise] .

In ruleORmerge, the merge gateway predecessors should be deactivated in order to make the

gateway active (i.e. completing the merge). The function sued for this is functiondeactivateOPreds

defined below.

var Q : Bool .

op deactivateOPreds : TransSymbol ObjectSet -> ObjectSet .

eq deactivateOPreds(notrans, A) = A .

eq deactivateOPreds((t N1, T1),

(< X : K | out : tN1 ; active : Q ; AS1 >, A))

= deactivateOPreds((T1),

(< X : K | out : t N1 ; active : false ; AS1 >,A)) [owise] .

	Introduction
	Overview and Motivation
	Research Hypotheses
	Proposed Approach
	A Brief Justification of Used Tools and Techniques
	BPMN
	Maude
	CMMI-CM
	Model Checking Technique

	Contributions
	Structure of the Document

	Preliminaries
	BPMN
	Maude
	Rewrite Rules
	Admissible Modules
	Model Checking

	CMMI
	Configuration Management
	CMMI Appraisals

	Chapter Summary

	BPMN Formal Syntax and Semantics
	BPMN Flow Elements
	Activities
	Events
	Gateways
	Data Objects
	Swimlanes
	Artifacts
	Connecting Objects

	Introducing Example
	Well-Formed BPMN Processes
	BPMN Formal Semantics Specifications
	Process State Model
	General Behaviour Rules
	Initiating and Terminating the Process
	Sequential Behaviour
	Parallel Behaviour
	Exclusive Decision-Based Behaviour
	Inclusive Decision-Based Behaviour
	Evaluating Guard Expressions
	Managing Control Values

	Exception Handling
	Message Handling
	Subprocess Semantics
	Data Handling
	Domain Specific Semantics

	Chapter Summary

	Semantics Verification
	Gateway Block Structure
	AND Block Structure
	XOR Block Structure
	OR Block Structure

	Deadlock Patterns
	Structural and Domain-Specific Deadlocks
	More Deadlock Patterns with OR gateways
	Relating to The Proposed Formalization

	Soundness
	Chapter Summary

	Business Processes Compliance Checking
	Compliance Checking as a Model Checking
	Predicates
	BPs Model Examples (System Specifications)

	Property Specifications
	Linear Temporal Logic (LTL)
	Compliance Patterns
	CMMI-CM in LTL

	Model Checking Procedure
	Compliance Grading Scheme
	Spurious Properties
	Results Representation

	Chapter Summary

	Related Work
	BP Formalizations and Verification
	Maude Applications
	BP Compliance Problem
	Chapter Summary

	Conclusions and Future Work
	Summary
	Conclusions
	Limitations
	Future Work

	Appendices List
	CMMI-CM Process Area
	SG 1 Establish Baselines
	SG 2 Track and Control Changes
	SG 3 Establish Integrity

	Maude Functions
	Operations on Business Process Models
	Predecessors
	Successors
	Identifying Responsibilities

	WFS functions
	AND Rules Functions
	Decision Gateways rules Functions

