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Abstract

Phasic dopamine signaling participates in associative learning by reinforcing associations
between outcomes (US) and their predictors (CS). However, prior work has always engendered
these associations with innately rewarding stimuli. Thus, whether dopamine neurons can acquire
prediction signals in the absence of appetitive experience and update them when the value of the
outcome changes remains unknown. Here, we used sodium depletion to reversibly manipulate
the appetitive value of a hypertonic sodium solution while measuring phasic dopamine signaling
in rat nucleus accumbens. Dopamine responses to the NaCl US following sodium depletion
updated independent of prior experience. In contrast, prediction signals were only acquired
through extensive experience with a US that had positive affective value. Once learned,
dopamine prediction signals were flexibly expressed in a state-dependent manner. Our results
reveal striking differences with respect to how physiological state shapes dopamine signals

evoked by outcomes and their predictors.



Significance Statement

Associating environmental cues with their outcomes occurs through multiple strategies relying
on different neural substrates. Unpredicted reward evokes dopamine release, which also develops
to predictive cues suggesting that predictive dopamine signals arise only after extensive pairings
of cues with appetitive outcomes. However, recent work suggests that dopamine may also
contribute to model-based learning, which does not require that cues and their appetitive
outcomes be experienced in tandem. Taking advantage of the appetitive value of a hypertonic
sodium solution, which radically and reversibly changes with physiological state, we show that
dopamine differentially encodes hypertonic NaCl depending on sodium balance independent of
prior experience. Conversely, dopamine only encoded a NaCl cue after extensive, state-

dependent experience, firmly supporting dopamine’s role in experience-dependent learning.



/body
Introduction

Reconciling differences between anticipated and experienced outcomes is fundamental
for how an organism learns about the world. A key component of temporal difference learning
models (TD) is the reward prediction error (RPE) term (1, 2) — thought to be represented by
phasic activity of midbrain dopamine neurons (3-5). Indeed, CS-related dopamine activity
correlates with multiple behavioral indices of learning (6—8) and phasic dopamine signaling is
sufficient to drive CS-US learning (9).

In much of the supportive empirical work, food or fluid restricted animals first experience
and then learn to anticipate an innately appetitive US (e.g., sucrose, juice, water). Thus, the US
always has an inherent caloric, nutritive, or positive affective value to the organism.
Consequently, it is uncertain whether dopamine neurons can acquire CS-US associations without
first experiencing the US as a reward. Resolving this question is critical, as the striatal
underpinnings of goal-directed behavior may encompass both RPE and experience-independent,
model-based strategies (10, 11). One way to delineate dopamine’s role in these different learning
strategies would be to promote associations between a CS and a neutral or normally avoided US
whose affective value could be manipulated and then determine the experience dependency of
dopamine CS responses.

Sodium appetite is an ideal platform on which to address this question. Sodium depletion
induces a powerful sodium hunger and radically but reversibly alters the rewarding value of
hypertonic NaCl solutions (12, 13). The appetite is highly selective for sodium and manifests
independent of prior experience with either sodium solutions or sodium deficiency (14, 15). This

facilitates the delivery of a US (hypertonic NaCl) that is rewarding only in a specific



physiological state. We measured phasic dopamine signaling in the nucleus accumbens (NAc) of
rats while delivering a hypertonic NaCl solution directly into the oral cavity (intraoral) while rats
were under different physiological states. We found that dopamine responses to the NaCl US
were state-dependent and used this feature to investigate how physiological state influenced
acquisition and expression of NaCl CS-US associations. In contrast to the US, dopamine
responses to the NaCl CS depended on an interaction between experience and physiological
state. Our data suggest that dopamine neurons only signal reward predictions after extensive and
direct, state-dependent experience with an appetitive US and, moreover, that reward prediction

signals are expressed in a state-dependent manner — a finding most consistent with TD models.

Results

Sodium appetite renders normally avoided hypertonic NaCl positively reinforcing (13).
Given the link between phasic dopamine and positive reinforcement (16, 17), we first examined
whether sodium appetite regulates the unconditioned dopamine response to hypertonic NaCl. We
measured NAc dopamine with fast-scan cyclic voltammetry (FSCV) while delivering brief (4 s)
intraoral infusions of 0.45 M NaCl to naive rats. The 0.45 M concentration was selected to
maximize the ability to transform a normally avoided US into a powerful appetitive stimulus. We
tested four groups of rats in different states of sodium balance: Replete (n=4), Deplete (n=5), Re-
Replete (n=4; sodium depleted but allowed to restore sodium balance for 48 h before testing),
Depletet+Amiloride (n=5; deplete but received 0.45 M NaCl in amiloride (100 uM)). Intraoral
NaCl evoked phasic dopamine release only in Deplete rats (Two-Way ANOVA: Epoch x Group
Interaction F3 4= 10.17, P < 0.001; Post hoc: P < 0.001, Deplete Infusion vs. all comparisons;

Fig. 1 A-C, 1 E). Importantly, a dopamine response was absent in Re-Replete rats, indicating the



response depends on physiological state at the time of NaCl exposure. Furthermore, the
dopamine response to intraoral NaCl was taste-dependent. Amiloride, which blocks lingual
sodium channels and disrupts NaCl intake induced by depletion (Fig. S1), attenuated NaCl-
evoked dopamine (Fig. 1 C; Deplete+Amiloride). The dopamine response was unconditioned as:
1) it was evident on the first infusion in NaCl naive Deplete rats (Fig. 1 B, Fig. S2 4-B); and 2)
the sound associated with NaCl delivery (solenoid valve click) in the absence of intraoral NaCl
did not evoke dopamine release (Fig. 1 D). Sodium appetite at the time of dopamine
measurements was probed by measuring post-recording session, overnight intake of 0.45 M
NaCl (One-Way ANOVA: F;314=27.92, P < 0.0001; Post hoc: Deplete P < 0.05 vs. all other
groups, Re-Replete P < 0.05 vs. Replete and Depletet+Amiloride; Fig. 1 F). Additional
experiments suggested the lateral hypothalamus encoded NaCl in a state-dependent manner
upstream of ventral tegmental area (VTA) dopamine neurons (Fig. S3).

We then took advantage of the state dependency of the dopamine response to NaCl to
probe how the mesolimbic dopamine system acquires information about outcome-predictive
stimuli. Rats with normal sodium balance (n=10) received daily conditioning sessions where a
CS (light/lever combination) was presented just prior to the NaCl US for 7 sessions. Rats were
then tested under Deplete (n=5) or Replete (n=5) conditions. Recordings were first made during
presentations of the CS alone (i.e., in extinction). Our goal was to determine if the CS would
evoke a dopamine spike when Deplete rats first experienced the CS while sodium deficient, but
had yet to experience the NaCl US in the new physiological state. Despite ample experience with
the CS-US pairing, the NaCl CS did not evoke phasic dopamine release during extinction in
either Deplete or Replete rats (Two-Way ANOVA: Epoch: F, 6 = 0.98, P = 0.10; Treatment:

Fi16 = 4.0, P = 0.07; Interaction: F 16 = 2.92, P = 0.39); 2 A4-B). Moreover, neither group



exhibited conditioned-approach behavior (Fig. 2 (). We next began a within-session
reinstatement period in which the CS was paired with the NaCl US. The NaCl US evoked phasic
dopamine release selectively in Deplete rats during reinstatement (Two-Way ANOVA: Epoch x
Group Interaction: F, 16=4.55, P < 0.05; Post hoc: Deplete, infusion vs. baseline or CS both P <
0.01; Replete, no significant differences; Fig. 2 D-E). Deplete rats consumed significantly more
post-session NaCl than Replete rats (unpaired t-test; to = 3.22, P < 0.05; Fig. 2 G). Thus, even
after 7 days of CS-US training while sodium replete, both NAc dopamine signaling (Fig. 2 4-B,
2 D-E) and the behavior (Fig. 2 C, 2 F) of Deplete rats closely resembled subjects with no prior
CS training with an appetitive US.

The previous experiment suggested that the acquisition of dopamine reward-predictions
requires that the predicted outcome first be experienced as appetitive. Thus, we tested whether a
single day of NaCl CS-US training while rats were sodium deficient would condition dopamine
and/or behavioral responses to a NaCl cue. One group of rats was depleted 24 h before a single
NaCl CS-US training session (n=4; Trained Deplete), while another was depleted and allowed to
recover for 48 h before training (n=4; Trained Replete). 24 h after depletion all rats were given
overnight access to 0.45 M NaCl to confirm sodium appetite. NaCl consumption did not differ
between groups (unpaired t-test: ts = 0.55, P = 0.60). Thus, by the time of the recording session,
both groups had equivalent experience with sodium depletion, CS-US training, and NaCl
exposure, although one group had CS-US training paired and the other unpaired with sodium
deficiency. 24 h before the test session, Trained Replete and Trained Deplete rats were again
depleted of sodium. The following day, dopamine measurements were made with FSCV. A
single CS-US training session while sodium deficient was insufficient to condition a dopamine

response to the NaCl CS (Fig. 3). In contrast, the US evoked phasic dopamine release regardless



of training history (Two Way ANOVA: Epoch: F;1,=107.6, P < 0.0001; Training History: F; 12
= 0.04, P = 0.83; Interaction: F» = 7.13, P < 0.01). Post hoc: both groups infusion > baseline,
cue epochs, all at least P < 0.01; no difference from baseline during cue epoch for either group;
Fig. 3 A-B). In addition, the CS failed to evoke conditioned-approach behavior (Fig. 3 O).
Sodium appetite at the time of dopamine measurements was probed by measuring overnight
intake of 0.45 M NaCl, which confirmed a sodium appetite in both groups (unpaired t-test; tc =
0.85, P = 0.42; Fig. 3 D). Thus, a single training session that paired a CS with an appetitive US
was insufficient for the development of a dopamine reward-prediction signal.

We next explored the possibility that extensive experience with the appetitive features of
the predicted US is essential to condition dopamine reward-prediction signals. We sodium
depleted two groups of rats four times and conducted four CS-US training sessions. For one
group, training was always conducted while sodium deficient (Paired; n=12). The other group
was trained preceding/after recovery from depletion (Unpaired; n=5; Supplemental Materials and
Methods). During training, Paired rats developed preliminary signs of conditioned-approach
behavior (Fig. S4). After training, we sodium depleted a subset of Paired (n=5 of 12) and all
Unpaired rats 24 h before the FSCV recording session. The CS evoked dopamine release only in
Paired rats, whereas the NaCl US, but not CS, evoked dopamine release in Unpaired rats (Two-
Way ANOVA Epoch x Training History Interaction: F, ;6= 10.33, P < 0.01; Post hoc: Paired,
CS vs. baseline or infusion (both P < 0.01); Unpaired, infusion vs. baseline or CS (both P <
0.05); Fig. 4 4-B). Only Paired rats exhibited conditioned-approach behavior (unpaired t-test, to=
5.39, P <0.001; Fig. 4 C). Both groups consumed NaCl post-session, eliminating attribution of
these differences to sodium appetite at the time of dopamine measurements (Welch’s corrected t-

test: t4=0.60, P> 0.05; Fig. 4 D).



As physiological state influenced the acquisition of dopamine prediction signals, we next
sought to determine whether physiological state would affect their expression. We first tested
Paired rats (n=7; trained as above) in the absence of sodium need (Paired-Replete) and later
obtained a second recording from a subset of these same animals while they were sodium
deficient (Paired-Deplete; n=4 of 7). In absence of sodium need (Paired-Replete), the CS did not
evoke dopamine release. However, two days later, once sodium appetite was induced (Paired-
Deplete), the sodium CS evoked a large dopamine response (Two-Way ANOVA Epoch x State
Interaction: F, 13 = 6.23, P < 0.01; Post hoc: Paired-Replete, no significant differences; Paired-
Deplete, CS vs. baseline, P < 0.01; Fig. 4 E-F). In the Paired-Deplete condition, rats tended to
show more conditioned-approach behavior compared to Paired-Replete (Mann-Whitney U test, P
= 0.18; Fig. 4 G). Moreover, NaCl consumption following the recording session was
significantly elevated in the Paired-Deplete condition relative to Paired-Replete (Welch’s
corrected t-test: t3 = 3.31, P < 0.05; Fig. 4 H), thereby confirming sodium appetite. Thus, using
the same group of rats, we show that the dopamine response to the CS is flexibly expressed

based on physiological state.

Discussion

Appetitive and non-preferred/aversive stimuli differentially modulate dopamine signaling
(18-20). In turn, the presence or absence of a phasic increase in dopamine in response to a
primary stimulus can differentially drive learning about predictive cues and reinforce goal-
directed behavior (9). We leveraged the fact that the appetitive qualities of a hypertonic NaCl
solution strongly depend on physiological state. We found that the NaCl US evoked phasic

dopamine release only in Deplete rats and this did not require prior US experience (Figs. 1 &
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S2). Importantly, the response to the US was taste and state dependent. In contrast, the
mesolimbic system acquired information about the CS only through extensive and direct, state-
dependent experience with the US (Figs. 2-3 & 4 A4-D). Once the NaCl CS-US association was
learned, the phasic dopamine response to the CS was flexibly expressed according to
physiological state (Fig. 4 E-F). The results have broad implications for how predictive
dopamine signals are acquired, updated and expressed.

The ‘real-time’ responses of dopamine neurons to unconditioned affective stimuli have
been visited (21), and re-visited (19) yet considerable debate remains (22). Here, using intraoral
delivery, we show that in naive rats dopamine release in the NAc core is robustly evoked when
NaCl is appetitive but unchanged when it would be avoided. This differential encoding of the
same stimulus was independent of prior learning or experience but dependent on physiological
state and the ability to detect the sodium ion in solution — both prerequisites for the avid
consumption of hypertonic NaCl (23). It is notable that we did not observe a change in dopamine
concentration following intraoral NaCl infusions in Replete rats. Previous studies demonstrated
that innately or learned aversive stimuli (e.g., quinine, sucrose previously paired with LiCl to
induce a conditioned taste aversion) suppress dopamine release (24, 25). However,
concentrations of NaCl similar to that used here (0.5 M) evoke a mixture of appetitive and
aversive taste reactivity that switches to entirely appetitive following sodium depletion (26).
Moreover, whether dopamine neurons encode non-preferred/noxious/aversive stimuli with
decreases, no change or increases in firing rate may depend on anatomical location in the
midbrain (18, 27) and projection target (20, 28). Thus, it remains possible that dopamine terminal
fields outside the NAc core may yield different patterns of release. In addition, higher

concentrations of NaCl (> 0.5 M) may have yielded different results as these concentrations have
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been shown to recruit amiloride insensitive taste pathways typically activated by aversive, non-
sodium taste stimuli (bitter, sour; (29)). Still, our results demonstrate instant updating of
dopamine responses to primary stimuli without need for prior experience. Sodium appetite is a
long-studied, striking example of goal-directed behavior. Sodium deficient animals avidly
consume concentrated sodium solutions compared with animals with no sodium deficit, and this
is unlikely to depend on post-ingestive experience (14). We hypothesize that the ability of
sodium taste to drive neuronal responses that support behavioral reinforcement (16, 17) is highly
adaptive and helps to ensure rapid and immediate sodium consumption without need for post-
ingestive learning.

Phasic dopamine responses to reward-predictive cues are arguably a fundamental brain
signal, with evidence supporting their existence in mice (19), rats (3) monkeys (18), and humans
(30). Cue-evoked dopamine signals serve to invigorate goal-directed behaviors aimed at the
impending reward (31). Unlike our results with the NaCl US, dopamine reward prediction
signals did not instantaneously update and therefore did not simply reflect the change in the
affective value of the US (Fig. 2). Instead, for dopamine responses to develop to a predictive cue,
animals had to experience the CS-US pairing under conditions in which the US was appetitive
(Fig. 4). Moreover, the pairings between a CS and an appetitive outcome must be extensive (Fig.
3). Previous work suggested a correlation between cue-evoked dopamine release and the
development of conditioned approach behavior (6). We found a similar relationship that further
supports a role for dopamine in promoting learned approach behavior.

Our data reveal striking differences with respect to how previous experience and
physiological state interact to modulate dopamine prediction signals. Given that sodium deficient

animals will consume hypertonic NaCl without needing to learn that the solution will relieve
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their deficit (14), it is notable that, following a change in physiological state, we failed to observe
instant updating of the value of the cue in either approach behavior or the phasic dopamine
response (Fig. 2). The lack of instant behavioral updating contrasts with both an older (13) and a
recent report (11). Importantly, there were many methodological differences between the current
and previous work, including sodium depletion strategies, sex, and NaCl concentration. Given
that the higher salt concentrations used in the previous work would also have activated sour and
bitter taste receptors (29), taste-mediated, experience-independent learning may not rely on
sodium ion transduction and instead on other pathways. However, the most striking differences
relate to training history. In both previous reports, rats underwent some form of pre-training
where they learned cue- or response-outcome associations for a non-sodium US (sucrose, water).
It is also critical to note that neither study measured phasic dopamine signaling and thus cannot
speak to dopamine prediction signals. We show that both behavior and the dopamine response to
a NaCl CS is flexibly expressed with physiological state, but only after multiple days of training
under deplete conditions.

FSCV combined with sodium appetite enabled us to conclude that acquisition of
dopamine reward-prediction signals is consistent with RPE models rather than model-based
strategies. Work in non-human primates has shown that dopamine RPEs are modulated by an
external context that dictates the likelihood a given trial will be rewarded (32). The authors
explained the modulation using a TD model that featured a context parameter. Our data therefore
reflect the ability of a subject’s internal context (physiological state) to modulate RPE expression
once it has been learned. Moreover, we have previously shown that physiological state (e.g.,
hunger and associated hormones) augments the magnitude of dopamine responses to primary

rewards (33) and their predictors (34). Thus, physiological state powerfully augments the
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magnitude, acquisition, and expression, of reward-related responses in the mesolimbic system. A
recent study in humans found evidence for both model-based and model-free learning strategies
in the striatum (10). As this work used fMRI, it was unknown which striatal inputs carried
model-based vs. model-free information. Our results strongly suggest that, during initial
learning, mesolimbic dopamine does not contribute to model-based encoding at the level of the
ventral striatum.

In contrast with the experience-based acquisition of CS-US associations, the absence of a
dopamine CS response in Paired-Replete rats during their first need-free session (Fig. 4 E-F) is
inconsistent with a standard model-free account of how dopamine reward-prediction signals are
expressed. One potential explanation is that physiological state acts similarly to a discriminative
stimulus and ‘gates’ the expression of a learned association. The predictive values of model-free
discriminative stimuli are normally learned through experiencing different combinations of states
and their associated outcomes. However, Paired-Replete rats never before experienced intraoral
sodium infusions or predictive cues in a need-free condition. Thus, physiological state may
therefore act as a discriminative stimulus through a model-based process allowing rats to infer
the change in value of NaCl upon the first CS exposure in a need-free state, and this inference
was reflected by the lack of a dopamine response to the CS in a low-value context.

In sum, our data suggest that differential encoding of primary affective stimuli (here, the
same taste stimulus) by dopamine neurons can manifest independent of learning. In contrast,
dopamine neurons only acquire cue-outcome associations through direct and extended
experience with primary stimuli that have positive affective value. Moreover, once these
associations are formed, they are expressed as a function of their current value to the organism.

Our findings parallel recent studies in Drosophila demonstrating that dopamine neurons facilitate
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the formation and expression of nutrient-related memories in a state-dependent manner (35, 36) —
suggesting a highly conserved process. Thus, different physiological states give rise to unique
subjective experiences, which can have profound influences on brain substrates of associative

learning.

Experimental Procedures

Subjects. Male Sprague—Dawley rats (Charles River) weighing 375-475 g were used. This
manuscript reports data obtained from 60 rats. Most attrition resulted from loss of patency of the
intraoral cannula or the inability to successfully lower a recording electrode into the nucleus
accumbens on test days. As we were unable to obtain a recording from these animals, we omitted
all of their data from inclusion in the study. Rats were individually housed with lights on from 7
AM to 7 PM and tested during the light phase. Animal care and use was in accordance with the
National Institutes for Health Guide for the Care and Use of Laboratory Animals, and approved

by the Institutional Animal Care and Use Committee at the University of Illinois at Chicago.

Sodium Depletion Protocol. Sodium appetite was induced by 2 injections of furosemide (10
mg/kg, s.c.; Sigma, St. Louis, MO) spaced 1 h apart. Diuresis was verified by weight loss of >20
g in the 1 h following the second injection. During the 24 h depletion, rats were housed in wire-
bottom cages to prevent consumption of urine and had ad /libitum access to a sodium-deficient
diet (Teklad Sodium Deficient Diet; Harlan, Madison, WI) and distilled water. Vehicle treated
rats were also housed in wire bottom cages but given regular chow and water. Upon being

returned to their home cage, rats were given ad libitum 24 h access to 0.45 M NaCl to restore lost
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sodium and ad libitum access to normal chow and water. Overnight water and NaCl intake as

well as body weight were recorded during the 24 h repletion period.

Apparatus. All sessions took place in a standard operant box (Med Associates, St. Albans, VT)
inside a sound insulated chamber. An infusion line from a syringe containing 0.45 M NaCl was
attached to a solenoid valve (flow rate = 50 puL/s; The Lee Company, Westbrook, CT) and
suspended outside the sound insulated chamber. The infusion line passed through a commutator
(Crist Instruments, Hagerstown, MD) and was connected to the rats’ intraoral cannula. Before all
sessions, the intraoral cannula was flushed with distilled water to ensure patency. For
experiments involving amiloride, intraoral cannulas were first flushed with 100 uM amiloride in
distilled water to ensure epithelial sodium channels were blocked in advance of the first intraoral

infusion.

FSCYV Protocol. FSCV in awake and behaving rats and analyte identification and quantification
have been extensively described previously (37). Briefly, a micromanipulator containing a glass-
insulated carbon fiber (~75 um; Goodfellow USA, Coraopolis, PA) (recording) electrode was
inserted into the NAc guide cannula. The recording electrode was then lowered into NAc and
locked into place. A FSCV headstage (University of Washington EME Shop) was used to tether
the rat, apply voltage changes and measure resultant current changes. The electrode was held at -
0.4 V and ramped in a triangular fashion (-0.4 to +1.3 to -0.4 V; 400 V/s; ‘scan’). While
recording, scans were applied at 10 Hz. To verify that the recording location supported phasic
dopamine release, electrical stimulation was delivered to the VTA (24 pulses, 60 Hz, 120 pA). If

this failed to evoke dopamine release, the recording electrode was advanced 0.16 mm and the
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process was repeated. Once a stable release site was confirmed (Fig. S5), the experimental
session began. After the recording session, electrodes were removed; rats were disconnected

from the headstage and returned to their home cage.

FSCV Data Analysis. Electrochemical data were recorded during the entire session. Individual
trials were background subtracted and dopamine concentration surrounding the opening of the
solenoid (intraoral infusion sessions) or the CS onset (conditioning sessions) was extracted from
voltammetric data using principal component analysis (38). For intraoral infusion experiments,
we calculated the average dopamine concentration during the 4 s baseline immediately before
infusion (-4 to 0 s) and compared this with the average dopamine concentration evoked by
infusion of NaCl (0.1 to 4 s; Fig. 1). For conditioning experiments, we calculated the average
dopamine concentration during the 2 s baseline period immediately before CS onset (-2 to 0 s)
and compared this to the average dopamine concentration evoked during the first 2 s of the CS
(0.1 — 2 s) and first 2 s of the subsequent intraoral infusion (6 to 8 s in Figs. 2 and 4; 8 to 10 s in

Fig. 3).

Statistical Analysis. For intraoral infusions, dopamine concentration evoked during the epoch of
interest was compared using a two-way [epoch (baseline, infusion) X treatment (Replete,
Deplete, Re-Replete, Deplete+Amiloride)] ANOVA. For conditioning experiments, dopamine
concentration was compared using a two-way ANOVA with main effects of epoch (baseline,
cue, infusion) and either treatment (Replete, Deplete; Fig. 2), 1 day training (Trained Replete,
Trained Deplete; Fig. 3), training history (Paired, Unpaired; Fig. 4), or testing conditions (Paired-

Replete, Paired-Deplete; Fig. 4). One-way ANOVAs and Tukey’s HSD post hoc tests were used
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where appropriate. NaCl intake and measures of approach behavior were compared separately
using a two-tailed unpaired t-test, Welch’s corrected t-test, Mann-Whitney U test, or Wilcoxon’s
matched pairs test (two groups) or one-way ANOVA (>2 comparisons). Statistical analyses were
performed using GraphPad 5.0 (Prism Inc.), MATLAB (Mathworks), or SPSS Version 20.0

(IBM).
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Figure Legends

Fig. 1 Phasic dopamine signaling evoked by hypertonic NaCl depends on a taste-by-state
interaction. (A) Top: Trial-by-trial (y-axis) heatplot from a representative sodium replete rat
depicting NAc dopamine concentration during 20 s (x-axis) surrounding 4 s intraoral infusions of
0.45 M NaCl. Bottom: Dopamine concentration from the 10 trials (mean = SEM). (B) Same as
(a) in a sodium deplete rat. (C) Average dopamine concentration (=SEM) evoked by intraoral
NaCl across groups (see Results for group details): Replete (n=4; black), Deplete (n=5; red), Re-
Replete (n=4; orange), Deplete+Amiloride (n=5; blue). (D) Average dopamine (=SEM) evoked
by solenoid click (no intraoral NaCl delivered). (E) Average dopamine concentration during
baseline (-4 - 0 s) vs. intraoral infusion (0.1 — 4 s). No differences during baseline, intraoral NaCl
evoked dopamine selectively in Deplete rats (infusion vs. all comparisons, ***P < 0.001). (F)
Overnight NaCl intake following depletion (Deplete, Re-Replete, Deplete+Amiloride) or control
treatment (Replete). *significantly different from Deplete; “significantly different from Re-

Replete (both at least P < 0.05). opaque bars = mean.

Fig. 2 Seven days of CS-US training while sodium replete does not condition responses to a
sodium CS. (A) Average dopamine concentration (£SEM) during extinction for Replete (n=5;
black) and Deplete (n=5; red) rats. (B) Neither the CS nor solenoid click evoked dopamine
during extinction compared to baseline. (C) Approach behavior during extinction. (D) Average
traces of dopamine concentration (SEM) during reinstatement. (E) intraoral NaCl significantly
increased dopamine concentration in deplete rats. Deplete, infusion vs. baseline or CS (**P <

0.01); Replete, no significant differences (all comparisons, P > 0.05). (F) Approach behavior
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during reinstatement. (G) Post-recording session sodium intake was elevated in deplete rats (*P

< 0.05). opaque bars = mean.

Fig. 3 One day of sodium CS-US training while deplete is insufficient to condition a dopamine
response to the sodium CS. (A) Average dopamine concentration (+SEM) for rats trained replete
(n=4; black) and trained deplete (n=4; red) (B) The NaCl US, but not CS, evoked phasic
dopamine release regardless of training history. Dopamine concentration during the infusion was
significantly greater than both the baseline and cue periods in both groups (**P < 0.01).
Dopamine concentration during the CS was not greater than baseline for either group. (C)
Neither group approached the cue lever during the CS. (D) Post-recording session NaCl

consumption did not differ between groups.

Fig. 4 CS-US associations are acquired and expressed in a state dependent manner. (A) Average
dopamine concentration (+SEM) for a subset of Paired (n=5 of 12; red) and Unpaired rats (n=5;
black). (B) The sodium CS evoked phasic dopamine released only in Paired rats. Paired, CS vs.
baseline or infusion (**P < 0.01); Unpaired, Infusion vs. baseline or CS (*P < 0.05). (C)
Conditioned approach behavior for Paired and Unpaired rats (***P < 0.001). (D) Post-recording
session sodium intake did not differ between Paired and Unpaired rats. (E) Average dopamine
concentration (=SEM) in Paired rats tested while Replete (n=7 of 12; orange) or Deplete (second
recording obtained in 4 of 7 rats; red). (F) NaCl CS evoked dopamine only when Paired rats are
sodium deplete. Tested Deplete, CS vs. baseline (**P < 0.01); Tested Replete, no significant

differences (all comparisons P > 0.05). (G) Conditioned approach behavior for Paired rats tested
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replete vs. deplete (P = 0.18). (H) Post-session NaCl intake for Paired rats tested replete vs.

deplete (*P < 0.05). Opaque bars = mean.
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