
UNIVERSITY OF LEICESTER

XXML
Handling Extra-Large XML Documents

Andreas Poyias, LGIP Intern

2/1/2013

This White Paper introduces the SiXML project, developed by O’Neil Delpratt, Stelios Joannou, Naila
Rahman and Rajeev Raman at the University of Leicester. SiXML uses the novel technology of succinct data
structures to process unaltered XML documents in main memory with a very low memory footprint. SiXML
greatly improves the scalability of XML processing, both In terms of volume of data that can be handled and
processing time.

1. Introduction

1.1. XML

Extensible Markup Language (XML) is a text-based format markup language, used for storage,
transmission and manipulation of data. XML uses meta-data (tags) to demarcate and give
meaning to unstructured textual data. The addition of these meta-data to the unstructured
textual data causes the file size to increase heavily, a phenomenon referred to as XML bloat.

1.2. DOM

XML documents are often held in main memory (RAM) and processed via standard interfaces such

as the W3C standard Document Object Model (DOM). DOM represents an XML document as a tree

structure (the Node-Tree) in RAM, and allows navigation, access and modification operations to

be performed on the document. The RAM usage of normal DOM implementations (e.g. Apache

Xerces, the reference implementation of DOM) is usually an order of magnitude greater than the

(already bloated) XML document (see Figure 1). This greatly affects the scalability of XML

processing software. If the memory needed to represent an XML document is greater than the

physical RAM on the machine, then the document may not load, or a substantial part may be

stored on Virtual Memory (VM), which is located on slow storage media such as magnetic or

solid-state disk, making XML processing much slower. In other cases VM is either limited (e.g. in

Java VM is at most 2GB), or not available at all (e.g. the Android operating system).

The SiXML project offers a solution to this problem by providing libraries for XML developers to

be able to rapidly process XML documents in-memory using a very low memory footprint.

Figure 1 - XML Bloat

2. Details of Implementation/Functionalities

2.1. DOM API

Programmers that use the DOM API can build XML documents, navigate in any direction in the
node-tree (e.g. move from a node to its first child, its siblings or its parent), add, delete or
modify elements and content in an xml document. They can filter specific types while traversing
a document (Element nodes, Text nodes, Attributes). Therefore, DOM API provides users the
freedom to manipulate a document in any way they want as long as their machine has enough
memory to load the document.

One reason why DOM representations of XML documents use a lot of RAM is the use of pointers.
For example, the Xerces DOM implementation uses 5 pointers per node solely for representing
the tree structure (and many other pointers for attributes etc.). On a 64-bit machine each
pointer costs 8 bytes, giving a total of 40 bytes (320 bits) per node just for tree representation.

Figure 2 - Xerces Node Tree representation

2.2. SiXDOM principles

SiXDOM is an implementation of DOM based on succinct data structures, which are highly space-
efficient data structures that support operations rapidly, and were pioneered by Jacobson [1].
Succinct data structures use novel ideas to store data in RAM in close to the information-
theoretic minimum, while permitting a wide range of operations on the data. According to
information theory, a DOM node-tree can be represented in just 2 bits per node, as opposed to
the 40 bytes used by standard implementations.

For example, the node tree is represented as a balanced parenthesis sequence, as displayed in
Figure 3. Each coloured tag is represented by the corresponding node in the tree. Each opening
tag is an opening parenthesis and each closing tag is a closing parenthesis represented by 1 bit
each, thus using 2 bits per node. However, navigating a tree with hundreds of millions of nodes
using the parenthesis string would be very slow. Based upon several years of research into

succinct data structures, we store additional information to guide navigation among the
parentheses. The resulting tree representation requires less than 3 bits per node, and supports
navigation at speeds comparable to a pointer-based representation. SiXDOM uses similar
“pointer-less” succinct data structures to represent all the other information in an XML
document.

Figure 3 - SiXDOM Node Tree representation

2.3. SiXDOM status

The latest version is SiXDOM v1.2, which is a native C++ implementation of DOM Core Level 2 and
a partial implementation of Level 3. In essence SiXDOM 1.2 supports all DOM methods except
those that modify the document like add node, delete node or modify a document in memory.
SiXDOM implementation is available to be used in Java and Python as well with the use of
wrapper classes. SiXDOM libraries are available for download from
http://www.cs.le.ac.uk/SiXML. In Sections 3 and 4 we discuss the performance of SiXDOM, and
show that it outperforms Xerces by an order of magnitude in both memory and speed for largish
XML documents.

2.4. Node vs Treewalker Interface

The SiXDOM implementation is able to use both the Node and the Treewalker interface while
traversing. Our recommendation is the use of the Treewalker interface. A key difference
between SiXDOM and (say) Xerces is that in SiXDOM, the Node objects in the node-tree are
created on demand. Thus, traversing using the Node interface results in the creation of Node
objects, which are garbage collected only at the time of deletion of the SiXDOM document
collection. This could lead to memory leaks, if the Node objects created as a by-product of
traversal are not in fact needed on a long-term basis. These Node objects can take up a lot of
memory (see Section 4.4 below). However, navigating an XML document in SiXDOM through
Treewalker does not create any new objects during traversal and avoids this kind of memory
leak. The experiments that we discuss in Section 3 will be using the Treewalker interface.

http://www.cs.le.ac.uk/SiXML

SOURCE CODE EXAMPLE using TreeWalker and Node Interface

void TreeWalkerInterfaceCode(){

 int check = 0;

 while (current != NULL){

 if(check < 2){

 if(current -> getNodeType() == ELEMENT){

 myElemCount++;

 }else{

 if (current -> getNodeType() == TEXT)

 myTextCount++;

 }

 current = myWalker -> getFirstChild();

 if(current != NULL){

 check = 0;

 }else{

 current = myWalker -> getNextSibling();

 if(current != NULL){

 check = 1;

 }else{

 current = myWalker -> getParentNode();

 check = 2;

 }

 }

 }else{

 current = myWalker -> getNextSibling();

 if(current != NULL){

 check = 1;

 }else{

 current = myWalker -> getParentNode();

 check = 2;

 }

 }

 }

}

void NodeInterfaceCode(){

 myNode = rootNode;

 SDOM_Node* current = myNode;

 int check = 0;

 while (myNode != NULL){

 if(check<2){

 if(myNode -> getNodeType() == ELEMENT){

 myElemCount++;

 }else{

 if(myNode -> getNodeType() == TEXT){

 myTextCount++;

 }

 }

 current=myNode->getFirstChild();

 if(current != NULL){

 myNode = current;

 check = 0;

 }else{

 current = myNode -> getNextSibling();

 if(current != NULL){

 myNode = current;

 check = 1;

 }else{

 myNode = myNode -> getParentNode();

 check = 2;

 }

 }

 }else{

 current = myNode -> getNextSibling();

 if(current != NULL){

 myNode = current;

 check = 1;

 }else{

 myNode = myNode -> getParentNode();

 check = 2;

 }

 }

 }

}

Figure 4 - Source code snippet for non-recursive document-order traversal, counting the

number of element and text nodes, using the Treewalker interface (recommended, left)

and Node interface (right). In the Node interface, the highlighted lines result in new

Node objects being allocated.

3. Experimental Evaluation

3.1. Experimental setup

The experiments were carried out on 64-bit Linux machine of 8GB RAM. We parsed different XML
documents of different properties in memory taken from [2] and traversed them. At the same
time, we measured the memory required for each XML document, the parse time and the
traverse time. In Table 1, the file properties of the different benchmark XML documents are
displayed. The different characteristics of each file affect in their own way the memory usage or
runtime of the implementations that took place.

xmlFile File size (MB) Node Count Text Space Usage

mondial-3.0.xml 1.7 57372 0.38MB

treebank_e.xml 82 7312612 57.38MB

SwissProt.xml 110 8409225 35.39MB

proteins.xml 683 58446013 322.11MB

dblp.xml 840 64414065 396.43MB

factor9.6.xml 1073 45139212 746.66MB

factor19.2.xml 2150 90311953 1494.06MB

factor38.4.xml 4300 180569240 2986.16MB

Table 1 - File Properties

We used "proc/self/stat" file to fetch the Virtual and Resident Memory used during the execution
of the experiments. We were also able to measure the wall clock time to get the performance in
terms of parse and traverse speed. Using the values taken we were able to compare SiXDOM with
Xerces-C++ version 2.8.0 which is the reference implementation of DOM API. These experiments
were also carried out in Java and Python comparing SiXDOM with “Xerces2 Java version 2.11.0”
and “miniDOM” respectively. Java implementation was firstly compiled in bytecode to be
executed.

4. SiXDOM Vs Xerces-C++

4.1. Memory Usage

We were able to parse all XML documents shown in Table 1 by using the SiXDOM implementation.
The VM usage was on average 100% of the file size. The only XML file that exceeds the 100%
range is "mondial-3.0.xml" which is our smallest file in size (1.7MB). This is because in SiXDOM
there is a fixed memory use cost to pay (3-4 MB). This fixed cost is per SiXDOM document
collection instance, and is negligible for large documents, or if processing a large number of
small documents (which should cover most use cases of SiXDOM!).

Figure 5 - SiXDOM Vs Xerces-C++ VM usage given as percentage of file size

Xerces on the other hand was not able to parse the last xml document "factor38.4.xml" of file
size 4GB. The memory usage was on average 1200% (without the XMark documents 1400%) of the
file size including smaller documents like "mondal-3.0.xml". Xmark documents are text-centric
(Table 1) and contain relatively little markup. Since SiXDOM 1.2 does not compress textual data,
it gains no advantage over Xerces for textual data. As the proportion of textual data increases,
the space advantage of SiXDOM will decrease. These properties helped Xerces-C++ performance
in terms of memory usage dropping the percentage from an average of 1400% to 1200% since the
two Xmark documents that were achieved to be parsed required only 830% of the file size.

4.2 Traverse time

After we parsed the XML documents we traversed them in a document order traversal. As
previously stated we measured the elapsed time of this procedure for both implementations.
Although the Xerces implementation is about twice as fast as SiXDOM for documents of size up to
110MB, the absolute time difference for such small documents is minimal being less than 1
second. For bigger XML documents there is a huge difference in the elapsed time required for
the traversal where SiXDOM is 900%-4300% faster (Figure 7). The difference is due to the
memory usage.

For XML documents of size 680MB or larger Xerces-C++ used all the physical memory available
(8GB) and at the same time huge amount of virtual memory (Figure 6). As the physical RAM was
not enough for the in-memory representation of the XML documents, this affected badly the
traverse speed of the Xerces-C++ execution.

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%

1000%
1100%
1200%
1300%
1400%
1500%
1600%
1700%

SiXDOM

Xerces-C++

Figure 6 - Xerces-C++ RES and VM usage.

Figure 7 - Xerces Vs Xerces-C++ Traverse speed (Wall Clock Time, seconds)

0

100

200

300

400

500

600

700

SiXDOM Traverse
Time

Xerces C++
Traverse Time

4.3. Parse time

For the parse time we have a similar scenario like traverse time. Xerces-C++ is 100% faster for
small files. SiXDOM performance was much better when it was parsing big files like proteins or
bigger. The smaller the document the less time it requires to be parsed. Therefore, the impact
on a slow parse for a small file like treebank_e would be minimal making the difference
between SiXDOM and Xerces C++ to be less than 3 seconds. On the other hand the impact on
bigger files like proteins is much larger; where the SiXDOM is faster for approximately 75 seconds.

Figure 8 - SiXDOM Vs Xerces-C++ Parse speed (Wall Clock Time, seconds)

4.4 Using Node vs. Treewalker

As mentioned in Section 2.4, we should avoid using the Node interface to perform traversals
when using SiXDOM. Because SiXDOM creates Node objects on demand, performing a traversal of
the tree using the Node interface dynamically creates (during traversal) all the Node objects
encountered. If these Node objects are not required, this is a memory leak, and since SiXDOM
has a very low memory footprint, these unwanted Node objects affect the memory usage greatly
as can be seen from Table 2. On the other hand, memory usage is stable pre-and-post traverse
using the TreeWalker interface.

 mondial Treebank-e SwissProt proteins dblp factor9.6 factor19.2

Pre-
Traverse(MB)

8.7 106 130 636 840 1073 2150

Treewalker
Post-Traverse
(MB)

8.7 106 130 636 840 1073 2150

Node
Post-Traverse
(MB)

11 539 630 4228 4705 3651 7299

Table 2 - Treewalker Vs. Node Interface.

0

50

100

150

200

250

300

350

SiXDOM
Parse Time

Xerces C++
Parse Time

5. SiXDOM Vs. Xerces2 Java

5.1. Memory Usage

SiXDOM successfully parsed all the documents at a ratio of 110% of file size in memory. This ratio
is very close to the C++ implementation. This is happening since we use Java wrapper class to
bind Java interface with the C++ implementation. The Xerces2 Java implementation was able to
parse only the three smallest files used for our experiments. Xerces2 Java is fully a Java
implementation and this limits it to the 2 GB of VM whereas we are able to use all RAM available.
The biggest file that Xerces2 Java was able to parse is Swissprot.xml (109MB) where it required
1.1 GB of resident memory.

mondial Treebank SwissProt proteins dblp factor9.6 factor19.2 factor38.4

File size
(MB) 1.7 82 110 683 840 1073 2150 4300

SiXDOM 300% 134% 131% 96% 112% 104% 103% 105%
Xerces2
Java 1200% 814% 1033% FAILED FAILED FAILED FAILED FAILED

Table 3 - SiXDOM Vs Xerces2 Java RES memory usage given as percentage of file size

5.2. Traverse time

SiXDOM java traverse time was the same with the SiXDOM C++ implementation. Xerces2 Java was
700-1000% slower. One reason is that SiXDOM has ready compiled classes to run with the Java
interface whereas Xerces2 Java is a complete Java implementations therefore is interpreted.
SiXDOM required 1 second for "treecank_e" an SwissProt" but Xerces neede 7 and 10 seconds
respectively.

5.3. Parse time

Xerces2 Java parse time was much slower than SiXDOM. It wasted huge amount of time because
of Garbage Collections (GC). It was 400% slower for “mondial-1.0.xml”, it required more than
150 seconds to parse “Swisprot.xml” and “treebank_e.xml” making it more than 5500% slower.

Figure 9 - SiXDOM (Java)Vs Xerces2 Java Parse and Traverse speed

(Wall Clock Time, secs)

0

50

100

150

200

250

300

350

400 Xerces2 Java
Traverse Time

Xerces2 Java Parse
Time

SiXDOM Traverse
Time

SiXDOM Parse
Time

6. SiXDOM Vs. miniDOM Python

6.1. Memory Usage

SiXDOM was able to parse all the xml files available using up to 120% of file size in memory. This
ratio is close to C++ implementation because of the Python wrapper class as explained previously
with Java. miniDOM was able to parse only the two smallest XML douments. The biggest
document that miniDOM was able to parse was “Treebank-e.xml” (82 MB) and it required 7.3GB
of resident memory raising the ratio up to 8900% of the file size.

6.2. Traverse time

SiXDOM python was 100% faster than miniDOM for the two files that miniDOM was able to parse.

6.3. Parse time

SiXDOM parse time was much better than miniDOM. It required for “mondial-3.0.xml” and
“treebank_e.xml”, 0.2 and 7.1 seconds to parse, whereas miniDOM required 1.5 and 100 seconds
respectively.

References

[1] Jacobson, G. 1989. Space-efficient static trees and graphs. In Proc. of the 30th Annual
Symposium on the Foundations of Computer Science (NC, USA, 10/30/1989-11/01/1989). FOCS
‘89. IEEE Computer Society, Washington, DC, vol. 225, Cat. No. 89CH2808-4, pp. 549-554,
1989.DOI=10.1109/SFCS.1989.63533

[2] University of Washington. XML Data Repository.
http://www.cs.washington.edu/research/xmldatasets/www/repository.html ,1998

