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The ether à go-go family of voltage-gated potassium channels
is structurally distinct. The N terminus contains an eag domain
(eagD) that contains a Per-Arnt-Sim (PAS) domain that is pre-
ceded by a conserved sequence of 25–27 amino acids known as
the PAS-cap. The C terminus contains a region with homology
to cyclic nucleotide binding domains (cNBHD), which is directly
linked to the channel pore. The human EAG1 (hEAG1) channel
is remarkably sensitive to inhibition by intracellular calcium
(Ca2�

i) through binding of Ca2�-calmodulin to three sites adja-
cent to the eagD and cNBHD. Here, we show that the eagD and
cNBHD interact to modulate Ca2�-calmodulin as well as voltage-
dependent gating. Sustained elevation of Ca2�

i resulted in an
initial profound inhibition of hEAG1 currents, which was fol-
lowed by a phase when current amplitudes partially recovered,
but activation gating was slowed and shifted to depolarized
potentials. Deletion of either the eagD or cNBHD abolished the
inhibition by Ca2�

i. However, deletion of just the PAS-cap
resulted in a >15-fold potentiation in response to elevated
Ca2�

i. Mutations of residues at the interface between the eagD
and cNBHD have been linked to human cancer. Glu-600 on the
cNBHD, when substituted with residues with a larger volume,
resulted in hEAG1 currents that were profoundly potentiated by
Ca2�

i in a manner similar to the �PAS-cap mutant. These find-
ings provide the first evidence that eagD and cNBHD interac-
tions are regulating Ca2�-dependent gating and indicate that
the binding of the PAS-cap with the cNBHD is required for the
closure of the channels upon CaM binding.

The ether à go-go potassium channel family (KCNH)2 of
voltage-gated potassium channels consists of three subgroups,

ether à go-go (EAG), EAG-related gene (ERG), and EAG-like
potassium (ELK) channels. In recent years, most of the focus
has been on the ERG subfamily because of their crucial role in
cardiac repolarization (1). Relatively less is known about the
physiological role of EAG channels. In Drosophila, where EAG
channels were first discovered, the behavioral mutant (eag)
causes spontaneous repetitive action potential (AP) firing in
motor neurons and increased transmitter release that results in
flight muscle paralysis (2). In mammals, EAG channel expres-
sion is normally restricted to the central nervous system, par-
ticularly the hippocampus, cerebellum, and brain stem (3).
Recently, a role for EAG channels in regulating presynaptic cal-
cium and neurotransmitter release during high frequency
trains of APs has been demonstrated in mouse cerebellar syn-
apses (4). hEAG1 and hEAG2 channels are also aberrantly over-
expressed in human cancers. hEAG1 is highly expressed in
�75% of non-CNS cancers (5– 8) and hEAG2 in a substantial
subset of patients with medulloblastomas (9).

hEAG1 channels are exquisitely sensitive to [Ca2�]i, with a
half-maximal inhibition at �100 nM (10, 11). Regulation of ion
channels by Ca2�

i is critical for converting Ca2� signals into
electrical signals (e.g. slow and fast after hyperpolarizations), for
altering the balance of ionic currents during APs, and for mod-
ulating membrane excitability. It is likely that Ca2�

i regulation
of EAG1 channels exerts a feedback function that is important
for long term effects in neuronal signaling (10 –13). Because
Ca2� signaling is also important during the cell cycle, Ca2�

i
regulation of hEAG1 channels may also be functionally impor-
tant in cell proliferation and cancer progression (14).

Like other voltage-gated K� channels, the central pore of
KCNH channels is formed by the tetrameric assembly of S5–S6
helices and is surrounded by voltage sensor domains formed by
S1–S4. The N terminus of hEAG1 contains an eag domain
(eagD), which is unique to the KCNH channel family and con-
tains a Per-Arnt-Sim (PAS) homology domain. PAS domains
are structural folds that mediate protein-protein interactions in
a variety of signaling proteins (15). In KCNH channels, the PAS
domain is preceded by a highly conserved sequence of 25–27
amino acids that has become known as the PAS-cap (see Fig. 1)
(16). NMR studies reveal that the first part of the PAS-cap is
disordered, whereas the second half contains a stable
amphipathic �-helix (17–19). Both segments have been shown
to be important for gating of hEAG1 and hERG1 channels (17,
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18, 20 –22). The C terminus of the KCNH channel family con-
tains a cyclic nucleotide binding homology domain (cNBHD)
that is structurally similar to the cyclic nucleotide binding
domains of CNG and HCN channels (23–26). However, KCNH
channels lack key residues for cyclic nucleotide binding and are
not directly regulated by cAMP or cGMP (27). Instead, the
functional role of the KCNH cNBHD appears to be to regulate
channel gating through interactions with the eagD (17, 28 –30).
The cNBHD is connected to the S6 inner helix of the pore by a
region of �60 amino acids known as the C-linker, providing a
mechanism for coupling conformational changes in the
cNBHD to changes in gating of the pore (Fig. 1).

The mechanism and structural basis for regulation of hEAG1
channels by Ca2�

i are largely unknown. Elegant studies by
Schonherr et al. (12) and Ziechner et al. (13) demonstrated that

calmodulin (CaM) is the Ca2�
i sensor and inhibits hEAG1 cur-

rents by binding to the channels in a Ca2�-dependent manner.
Three CaM binding domains (BD) have been identified using in
vitro assays; two are on the C terminus close to the cNBHD
(BD-C1, 674 – 683, and BD-C2, 711–721) and one is on the N
terminus close to the eagD (BD-N, 151–165). GST fusion pro-
teins containing BD-N or BD-C2 bind CaM in a strong Ca2�-
dependent manner with dissociation constants in the nanomo-
lar range (13). F151N/L154N mutations of BD-N and F714S/
F717S mutations of BD-C2 reduce the Kd of Ca2�-CaM by
�20- and 6-fold, respectively, in isolated channel fragments
and also substantially reduce the CaM-dependent inhibition of
functional channels in excised patches (12, 13). The binding
affinity of BD-C1 for Ca2�-CaM seems to be much weaker, but
nevertheless, biochemical and functional studies suggest it
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FIGURE 1. hEAG1 secondary structure and sequence alignments. A, schematic representation of the secondary structure of hEAG1 K� channels showing the
location of three CaM binding domains (magenta circles) per subunit. CaM binding domain N (BD-N) is on the N terminus, close to the PAS domain. CaM binding
domains C1 and C2 (BD-C1 and BD-C2) are located on the C terminus and adjacent to the cNBHD. B and C, protein sequence alignments of hEAG1 eagD (B) and
cNBHD (C) with other KCNH family members. Numbering refers to hEAG1 sequences. White text on a red background indicates identical sequence, and red text
indicates a semi-conserved sequence. Black boxes indicate positions of BD-C1 and BD-C2 in the post-cNBHD sequence of hEAG1.
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plays a role, perhaps as part of a complex involving BD-C2 (12,
13, 26, 31).

Analysis of the secondary structure of hEAG1 channels
reveals that all the CaM-binding sites are located adjacent to
the eagD and cNBHD. Given the importance of these structural
domains for regulating voltage-dependent gating, we hypothe-
sized that interactions between the eagD and cNBHD could
also be critical for Ca2�-CaM-dependent regulation of hEAG1.
In this study we show that the Ca2�-CaM-dependent regula-
tion is more complex than previously described. Elevated Ca2�

i
results in an initial profound inhibition, which is followed by a
second phase not previously reported, during which current
amplitudes begin to recover, although activation gating is pro-
foundly slowed and shifted to depolarized potentials. Deleting
either the eag domain or cNBHD completely abolishes calcium
sensitivity. Intriguingly, deletion of just the PAS-cap (residues
2–26) results in a paradoxical increase of current in response to
elevated intracellular calcium, which is mimicked by specific
cNBHD mutations. Collectively, these results demonstrate a
novel role for the eagD and cNBHD in coupling Ca2�-CaM
binding to closure of the channel pore. Furthermore, they sug-
gest that hEAG1 channels undergo multiple conformational

changes in response to Ca2�-CaM binding and that the PAS-
cap is required to stabilize the closed conformation.

Results and Discussion

Wild-type hEAG1 Channels Undergo Two Distinct Phases of
Inhibition in Response to Elevated Ca2�

i—To characterize the
response of wild-type hEAG1 currents to elevated Ca2�

i,
oocytes were voltage-clamped, and 2-s voltage steps to �60 mV
were applied repetitively at 10-s intervals from a holding poten-
tial of �90 mV. hEAG1 currents were characterized by rela-
tively slow activation. To elevate Ca2�

i, the Ca2� ionophore,
ionomycin (I), and the sarco/endoplasmic reticulum ATPase
inhibitor, thapsigargin (T), were applied. hEAG1 currents were
initially profoundly inhibited by bath application of 5 �M I and
T (Fig. 2Ai). Mean maximal inhibition was 74.3 � 2.3%, and
mean time to maximal inhibition was 86.7 � 7.2 s (n � 21).
After the initial inhibition, the hEAG1 current slowly started to
increase in amplitude to a mean level after 300 s of 43 � 4% of
the control current amplitude, despite the continued presence
of I and T (Fig. 2 and Table 1). Fluorescence imaging of Ca2�

i in
Xenopus oocytes by confocal microscopy revealed that Ca2�

i
was rapidly elevated by I and T. A ring-shaped fluorescence

FIGURE 2. Wild-type hEAG1 channels are profoundly inhibited by raising cytoplasmic calcium. A, representative recordings of WT hEAG1 currents
recorded with voltage steps to �60 mV from a holding potential of �90 mV, before (control) and during application of 5 �M of both ionomycin and
thapsigargin (I & T). I and T resulted in a profound initial inhibition (Ai, green trace recorded 60 s after I and T application). In most cells, sustained I and T
application resulted in the development of a slowly activating current (Aii, red trace) that progressively increased in amplitude and was inhibited by 50 �M

astemizole (Aii, magenta trace). Aiii, representative current traces from an oocyte injected with diethyl pyrocarbonate water recorded in control solution (blue)
or after 60 s (green) or 300 s (red) of I and T. Small inward tail currents at the time indicated by the dashed box are shown at a higher magnification in the inset.
The bottom panel shows the voltage protocol. Vertical and horizontal scales are the same in all current traces (except inset). Dashed horizontal black lines indicate
the zero current level. B, current amplitudes (end-pulse minus beginning of pulse current) plotted against time. Each symbol represents the amplitude of
current during a single pulse. The time at which I and T and astemizole were applied is indicated by vertical arrows. Current traces and current amplitudes in Ai,
Aii, and B were measured in the same oocyte. C, fluorescence imaging of Ca2�

i by confocal microscopy. Fluorescence images from a representative oocyte
loaded with the Ca2�-sensitive indicator Oregon Green 488 BAPTA-1 were taken before (control) and at indicated times after I and T application. Scale bar on
left panel is 200 �m. D, time course of changes of fluorescence following I and T application. The fluorescence signal (F) was normalized to levels prior to I and
T application (F0) and plotted against time after compound addition. The time scale is the same as for B. Symbols represent mean levels (n � 9) at 5-s intervals,
and dotted lines indicate � S.E.
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pattern was observed as a result of the light-absorbing proper-
ties of the oocyte yolk sac and thus the loss of signal from the
deeper central portion of the cell (Fig. 2C). Importantly, cyto-
plasmic Ca2� was sustained at a high level, which we estimate to
be �1 �M (see “Experimental Procedures”). In most cells, Ca2�-
dependent fluorescence reached a plateau and did not decline
in the sustained presence of I and T. These results strongly
suggest that the slow recovery of the hEAG1 current is not due
to Ca2�

i returning to resting levels.
The current observed with sustained application of I and T

was characterized by very slow activation kinetics. Mean
t10 – 80% at �60 mV was 1201 � 93 ms, which was significantly
longer than control values of 422 � 25 ms (p � 0.0001, n � 8).
Like the control current, it was profoundly blocked by 50 �M

astemizole, a well characterized hEAG channel blocker. Xeno-
pus oocytes are known to express Ca2�

i-activated Cl� currents,
but these are unlikely to significantly contribute to the outward
currents at �60 mV in our low Cl� recording solutions as the
driving force for Cl� flux was small (�10 mV). Outward Ca2�

i-
activated currents were also negligible in un-injected or water-
injected oocytes (Fig. 2Aiii). Furthermore, although I- and T-de-
pendent inward tail currents were observed in many cells at the
�90 mV holding potential (when Cl� driving force is �160
mV), these rapidly declined, whereas the hEAG1 current
increased. We excluded data from cells with inward tail cur-
rents greater than 1 �A to further minimize the potential for
contamination of hEAG1 currents.

Representative traces of hEAG1 currents measured in
response to an I-V protocol in control solution and after �300
s in I and T are shown in Fig. 3A. In control solution, hEAG1
currents were activated at potentials positive to �40 mV. Con-
ductance reached a peak at �60 mV and exhibited a small
decrease at more positive potentials, consistent with a small
amount of inactivation that has been described by others (32,
33). In comparison, the activation threshold for currents in I
and T was shifted to depolarized potentials (positive to �20
mV), and the currents were far slower to activate and showed
no rectification. The mean relationships for voltage depen-

dence of isochronal activation in control and I and T solutions
are shown in Fig. 3B. Activation was shifted by �29 mV (p �
0.0001, n � 6, see Table 2). Qualitatively similar responses were
observed with 2 �M lysophosphatidic acid (data not shown),
which stimulates Gq-coupled receptors and thus increases
cytosolic calcium through inositol trisphosphate-dependent
release from the endoplasmic reticulum and subsequent store-
operated Ca2� entry. Taken together, these results reveal a
multiphasic response of WT hEAG1 currents to I and T, con-
sisting of an initial rapid inhibition, followed by a second
delayed phase during which current amplitudes start to
increase, but activation is slowed and shifted to depolarized
potentials by a Ca2�

i-dependent stabilization of the closed
state.

hEAG1 Inhibition by Ca2�
i Is CaM-mediated—Additional

experiments were performed to confirm that the observed
responses to I and T were Ca2�-CaM mediated. First, we exam-
ined the effect of buffering Ca2�

i with 5 mM EGTA. Currents
were first recorded under control conditions and then, while
the oocyte was still voltage-clamped, EGTA was injected into
the cell via a micropipette, and the response to I and T was
recorded. With EGTA present, the current amplitudes were
slightly increased rather than being inhibited by I and T, and
there were no significant changes in the V0.5 and slope values
for the voltage dependence of activation (p � 0.05, n � 5). To
investigate whether the inhibition of WT hEAG1 was depen-
dent on CaM binding to the channels, we tested the effect of I
and T on mutants that reduce the binding affinity of CaM to
either BD-N or BD-C2 (13, 31), the high affinity CaM-binding
sites. The BD-C1 site binds CaM in the micromolar range and
was not included. The F714S/F717S BD-C2 mutant displayed
similar gating to WT hEAG1 under control conditions but
showed considerably attenuated responses to I and T (Fig. 4B).
There was an initial small inhibition (Fig. 4D and Table 1), but
the current then quickly rebounded to control amplitudes, and
the effect on t10 – 80% activation at �60 mV (271 � 74, n � 6)
was significantly reduced (p � 0.005) compared with WT
hEAG (820 � 77, n � 8). The shift in isochronal activation was
�13 mV, which was significantly smaller than for WT hEAG1
(p � 0.005). Interestingly, the F151N/L154N BD-N mutations
had quite a different effect compared with BD-C2 mutations.
The voltage dependence of activation was �47 mV more posi-
tive than WT hEAG1 in control solution, suggesting that CaM
binding at this site influences channel function at basal/resting
Ca2�

i levels. The t10 – 80% activation at �60 mV was also faster
than WT hEAG (see Table 2). The time course of the response
to I and T was also profoundly different. There was no initial
fast component of inhibition as observed in WT hEAG1, and
instead inhibition developed slowly and progressively (Fig. 4D),
without there being any marked slowing of time-dependent
activation kinetics. The voltage dependence of activation was
shifted too positive to quantify V0.5 during I and T, but the
threshold for activation was 50 mV more depolarized than
under control conditions (Fig. 4C). Collectively, these results
indicate that I and T exert their effects through a Ca2�-CaM-
mediated process and that CaM is probably influencing chan-
nel gating under resting Ca2�

i conditions. They also indicate
that there is a complex interplay between the CaM binding

TABLE 1
Response of WT and mutant hEAG1 currents to I and T
The 2nd column gives the mean values for maximum responses (either inhibition or
potentiation) calculated as current amplitudes in I and T divided by control cur-
rents. The 3rd column gives the mean values for responses at 300 s, to quantify
changes of current amplitudes during the course of experiments where they have
occurred. If the response is maximal after 300 s this is indicated by the abbreviation,
Max, and the value given in the maximum response column.

Construct

Fold change of amplitude
with I and T

n
Maximum
Response

Response
after 300-s

WT hEAG1 0.15 � 0.02 0.43 � 0.04 21
F714S/F717S 0.76 � 0.09 1.01 � 0.03 7
F151N/L154N 0.39 � 0.04 Max 7
	eagD 1.82 � 0.37 Max 6
	cNBHD 1.07 � 0.03 Max 7
	PAS-cap 15.7 � 1.42 2.84 � 0.69 9
	PAS-cap/F714S/F717S 1.03 � 0.04 Max 13
WT (EGTA) 1.01 � 0.01 1.02 � 0.02 5
E600R 12.25 � 2.61 Max 5
E600A 0.24 � 0.04 0.38 � 0.08 7
E600Q 0.26 � 0.03 0.41 � 0.05 14
E600L 3.16 � 0.60 Max 13
E600I 6.43 � 0.72 Max 11
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domains, with BD-N and BD-C2 each regulating different
aspects of channel inhibition in response to Ca2�-CaM.

The Eag Domain and cNBHD Are Required for Ca2�-CaM
Regulation of hEAG1—To test whether the hEAG1 channel
response to Ca2�-CaM was mediated by interactions between
the eag domain and cNBHD, we next tested the effect of delet-
ing each structural domain in turn on Ca2�-CaM-dependent
gating. Deleting the eagD (amino acids 2–135) dramatically
altered gating and resulted in a slowly activating and slowly
deactivating current. At potentials positive to �40 mV, current
amplitudes progressively decreased and the tail currents, which
also had a smaller peak amplitude, had a ’hooked’ appearance
(Fig. 5A). This behavior resembles hERG channel gating, in
which the rectification is due to rapid onset of inactivation, and
the hooked tails are due to rapid recovery from inactivation
followed by slow deactivation. Importantly, in 	eagD hEAG1,
the inhibition by elevated Ca2�

i was completely abolished;
instead, the current was significantly increased by 82 � 37%
(p � 0.005, n � 7, see I-V relationship in Fig. 5A and mean time
course data in Fig. 5E). The effect of I and T on the voltage and
time dependence of 	eagD activation was also significantly
attenuated compared with WT hEAG1 (p � 0.0001, Fig. 5, B
and F).

Deleting the cNBHD and C-linker (amino acids 484 – 668)
also abolished all effects of elevating Ca2�

i on hEAG1 current
gating (Fig. 5, C–F). Activation gating was also shifted by �32
mV compared with WT hEAG1. These results indicate that the

eag domain and cNBHD have important roles in both voltage
and Ca2�

i-CaM-dependent gating.
hEAG1 Channels Lacking the PAS-cap Are Potentiated

Rather than Inhibited by Ca2�
i—The eagD can structurally be

divided into the PAS domain (amino acids 27–135) and the
PAS-cap (residues 1–26). The PAS-cap is highly conserved
across the KCNH channel family (Fig. 1B), and functional stud-
ies have demonstrated that much of the regulation of both
hEAG1 and hERG1 voltage-dependent gating attributed to the
eagD is actually mediated by the PAS-cap. Consistent with this,
deleting the PAS-cap results in currents (see Fig. 6A) with gat-
ing properties almost identical to when the entire eagD is
deleted. 	PAS-cap and 	eagD hEAG1 currents both exhibit a
profound slowing of activation and deactivation and increased
rectification at positive potentials. To determine whether the
PAS-cap is also functionally important for Ca2�-CaM-depen-
dent gating, we investigated the response of 	PAS-cap hEAG1
currents to I and T. Currents were elicited by repetitively step-
ping to �40 mV, and the responses before and during I and T
are shown in Fig. 6B. Surprisingly, 	PAS-cap hEAG1 currents
were substantially increased by I and T application, with an
average peak change of current of 15.70 � 1.42-fold relative to
the control currents (n � 9). This is in stark contrast to the 75%
inhibition of WT hEAG1. The potentiation of current in the
continued presence of I and T reached a peak after a mean time
of 43.3 � 4.7 s (n � 9) and then started to decline, although
amplitudes stabilized at a level that was still 2.84 � 0.69-fold

FIGURE 3. With sustained high Ca2�
i hEAG1 current inhibition is reduced but activation gating is slowed and shifted to depolarized potentials. A,

representative WT hEAG1 current traces before (blue) and �300 s after I and T application (red) elicited by an I-V protocol consisting of 2-s pulses from �50 to
�80 mV at 10-mV increments from a holding potential of �90 mV, with a 500-ms step to �60 mV after each test potential. The voltage protocol is illustrated
in the bottom left-hand panel (not all voltage steps are shown). B, mean (� S.E., n � 6) conductance-voltage relationships for WT hEAG1 currents before (blue
symbols) and during I and T application (red symbols), fitted with Boltzmann functions (solid lines). Conductance is normalized to maximum for control and I and
T (I&T) values.

TABLE 2
Voltage- and time-dependent kinetics of WT and mutant hEAG1 channel currents
Values (mean � S.E.) for voltage at which channels are activated by 50% (V0.5) and slope (k) of the relationship are given, along with times from 10 to 80% activation (t10 – 80%).
ND indicates not determined.

Construct
Control I and T

n
Control,
t10 – 80%

I and T,
t10 – 80% nV0.5 k V0.5 k

WT hEAG1 4.1 � 2.1 14.8 � 0.9 33.0 � 3.7 19.1 � 2.1 6 422 � 25 1201 � 93 8
F714S/F717S �0.3 � 3.0 18.7 � 2.6 12.8 � 2.8 19.29 � 2.4 8 387 � 16 681 � 82 6
F151N/L154N 51.0 � 1.4 21.2 � 1.0 ND ND 8 316 � 119 ND 5
	2-135 �4.3 � 0.6 11.6 � 0.7 �5.1 � 3.1 15.5 � 3.7 5 952 � 67 962 � 46 5
	cNBHD 35.6 � 1.6 23.0 � 1.0 40.2 � 1.4 23.4 � 1.4 7 459 � 29 453 � 24 7
	PAS-cap �11.5 � 2.6 12.6 � 0.9 �12.5 � 4.0 18.4 � 1.7 7 656 � 31 951 � 58 9
	PAS-cap/F714S/F717S �14.5 � 2.8 12.7 � 1.1 �18.2 � 3.0 14.4 � 1.1 10 551 � 19 678 � 47 9
WT (EGTA) 6.9 � 1.6 26.0 � 2.7 16.4 � 3.4 25.0 � 1.5 5 ND ND
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larger (n � 9) than the control current (Fig. 6C). The time
courses of the 	PAS-cap and WT hEAG1 responses to I and T
are almost a mirror image of one another. 	PAS-cap is poten-
tiated, whereas WT hEAG1 is inhibited, but they both show an
initial fast change, which is transient in nature, followed by a
relatively slow “recovery” phase. This suggests that both chan-
nels are Ca2�

i-sensitive and that there may be common under-

lying mechanisms. The results also demonstrate that the PAS-
cap region is absolutely required for “latching” the channel in a
non-conducting state. To confirm that the underlying mecha-
nism of PAS-cap hEAG1 current potentiation was mediated by
CaM binding, we simultaneously mutated the CaM BD-C2 site.
Representative currents for 	PAS-cap/F714S/F717S hEAG1
before and during I and T are shown in Fig. 6E and the mean
time courses in Fig. 6C. This mutant was insensitive to I and T
with no significant change of V0.5 and t10 – 80% of activation or
current amplitude compared with control (p � 0.05, n � 7–9),
thus confirming the Ca2�-CaM dependence of 	PAS-cap
hEAG1.

Ca2�-CaM-dependent Inhibition of hEAG1 Required Inter-
actions between the PAS-cap and cNBHD—Recently, an x-ray
crystal structure of the eag domain in complex with the cNBHD
of mEAG has been solved (25). There are a number of sites of
contact between the two domains, including contact of the PAS
domain with the intrinsic ligand and post-cNBHD motifs of the
cNBHD, which are adjacent to the BD-C1 and BD-C2 CaM-
binding sites of the channel. The other important region of
contact is between the PAS-cap and the cNBHD, although it
should be noted that the first 16 amino acids of the PAS-cap
were not resolved. Interestingly, there are relatively few struc-
tural changes between the domains in the complex and those of
the isolated domains when they were solved independently of
one another. This suggests that the contacts are quite weak and
consistent with the low binding affinity (13.2 �M) measured
using fluorescence anisotropy (25). Other regions of the chan-
nel may both stabilize and regulate the interaction of these cru-
cial regions. Of particular interest was that a number of disease-
associated mutations (long QT causing mutations in hERG1
and cancer-linked mutations in hEAG1) mapped to the inter-
face between the eag domain and cNBHD. We modeled the
interaction of the hEAG1 eag domain in complex with the
cNBHD, including the section of the PAS-cap missing in
the crystal structure (Fig. 7). The PAS-cap folds back, and the
amphipathic helix sits in a groove between the PAS domain and
cNBHD, making contacts with both domains. To test whether
the Ca2�-CaM-mediated inhibition of hEAG1 could be due to
interactions of the PAS-cap with the cNBHD, we mutated Glu-
600 (equivalent to Glu-627 in mEAG and Glu-788 in hERG1) to
Ala, Arg, Gln, Ile, or Leu and tested the response of these point
mutants to I and T. This position is highly conserved in the EAG
channel family and mutations in the homologous hERG1 chan-
nel position are associated with long QT syndrome (34). In
mEAG, Ala and Arg mutations have been reported to cause
robust depolarizing shifts in the voltage dependence of activa-
tion of �100 mV (25). In hEAG1, the effects were not as marked
but, remarkably, the E600R mutation reproduced much of the
change in gating properties (slowed activation and deactiva-
tion, and rectification at positive potentials) seen in 	PAS-cap
hEAG1 (Fig. 8, A and B). The substantial Ca2�

i-dependent
potentiation was also seen with the cNBHD E600R mutant. I
and T resulted in a 12.3 � 2.6-fold increase in E600R hEAG1
current measured at �40 mV relative to control (Table 1).
However, unlike the 	PAS-cap mutant, the increase of current
in I and T was sustained (Fig. 8E). The response of Glu-600
mutants to elevated Ca2�

i was highly dependent on residue

FIGURE 4. Response of hEAG1 currents to Ca2�
i is calmodulin depen-

dent. A–C, left-hand panels, representative current traces with voltage
pulses to �60 mV before and at indicated times following I and T (I&T)
application. A–C, right-hand panels, mean (� S.E.) conductance-voltage
relationships fitted with Boltzmann functions (A and B) or current ampli-
tude relationships (C). Error bars that are too small to extend beyond the
symbols are not shown. A, responses in oocytes expressing WT hEAG1
channels and injected with EGTA (estimated final concentration 5 mM, n �
5). B, responses from oocytes expressing F714S/F717S hEAG1, a mutant
that reduces the affinity for Ca2�-CaM binding to the BD-C2 domain (n �
7). C, responses in F151N/L154N hEAG1, a mutant with reduced affinity for
Ca2�-CaM binding to the BD-N1 domain (n � 7). D, time courses of
changes in WT and mutant hEAG1 currents after switching to I and T
containing the bath solution. Time-dependent currents with each voltage
step to �60 mV were normalized to control current and mean (� S.E.)
values plotted against time from switching to I and T. Numbers (n) are
indicated in parentheses next to symbol legends.
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volume and not just the charge of the substituted residue. The
E600A and E600Q mutants exhibited WT hEAG1 behavior and
were inhibited by I and T (Fig. 8F and Table 1). Ala and Gln have
van der Waals residue volumes of 67 and 96 Å3, respectively,
which are smaller than Glu (109 Å3) (35). Substituting Glu-600
for Leu or Ile (each 124 Å3) resulted in potentiation of current
by I and T of 3.16 � 0.6 (n � 13) and 6.43 � 0.72 (n � 11)-fold,
respectively. The volume of Arg is largest of all (196 Å3) and
gave the greatest potentiation. Collectively, these results sug-
gest that Glu-600 is an important site of contact with the PAS-
cap. They also suggest that the charge of the residue is not the
critical factor. The functional data support a molecular model
in which the PAS-cap packs against the cNBHD. Substitution of
large residues at position 600 reduces PAS-cap binding affinity
resulting in similar functional effects to deleting the PAS-cap
entirely.

In recent years, studies have shown the importance of inter-
actions between the eagD and cNBHD for regulating voltage-
dependent gating of both hEAG1 and hERG1 channels (17, 25,
28 –30). The cNBHD is directly coupled to the S6 inner helix of
the pore by the C-linker. A similar structural motif is also found
in CNG and HCN, and in these channels it is crucial for their
cyclic nucleotide-dependent regulation (36 –38). It seems likely

that conformational changes in the cNBHD of hEAG1 and
hERG1 channels will also be transduced to the pore via the
C-linker. Interactions of the eag domain with the cNBHD reg-
ulate the gating of both hEAG1 and hERG1 channels but in a
very different manner. In hERG1, the interaction between the
two domains slows deactivation gating by stabilizing the open
conformation of the channel (17, 28). The eagD also influences
hERG1 inactivation, such that onset of inactivation is faster,
and recovery from inactivation is slower when the eagD is pres-
ent compared with when it has been deleted (22, 39, 40). For
hEAG1 channels, the eagD has the opposite effects on gating.
Because the PAS-caps are almost identical, it seems likely that
the differential roles of the eagD and cNBHD are mediated by
differences in how the PAS-cap binds to the PAS domain and
cNBHD. The interactions are dynamic and influence both
voltage-dependent gating and, in the case of hEAG1, Ca2�-
CaM-dependent gating. hERG1 channels are not regulated by
Ca2�-CaM-mediated mechanisms (data not shown).

This study provides mechanistic insight into how hEAG1
channels are regulated by Ca2�

i. The eagD and cNBHD are
both required for transducing the effect of Ca2�-CaM binding.
Further studies are required to elucidate the precise molecular
mechanisms. Our results suggest a complex sequence of events,

FIGURE 5. eagD and cNBHD are both required for Ca2�-CaM-dependent hEAG1 current inhibition. A and C, representative traces of 	eagD hEAG1
(A) and 	cNBHD hEAG1 (C) currents elicited by I-V protocols before (left panels) and during I and T (I&T) (right panels) application for �300 s. 	eagD
hEAG1currents exhibited rectification. For clarity, only selected traces, elicited by voltage steps �20 mV apart, are shown. B and D, mean (� S.E.)
conductance-voltage relationships for 	eagD hEAG1 (B, n � 5) and 	cNBHD hEAG1 (D, n � 7) currents before (blue symbols) and during I and T
application (red symbols), fitted with Boltzmann functions (solid lines). The voltage dependence of activation for WT hEAG1 in control solution is shown
for comparison (black dashed line). E, mean (� S.E.) normalized current amplitudes (see Fig. 3D for details) for 	2–135 hEAG1 (n � 6) and 	cNBHD hEAG1
(n � 7) plotted against time after switching to I and T. The time course of WT hEAG1 (n � 21) is shown for comparison. F, time between 10 and 80%
activation (t10 – 80%) at �60 mV in the presence (red) or absence (blue) of elevated Ca2�

i values for WT (n � 8), 	cNBHD hEAG1 (n � 7), and 	eagD hEAG1
(n � 5). ****, p � 0.0001. ns, p � 0.05.
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with distinctive roles for the BD-C2 and BD-N CaM binding
domains and the PAS-cap, PAS, and cNBHD structural
domains. In the WT hEAG1 channel, raising Ca2�

i results in a
multiphasic response consisting of an initial inhibition followed
by a slow “recovery” phase in which not only are current ampli-
tudes returning to control levels but activation gating is pro-
foundly slowed and shifted to depolarized potentials. It seems
likely that different components of the transduction mecha-
nism coupling CaM binding to changes of gating of the pore are
involved in regulating this process. The PAS-cap is an integral
component. When deleted, the hEAG1 channels remain Ca2�

i-
sensitive, but instead of being inhibited, they are potentiated by
more than 15-fold. Hypothetically, the effects of deleting the
PAS-cap could be due to alterations of PAS domain structure,
leading to allosteric effects on PAS domain interactions with
the cNBHD or other structural domains. However, mutations

of Glu-600 on the cNBHD cause a similar substantial potentia-
tion, suggesting the PAS-cap interacts directly with this critical
site and that this PAS-cap interaction with the cNBHD is
required for stabilizing the closed state of the channel. Without
this interaction, channel activity is very high. Nevertheless,
there is one clear difference. Deletion of the PAS-cap causes a
peak and plateau type of response, whereas mutations of the
cNBHD cause a sustained potentiation. Thus, Glu-600 cNBHD
mutations also destabilize conformations that occur later on
when elevated Ca2�

i levels are sustained. Mutations to the
CaM-binding sites also have differential effects. Mutating
BD-N results in only a slow onset of inhibition, perhaps because
CaM binding at this site is required for early conformational
changes that lead to the fast inhibition. In contrast, when the
BD-C2 site is mutated, the currents still show an initial early
response to elevated Ca2�

i, but then they fully recover to con-
trol amplitudes, suggesting that this site is required for stabiliz-
ing conformations that occur with elevated Ca2�

i.
hEAG1 is one of a number of ion channels that are modulated

by Ca2�
i in a CaM-dependent manner (41, 42). Several of these

channels are also modulated by phosphoinositide 4,5-bisphos-
phate (PIP2) (43). There is growing evidence that in TRPC6, and
other channels, phosphoinositides can bind at, or close to, the
CaM-binding site and regulate CaM binding, thus providing a
mechanism to integrate these two important second messenger

FIGURE 6. PAS-cap is a critical regulatory domain for both voltage- and
calcium-dependent hEAG1 channel gating. A, representative 	PAS-cap
hEAG1 current traces elicited by test potentials between �50 and �80
mV. Note the progressive reduction of current amplitudes at potentials
positive to �40 mV. Inset shows tail currents recorded at �60 mV follow-
ing test potentials to �60, �40, and �20 mV. B, representative 	PAS-cap
hEAG1 current traces in control solution (blue trace) and 40 s (green trace)
or 300 s (red trace) after applying I and T (I&T). Currents were elicited with
voltage steps to �60 mV from a holding potential of �90 mV. I and T
caused an initial profound potentiation of 	PAS-cap hEAG1 current that
was in stark contrast to the inhibition of WT hEAG1. The inward tail current
observed in the trace after 40 s of I and T is likely to be due to extracellular
K� accumulation following large amplitude test pulse currents. The cur-
rents in A and B are from different cells. C, mean (� S.E.) normalized cur-
rent amplitudes (see Fig. 3D for details) for 	PAS-cap hEAG1 (n � 9) and
	PAS-cap/F714S/F717S hEAG1 (n � 14) plotted against time after switch-
ing to I and T. The time course of WT hEAG1 is also shown for comparison
(n � 21). D, mean (� S.E.) conductance-voltage relationships for 	PAS-cap
hEAG1 (n � 7) before (blue symbols) and during I and T application (red
symbols), fitted with Boltzmann functions (solid lines). Black dotted line
shows the activation curve for WT hEAG1 for comparison with mutants. E,
representative 	PAS-cap/F714S/F717S hEAG1 currents with voltage
pulses to �60 mV before and at indicated times after I and T application.

FIGURE 7. Molecular model of interactions between cNBHD and PAS-
cap of hEAG1. A, homology model of the eagD-cNBHD complex based
upon the crystal structure (Protein Data Bank code 4LLO (25)). The PAS-
cap is shown in yellow, the PAS domain in green, the cNBHD in blue, and
the post-cNBHD region in red. The side chain of Glu-600 is shown in
spheres and colored magenta. B, homology model rotated around the hor-
izontal axis by �90o with surface rendering to illustrate how the
amphipathic �-helix of the PAS-cap sits between the PAS domain and
cNBHD. Colors correspond to A.
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pathways (44). In type 2 small conductance Ca2�
i-activated

potassium (SK2) channels, PIP2 is a cofactor for Ca-CaM acti-
vation of these channels and binds at the interface between
CaM and SK2 at a site that includes residues from both proteins
(45, 46). The phosphorylation status of CaM itself may also be
dynamically regulated by a signaling complex on the SK2 chan-
nel (44). Phosphorylation of CaM results in a reduced affinity of
PIP2 for the CaM-SK2 complex, causing channel inhibition
(46). Recently, hEAG1 channels have also been shown to be
regulated by PIP2 (47). In this case, PIP2 inhibits hEAG1 chan-
nels through a mechanism that requires an intact CaM BD-N
region (47). Whether there is integration of CaM and PIP2 sig-
naling in hEAG1 channels via overlapping interactions with
BD-N remains to be determined.

What is the Physiological Importance of Ca2�-CaM-depen-
dent Regulation of hEAG1?—hEAG1 channels are expressed in
presynaptic terminals of the CNS (4, 48, 49). mEAG1 knock-out
mice exhibit increased levels of presynaptic Ca2�

i in response
to sustained trains of high frequency APs compared with WT
mice. This in turn leads to enhanced neurotransmitter release
and faster rates of increase and larger amplitudes of excitatory
post-sypaptic currents (4). This, together with other findings,

suggests that EAG channels become activated during bursts of
presynaptic APs, shortening local APs at synaptic terminals and
modulating synaptic plasticity. It seems reasonable to suggest
that this function of EAG1 channels will be regulated not only
in a firing frequency, but also in a Ca2�

i-dependent manner.
Expression of hEAG1 is also dramatically increased in several
types of cancer. Indeed, mutations at the interface of the eag
domain-cNBHD complex have been linked to this disease (25).
A recent report suggests that the role of hEAG1 in tumorigen-
esis is the disassembly of the primary cilium, a microtubule-
based structure and specialized calcium compartment that
needs to be taken apart prior to mitosis (50). Further studies are
needed to determine what role the exquisite Ca2�

i sensitivity of
these channels has in normal health as well as diseases such as
cancer. However, understanding the molecular interactions
that regulate hEAG1 channels could help in the design of novel
therapies that mimic Ca2�-CaM inhibition of hEAG1 to selec-
tively target hEAG1-expressing cancer cells.

Experimental Procedures

Site-directed Mutagenesis and Electrophysiology—Site-di-
rected mutagenesis was performed using the QuikChange
mutagenesis technique (Stratagene, La Jolla, CA) on hEAG1
subcloned into pXOOM (17), a kind gift from Dr. Thomas Jes-
persen, University of Copenhagen (51). Plasmid DNA was lin-
earized with XbaI, and in vitro transcription was performed
using T7 RNA polymerase (mMessage mMachine, Ambion,
Austin, TX). Xenopus laevis oocytes were isolated, defollicu-
lated, maintained in culture, and injected with wild-type or
mutant cRNA (0.05 to 3 ng per oocyte) as described previously
(52). Whole cell currents were recorded in Xenopus oocytes
using a two-electrode voltage clamp (52, 53). Microelectrodes
were filled with 3 M KCl, and the tips were broken to give resis-
tances of 1.1–1.5 megohms. Recordings were made at room
temperature 1–5 days after cRNA injection. Data were low pass
filtered and sampled at 5 kHz and saved to a computer for
off-line analysis using a Digidata 1320A data acquisition system
(Molecular Devices, Sunnyvale, CA). Oocytes were perfused
with a low chloride, MES-based solution containing (in mM)
Na-MES 96, K-MES 2, Ca-MES2 2, MgCl2 1, HEPES 5, pH 7.6.
The low chloride solution minimized endogenous outward cal-
cium-activated chloride currents. We estimate ECl to be ��70
mV, based on extracellular Cl� of 2 mM, and reported intracel-
lular concentrations of 40 – 45 mM (54). Unless stated other-
wise, cytoplasmic calcium was elevated by perfusing cells with
supermaximal concentrations (5 �M) of ionomycin and thapsi-
gargin purchased from Sigma (United Kingdom) or Santa Cruz
Biotechnology (Dallas, TX). In some experiments, EGTA was
injected into the oocytes during recordings to buffer Ca2�

i to
low levels. 50 nl of 50 mM K4EGTA solution, pH 7.2, was
injected using a Nanoliter 2000 microinjection device (World
Precision Instruments, Sarasota, FL) to give an estimated final
concentration of 5 mM based on the assumption that oocytes
have a cytoplasmic volume of 500 nl.

Voltage Protocols and Data Analysis—The time- and voltage-
dependent kinetics of hEAG1 were measured using an I-V pro-
tocol, which unless stated otherwise consisted of 2-s test pulses
to potentials between �50 and �80 mV followed by a 500-ms

FIGURE 8. Point mutations to the cNBHD mimic the effect of deleting the
PAS-cap on voltage- and calcium-dependent properties. A and C, repre-
sentative current traces elicited by the I-V protocol for E600R (A) and E600A (C)
hEAG1 before (control, blue traces) and during I and T (I&T) application (red
traces). Traces at �20-mV increments are shown for clarity. B and D, mean (�
S.E.) normalized current-voltage relationships for E600R (B, n � 7) and E600A
(D, n � 8) hEAG1. Time-dependent currents at each potential were normal-
ized to the maximum current in control conditions to illustrate the fold-
change of current amplitude in response to I and T. The dotted lines in D show
the mean normalized relationships for WT hEAG1 currents for comparison. E,
mean (� S.E.) normalized to control current amplitudes against time in I and
T for cNBHD point mutants E600R (n � 5), E600A (n � 7), E600L (n � 13), E600I
(n � 11), and WT hEAG1 (n � 21). Note the split current axis to accommodate
the substantial potentiation of currents exhibited by E600R, E600I, and E600L
hEAG1. Dotted lines indicate � S.E. F, mean maximum changes of current for
Glu-600 mutants and WT hEAG1 in response to I and T, normalized to control
current amplitudes. n � 7 and 14 for E600A and E600Q, respectively, and the
other numbers (n) are the same as in E. The normalized current axis has been
split for the same reason as given in E.
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pulse to �60 mV. Responses to elevated Ca2�
i were monitored

by repetitively stepping to �60 or �40 mV for 2 s. In all exper-
iments the holding potential was �90 mV, and pulses were
applied at 10-s intervals.

hEAG1 current amplitudes were measured using Clampfit
software (Molecular Devices, Sunnyvale, CA). Conductance
(G) was calculated as the time-dependent current amplitude (or
end-pulse current amplitude for 	eag and 	PAS-cap) in
response to a test pulse (Vm), divided by driving force (Vm �
EK), where EK is the equilibrium potential for K� (�96 mV). For
each oocyte, G was normalized to Gmax (maximum conduct-
ance) plotted as a function of Vm and fitted to a Boltzmann
function to determine the potential at which the current is half-
maximally activated (V0.5) and the slope (k) of the conductance-
voltage relationship. For mutants that are strongly rectified
(	eagD, 	PAS-cap, and E600R cNBHD), the Vm at which acti-
vation was maximal could not be accurately determined, and
thus V0.5 and k values are likely to be underestimated. The time-
dependent kinetics of activation were measured from calcula-
tions of time from 10 to 80% activation (t10 – 80%) using Tracan
software (written in-house by Dr. Noel Davies). Data are pre-
sented as mean � S.E. (n � number of cells). Statistical com-
parisons were performed using paired or unpaired Student’s t
tests where appropriate. Differences were considered signifi-
cant at p � 0.05. Figures and statistical analyses were prepared
using Prizm software (GraphPad, San Diego).

Oocyte Calcium Imaging—For measurement of Ca2�
i,

oocytes were injected with 50 nl of 1 mM Oregon Green
BAPTA-1 potassium salt (Invitrogen, United Kingdom) 1–3 h
prior to fluorescence imaging on an Olympus IX81 microscope
(Olympus, United Kingdom) equipped with an FV1000 confo-
cal scanning unit. The indicator (estimated final concentration
of 50 �M) was excited at 488 nm, and emission was collected at
500 – 600 nm via a 10 
 0.4 NA U-Plan-S-Apo lens. Images
were acquired at a rate of 0.2 Hz with the confocal aperture set
at maximum. To prevent cell movement during I and T appli-
cation, a sealed blunt-ended glass micropipette was pressed
gently on the top surface of the oocyte. The lens was focused
25–100 �m above the coverslip to detect the signal from a
cross-section of the oocyte that had unrestricted access to I and
T added to the bath. Fluorescence signals (F) were quantified
using ImageJ (55) as the average value from three different
peripheral regions of interest per oocyte (each �3500 �m2)
after background signal subtraction. F was expressed relative to
the pre-stimulus level (F0). Intracellular calibration of the Ca2�

levels reported by Oregon Green 488 BAPTA-1 proved unreli-
able. Instead, an extracellular calibration was carried out in a
custom multiwell microchamber with a range of free Ca2� lev-
els set with EGTA/CaCl2/HEPES mixtures (Maxchelator, max-
chelator.stanford.edu). This calibration was then used to con-
vert the F/F0 increase induced by I and T to an approximate
increase in Ca2� using a Kd of 170 nM and resting Ca2�

i of 100
nM.

Molecular Modeling—Homology models of the hEAG PAS-
cNBD complex were built using Modeler (56), with the mEAG1
structure (Protein Data Bank code 4LLO) (25) used as a tem-
plate. The sequence identity for both domains is 98%. Surface
conservation was calculated using Consurf (57). Sequence

alignments were prepared using Uniprot and edited with
ESPript (58), and molecular model illustrations were prepared
with the PyMOL Molecular Graphics System, Version 1.8.0.2,
Schrödinger, LLC.
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