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Abstract Self-adaptive mechanisms for the identification of the most suitable
variation operator in Evolutionary Algorithms rely almost exclusively on the
measurement of the fitness of the offspring, which may not be sufficient to as-
sess the optimality of an operator (e.g., in a landscape with an high degree of
neutrality). This paper proposes a novel Adaptive Operator Selection mech-
anism which uses a set of four Fitness Landscape Analysis techniques and
an online learning algorithm, Dynamic Weighted Majority, to provide more
detailed information about the search space in order to better determine the
most suitable crossover operator. Experimental analysis on the Capacitated
Arc Routing Problem (CARP) has demonstrated that different crossover op-
erators behave differently during the search process, and selecting the proper
one adaptively can lead to more promising results.
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1 Introduction

Parameter Setting is an important area of research in the Evolutionary Compu-
tation field. Since an a-priori identification of the optimal configuration of the
parameters is always time-consuming and often impractical, one must employ
a dynamic selection strategy of the optimal configuration which is performed
while the search is being executed. In addition, a static set of parameters is not
always the optimal choice for a large number of problems where self-adapting
techniques have proven to be more effective [14].
The problem of identifying the most suitable variation operator among several,
also known as Adaptive Operator Selection (AOS), can be divided into two
sub-tasks: the Credit Assignment (CA) mechanism, used to evaluate the per-
formance of the operators, and the Operator Selection (OS) Rule, necessary to
determine the most suitable operator using the information provided by the
CA mechanism. The majority of the Credit Assignment approaches in litera-
ture are based on the evaluation of the fitness of the offspring generated by
the operator, which is compared either to the current best solution [11], to the
median fitness [20] or to the parents’ fitness [2]. A different strategy evaluating
both fitness and diversity of the offspring was proposed in [28]. The reward
has been mostly considered as the value assessed during the last evaluation
(Instantaneous reward), as the average reward over a window of the last N
evaluations (Average reward), and as the biggest improvement achieved over
a window of the last N evaluations (Extreme reward)[15].
The use of alternative metrics has been recently considered in [36], where an
evolvability metric replaces the evaluation of the fitness. A different approach
for population-based meta-heuristics, proposed in [8], assesses the reward as
the proportion of solutions generated by each operator which have been se-
lected by the ranking phase of the evolutionary algorithm. The Credit Assign-
ment mechanism is coupled with Operator Selection rules such as Probability
Matching [16], Adaptive Pursuit[38] or Multi Armed Bandit solvers (MAB)
[10].Several improvements of the MAB strategy have been proposed, as in
[3], [7], [22]. Reinforcement Learning has been also used in Parameter Set-
ting [21], as in [13], where a Reinforcement Learning procedure is adopted to
modify the parameters on-the-fly, or in [34] where the selection probability of
the operators is adaptively changed using a Reinforcement Learning approach.

From the analysis of the existing literature, it is clear that almost all the
existing CA strategies rely exclusively on the mere evaluation of the fitness
of the offspring. However, the information provided by the fitness at a single
generation may not be sufficient to assess the optimality of an operator (e.g.
in a landscape with a high degree of neutrality). The purpose of our work is
therefore to develop a new dynamic CA mechanism which considers a suite of
measures, and that can be adopted also as an Operator Selection Rule. We con-
sider the Memetic Algorithm with Extended Neighborhood Search (MAENS*)
[8] algorithm as a case study and for comparison purposes. More specifically,
we aim to answer the following research questions in our paper:



– RQ1 : What kind of additional information we can provide to the Credit
Assignment technique for a more “aware” calculation of the reward and
does this information effectively help to improve the prediction ability of
the algorithm?

– RQ2 : What technique would be useful to handle such data and to select
the most suitable operator in such a dynamic environment? Would the
prediction ability of the technique be better than that of MAENS*? Would
the use of this technique improve the optimization ability of MAENS*?

The contributions of our work include:

– An ensemble of four different online Fitness Landscape Analysis techniques,
performed during the execution of the MAENS* algorithm in order to give
a more accurate description of the current population (RQ1);

– A Credit Assignment technique based on the use of a online learning algo-
rithm to predict the reward of the most suitable operator (RQ2);

– Two different Reward Measures are studied: one based on the survival
ability of the offspring and another one based on the analysis of their
diversity.

This work extends our previous work in [9] with new experiments and contri-
butions. In particular: (a) we investigate the use of a novel Reward Measure
called Diversity Based Reward (DBR); (b) we study the adoption of a differ-
ent Operator Selection Rule, named Concurrent Strategy (CS); (c) we extend
our analysis by testing our algorithms on a dataset of large CARP instances.
The results of the experiments carried out show that the proposed approach is
able to produce results with comparable solution quality to a state-of-the-art
strategy and reveal how in some cases the presence of a set of measures have
a beneficial effect on the optimization ability of the AOS.
The rest of the paper is organized as follows. Section 2 introduces the case sce-
nario and the base MAENS* algorithm. Section 3 describes the novel Reward
Measures and Operator Selection Rules investigated in this work. Section 4
describes the ensemble of Fitness Landscape Techniques used in conjunction
with the CA mechanism of the MAENS* algorithm. Section 5 describes the
online Learning algorithm that has been used and adapted for the CA system.
Section 6 presents the proposed MAENS*-II algorithm. Section 7 describes
the experiments that have been carried out to verify the assumptions of this
research and their results. Finally, the last section includes the conclusions
and some future work ideas.

2 Background

In order to investigate over our research questions, we consider the MAENS*
algorithm [8] for the Capacitated Arc Routing Problem (CARP) [17], as the
case study of this research, as it already utilizes an Adaptive Operator Selec-
tion scenario and provides a term of comparison with alternative techniques.
The strong relationship between CARP and specific real world problems, such



as winter gritting, waste collection or postal service make this a problem of
great interest for the scientific community, and a large number of heuristics,
exact methods and meta-heuristics have been proposed for this problem and
its many variants. Although the hyper-heuristic proposed in this work is ap-
plied to the Capacitated Arc Routing Problem, it would be possible to adapt
it to different NP-Hard problems by replacing the low level heuristics and by
identifying the best Fitness Landscape Analysis metrics that better describe
the specific landscapes of the different NP-Hard problem.

2.1 MAENS*

MAENS*, the case study the for this research, extends the Memetic Algorithm
named MAENS [37] introduced in 2009. MAENS is a memetic algorithm which
makes use of a crossover operator, a local search combining three local move
operators and a novel long move operator called MergeSplit, and a ranking
selection procedure called Stochastic Ranking (SR)[33]. The major differences
between MAENS and MAENS* are: (a) MAENS uses a single crossover oper-
ator, whereas MAENS* uses a set of crossover operators, (b) a dynamic MAB
mechanism (dMAB) [15] is adopted as an AOS rule, (c) a novel CA mechanism
assigns a reward to the operators which is proportional to the number of so-
lutions generated by each operator that “survived” the ranking phase, named
Proportional Reward, (d) the Stochastic Ranking is improved considering also
the diversity of the solutions (dSR) using a (e) novel diversity measure for the
CARP search space.
The dMAB [15] approach, adopted in this work, combines the UCB1 algo-
rithm [1] with the Page-Hinckley (PH) statistical test [19] to detect changes in
the environment. When the PH test is triggered, the MAB system is restarted
and the information gathered in the previous generations is discarded. The
MAENS* algorithm represents one case study of our research, as the presence
of a suite of crossover operators allows the study of other AOS approaches.

2.2 Capacitated Arc Routing Problem

The Capacitated Arc Routing Problem (CARP) can be formally defined as
the problem of minimizing the total service cost of a routing plan, given a set
T of tasks (which corresponds to a subset of the arcs of a graph) and a fleet
of m vehicles with capacity C. Each task t has a service cost sc, a demand d
(the load of the vehicle necessary to service the task), a unique id, a reference
to its head and tail vertices, and must be served once and entirely within the
same route Rj. A CARP solution S can be represented as

S = {{t0, tk, ..., tl, t0}, · · · , {t0, tp, ..., tq, t0}}

which is a permutation of the whole set of tasks, divided into several routes
Rj. Each route must start and end in a specific vertex called depot. We use a



dummy task t0 with null demand and service cost to show the start and the
end of a route in the depot. The service cost of a single route is calculated by
adding the service cost of all the tasks in the route plus the cost of the shortest
path sp between each task. The problem can be formally defined as follows:

min TC(S) =

length(S)−1∑
i=1

(sc(ti) + sp(ti, ti+1)),

subject to the constraints

load(Rj) ≤ C , app(ti) = 1 and ∀ti ∈ T,m <= nveh,

load(Rj) =

length(Rj)∑
i=1

d(tij),

where app(ti) gives the number of appearances of tasks ti in the sequence of
the tasks in S and nveh is the number of available vehicles.

2.3 Recombination Operators for CARP

As explained in section 2.1, MAENS* uses a set of crossover operator, in-
stead of a single crossover operator. This section describes the four crossover
operators introduced in MAENS* to deal with the CARP problem.

2.3.1 Greedy Sequence Based Crossover (GSBX)

The GSBX operator, can be considered as a variant of the Sequence Based
Crossover (SBX) operator. In this case, one route is extracted from each parent
solution following a greedy strategy that influences the selection towards those
routes whose vehicle is still not full (the total demand of the route is the
smallest). Once selected, the two routes are recombined using a one point
crossover mechanism. The new route replaces the original ones in the parent
solutions to generate the offspring. Since problems caused by double servicing
of tasks or tasks not being serviced might arise, the solution goes through a
repair phase to guarantee its feasibility.

2.3.2 Greedy Route Crossover (GRX)

In GRX, an offspring is created by alternatively copying the routes of the
parents into it. Routes are extracted from the parent solutions, giving higher
priority to the routes with a higher quality measure. Tasks that have been in-
serted into the offspring are consequently removed from both parents, to avoid
the double servicing of tasks. The procedure is repeated until the remaining
routes in the parents have less than a certain amount of tasks. In that case, the
remaining tasks are inserted in the existing routes or merged into new ones.



2.3.3 Pivot Based Crossover (PBX)

Two routes are randomly selected from the parent solutions. The PBX oper-
ator works by identifying, among the tasks belonging to such routes, the one
that is most suitable to be placed in the middle of a route, which is named
pivot, as it splits the route in two parts. The route is then rebuilt inserting
the remaining tasks in the position that minimizes the total service cost of the
route. Finally, the offspring is obtained by replacing the original route in one
of the two parents. As in the case of GSBX, the solution goes through a repair
phase to guarantee the feasibility of the solution.

2.3.4 Shortest Path Based Crossover (SPBX)

The SPBX operator works analogously as the PBX operator, except that in
this case the pivot is represented by a path between two of the available tasks.
The couple of pivoting tasks is selected as the one that the serves the largest
number of available tasks along their path and that minimizes the distance
between the extremities of the path and the deposit.

3 Adaptive Operator Selection

As previously mentioned, AOS is conventionally composed of two different sub-
tasks, the Credit Assignment and the Operator Selection. For the former part,
we propose the use of two different Reward Measures, named Proportional
Reward (PR) and Diversity Based Reward (DBR). For the latter, we study
the performance of two different strategies: a simple Instantaneous Reward
(IR) approach and a Concurrent Strategy (CS) based approach.

3.1 Credit Assignment

The choice of the proper Credit Assignment Strategy can be fundamental
for the performance of the algorithm. As one objective of this work is to
evaluate more than just the fitness of the individuals, we adopt two different
strategies that involve the evaluation of different measurements. The first one,
named Proportional Reward, was first used in [8] together with a Multi Armed
Bandit approach. For the second case, we develop a novel measure based on
the evaluation of the diversity of the offspring, named Diversity Based Reward.

3.1.1 Proportional Reward (PR)

PR[8] is a measure of the survival ability of the offspring generated by each
crossover operator. We assign a reward r, where r ∈ [0, 1] corresponds to
the percentage of the solutions that have survived the selection phase of the
algorithm, and are going to become the parent population for its generation.



1 find p1(t) and n1(t)∀t in S1;
2 find p2(t) and n2(t)∀t in S2;
3 for (each task t) do
4 if (task t is served in both

solutions) then
5 if ( p1(t) = p2(t) ) then
6 add one;
7 end
8 if ( n1(t) = n2(t) ) then
9 add one;

10 end

11 end

12 end
13 divide the obtained value by 2N .

Fig. 1: Diversity measure for CARP solutions

The use of this technique is a way to entrust the algorithm itself for the
evaluation of the offspring. In the case of MAENS*, the offspring able to
survive the ranking phase are evaluated according to their fitness value, the
amount of violation of the constraints and the average pairwise diversity from
the other individuals of the population. The performance of the crossover
operator is in this case evaluated at the end of the generation: rather than
evaluating the individuals as soon as they are generated, the PR evaluates
their performance in a longer period of time (e.g. an iteration). The PR can
be formally represented with the following formula:

PR(i)t =
|xi : xi ∈ parentt+1|
|parentt+1|

where i refers to the i-th operator, xi is an individual obtained through the use
of operator i, t is the t-th generation and parentt+1 is the parent population
at the t + 1 generation. If more than one operator is used during the same
generation, the PR can be calculated in the following way:

PR(i)t =
|xi : xi ∈ parentt+1|
|offspringti|

where offspringti is the set of individuals generated using the operator i during
the t-th generation.

3.1.2 Diversity Based Reward (DBR)

In the case of the DBR, we propose an approach that is opposite to that of the
PR, as we evaluate the crossover offspring as soon as they have been generated.
As one purpose of the crossover operator is that of introducing diversity in the
population through the exploration of new areas of the landscape, we adopt
a measure of the diversity introduced by the offspring. In particular, for each
operator, we want to measure how distant the offspring are from the parent



population, and how wide is the area explored. Therefore, we define a parent
distance measure

Pd(x) =
d(x, p1) + d(x, p2)

2

as the average distance from the offspring x to its parents p1 and p2 and we
can consequently compute the average parent distance for operator i, Pd(i),
by averaging the Pd(x) of all the offspring generated by such operator. To
measure the distance between individuals, we adopt the distance measure for
CARP developed in [8]. The pseudocode of the distance measure is shown in
figure 1. Since a CARP solution is represented by a sequence of tasks t, split
into different routes, we can define pi(t) and ni(t) as two functions that return
respectively the previous and the next tasks of task t in the sequence of solution
Si. A task t has a perfect correspondence in both solutions if its previous and
next tasks match. In the most extreme cases, for two solutions S1 and S2, the
value of the distance measure will be equal to 1 if p1(t) = p2(t) and n1(t) =
n2(t),∀t, and will be equal to 0 if (p1(t) 6= p2(t) and n1(t) 6= n2(t),∀t). In the
former case, the two solutions are identical, as there is a full correspondence
between the pi(t) and the ni(t) of both solutions for each task t, while in
the latter case the two solutions are completely different. It is important to
point out that while the order in which the tasks in each route are serviced
is considered, the order of the routes is not. Therefore two solutions are still
identical if they have perfectly corresponding routes even if permutated in a
different order. In all the other cases, when the correspondence is partial, the
diversity measure will consequently assume values within the range [0, 1].
We also define the coverage measure of the operator i

Cm(i) =

∑
i

∑
j d(xa, xb)

N2
i

as the pairwise average distance between any pair of individuals xa and
xb that have been generated by it, where Ni is the number of individuals
generated through the use of operator i. We can compute the DBR of the i-th
operator in the following way:

DBR(i) = Pd(i) ∗ Cm(i).

Similarly to Compass [28], this Credit Assignment technique considers the
diversity of the offspring as a criterion to evaluate the performance of the oper-
ators. However, there a several differences between such approaches. First, the
Compass approach addresses the evaluation of both the fitness and the diver-
sity while DBR only considers the diversity, being focused on the evaluation
of crossover operators exclusively. Secondly, Compass makes use of the Ham-
ming distance entropy as in [24] to measure the population diversity, while
DBR deals with both the average pairwise distance of the offspring as well
as the distance from the parent population using the CARP based diversity
measure shown in figure 1.



3.2 Operator Selection Rule (OSR)

The second step of the AOS process is the Operator Selection Rule. The OSR,
given the information gained through the use of the Credit Assignment mech-
anism, needs to decide what is the most suitable operator and how to use
it. A first problem in this context is that of balancing the exploration of all
the operators against the exploitation of the most useful one. In other words,
while using the operator that has performed the best so far, one wants to
verify whether there is another operator that can do better. A second aspect
is that of identifying changes during the execution. As the search goes on, the
operator that has performed the best so far might not necessarily be the best
one afterwards. It is therefore necessary to balance how much of the “history”
relative to each operator one most consider to perform the selection.
In this work we consider two different approaches for the OSR, namely a single
operator based approach named Instantaneous Reward and a Reinforcement
Learning-inspired one called Concurrent Strategy.

3.2.1 Instantaneous Reward (IR)

In the IR approach, the offspring is produced through the use of only one
crossover operator per generation. As offspring and parent populations are
merged in an unique population, it is still possible to evaluate all the crossover
operators who have generated a solution that is still present in the population.
The operator to use in the next generation (t+ 1) is consequently selected as
the operator opi that has obtained the largest reward in the current generation
(t):

opt+1
i = max

i
(RW (opi)

t), opi ∈ operators

given RW () as a reward measure. Those operators having produced more “ex-
treme” improvements (e.g. discovered new optima) with respect to the others,
will have a more favourable evaluation that will last for more generations, even
when they have not been selected for the current generation.
The information relative to the previous performances of the operator, except
for the last iteration, is discarded. IR is therefore designed to be more sensi-
tive to changes, having a bias on the performance of the operators during the
previous generation. Finally, the adoption of such approach has the potential
risk of eliminating completely an operator from the competition if none of its
offspring are present in the current population.

3.2.2 Concurrent Strategy (CS)

One of the disadvantages of adopting the Instantaneous Reward strategy is
that it is not possible to identify changes in the environment when only one
operator is used. A different approach, therefore, is that of allowing the use
of all the operators during all the generations. Such approach, named CS,
aims to maximize the gain obtained by using the best performing operator,



and thus allowing the generation of a larger fraction of the offspring by it,
while the remaining part is still generated by the other operators. The CS
is similar in its behaviour to the Adaptive Pursuit (AP) approach [38] in its
intent to maintain a minimum percentage of the solutions to be generated by
the less performing operators. The formula to assign the Selection Rate to
each operator i, is the following:

SRi = SRmin + (1− n× SRmin)
eRW (opi)

t/ψ∑n
j=1 e

RW (opj)t/ψ

where SRmin is the minimum selection rate, n is the number of operators,
RW (opi) is the reward calculated for the operator opi during the generation
t, and ψ is a control parameter that regulates how quickly the system reacts
to the changes in the environment. In this case, n = 4 since four operators are
available.

4 Online Fitness Landscape Analysis

The existing Fitness Landscape Analysis (FLA) techniques have been analysed
with the purpose to identify those that can be used in the CARP context. Such
selection has been driven by both the necessity to reduce the computational
effort by exploiting some calculations that are already performed by the al-
gorithm, and the necessity to identify measures able to “capture” different
features of the landscape. We identified four FLA techniques, consisting of
one evolvability measure, two neutrality measures and one fitness distribution
measure, to describe different features of the landscape and without much in-
creasing the computational effort. The computation of such techniques is based
on the evaluation of the neighbourhood of each solution. Such neighbourhood
is already generated through the initial iteration of the local search operator of
the MAENS algorithm, by using of the three different move operators involved
in this process (Single Insertion, Double Insertion, Swap Insertion). The FLA
techniques are employed during each generation, and their results are used as
input features of an online learning algorithm to predict the value of one of
the two Reward Measures introduced in section 3.1, in order to create a more
accurate and informative “snapshot” of the current population which eventu-
ally might lead to a better selection of the crossover operator. A final remark
is necessary about the constraints handling and how it affects the fitness of
the individuals. The landscape in which MAENS* operates is that of solu-
tions which may potentially violate the capacity constraints of the vehicles.
Therefore, we consider the following fitness function, adopted from [37]:

f(S) = TC(S) + λ ∗ TV (S)

where λ is an adaptive parameter depending on the cost, on the violation and
on the best feasible solution found so far, TC(S) is the total cost of the solu-
tion and TV (S) its total violation.



The rest of this section will introduce the four FLA techniques that have been
considered in this work and how they are integrated in the MAENS* algorithm.

4.1 Accumulated Escape Probability

The Accumulated Escape Probability [25] is a metric that aims to measure the
evolvability, which can be defined as the capacity of the solutions to evolve
into better solutions. The Accumulated Escape Probability is obtained by
averaging the mean escape rate [31] (the proportion of solutions with equal or
better fitness in the neighbourhood) of each fitness level with the formula:

aep =

∑
fi∈F Pj

|F |
, where F = f0, f1, ..., fL

where fi is a fitness level (subset of all the solutions with fitness equal to a
value fi), Pj is the average Escape Rate of all samples belonging to the fj
fitness level and L is the number of possible fitness levels. Being the mean
value of a set of probabilities, the aep will be 0 when the instance is hard and
higher (up to 1) otherwise. The calculation of the aep requires the analysis of
the neighbourhood of each solution in order to identify how many individuals
have a equal or better fitness than the original individual. We analyse therefore
the evolvability of the solutions which have been selected (with probability
equal to 0.2) for the local search. Since the calculation of the neighbourhood
of each solution corresponds to the first step of the local search, no significant
additional cost is required to compute the aep.

4.2 Dispersion Metric

The analysis of the distribution of the solutions within the landscape can be
sometimes used to understand more about the difficulty that a “jump” between
fitness levels requires and to gain some information on the global structure of
the landscape. In this context, the Dispersion Metric (dm) [26] is a technique to
obtain information about the global structure of the landscape, by measuring
the dispersion of good solutions. Ideally, if good solutions are very close we
might have a single funnel structure. If, on the contrary, solutions get more
distant when their fitness improves, the landscape might be more like a multi
funnel structure. The analysis can be described as follows:

1. A sample S of solutions is taken from the search space;
2. the best Sbest solutions are selected from S (using a threshold value);
3. the average pairwise distances in S (d(S)) and in Sbest(d(Sbest)) are calcu-

lated using the CARP diversity measure shown in figure 1;
4. the dm is obtained as the difference between d(Sbest) and d(S).



The calculation of the pairwise distance between all the individuals of the
sample is already performed during the diversity-based Stochastic Ranking
of MAENS* by using the distance measure shown in figure 1, and therefore
requires no additional cost. Thus, the dm can computed on the set of all the
popsize∗offset individuals created during each generation of MAENS*. Finally,
it is possible to rely on the ranking performed by the diversity-based Stochastic
Ranking operator and choose these solutions as the subset of the best ones.

4.3 Average Neutrality Ratio and ∆−fitness

Neutrality is the study of the width, distribution and frequency of neutral
structures within a landscape (e.g. plateaus, ridges). A set of several neutrality
measures was defined in [39]. Among these, we select the following two:

1. average neutrality ratio (r): can be obtained by averaging the neutrality
ratio (e.g. the number of solutions with equal fitness) of each individual
with respect to its neighbourhood;

2. average ∆−fitness of neutral network (∆(f)): can be defined as the aver-
age fitness gain after one mutation step of each individual belonging to a
neutral network.

In the same fashion as in the case of the aep, the computational effort of
this technique can be absorbed by the generation of the neighbourhood of the
initial solution during the local search.

5 Online learning

The AOS model followed by MAENS* is that of the Multi Armed Bandit ap-
proach, where the UCB1 [1] algorithm is used to balance the exploration and
exploitation of the crossover operators and the Page-Hinckley [19] test is used
to detect when a different operator has become the most suitable.
In this work, we propose the adoption of a different model. The abrupt and
scarcely predictable changes of the most suitable operator which might happen
during the search show many similarities to the notion of concept drift [35][32]
in machine learning. Thus, in such a context, we might adopt an online learning
algorithm capable of (a) predicting a reward for each operator using the online
Fitness Landscape Analysis measures and (b) tracking the changes of the envi-
ronment, relying only on a limited number of training instances. We can define
more formally the learning problem in the following way. At a given genera-
tion of the EA, we compute the FLA metrics (fla1, f la2, f la3, f la4) and the
reward of each operator (RW (opi)). Tuples (fla1, f la2, f la3, f la4, RW (opi))
are then used as training examples for the online learning algorithm, where
(fla1, f la2, f la3, f la4) are the input features and (RW (opi)) is the target out-
put.
We employ the Dynamic Weighted Majority (DWM) [23] algorithm as our



online learning algorithm, which has proved to be one of the most effective
techniques in the task of tracking concept drifts. The DWM algorithm can be
described as follows. A set of learners (called experts) are used to classify the
incoming instances {−→x , y}, where −→x is the vector of n input features and y is
the output feature. Each expert ej has its own weight wj , and operates a clas-
sification λ of the instance. The global prediction is identified as the prediction
with the largest sum of weights. All the experts which have failed to classify
correctly the instance have their weights reduced by a β factor. Moreover, for
every p instances, all the experts with a weight below a certain threshold θ,
are deleted and a new expert is created if the global prediction is wrong.

5.1 DWM for regression tasks

As the DWM algorithm was originally conceived for classification it is nec-
essary to adapt and modify some of its mechanism for the regression task
of predicting the reward of a given operator based on the FLA techniques.
A comparison between the revised DWM algorithm for the regression task
(rDWM) and the original DWM itself is given in figure 2. The modifications
introduced are:

1. The global prediction σi is obtained by calculating the weighted average
of all predictions (line 10);

2. we consider a prediction correct if its difference from the output feature is
less than a threshold τ (lines 5-6);

3. a new expert is created if the difference between the global prediction and
the output feature is less than a t factor (lines 17-18);

4. we introduce a window containing the last n instances wTS, which is used
to train the new experts upon creation (line 2).

6 MAENS*-II

The revised version of the algorithm adopting the rDWM as an AOS mecha-
nism, named MAENS*-II, is shown in figure 3, along with the original MAENS*
algorithm. Further information about MAENS* can be found in [8]. A set of
four (one for each crossover operator) rDWM instances are created upon ini-
tialization of the algorithm (line 2). During each generation, one new training
example is created for each rDWM instance by using the current set of FLA
metrics as input features, and the reward associated to the operator as the
output feature (lines 10, 13-14) obtained with a given Credit Reward strategy.
The set of four rDWM instances are then used to predict the reward of each
operator (line 4). Finally, an Operator Selection Rule is adopted to choose the
operators to use during each generation.
Three different versions of the MAENS*-II algorithm were implemented em-
ploying the two different techniques for the Operator Selection Rule introduced



(a) Original DWM.

1 for (each instance {−→x i, yi}) do
2 for (each expert ej) do
3 λj =classify(ej ,−→x i);

4 if (|λj
i 6= yi) then

5 wj = β ∗ wj ;
6 end

7 end
8 normalize weights;
9 σi= select class with largest sum of

weights;
10 if (p mod i = 0) then
11 for (each expert ej) do
12 if (wj < θ) then
13 delete expert;
14 end

15 end
16 if (σi 6= yi) then
17 create new expert;
18 end

19 end

20 for (each expert ej) do
21 train(ej ,−→x i);
22 end

23 end

(b) DWM for the regression task.

1 for (each instance {−→x i, yi}) do

2 update wTS(−→x i);

3 for (each expert ej) do
4 λj =predict(ej ,−→x i);

5 if ( |λj
i − yi| > tau ) then

6 wj = β ∗ wj ;
7 end

8 end
9 normalize weights;

10 σi= global prediction

11 if (p mod i = 0) then
12 for (each expert ej) do
13 if (wj < θ) then
14 delete expert;
15 end

16 end

17 if ( |σi − yi| > t ) then

18 create new expert

and train using wTS ;

19 end

20 end

21 for (each expert ej) do
22 train(ej ,−→x i);
23 end

24 end

Fig. 2: Pseudocode of DWM (left side) and DWM for the regression task (right side). The novelties
introduced in the latter version, discussed in section 5.1, are highlighted with a gray background
color.

in section 3.2 as well as the two different Credit Assignment mechanism pre-
sented in section 3.1. All the experiments were performed using the weka [18]
implementation of REPTrees as base learners. Table 1 summarizes a list of the
different versions of the algorithm and a description of their components. It is
worth noting that the combination of the DBR strategy and the Instantaneous
Reward was not considered, as the strategy of measuring the reward of the
crossover offspring and the use of only one operator during each generation
would lead to the its exclusive use for the whole execution of the algorithm.

Table 1: List of Algorithms. Each row represents a different combination of one Operator Selection
Rules and one Reward Measure strategies.

combination Operator Selection Rule Reward Measure
a Concurrent Strategy Diversity Based Reward
b Concurrent Strategy Proportional Reward
c Instantaneous Reward Proportional Reward



(a) MAENS* pseudocode

1 initialize a population pop of popsize
individuals;

2 while (termination condition not met)
do

3 choose the crossover operator opi
using dMAB

4 generate a population popxof
popsize∗offset individuals, choosing
the parents from pop ∪ popx;

5 generate popls(i) for each individual
popx(i) with probability = 0.2;

6 if (popls(i) is better than popx(i))
then

7 overwrite popxi;
8 end
9 use d-Stochastic Ranking and

overwrite pop;
10 use the PR measure to calculate the

reward Ri for each opi;
11 end

(b) MAENS*-II pseudocode

1 initialize a population pop of popsize
individuals;

2 initialize four rDWMi instances

3 initialize four rewards rwi

4 while (termination condition not met)
do

5 choose the crossover operator opi
with largest rwi

6 generate a population popxof
popsize∗offset individuals, choosing
the parents from pop ∪ popx;

7 generate popls(i) for each individual
popx(i) with probability = 0.2;

8 if (popls(i) is better than popx(i))
then

9 overwrite popxi;
10 end

11 calculate Y t = {aep,r,∆(f),dm}
12 use d-Stochastic Ranking and

overwrite pop;

13 for each opi do

14 outi = CreditAssignment(opi)

15 rwi = rDWMi(Y
t, outi)

16 end

17 end

Fig. 3: Pseudocode of MAENS* (right side) and MAENS*-II(left side). The novelties introduced
in the latter version, discussed in section 6, are highlighted with a gray background color.

6.1 Improvements on Local Search Efficiency

One of the most effective features of MAENS [37] is its Local Search, which,
however, has a high computational cost - the algorithm spends around 95% of
its runtime performing this operation. Although the proposed modifications to
the original MAENS algorithm, as explained in section 4, cause no significant
increase of the runtime of the algorithm, a fast implementation of MAENS
local search is introduced, which helped reducing effectively the runtime with-
out incurring into extra memory consumption. The approach is similar to the
one introduced in [40] for the Vehicle Routing Problem, but without relying
on the use of memory.
The approach can be summarized by the following points:

1. Every individual a in the neighbourhood of a solution x is represented as
a move M , where M stores the information relative to the move operator
opi such that opi(x) = a, the tasks involved in the move, and the variations
in terms of fitness and violation of the constraints w.r.t. the values of the
initial solution;

2. The set of moves representing the whole neighbourhood is split into V =
R∗R subsets, where R is the number of routes of the initial solution. Each



subset contains the moves relative to the move operators applied to the
tasks belonging to the routes Ri and Rj ;

3. During the first iteration of the local search, the whole neighbourhood of
moves is produced. A storage array of size V is kept to store the best
solution of each subset;

4. The best move in the neighbourhood is identified with a computational
time of O(M). If the best move belongs to the subset relative to the routes
Ri and Rj , the positions in the storage relative to the combination of either
routes are set to null;

5. In the following iterations, the local search produces only the moves involv-
ing either the route Ri or Rj or both. The positions of the storage relative
to such moves are consequently updated.

After the first iteration, the number of subsets to be evaluated is therefore
decreased from R2 to 2R + 1, resulting in a significant reduction in terms
of size of the neighbourhood that is necessary to evaluate during each local
search iteration. It is worth mentioning that the use of the move notation itself
reduces the cost of evaluating the fitness and the violation of one individual
from O(n) to O(k), where n is the number of tasks and k is equal either to 7
or 8 (depending on the move operator considered).

7 Experimental Studies

A set of experiments were designed to understand the behaviour of MAENS*-
II. As a first step, an oracle based on the Proportional Reward was imple-
mented with the purpose of analysing a set of CARP instances in order to
obtain optimal crossover operator selection rates and to analyze them. The or-
acle can be briefly described as follows. Four different populations are obtained
during each generation by using each crossover operator. All the individuals
of the four generations are merged into a single population which is sorted
using the MAENS* ranking operator. The Proportional Reward mechanism is
therefore used to assess the best operator. The results achieved by the oracle
show that the predictions operated by the dMAB are not optimal, as better
results can be achieved. Besides, the results of the oracle should be considered
“optimal” only when the Proportional Reward strategy is considered, because
they might not necessarily be optimal when in presence of a set of multiple
measures, as in the case of MAENS*-II, or when a different credit assignment
strategy is considered.
Two different datasets are considered for the experiments. The first one, named
Group A, is composed of instances taken from the known benchmark test sets
egl [12], Beullen’s C, D, E, F [5] and val [4]. The second group (Group B)
corresponds to the large scale CARP instances of the dataset EGL-G [6]. The
characteristics relative to each instance, in terms of number of vertices, number
of edges, number of required edges and best fitness value found in literature
are included in table 3.
We provide an example of a solution for the D07 problem instance produced



by one of the variants of the MAENS*-II algorithm in figure 8, to clarify what
kind of results this algorithm produces.
The set of parameters adopted in all the MAENS*-II algorithm variants, in-
cluded in table 2, were identified by a series of test-and-trial attempts and
might not correspond to the most optimal choice. With regards to the param-
eters that are common with the other algorithms (MAENS and MAENS*) we
adopted the same set of values in order to exclude different results due to dif-
ferent parameter configurations. These parameters can be identified in table 2.
All the final results were obtained by averaging the output of 30 independent
runs.

7.1 Single Operator Scenario

In order to understand the improvement achievable by MAENS*-II, the algo-
rithm was executed on the two benchmark sets considering each of the four
available crossover operators. The results of such experiments for group A are
included in table 5. For each single operator MAENS* version, the results show
the average fitness over 30 independent runs, the standard deviation and the
fitness of the best individual found. The last column, named best, shows the re-
sults of what an “optimal” adaptive operator selection would achieve (picking
the best results out of the four achieved). In the second to last row (named #),
the table provides the number of instances with statistically different results
according to the results of a Wilcoxon Rank-Sum test with Holm-Bonferroni
correction at the significance level of 0.05. The row at the bottom (named W )
shows the number of comparison won against the other algorithms. A Wilcoxon
Rank-Sum test was performed on the results achieved on every instance by
each pair of algorithms, with Holm-Bonferroni correction to deal with the
multiple comparisons. The results across all the problem instances were then
compared using the Wilcoxon Signed-Rank test. Each problem instance with
comparable results was treated as paired results and therefore omitted from
the test. The results of such test, subject to the Holm-Bonferroni correction,
are included at the bottom row (pBest) of table 5.
For Group A, it is possible to notice how there is a great number of instances
for which the four versions achieve statistically different results. The only ex-
ception is represented by the comparison between the PBX and the SPBX
based versions, for which there is a limited number of statistically different
instances (7); in all the other cases, the statistically different instances are at
least 24. The GSBX-based operator seem to be the one performing the worst,
losing the comparison to most of the instances, while the other three operators
achieve the best results in a similar number of times. The statistical difference
between the results of the GSBX-version and the other three versions is also
confirmed by the results of the Wilcoxon Signed-Rank test. None of the four
single operator based versions of MAENS* algorithm is able to perform as
good as the “optimal” results (in the best column), as testified by the results



of the Wilcoxon Signed-Rank test included in the pBest row in table 5.
The results of the comparison for the CARP instances belonging to the group
B are included in table 6. The table shows the results of the four different
versions of the algorithm, based on the use of one of the four crossover op-
erators available. Analogously to the previous, the table presents the average
fitness (best), the standard deviation (std) and the best result found (best)
for each algorithm. The results show how the best results are achieved always
by the PBX and SPBX based versions of the algorithm (providing better re-
sults on all statistically different instances against the other two versions). The
GRX based version, in contrast, is the one that performs the worst (losing the
comparison 5 times out of 6 against the GSBX based version and on all the
statistically different instances for the other two versions).
In both datasets, SPBX and PBX operators appear to be the operators whose
usage leads to the best results. This can be explained by the fact that such
operators can introduce a fair amount of diversity in the offspring as one or
more routes are built from scratch. On the other hand, they maintain the good
traits of the parents copying the routes that are not affected by the recombi-
nation. The GSBX operator, in contrast, might not introduce much diversity
in the offspring as the new routes are a combination of the subroutes of the
parents. Therefore, despite being the least disruptive operator, on the long
term it produces a minor contribution than SPBX and PBX. The GRX op-
erator, on the other hand, has a larger disruptive capacity as only the best
routes are preserved in the offspring. In the context of large instances with a
great number of routes as in the case of dataset B, therefore, this operator
might introduce an excessive level of exploration and consequently perform
worse than the others.
A further experiment was conducted to analyse the behaviour of the four
crossover operators. A population of 10000 solutions was generated using the
initialization operator. Each operator was then used to generate a popula-
tion of 10000 solutions, using a random parent selection mechanism. Table 4
reports the number of instances for which the operators achieved the worst
results in terms of fitness, violation, average pairwise distance of the offspring
population and average distance from the parents. This experiment has been
repeated for both datasets.
The results show that in dataset A the operator GSBX achieves the worst re-
sults in the largest number of instances for each of the characteristics analysed.
This is coherent with the results achieved by the four evolutionary algorithms.
On the other end, for dataset B, GRX is the worst algorithm for both fitness
and violation and the second worst for both the diversity measures, which re-
flects the behaviour of the algorithm. It is however worth specifying that these
results refer to the behaviour of the operators with a population of low quality
solutions (as they are generated through the use of the initialization opera-
tor) and might not necessarily reflect the behaviour of the crossover operators
during the most advanced phases of the search.



Table 2: Parameters of the MAENS*-II algorithms. In the upper part of the table, we report the
set of parameters and the respective values that are shared with the MAENS* algorithm. In the
bottom part of the table, the new parameters introduced for the MAENS*-II algorithm.

MAENS* parameters
Name Description Value
psize population size 30

ubtrial maximum attempts to
generate a solution

50

opsize size of the offspring dur-
ing each generation

6*psize

parent selection crossover parent selec-
tion strategy

random selection

Pls probability of perform-
ing the local search

0.2

pMS routes selected during
MergeSplit

2

Gmax maximum generations 500
SRr1 probability of sorting so-

lutions using diversity
0.25

SRr2 probability of sorting so-
lutions using fitness

0.70

MAENS*-II parameters
Name Description Value

p expert removal period 5
β decrease factor for ex-

pert weights
0.75

τ expert weight reduction
threshold

0.05

θ threshold for expert re-
moval

0.05

t threshold for expert cre-
ation

0.10

ψ control parameter for
concurrent strategy

0.002

7.2 Operator Selection Rules and Reward Measures: a Comparison

The performance of the algorithm using different Operator Selection Rules
and Reward Measures is shown in tables 8 and 9, respectively for the groups
A and B. We include the results of the three combinations introduced in table
1, along with the optimal result considering the best performance of the single-
operator versions (in the last column, named best). In table 8, the results of
the statistical tests show how the three versions of the algorithm achieve sta-
tistically different results only on a limited subset of the instances (at most
7 between MAENS*-IIa and MAENS*-IIc). The versions achieving the best
results appear to be the ones adopting the Concurrent Strategy as an OSR
(MAENS*-IIa and MAENS*-IIb). The two versions achieve extremely similar
results (differing only in 3 instances), while the version using the Instanta-
neous Reward (MAENS*-IIc) differs from the other two respectively in 7 and
5 instances, and loses the comparison in the majority of the cases. In contrast,
MAENS*-IIc is the variant that differs the least w.r.t. the best results achieved
by the single-operator versions of the algorithm (only 6 statistically different
instances, while the other two versions differ in 8 ad 9 instances).
Although such results show small differences between the performances of the
algorithms when adopting one OSR rather than the other, it is possible to see



Table 3: Characteristics of the instances of groups A (top part) and B (bottom part). For each
instance the table provides informations such as the number of vertices of the graph (|V |), the
number of required edges or tasks (|R|), the number of edges of the graph (|E|) and the best
known solution in literature (BK).

instance |V | |R| |E| BK instance |V | |R| |E| BK

C1 69 79 98 1590 e3-C 77 87 98 10163
C10 60 55 82 2190 e4-A 77 98 98 6408
C11 83 94 118 1725 e4-B 77 98 98 8884
C15 97 107 140 1765 e4-C 77 98 98 11427
C18 93 121 133 2315 S1-B 140 75 190 6384
C5 56 65 79 2410 S2-A 140 147 190 9824
C6 38 51 55 855 S2-B 140 147 190 12968
C9 76 97 117 1775 s2-C 140 147 190 16353
D1 69 79 98 725 s3-A 140 159 190 10143
D11 83 94 118 920 s3-B 140 159 190 13616
D21 60 76 84 695 s3-C 140 159 190 17100
D23 78 92 109 715 s4-A 140 190 190 12143
D7 54 52 70 735 s4-B 140 190 190 16093
D8 66 63 88 615 s4-C 140 190 190 20375
E1 73 85 105 1855 F1 73 85 105 1065
E11 80 94 113 1810 F11 80 94 113 1015
E12 74 67 103 1580 F12 74 67 103 900
E15 85 107 126 1555 F14 53 55 72 1025
E19 77 66 103 1400 F19 77 66 103 685
E21 57 72 82 1700 F24 97 86 142 975
E23 93 89 130 1395 F4 70 77 99 930
E5 68 61 94 2130 F7 73 50 94 1080
E9 93 103 141 2160 F9 93 103 141 1145

e1-B 77 51 98 4498 val4D 41 69 69 526
e2-B 77 72 98 6305 val5D 34 65 65 573
e3-B 77 87 98 7704 val8C 30 63 63 518

val10D 50 97 97 525

instance |V | |R| |E| BK instance |V | |R| |E| BK

EGL-G1-A 255 347 375 970495 EGL-G2-A 255 375 375 1061103
EGL-G1-B 255 347 375 1085097 EGL-G2-B 255 375 375 1173286
EGL-G1-C 255 347 375 1201030 EGL-G2-C 255 375 375 1295036
EGL-G1-D 255 347 375 1325317 EGL-G2-D 255 375 375 1430267
EGL-G1-E 255 347 375 1461469 EGL-G2-E 255 375 375 1557159

Table 4: Statistics relative to the performances of the four crossover operators for datasets A
and B. The table shows the number of instances for which each of the four crossover operators
(GSBX, GRX, PBX, SPBX) achieved the worst results in terms of fitness, violation, average
pairwise diversity and distance from parents. The values are obtained averaging the statistics of
four different populations of size 10000 generated using each crossover respectively from the same
parent population of 10000 individuals.

Dataset A GSBX GRX PBX SPBX

Fitness 18 14 14 12
Violation 17 12 13 16
Diversity 17 16 11 16

Parent Distance 16 12 13 15

Dataset B GSBX GRX PBX SPBX

Fitness 3 3 3 1
Violation 3 6 1 0
Diversity 4 3 0 3

Parent Distance 0 3 4 3

how the Concurrent Strategy appears to perform slightly better. This might be
explained by several factors. First, the use of more than one crossover operator
might introduce higher diversity in the whole offspring population. Secondly,
the capacity of monitoring and verifying the performance of all the crossover
operators might be important to detect changes in the environment. With re-
gards to the Reward Measure adopted, the two approaches achieved similar
results. This could be interpreted by similar importance of the requirements
that the two measures try to satisfy (diversity and survival ability of the off-
spring). The balance might be different when tackling larger CARP instances,
as in the case of those in Group B, where the exploration ability of the oper-
ator might have a bigger impact on the performance of the algorithm.
The results achieved by MAENS*-IIa and MAENS*-IIb on Group B are in-



Table 5: Experimental results on group A using alternatively each crossover operator. The first
column shows the instance name (inst). For each operator (one among GSBX,GRX,PBX,spxb)
the table includes the average fitness of the best solution (avg), the standard deviation (std),
the best solution (best). Last column (best) shows the best avg result among the four crossover
operators. In the rows at the bottom, the number of comparisons (#) against every operator with
statistically different results according to the Wilcoxon Rank Sum Test with Holm-Bonferroni
correction at the 0.05 significance level. The following row (W ) shows the number of comparisons
where the algorithm achieves a better average fitness. In the last rows (p and pBest), the p-values
relative to the Wilcoxon Signed-Rank test with Holm-Bonferroni correction at the 0.05 significance
level between each single based version and against the column of the best results.

GSBX GRX PBX SPBX best

inst avg std best avg std best avg std best avg std best avg

C01 4175.33 26.80 4150 4159.00 14.80 4150 4151.67 4.53 4150 4153.17 7.13 4150 4151.67
C05 5373.75 15.29 5365 5366.00 2.00 5365 5366.50 2.29 5365 5367.50 2.50 5365 5366.00
C06 2545.75 4.82 2535 2537.50 4.61 2535 2541.00 4.90 2535 2540.33 4.99 2535 2537.50
C09 5274.92 19.27 5260 5281.17 19.57 5260 5262.83 9.97 5260 5263.33 9.52 5260 5262.83
C10 4709.42 16.26 4700 4709.00 12.21 4700 4712.33 10.14 4700 4703.33 7.45 4700 4703.33
C11 4648.58 16.33 4640 4643.17 3.29 4640 4641.33 2.21 4640 4641.50 3.20 4630 4641.33
C15 4964.42 16.43 4940 4946.83 10.76 4940 4946.50 5.19 4940 4946.33 4.27 4940 4946.33
C18 5639.83 9.83 5620 5642.17 6.28 5620 5635.00 8.37 5620 5640.17 9.26 5620 5635.00
D01 3225.00 9.04 3215 3235.00 0.00 3235 3230.83 5.01 3215 3229.67 6.45 3215 3225.00
D07 3115.83 2.76 3115 3115.33 1.80 3115 3115.00 0.00 3115 3115.67 2.49 3115 3115.00
D08 3052.83 4.12 3045 3058.00 10.38 3045 3045.67 2.49 3045 3047.67 4.42 3045 3045.67
D11 3761.08 3.17 3760 3760.33 3.14 3755 3760.83 2.27 3755 3760.17 3.76 3745 3760.17
D21 3058.33 3.25 3050 3056.67 2.98 3050 3059.83 2.41 3050 3060.00 2.24 3055 3056.67
D23 3171.17 11.74 3140 3158.17 8.51 3145 3187.17 10.30 3155 3177.50 10.47 3145 3158.17
E01 4916.83 5.84 4910 4910.33 1.25 4910 4912.00 3.32 4910 4912.67 4.23 4910 4910.33
E05 4623.33 21.67 4585 4623.33 27.34 4585 4607.33 19.09 4585 4608.67 18.39 4585 4607.33
E09 5855.33 25.00 5820 5838.83 23.55 5810 5836.50 19.88 5815 5832.67 17.83 5810 5832.67
E11 4697.25 24.91 4660 4671.67 4.35 4670 4675.00 11.25 4670 4678.33 12.67 4670 4671.67
E12 4228.50 17.28 4190 4209.33 19.09 4190 4200.67 11.95 4190 4201.83 9.79 4195 4200.67
E15 4220.67 7.04 4205 4215.00 6.06 4210 4221.50 5.19 4210 4220.00 6.19 4210 4215.00
E19 3244.17 2.76 3235 3239.33 4.96 3235 3244.67 1.80 3235 3243.83 3.08 3235 3239.33
E21 3733.50 2.29 3730 3731.33 2.21 3730 3734.50 1.50 3730 3734.00 2.00 3730 3731.33
E23 3718.83 5.87 3715 3715.17 1.57 3710 3715.33 1.80 3710 3717.33 2.81 3710 3715.17

egl-e1-B 4512.47 12.04 4498 4504.87 10.94 4498 4503.03 8.78 4498 4501.77 8.41 4498 4501.77
egl-e2-B 6328.65 11.75 6317 6321.93 8.68 6317 6322.60 6.03 6317 6327.10 10.19 6317 6321.93
egl-e3-B 7792.07 15.71 7775 7780.90 9.45 7775 7784.97 8.83 7777 7782.57 4.96 7777 7780.90
egl-e3-C 10328.18 19.82 10292 10324.73 16.07 10305 10315.87 17.93 10292 10310.67 16.24 10292 10310.67
egl-e4-A 6464.97 5.39 6444 6464.23 4.26 6461 6463.47 3.00 6456 6463.90 1.83 6461 6463.47
egl-e4-B 9021.28 17.37 8988 9059.70 25.38 8988 9024.40 15.16 8998 9013.10 14.09 8988 9013.10
egl-e4-C 12032.60 1047.53 11559 11593.13 22.87 11554 11586.40 18.91 11539 11584.97 25.66 11543 11584.97
egl-s1-B 6415.70 21.28 6388 6405.50 19.41 6388 6393.17 2.48 6388 6399.43 13.95 6388 6393.17
egl-s2-A 9942.62 26.54 9895 9949.67 24.62 9890 9929.37 23.69 9889 9939.50 27.44 9889 9929.37
egl-s2-B 13201.76 35.16 13144 13244.63 90.51 13137 13163.57 30.84 13103 13181.60 29.65 13122 13163.57
egl-s2-C 16500.12 42.51 16430 16480.80 39.54 16430 16456.77 17.46 16430 16462.37 27.46 16430 16456.77
egl-s3-A 10298.59 31.43 10221 10305.10 45.56 10242 10284.60 25.31 10233 10300.73 25.47 10253 10284.60
egl-s3-B 13847.47 60.89 13713 13906.90 50.92 13771 13792.63 40.81 13713 13815.87 61.71 13707 13792.63
egl-s3-C 17317.86 38.59 17209 17290.47 41.79 17197 17292.90 39.24 17242 17287.70 37.00 17221 17287.70
egl-s4-A 12409.36 41.76 12296 12438.10 33.13 12389 12367.40 38.27 12315 12399.70 34.21 12316 12367.40
egl-s4-B 16448.97 43.34 16316 16499.40 45.08 16430 16384.27 43.71 16292 16405.10 40.22 16329 16384.27
egl-s4-C 25200.21 2151.47 20781 22201.00 143.44 21792 20801.63 103.60 20601 20796.70 112.85 20584 20796.70

F01 4046.81 3.04 4040 4047.00 3.32 4040 4047.50 3.10 4040 4046.67 3.50 4040 4046.67
F04 3499.47 5.10 3485 3500.17 3.76 3495 3498.83 5.43 3485 3500.50 5.06 3485 3498.83
F07 3347.73 33.33 3335 3338.33 17.95 3335 3338.33 17.95 3335 3355.00 40.00 3335 3338.33
F09 4750.71 9.95 4730 4743.00 7.48 4730 4751.67 12.20 4730 4753.83 10.70 4740 4743.00
F11 3850.38 13.65 3835 3845.83 11.91 3835 3839.83 6.89 3835 3844.83 10.99 3835 3839.83
F12 3416.14 28.91 3395 3450.33 21.21 3395 3423.67 22.10 3395 3410.17 16.71 3395 3410.17
F14 3339.29 11.03 3330 3349.33 18.25 3330 3349.00 6.88 3340 3359.33 14.13 3330 3339.29
F19 2553.97 9.38 2525 2531.17 10.46 2525 2565.33 9.21 2545 2564.83 12.88 2525 2531.17
F24 3234.38 11.30 3215 3230.17 13.01 3210 3245.50 7.89 3225 3244.17 6.20 3220 3230.17

val10D 531.47 1.79 528 532.73 1.26 530 530.73 1.18 528 530.50 1.52 528 530.50
val4D 532.03 3.01 530 531.63 2.44 530 530.27 0.85 530 530.00 0.00 530 530.00
val5D 583.37 1.83 579 586.80 3.53 578 581.87 2.38 575 583.60 2.42 579 581.87
val8C 524.37 1.96 521 526.80 1.08 525 524.50 1.84 521 525.00 1.83 521 524.37

GRX PBX SPBX GSBX PBX SPBX GSBX GRX SPBX GSBX GRX PBX

# 26 31 24 26 26 27 31 26 7 24 27 7
W 8 6 5 18 8 13 25 18 3 19 14 4
p 0.126 0.0004 0.0021 0.126 0.1738 0.3524 0.0004 0.1738 - 0.0021 0.3524 -

pBest <0.001 0.002 0.005 0.007

cluded in table 9. The two algorithms show a comparable result on 9 instances
out of 10, with the only statistically different result according to the Wilcoxon
Rank-Sum test being that of the instance EGL-G2-C, with a p-value of 0.0004.
The similarity of the results achieved by the two different versions of the al-
gorithm in both datasets can be explained by the fact that the use of the
FLA metrics makes the algorithm more robust with respect to the Reward



Table 6: Experimental results on Group B using alternatively each crossover operator. The results
of the four versions of the algorithm are split in two different rows. The first column shows the
instance name (inst). For each operator (one among GSBX,GRX,PBX,spxb) the table includes the
average fitness of the best solution (avg), the standard deviation (std), the best solution (best). In
the rows at the bottom, the number of comparisons (#) against every operator with statistically
different results according to the Wilcoxon Rank Sum Test with Holm-Bonferroni correction at the
0.05 significance level. The following row shows the number of comparisons where the algorithm
achieves a better average fitness.

GSBX GRX

inst avg std best avg std best

EGL-G1-A 983408.50 3866.28 974054 979095.97 4718.81 968747
EGL-G1-B 1091041.60 5539.83 1081857 1094405.97 7413.40 1079590
EGL-G1-C 1213921.77 5924.27 1198728 1212862.87 7906.85 1198393
EGL-G1-D 1337645.60 6620.72 1322885 1336158.93 6527.20 1326125
EGL-G1-E 1473433.10 5394.11 1461472 1472399.20 6338.61 1461155
EGL-G2-A 1107790.40 5057.72 1099946 1138050.43 10215.79 1110914
EGL-G2-B 1225440.43 5982.44 1214762 1255569.68 16865.83 1224099
EGL-G2-C 1359221.30 3798.77 1349981 1404364.32 10734.40 1369046
EGL-G2-D 1497934.97 6544.95 1486595 1563310.77 5689.30 1552126
EGL-G2-E 1641472.67 8022.86 1626564 1713877.53 8561.59 1687159

GRX PBX SPBX GSBX PBX SPBX
# 6 7 7 6 8 7
W 5 0 0 1 0 0

PBX SPBX

inst avg std best avg std best

EGL-G1-A 980746.30 5681.29 970911 978411.33 4308.05 969682
EGL-G1-B 1087682.37 5542.29 1074857 1087255.93 4986.75 1079899
EGL-G1-C 1208196.23 5138.15 1198557 1210928.20 5972.77 1202072
EGL-G1-D 1330286.83 6554.80 1321271 1333503.57 6436.41 1324605
EGL-G1-E 1462940.17 5293.51 1452158 1467270.13 5003.86 1458893
EGL-G2-A 1104884.20 3252.86 1099756 1105976.47 3662.89 1098458
EGL-G2-B 1221379.87 3586.68 1213622 1220895.90 4180.51 1212440
EGL-G2-C 1351635.77 5294.39 1343015 1354111.13 5087.04 1343399
EGL-G2-D 1490662.50 4435.48 1484014 1492414.43 4495.21 1484208
EGL-G2-E 1635578.87 4851.51 1623322 1634917.43 5199.54 1623417

GSBX GRX SPBX GSBX GRX PBX
# 7 8 1 7 7 1
W 7 8 1 7 7 0

Measure considered. Further experiments with more aggressive Credit Assign-
ment strategies might reveal more differences between the adoption of the two
different Reward Measures. Finally, we provide a comparison with a version
the algorithm selecting one crossover operator randomly during each genera-
tion. The results of such algorithm are included in table 7, in the rightmost
column named random. At the bottom it is possible to see the number of sta-
tistically different instances according to the Wilcoxon Rank-Sum test with
a level of significance of 0.05 ((line #) with respect to the three algorithms
MAENS*-IIa, MAENS*-IIb and MAENS*-IIc, along with the number of times
the random algorithm has won the comparison (line W ). It is worth noting
that the random algorithm achieves a fairly good performance, as it achieves
statistically comparable results with the proposed techniques for most of the
instances. This result could be interpreted as a probable sign of positive inter-
action between the crossover operators that have been considered in this case
study.

7.3 Effectiveness of the FLA measures

An experiment was designed to understand whether the use of the online
FLA techniques has a beneficial effect on both the optimization ability and
the prediction capacity of the algorithm. Therefore, MAENS*-IIc was com-



Table 7: Experimental results on the instances of Group A relative to MAENS*, MAENS*-IIrw,
the oracle, and MAENS* with random selection. The first column shows the instance name (inst).
For each version of the algorithm tested the table includes the average fitness of the best solution
(avg), the standard deviation (std), the best solution (best). In the rows at the bottom, the
number of comparisons against every operator with statistically different results according to the
Wilcoxon Rank Sum Test with Holm-Bonferroni correction at the 0.05 significance level. The
following row shows the number of comparisons where the algorithm achieves a better average
fitness.

MAENS* MAENS*IIrw oracle random

inst avg std best avg std best avg std best avg std best

C01 4161.67 19.38 4150 4158.67 13.16 4150 4155.33 13.03 4150 4164.67 18.48 4150
C05 5366 10.95 5365 5378.33 18.36 5365 5365 0 5365 5366.17 2.11 5365
C06 2542 25.1 2535 2545.17 3.98 2535 2536.67 3.73 2535 2541.33 4.82 2535
C09 5270 91.65 5260 5280.33 20.41 5260 5269 15.08 5260 5272.83 17.01 5260
C10 4702.17 6.54 4700 4707.33 11.53 4700 4700.67 3.59 4700 4702.17 6.54 4700
C11 4641.33 3.14 4630 4657 27.37 4640 4640.17 2.41 4630 4642.33 2.49 4640
C15 4946.17 7.38 4940 4964.17 15.76 4940 4947 9.27 4940 4946.17 3.80 4940
C18 5638.67 7.74 5620 5642.17 6.91 5625 5636.17 7.82 5625 5638.33 10.03 5620
D01 3232.83 4.02 3215 3224.83 8.99 3215 3229.5 6.87 3215 3231.17 5.87 3215
D07 3115 0 3115 3116.33 3.4 3115 3115 0 3115 3115 0 3115
D08 3045.67 2.49 3045 3052 4.58 3045 3045.67 2.49 3045 3046.33 3.40 3045
D11 3761.5 3.91 3760 3762.67 6.42 3745 3759.67 4.99 3745 3760.17 2.41 3750
D21 3059.83 5.24 3050 3063.67 11.47 3055 3055.17 3.98 3050 3058.17 3.02 3050
D23 3164.83 12.28 3135 3167.83 12.23 3140 3153.17 8.51 3135 3165.83 14.55 3140
E01 4911.17 2.11 4910 4916 6.11 4910 4910.5 1.5 4910 4910.83 2.27 4910
E05 4606.67 22.34 4585 4621.5 21.57 4585 4612 24.17 4585 4605.83 22.10 4585
E09 5837 21.16 5815 5851.33 25.26 5815 5835.83 21.26 5815 5840.17 22.49 5810
E11 4677 13.52 4655 4698 25.68 4670 4673.83 7.71 4665 4678.83 12.23 4670
E12 4202.33 13.15 4180 4226 17.63 4195 4204.5 11.5 4190 4203.67 11.32 4190
E15 4217.5 6.68 4205 4223.67 5.91 4210 4214.5 6.24 4205 4217.67 6.02 4210
E19 3242.67 4.23 3235 3244.67 1.8 3235 3238.33 4.71 3235 3242 4.58 3235
E21 3733 2.45 3730 3732.67 2.49 3730 3730.67 1.7 3730 3733.17 2.41 3730
E23 3715.5 1.5 3715 3720.5 7.34 3715 3714 2 3710 3716 2.71 3710
e1-B 4501.2 8.33 4498 4509.17 11.68 4498 4502.6 8.5 4498 4500.80 7.44 4498
e2-B 6323.67 9.58 6317 6329.83 13.35 6317 6320.37 6.36 6317 6324.17 8.96 6317
e3-B 7780.43 5.91 7775 7790.47 11.23 7777 7783.93 11.61 7775 7778.43 3.22 7775
e3-C 10317.6 18.45 10292 10323.6 20.38 10292 10316.63 18.86 10292 10313.07 15.52 10292
e4-A 6462.5 3.04 6450 6464.07 5.39 6446 6462.77 2.58 6456 6462.13 5.20 6446
e4-B 9022.5 16.39 8988 9023.47 16.23 8992 9011.2 11.79 8993 9032.60 15.95 8999
e4-C 11592.53 32.82 11538 11602.8 31.64 11550 11610.13 41.31 11554 11593.50 21.02 11555
s1-B 6399.9 16.38 6388 6407.3 19.35 6388 6399.7 14.5 6388 6399.87 15.42 6388
s2-A 9931.63 26.62 9889 9943.43 32.78 9889 9928.37 27.01 9885 9933.97 29.35 9889
s2-B 13179.07 26.11 13124 13217.13 44.41 13159 13179.2 29.61 13124 13181.57 32.72 13125
s2-C 16510.1 43.05 16430 16516.03 46.02 16430 16498 41.64 16433 16512.27 39.21 16442
s3-A 10282.63 29.41 10221 10293.87 29.07 10242 10276.5 26.39 10221 10288.63 28.17 10243
s3-B 13820.13 57.75 13736 13874.37 59.29 13736 13823.37 60.51 13750 13818.93 62.17 13714
s3-C 17289.73 42.75 17220 17325.9 46.56 17237 17296.1 33.42 17249 17286.87 32.29 17215
s4-A 12400.87 47.91 12283 12403.37 47.36 12316 12382.93 41.71 12304 12407.07 31.77 12305
s4-B 16421.17 50.46 16325 16454.3 42.73 16351 16414.67 47.18 16344 16435.90 33.33 16334
s4-C 21047.97 174.66 20758 21065.8 166.32 20702 21117.7 327.1 20745 20955.50 181.04 20611
F01 4046.83 2.73 4040 4046.43 2.54 4040 4044.5 3.73 4040 4046.17 3.34 4040
F04 3498.67 3.64 3485 3499.67 5.31 3485 3496.17 3.8 3485 3499 4.16 3485
F07 3335 0 3335 3345 30 3335 3345 30 3335 3341.67 24.94 3335
F09 4746 11.79 4730 4750.53 12.34 4730 4742 8.12 4730 4746.67 10.83 4730
F11 3850 11.11 3835 3846.97 13.56 3835 3841 6.88 3835 3851.50 12.12 3835
F12 3410 23.42 3395 3425.7 32.32 3395 3402.33 13.09 3395 3412.17 16.82 3395
F14 3342.33 12.23 3330 3340.83 13.17 3330 3338 13.52 3330 3344.33 12.16 3330
F19 2535.17 9.35 2525 2537.67 8.73 2525 2526.67 3.73 2525 2544.67 12.78 2525
F24 3234.33 8.63 3215 3232 9.36 3215 3225.5 11.28 3210 3239.33 9.64 3220

val10D 530.6 1.23 528 532.13 1.65 530 529.9 1.08 528 531.03 1.35 528
val4D 530.13 0.72 530 530.77 2.04 530 530.23 0.76 530 530.37 1.17 530
val5D 583.13 2.06 579 583.97 3.42 577 581.93 2.69 577 583.57 2.29 579
val8C 524.63 1.76 521 524.23 2.49 521 523.37 1.76 521 524.93 1.77 521

MII*a MII*b MII*c M*IIc M*IIa M*IIb M*IIa M*IIb M*IIc

# 4 2 4 36 19 18 8 8 4
W 0 0 2 3 16 18 0 0 0

pared to MAENS*-rw, a version of the algorithm which only makes use of the
Proportional Reward measure as an input feature of the learning algorithm,
without considering the values provided by the FLA techniques. In this con-
text, we are not interested in the results achieved by the algorithm but rather
we want to verify that the results are significantly different or not and prove,
as a consequence, a certain suitability of the rDWM algorithm to the presence
of the FLA measures. The results of such algorithm are included in table 7
in the column MAENS*-IIrw. A Wilcoxon Ranked-Sum test was performed



Table 8: Experimental results on the instances of Group A for MAENS*-IIa, MAENS*-IIb and
MAENS*-IIc. The first column shows the instance name (inst). For each version of the algorithm
tested the table includes the average fitness of the best solution (avg), the standard deviation
(std), the best solution (best). In the rows at the bottom, the number of comparisons against
every operator with statistically different results according to the Wilcoxon Rank Sum Test with
Holm-Bonferroni correction at the 0.05 significance level. The following row shows the number of
comparisons where the algorithm achieves a better average fitness.

MAENS*-IIa MAENS*-IIb MAENS*-IIc best

inst avg std best avg std best avg std best avg

C01 4159.50 17.53 4150 4156.50 12.66 4150 4160.00 17.75 4150 4151.67
C05 5367.17 3.34 5365 5366.83 2.41 5365 5369.00 5.83 5365 5366.00
C06 2540.00 5.00 2535 2539.67 4.99 2535 2541.00 4.90 2535 2537.50
C09 5268.00 16.00 5260 5261.67 7.23 5260 5264.00 10.12 5260 5262.83
C10 4707.33 9.64 4700 4704.17 8.37 4700 4705.17 9.53 4700 4703.33
C11 4641.33 3.14 4630 4641.50 2.29 4640 4642.33 2.49 4640 4641.33
C15 4944.67 7.74 4940 4945.50 4.72 4940 4946.00 7.57 4940 4946.33
C18 5641.17 9.04 5620 5637.50 8.73 5620 5637.76 9.27 5620 5635.00
D01 3232.83 3.10 3225 3231.17 6.67 3215 3232.17 5.11 3215 3225.00
D07 3115.00 0.00 3115 3115.00 0.00 3115 3115.00 0.00 3115 3115.00
D08 3045.33 1.82 3045 3047.67 4.42 3045 3047.67 4.42 3045 3045.67
D11 3760.33 2.25 3755 3760.50 1.50 3760 3761.72 3.48 3755 3760.17
D21 3058.33 3.24 3050 3058.33 3.25 3050 3059.00 4.16 3050 3056.67
D23 3172.67 9.66 3150 3162.50 13.34 3135 3162.67 7.39 3150 3158.17
E01 4911.00 2.41 4910 4911.00 2.00 4910 4911.50 2.93 4910 4910.33
E05 4611.83 25.35 4585 4601.17 18.74 4585 4615.00 26.08 4585 4607.33
E09 5830.67 18.35 5810 5832.17 19.39 5810 5834.17 21.64 5810 5832.67
E11 4674.33 10.70 4670 4672.33 5.12 4670 4678.00 15.03 4660 4671.67
E12 4201.00 7.39 4195 4205.33 12.24 4195 4207.50 14.59 4180 4200.67
E15 4218.00 6.98 4210 4217.83 5.73 4205 4219.33 5.59 4210 4215.00
E19 3243.33 3.78 3235 3242.00 4.58 3235 3242.00 4.58 3235 3239.33
E21 3733.50 2.31 3730 3733.67 2.21 3730 3733.27 2.39 3730 3731.33
E23 3715.83 3.23 3710 3716.83 2.73 3715 3715.50 1.98 3710 3715.17
e1-B 4503.60 9.87 4498 4499.67 6.26 4498 4504.79 10.42 4498 4501.77
e2-B 6324.67 10.28 6317 6321.63 5.84 6317 6323.86 9.41 6317 6321.93
e3-B 7783.77 9.12 7775 7782.87 8.35 7777 7786.55 10.73 7777 7780.90
e3-C 10312.23 15.45 10292 10314.80 20.03 10292 10318.31 19.15 10292 10310.67
e4-A 6463.87 3.30 6454 6463.07 2.02 6461 6463.83 5.07 6446 6463.47
e4-B 9029.27 16.82 9000 9026.63 16.17 9000 9021.10 17.84 8990 9013.10
e4-C 11589.13 24.44 11540 11586.80 27.09 11536 11621.28 72.42 11555 11584.97
s1-B 6402.53 18.33 6388 6401.80 16.88 6388 6397.59 12.70 6388 6393.17
s2-A 9931.93 25.17 9889 9928.37 24.06 9889 9934.80 29.49 9881 9929.37
s2-B 13171.97 24.27 13122 13170.97 31.06 13107 13171.41 29.10 13123 13163.57
s2-C 16478.50 34.87 16425 16492.30 39.99 16442 16505.97 51.89 16434 16456.77
s3-A 10282.67 32.08 10221 10288.47 28.39 10221 10290.67 25.78 10251 10284.60
s3-B 13814.90 58.66 13722 13818.63 73.32 13717 13821.50 47.04 13747 13792.63
s3-C 17287.27 37.04 17205 17288.43 31.12 17223 17309.87 37.46 17221 17287.70
s4-A 12404.20 35.59 12301 12388.17 37.70 12304 12388.59 41.42 12316 12367.40
s4-B 16399.90 50.38 16305 16427.13 51.61 16278 16437.60 54.52 16281 16384.27
s4-C 20847.80 134.55 20603 20912.60 266.38 20565 21037.24 223.95 20648 20796.70
F01 4047.00 2.79 4040 4045.50 3.25 4040 4047.59 3.32 4040 4046.67
F04 3498.67 3.45 3485 3498.17 4.74 3485 3499.00 4.16 3485 3498.83
F07 3348.33 30.45 3335 3345.00 30.00 3335 3338.34 17.95 3335 3338.33
F09 4749.50 12.21 4730 4746.67 10.43 4730 4748.45 8.48 4730 4743.00
F11 3843.67 11.25 3835 3843.17 11.58 3835 3847.07 12.35 3835 3839.83
F12 3404.67 11.93 3395 3408.00 17.45 3395 3416.83 26.94 3395 3410.17
F14 3342.50 9.62 3330 3343.33 16.35 3330 3339.50 11.86 3330 3339.29
F19 2541.67 9.59 2525 2533.17 6.39 2525 2532.50 9.64 2525 2531.17
F24 3235.33 10.33 3215 3232.50 9.46 3215 3233.83 10.38 3210 3230.17

val10D 530.77 0.94 528 530.70 1.39 528 531.13 1.26 529 530.50
val4D 530.73 2.25 530 530.13 0.43 530 530.53 1.65 530 530.00
val5D 582.67 2.67 577 582.97 2.07 579 581.93 2.83 577 581.87
val8C 524.40 2.12 521 524.73 1.57 522 524.73 2.00 521 524.37

b c best a c best a b best

# 3 7 9 3 5 8 7 5 6
W 1 5 0 2 5 0 2 0 0

against the results achieved by MAENS*-IIc. The two algorithms produced
statistically different results on 36 instances out of 53. MAENS*-IIrw achieved
better results only on 3 instances, losing the comparison on 33. A Wilcoxon
signed-rank test was consequently applied across the problem instances, which
confirmed that the two algorithms produce significantly different results (re-
spectively Wstat = 26 with p < 0.05 and Wstat = 54.5 sample size: 42). This
can be interpreted as a signal that the rDWM is concretely affected by the
FLA measures, which influence (in a beneficial way) the decisions made by the
algorithm.



Table 9: Experimental results on the instances of Group B for MAENS*-IIa and MAENS*-IIb.
The first column shows the instance name (inst). The second column shows the fitness of the
best known (BK) solution for each instance[27]. For each version of the algorithm tested the table
includes the average fitness of the best solution (avg), the standard deviation (std), the best
solution (best)

MAENS*-IIa MAENS*-IIb

inst BK avg std best avg std best

EGL-G1-A 970495 978636.00 5267.70 964014 978127.07 5330.95 968157
EGL-G1-B 1085097 1086113.80 4709.52 1075069 1088504.40 5597.17 1076011
EGL-G1-C 1201030 1209512.20 5983.41 1197057 1208264.80 6225.46 1196975
EGL-G1-D 1325317 1331918.77 5702.86 1322682 1331367.00 5963.31 1318679
EGL-G1-E 1461469 1466771.97 6458.51 1451314 1465321.17 4890.69 1455995
EGL-G2-A 1061103 1107519.20 3744.93 1099674 1107461.13 2864.67 1101083
EGL-G2-B 1173286 1220912.47 4687.58 1213516 1220423.67 4751.97 1213237
EGL-G2-C 1295036 1356660.60 4883.30 1346969 1352307.90 5182.32 1338497
EGL-G2-D 1430267 1493163.27 5173.56 1482470 1494645.93 5294.38 1486269
EGL-G2-E 1557159 1635756.30 5750.90 1622468 1636974.10 6235.37 1626530
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Fig. 4: Boxplots relative to the four instances EGL-G2-A (a), egl-s1-b (b), egl-s2-b (c), egl-e4-c
(d). The boxes refer to the first quartile, median and third quartile. Whiskers show minimum and
maximum values over a sample size of 30 best fitness values relative to the independent runs of
each algorithm reported in tables 5, 6, 7, 8, 9 and 10 .

7.4 Comparison with the state-of-the-art

The second research question in the introduction of this paper focuses on
the performance of the proposed approach with respect to the existing ones.
Therefore, the MAENS*-II variants that make use of the Proportional Re-



ward (a and b) were tested against the oracle. All the three variants were also
compared against the results achieved by their base algorithm MAENS*. The
results achieved by the oracle and by the MAENS* algorithm for Group A are
included in table 7, in columns MAENS* and oracle. In the bottom rows, the
results of a Wilcoxon Rank-Sum test with Holm-Bonferroni correction at the
0.05 significance level show the number of instances with statistically different
results. The results of the statistical test show how the number of statisti-
cally different results is small (4 for MAENS*-IIa and MAENS*-IIc and 2 for
MAENS*-IIb). In these few instances, MAENS*-IIa and MAENS*-b perform
better than MAENS*, while MAENS*-II wins the comparison in half of the
instances (2 out of 4). The online learning system is therefore able to achieve
results comparable to those achieved by the bandit solver.
The comparison with the oracle shows that MAENS*-IIa and MAENS*-IIb
are able to achieve comparable results in most cases. In most of the instances
with statistically different results, the oracle was able to perform better. It
is worth noting that in a small number of instances the algorithm using the
FLA measures was able to produce better results than the oracle. This is some
evidence that, if the oracle represents a “lower bound” for the results that is
possible to achieve using the Proportional Reward, the use of more than one
measures (as in this case) can help the algorithm to achieve results beyond
these bounds.
Finally, the results achieved by MAENS*-IIa and MAENS*-IIb, included in
table 9, are compared against four state-of-the-art algorithms, whose results
are included in table 10. We consider the results of MAENS* [8], of MAENS-
RDG [29] and VND [30] and an algorithm combining Iterate Local Search and
Variable Neighbourhood Descent [27].
It is possible to notice how MAENS*-IIa and MAENS*-IIb, as well as MAENS*,
outperform all the other algorithms in terms of solution quality for the first 5
instances of group B 9. MAENS*-IIa, MAENS*-IIb and MAENS* produce a
new best known solution for all of these instances, with MAENS*-IIa achiev-
ing the best ones on the first two instances (G1-A and G1-B), MAENS*-IIb
on instances G1-C and G1-D and MAENS* finding the best one on the in-
stance G1-E. In all these instances MAENS*-IIa and MAENS*-IIb achieve
also the best average fitness in four cases. For the following 5 instances, the
best results are achieved by either MAENS-RDG or VND. In all these cases,
MAENS* is outperformed by both MAENS*-IIa and MAENS*-IIb. These re-
sults can be explained by the fact that their base algorithm, MAENS*, is
already performing well for these instances. However, both variants MAENS*-
IIa and MAENS*-IIb managed to outperform MAENS* in most of the in-
stances. It is important to note that the runtime (not considered in this work)
of these algorithms is not comparable to those of the decomposition based ap-
proaches, which manage to find these results in a fraction of the time required
by MAENS*-IIa and MAENS*-IIb.
The behaviour of the algorithms can be analyzed also in terms of the fitness
distribution of its solutions. Figure 4 shows the box plot relative to three rep-
resentative instances belonging to Group A (egl-e4-C,egl-s1-B,egl-s2-B) and



Table 10: Comparison with some state-of-the art approaches for CARP. The first column shows the
instance name (inst). For each algorithm the table includes the average fitness of the best solution
(avg) and the best solution (best). The results are compared to those achieved by MAENS*-IIa and
MAENS*-IIb included in table 9. The algorithms considered are MAENS*[8], MAENS-RDG[29],
VND [30] and ILS-RVND[27]. No statistical test was carried out due to the partial availability of
the results of the compared algorihtms.

MAENS* MAENS-RDG VNS ILS-RVND

inst avg best avg best avg best avg best

EGL-G1-A 977754.4 968897 1007223.0 1000575 10007393.0 997055 1014930.9 1004864
EGL-G1-B 1088706.5 1079793 1124751.0 1111971 1122077.0 1114120 1143221.7 1129937
EGL-G1-C 1209058.8 1195902 1251718.0 1243779 1253789.0 1243808 1270100.3 1262888
EGL-G1-D 1331595.8 1323397 1383619.0 1371443 1383997.0 1373480 1409811.9 1398958
EGL-G1-E 1469455.4 1449542 1524393.0 1512584 1525994.0 1517772 1556138.5 1543804
EGL-G2-A 1107363.0 1101559 1108916.0 1096027 1105870.0 1098454 1126561.0 1115339
EGL-G2-B 1223132.3 1213769 1222183.0 1213617 1220012.0 1211759 1237741.8 1226645
EGL-G2-C 1354725.3 1345587 1353118.0 1344148 1351845.0 1344184 1376931.6 1371004
EGL-G2-D 1495089.7 1486646 1489723.0 1481181 1489500.0 1481045 1520794.3 1509990
EGL-G2-E 1636140.6 1630656 1630132.0 1618955 1630048.0 1616119 1664230.2 1659217

one instance of Group B (EGL-G2-A). In the case of the EGL-G1-A instance,
it is possible to notice how SPBX and GRX are the crossover operators whose
usage leads to the distributions with the lowest median. The distribution of the
three AOS considered in this case (MAENS*, MAENS*-IIa and MAENS*-IIb)
are centered around the same median value, although MAENS*-IIa is capable
of producing solutions of considerably better quality (bottom whisker) which
translate into new minima for this instance. For the egl-s1-B instance (figure
4.b), the behaviour of the algorithms is quite similar, as in most of the cases
the distributions lie around the same median. When considering the results of
the versions of the algorithm using each crossover operator, GSBX, GRX and
SPBX show a much wider distribution of their results although in the first two
cases a large number of solutions are equal to the median value, while PBX
results are much less spread. The different AOS strategies achieve overall com-
parable results. This instance represents an example of non optimal behaviour
as none of the AOS strategies considered has managed to match that of the
best crossover operator (GRX).
For egl-s2-b (figure 4.c), PBX is the operator that achieves the best results,
while GRX performs the worst. MAENS*-IIb manages to achieve the same
solution quality and similar median to PBX. This is also confirmed by the
larger selection rate given to the PBX operator (figure 6.b).
In the case of egl-e4-c (figure 4.d), PBX and SPBX distributions have a simi-
lar median and similar quartiles performing the best among the four crossover
operators. Among the AOS strategies, MAENS*-IIb solutions are distributed
around a similar median but more spread.

7.5 Prediction Ability

In order to understand the behaviours of the algorithms, and to gain a deeper
understanding of the selection mechanisms, we provide a comparison of the
selection rates of the four different crossover operators, included in figures 5, 6
and 7. The plots refer to the selection rates relative to the instances egl-s1-B,
egl-s2-B and EGL-G2-A. The y-axis in the figure refers to the Selection Rate
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(a) MAENS*-IIa on s1-B
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(b) MAENS*-IIb on s1-B
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(c) MAENS*-IIc on s1-B
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(d) MAENS* on s1-B
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(e) oracle on s1-B

Fig. 5: Selection Rates for the instance egl-s1-b. Each graph shows the selection rates of the four
different crossover operators (GSBX,GRX,PBX,SPBX ) when using respectively MAENS*-IIa
(fig. a), MAENS*-IIb (fig. b), MAENS*-IIc (fig. c), MAENS* (fig. d) and the oracle (fig. e)

(SR) of each crossover operators, where a SR of 0 means that the operator is
not selected and a SR equal to 1 means that only that operator is selected. The
x-axis corresponds to the average fitness of the population discretised into 50
intervals. We study, therefore, how the SR of the four operator changes while
the search is carried out and the average fitness of the population decreases.
In the first instance, egl-s1-B (figure 5), it is possible to notice three phases
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(a) MAENS*-IIa on s2-B
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(b) MAENS*-IIb on s2-B
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(c) MAENS*-IIc on s2-B
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(d) MAENS* on s2-B
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(e) oracle on s2-B

Fig. 6: Selection Rates for the instance egl-s2-b. Each graph shows the selection rates of the four
different crossover operators (GSBX,GRX,PBX,SPBX ) when using respectively MAENS*-IIa
(fig. a), MAENS*-IIb (fig. b), MAENS*-IIc (fig. c), MAENS* (fig. d) and the oracle (fig. e)

in the oracle prediction (figure 5.e). A first phase where the GRX operator is
preferred over the others, an intermediate phase where the GRX and GSBX
operators have nearly equal selection rates and a last phase characterized by
a rise of the selection rate of the GRX operator which reaches 1 in the last
moments of the search.
Both MAENS* (figure 5.d) and MAENS*-IIc (figure 5.c) award the GSBX
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(a) MAENS*-IIa on G2-A
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(b) MAENS*-IIb on G2-A
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(c) MAENS* on G2-A

Fig. 7: Selection Rates for the three instances EGL-G1-A. Each row shows the selection rates of the
four different crossover operators (GSBX,GRX,PBX,SPBX ) when using respectively MAENS*-
IIa (fig. a), MAENS*-IIb (fig. b) and MAENS* (fig. c). We do not include the results on EGL-G2-A
for MAENS*-IIc as only versions MAENS*-IIa and MAENS*-IIb were tested on this dataset, as
well as the oracle results, due to the extremely high computational cost required to perform this
task

operator with the highest selection rate for the whole search, missing the pre-
diction of the change in the environment made by the oracle. It is possible
to see, however, how MAENS*-IIc increases the selection rate of GSBX more
rapidly than MAENS*.
The SR of both MAENS*-IIa (figure 5.a) and MAENS*-IIb (figure 5.b) show
different changes during the search, proving that the CS is more successful in
predicting such events. In particular, MAENS*-IIb acknowledges the opera-
tors GSBX and PBX as the most useful ones during the search. It is worth
remembering that MAENS*-IIa, makes use of a different Reward Measure and,
therefore, is not comparable to the prediction made by the oracle. In this case,
MAENS*-IIa, after an initial epoch of dominance of the operator GRX, shows
an alternance of moments where the three operators GRX, PBX and SPBX
show the highest selection rates.
On the second instance (figure 6), the oracle identifies a change in the en-
vironment halfway through the search (figure 6.e). The concept drift is not
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(a) D07 instance network
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(b) route 1
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(c) route 2
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(d) route 3
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Fig. 8: The network relative to the D07 instance (a) . The cost of serving each edge is proportional
to the thickness of the line. Non required edges can be identified by dotted lines. In figures b,
c, d and e the four routes that compose a solution for this problem instance, generated by the
MAENS*-IIa algorithm. The edges served during each route have been highlighted in black.

detected by either MAENS* (figure 6.d) or MAENS*-IIc (figure 6.c), which,
however shows an higher exploitation of the GSBX operator. MAENS*-IIb
(figure 6.b) identifies the operators GSBX and PBX as the most successful
ones; even in this case the change detected by the operator is not detected. As
for the previous instance, MAENS*-IIa (figure 6.a) shows different moments
where the three operators GRX, PBX and SPBX achieve the highest SR. The
lowest SR for GSBX seems to indicate that this operator is probably the one
that introduces the least diversity in the population.
For the large CARP instance EGL-G2-A, the behaviour of MAENS* (figure



7.c) shows a predominance of operator GSBX over the other ones. MAENS*-
IIb (figure 7.b) shows a similar behaviour to that of MAENS*, identifying the
GSBX operator as the one with the best performance during almost the whole
search. Finally, MAENS*-IIa shows again an initial period of higher perfor-
mance for the GRX operator, followed by an alternance of the PBX and SPBX
operators (figure 7.a). The occurrence of this initial period of higher perfor-
mance for the GRX operator seems to suggest that this operator is introducing
the highest diversity in the initial part of the search, when the solutions are
not extremely good.
The results of these experiments show that failing to detect a change in the
environment does not necessarily translate into a worst performance of the
algorithm and vice versa. This is confirmed by the fact that the algorithms
produce good results despite the different selection rates. The relationship be-
tween the prediction ability of the algorithms and their results is therefore
quite complex. There are several factors that influence its behaviour and that
should be considered in order to fully grasp this mechanism, such as the inter-
action between the different operators, the performance of the single operators
and the variation of the selection rates.

8 Conclusions and future work

In this work we proposed the adoption of a novel Adaptive Operator Selec-
tion scheme to identify the optimal crossover operator online. We consider the
use of two different Reward Measure strategies, the Diversity Based Reward
(DBR) and the Proportional Reward (PR), as well as two different Operator
Selection Rule, namely the Instantaneous Reward (IR) and a Concurrent Ap-
proach (CA). The AOS proposed combines a set of four Fitness Landscape
Analysis measures in conjunction with an online learning algorithm, to pre-
dict the most suitable crossover operator. We have chosen four FLA metrics
to be used as inputs of our predictive model: accumulated escape probability,
dispersion metric, average neutrality ratio and average delta fitness of neutral
networks. These metrics have been chosen because (1) they can be computed
without much increasing the computational effort and (2) they complement
each other by capturing different features of the landscapes. Three versions
of the MAENS*[8] algorithm were implemented and tested on two datasets of
CARP instances. The results of such experiments were compared against those
by state-of-the art algorithms, and against an oracle. The results achieved by
MAENS*-II show that this technique is able to compete with the state-of-the-
art techniques and can, in some cases, exploit the multiple measures to out-
perform the state-of-the-art. In the dataset containing large CARP instances,
MAENS*-II was able to outperform all the existing approaches in terms of
average and best solution quality in half of the instances, and even discovered
new lower bounds.
Our experiments seem to suggest a better performance of the Concurrent
Strategy over the Instantaneous Reward, and a comparable performance of



the two Reward Measure Strategies.
This work leaves space for interesting directions that can be explored. First,
the two Reward Measures might be combined to generate a novel measure
that is able to predict better both the diversity and the survival ability of
the offspring. Secondly, it would be interesting to test the behaviour of our
algorithm when adopting an Average or Extreme Reward strategy and the use
of different base learners. Adaptive Operator Selection might be extended to
different cases. In particular, fo MAENS, an AOS strategy can be adapted to
choose among different parent selection strategies for the crossover operator,
to analyze its impact on the offspring generation. Another direction is that
of reducing the computational cost of MAENS*-II. Furthermore, due to the
improved optimization ability provided by this approach, it would be interest-
ing to test the use of MAENS*-II as the Single Objective routine for existing
decomposition based approaches. Finally, our technique might be adopted to
improve the performance of Evolutionary Algorithms for other combinatorial
optimization problems.
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15. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed bandits and
extreme value-based rewards for adaptive operator selection in evolutionary algorithms.
In: Learning and Intelligent Optimization, pp. 176–190. Springer (2009)

16. Goldberg, D.E.: Probability matching, the magnitude of reinforcement, and classifier
system bidding. Machine Learning 5(4), 407–425 (1990)

17. Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11(3), 305–315
(1981)

18. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka
data mining software: an update. ACM SIGKDD explorations newsletter 11(1), 10–18
(2009)

19. Hinkley, D.V.: Inference about the change-point from cumulative sum tests. Biometrika
58(3), 509–523 (1971)

20. Julstrom, B.A.: What have you done for me lately? adapting operator probabilities in
a steady-state genetic algorithm. proceeding of: Proceedings of the 6th International
Conference on Genetic Algorithms, Pittsburgh, PA, USA, July 15-19, 1995 (1995)

21. Karafotias, G., Hoogendoorn, M., Eiben, A.: Evaluating reward definitions for parameter
control. In: Applications of Evolutionary Computation, pp. 667–680. Springer (2015)

22. Kim, M., McKay, R.I.B., Kim, D.K., Nguyen, X.H.: Evolutionary operator self-
adaptation with diverse operators. In: Genetic Programming, pp. 230–241. Springer
(2012)

23. Kolter, J.Z., Maloof, M.: Dynamic weighted majority: A new ensemble method for
tracking concept drift. In: Data Mining, 2003. ICDM 2003. Third IEEE International
Conference on, pp. 123–130. IEEE (2003)

24. Lardeux, F., Saubion, F., Hao, J.K.: Gasat: a genetic local search algorithm for the
satisfiability problem. Evolutionary Computation 14(2), 223–253 (2006)

25. Lu, G., Li, J., Yao, X.: Fitness-probability cloud and a measure of problem hardness for
evolutionary algorithms. In: Evolutionary Computation in Combinatorial Optimization,
pp. 108–117. Springer (2011)

26. Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strategy. In:
Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp.
477–484. ACM (2006)

27. Martinelli, R., Poggi, M., Subramanian, A.: Improved bounds for large scale capacitated
arc routing problem. Computers & Operations Research 40(8), 2145–2160 (2013)

28. Maturana, J., Saubion, F.: A compass to guide genetic algorithms. In: Parallel Problem
Solving from Nature–PPSN X, pp. 256–265. Springer (2008)

29. Mei, Y., Li, X., Yao, X.: Cooperative coevolution with route distance grouping for large-
scale capacitated arc routing problems. Evolutionary Computation, IEEE Transactions
on 18(3), 435–449 (2014)

30. Mei, Y., Li, X., Yao, X.: Variable neighborhood decomposition for large scale capacitated
arc routing problem. In: Evolutionary Computation (CEC), 2014 IEEE Congress on,
pp. 1313–1320. IEEE (2014)

31. Merz, P.: Advanced fitness landscape analysis and the performance of memetic algo-
rithms. Evolutionary Computation 12(3), 303–325 (2004)

32. Minku, L.L., White, A.P., Yao, X.: The impact of diversity on online ensemble learning
in the presence of concept drift. Knowledge and Data Engineering, IEEE Transactions
on 22(5), 730–742 (2010)



33. Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evolutionary optimization.
Evolutionary Computation, IEEE Transactions on 4(3), 284–294 (2000)

34. Sakurai, Y., Takada, K., Kawabe, T., Tsuruta, S.: A method to control parameters of
evolutionary algorithms by using reinforcement learning. In: Signal-Image Technology
and Internet-Based Systems (SITIS), 2010 Sixth International Conference on, pp. 74–79.
IEEE (2010)

35. Schlimmer, J.C., Granger, R.H.: Beyond incremental processing: Tracking concept drift.
In: AAAI, pp. 502–507 (1986)

36. Soria Alcaraz, J.A., Ochoa, G., Carpio, M., Puga, H.: Evolvability metrics in adaptive
operator selection. In: Proceedings of the 2014 conference on Genetic and evolutionary
computation, pp. 1327–1334. ACM (2014)

37. Tang, K., Mei, Y., Yao, X.: Memetic algorithm with extended neighborhood search for
capacitated arc routing problems. Evolutionary Computation, IEEE Transactions on
13(5), 1151–1166 (2009)

38. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In:
Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 1539–
1546. ACM (2005)

39. Vanneschi, L., Pirola, Y., Collard, P.: A quantitative study of neutrality in gp boolean
landscapes. In: Proceedings of the 8th annual conference on Genetic and evolutionary
computation, pp. 895–902. ACM (2006)

40. Zachariadis, E.E., Kiranoudis, C.T.: A strategy for reducing the computational com-
plexity of local search-based methods for the vehicle routing problem. Computers &
Operations Research 37(12), 2089–2105 (2010)


