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Abstract Self-adaptive mechanisms for the identification
of the most suitable variation operator in evolutionary algo-
rithms rely almost exclusively on the measurement of the
fitness of the offspring, which may not be sufficient to assess
the optimality of an operator (e.g., in alandscape with an high
degree of neutrality). This paper proposes a novel adaptive
operator selection mechanism which uses a set of four fitness
landscape analysis techniques and an online learning algo-
rithm, dynamic weighted majority, to provide more detailed
information about the search space to better determine the
most suitable crossover operator. Experimental analysis on
the capacitated arc routing problem has demonstrated that
different crossover operators behave differently during the
search process, and selecting the proper one adaptively can
lead to more promising results.
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1 Introduction

Parameter setting is an important area of research in the evo-
lutionary computation field. Since an a-priori identification
of the optimal configuration of the parameters is always
time-consuming and often impractical, one must employ
a dynamic selection strategy of the optimal configuration
which is performed while the search is being executed. In
addition, a static set of parameters is not always the optimal
choice for a large number of problems where self-adapting
techniques have proven to be more effective (Eiben et al.
1999).

The problem of identifying the most suitable variation
operator among several, also known as adaptive operator
selection (AOS), can be divided into two sub-tasks: the credit
assignment (CA) mechanism, used to evaluate the perfor-
mance of the operators; and the operator selection (OS) rule,
necessary to determine the most suitable operator using the
information provided by the CA mechanism. The majority
of the credit assignment approaches in literature are based
on the evaluation of the fitness of the offspring generated
by the operator, which is compared either to the current best
solution (Davis 1989), to the median fitness (Julstrom 1995)
or to the parents’ fitness (Barbosa and Sa 2000). A different
strategy evaluating both fitness and diversity of the offspring
was proposed in Maturana and Saubion (2008). The reward
has been mostly considered as the value assessed during the
last evaluation (instantaneous reward), as the average reward
over a window of the last N evaluations (average reward),
and as the biggest improvement achieved over a window of
the last N evaluations (extreme reward) (Fialho et al. 2009).

The use of alternative metrics has been recently considered
in Soria Alcaraz et al. (2014), where an evolvability metric
replaces the evaluation of the fitness. A different approach
for population-based meta-heuristics, proposed in Consoli
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and Yao (2014), assesses the reward as the proportion of solu-
tions generated by each operator which have been selected by
the ranking phase of the evolutionary algorithm. The credit
assignment mechanism is coupled with operator selection
rules such as probability matching (Goldberg 1990), adap-
tive pursuit (Thierens 2005) or multi-armed bandit solvers
(MAB) (DaCosta et al. 2008). Several improvements of the
MAB strategy have been proposed, as in Belluz et al. (2015),
Chen et al. (2013) and Kim et al. (2012). Reinforcement
learning has been also used in parameter setting (Karafotias
et al. 2015), as in Eiben et al. (2007), where a reinforce-
ment learning procedure is adopted to modify the parameters
on-the-fly, or in Sakurai et al. (2010) where the selection
probability of the operators is adaptively changed using a
reinforcement learning approach.

From the analysis of the existing literature, it is clear that
almost all the existing CA strategies rely exclusively on the
mere evaluation of the fitness of the offspring. However, the
information provided by the fitness at a single generation
may not be sufficient to assess the optimality of an operator
(e.g., in a landscape with a high degree of neutrality). The
purpose of our work is therefore to develop a new dynamic
CA mechanism which considers a suite of measures, and that
can be adopted also as an operator selection rule. We consider
the memetic algorithm with extended neighborhood search
(MAENS*) (Consoli and Yao 2014) algorithm as a case study
and for comparison purposes. More specifically, we aim to
answer the following research questions in our paper:

e RQI Whatkind of additional information we can provide
to the credit assignment technique for a more “aware”
calculation of the reward and does this information
effectively help to improve the prediction ability of the
algorithm?

e RO2 What technique would be useful to handle such
data and to select the most suitable operator in such a
dynamic environment? Would the prediction ability of
the technique be better than that of MAENS*? Would the
use of this technique improve the optimization ability of
MAENS*?

The contributions of our work include:

e An ensemble of four different online fitness landscape
analysis techniques, performed during the execution of
the MAENS* algorithm in order to give a more accurate
description of the current population (RQ1).

e A creditassignment technique based on the use of a online
learning algorithm to predict the reward of the most suit-
able operator (RQ?2).

e Two different reward measures are studied: one based on
the survival ability of the offspring and another one based
on the analysis of their diversity.
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This work extends our previous work in Consoli et al. (2014)
with new experiments and contributions. In particular: (a) we
investigate the use of a novel reward measure called diversity-
based reward (DBR); (b) we study the adoption of a different
operator selection rule, named concurrent strategy (CS); (¢)
we extend our analysis by testing our algorithms on a dataset
of large CARP instances. The results of the experiments car-
ried out show that the proposed approach is able to produce
results with comparable solution quality to a state-of-the-art
strategy and reveal how in some cases the presence of a set of
measures have a beneficial effect on the optimization ability
of the AOS.

The rest of the paper is organized as follows. Section 2
introduces the case scenario and the base MAENS* algo-
rithm. Section 3 describes the novel reward measures and
operator selection rules investigated in this work. Section 4
describes the ensemble of fitness landscape techniques used
in conjunction with the CA mechanism of the MAENS*
algorithm. Section 5 describes the online learning algorithm
that has been used and adapted for the CA system. Section
6 presents the proposed MAENS*-II algorithm. Section 7
describes the experiments that have been carried out to verify
the assumptions of this research and their results. Finally, the
last section includes the conclusions and some future work
ideas.

2 Background

To investigate over our research questions, we consider the
MAENS#* algorithm (Consoli and Yao 2014) for the capaci-
tated arc routing problem (CARP) (Golden and Wong 1981),
as the case study of this research, as it already utilizes an
adaptive operator selection scenario and provides a term of
comparison with alternative techniques. The strong relation-
ship between CARP and specific real-world problems, such
as winter gritting, waste collection or postal service make
this a problem of great interest for the scientific community,
and a large number of heuristics, exact methods and meta-
heuristics have been proposed for this problem and its many
variants. Although the hyper-heuristic proposed in this work
is applied to the capacitated arc routing problem, it would be
possible to adapt it to different NP-Hard problems by replac-
ing the low level heuristics and by identifying the best fitness
landscape analysis metrics that better describe the specific
landscapes of the different NP-Hard problem.

2.1 MAENS*

MAENS*#, the case study the for this research, extends the
memetic algorithm named MAENS (Tang et al. 2009) intro-
duced in 2009. MAENS is a memetic algorithm which makes
use of a crossover operator, a local search combining three
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local move operators and a novel long move operator called
MergeSplit, and a ranking selection procedure called sto-
chastic ranking (SR) (Runarsson and Yao 2000). The major
differences between MAENS and MAENS* are: (a) MAENS
uses a single crossover operator, whereas MAENS* uses a
set of crossover operators, (b) a dynamic MAB mechanism
(dIMAB) (Fialho et al. 2009) is adopted as an AOS rule, (c)
a novel CA mechanism assigns a reward to the operators
which is proportional to the number of solutions generated
by each operator that “survived” the ranking phase, named
proportional reward, (d) the stochastic ranking is improved
considering also the diversity of the solutions (dSR) using a
(e) novel diversity measure for the CARP search space.

The dMAB (Fialho et al. 2009) approach, adopted in
this work, combines the UCB1 algorithm (Auer et al. 2002)
with the Page-Hinckley (PH) statistical test (Hinkley 1971)
to detect changes in the environment. When the PH test
is triggered, the MAB system is restarted and the infor-
mation gathered in the previous generations is discarded.
The MAENS* algorithm represents one case study of our
research, as the presence of a suite of crossover operators
allows the study of other AOS approaches.

2.2 Capacitated arc routing problem

The capacitated arc routing problem (CARP) can be formally
defined as the problem of minimizing the total service cost of
a routing plan, given a set T of tasks (which corresponds to
a subset of the arcs of a graph) and a fleet of m vehicles with
capacity C. Each task t has a service cost sc, a demand d (the
load of the vehicle necessary to service the task), a unique id,
a reference to its head and tail vertices, and must be served
once and entirely within the same route Rj. A CARP solution
S can be represented as

S = {{t()’ tkv (AS) tl’ f0}7 R {tO’ tpv (AE) tqv tO}}

which is a permutation of the whole set of tasks, divided into
several routes R;. Each route must start and end in a specific
vertex called depot. We use a dummy task ty with null demand
and service cost to show the start and the end of a route in
the depot. The service cost of a single route is calculated by
adding the service cost of all the tasks in the route plus the
cost of the shortest path sp between each task. The problem
can be formally defined as follows:

length(s)—1

>

i=1

min TC(S) = (sc(t;) +sp(ti, ti+1)),

subject to the constraints

load(R;) < C, app(ti) =1 and V4 € T,m < nyep,

length(r))

>

i=1

load(R;) = d(tj),

where app(#;) gives the number of appearances of tasks ¢;
in the sequence of the tasks in S and nyep is the number of
available vehicles.

2.3 Recombination operators for CARP

As explained in Sect. 2.1, MAENS* uses a set of crossover
operator, instead of a single crossover operator. This sec-
tion describes the four crossover operators introduced in
MAENS* to deal with the CARP problem.

2.3.1 Greedy sequence-based crossover (GSBX)

The GSBX operator, can be considered as a variant of the
sequence based crossover (SBX) operator. In this case, one
route is extracted from each parent solution following a
greedy strategy that influences the selection towards those
routes whose vehicle is still not full (the total demand of
the route is the smallest). Once selected, the two routes are
recombined using a one point crossover mechanism. The
route generated in this way replaces the original routes of
the parents to generate the new offspring. Since problems
caused by double servicing of tasks or tasks not being ser-
viced might arise, the solution goes through a repair phase
to guarantee its feasibility.

2.3.2 Greedy route crossover (GRX)

In GRX, an offspring is created by alternatively copying the
routes of the parents into it. Routes are extracted from the
parent solutions, giving higher priority to the routes with
a higher quality measure. Tasks that have been inserted into
the offspring are consequently removed from both parents, to
avoid the double servicing of tasks. The procedure is repeated
until the remaining routes in the parents have less than a
certain amount of tasks. In that case, the remaining tasks are
inserted in the existing routes or merged into new ones.

2.3.3 Pivot-based crossover (PBX)

Two routes are randomly selected from the parent solutions.
The PBX operator works by identifying, among the tasks
belonging to such routes, the one that is most suitable to be
placed in the middle of a route, which is named pivot, as it
splits the route in two parts. The route is then rebuilt inserting
the remaining tasks in the position that minimizes the total
service cost of the route. Finally, the offspring is obtained by
replacing the original route in one of the two parents. As in
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the case of GSBX, the solution goes through a repair phase
to guarantee the feasibility of the solution.

2.3.4 Shortest path-based crossover (SPBX)

The SPBX operator works analogously as the PBX operator,
except that in this case, the pivor is represented by a path
between two of the available tasks. The couple of pivoting
tasks is selected as the one that the serves the largest number
of available tasks along their path and that minimizes the
distance between the extremities of the path and the deposit.

3 Adaptive operator selection

As previously mentioned, AOS is conventionally composed
of two different sub-tasks: the credit assignment and the oper-
ator selection. For the former part, we propose the use of
two different reward measures, named proportional reward
(PR) and diversity-based reward (DBR). For the latter, we
study the performance of two different strategies: a simple
instantaneous reward (IR) approach and a concurrent strategy
(CS)-based approach.

3.1 Credit assignment

The choice of the proper credit assignment strategy can be
fundamental for the performance of the algorithm. As one
objective of this work is to evaluate more than just the fit-
ness of the individuals, we adopt two different strategies that
involve the evaluation of different measurements. The first
one, named proportional reward, was first used in Consoli and
Yao (2014) together with a multi-armed bandit approach. For
the second case, we develop a novel measure based on the
evaluation of the diversity of the offspring, named diversity-
based reward.

3.1.1 Proportional reward (PR)

PR (Consoli and Yao 2014) is a measure of the survival abil-
ity of the offspring generated by each crossover operator.
We assign a reward r, where r € [0, 1] corresponds to the
percentage of the solutions that have survived the selection
phase of the algorithm, and are going to become the par-
ent population for its generation. The use of this technique
is a way to entrust the algorithm itself for the evaluation of
the offspring. In the case of MAENS¥, the offspring able to
survive the ranking phase are evaluated according to their
fitness value, the amount of violation of the constraints and
the average pairwise diversity from the other individuals of
the population. The performance of the crossover operator
is in this case evaluated at the end of the generation: rather
than evaluating the individuals as soon as they are generated,
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the PR evaluates their performance in a longer period of time
(e.g., an iteration). The PR can be formally represented with
the following formula:

|x; : x; € parent’!|

PR(G) =
@ [parent’ 1|

where i refers to the ith operator, x; is an individual obtained
through the use of operator i, ¢ is the rth generation and
parent’t! is the parent population at the r 4+ 1 generation. If
more than one operator is used during the same generation,
the PR can be calculated in the following way:

x; @ x; € parent’t!
PR(l)t — | 1 1 p |

loffspring] |

where offspring! is the set of individuals generated using the
operator i during the 7th generation.

3.1.2 Diversity-based reward (DBR)

In the case of the DBR, we propose an approach that is oppo-
site to that of the PR, as we evaluate the crossover offspring
as soon as they have been generated. As one purpose of the
crossover operator is that of introducing diversity in the pop-
ulation through the exploration of new areas of the landscape,
we adopt a measure of the diversity introduced by the off-
spring. In particular, for each operator, we want to measure
how distant the offspring are from the parent population, and
how wide is the area explored. Therefore, we define a parent
distance measure

d(x, p1) +d(x, p2)
2

Py(x) =

as the average distance from the offspring x to its parents p
and p, and we can consequently compute the average parent
distance for operator i, P4 (i), by averaging the P;(x) of all
the offspring generated by such operator. To measure the dis-
tance between individuals, we adopt the distance measure for
CARP developed in Consoli and Yao (2014). The pseudocode
of the distance measure is shown in Fig. 1. Since a CARP
solution is represented by a sequence of tasks 7, split into
different routes, we can define p;(¢) and n;(¢) as two func-
tions that return, respectively, the previous and the next tasks
of task ¢ in the sequence of solution S;. A task ¢ has a per-
fect correspondence in both solutions if its previous and next
tasks match. In the most extreme cases, for two solutions S
and S, the value of the distance measure will be equal to 1
if p1(t) = p2(t) and n((¢t) = n»(t), V¢, and will be equal
to 0 if (p1 () # pa(t) and n1(t) # na(t), Vt). In the former
case, the two solutions are identical, as there is a full corre-
spondence between the p; (¢) and the n; () of both solutions
for each task ¢, while in the latter case the two solutions are
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find p1(¢t) and nq(t)Vt in Sy;
find p2(t) and na(t)Vt in Sa;
for (each task t) do
if (task t is served in both
solutions) then
i (p1(t) = pa(t) ) then
add one;
end
if (n1(t) = n2(t) ) then
| add one;
end

[T VI

© 0N o w

=
o

end

[y
[

end
divide the obtained value by 2N.

e
W N

Fig. 1 Diversity measure for CARP solutions

completely different. It is important to point out that while
the order in which the tasks in each route are serviced is con-
sidered, the order of the routes is not. Therefore two solutions
are still identical if they have perfectly corresponding routes
even if permutated in a different order. In all the other cases,
when the correspondence is partial, the diversity measure
will consequently assume values within the range [0, 1].
We also define the coverage measure of the operator i

Zi Zj d(xq, xp)
N2

1

Cn() =

as the pairwise average distance between any pair of individ-
uals x, and x; that have been generated by it, where N; is
the number of individuals generated through the use of oper-
ator i. We can compute the DBR of the ith operator in the
following way:

DBR(i) = Py(i) % Cpn(i).

Similarly to compass (Maturana and Saubion 2008), this
credit assignment technique considers the diversity of the
offspring as a criterion to evaluate the performance of the
operators. However, there a several differences between such
approaches. First, the compass approach addresses the eval-
uation of both the fitness and the diversity while DBR only
considers the diversity, being focused on the evaluation of
crossover operators exclusively. Secondly, compass makes
use of the Hamming distance entropy as in Lardeux et al.
(2006) to measure the population diversity, while DBR deals
with both the average pairwise distance of the offspring as
well as the distance from the parent population using the
CARP based diversity measure shown in Fig. 1.

3.2 Operator selection rule (OSR)

The second step of the AOS process is the operator selec-
tion rule. The OSR, given the information gained through

the use of the credit assignment mechanism, needs to decide
what is the most suitable operator and how to use it. A first
problem in this context is that of balancing the exploration of
all the operators against the exploitation of the most useful
one. In other words, while using the operator that has per-
formed the best so far, one wants to verify whether there is
another operator that can do better. A second aspect is that of
identifying changes during the execution. As the search goes
on, the operator that has performed the best so far might not
necessarily be the best one afterwards. It is therefore neces-
sary to balance how much of the “history” relative to each
operator one most consider to perform the selection.

In this work, we consider two different approaches for
the OSR, namely a single operator-based approach named
instantaneous reward and a reinforcement learning-inspired
one called concurrent strategy.

3.2.1 Instantaneous reward (IR)

In the IR approach, the offspring is produced through the use
of only one crossover operator per generation. As offspring
and parent populations are merged in an unique population,
it is still possible to evaluate all the crossover operators who
have generated a solution that is still present in the popula-
tion. The operator to use in the next generation (¢ + 1) is
consequently selected as the operator op; that has obtained
the largest reward in the current generation (¢):

OPEH = miaX(RW(Op,')t), op; € operators

given RW() as a reward measure. Those operators having
produced more “extreme” improvements (e.g., discovered
new optima) with respect to the others, will have a more
favourable evaluation that will last for more generations, even
when they have not been selected for the current generation.

The information relative to the previous performances of
the operator, except for the last iteration, is discarded. IR is,
therefore, designed to be more sensitive to changes, having a
bias on the performance of the operators during the previous
generation. Finally, the adoption of such approach has the
potential risk of eliminating completely an operator from the
competition if none of its offspring are present in the current
population.

3.2.2 Concurrent strategy (CS)

One of the disadvantages of adopting the instantaneous
reward strategy is that it is not possible to identify changes
in the environment when only one operator is used. A differ-
ent approach, therefore, is that of allowing the use of all the
operators during all the generations. Such approach, named
CS, aims to maximize the gain obtained by using the best
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performing operator, and thus allowing the generation of a
larger fraction of the offspring by it, while the remaining part
is still generated by the other operators. The CS is similar in
its behaviour to the adaptive pursuit (AP) approach (Thierens
2005) in its intent to maintain a minimum percentage of the
solutions to be generated by the less performing operators.
The formula to assign the Selection Rate to each operator i,
is the following:

RWopi)' 1
S RWO©R, /Y

SR; = SRpin + (I — 1 X SRpin)

where SR i, 18 the minimum selection rate,  is the number of
operators, RW (op; ) is the reward calculated for the operator
op; during the generation ¢, and v is a control parameter that
regulates how quickly the system reacts to the changes in
the environment. In this case, n = 4 since four operators are
available.

4 Online fitness landscape analysis

The existing fitness landscape analysis (FLA) techniques
have been analysed with the purpose to identify those that can
be used in the CARP context. Such selection has been driven
by both the necessity to reduce the computational effort by
exploiting some calculations that are already performed by
the algorithm, and the necessity to identify measures able to
“capture” different features of the landscape. We identified
four FLA techniques, consisting of one evolvability measure,
two neutrality measures and one fitness distribution measure,
to describe different features of the landscape and without
much increasing the computational effort. The computation
of such techniques is based on the evaluation of the neigh-
bourhood of each solution. Such neighbourhood is already
generated through the initial iteration of the local search oper-
ator of the MAENS algorithm, using the three different move
operators involved in this process (single insertion, double
insertion, swap insertion). The FLA techniques are employed
during each generation, and their results are used as input
features of an online learning algorithm to predict the value
of one of the two reward measures introduced in Sect. 3.1,
to create a more accurate and informative “snapshot” of the
current population which eventually might lead to a better
selection of the crossover operator. A final remark is nec-
essary about the constraints handling and how it affects the
fitness of the individuals. The landscape in which MAENS*
operates is that of solutions which may potentially violate
the capacity constraints of the vehicles. Therefore, we con-
sider the following fitness function, adopted from Tang et al.
(2009):

f(S) =TC(S) + A xTV(S)
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where A is an adaptive parameter depending on the cost, on
the violation and on the best feasible solution found so far,
TC(S) is the total cost of the solution and TV(S) its total
violation.

The rest of this section will introduce the four FLA tech-
niques that have been considered in this work and how they
are integrated in the MAENS* algorithm.

4.1 Accumulated escape probability

The accumulated escape probability (Lu et al. 2011) is a
metric that aims to measure the evolvability, which can be
defined as the capacity of the solutions to evolve into better
solutions. The accumulated escape probability is obtained by
averaging the mean escape rate (Merz 2004) (the proportion
of solutions with equal or better fitness in the neighbourhood)
of each fitness level with the formula:

_ Zf,-eFPj

aep = I where F = fo, f1, ..., fL

where f; is a fitness level (subset of all the solutions with
fitness equal to a value f;), P; is the average escape rate
of all samples belonging to the f; fitness level and L is the
number of possible fitness levels. Being the mean value of
a set of probabilities, the aep will be 0 when the instance
is hard and higher (up to 1) otherwise. The calculation of
the aep requires the analysis of the neighbourhood of each
solution in order to identify how many individuals have
a equal or better fitness than the original individual. We
analyse, therefore, the evolvability of the solutions which
have been selected (with probability equal to 0.2) for the
local search. Since the calculation of the neighbourhood
of each solution corresponds to the first step of the local
search, no significant additional cost is required to compute
the aep.

4.2 Dispersion metric

The analysis of the distribution of the solutions within
the landscape can be sometimes used to understand more
about the difficulty that a “jump” between fitness levels
requires and to gain some information on the global struc-
ture of the landscape. In this context, the dispersion metric
(dm) (Lunacek and Whitley 2006) is a technique to obtain
information about the global structure of the landscape, by
measuring the dispersion of good solutions. Ideally, if good
solutions are very close, we might have a single funnel struc-
ture. If, on the contrary, solutions get more distant when
their fitness improves, the landscape might be more like
a multi-funnel structure. The analysis can be described as
follows:
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1. A sample S of solutions is taken from the search space;

2. the best Spesr solutions are selected from S (using a
threshold value);

3. the average pairwise distances in S (d(S)) and in
Shest(d(Spest)) are calculated using the CARP diversity
measure shown in Fig. 1;

4. the dm is obtained as the difference between d(Spes;) and
da(s).

The calculation of the pairwise distance between all the
individuals of the sample is already performed during the
diversity-based stochastic ranking of MAENS* by using the
distance measure shown in Fig. 1, and therefore requires no
additional cost. Thus, the dm can computed on the set of
all the popsize*offset individuals created during each gener-
ation of MAENS*. Finally, itis possible to rely on the ranking
performed by the diversity-based stochastic ranking operator
and choose these solutions as the subset of the best ones.

4.3 Average neutrality ratio and A-fitness

Neutrality is the study of the width, distribution and fre-
quency of neutral structures within alandscape (e.g., plateaus,
ridges). A set of several neutrality measures was defined in
Vanneschi et al. (2006). Among these, we select the following
two:

1. average neutrality ratio (¥): can be obtained by averag-
ing the neutrality ratio (e.g., the number of solutions with
equal fitness) of each individual with respect to its neigh-
bourhood;

2. average A-fitness of neutral network (A(?)): can be
defined as the average fitness gain after one mutation
step of each individual belonging to a neutral network.

In the same fashion as in the case of the aep, the com-
putational effort of this technique can be absorbed by the
generation of the neighbourhood of the initial solution dur-
ing the local search.

5 Online learning

The AOS model followed by MAENS#* is that of the multi-
armed bandit approach, where the UCB1 (Auer et al. 2002)
algorithm is used to balance the exploration and exploitation
of the crossover operators and the Page-Hinckley (Hinkley
1971) test is used to detect when a different operator has
become the most suitable.

In this work, we propose the adoption of a different model.
The abrupt and scarcely predictable changes of the most suit-
able operator which might happen during the search show
many similarities to the notion of concept drift (Schlimmer
and Granger 1986; Minku et al. 2010) in machine learning.

Thus, in such a context, we might adopt an online learning
algorithm capable of (a) predicting a reward for each opera-
tor using the online fitness landscape analysis measures and
(b) tracking the changes of the environment, relying only on
a limited number of training instances. We can define more
formally the learning problem in the following way. At a
given generation of the EA, we compute the FLA metrics
(flay, flas, flas, flas) and the reward of each operator
(RW(op;)). Tuples (flai, flaa, flas, flas, RW(op;)) are
then used as training examples for the online learning algo-
rithm, where ( flay, flay, flas, flas) are the input features
and (RW (op;)) is the target output.

We employ the dynamic weighted majority (DWM)
(Kolter and Maloof 2003) algorithm as our online learning
algorithm, which has proved to be one of the most effec-
tive techniques in the task of tracking concept drifts. The
DWM algorithm can be described as follows. A set of learners
(called experts) are used to classify the incoming instances
(¥, v}, where X is the vector of n input features and y is
the output feature. Each expert e; has its own weight w;,
and operates a classification A of the instance. The global
prediction is identified as the prediction with the largest sum
of weights. All the experts which have failed to classify cor-
rectly the instance have their weights reduced by a g factor.
Moreover, for every p instances, all the experts with a weight
below a certain threshold 0, are deleted and a new expert is
created if the global prediction is wrong.

5.1 DWM for regression tasks

As the DWM algorithm was originally conceived for clas-
sification it is necessary to adapt and modify some of its
mechanism for the regression task of predicting the reward
of a given operator based on the FLA techniques. A compar-
ison between the revised DWM algorithm for the regression
task (rDWM) and the original DWM itself is given in Fig. 2.
The modifications introduced are:

1. The global prediction o; is obtained by calculating the
weighted average of all predictions (line 10);

2. we consider a prediction correct if its difference from the
output feature is less than a threshold t (lines 5-6);

3. a new expert is created if the difference between the
global prediction and the output feature is less than a
t factor (lines 17, 18);

4. we introduce a window containing the last n instances
wT S, which is used to train the new experts upon creation
(line 2).

6 MAENS*-1I

The revised version of the algorithm adopting the rDWM as
an AOS mechanism, named MAENS*-1I, is shown in Fig. 3,
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(a) Original DWM.

1 for (each instance {Z;,y:}) do
2 for (each expert e) do
3 N =classify (e, T;);
4 if (|]A\] # y;) then
5 w; = B * wj;
6 end
7 end
8 normalize weights;
9 o;= select class with largest sum of
weights;
10 if (p mod i =0) then
11 for (each expert e’ ) do
12 if (w; < 0) then
13 | delete expert;
14 end
15 end
16 if (o0; # y;) then
17 | create new expert;
18 end
19 end
20 for (each expert e’) do
21 | train(e?, 7;);
22 end
23 end

(b) DWM for the regression task.

1 for (each instance {7 ;,y;}) do

= update WIS

3 for (each expert gj) do

4 A =predict(e?, T';);

6 | wj = B * wy;

7 end

8 end

9 normalize weights;

10

11 if (p mod i =0) then

12 for (each expert e’) do
13 if (w; < 60) then
14 | delete expert;
15 end

16 end

o7 ¢ (I -~
18 create new expert

[sad trsin using W]

19 end
20 end
21 for (each expert el) do
22 | train(e’, T5);
23 end
24 end

Fig. 2 Pseudocode of DWM (left side) and DWM for the regression task (right side). The novelties introduced in the latter version, discussed in

Sect. 5.1, are highlighted with a gray background color

along with the original MAENS* algorithm. Further infor-
mation about MAENS* can be found in Consoli and Yao
(2014). A set of four (one for each crossover operator) IDWM
instances are created upon initialization of the algorithm (line
2). During each generation, one new training example is cre-
ated for each rDWM instance by using the current set of
FLA metrics as input features, and the reward associated to
the operator as the output feature (lines 10, 13, 14) obtained
with a given credit reward strategy. The set of four rDWM
instances are then used to predict the reward of each opera-
tor (line 4). Finally, an operator selection rule is adopted to
choose the operators to use during each generation.

Three different versions of the MAENS*-II algorithm
were implemented employing the two different techniques
for the operator selection rule introduced in Sect. 3.2 as well
as the two different credit assignment mechanism presented
in Sect. 3.1. All the experiments were performed using the
weka (Hall et al. 2009) implementation of REPTrees as base
learners. Table 1 summarizes a list of the different versions
of the algorithm and a description of their components. It is
worth noting that the combination of the DBR strategy and
the instantaneous reward was not considered, as the strat-
egy of measuring the reward of the crossover offspring and
the use of only one operator during each generation would
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lead to the its exclusive use for the whole execution of the
algorithm.

6.1 Improvements on local search efficiency

One of the most effective features of MAENS (Tang et al.
2009) is its local search, which, however, has a high computa-
tional cost—the algorithm spends around 95 % of its runtime
performing this operation. Although the proposed modifi-
cations to the original MAENS algorithm, as explained in
Sect. 4, cause no significant increase of the runtime of the
algorithm, a fast implementation of MAENS local search
is introduced, which helped reducing effectively the run-
time without incurring into extra memory consumption. The
approach is similar to the one introduced in Zachariadis and
Kiranoudis (2010) for the vehicle routing problem, but with-
out relying on the use of memory.

The approach can be summarized by the following points:

1. Every individual a in the neighbourhood of a solution x is
represented as amove M, where M stores the information
relative to the move operator op; such that op; (x) = a,
the tasks involved in the move, and the variations in terms
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(a) MAENS* pseudocode

1 initialize a population pop of popsize
individuals;

2 while (termination condition not met)
do

3 choose the crossover operator op;

using dMAB

4 generate a population pop,of

popsizexoffset individuals, choosing

the parents from pop U pop.;

5 generate pop;s (i) for each individual
pops (i) with probability = 0.2;
6 if (popis(i) is better than popg(i))
then
7 | overwrite popsi;
8 end
9 use d-Stochastic Ranking and
overwrite pop;
10 use the PR measure to calculate the
reward R; for each op;;
11 end

(b) MAENS*-II pseudocode

1 initialize a population pop of popsize
individuals;

> [Eitialize fous DY nstances |
3

4 while (termination condition not met)
do

5 choose the crossover operator op;
with largest rw;
6 generate a population pop,of

popsizexoffset individuals, choosing
the parents from pop U pop.;

7 generate pop;s(2) for each individual
pops (i) with probability = 0.2;
8 if (popis(i) is better than popg(i))
then
9 | overwrite popyi;
10 end
Y
12 use d-Stochastic Ranking and

overwrite pop;

13 for do
14

15

16 end
17 end

Fig. 3 Pseudocode of MAENS* (right side) and MAENS*-II (left side). The novelties introduced in the latter version, discussed in Sect. 6, are

highlighted with a gray background color

Table 1 List of algorithms

Combination Operator selection rule Reward measure

a Concurrent strategy Diversity-based reward
b Concurrent strategy Proportional reward

c Instantaneous reward Proportional reward

Each row represents a different combination of one operator selection
rules and one reward measure strategies

of fitness and violation of the constraints w.r.t. the values
of the initial solution.

2. The set of moves representing the whole neighbourhood
is splitinto V = R % R subsets, where R is the number
of routes of the initial solution. Each subset contains the
moves relative to the move operators applied to the tasks
belonging to the routes R; and R;.

3. During the first iteration of the local search, the whole
neighbourhood of moves is produced. A storage array of
size V is kept to store the best solution of each subset.

4. The best move in the neighbourhood is identified with a
computational time of O (M). If the best move belongs to
the subset relative to the routes R; and R;, the positions

in the storage relative to the combination of either routes
are set to null.

5. Inthe following iterations, the local search produces only
the moves involving either the route R; or R; or both.
The positions of the storage relative to such moves are
consequently updated.

After the first iteration, the number of subsets to be evaluated
is therefore decreased from R? to 2R + 1, resulting in a
significant reduction in terms of size of the neighbourhood
that is necessary to evaluate during each local search iteration.
It is worth mentioning that the use of the move notation itself
reduces the cost of evaluating the fitness and the violation of
one individual from O (n) to O (k), where n is the number of
tasks and k is equal either to 7 or 8 (depending on the move
operator considered).

7 Experimental studies
A set of experiments were designed to understand the behav-

iour of MAENS*-II. As a first step, an oracle based on the
Proportional Reward was implemented with the purpose of
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Table 2 Characteristics of the

instances of Grouns A (top pary  S0CE VI IRl |El BK Instance VI IRl |E|] BK
and B (bottom part) c1 6 79 98 1590 e3-C 77 87 98 10,163
10 60 55 8 2190 ed-A 77 98 98 6408
clt 8 94 118 1725 ¢4-B 77 98 98 8884
cis 97 107 140 1765 e4-C 77 98 98 11427
Ci8 93 121 133 2315 S1-B 140 75 190 6384
cs 56 65 79 2410 S2-A 140 147 190 9824
c6 38 51 55 855 $2-B 140 147 190 12,968
9 76 97 117 1775 $2-C 140 147 190 16353
DI 6 79 98 725 $3-A 140 159 190 10,143
D11 8 94 118 920 $3-B 140 159 190 13,616
D21 60 76 84 695 3-C 140 159 190 17,100
D23 78 92 109 715 sd-A 140 190 190 12,143
D7 54 52 70 735 s4-B 140 190 190 16,093
D8 66 63 88 615 s4-C 140 190 190 20375
El 7385 105 1855 Fi 7385 105 1065
Ell 80 94 113 1810 Fl1 8 94 113 1015
EI2 74 67 103 1580 FI2 74 67 103 900
El5 8 107 126 1555 Fl4 53 55 72 1025
E19 77 66 103 1400 F19 77 66 103 685
E21 57 72 82 1700 F24 97 86 142 975
E23 93 89 130 1395 F4 70 77 99 930
Es 68 61 94 2130 F7 73 50 94 1080
E9 93 103 141 2160 F9 93 103 141 1145
¢l-B 77 51 98 4498 val4D 41 69 69 526
2-B 77 72 98 6305 valsD 34 65 65 573
¢3-B 77 87 98 7704 val8C 30 63 63 518
val10D 50 97 97 525
EGL-GI-A 255 347 375 970495  EGL-G2-A 255 375 375 1,061,103
EGL-GI-B 255 347 375 1085097 EGL-G2-B 255 375 375 1173286
EGL-GI-C 255 347 375 1201030 EGL-G2-C 255 375 375 10295036
EGL-GI-D 255 347 375 1325317 EGL-G2-D 255 375 375 1430267
EGL-GI-E 255 347 375 1461469 EGL-G2-E 255 375 375  1557,159

For each instance the table provides informations such as the number of vertices of the graph (| V), the
number of required edges or tasks (|R|), the number of edges of the graph (| E|) and the best known solution

in literature (BK)

analysing a set of CARP instances in order to obtain opti-
mal crossover operator selection rates and to analyze them.
The oracle can be briefly described as follows. Four dif-
ferent populations are obtained during each generation by
using each crossover operator. All the individuals of the
four generations are merged into a single population which
is sorted using the MAENS* ranking operator. The propor-
tional reward mechanism is therefore used to assess the best
operator. The results achieved by the oracle show that the
predictions operated by the dJMAB are not optimal, as bet-
ter results can be achieved. Besides, the results of the oracle
should be considered “optimal” only when the proportional
reward strategy is considered, because they might not nec-
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essarily be optimal when in presence of a set of multiple
measures, as in the case of MAENS*-II, or when a different
credit assignment strategy is considered.

Two different datasets are considered for the experiments.
The first one, named Group A, is composed of instances
taken from the known benchmark test sets egl (Eglese 1994),
Beullen’s C, D, E, F (Beullens et al. 2003) and val (Benavent
et al. 1992). The second group (Group B) corresponds
to the large scale CARP instances of the dataset EGL-G
(Brandao and Eglese 2008). The characteristics relative to
each instance, in terms of number of vertices, number of
edges, number of required edges and best fitness value found
in literature are included in Table 2.
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Table 3 Parameters of the MAENS*-II algorithms

Name Description Value
MAENS#* parameters
psize Population size 30
ubtrial Maximum attempts to generate a 50
solution
opsize Size of the offspring during each 6*psize
generation
Parent Crossover parent selection strategy Random
selection selection
Py Probability of performing the local 0.2
search
pMS Routes selected during MergeSplit 2
G max Maximum generations 500
SR,y Probability of sorting solutions using 0.25
diversity
SR,2 Probability of sorting solutions using 0.70
fitness
MAENS#*-II parameters
p Expert removal period 5
B Decrease factor for expert weights 0.75
T Expert weight reduction threshold 0.05
0 Threshold for expert removal 0.05
t Threshold for expert creation 0.10
v Control parameter for concurrent 0.002
strategy

In the upper part of the table, we report the set of parameters and
the respective values that are shared with the MAENS* algorithm. In
the bottom part of the table, the new parameters introduced for the
MAENS*-II algorithm

We provide an example of a solution for the DO7 problem
instance produced by one of the variants of the MAENS*-
II algorithm in Fig. 4, to clarify what kind of results this
algorithm produces.

The set of parameters adopted in all the MAENS*-1I algo-
rithm variants, included in Table 3, were identified by a series
of test-and-trial attempts and might not correspond to the
most optimal choice. With regards to the parameters that are
common with the other algorithms (MAENS and MAENS*)
we adopted the same set of values in order to exclude differ-
ent results due to different parameter configurations. These
parameters can be identified in Table 3. All the final results
were obtained by averaging the output of 30 independent
runs.

7.1 Single operator scenario

In order to understand the improvement achievable by
MAENS*-II, the algorithm was executed on the two bench-
mark sets considering each of the four available crossover
operators. The results of such experiments for Group A are

Table 4 Statistics relative to the performances of the four crossover
operators for datasets A and B

GSBX GRX PBX SPBX

Dataset A
Fitness 18 14 14 12
Violation 17 12 13 16
Diversity 17 16 11 16
Parent distance 16 12 13 15

Dataset B
Fitness 3 3 3 1
Violation 3 6 1 0
Diversity 4 3 0 3
Parent distance 0 3 4 3

The table shows the number of instances for which each of the four
crossover operators (GSBX, GRX, PBX, SPBX) achieved the worst
results in terms of fitness, violation, average pairwise diversity and dis-
tance from parents. The values are obtained averaging the statistics of
four different populations of size 10,000 generated using each crossover
respectively from the same parent population of 10,000 individuals

included in Table 5. For each single operator MAENS* ver-
sion, the results show the average fitness over 30 independent
runs, the standard deviation and the fitness of the best individ-
ual found. The last column, named best, shows the results of
what an “optimal” adaptive operator selection would achieve
(picking the best results out of the four achieved). In the sec-
ond to last row (named #), the table provides the number of
instances with statistically different results according to the
results of a Wilcoxon rank-sum test with Holm—Bonferroni
correction at the significance level of 0.05. The row at the bot-
tom (named W) shows the number of comparison won against
the other algorithms. A Wilcoxon rank-sum test was per-
formed on the results achieved on every instance by each pair
of algorithms, with Holm—Bonferroni correction to deal with
the multiple comparisons. The results across all the problem
instances were then compared using the Wilcoxon signed-
rank test. Each problem instance with comparable results
was treated as paired results and therefore omitted from the
test. The results of such test, subject to the Holm—Bonferroni
correction, are included at the bottom row (pBest) of Table 5.

For Group A, it is possible to notice how there is a great
number of instances for which the four versions achieve sta-
tistically different results. The only exception is represented
by the comparison between the PBX- and the SPBX-based
versions, for which there is a limited number of statistically
different instances (7); in all the other cases, the statistically
different instances are at least 24. The GSBX-based operator
seem to be the one performing the worst, losing the compar-
ison to most of the instances, while the other three operators
achieve the best results in a similar number of times. The sta-
tistical difference between the results of the GSBX version
and the other three versions is also confirmed by the results
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Table 5 Experimental results on Group A using alternatively each crossover operator

inst GSBX GRX PBX SPBX best
avg std best avg std best avg std best avg std best avg

Co1 4175.33 26.80 4150  4159.00 14.80 4150  4151.67 4.53 4150  4153.17 7.13 4150  4151.67
C05 5373.75 15.29 5365  5366.00 2.00 5365  5366.50 229 5365 5367.50 2.50 5365  5366.00
C06 2545.75 4.82 2535  2537.50 4.61 2535  2541.00 490 2535  2540.33 499 2535  2537.50
C09 5274.92 19.27 5260  5281.17 19.57 5260  5262.83 9.97 5260  5263.33 9.52 5260  5262.83
C10 4709.42 16.26 4700  4709.00 12.21 4700 471233  10.14 4700  4703.33 7.45 4700  4703.33
Cl1 4648.58 16.33 4640  4643.17 329 4640  4641.33 221 4640  4641.50 320 4630  4641.33
C15 4964.42 1643 4940 4946.83 10.76 4940  4946.50 5.19 4940  4946.33 427 4940  4946.33
C18 5639.83 9.83 5620 5642.17 6.28 5620  5635.00 8.37 5620 5640.17 926 5620  5635.00
D01 3225.00 9.04 3215 3235.00 0.00 3235  3230.83 5.01 3215  3229.67 6.45 3215  3225.00
D07 3115.83 2776 3115  3115.33 1.80 3115 3115.00 0.00 3115 3115.67 249 3115  3115.00
D08 3052.83 412 3045 3058.00 10.38 3045  3045.67 249 3045 3047.67 442 3045  3045.67
D11 3761.08 3.17 3760  3760.33 3.14 3755 3760.83 227 3755  3760.17 376 3745 3760.17
D21 3058.33 325 3050 3056.67 298 3050 3059.83 241 3050  3060.00 224 3055  3056.67
D23 3171.17 11.74 3140 3158.17 851 3145 3187.17 1030 3155 3177.50 1047 3145 3158.17
EO1 4916.83 584 4910 4910.33 1.25 4910 4912.00 332 4910 4912.67 423 4910  4910.33
EO05 4623.33 21.67 4585  4623.33  27.34 4585 4607.33  19.09 4585 4608.67 1839 4585  4607.33
E09 5855.33 25.00 5820 5838.83 2355 5810 5836.50 19.88 5815  5832.67 17.83 5810  5832.67
Ell 4697.25 2491 4660 4671.67 435 4670 4675.00 11.25 4670 467833  12.67 4670 4671.67
El12 4228.50 17.28 4190  4209.33  19.09 4190  4200.67 1195 4190 4201.83 9.79 4195  4200.67
E15 4220.67 7.04 4205  4215.00 6.06 4210 4221.50 519 4210  4220.00 6.19 4210  4215.00
E19 3244.17 276 3235  3239.33 496 3235  3244.67 1.80 3235 3243.83 3.08 3235  3239.33
E21 3733.50 229 3730 3731.33 221 3730 373450 1.50 3730  3734.00 2.00 3730 3731.33
E23 3718.83 587 3715  3715.17 1.57 3710 371533 1.80 3710 3717.33 281 3710 3715.17

egl-el-B 4512.47 12.04 4498  4504.87 1094 4498  4503.03 8.78 4498  4501.77 8.41 4498  4501.77
egl-e2-B 6328.65 11.75 6317  6321.93 8.68 6317  6322.60 6.03 6317 6327.10 10.19 6317  6321.93
egl-e3-B 7792.07 15.71 7775  7780.90 945 T775  7784.97 883 7777  T782.57 496 7777  7780.90
egl-e3-C 10328.18 19.82 10292 10324.73  16.07 10305 10315.87 17.93 10292 10310.67 16.24 10292 10310.67
egl-ed-A  6464.97 539 6444  6464.23 426 6461  6463.47 3.00 6456  6463.90 1.83 6461  6463.47
egl-e4-B 9021.28 17.37 8988  9059.70 2538 8988 902440 15.16 8998 9013.10  14.09 8988  9013.10
egl-e4-C  12032.60 1047.53 11559 11593.13  22.87 11554 11586.40 1891 11539 11584.97 25.66 11543 11584.97
egl-s1-B 6415.70 21.28 6388 640550 1941 6388  6393.17 248 6388 639943 1395 6388  6393.17
egl-s2-A 9942.62 26.54 9895  9949.67 24.62 9890 992937  23.69 9889  9939.50 27.44 9889  9929.37
egl-s2-B 13201.76 35.16 13144 13244.63  90.51 13137 13163.57 30.84 13103 13181.60  29.65 13122 13163.57
egl-s2-C 16500.12 42.51 16430 16480.80 39.54 16430 16456.77 17.46 16430 1646237  27.46 16430 16456.77
egl-s3-A 10298.59 31.43 10221 10305.10  45.56 10242 10284.60 2531 10233 10300.73  25.47 10253 10284.60
egl-s3-B  13847.47 60.89 13713 1390690  50.92 13771 13792.63  40.81 13713 13815.87 61.71 13707 13792.63
egl-s3-C 17317.86 38.59 17209 17290.47  41.79 17197 1729290 3924 17242 17287.70  37.00 17221 17287.70
egl-s4-A 12409.36 41.76 12296 12438.10  33.13 12389 12367.40 3827 12315 12399.70  34.21 12316 12367.40
egl-s4-B  16448.97 43.34 16316 16499.40  45.08 16430 16384.27 43.71 16292 16405.10 40.22 16329 16384.27
egl-s4-C ~ 25200.21 2151.47 20781 22201.00 143.44 21792 20801.63 103.60 20601 20796.70 112.85 20584 20796.70

FO1 4046.81 3.04 4040  4047.00 332 4040  4047.50 3.10 4040  4046.67 350 4040  4046.67
F04 3499.47 5.10 3485  3500.17 376 3495  3498.83 543 3485  3500.50 5.06 3485  3498.83
FO7 3347.73 3333 3335 333833 1795 3335 333833 1795 3335 3355.00 40.00 3335 3338.33
F09 4750.71 9.95 4730  4743.00 748 4730  4751.67 12.20 4730 4753.83 10.70 4740  4743.00
F11 3850.38 13.65 3835 384583 1191 3835  3839.83 6.89 3835 3844.83 1099 3835  3839.83
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Table 5 continued

inst GSBX GRX PBX SPBX best
avg std best avg std best avg std best avg std best  avg

F12 3416.14 2891 3395 3450.33  21.21 3395 3423.67 22.10 3395 3410.17  16.71 3395 3410.17

Fl14 3339.29  11.03 3330 3349.33  18.25 3330 3349.00 6.88 3340 3359.33  14.13 3330  3339.29

F19 2553.97 9.38 2525 2531.17  10.46 2525 2565.33  9.21 2545 2564.83  12.88 2525 2531.17

F24 323438 11.30 3215 3230.17  13.01 3210 3245.50  7.89 3225 3244.17  6.20 3220 3230.17

vallOD  531.47 1.79 528 532.73 1.26 530 530.73 1.18 528 530.50 1.52 528 530.50

val4dD 532.03 3.01 530 531.63 2.44 530 530.27 0.85 530 530.00 0.00 530 530.00

val5D 583.37 1.83 579 586.80 3.53 578 581.87 2.38 575 583.60 242 579 581.87

val8C 524.37 1.96 521 526.80 1.08 525 524.50 1.84 521 525.00 1.83 521 524.37
GRX PBX SPBX  GSBX PBX SPBX  GSBX GRX SPBX GSBX GRX PBX

# 26 31 24 26 26 27 31 26 7 24 27 7

w 8 6 5 18 8 13 25 18 3 19 14

p 0.126 0.0004 0.0021 0.126 0.1738  0.3524  0.0004 0.1738 - 0.0021 03524 -

pBest <0.001 0.002 0.005 0.007

The first column shows the instance name (inst). For each operator (one among GSBX, GRX, PBX, spxb) the table includes the average fitness of
the best solution (avg), the standard deviation (std), the best solution (best). Last column (best) shows the best avg result among the four crossover
operators. In the rows at the bottom, the number of comparisons (#) against every operator with statistically different results according to the
Wilcoxon rank-sum test with Holm—Bonferroni correction at the 0.05 significance level. The following row (W) shows the number of comparisons
where the algorithm achieves a better average fitness. In the last rows (p and pBest), the p values relative to the Wilcoxon signed-rank test with
Holm-Bonferroni correction at the 0.05 significance level between each single-based version and against the column of the best results

of the Wilcoxon signed-rank test. None of the four single
operator-based versions of MAENS* algorithm is able to
perform as good as the “optimal” results (in the best col-
umn), as testified by the results of the Wilcoxon signed-rank
test included in the pBest row in Table 5.

The results of the comparison for the CARP instances
belonging to the Group B are included in Table 6. The table
shows the results of the four different versions of the algo-
rithm, based on the use of one of the four crossover operators
available. Analogously to the previous, the table presents
the average fitness (best), the standard deviation (std) and
the best result found (best) for each algorithm. The results
show how the best results are achieved always by the PBX-
and SPBX-based versions of the algorithm (providing better
results on all statistically different instances against the other
two versions). The GRX-based version, in contrast, is the one
that performs the worst (losing the comparison five times out
of six against the GSBX-based version and on all the statis-
tically different instances for the other two versions).

In both datasets, SPBX and PBX operators appear to be
the operators whose usage leads to the best results. This can
be explained by the fact that such operators can introduce
a fair amount of diversity in the offspring as one or more
routes are built from scratch. On the other hand, they main-
tain the good traits of the parents copying the routes that
are not affected by the recombination. The GSBX operator,
in contrast, might not introduce much diversity in the off-

spring as the new routes are a combination of the subroutes
of the parents. Therefore, despite being the least disruptive
operator, on the long term it produces a minor contribution
than SPBX and PBX. The GRX operator, on the other hand,
has a larger disruptive capacity as only the best routes are
preserved in the offspring. In the context of large instances
with a great number of routes as in the case of dataset B,
therefore, this operator might introduce an excessive level of
exploration and consequently perform worse than the others.

A further experiment was conducted to analyse the behav-
iour of the four crossover operators. A population of 10,000
solutions was generated using the initialization operator.
Each operator was then used to generate a population of
10,000 solutions, using a random parent selection mech-
anism. Table 4 reports the number of instances for which
the operators achieved the worst results in terms of fitness,
violation, average pairwise distance of the offspring popula-
tion and average distance from the parents. This experiment
has been repeated for both datasets. The results show that in
dataset A the operator GSBX achieves the worst results in
the largest number of instances for each of the characteristics
analysed. This is coherent with the results achieved by the
four evolutionary algorithms. On the other end, for dataset
B, GRX is the worst algorithm for both fitness and violation
and the second worst for both the diversity measures, which
reflects the behaviour of the algorithm. It is however worth
specifying that these results refer to the behaviour of the oper-
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Table 6 Experimental results
on Group B using alternatively
each crossover operator

inst GSBX GRX

avg std best avg std best
EGL-G1-A 983,408.50 3866.28 974,054 979,095.97 4718.81 968,747
EGL-GI-B 1,091,041.60 5539.83 1,081,857 1,094,405.97 7413.40 1,079,590
EGL-G1-C 1,213,921.77 5924.27 1,198,728 1,212,862.87 7906.85 1,198,393
EGL-G1-D 1,337,645.60 6620.72 1,322,885 1,336,158.93 6527.20 1,326,125
EGL-GI-E 1,473,433.10 5394.11 1,461,472 1,472,399.20 6338.61 1,461,155
EGL-G2-A 1,107,790.40 5057.72 1,099,946 1,138,050.43 10215.79 1,110,914
EGL-G2-B 1,225,440.43 5982.44 1,214,762 1,255,569.68 16865.83 1,224,099
EGL-G2-C 1,359,221.30 3798.77 1,349,981 1,404,364.32 10734.40 1,369,046
EGL-G2-D 1,497,934.97 6544.95 1,486,595 1,563,310.77 5689.30 1,552,126
EGL-G2-E 1,641,472.67 8022.86 1,626,564 1,713,877.53 8561.59 1,687,159

GRX PBX SPBX GSBX PBX SPBX
# 6 7 7 6 8 7
w 5

PBX SPBX

avg std best avg std best
EGL-G1-A 980,746.30 5681.29 970,911 978,411.33 4308.05 969,682
EGL-G1-B 1,087,682.37 5542.29 1,074,857 1,087,255.93 4986.75 1,079,899
EGL-G1-C 1,208,196.23 5138.15 1,198,557 1,210,928.20 5972.77 1,202,072
EGL-G1-D 1,330,286.83 6554.80 1,321,271 1,333,503.57 6436.41 1,324,605
EGL-G1-E 1,462,940.17 5293.51 1,452,158 1,467,270.13 5003.86 1,458,893
EGL-G2-A 1,104,884.20 3252.86 1,099,756 1,105,976.47 3662.89 1,098,458
EGL-G2-B 1,221,379.87 3586.68 1,213,622 1,220,895.90 4180.51 1,212,440
EGL-G2-C 1,351,635.77 5294.39 1,343,015 1,354,111.13 5087.04 1,343,399
EGL-G2-D 1,490,662.50 4435.48 1,484,014 1,492,414.43 4495.21 1,484,208
EGL-G2-E 1,635,578.87 4851.51 1,623,322 1,634,917.43 5199.54 1,623,417

GSBX GRX SPBX GSBX GRX PBX
# 7 8 1 7 7 1
w 7 8 1 7 7 0

The results of the four versions of the algorithm are split in two different rows. The first column shows the
instance name (inst). For each operator (one among GSBX, GRX, PBX, spxb) the table includes the average
fitness of the best solution (avg), the standard deviation (std), the best solution (best). In the rows at the
bottom, the number of comparisons (#) against every operator with statistically different results according to
the Wilcoxon rank-sum test with Holm—Bonferroni correction at the 0.05 significance level. The following
row shows the number of comparisons where the algorithm achieves a better average fitness

Bold results are the best results achieved among the four operators

ators with a population of low quality solutions (as they are
generated through the use of the initialization operator) and
might not necessarily reflect the behaviour of the crossover
operators during the most advanced phases of the search.

7.2 Operator selection rules and reward measures: a
comparison

The performance of the algorithm using different operator

selection rules and reward measures is shown in Tables 8 and
9, respectively, for the groups A and B. We include the results
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of the three combinations introduced in Table 1, along with
the optimal result considering the best performance of the
single operator versions (in the last column, named best). In
Table 8, the results of the statistical tests show how the three
versions of the algorithm achieve statistically different results
only on a limited subset of the instances (at most 7 between
MAENS*-IIa and MAENS#*-IIc). The versions achieving the
best results appear to be the ones adopting the concurrent
strategy as an OSR (MAENS*-IIa and MAENS*-IIb). The
two versions achieve extremely similar results (differing only
in three instances), while the version using the instantaneous
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Table 7 Experimental results on the instances of Group A relative to MAENS*, MAENS*-1Irw, the oracle, and MAENS* with random selection

inst MAENS* MAENS*Irw Oracle Random
avg std best avg std best avg std best avg std best

Co1 4161.67 19.38 4150 4158.67 13.16 4150  4155.33 13.03 4150  4164.67 18.48 4150
C05 5366 10.95 5365 5378.33 18.36 5365 5365 0 5365  5366.17 2.11 5365
C06 2542 25.1 2535 2545.17 3.98 2535  2536.67 3.73 2535  2541.33 4.82 2535
C09 5270 91.65 5260 5280.33 20.41 5260 5269 15.08 5260  5272.83 17.01 5260
C10 4702.17 6.54 4700 4707.33 11.53 4700  4700.67 3.59 4700  4702.17 6.54 4700
Cl1 4641.33 3.14 4630 4657 27.37 4640  4640.17 241 4630  4642.33 2.49 4640
Cl15 4946.17 7.38 4940 4964.17 15.76 4940 4947 9.27 4940  4946.17 3.80 4940
C18 5638.67 7.74 5620 5642.17 6.91 5625  5636.17 7.82 5625  5638.33 10.03 5620
DO1 3232.83 4.02 3215 3224.83 8.99 3215 32295 6.87 3215 3231.17 5.87 3215
D07 3115 0 3115 3116.33 34 3115 3115 0 3115 3115 0 3115
D08 3045.67 249 3045 3052 4.58 3045  3045.67 2.49 3045  3046.33 3.40 3045
D11 3761.5 391 3760 3762.67 6.42 3745  3759.67 4.99 3745  3760.17 2.41 3750
D21 3059.83 5.24 3050 3063.67 11.47 3055  3055.17 3.98 3050  3058.17 3.02 3050
D23 3164.83 12.28 3135 3167.83 12.23 3140  3153.17 8.51 3135  3165.83 14.55 3140
EO1 4911.17 2.11 4910 4916 6.11 4910 49105 1.5 4910  4910.83 2.27 4910
EO05 4606.67 22.34 4585 4621.5 21.57 4585 4612 24.17 4585  4605.83 22.10 4585
E09 5837 21.16 5815 5851.33 25.26 5815  5835.83 21.26 5815  5840.17 22.49 5810
Ell 4677 13.52 4655 4698 25.68 4670  4673.83 7.71 4665  4678.83 12.23 4670
El12 4202.33 13.15 4180 4226 17.63 4195 4204.5 11.5 4190  4203.67 11.32 4190
El5 4217.5 6.68 4205 4223.67 5.91 4210 42145 6.24 4205  4217.67 6.02 4210
E19 3242.67 423 3235 3244.67 1.8 3235 323833 4.71 3235 3242 4.58 3235
E21 3733 245 3730 3732.67 2.49 3730  3730.67 1.7 3730  3733.17 2.41 3730
E23 3715.5 1.5 3715 3720.5 7.34 3715 3714 2 3710 3716 2.71 3710
el-B 4501.2 8.33 4498 4509.17 11.68 4498  4502.6 8.5 4498  4500.80 7.44 4498
e2-B 6323.67 9.58 6317 6329.83 13.35 6317  6320.37 6.36 6317  6324.17 8.96 6317
e3-B 7780.43 591 7775 7790.47 11.23 7777  7783.93 11.61 7775 777843 3.22 7775
e3-C  10,317.6 18.45 10,292 10,323.6 20.38 10,292 10,316.63 18.86 10,292  10,313.07 15.52 10,292
ed-A 6462.5 3.04 6450 6464.07 5.39 6446  6462.77 2.58 6456  6462.13 5.20 6446
e4-B 9022.5 16.39 8988 9023.47 16.23 8992  9011.2 11.79 8993  9032.60 15.95 8999
e4-C  11,592.53 32.82 11,538 11,602.8 31.64 11,550 11,610.13 41.31 11,554 11,593.50 21.02 11,555
sl-B 6399.9 16.38 6388 6407.3 19.35 6388  6399.7 14.5 6388  6399.87 15.42 6388
s2-A 9931.63 26.62 9889 9943.43 32.78 9889  9928.37 27.01 9885  9933.97 29.35 9889
s2-B 13,179.07 26.11 13,124 13,217.13 44.41 13,159  13,179.2 29.61 13,124  13,181.57 32.72 13,125
s2-C  16,510.1 43.05 16,430 16,516.03 46.02 16,430 16,498 41.64 16,433  16,512.27 39.21 16,442
s3-A 10,282.63 29.41 10,221 10,293.87 29.07 10,242 10,276.5 26.39 10,221  10,288.63 28.17 10,243
s3-B 13,820.13 57.75 13,736 13,874.37 59.29 13,736  13,823.37 60.51 13,750  13,818.93 62.17 13,714
s3-C 17,289.73 4275 17,220 17,325.9 46.56 17,237  17,296.1 3342 17,249  17,286.87 3229 17,215
s4-A  12,400.87 4791 12,283  12,403.37 47.36 12,316 12,382.93 4171 12,304  12,407.07 31.77 12,305
s4-B 16,421.17 50.46 16,325 16,454.3 42.73 16,351 16,414.67 47.18 16,344  16,435.90 3333 16,334
s4-C 21,047.97 174.66 20,758 21,065.8 166.32 20,702 21,117.7 327.1 20,745  20,955.50 181.04 20,611
FO1 4046.83 2.73 4040 4046.43 2.54 4040 40445 3.73 4040  4046.17 3.34 4040
F04 3498.67 3.64 3485 3499.67 5.31 3485  3496.17 3.8 3485 3499 4.16 3485
FO7 3335 0 3335 3345 30 3335 3345 30 3335  3341.67 24.94 3335
F09 4746 11.79 4730 4750.53 12.34 4730 4742 8.12 4730  4746.67 10.83 4730
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Table 7 continued

inst MAENS* MAENS*IIrw Oracle Random

avg std best avg std best avg std best avg std best
F11 3850 11.11 3835 3846.97 13.56 3835 3841 6.88 3835 3851.50 12.12 3835
F12 3410 23.42 3395 3425.7 32.32 3395 3402.33 13.09 3395 3412.17 16.82 3395
Fl14 3342.33 12.23 3330 3340.83 13.17 3330 3338 13.52 3330 3344.33 12.16 3330
F19 2535.17 9.35 2525 2537.67 8.73 2525 2526.67 3.73 2525 2544.67 12.78 2525
F24 3234.33 8.63 3215 3232 9.36 3215 3225.5 11.28 3210 3239.33 9.64 3220
vall0D 530.6 1.23 528 532.13 1.65 530 529.9 1.08 528 531.03 1.35 528
val4D 530.13 0.72 530 530.77 2.04 530 530.23 0.76 530 530.37 1.17 530
val5D 583.13 2.06 579 583.97 3.42 577 581.93 2.69 577 583.57 2.29 579
val8C 524.63 1.76 521 524.23 2.49 521 523.37 1.76 521 524.93 1.77 521

MII*a MII*b MII*c M*1lc M*]la M*IIb M*Ila M*1Ib M*Ilc
# 4 2 4 36 19 18 8 8 4
w 0 0 2 3 16 18 0 0 0

The first column shows the instance name (inst). For each version of the algorithm tested the table includes the average fitness of the best solution
(avg), the standard deviation (std), the best solution (best). In the rows at the bottom, the number of comparisons against every operator with
statistically different results according to the Wilcoxon rank-sum test with Holm—Bonferroni correction at the 0.05 significance level. The following
row shows the number of comparisons where the algorithm achieves a better average fitness

reward (MAENS#*-IIc) differs from the other two respec-
tively in seven and five instances, and loses the comparison
in the majority of the cases. In contrast, MAENS*-IIc is the
variant that differs the least w.r.t. the best results achieved by
the single operator versions of the algorithm (only six statis-
tically different instances, while the other two versions differ
in eight ad nine instances).

Although such results show small differences between
the performances of the algorithms when adopting one OSR
rather than the other, it is possible to see how the concurrent
strategy appears to perform slightly better. This might be
explained by several factors. First, the use of more than one
crossover operator might introduce higher diversity in the
whole offspring population. Secondly, the capacity of mon-
itoring and verifying the performance of all the crossover
operators might be important to detect changes in the envi-
ronment. With regards to the reward measure adopted, the
two approaches achieved similar results. This could be inter-
preted by similar importance of the requirements that the
two measures try to satisfy (diversity and survival ability of
the offspring). The balance might be different when tackling
larger CARP instances, as in the case of those in Group B,
where the exploration ability of the operator might have a
bigger impact on the performance of the algorithm.

The results achieved by MAENS*-IIa and MAENS*-IIb
on Group B are included in Table 9. The two algorithms show
acomparable result on nine instances out of ten, with the only
statistically different result according to the Wilcoxon rank-
sum test being that of the instance EGL-G2-C, with a p-value
of 0.0004. The similarity of the results achieved by the two
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different versions of the algorithm in both datasets can be
explained by the fact that the use of the FLA metrics makes
the algorithm more robust with respect to the reward measure
considered. Further experiments with more aggressive credit
assignment strategies might reveal more differences between
the adoption of the two different reward measures. Finally,
we provide a comparison with a version the algorithm select-
ing one crossover operator randomly during each generation.
The results of such algorithm are included in Table 7, in the
rightmost column named random. At the bottom it is possible
to see the number of statistically different instances according
to the Wilcoxon rank-sum test with a level of significance of
0.05 (line #) with respect to the three algorithms MAENS*-
ITa, MAENS*-IIb and MAENS*-Ilc, along with the number
of times the random algorithm has won the comparison (line
W). It is worth noting that the random algorithm achieves a
fairly good performance, as it achieves statistically compa-
rable results with the proposed techniques for most of the
instances. This result could be interpreted as a probable sign
of positive interaction between the crossover operators that
have been considered in this case study.

7.3 Effectiveness of the FLA measures

An experiment was designed to understand whether the use
of the online FLA techniques has a beneficial effect on
both the optimization ability and the prediction capacity of
the algorithm. Therefore, MAENS*-Ilc was compared to
MAENS*-rw, a version of the algorithm which only makes
use of the Proportional Reward measure as an input feature of
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Table 8 Experimental results on the instances of Group A for MAENS*-Ila, MAENS*-1Ib and MAENS*-1Ic

inst MAENS*-Ila MAENS*-IIb MAENS*-IIc best
avg std best avg std best avg std best avg

Co1 4159.50 17.53 4150 4156.50 12.66 4150 4160.00 17.75 4150 4151.67
C05 5367.17 3.34 5365 5366.83 241 5365 5369.00 5.83 5365 5366.00
C06 2540.00 5.00 2535 2539.67 4.99 2535 2541.00 4.90 2535 2537.50
C09 5268.00 16.00 5260 5261.67 7.23 5260 5264.00 10.12 5260 5262.83
C10 4707.33 9.64 4700 4704.17 8.37 4700 4705.17 9.53 4700 4703.33
Cl1 4641.33 3.14 4630 4641.50 2.29 4640 4642.33 2.49 4640 4641.33
C15 4944.67 7.74 4940 4945.50 4.72 4940 4946.00 7.57 4940 4946.33
C18 5641.17 9.04 5620 5637.50 8.73 5620 5637.76 9.27 5620 5635.00
D01 3232.83 3.10 3225 3231.17 6.67 3215 3232.17 5.11 3215 3225.00
D07 3115.00 0.00 3115 3115.00 0.00 3115 3115.00 0.00 3115 3115.00
D08 3045.33 1.82 3045 3047.67 4.42 3045 3047.67 4.42 3045 3045.67
D11 3760.33 2.25 3755 3760.50 1.50 3760 3761.72 3.48 3755 3760.17
D21 3058.33 3.24 3050 3058.33 3.25 3050 3059.00 4.16 3050 3056.67
D23 3172.67 9.66 3150 3162.50 13.34 3135 3162.67 7.39 3150 3158.17
EO1 4911.00 2.41 4910 4911.00 2.00 4910 4911.50 2.93 4910 4910.33
EO05 4611.83 25.35 4585 4601.17 18.74 4585 4615.00 26.08 4585 4607.33
E09 5830.67 18.35 5810 5832.17 19.39 5810 5834.17 21.64 5810 5832.67
Ell 4674.33 10.70 4670 4672.33 5.12 4670 4678.00 15.03 4660 4671.67
El12 4201.00 7.39 4195 4205.33 12.24 4195 4207.50 14.59 4180 4200.67
E15 4218.00 6.98 4210 4217.83 5.73 4205 4219.33 5.59 4210 4215.00
E19 3243.33 3.78 3235 3242.00 4.58 3235 3242.00 4.58 3235 3239.33
E21 3733.50 2.31 3730 3733.67 2.21 3730 3733.27 2.39 3730 3731.33
E23 3715.83 3.23 3710 3716.83 2.73 3715 3715.50 1.98 3710 3715.17
el-B 4503.60 9.87 4498 4499.67 6.26 4498 4504.79 10.42 4498 4501.77
e2-B 6324.67 10.28 6317 6321.63 5.84 6317 6323.86 9.41 6317 6321.93
e3-B 7783.77 9.12 7775 7782.87 8.35 7777 7786.55 10.73 7777 7780.90
e3-C 10,312.23 15.45 10,292 10,314.80 20.03 10,292 10,318.31 19.15 10,292 10,310.67
ed-A 6463.87 3.30 6454 6463.07 2.02 6461 6463.83 5.07 6446 6463.47
e4-B 9029.27 16.82 9000 9026.63 16.17 9000 9021.10 17.84 8990 9013.10
e4-C 11,589.13 24.44 11,540 11,586.80 27.09 11,536 11,621.28 72.42 11,555 11,584.97
sl-B 6402.53 18.33 6388 6401.80 16.88 6388 6397.59 12.70 6388 6393.17
s2-A 9931.93 25.17 9889 9928.37 24.06 9889 9934.80 29.49 9881 9929.37
s2-B 13,171.97 24.27 13,122 13,170.97 31.06 13,107 13,171.41 29.10 13,123 13,163.57
s2-C 16,478.50 34.87 16,425 16,492.30 39.99 16,442 16,505.97 51.89 16,434 16,456.77
s3-A 10,282.67 32.08 10,221 10,288.47 28.39 10,221 10,290.67 25.78 10,251 10,284.60
s3-B 13,814.90 58.66 13,722 13,818.63 73.32 13,717 13,821.50 47.04 13,747 13,792.63
s3-C 17,287.27 37.04 17,205 17,288.43 31.12 17,223 17,309.87 37.46 17,221 17,287.70
s4-A 12,404.20 35.59 12,301 12,388.17 37.70 12,304 12,388.59 4142 12,316 12,367.40
s4-B 16,399.90 50.38 16,305 16,427.13 51.61 16,278 16437.60 54.52 16,281 16,384.27
s4-C 20,847.80 134.55 20,603 20,912.60 266.38 20,565 21,037.24 223.95 20,648 20,796.70
FO1 4047.00 2.79 4040 4045.50 3.25 4040 4047.59 3.32 4040 4046.67
F04 3498.67 3.45 3485 3498.17 4.74 3485 3499.00 4.16 3485 3498.83
FO7 3348.33 30.45 3335 3345.00 30.00 3335 3338.34 17.95 3335 3338.33
F09 4749.50 12.21 4730 4746.67 10.43 4730 4748.45 8.48 4730 4743.00
F11 3843.67 11.25 3835 3843.17 11.58 3835 3847.07 12.35 3835 3839.83

@ Springer



P. A. Consoli et al.

Table 8 continued

inst MAENS*-Ila MAENS*-IIb MAENS*-IIc best
avg std best avg std best avg std best avg

F12 3404.67 11.93 3395 3408.00 17.45 3395 3416.83 26.94 3395 3410.17

Fl14 3342.50 9.62 3330 3343.33 16.35 3330 3339.50 11.86 3330 3339.29

F19 2541.67 9.59 2525 2533.17 6.39 2525 2532.50 9.64 2525 2531.17

F24 3235.33 10.33 3215 3232.50 9.46 3215 3233.83 10.38 3210 3230.17

vall0D 530.77 0.94 528 530.70 1.39 528 531.13 1.26 529 530.50

val4dD 530.73 2.25 530 530.13 0.43 530 530.53 1.65 530 530.00

val5D 582.67 2.67 577 582.97 2.07 579 581.93 2.83 577 581.87

val8C 524.40 2.12 521 524.73 1.57 522 524.73 2.00 521 524.37

b c best a c best a b best
# 3 7 9 3 5 8 7 5 6
w 1 5 0 2 5 0 2 0 0

The first column shows the instance name (inst). For each version of the algorithm tested the table includes the average fitness of the best solution
(avg), the standard deviation (std), the best solution (best). In the rows at the bottom, the number of comparisons against every operator with
statistically different results according to the Wilcoxon rank-sum test with Holm—Bonferroni correction at the 0.05 significance level. The following
row shows the number of comparisons where the algorithm achieves a better average fitness

Table 9 Experimental results on the instances of Group B for MAENS*-I1a and MAENS*-IIb

inst BK MAENS*-Ila MAENS*-IIb
avg std best avg std best

EGL-G1-A 970,495 978,636.00 5267.70 964,014 978,127.07 5330.95 968,157
EGL-G1-B 1,085,097 1,086,113.80 4709.52 1,075,069 1,088,504.40 5597.17 1,076,011
EGL-G1-C 1,201,030 1,209,512.20 5983.41 1,197,057 1,208,264.80 6225.46 1,196,975
EGL-G1-D 1,325,317 1,331,918.77 5702.86 1,322,682 1,331,367.00 5963.31 1,318,679
EGL-G1-E 1,461,469 1,466,771.97 6458.51 1,451,314 1,465,321.17 4890.69 1,455,995
EGL-G2-A 1,061,103 1,107,519.20 3744.93 1,099,674 1,107,461.13 2864.67 1,101,083
EGL-G2-B 1,173,286 1,220,912.47 4687.58 1,213,516 1,220,423.67 4751.97 1,213,237
EGL-G2-C 1,295,036 1,356,660.60 4883.30 1,346,969 1,352,307.90 5182.32 1,338,497
EGL-G2-D 1,430,267 1,493,163.27 5173.56 1,482,470 1,494,645.93 5294.38 1,486,269
EGL-G2-E 1,557,159 1,635,756.30 5750.90 1,622,468 1,636,974.10 6235.37 1,626,530

The first column shows the instance name (inst). The second column shows the fitness of the best known (BK) solution for each instance (Martinelli
et al. 2013). For each version of the algorithm tested the table includes the average fitness of the best solution (avg), the standard deviation (std),

the best solution (best)

the learning algorithm, without considering the values pro-
vided by the FLA techniques. In this context, we are not
interested in the results achieved by the algorithm but rather
we want to verify that the results are significantly differ-
ent or not and prove, as a consequence, a certain suitability
of the rtDWM algorithm to the presence of the FLA mea-
sures. The results of such algorithm are included in Table 7
in the column MAENS*-IIrw. A Wilcoxon ranked-sum test
was performed against the results achieved by MAENS*-Ilc.
The two algorithms produced statistically different results
on 36 instances out of 53. MAENS*-IIrw achieved better
results only on three instances, losing the comparison on
33. A Wilcoxon signed-rank test was consequently applied
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across the problem instances, which confirmed that the two
algorithms produce significantly different results (respec-
tively Wgae = 26 with p < 0.05 and Wy = 54.5
sample size: 42). This can be interpreted as a signal that the
rDWM is concretely affected by the FLA measures, which
influence (in a beneficial way) the decisions made by the
algorithm.

7.4 Comparison with the state-of-the-art
The second research question in the introduction of this paper

focuses on the performance of the proposed approach with
respect to the existing ones. Therefore, the MAENS*-II vari-



Dynamic selection of evolutionary operators based on online learning...

Table 10 Comparison with some state-of-the-art approaches for CARP

inst MAENS* MAENS-RDG VNS ILS-RVND
avg best avg best avg best avg best

EGL-G1-A 977,754.4 968,897 1,007,223.0 1,000,575 10,007,393.0 997,055 1,014,930.9 1,004,864
EGL-G1-B 1,088,706.5 1,079,793 1,124,751.0 1,111,971 1,122,077.0 1,114,120 1,143,221.7 1,129,937
EGL-G1-C 1,209,058.8 1,195,902 1,251,718.0 1,243,779 1,253,789.0 1,243,808 1,270,100.3 1,262,888
EGL-G1-D 1,331,595.8 1,323,397 1,383,619.0 1,371,443 1,383,997.0 1,373,480 1,409,811.9 1,398,958
EGL-G1-E 1,469,455.4 1,449,542 1,524,393.0 1,512,584 1,525,994.0 1,517,772 1,556,138.5 1,543,804
EGL-G2-A 1,107,363.0 1,101,559 1,108,916.0 1,096,027 1,105,870.0 1,098,454 1,126,561.0 1,115,339
EGL-G2-B 1,223,132.3 1,213,769 1,222,183.0 1,213,617 1,220,012.0 1,211,759 1,237,741.8 1,226,645
EGL-G2-C 1,354,725.3 1,345,587 1,353,118.0 1,344,148 1,351,845.0 1,344,184 1,376,931.6 1,371,004
EGL-G2-D 1,495,089.7 1,486,646 1,489,723.0 1,481,181 1,489,500.0 1,481,045 1,520,794.3 1,509,990
EGL-G2-E 1,636,140.6 1,630,656 1,630,132.0 1,618,955 1,630,048.0 1,616,119 1,664,230.2 1,659,217

The first column shows the instance name (inst). For each algorithm the table includes the average fitness of the best solution (avg) and the best
solution (best). The results are compared to those achieved by MAENS*-I1a and MAENS*-1Ib included in Table 9. The algorithms considered are
MAENS#* (Consoli and Yao 2014), MAENS-RDG (Mei et al. 2014a), VND (Mei et al. 2014b) and ILS-RVND (Martinelli et al. 2013). No statistical
test was carried out due to the partial availability of the results of the compared algorithms

ants that make use of the Proportional Reward (a and b) were
tested against the oracle. All the three variants were also
compared against the results achieved by their base algo-
rithm MAENS*. The results achieved by the oracle and by
the MAENS* algorithm for Group A are included in Table
7, in columns MAENS* and oracle. In the bottom rows, the
results of a Wilcoxon rank-sum test with Holm—Bonferroni
correction at the 0.05 significance level show the number of
instances with statistically different results. The results of the
statistical test show how the number of statistically different
results is small (4 for MAENS*-11a and MAENS*-IIc and 2
for MAENS*-IIb). In these few instances, MAENS*-Ila and
MAENS#*-b perform better than MAENS*, while MAENS*-
IT wins the comparison in half of the instances (2 out of 4).
The online learning system is therefore able to achieve results
comparable to those achieved by the bandit solver.

The comparison with the oracle shows that MAENS*-1la
and MAENS#*-IIb are able to achieve comparable results in
most cases. In most of the instances with statistically different
results, the oracle was able to perform better. It is worth
noting that in a small number of instances the algorithm using
the FLA measures was able to produce better results than the
oracle. This is some evidence that, if the oracle represents a
“lower bound” for the results that is possible to achieve using
the proportional reward, the use of more than one measures
(as in this case) can help the algorithm to achieve results
beyond these bounds.

Finally, the results achieved by MAENS*-Ila and
MAENS*-IIb, included in Table 9, are compared against
four state-of-the-art algorithms, whose results are included in
Table 10. We consider the results of MAENS* (Consoli and
Yao 2014), of MAENS-RDG (Mei et al. 2014a) and VND
(Mei et al. 2014b) and an algorithm combining iterate local

search and variable neighbourhood descent (Martinelli et al.
2013).

It is possible to notice how MAENS*-ITa and MAENS*-
IIb, as well as MAENS#*, outperform all the other algorithms
in terms of solution quality for the first five instances of Group
B (Table 9). MAENS*-IIa, MAENS*-IIb and MAENS* pro-
duce a new best known solution for all of these instances,
with MAENS*-IIa achieving the best ones on the first two
instances (G1-A and G1-B), MAENS*-IIb on instances G1-C
and G1-D and MAENS* finding the best one on the instance
G1-E. In all these instances MAENS*-1Ia and MAENS*-IIb
achieve also the best average fitness in four cases. For the fol-
lowing five instances, the best results are achieved by either
MAENS-RDG or VND. In all these cases, MAENS* is out-
performed by both MAENS*-IIa and MAENS*-IIb. These
results can be explained by the fact that their base algorithm,
MAENS*, is already performing well for these instances.
However, both variants MAENS*-Ila and MAENS*-IIb
managed to outperform MAENS#* in most of the instances.
It is important to note that the runtime (not considered in
this work) of these algorithms is not comparable to those of
the decomposition-based approaches, which manage to find
these results in a fraction of the time required by MAENS*-
ITa and MAENS*-IIb.

The behaviour of the algorithms can be analyzed also in
terms of the fitness distribution of its solutions. Figure 5
shows the box plot relative to three representative instances
belonging to Group A (egl-e4-C, egl-s1-B, egl-s2-B) and one
instance of Group B (EGL-G2-A). In the case of the EGL-
G1-A instance, it is possible to notice how SPBX and GRX
are the crossover operators whose usage leads to the dis-
tributions with the lowest median. The distribution of the
three AOS considered in this case (MAENS*, MAENS#*-
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Fig. 4 The network relative to the D07 instance (a). The cost of serv-
ing each edge is proportional to the thickness of the line. Non required
edges can be identified by dotted lines. In b—e the four routes that com-

IIa and MAENS*-IIb) are centered around the same median
value, although MAENS*-IIa is capable of producing solu-
tions of considerably better quality (bottom whisker) which
translate into new minima for this instance. For the egl-s1-B
instance (Fig. 5b), the behaviour of the algorithms is quite
similar, as in most of the cases the distributions lie around the
same median. When considering the results of the versions
of the algorithm using each crossover operator, GSBX, GRX
and SPBX show a much wider distribution of their results
although in the first two cases a large number of solutions are
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pose a solution for this problem instance, generated by the MAENS*-Ila
algorithm. The edges served during each route have been highlighted
in black

equal to the median value, while PBX results are much less
spread. The different AOS strategies achieve overall compa-
rable results. This instance represents an example of non opti-
mal behaviour as none of the AOS strategies considered has
managed to match that of the best crossover operator (GRX).

For egl-s2-b (Fig. 5¢), PBX is the operator that achieves
the best results, while GRX performs the worst. MAENS*-
IIb manages to achieve the same solution quality and similar
median to PBX. This is also confirmed by the larger selection
rate given to the PBX operator (Fig. 7b).
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Fig. 5 Boxplots relative to the four instances EGL-G2-A (a), egl-s1-b
(b), egl-s2-b (c), egl-e4-c (d). The boxes refer to the first quartile, median
and third quartile. Whiskers show minimum and maximum values over

In the case of egl-e4-c (Fig. 5d), PBX and SPBX distribu-
tions have a similar median and similar quartiles performing
the best among the four crossover operators. Among the AOS
strategies, MAENS*-IIb solutions are distributed around a
similar median but more spread.

7.5 Prediction ability

To understand the behaviours of the algorithms, and to gain a
deeper understanding of the selection mechanisms, we pro-
vide a comparison of the selection rates of the four different
crossover operators, included in Figs. 6, 7 and 8. The plots
refer to the selection rates relative to the instances egl-s/-B,
egl-s2-B and EGL-G2-A. The y-axis in the figure refers to the
selection rate (SR) of each crossover operators, where a SR
of 0 means that the operator is not selected and a SR equal
to 1 means that only that operator is selected. The x-axis
corresponds to the average fitness of the population discre-
tised into 50 intervals. We study, therefore, how the SR of
the four operator changes while the search is carried out and
the average fitness of the population decreases.

In the first instance, egl-s/-B (Fig. 6), it is possible to
notice three phases in the oracle prediction (Fig. 6e). A first
phase where the GRX operator is preferred over the others, an

egl-s1-b
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N & &
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a sample size of 30 best fitness values relative to the independent runs
of each algorithm reported in Tables 5, 6, 7, 8, 9 and 10

intermediate phase where the GRX and GSBX operators have
nearly equal selection rates and a last phase characterized by
arise of the selection rate of the GRX operator which reaches
1 in the last moments of the search.

Both MAENS* (Fig. 6d) and MAENS*-Ilc (Fig. 6¢)
award the GSBX operator with the highest selection rate for
the whole search, missing the prediction of the change in the
environment made by the oracle. It is possible to see, how-
ever, how MAENS*-IIc increases the selection rate of GSBX
more rapidly than MAENS*.

The SR of both MAENS*-Ila (Fig. 6a) and MAENS*-
IIb (Fig. 6b) show different changes during the search,
proving that the CS is more successful in predicting such
events. In particular, MAENS*-IIb acknowledges the oper-
ators GSBX and PBX as the most useful ones during the
search. It is worth remembering that MAENS*-Ila, makes
use of a different reward measure and, therefore, is not com-
parable to the prediction made by the oracle. In this case,
MAENS#*-IIa, after an initial epoch of dominance of the oper-
ator GRX, shows an alternance of moments where the three
operators GRX, PBX and SPBX show the highest selection
rates.

On the second instance (Fig. 7), the oracle identifies
a change in the environment halfway through the search

@ Springer
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Fig. 6 Selection rates for the instance eg/-s-b. Each graph shows the selection rates of the four different crossover operators (GSBX, GRX, PBX,
SPBX) when using respectively MAENS*-11a (a), MAENS*-1Ib (b), MAENS*-IIc (c), MAENS* (d) and the oracle (e)

(Fig. 7e). The concept drift is not detected by either MAENS*
(Fig. 7d) or MAENS*-IIc (Fig. 7c¢), which, however shows
an higher exploitation of the GSBX operator. MAENS*-IIb
(Fig. 7b) identifies the operators GSBX and PBX as the most
successful ones; even in this case the change detected by
the operator is not detected. As for the previous instance,
MAENS#*-Ila (Fig. 7a) shows different moments where the
three operators GRX, PBX and SPBX achieve the highest SR.
The lowest SR for GSBX seems to indicate that this operator
is probably the one that introduces the least diversity in the
population.

@ Springer

For the large CARP instance EGL-G2-A, the behaviour of
MAENS* (Fig. 8c) shows a predominance of operator GSBX
over the other ones. MAENS*-IIb (Fig. 8b) shows a similar
behaviour to that of MAENS#*, identifying the GSBX oper-
ator as the one with the best performance during almost the
whole search. Finally, MAENS*-IIa shows again an initial
period of higher performance for the GRX operator, fol-
lowed by an alternance of the PBX and SPBX operators
(Fig. 8a). The occurrence of this initial period of higher per-
formance for the GRX operator seems to suggest that this
operator is introducing the highest diversity in the initial part
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Fig. 7 Selection rates for the instance egl-s2-b. Each graph shows the selection rates of the four different crossover operators (GSBX, GRX, PBX,
SPBX) when using respectively MAENS*-11a (a), MAENS*-1Ib (b), MAENS*-IIc (c), MAENS* (d) and the oracle (e)

of the search, when the solutions are not extremely good
(Fig. 8a).

The results of these experiments show that failing to detect
a change in the environment does not necessarily translate
into a worst performance of the algorithm and vice versa.
This is confirmed by the fact that the algorithms produce good
results despite the different selection rates. The relationship
between the prediction ability of the algorithms and their
results is, therefore, quite complex. There are several factors
that influence its behaviour and that should be considered in
order to fully grasp this mechanism, such as the interaction

between the different operators, the performance of the single
operators and the variation of the selection rates.

8 Conclusions and future work

In this work, we proposed the adoption of a novel adaptive
operator selection scheme to identify the optimal crossover
operator online. We consider the use of two different reward
measure strategies, the diversity-based reward (DBR) and
the proportional reward (PR), as well as two different oper-
ator selection rule, namely the instantaneous reward (IR)
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MAENS#*-IIb (b) and MAENS* (¢). We do not include the results

and a concurrent approach (CA). The AOS proposed com-
bines a set of four fitness landscape analysis measures in
conjunction with an online learning algorithm, to predict
the most suitable crossover operator. We have chosen four
FLA metrics to be used as inputs of our predictive model:
accumulated escape probability, dispersion metric, average
neutrality ratio and average delta fitness of neutral networks.
These metrics have been chosen because (1) they can be
computed without much increasing the computational effort
and (2) they complement each other by capturing different
features of the landscapes. Three versions of the MAENS*
(Consoli and Yao 2014) algorithm were implemented and
tested on two datasets of CARP instances. The results of
such experiments were compared against those by state-
of-the-art algorithms, and against an oracle. The results
achieved by MAENS*-II show that this technique is able
to compete with the state-of-the-art techniques and can, in
some cases, exploit the multiple measures to outperform
the state-of-the-art. In the dataset containing large CARP
instances, MAENS*-II was able to outperform all the exist-
ing approaches in terms of average and best solution quality
in half of the instances, and even discovered new lower
bounds.
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on EGL-G2-A for MAENS*-IIc as only versions MAENS*-1la and
MAENS*-IIb were tested on this dataset, as well as the oracle results,
due to the extremely high computational cost required to perform this
task

Our experiments seem to suggest a better performance of
the concurrent strategy over the instantaneous reward, and a
comparable performance of the two reward measure strate-
gies.

This work leaves space for interesting directions that can
be explored. First, the two reward measures might be com-
bined to generate a novel measure that is able to predict better
both the diversity and the survival ability of the offspring.
Secondly, it would be interesting to test the behaviour of our
algorithm when adopting an average or extreme reward strat-
egy and the use of different base learners. Adaptive operator
selection might be extended to different cases. In particu-
lar, fo MAENS, an AOS strategy can be adapted to choose
among different parent selection strategies for the crossover
operator, to analyze its impact on the offspring generation.
Another direction is that of reducing the computational cost
of MAENS*-II. Furthermore, due to the improved optimiza-
tion ability provided by this approach, it would be interesting
to test the use of MAENS*-II as the single objective routine
for existing decomposition-based approaches. Finally, our
technique might be adopted to improve the performance of
evolutionary algorithms for other combinatorial optimization
problems.
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