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Abstract

We develop a novel Bayesian doubly adaptive elastic-net Lasso
(DAELasso) approach for VAR shrinkage. DAELasso achieves vari-
able selection and coefficients shrinkage in a data based manner. It
constructively deals with the explanatory variables that tend to be
highly collinear by encouraging grouping effect. In addition, it allows
for different degree of shrinkages for different coefficients. Rewriting
the multivariate Laplace distribution as a scale mixture, we establish
closed-form conditional posteriors that can be drawn from a Gibbs
sampler. Empirical analysis shows that forecast results produced by
DAELasso and its variants are comparable to that of other popular
Bayesian methods, which provides further evidence that the forecast
performances of large and medium sized Bayesian VARs are relatively
robust to prior choices, and in practice simple Minnesota types of pri-
ors can be more attractive relative to their complex and well designed
alternatives.

∗I would like to thank Gary Koop, Esther Ruiz and two anonymous referees for their
constructive comments. I would also like to thank the conference participants of CFE11,
ESEM2012, and RCEF2012 for helpful discussions. Any remaining errors are my own
responsibility.
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1 Introduction

Tibshirani’s (1996) least absolute shrinkage and selection operator (Lasso)

and its variants, such as elastic net Lasso (e-net Lasso) of Zou and Hastie

(2005), and grouped Lasso of Yuan and Lin (2007) are widely used for vari-

able selection and parameter shrinkage for large data set. Recently, Bayesian

Lasso has gained popularity as it can be easily implemented through MCMC

or a Gibbs sampler (e.g. Park and Casella, 2008; Kyung et al, 2010), and

it can automatically achieve adaptive shrinkage to allow for different degree

of shrinkage (e.g. Griffin and Brown, 2010; Leng et al, 2010). Despite being

successful, the Lasso literature is mainly concentrated on single equation

models. To our best knowledge, only a few studies in the frequentist frame-

work (e.g., Hsu, Hung and Chang, 2008; Song and Bickel, 2011) explore

Lasso shrinkage for vector autoregressive (VAR) models. And these avail-

able methods can be too restrictive as they either assume the covariance

matrix of the VAR errors to be diagonal or assume its off-diagonal elements

are much smaller than the diagonal ones.

This paper develops a novel Bayesian Lasso method for VAR shrinkage.

Considering large VAR models usually have highly correlated explanatory

variables, we propose using doubly adaptive e-net Lasso (DAELasso) for

macroeconomic research. DAELasso extends the adaptive e-net Lasso of

Zou and Zhang (2009) for single equation models into VAR context. Unlike

adaptive e-net Lasso that only adapts the tuning parameters of the L1 norm,

DAELasso allows for tuning parameters of both the L1 and L2 norms to be
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adapted.1 While Lasso generally only picks up one variable among a group

of highly correlated variables, DAELasso has the potential of selecting all

the important variables by encouraging grouping effects through e-net and

adaptive shrinkage. Our scale mixture prior leads to closed-form conditional

posteriors that can be directly drawn from a Gibbs sampler. Compared

to its frequentist counterparts, DAELasso is more flexible as it does not

need to impose unrealistic restrictions on the covariance matrix of the VAR

errors. Hence it can better capture interdependencies between the variables.

Considering that DAELasso can be too complicated for some data, in this

paper, we also introduce four alternative Lasso types of VAR shrinkage

methods: Lasso, adaptive Lasso, e-net Lasso, and adaptive e-net Lasso,

each of them is a nested version of DAELasso.

Large Bayesian VARs are widely used for forecasting macroeconomic

variables (e.g. Sims, 1972, 1980; Banbura et al, 2010). In empirical work, we

evaluate the forecasting performance of DAELasso approach along with its

variants. In addition, we compare the forecasting performance of these Lasso

types of methods with that of the popular Baysian VAR shrinkage methods

reviewed in Koop (2011). Those priors include the traditional Minnesota

prior of Doan et al (1984) and Litterman (1986) and its natural variants (e.g.

Kadiyala and Karlsson, 1997, Banbura et al, 2010), the stochastic search

variable selection (SSVS) prior of George et al (2008), and the family of

SSVS plus Minnesota priors of Koop (2011). We employ Koop’s (2011) data

1Note that if we have formal and informal economic theory at hand to group the data,
it can be more desirable to have other type of Lasso, such as the grouped Lasso, instead
of e-net Lasso for VAR shrinkage. Yet in general we do not have such information, and
e-net Lasso turns out to be the most appealing choice for it encourages the grouping effect
supported by the data itself (Zou and Hastie, 2005).
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set that contains 20 US macroeconomic series, which is originally compiled

by James H. Stock and Mark W. Watson. The data runs from 1959Q1 to

2008Q4. In line with Koop (2011), we conduct rolling and recursive forecast

exercises and calculate both the mean squared forecast error (MSFE) and

predictive likelihood measures. Using relatively uninformative priors, we

find DAELasso approach leads to forecasting results that compares favorably

or equally well to other Bayesian VAR shrinkage methods. This suggests

that DAELasso approach is an appropriate complement to the available

Baysian VAR toolkit.

This paper is closely related to the growing literature on forecasting with

many macroeconomic variables.2 Popular methods in the existing literature

include factor models (e.g. Stock and Watson, 2002a,b; Forni el al, 2000)

and Bayesian shrinkage with a wide range of prior choices (e.g. De Mol et al,

2008; Banbura et al, 2010). De Mol et al (2008) and Koop (2011) find that

these forecasts tend to be highly correlated, and Bayesian VARs do tend

to forecast better than factor models. Our empirical results provide further

evidence for the robustness of Bayesian shrinkage methods for forecasting

with a large number of predictors. In addition, our findings suggest that,

as stress in Koop (2011), so far the simple and less computationally costly

Minnesota priors can be more attractive to practitioners as they forecast

equally well or even better than their much complicated counterparts.

The remainder of the paper is organized as following. Section 2 develops

the Bayesian DAELasso methods. Section 3 presents four alternative Lasso

types of VAR shrinkage methods that nested in DAELasso. Section 4 present

2I thank a referee for pointing this out.
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the empirical findings. Section 5 concludes. The data list and results for

prior sensitivity analysis are provided in the appendix.

2 The Estimator and Bayesian Methods

Without loss of generality, we assume that all the variables are centered. Let

Y be a T × N dependent variables, X be a T × Nk matrix contains the k

lags of each dependent variable, and B be the coefficient matrix of dimension

Nk ×N . In matrix form, an unrestricted VAR model of N variables takes

the following form:

Y = XB + E (1)

where E is a T ×N matrix for i.i.d. error terms with its tth row distributed

as N(0,Σ).

Given the assumptions of the error term, the likelihood function of model

(1) can be expressed as

L(b,Σ) ∝ |Σ|−
T
2 exp{−1

2
tr(Y −XB)

′
(Y −XB)Σ−1} (2)

Note that when X
′
X is not of full rank, which is often the case when we

have more parameters than the number of observations, the least squares

estimator BLS = (X
′
X)+X

′
Y is noisy, where (X

′
X)+ is the Moore-Penrose

generalized inverse of X
′
X.

Vectorizing the matrices, we can transform model (1) into

y = (In ⊗X)β + e (3)
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where y = vec(Y ), β = vec(B), e = vec(E) and e ∼ N(0,Σ ⊗ IT ). The

dimension of β is N2k × 1.

We define the DAELasso estimator for a VAR as following:

β̂dL = arg minβ{[y− (In⊗X)β]
′
[y− (In⊗X)β] +

N2k∑
j=1

λ1,j |βj |+
N2k∑
j=1

λ2,jβ
2
j }

(4)

where λ1,j and λ2,j , for j = 1, 2, ..., N2k, are positive tuning parameters

associated with the L1 and L2 penalties, respectively. We allow for different

tuning parameters for different βj to allow for different degree of shrinkages.

For notational convenience, we define Λ1 = diag(λ1,1, λ1,2, ..., λ1,N2k) and

Λ2 = diag(λ2,1, λ2,2, ..., λ2,N2k). Note that DAELasso defined in equation

(4) is closely related to Zou and Zhang’s (2009) adaptive e-net Lasso for

single equations.

2.1 Priors

In the Bayesian framework, univariate Bayesian Laplace prior, which can be

expressed as a scale mixtures of Normals with an exponential density (An-

drews and Mallows, 1974), is widely used to enforce sparsity induced by the

L1 penalty in Lasso (e.g, Park and Casella, 2008; Leng et al, 2010; Korobilis,

2011). It is natural to consider extending the univariate Bayesian Laplace

prior into multivariate analysis. However, this is not so straightforward. As

noted by van Gerven et al (2009, 2010), the commonly used multivariate

Laplace distributions (e.g, Kotz et al, 2001; Eltoft el al, 2006) generally do

not factorize into a product of univariate Laplace distributions that can be

associated with the individual coefficients.
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Our approach is directly motivated by van Gerven et al’s (2009, 2010)

multivariate Laplace prior for single equation models. van Gerven et al

(2009, 2010) use a scale mixture of Normals to reflect their prior knowledge

of the interactions between the coefficients. Our scale mixture prior is similar

to theirs, however, our prior is more about ensuring the priors associated

with the L1 norm are conditional on the unrestricted covariance matrix

of the VAR errors. Conditioning on the covariance matrix of the VAR

errors is important because otherwise the posterior may not be unimodal

(Park and Casella, 2008). The posterior of van Gerven et al (2009, 2010)

is not in a tractable form, and they use approximate inference methods

for posterior computations. By contrast, our prior can lead to tractable

conditional posteriors that can be directly drawn from Gibbs sampler.

We consider a conditional multivariate mixture prior of the following

form:

π(β|Σ,Γ,Λ1,Λ2) ∝
N2k∏
j=1

{
√

λ2,j√
2π

exp(−λ2,j

2
β2
j )

×
∫ ∞

0

1√
2πfj(Γ))

exp[− 1

2fj(Γ)
β2
j ]d(fj(Γ))}

× {|M |−
1
2 exp(−1

2
Γ

′
M−1Γ)}2

(5)

where Γ = [γ1, γ2, ..., γN2k]
′
, M = Σ ⊗ INk, and fj(Γ) is a function of Γ

and Λ1 to be defined later. In this mixture prior, the terms associated with

the L1 penalty are conditional on Σ through fj(Γ). This is important as

otherwise the posterior will be not unimodal due to the ‘sharp corners’ of the
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L1 penalty (Park and and Casella, 2008). In equation (5), the variances of

βa and βb for a ̸= b are related through M . However, βa and βb themselves

are independent of each other.

We need to find an appropriate fj(Γ) which provides us tractable pos-

teriors. The last term in equation (5) takes the form of a multivariate

Normal distribution Γ ∼ N(0,M). For ease of exposition, we first write the

N2k ×N2k covariance matrix M as following:

M =



M1,1 ... M1,j M1,j+1 ... M1,N2k

... ... ... ... ... ...

Mj,1 ... Mj,j Mj,j+1 ... Mj,N2k

Mj+1,1 ... Mj+1,j Mj+1,j+1 ... Mj+1,N2k

... ... ... ... ... ...

MN2k,1 ... MN2k,j MN2k,j+1 ... MN2k,N2k


(6)

Let Hj = (Mj,j+1, ...,Mj,N2k)


Mj+1,j+1 ... Mj+1,N2k

... ... ...

MN2k,j+1 ... MN2k,N2k


−1

.

We next construct independent variables τj for j = 1, 2, ..., N2k using stan-

dard textbook techniques (e.g. Anderson, 2003; Muirhead 1982).

τ1 = γ1 +H1(γ2, γ3, ..., γN2k)
′

(7)

τ2 = γ2 +H2(γ3, γ4, ..., γN2k)
′

(8)
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...

τN2K−1 = γN2k−1 +HN2k−1γN2k (9)

τN2K = γN2k (10)

The joint density of τ1, τ2, ...., τN2k is

N(τ1|0, σ2
γ1)N(τ2|0, σ2

γ2)...N(τN2k|0, σ2
γN2k

) (11)

where σ2
γj = Mj,j −Hj(Mj,j+1, ...,Mj,N2k)

′, with σ2
γN2k

= MN2k,N2k. Note

that it is computationally feasible to derive σ2
γj when M is sparse.

The Jacobian of transforming Γ ∼ N(0,M) to (11) is 1. Defining ηj =

τj/λ1,j , we can write (11) as

N(η1|0, σ2
γ1λ

−2
1,1)N(η2|0, σ2

γ2λ
−2
1,2)...N(ηN2k|0, σ2

γN2k
λ−2
1,N2k

) (12)

Let fj(Γ) = 2(η2j ). Our scale mixture prior in (5) can be rewritten as:

π(β|Σ,Γ,Λ1,Λ2) ∝
N2k∏
j=1

{
√

λ2,j√
2π

exp(−λ2,j

2
β2
j )

×
∫ ∞

0

1√
2π(2η2j ))

exp[−
β2
j

2(2η2j )
]d(2η2j )

×
λ2
1,j

2σ2
γj

exp[−1

2

2η2j
(σ2

γj )/λ
2
1,j

]}

(13)

The last two terms in (13) constitute a scale mixture of Normals (with

an exponential mixing density), which can be expressed as the univari-
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ate Laplace distribution
λ1,j

2
√

σ2
γj

exp(− λ1,j√
σ2
γj

|βj |). Readers familiar with the

Bayesian Lasso literature can easily find that this is an adaptive version of

the Laplace prior of Park and Casella (2008) that enforces the L1 penalty.

Overall, the priors in equation (13) resembles the conditional prior for the

e-net Lasso used in Kyung et al (2010). However, our prior is more com-

plicated than that of Kyung et al (2010). First, we allow different levels of

shrinkages for all the coefficients.3 Second, the prior distribution of the co-

efficients are conditional on the covariance matrix of the multivariate model.

Equation (13) shows that the conditional prior for βj is N(0,
2η2j

2λ2,jη2j+1
),

and the conditional prior for β is

β|Γ,Σ,Λ1,Λ2 ∼ N(0, D∗
Γ) (14)

where D∗
Γ = diag([

2η21
2λ2,1η21+1

,
2η22

2λ2,2η22+1
, ...,

2η2
N2k

2λ2,N2kη
2
N2k

+1
]). The tightness of

the prior for each βj depends on
2η2j

2λ2,jη2j+1
. If

2η2j
2λ2,jη2j+1

is small, βj will be

shrunk towards zero. If
2η2j

2λ2,jη2j+1
is large, the prior for βj can become quite

uninformative.

Priors for Σ, λ2
1,j and λ2,j can be elicited following standard practice in

VAR and Lasso literature. In this paper, we set Wishart prior for Σ−1 and

Gamma priors for λ2
1,j and λ2,j : Σ−1 ∼ W (S−1, ν), λ2

1,j ∼ G(µ
λ2
1,j
, νλ2

1,j
),

λ2,j ∼ G(µ
λ2,j

, νλ2,j
).4

3In the literature, Griffin and Brown (2010) explore using different priors to achieve
adaptive Lasso which automatically adapt. Leng et al (2010) propose using varying degree
of shrinkage for the tuning parameter. Our adaptive approach is in spirit of Leng et al
(2010).

4Please refer to Koop (2003), p326, for Gamma distribution, and Zellner (1971), p389,
for Wishart distribution.
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2.2 Posteriors and Gibbs Sampler

Combining the priors and likelihood, the following full conditional posteriors

can be easily derived.

The full conditional posterior for β is β ∼ N(β, V β), where V β = [(IN ⊗

X)
′
)(Σ−1⊗INk)(IN ⊗X)+(D∗

Γ)
−1]−1, and β = V β[(IN ⊗X)

′
(Σ−1⊗INk)y].

The Full conditional posterior for Σ−1 is W (S
−1

, ν), with S
−1

= (Y −

XB)
′
(Y −XB)+ 2Q

′
Q+S−1 and ν = T +2Nk+ ν, with vec(Q) = Γ. The

Full conditional posterior for λ2
1,j is G(µ̄λ1,j

, ν̄λ1,j
), where ν̄λ1,j

= νλ1,j
+

2 and µ̄λ1,j
=

νλ1,jσ
2
jµλ1,j

2τ2j µλ1,j
+νλ1,j

σ2
γj

. The Full conditional posterior for λ2,j is

G(µ̄λ2,j
, ν̄λ2,j

), where ν̄λ2,j
= νλ2,j

+ 1 and µ̄λ2,j
=

µ
λ2,j

ν̄λ2,j

νλ2,j
+µ

λ2,j
β2
j
. Finally the

full conditional posterior of 1
2η2j

is Inverse Gaussian: IG(

√
λ2
1,j

β2
j σ

2
γj

,
λ2
1,j

σ2
γj

).5 Γ

can not be directly drawn from the posteriors. But it can be recovered in

each Gibbs iteration using the draws of 1
2η2j

and Σ .

Conditional on arbitrary starting values, the Gibbs sampler contains the

following six steps:

1. draw β|Σ,Λ1,Λ2,Γ from N(β, V β);

2. draw Σ−1|β,Λ1,Λ2,Γ from W (S
−1

, ν)

3. draw λ2
1,j |β,Σ,Λ1,−j ,Λ2,Γ from G(µ̄λ1,j

, ν̄λ1,j
) for j = 1, 2, ...N2k

4. draw λ2,j |β,Σ,Λ1,Λ2,−j ,Γ from G(µ̄λ2,j
, ν̄λ2,j

) for j = 1, 2, ...N2k

5. draw 1
2η2j

|β,Σ,Λ1,Λ2 from IG(

√
λ2
1,j

β2
j σ

2
γj

,
λ2
1,j

σ2
γj

) for j = 1, 2, ...N2k.

5We adopt the same form of the inverse-Gaussian density used in Park and Casella
(2008).
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6. calculate Γ based on draws of Σ and 1
2η2j

in the current iteration.

3 Related Lasso Types of VAR Shrinkage

DAELasso provides a general method to shrink both the variable and pa-

rameter space of a VAR. However, with the number of tuning parameters

two times the number of coefficients, DAELasso might be subject to the

criticism of demanding too much from the data. In this section, we intro-

duce four alternative scaled mixture priors for β that respectively associated

with Lasso, adaptive Lasso, e-net Lasso, and adaptive e-net Lasso. Note that

these four Lassos are all nested in DAELasso. Thus their posteriors can be

easily worked out using the procedures presented for DAELasso shrinkage.

For brevity, we relegate the technical details to the online appendix.

3.1 Lasso VAR Shrinkage

Following Song and Bickel (2011), we define Lasso estimator for a VAR as:

β̂L = arg minβ{[y − (In ⊗X)β]
′
[y − (In ⊗X)β] + λ1

N2k∑
j=1

|βj |} (15)

Correspondingly, the conditional multivariate mixture prior for β takes

the following form:

π(β|Σ,Γ, λ1) ∝
N2k∏
j=1

{
∫ ∞

0

1√
2πfj(Γ))

exp[− 1

2fj(Γ)
β2
j ]d(fj(Γ))}

× {|M |−
1
2 exp(−1

2
Γ

′
M−1Γ)}2

(16)
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Let fj(Γ) = 2(η2j ), the scale mixture prior is:

π(β|Σ,Γ, λ1) ∝
N2k∏
j=1

{
∫ ∞

0

1√
2π(2η2j ))

exp[−
β2
j

2(2η2j )
]d(2η2j )

× λ2
1

2σ2
γj

exp[−1

2

2η2j
(σ2

γj )/λ
2
1

]}

(17)

where ηj = τj/λ1.

3.2 Adaptive Lasso VAR Shrinkage

We define the adaptive Lasso estimator for a VAR as:

β̂AL = arg minβ{[y − (In ⊗X)β]
′
[y − (In ⊗X)β] +

N2k∑
j=1

λ1,j |βj |} (18)

Correspondingly, the conditional multivariate mixture prior for β takes

the following form:

π(β|Σ,Γ,Λ1) ∝
N2k∏
j=1

{
∫ ∞

0

1√
2πfj(Γ))

exp[− 1

2fj(Γ)
β2
j ]d(fj(Γ))}

× {|M |−
1
2 exp(−1

2
Γ

′
M−1Γ)}2

(19)

Let fj(Γ) = 2(η2j ), the scale mixture prior is:

π(β|Σ,Γ,Λ1) ∝
N2k∏
j=1

{
∫ ∞

0

1√
2π(2η2j ))

exp[−
β2
j

2(2η2j )
]d(2η2j )

×
λ2
1,j

2σ2
γj

exp[−1

2

2η2j
(σ2

γj )/λ
2
1,j

]}

(20)
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where ηj = τj/λ1,j .

3.3 E-net Lasso VAR Shrinkage

We define the e-net Lasso estimator for a VAR as:

β̂EL = arg minβ{[y − (In ⊗X)β]
′
[y − (In ⊗X)β] + λ1

N2k∑
j=1

|βj |+ λ2

N2k∑
j=1

β2
j }

(21)

Correspondingly, the conditional multivariate mixture prior for β takes

the following form:

π(β|Σ,Γ, λ1, λ2) ∝
N2k∏
j=1

{
√
λ2√
2π

exp(−λ2

2
β2
j )

×
∫ ∞

0

1√
2πfj(Γ))

exp[− 1

2fj(Γ)
β2
j ]d(fj(Γ))}

× {|M |−
1
2 exp(−1

2
Γ

′
M−1Γ)}2

(22)

Let fj(Γ) = 2(η2j ), the scale mixture prior is:

π(β|Σ,Γ, λ1, λ2) ∝
N2k∏
j=1

{
√
λ2√
2π

exp(−λ2

2
β2
j )

×
∫ ∞

0

1√
2π(2η2j ))

exp[−
β2
j

2(2η2j )
]d(2η2j )

× λ2
1

2σ2
γj

exp[−1

2

2η2j
(σ2

γj )/λ
2
1

]}

(23)

where ηj = τj/λ1.
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3.4 Adaptive E-net Lasso VAR Shrinkage

In line with Zou and Zhang (2009), we define the adaptive e-net Lasso

estimator for a VAR as following:

β̂AEL = arg minβ{[y− (In⊗X)β]
′
[y− (In⊗X)β]+

N2k∑
j=1

λ1,j |βj |+λ2

N2k∑
j=1

β2
j }

(24)

Correspondingly, the conditional multivariate mixture prior for β takes

the following form:

π(β|Σ,Γ,Λ1, λ2) ∝
N2k∏
j=1

{
√
λ2√
2π

exp(−λ2

2
β2
j )

×
∫ ∞

0

1√
2πfj(Γ))

exp[− 1

2fj(Γ)
β2
j ]d(fj(Γ))}

× {|M |−
1
2 exp(−1

2
Γ

′
M−1Γ)}2

(25)

Let fj(Γ) = 2(η2j ). The scale mixture prior in (25) can be rewritten as:

π(β|Σ,Γ,Λ1, λ2) ∝
N2k∏
j=1

{
√
λ2√
2π

exp(−λ2

2
β2
j )

×
∫ ∞

0

1√
2π(2η2j ))

exp[−
β2
j

2(2η2j )
]d(2η2j )

×
λ2
1,j

2σ2
γj

exp[−1

2

2η2j
(σ2

γj )/λ
2
1,j

]}

(26)

where ηj = τj/λ1,j .
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4 Empirical Illustration

4.1 Data

In macroeconomics, it is a standard practice to assess models by their fore-

casting performance (e.g. Litterman, 1986; Giannone et al, 2010). Koop

(2011) provides an extensive forecasts evaluation for seven popular Bayesian

VAR priors. We employ the data set of Koop (2011), an updated version

of that used in Stock and Watson (2008), for the out-of sample forecasting

analysis. The data set contains twenty quarterly macroeconomic series in-

cluding a measure of economic activity (GDP, real GDP), prices (CPI, the

consumer price index), an interest rate (FFR, the Fed funds rate), and other

seventeen variables.6 Four of the seventeen variables are those used in the

monetary model of Christiano el al (1999). The rest of the thirteen variables

contain important aggregated information of the economy. The time series

span from 1959Q1 to 2008Q4. A full list of the variables is provided in Ap-

pendix A. Detailed data descriptions please refer to Koop (2011) and Stock

and Watson (2008). Data are transformed to stationarity and standardized

same as Koop (2011).7

6These 20 variables are used for medium-size VAR in Koop (2011). Koop (2011) also
examines the VAR forecasts using medium-large VAR, which contains 40 variables, and
large VAR, which contains 168 variables. We only focus on Koop’s (2011) medium-size
VAR in this paper due to two considerations. First, it is computationally costly to use
DAELasso priors to estimate the medium-large and large VARs. Second, it is shown in
the literature (e.g. Banbura et al, 2010; Koop, 2011) that most of the gains in forecasting
performance are achieved by using medium VARs of about 20 key variables.

7I am grateful to Mark Watson for providing the data. In addition, I am grateful to
Gary Koop for sharing the Matlab code for data transformation.
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4.2 Forecast Evaluation

Same as Koop (2011), we conduct rolling and recursive forecast exercises

and calculate both the mean squared forecast error (MSFE) and predictive

likelihood measures using reduced form VAR of order four. The window

length for the rolling estimation is set to be ten years. Recursive and rolling

forecasts are conducted for t0+h, t0+1+h,...T , where t0 is 1969Q4. Let yft+h

be the hth period forecast of y using data available at time t, and yt+h be the

real value for y observed at t+ h. The MSFE measure for the variable yi is

calculated as an average of the mean squared errors of the point estimates:

MSFE =

∑T−h
t=t0

[yi,t+h − E(yfi,t+h|Datat)]
2

T − h− t0 + 1
(27)

The predictive likelihood is used to evaluate the entire predictive distribu-

tion. In particular, the following sum of the log predictive likelihood is used:

T−h∑
t=t0

log[p(yfi,t+h = yi,t+h|Datat)] (28)

For DAELasso, we need to elicit priors for λ2
1,j , λ2,j , and Σ. It is prac-

tically impossible to set informative priors for each λ2
1,j and λ2,j , thus we

set relatively uninformative priors for λ2
1,j (or λ2

1) and λ2,j (or λ2) to be

G(1, 0.001) and G(1, 0.01), respectively. The prior for Σ−1 is set to be

W ((N − 1)IN , 1), which is also relatively uninformative. There is room

for improving the forecasting performance of DAELasso, such as by eliciting

more informative priors. We do not explore this possibility in the current

paper because the goal of our exercise is to find out whether a DAELasso
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with relatively uninformative priors can provide acceptable forecasting re-

sults. For comparison, the priors for Lasso, adaptive Lasso, e-net Lasso, and

adaptive e-net Lasso are set in the same manner. Following Koop (2011)

and Geweke and Amisano (2011), we calculate log predictive likelihood in

each replication of the Gibbs sampler using posterior draws of the parame-

ters, then take the average when the Gibbs ends. For comparison, we also

use the mean posterior parameters to calculate the log predictive likelihood.

It turns out that the results are similar.

To save space, we relegate a comprehensive comparison between the

forecasts of DAELasso and its variants and that of the priors used in Koop

(2011) into the on-line appendix. In this section, we only report the fore-

casts results for the five most important priors: DAELasso, adaptive e-net

Lasso, adaptive Lasso, the natural conjugate prior used in Banbura et al

(2010), which is labelled ‘Minn. Prior as in BGR’, and a combination of the

conjugate SSVS prior and Minnesota prior, which is labelled ‘SSVS Conju-

gate plus Minn. Prior’ proposed by Koop (2011). The last two priors are

investigated in Koop (2011). We refer to Koop (2011) for a lucid description

of these priors.

Results presented in Tables 1-4 show that the forecasting performance of

DAELasso approach is comparable to that of the popular Bayesian shrinkage

methods explored in Koop (2011). Overall, the forecasts of all methods are

highly correlated with each other. Compared to the priors investigated in

Koop (2011), DAELasso and its variants tend to forecast better for GDP

and CPI in terms of point forecasts, but not as well for FFR. The results for

predictive loglikelihood yielded by DAELasso approach are more mixed. Yet,

18



Table 1: Rolling Forecasting for h = 1

GDP CPI FFR

DAELasso
0.58 0.32 0.57

( -198.9 ) ( -192.7 ) ( -211.7 )

adaptive e-net Lasso
0.67 0.40 0.63

( -195.8 ) ( -199.4 ) ( -215.0 )

adaptive Lasso
0.77 0.31 0.62

( -225.6 ) ( -209.2 ) ( -228.3 )

Minn. Prior as in BGR
0.58 0.34 0.51

( -190.5) ( -209.2 ) ( -177.4 )

SSVS Non-conj. plus Minn. Prior
0.68 0.34 0.52

( -197.9 ) ( -195.2 ) ( -177.2 )

Notes:

MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.

Table 2: Rolling Forecasting for h = 4

GDP CPI FFR

DAELasso
0.55 0.48 0.65

( -206.9 ) ( -205.9 ) ( -230.9 )

adaptive e-net Lasso
0.53 0.47 0.55

( -195.7 ) ( -204.4 ) ( -219.9)

adaptive Lasso
0.74 0.54 0.78

( -233.9 ) ( -223.0 ) ( -247.7 )

Minn. Prior as in BGR
0.59 0.55 0.59

( -217.1 ) ( -227.7 ) ( -213.4 )

SSVS Non-conj. plus Minn. Prior
0.63 0.51 0.58

( -209.9 ) ( -201.3 ) ( -198.1 )

Notes:

MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.
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Table 3: Recursive Forecasting for h = 1

GDP CPI FFR

DAELasso
0.55 0.29 0.56

( -210.4 ) ( -190.9 ) ( -224.2 )

adaptive e-net Lasso
0.67 0.40 0.63

( -242.0 ) ( -201.6 ) ( -239.8 )

adaptive Lasso
0.62 0.28 0.60

( -219.2 ) ( -196.4 ) ( -226.8 )

Minn. Prior as in BGR
0.56 0.30 0.51

( -192.3 ) ( -195.9 ) ( -229.1 )

SSVS Non-conj. plus Minn. Prior
0.65 0.29 0.54

( -203.9 ) ( -187.6 ) ( -228.9 )

Notes:

MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.

Table 4: Recursive Forecasting for h = 4

GDP CPI FFR

DAELasso
0.54 0.48 0.61

( -218.3 ) ( -206.6 ) ( -239.6 )

adaptive e-net Lasso
0.53 0.47 0.55

( -215.6 ) ( -207.0 ) ( -247.3 )

adaptive Lasso
0.63 0.52 0.66

( -228.0 ) ( -214.7 ) ( -242.2 )

Minn. Prior as in BGR
0.61 0.52 0.59

( -214.7 ) ( -219.4 ) ( -249.6 )

SSVS Non-conj. plus Minn. Prior
0.67 0.49 0.53

( -219.0 ) ( -201.6 ) ( -233.7 )

Notes:

MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.
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DAELasso’s performances are qualitatively similar to that of the Bayesian

VAR methods studied in Koop (2011).

When we focus on the three Lasso types of forecasts, we find for h = 1,

DAELasso tends to provide the best GDP and FFR point forecasts while

adaptive Lasso gives the best CPI point forecasts. This results seem to

suggest that while GDP and FFR can be better forecasted by using many

variables that might be highly collinear, CPI can be better forecasted using

a smaller number of important variables that are not highly correlated with

each other. Turning to the point forecasts for h = 4, we find adaptive e-

net Lasso are performing better in most of the cases. Forecasts results for

predictive loglikelihood varies for the three Lasso types of methods. But

overall, DAELasso and adaptive e-net Lasso tend to outperform adaptive

Lasso in most of the cases. This result suggests the importance of using

e-net to capture the possible grouping effect.

We conduct prior sensitivity analysis using relatively tighter priors. The

results are reported in Appendix B. We find that the tighter priors tend to

give better forecasts. Yet, the more important information from the exercise

is that the general pattern found in Tables 1-4 is robust to the prior choices.

4.3 Sparsity or Stability?

As noted in De Mol et al (2008), in presence of collinearity, if a shrinkage

method only enforces sparsity, like Lasso, it will be very sensitive to minor

perturbations of the data. Traditional wisdom is to use e-net Lasso to enforce

both L1 and L2 penalties (e.g. Zou and Hastie, 2005). Yet, it is less clear

if using e-net Lasso is the most effective way to improve the stability of
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variable selections. In this paper, we look into this question by examining

the posterior mean estimates for DAELasso and its variants. We find that

using similar priors, e-net Lasso tends to enforce slightly less sparsity than

Lasso. Yet, DAELasso, adaptive e-net Lasso and adaptive Lasso tend to

hugely improve the stability of variable selection by pulling the parameters

for all the highly collinear variables towards zero. Our findings suggest that,

in terms of enforcing stability, adaptive shrinkage is more effective than e-

net.8

Tables 5-7 present the correlations between the posterior mean estimates

for the coefficients in the GDP, CPI, and FFR equations for DAELAsso and

its variants. Here coefficients for all the recursive estimations are pooled

together.9 Interestingly, we find that in all cases, the coefficients for the

adaptive types of models are highly correlated, and the coefficients for e-

net Lasso and Lasso are highly correlated. This implies that the degree of

sparsity enforced are more affected by whether adaptive shrinkage is used.

Table 5: Correlations Between the Coefficients in the GDP Equation

DAELasso adaptive e-net Lasso adaptive Lasso e-net Lasso Lasso
DAELasso 1.00
adaptive e-net Lasso 0.97 1.00
adaptive Lasso 0.97 0.97 1.00
e-net Lasso 0.70 0.70 0.69 1.00
Lasso 0.66 0.65 0.66 0.97 1.00

Table 8 presents the means and standard deviations for the posterior es-

8Our finding that adaptive types of Lasso models tend to give more stable variable se-
lection results, however, is based on the same or similar priors we elicited for the shrinkage
parameters across models. This scenario can be changed if the priors for the shrinkage
parameters of different models are very different.

9Results for rolling estimates are very similar.
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Table 6: Correlations Between the Coefficients in the CPI Equation

DAELasso adaptive e-net Lasso adaptive Lasso e-net Lasso Lasso
DAELasso 1.00
adaptive e-net Lasso 0.97 1.00
adaptive Lasso 0.97 0.97 1.00
e-net Lasso 0.73 0.74 0.73 1.00
Lasso 0.69 0.69 0.69 0.96 1.00

Table 7: Correlations Between the Coefficients in the FFR Equation

DAELasso adaptive e-net Lasso adaptive Lasso e-net Lasso Lasso
DAELasso 1.00
adaptive e-net Lasso 0.97 1.00
adaptive Lasso 0.98 0.97 1.00
e-net Lasso 0.74 0.76 0.74 1.00
Lasso 0.71 0.71 0.71 0.97 1.00

timates for the coefficients in the GDP, CPI, and FFR equations. In general,

results for the three adaptive types of Lassos are very similar, results for e-

net Lasso and Lasso are very similar. A closer look reveals that compared to

Lasso, e-net Lasso yields posterior estimates that are slightly more centered

at zero. However, the most prominent pattern that leaps out of Table 8 is

that the standard deviations for the coefficients in e-net Lasso and Lasso are

almost 10 times lager than their counterparts in the three adaptive types of

models.

Table 8: Means and Standard Deviations for the Coefficients

DAELasso adaptive e-net Lasso adaptive Lasso e-net Lasso Lasso

GDP
mean 0.0021 0.0020 0.0021 -0.0013 -0.0029
std. ( 0.0191 ) ( 0.0180 ) ( 0.0191 ) ( 0.1032 ) ( 0.1267 )

CPI
mean 0.0013 0.0012 0.0013 0.0000 -0.0013
std. ( 0.0193 ) ( 0.0184 ) ( 0.0193 ) ( 0.0799 ) ( 0.0943 )

FFR
mean 0.0053 0.0053 0.0054 0.0130 0.0150
std. ( 0.0222 ) ( 0.0207 ) ( 0.0222 ) ( 0.0939 ) ( 0.1062 )
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Figure 1 plots the posterior estimates of the coefficients in the GDP

equation for the whole sample as an example. The coefficients are plotted

against the sequence number of the variables. The similarities between the

coefficients plots for DAELasso, adaptive e-net Lasso, and adaptive Lasso

are striking. Same as the similarity between the coefficients plots for e-net

Lasso and Lasso. As the coefficients estimated using the adaptable types

of Lassos are much closer to zero than their counterparts estimated using

e-net Lasso and Lasso, it is understandable that a minor perturbation in

data tends to have more impact on the e-net Lasso and Lasso forecasts. For

brevity, we do not present comparable figures for other variables and other

sample periods, but they all support our general findings.
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Figure 1
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5 Conclusion

This paper proposes a Bayesian DAELasso approach for VAR shrinkage.

We elicit a scale mixture prior which leads to closed-form conditional pos-

teriors that can be directly drawn from a Gibbs sampler. The method is

appealing as it can simultaneously achieve variable selection and coefficient

shrinkage in a data based fashion. DAELasso constructively deals with mul-

ticollinearity problem by encouraging the grouping effect through both the

e-net and adaptive shrinkages. Hence, its forecasts results can be more sta-

ble and less subject to the influence of minor data perturbations. Using

relatively uninformative prior, we find that the forecasting performance of

DAELasso is comparable to that of other popular Bayesian VAR shrinkage

methods. This shows that DAELasso approach can be used as an appropri-

ate addition to the available Bayesian VAR toolkits. The implementation of

DAELasso approach is simple and straightforward. It can be easily extended

into nonlinear framework to shed new light on macro economic analysis and

forecasting.

It is interesting to find that the sophisticated and well designed priors

we used for DAELasso and its variants produce forecasts that are corre-

lated and equally accurate of those obtained with simple Minnesota prior

and conjugate priors traditionally used to conduct inference in large and

medium sized Bayesian VARs. This result has important implications in a

broader context. First, it provides further evidence that good forecasting

performances of Bayesian VARs are a general feature of the data and do

not depend on specific features of the prior. Second, it confirms Koop’s

26



(2011) finding that simple Minnesota priors such as the Normal-conjugate

prior used by Banbura et al (2010) work well in medium and large VARs,

which makes these simple priors attractive relative to the computationally

more demanding alternatives.
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Appendix

A Data List

We use 20 US macro series used in Koop (2011), which is an updated version

of Stock and Watson (2008). The variables are transformed to stationarity

and standardized same as Koop (2011). Below we cite the essential data

description and transformation code from Koop (2011). Please refer to Koop

(2011) for detailed data information.

The data transformation codes are as following: 1: no transformation;

2: first difference; 3: second difference; 4: log; 5: first difference of logged

variables; 6: second difference of logged variables.

Table 9: The List of Variables

Short name Trans. Code Data Description
RGDP 5 Real GDP, quantity index (2000 = 100)
CPI 6 CPI all items
FFR 2 Interest rate: federal funds (e-ective) (% per annum)
Com: spot price (real) 5 Real spot market price index: all commodities
Reserves nonbor 3 Depository inst reserves: nonborrowed (mil$)
Reserves tot 6 Depository inst reserves: total (mil$)
M2 6 Money stock: M2 (bil$)
Cons 5 Real Personal Cons. Exp., Quantity Index
IP: total 5 Industrial production index: total
Capacity Util 1 Capacity utilization: manufacturing (SIC)
U: all 2 Unemp. rate: All workers, 16 and over (%)
HStarts: Total 4 Housing starts: Total (thousands)
PPI: fin gds 6 Producer price index: finished goods
PCED 6 Personal Consumption Exp.: price index
Real AHE: goods 5 Real avg hrly earnings, non-farm prod. worker
M1 6 Money stock: M1 (bil$)
S&P: indust 5 S&Ps common stock price index: industrials
10 yr T-bond 2 Interest rate: US treasury const. mat., 10-yr
Ex rate: avg 5 US effective exchange rate: index number
Emp: total 5 Employees, nonfarm: total private

32



B Prior Sensitivity Analysis

Tables 10-13 report the forecast results for DAELasso, adaptive e-net Lasso,

and adaptive Lasso using tighter priors. The priors for λ2
1,j (or λ2

1) and λ2,j

(or λ2) are set to be G(1, 0.0001) and G(1, 0.001), respectively. The prior

for Σ−1 is set to be W (100IN , 1),

Table 10: Rolling Forecasting for h = 1

GDP CPI FFR

DAELasso
0.58 0.33 0.55

( -189.9 ) ( -185.1 ) ( -211.2 )

adaptive e-net Lasso
0.58 0.33 0.55

( -189.9 ) ( -186.2 ) ( -212.6 )

adaptive Lasso
0.58 0.33 0.55

( -189.7 ) ( -185.4 ) ( -211.5 )

Notes:

MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.

Table 11: Rolling Forecasting for h = 4

GDP CPI FFR

DAELasso
0.53 0.47 0.57

( -201.9 ) ( -204.8 ) ( -233.2 )

adaptive e-net Lasso
0.53 0.47 0.57

( -201.8 ) ( -204.6 ) ( -233.2 )

adaptive Lasso
0.53 0.47 0.57

( -201.8 ) ( -204.2 ) ( -232.8 )

Notes:

MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.
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Table 12: Recursive Forecasting for h = 1

GDP CPI FFR

DAELasso
0.58 0.31 0.54

( -193.9 ) ( -182.8 ) ( -226.1 )

adaptive e-net Lasso
0.59 0.31 0.55

( -194.5 ) ( -183.3 ) ( -226.6 )

adaptive Lasso
0.58 0.31 0.55

( -194.0 ) ( -182.6 ) ( -226.4 )

Notes:

MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.

Table 13: Recursive Forecasting for h = 4

GDP CPI FFR

DAELasso
0.53 0.47 0.56

( -204.6 ) ( -208.6 ) ( -248.9 )

adaptive e-net Lasso
0.53 0.47 0.56

( -204.3 ) ( -208.2 ) ( -248.2 )

adaptive Lasso
0.53 0.47 0.56

( -204.4 ) ( -208.2 ) ( -248.1 )

Notes:

MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.
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