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Abstract

We develop a novel Bayesian doubly adaptive elastic-net Lasso
(DAELasso) approach for VAR shrinkage. DAELasso achieves vari-
able selection and coefficients shrinkage in a data based manner. It
constructively deals with the explanatory variables that tend to be
highly collinear by encouraging grouping effect. In addition, it allows
for different degree of shrinkages for different coefficients. Rewriting
the multivariate Laplace distribution as a scale mixture, we establish
closed-form conditional posteriors that can be drawn from a Gibbs
sampler. Empirical analysis shows that forecast results produced by
DAELasso and its variants are comparable to that of other popular
Bayesian methods, which provides further evidence that the forecast
performances of large and medium sized Bayesian VARs are relatively
robust to prior choices, and in practice simple Minnesota types of pri-
ors can be more attractive relative to their complex and well designed
alternatives.
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responsibility.



1 Introduction

Tibshirani’s (1996) least absolute shrinkage and selection operator (Lasso)
and its variants, such as elastic net Lasso (e-net Lasso) of Zou and Hastie
(2005), and grouped Lasso of Yuan and Lin (2007) are widely used for vari-
able selection and parameter shrinkage for large data set. Recently, Bayesian
Lasso has gained popularity as it can be easily implemented through MCMC
or a Gibbs sampler (e.g. Park and Casella, 2008; Kyung et al, 2010), and
it can automatically achieve adaptive shrinkage to allow for different degree
of shrinkage (e.g. Griffin and Brown, 2010; Leng et al, 2010). Despite being
successful, the Lasso literature is mainly concentrated on single equation
models. To our best knowledge, only a few studies in the frequentist frame-
work (e.g., Hsu, Hung and Chang, 2008; Song and Bickel, 2011) explore
Lasso shrinkage for vector autoregressive (VAR) models. And these avail-
able methods can be too restrictive as they either assume the covariance
matrix of the VAR errors to be diagonal or assume its off-diagonal elements
are much smaller than the diagonal ones.

This paper develops a novel Bayesian Lasso method for VAR shrinkage.
Considering large VAR models usually have highly correlated explanatory
variables, we propose using doubly adaptive e-net Lasso (DAELasso) for
macroeconomic research. DAELasso extends the adaptive e-net Lasso of
Zou and Zhang (2009) for single equation models into VAR context. Unlike
adaptive e-net Lasso that only adapts the tuning parameters of the L norm,

DAELasso allows for tuning parameters of both the L; and Ls norms to be



adapted.! While Lasso generally only picks up one variable among a group
of highly correlated variables, DAELasso has the potential of selecting all
the important variables by encouraging grouping effects through e-net and
adaptive shrinkage. Our scale mixture prior leads to closed-form conditional
posteriors that can be directly drawn from a Gibbs sampler. Compared
to its frequentist counterparts, DAELasso is more flexible as it does not
need to impose unrealistic restrictions on the covariance matrix of the VAR
errors. Hence it can better capture interdependencies between the variables.
Considering that DAELasso can be too complicated for some data, in this
paper, we also introduce four alternative Lasso types of VAR shrinkage
methods: Lasso, adaptive Lasso, e-net Lasso, and adaptive e-net Lasso,
each of them is a nested version of DAELasso.

Large Bayesian VARs are widely used for forecasting macroeconomic
variables (e.g. Sims, 1972, 1980; Banbura et al, 2010). In empirical work, we
evaluate the forecasting performance of DAELasso approach along with its
variants. In addition, we compare the forecasting performance of these Lasso
types of methods with that of the popular Baysian VAR shrinkage methods
reviewed in Koop (2011). Those priors include the traditional Minnesota
prior of Doan et al (1984) and Litterman (1986) and its natural variants (e.g.
Kadiyala and Karlsson, 1997, Banbura et al, 2010), the stochastic search
variable selection (SSVS) prior of George et al (2008), and the family of

SSVS plus Minnesota priors of Koop (2011). We employ Koop’s (2011) data

Note that if we have formal and informal economic theory at hand to group the data,
it can be more desirable to have other type of Lasso, such as the grouped Lasso, instead
of e-net Lasso for VAR shrinkage. Yet in general we do not have such information, and
e-net Lasso turns out to be the most appealing choice for it encourages the grouping effect
supported by the data itself (Zou and Hastie, 2005).



set that contains 20 US macroeconomic series, which is originally compiled
by James H. Stock and Mark W. Watson. The data runs from 1959Q1 to
2008Q4. In line with Koop (2011), we conduct rolling and recursive forecast
exercises and calculate both the mean squared forecast error (MSFE) and
predictive likelihood measures. Using relatively uninformative priors, we
find DAELasso approach leads to forecasting results that compares favorably
or equally well to other Bayesian VAR shrinkage methods. This suggests
that DAELasso approach is an appropriate complement to the available
Baysian VAR toolkit.

This paper is closely related to the growing literature on forecasting with
many macroeconomic variables.? Popular methods in the existing literature
include factor models (e.g. Stock and Watson, 2002a,b; Forni el al, 2000)
and Bayesian shrinkage with a wide range of prior choices (e.g. De Mol et al,
2008; Banbura et al, 2010). De Mol et al (2008) and Koop (2011) find that
these forecasts tend to be highly correlated, and Bayesian VARs do tend
to forecast better than factor models. Our empirical results provide further
evidence for the robustness of Bayesian shrinkage methods for forecasting
with a large number of predictors. In addition, our findings suggest that,
as stress in Koop (2011), so far the simple and less computationally costly
Minnesota priors can be more attractive to practitioners as they forecast
equally well or even better than their much complicated counterparts.

The remainder of the paper is organized as following. Section 2 develops
the Bayesian DAELasso methods. Section 3 presents four alternative Lasso

types of VAR shrinkage methods that nested in DAELasso. Section 4 present

2] thank a referee for pointing this out.



the empirical findings. Section 5 concludes. The data list and results for

prior sensitivity analysis are provided in the appendix.

2 The Estimator and Bayesian Methods

Without loss of generality, we assume that all the variables are centered. Let
Y be a T x N dependent variables, X be a T' x Nk matrix contains the k
lags of each dependent variable, and B be the coefficient matrix of dimension
Nk x N. In matrix form, an unrestricted VAR model of N variables takes
the following form:

Y=XB+E (1)

where E is a T x N matrix for i.i.d. error terms with its t/* row distributed
as N(0,).
Given the assumptions of the error term, the likelihood function of model

(1) can be expressed as
1 /
L(b,%) yzrgexp{—itr(y — XB)(Y - XB)X ™'} 2)

Note that when X X is not of full rank, which is often the case when we
have more parameters than the number of observations, the least squares
estimator Brs = (X' X)* XY is noisy, where (X' X)* is the Moore-Penrose
generalized inverse of X X.

Vectorizing the matrices, we can transform model (1) into

Z/:(In®X)ﬁ+e (3)



where y = vec(Y), 5 = vec(B), e = vec(E) and e ~ N(0,X ® I7). The
dimension of f is N2k x 1.
We define the DAELasso estimator for a VAR as following:

N2k N2k
Bar, = arg ming{ly — (I @ X)B] [y — (T @ X)B]+ Y _ A ;1851 + > 2,87}

=1 =1

J J @
where A1 ; and Agj, for j = 1,2,..., N?k, are positive tuning parameters
associated with the L; and Lo penalties, respectively. We allow for different
tuning parameters for different 3; to allow for different degree of shrinkages.
For notational convenience, we define A1 = diag(A1,1,A1,2,..., A\ n2i) and
Ao = diag(A21,M2.2, ..., Ag n2i). Note that DAELasso defined in equation
(4) is closely related to Zou and Zhang’s (2009) adaptive e-net Lasso for

single equations.

2.1 Priors

In the Bayesian framework, univariate Bayesian Laplace prior, which can be
expressed as a scale mixtures of Normals with an exponential density (An-
drews and Mallows, 1974), is widely used to enforce sparsity induced by the
L, penalty in Lasso (e.g, Park and Casella, 2008; Leng et al, 2010; Korobilis,
2011). It is natural to consider extending the univariate Bayesian Laplace
prior into multivariate analysis. However, this is not so straightforward. As
noted by van Gerven et al (2009, 2010), the commonly used multivariate
Laplace distributions (e.g, Kotz et al, 2001; Eltoft el al, 2006) generally do
not factorize into a product of univariate Laplace distributions that can be

associated with the individual coefficients.



Our approach is directly motivated by van Gerven et al’s (2009, 2010)
multivariate Laplace prior for single equation models. van Gerven et al
(2009, 2010) use a scale mixture of Normals to reflect their prior knowledge
of the interactions between the coefficients. Our scale mixture prior is similar
to theirs, however, our prior is more about ensuring the priors associated
with the L; norm are conditional on the unrestricted covariance matrix
of the VAR errors. Conditioning on the covariance matrix of the VAR
errors is important because otherwise the posterior may not be unimodal
(Park and Casella, 2008). The posterior of van Gerven et al (2009, 2010)
is not in a tractable form, and they use approximate inference methods
for posterior computations. By contrast, our prior can lead to tractable
conditional posteriors that can be directly drawn from Gibbs sampler.

We consider a conditional multivariate mixture prior of the following

form:

N2k '
m(BS, T, A, Ag) o [ {? <—A;”5§>

Jj=1

S, g

1
X {;My—aeg;p(—§F M-lr)}

27 P (5)

where I' = [71,72,...,7N2k]/, M = ¥ ® Ing, and f;(I') is a function of I'
and A; to be defined later. In this mixture prior, the terms associated with
the Li penalty are conditional on ¥ through f;(I'). This is important as

otherwise the posterior will be not unimodal due to the ‘sharp corners’ of the



L; penalty (Park and and Casella, 2008). In equation (5), the variances of
B and [y for a # b are related through M. However, 3, and (3, themselves
are independent of each other.

We need to find an appropriate f;(I') which provides us tractable pos-
teriors. The last term in equation (5) takes the form of a multivariate
Normal distribution I' ~ N(0, M). For ease of exposition, we first write the

N2k x N2k covariance matrix M as following:

Mig .. M,  Mijs .. My
M;, M;; M M; v
Js 3J JJ+1 I3N?k
M = (6)
Mj+1’1 Mj+17]’ Mj+17j+1 MjJrLNQk
MNQk:,l MNQk‘,j MN2k,j—|—1 MN2k7N2k’
-1
Mj+17j+1 Mj+1,N2k

Let H; = (Mj,j+17 man,NQk:)
MNQ]{:’]JF:L “es MNQk,NQk
We next construct independent variables 7; for j =1,2,..., N 2k using stan-
dard textbook techniques (e.g. Anderson, 2003; Muirhead 1982).

/

T =71 + Hi(72,73, s YN2k) (7)

/

T2 = v2 + Ha(v3, 74, -, YN2k) (8)



TN2K—1 = YN2k—1 T Hn2p_ 17Nk (9)
TN2K = YN2k (10)

The joint density of 71, 79, ...., Ty2j 1S

N(11]0,03, )N (72|0,0%,)...N (1240, 05 , ) (11)

where O' = M]j Hj(MjJJrl,...,M'

],N2k)/’ with O-gNQk = MN2k,N2k‘ Note

that it is computationally feasible to derive o2

i when M is sparse.

The Jacobian of transforming I' ~ N(0, M) to (11) is 1. Defining n; =

7j/A1,5, we can write (11) as

(771|07 71>‘1 1) (772|07 72)\12) (77N2k|0a0-3N2 )\I_NQk:) (12)

Let f;(I') = 2(77?). Our scale mixture prior in (5) can be rewritten as:

N2k
*(BS.T, Ar, Ao) mH{Vf ep(—~223 )

2
<[ el (1)
(/27 ( 217
y 2 1 27)J
ot erl5 oy

The last two terms in (13) constitute a scale mixture of Normals (with

an exponential mixing density), which can be expressed as the univari-



ate Laplace distribution 2’\” exp(— 2 |8]). Readers familiar with the
[op

2
75 75

Bayesian Lasso literature can easily find that this is an adaptive version of
the Laplace prior of Park and Casella (2008) that enforces the L1 penalty.
Overall, the priors in equation (13) resembles the conditional prior for the
e-net Lasso used in Kyung et al (2010). However, our prior is more com-
plicated than that of Kyung et al (2010). First, we allow different levels of
shrinkages for all the coefficients.? Second, the prior distribution of the co-

efficients are conditional on the covariance matrix of the multivariate model.

212
Equation (13) shows that the conditional prior for 5; is N (0, %7;2“),

315

and the conditional prior for 3 is
B|F727A17A2 NN(O7DF) (14)
.« . 22 22 2070, .

where Df. = dmg([2/\2,mf+1’ G ppes N REN 2)\27N2w]2v2k+1]). The tightness of

. 217 o .
the prior for each 3; depends on 2/\2]_7;]2_“. If 2)\27j7;?+1 is small, 3; will be

2n? . . .
shrunk towards zero. If ——% — is large, the prior for §; can become quite

2X2,m5+1
uninformative.
Priors for X, )\%7]- and A ; can be elicited following standard practice in
VAR and Lasso literature. In this paper, we set Wishart prior for ¥ =1 and
Gamma priors for A ; and Ag;: X7 ~ WS~ v), AL~ G(HAZ{J’EA?J)’

AQJ ~ G(H/\Q,j ) Z/\Q,j)'4

3In the literature, Griffin and Brown (2010) explore using different priors to achieve
adaptive Lasso which automatically adapt. Leng et al (2010) propose using varying degree
of shrinkage for the tuning parameter. Our adaptive approach is in spirit of Leng et al
(2010).

4Please refer to Koop (2003), p326, for Gamma distribution, and Zellner (1971), p389,
for Wishart distribution.
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2.2 Posteriors and Gibbs Sampler

Combining the priors and likelihood, the following full conditional posteriors
can be easily derived.

The full conditional posterior for 3 is 8 ~ N(j3,V g), where Vg = [(Iy ®
X))E '@ Ive)(In®X)+ (D)L and B = Va[(In® X) (27 @ Ing)y].
The Full conditional posterior for 371 is V[/(§_17 v), with 5! = Y —
XB) (Y -XB)+2Q'Q+ S and ¥ = T + 2Nk + v, with vec(Q) = I". The

Full conditional posterior for )‘ij is G(fin, ;U ), Where vy, . = Yy, T

- 2
v Noay0)
2,758

2 and gy, ; = 5. The Full conditional posterior for Ag; is

272 +v,. 02
JHM,J’ A1,
w Uxg
Ao 2,7

— .
Z>‘2,j +H>‘2,j ﬂj

G([irg ;> Vry ), Where Uy, - = vy, t1and fy,; = Finally the

e . . . A2 A2
full conditional posterior of s is Inverse Gaussian: IG(,/zs2d-, =52).5 T’
2 2027 o2,

can not be directly drawn from the posteriors. But it can be recovered in
each Gibbs iteration using the draws of # and X .
i
Conditional on arbitrary starting values, the Gibbs sampler contains the

following six steps:
1. draw B|%, A1, Ao, T from N(B,Vg);
2. draw X713, A1, Ao, T from W(g_l,ﬁ)
3. draw )\%JW,E,AL_j,Ag,F from G(fiy, ;, 7, ;) for j =1,2, .N?k

4. draw )\2’j|ﬁ, E,Al,AZ,J’,F from G(/,_L/\Q,].,ﬁAQ’j) for j =1,2, ..N?k

2 2
5. draw 535 |3, %, A1, Ay from IG( 21; ,)“TJ) for j =1,2,...N?E.
277j ﬁjUVj o5

*We adopt the same form of the inverse-Caussian density used in Park and Casella
(2008).
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6. calculate I" based on draws of ¥ and # in the current iteration.
i

3 Related Lasso Types of VAR Shrinkage

DAELasso provides a general method to shrink both the variable and pa-
rameter space of a VAR. However, with the number of tuning parameters
two times the number of coefficients, DAELasso might be subject to the
criticism of demanding too much from the data. In this section, we intro-
duce four alternative scaled mixture priors for 8 that respectively associated
with Lasso, adaptive Lasso, e-net Lasso, and adaptive e-net Lasso. Note that
these four Lassos are all nested in DAELasso. Thus their posteriors can be
easily worked out using the procedures presented for DAELasso shrinkage.

For brevity, we relegate the technical details to the online appendix.

3.1 Lasso VAR Shrinkage
Following Song and Bickel (2011), we define Lasso estimator for a VAR as:
N2k

B = argming{ly — (I, ® X)B [y — (L@ X)Bl+ M Y _ 1B} (15)
j=1

Correspondingly, the conditional multivariate mixture prior for 3 takes

the following form:

N2k
™ X 2 j
@ r ) < I [ sl gy A0} "

1,
x {;M\—%exp(—§r M)}

12



Let f;(I') = 2(77?), the scale mixture prior is:

(17)
X 221% exp[— 1( 2?/)\2}}
where 7; = 7; /1.
3.2 Adaptive Lasso VAR Shrinkage
We define the adaptive Lasso estimator for a VAR as:
N2k
Bar = argming{ly — (I, ® X)B] ly — (L, ® X)B] + Y Myl651}  (18)
j=1

Correspondingly, the conditional multivariate mixture prior for 8 takes

the following form:

N2k
1
2,1, A Ad(f:(T
n(8 1)0(]1;[1{/0 T s ) "
< {IM[ S eap(— T MY
Let f;(I') = 2(77]2-), the scale mixture prior is:
N2k 0o 82
BIZ, T, A ——J _d(2n?
(o T4 / o e "
)\%7] 1 277]2
“ 30 exp| 2(O,%)/A%j]}

13



where ;= Tj/)\l’j.

3.3 E-net Lasso VAR Shrinkage

We define the e-net Lasso estimator for a VAR as:

N2k N2k

Ber = argming{ly — (In ® X)B] [y — (In @ X)B + M1 > _ 181+ X2 > _ 57}
j=1 J=1

(21)

Correspondingly, the conditional multivariate mixture prior for 3 takes

the following form:

) 2

meMAQaH{Jf j>

1

<[ W erpl=g7 iy SO}

x (M| 3 eap(— 5T M)

Let f;(I') = (77]) the scale mixture prior is:

N2k

m(BI%,T, A1, A2) H —f@>
B

©
XA;,/mqmﬁ»mmPQQﬁ
A

2
i 120

)]d(QU?) (23)

X

s o5 oy )

2
i

where 7; = 7; /1.
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3.4 Adaptive E-net Lasso VAR Shrinkage

In line with Zou and Zhang (2009), we define the adaptive e-net Lasso

estimator for a VAR as following:

N2k N2k
Bapr = arg ming{ly — (I ® X)8] [y — (L. ® X)8]+ 3 M 1851+ Ao Z 57}
7j=1
(24)

Correspondingly, the conditional multivariate mixture prior for 3 takes

the following form:

P(BS.T, Ar, Ao) ocH{\‘? o2

<[ W erpl 55 AU )}

< {IM[ S ep(— 5T M)

Let f;(I') = 2(77]2-). The scale mixture prior in (25) can be rewritten as:

m(B5, T, Ar, do) o H {r 3)
2
/ emp d(2n]2) (26)
(/27 ( 27]
13 or 1 277]
x g% pl- 24( w)/ l,j]}

where n; = Tj/)‘Lj'
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4 Empirical Illustration

4.1 Data

In macroeconomics, it is a standard practice to assess models by their fore-
casting performance (e.g. Litterman, 1986; Giannone et al, 2010). Koop
(2011) provides an extensive forecasts evaluation for seven popular Bayesian
VAR priors. We employ the data set of Koop (2011), an updated version
of that used in Stock and Watson (2008), for the out-of sample forecasting
analysis. The data set contains twenty quarterly macroeconomic series in-
cluding a measure of economic activity (GDP, real GDP), prices (CPI, the
consumer price index), an interest rate (FFR, the Fed funds rate), and other
seventeen variables. Four of the seventeen variables are those used in the
monetary model of Christiano el al (1999). The rest of the thirteen variables
contain important aggregated information of the economy. The time series
span from 1959Q1 to 2008Q4. A full list of the variables is provided in Ap-
pendix A. Detailed data descriptions please refer to Koop (2011) and Stock
and Watson (2008). Data are transformed to stationarity and standardized

same as Koop (2011).7

5These 20 variables are used for medium-size VAR in Koop (2011). Koop (2011) also
examines the VAR forecasts using medium-large VAR, which contains 40 variables, and
large VAR, which contains 168 variables. We only focus on Koop’s (2011) medium-size
VAR in this paper due to two considerations. First, it is computationally costly to use
DAELasso priors to estimate the medium-large and large VARs. Second, it is shown in
the literature (e.g. Banbura et al, 2010; Koop, 2011) that most of the gains in forecasting
performance are achieved by using medium VARs of about 20 key variables.

"I am grateful to Mark Watson for providing the data. In addition, I am grateful to
Gary Koop for sharing the Matlab code for data transformation.
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4.2 Forecast Evaluation

Same as Koop (2011), we conduct rolling and recursive forecast exercises
and calculate both the mean squared forecast error (MSFE) and predictive
likelihood measures using reduced form VAR of order four. The window
length for the rolling estimation is set to be ten years. Recursive and rolling
forecasts are conducted for to+h, to+1+h,...T, where tg is 1969Q4. Let y{+h
be the h" period forecast of y using data available at time ¢, and ;. be the
real value for y observed at ¢t + h. The MSFE measure for the variable y; is

calculated as an average of the mean squared errors of the point estimates:

T—h
S M isen — Byl p Datay)]?

MSFE =
T—h—ty+1

(27)

The predictive likelihood is used to evaluate the entire predictive distribu-

tion. In particular, the following sum of the log predictive likelihood is used:

T—h

>~ loglp(y],, = YisenlDatay)] (28)
t=to

For DAELasso, we need to elicit priors for )\i o A2, and Y. It is prac-
tically impossible to set informative priors for each )\%J and A2 ;, thus we
set relatively uninformative priors for )‘ij (or M%) and Mg (or A2) to be
G(1,0.001) and G(1,0.01), respectively. The prior for ¥7! is set to be
W((N — 1)Iy,1), which is also relatively uninformative. There is room
for improving the forecasting performance of DAELasso, such as by eliciting
more informative priors. We do not explore this possibility in the current

paper because the goal of our exercise is to find out whether a DAELasso

17



with relatively uninformative priors can provide acceptable forecasting re-
sults. For comparison, the priors for Lasso, adaptive Lasso, e-net Lasso, and
adaptive e-net Lasso are set in the same manner. Following Koop (2011)
and Geweke and Amisano (2011), we calculate log predictive likelihood in
each replication of the Gibbs sampler using posterior draws of the parame-
ters, then take the average when the Gibbs ends. For comparison, we also
use the mean posterior parameters to calculate the log predictive likelihood.
It turns out that the results are similar.

To save space, we relegate a comprehensive comparison between the
forecasts of DAELasso and its variants and that of the priors used in Koop
(2011) into the on-line appendix. In this section, we only report the fore-
casts results for the five most important priors: DAELasso, adaptive e-net
Lasso, adaptive Lasso, the natural conjugate prior used in Banbura et al
(2010), which is labelled ‘Minn. Prior as in BGR’, and a combination of the
conjugate SSVS prior and Minnesota prior, which is labelled ‘SSVS Conju-
gate plus Minn. Prior’ proposed by Koop (2011). The last two priors are
investigated in Koop (2011). We refer to Koop (2011) for a lucid description
of these priors.

Results presented in Tables 1-4 show that the forecasting performance of
DAELasso approach is comparable to that of the popular Bayesian shrinkage
methods explored in Koop (2011). Overall, the forecasts of all methods are
highly correlated with each other. Compared to the priors investigated in
Koop (2011), DAELasso and its variants tend to forecast better for GDP
and CPI in terms of point forecasts, but not as well for FFR. The results for

predictive loglikelihood yielded by DAELasso approach are more mixed. Yet,
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Table 1: Rolling Forecasting for h = 1

GDP CPI FFR
0.58 0.32 0.57
DAFLasso (-1989) (-1927) (-211.7)
adaptive e-net Lasso 0.67 0.40 0.63
P ( -195.8 ) ( -199.4 ) ( -215.0 )
adaptive Lasso 0.77 0.31 0.62
P ( -225.6 ) ( -209.2 ) ( -228.3 )
; : : 0.58 0.34 0.51
Minn. Prior as in BGR (-190.5) (-209.2) (-1774)
0.68 0.34 0.52

SSVS Non-conj. plus Minn. Prior (-197.9) (-195.2) (-177.2)

Notes:
MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.

Table 2: Rolling Forecasting for h = 4

GDP CPI FFR
0.55 0.48 0.65
DAELasso (-206.9) (-205.9) (-230.9)
adaptive e-net Lasso 0.53 0.47 0.55
P (-195.7) (-204.4) (-219.9)
adaptive Lasso 0.74 0.54 0.78
P (-233.9) (-223.0) (-247.7)
. . . 0.59 0.55 0.59
Minn. Prior as in BGR (=217.1) (-227.7) (-213.4)
0.63 0.51 0.58

SSVS Non-conj. plus Minn. Prior (-2099) (-201.3) (-198.1)

Notes:
MSFEs as proportion of random walk MSFEs.
Sum of log predictive likelihoods in parentheses.
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Table 3: Recursive Forecasting for h =1

GDP CPI FFR
0.55 0.29 0.56
DAELasso ( -210.4 ) ( -190.9 ) ( -224.2 )
adaptive e-net Lasso 0.67 0.40 0.63
P ( -242.0 ) ( -201.6 ) ( -239.8 )
adaptive Lasso 0.62 0.28 0.60
P ( -219.2 ) ( -196.4 ) ( -226.8 )
; : : 0.56 0.30 0.51
Minn. Prior as in BGR (-192.3) (-195.9) (-229.1)
0.65 0.29 0.54

SSVS Non-conj. plus Minn. Prior (-203.9) (-187.6) (-228.9)

Notes:
MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.

Table 4: Recursive Forecasting for h = 4

GDP CPI FFR

0.54 0.48 0.61
DAELasso (-2183) (-206.6) (-239.6)
adaptive e-net Lasso 003 ol "

p (-215.6 ) (-207.0) (-247.3)
dantive L 0.63 0.52 0.66
adaptive Lasso (-228.0) (-214.7) (-2422)
. ] ] 0.61 0.52 0.59
Minn. Prior as in BGR (-214.7) (-2194) (-249.6)

0.67 0.49 0.53

SSVS Non-conj. plus Minn. Prior (-2190) (-201.6) (-233.7)

Notes:
MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.
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DAELasso’s performances are qualitatively similar to that of the Bayesian
VAR methods studied in Koop (2011).

When we focus on the three Lasso types of forecasts, we find for h =1,
DAELasso tends to provide the best GDP and FFR point forecasts while
adaptive Lasso gives the best CPI point forecasts. This results seem to
suggest that while GDP and FFR can be better forecasted by using many
variables that might be highly collinear, CPI can be better forecasted using
a smaller number of important variables that are not highly correlated with
each other. Turning to the point forecasts for h = 4, we find adaptive e-
net Lasso are performing better in most of the cases. Forecasts results for
predictive loglikelihood varies for the three Lasso types of methods. But
overall, DAELasso and adaptive e-net Lasso tend to outperform adaptive
Lasso in most of the cases. This result suggests the importance of using
e-net to capture the possible grouping effect.

We conduct prior sensitivity analysis using relatively tighter priors. The
results are reported in Appendix B. We find that the tighter priors tend to
give better forecasts. Yet, the more important information from the exercise

is that the general pattern found in Tables 1-4 is robust to the prior choices.

4.3 Sparsity or Stability?

As noted in De Mol et al (2008), in presence of collinearity, if a shrinkage
method only enforces sparsity, like Lasso, it will be very sensitive to minor
perturbations of the data. Traditional wisdom is to use e-net Lasso to enforce
both L1 and L2 penalties (e.g. Zou and Hastie, 2005). Yet, it is less clear

if using e-net Lasso is the most effective way to improve the stability of
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variable selections. In this paper, we look into this question by examining
the posterior mean estimates for DAELasso and its variants. We find that
using similar priors, e-net Lasso tends to enforce slightly less sparsity than
Lasso. Yet, DAELasso, adaptive e-net Lasso and adaptive Lasso tend to
hugely improve the stability of variable selection by pulling the parameters
for all the highly collinear variables towards zero. Our findings suggest that,
in terms of enforcing stability, adaptive shrinkage is more effective than e-
net.

Tables 5-7 present the correlations between the posterior mean estimates
for the coefficients in the GDP, CPI, and FFR equations for DAELAsso and
its variants. Here coefficients for all the recursive estimations are pooled
together.? Interestingly, we find that in all cases, the coefficients for the
adaptive types of models are highly correlated, and the coefficients for e-
net Lasso and Lasso are highly correlated. This implies that the degree of

sparsity enforced are more affected by whether adaptive shrinkage is used.

Table 5: Correlations Between the Coefficients in the GDP Equation

DAELasso adaptive e-net Lasso adaptive Lasso e-net Lasso Lasso

DAELasso 1.00

adaptive e-net Lasso 0.97 1.00

adaptive Lasso 0.97 0.97 1.00

e-net Lasso 0.70 0.70 0.69 1.00

Lasso 0.66 0.65 0.66 0.97 1.00

Table 8 presents the means and standard deviations for the posterior es-

80Qur finding that adaptive types of Lasso models tend to give more stable variable se-
lection results, however, is based on the same or similar priors we elicited for the shrinkage
parameters across models. This scenario can be changed if the priors for the shrinkage
parameters of different models are very different.

9Results for rolling estimates are very similar.
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Table 6: Correlations Between the Coefficients in the CPI Equation

adaptive e-net Lasso adaptive Lasso e-net Lasso Lasso

DAELasso

adaptive e-net Lasso
adaptive Lasso
e-net Lasso

Lasso

DAELasso

1.00

0.97 1.00
0.97 0.97
0.73 0.74
0.69 0.69

1.00
0.73 1.00
0.69 0.96 1.00

Table 7: Correlations Between the Coefficients in the FFR Equation

adaptive e-net Lasso adaptive Lasso e-net Lasso Lasso

DAELasso

adaptive e-net Lasso
adaptive Lasso
e-net Lasso

Lasso

DAELasso

1.00

0.97 1.00
0.98 0.97
0.74 0.76
0.71 0.71

1.00
0.74 1.00
0.71 0.97 1.00

timates for the coefficients in the GDP, CPI, and FFR equations. In general,

results for the three adaptive types of Lassos are very similar, results for e-

net Lasso and Lasso are very similar. A closer look reveals that compared to

Lasso, e-net Lasso yields posterior estimates that are slightly more centered

at zero. However, the most prominent pattern that leaps out of Table 8 is

that the standard deviations for the coefficients in e-net Lasso and Lasso are

almost 10 times lager than their counterparts in the three adaptive types of

models.

Table 8: Means and Standard Deviations for the Coefficients

DAELasso adaptive e-net Lasso adaptive Lasso e-net Lasso Lasso

Gpp  mean 0.0021 0.0020 0.0021 -0.0013 -0.0029
std. (0.0191) (0.0180 ) (0.0191 ) (0.1032) (0.1267)

CPI mean 0.0013 0.0012 0.0013 0.0000 -0.0013
std. (0.0193) (0.0184 ) ( 0.0193 ) (0.0799 )  (0.0943)

FFR =~ [mean 0.0053 0.0053 0.0054 0.0130 0.0150
std. (0.0222 ) (10.0207 ) (0.0222) (0.0939) (0.1062 )
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Figure 1 plots the posterior estimates of the coefficients in the GDP
equation for the whole sample as an example. The coeflicients are plotted
against the sequence number of the variables. The similarities between the
coefficients plots for DAELasso, adaptive e-net Lasso, and adaptive Lasso
are striking. Same as the similarity between the coefficients plots for e-net
Lasso and Lasso. As the coefficients estimated using the adaptable types
of Lassos are much closer to zero than their counterparts estimated using
e-net Lasso and Lasso, it is understandable that a minor perturbation in
data tends to have more impact on the e-net Lasso and Lasso forecasts. For
brevity, we do not present comparable figures for other variables and other

sample periods, but they all support our general findings.
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Figure 1
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5 Conclusion

This paper proposes a Bayesian DAELasso approach for VAR shrinkage.
We elicit a scale mixture prior which leads to closed-form conditional pos-
teriors that can be directly drawn from a Gibbs sampler. The method is
appealing as it can simultaneously achieve variable selection and coefficient
shrinkage in a data based fashion. DAELasso constructively deals with mul-
ticollinearity problem by encouraging the grouping effect through both the
e-net and adaptive shrinkages. Hence, its forecasts results can be more sta-
ble and less subject to the influence of minor data perturbations. Using
relatively uninformative prior, we find that the forecasting performance of
DAELasso is comparable to that of other popular Bayesian VAR shrinkage
methods. This shows that DAELasso approach can be used as an appropri-
ate addition to the available Bayesian VAR toolkits. The implementation of
DAELasso approach is simple and straightforward. It can be easily extended
into nonlinear framework to shed new light on macro economic analysis and
forecasting.

It is interesting to find that the sophisticated and well designed priors
we used for DAELasso and its variants produce forecasts that are corre-
lated and equally accurate of those obtained with simple Minnesota prior
and conjugate priors traditionally used to conduct inference in large and
medium sized Bayesian VARs. This result has important implications in a
broader context. First, it provides further evidence that good forecasting
performances of Bayesian VARs are a general feature of the data and do

not depend on specific features of the prior. Second, it confirms Koop’s
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(2011) finding that simple Minnesota priors such as the Normal-conjugate

prior used by Banbura et al (2010) work well in medium and large VARSs,

which makes these simple priors attractive relative to the computationally

more demanding alternatives.
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Appendix

A Data List

We use 20 US macro series used in Koop (2011), which is an updated version

of Stock and Watson (2008). The variables are transformed to stationarity

and standardized same as Koop (2011). Below we cite the essential data

description and transformation code from Koop (2011). Please refer to Koop

(2011) for detailed data information.

The data transformation codes are as following: 1: no transformation;

2: first difference; 3: second difference; 4: log; 5: first difference of logged

variables; 6: second difference of logged variables.

Table 9: The List of Variables

Short name

Trans. Code

Data Description

RGDP
CPI
FFR

Com: spot price (real)

Reserves nonbor
Reserves tot

M2

Cons

IP: total
Capacity Util
U: all

HStarts: Total
PPI: fin gds
PCED

Real AHE: goods
M1

S&P: indust

10 yr T-bond
Ex rate: avg
Emp: total

U OO O O N OLUOtoy Oy W Ut Oy Ot

Real GDP, quantity index (2000 = 100)

CPTI all items

Interest rate: federal funds (e-ective) (% per annum)
Real spot market price index: all commodities
Depository inst reserves: nonborrowed (mil$)
Depository inst reserves: total (mil$)

Money stock: M2 (bil$)

Real Personal Cons. Exp., Quantity Index
Industrial production index: total

Capacity utilization: manufacturing (SIC)
Unemp. rate: All workers, 16 and over (%)
Housing starts: Total (thousands)

Producer price index: finished goods

Personal Consumption Exp.: price index

Real avg hrly earnings, non-farm prod. worker
Money stock: M1 (bil$)

S&Ps common stock price index: industrials
Interest rate: US treasury const. mat., 10-yr
US effective exchange rate: index number
Employees, nonfarm: total private
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B Prior Sensitivity Analysis

Tables 10-13 report the forecast results for DAELasso, adaptive e-net Lasso,
and adaptive Lasso using tighter priors. The priors for )\%j (or A\}) and A2,
(or Ag) are set to be G(1,0.0001) and G(1,0.001), respectively. The prior
for ¥ 71 is set to be W (1001 y, 1),

Table 10: Rolling Forecasting for h = 1

GDP CPI FFR
0.58 0.33 0.55
DAELasso (-189.9) (-185.1) (-211.2)
adaptive e-net Lasso 0.58 033 oo
p (-189.9) (-186.2) (-212.6)
0.58 0.33 0.55

adaptive Lasso (-189.7) (-185.4) (-2115)

Notes:
MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.

Table 11: Rolling Forecasting for h = 4

GDP CPI FFR
0.53 0.47 0.57
DAELasso (-201.9) (-204.8) (-233.2)
adaptive e-net Lasso 0.53 0.47 0.57
P (-201.8) (-204.6) (-233.2)
0.53 0.47 0.57

adaptive Lasso (-201.8) (-2042) (-232.8)

Notes:
MSFEs as proportion of random walk MSFEs.
Sum of log predictive likelihoods in parentheses.
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Table 12: Recursive Forecasting for h =1

GDP CPI FFR
0.58 0.31 0.54
DAELasso (-193.9) (-182.8) (-226.1)
adaptive e-net Lasso 0.59 03l o
P (-194.5) (-1833) (-226.6)
0.58 0.31 0.55

adaptive Lasso (-194.0) (-182.6) (-2264)

Notes:
MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.

Table 13: Recursive Forecasting for h = 4

GDP CPI FFR
0.53 0.47 0.56
DAELasso (-204.6) (-208.6) (-248.9)
adaptive e-net Lasso 0.53 0.47 0-56
P (-204.3) (-208.2) (-248.2)
0.53 0.47 0.56

adaptive Lasso (-204.4) (-208.2) (-248.1)

Notes:
MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.
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