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1 Technical Details for Models Nested in DAE-

Lasso

This section presents the priors, posteriors, and full conditional Gibbs schemes

for Lasso, adaptive Lasso, e-net Lasso, and adaptive e-net Lasso.

1.1 Lasso VAR Shrinkage

Following Song and Bickel (2011), we define Lasso estimator for a VAR as:

β̂L = arg minβ{[y − (In ⊗X)β]
′
[y − (In ⊗X)β] + λ1

N2k∑
j=1

|βj |} (1)

Correspondingly, the conditional multivariate mixture prior for β takes

the following form:

π(β|Σ,Γ, λ1) ∝
N2k∏
j=1

{
∫ ∞

0

1√
2πfj(Γ))

exp[− 1

2fj(Γ)
β2
j ]d(fj(Γ))}

× {|M |−
1
2 exp(−1

2
Γ

′
M−1Γ)}2

(2)

where Γ = [γ1, γ2, ..., γN2k]
′
, M = Σ ⊗ INk, and fj(Γ) is a function of Γ

and Λ1 to be defined later. In this mixture prior, the terms associated with

the L1 penalty are conditional on Σ through fj(Γ). In equation (2), the

variances of βa and βb for a ̸= b are related through M . However, βa and

βb themselves are independent of each other.

We need to find an appropriate fj(Γ) which provides us tractable pos-

teriors. The last term in equation (2) takes the form of a multivariate

Normal distribution Γ ∼ N(0,M). For ease of exposition, we first write the
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N2k ×N2k covariance matrix M as following:

M =



M1,1 ... M1,j M1,j+1 ... M1,N2k

... ... ... ... ... ...

Mj,1 ... Mj,j Mj,j+1 ... Mj,N2k

Mj+1,1 ... Mj+1,j Mj+1,j+1 ... Mj+1,N2k

... ... ... ... ... ...

MN2k,1 ... MN2k,j MN2k,j+1 ... MN2k,N2k


(3)

Let Hj = (Mj,j+1, ...,Mj,N2k)


Mj+1,j+1 ... Mj+1,N2k

... ... ...

MN2k,j+1 ... MN2k,N2k


−1

.

We next construct independent variables τj for j = 1, 2, ..., N2k using stan-

dard textbook techniques (e.g. Anderson, 2003; Muirhead 1982).

τ1 = γ1 +H1(γ2, γ3, ..., γN2k)
′

(4)

τ2 = γ2 +H2(γ3, γ4, ..., γN2k)
′

(5)

...

τN2K−1 = γN2k−1 +HN2k−1γN2k (6)

τN2K = γN2k (7)
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The joint density of τ1, τ2, ...., τN2k is

N(τ1|0, σ2
γ1)N(τ2|0, σ2

γ2)...N(τN2k|0, σ2
γN2k

) (8)

where σ2
γj = Mj,j −Hj(Mj,j+1, ...,Mj,N2k)

′, with σ2
γN2k

= MN2k,N2k. Note

that it is computationally feasible to derive σ2
γj when M is sparse.

The Jacobian of transforming Γ ∼ N(0,M) to (8) is 1. Defining ηj =

τj/λ1, we can write (8) as

N(η1|0, σ2
γ1λ

−2
1 )N(η2|0, σ2

γ2λ
−2
1 )...N(ηN2k|0, σ2

γN2k
λ−2
1 ) (9)

Let fj(Γ) = 2(η2j ), the scale mixture prior is:

π(β|Σ,Γ, λ1) ∝
N2k∏
j=1

{
∫ ∞

0

1√
2π(2η2j ))

exp[−
β2
j

2(2η2j )
]d(2η2j )

× λ2
1

2σ2
γj

exp[−1

2

2η2j
(σ2

γj )/λ
2
1

]}

(10)

The last two terms in (10) constitute a scale mixture of Normals (with

an exponential mixing density), which can be expressed as the univariate

Laplace distribution λ1

2
√

σ2
γj

exp(− λ1√
σ2
γj

|βj |).

Equation (10) shows that the conditional prior for βj is N(0, 1
2η2j

), and

the conditional prior for β is

β|Γ,Σ,Λ1,Λ2 ∼ N(0, D∗
Γ) (11)

where D∗
Γ = diag([ 1

2η21
, 1
2η22

, ..., 1
2η2

N2k

]).
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Priors for Σ and λ2
1 can be elicited following standard practice in VAR

and Lasso literature. In this paper, we set Wishart prior for Σ−1 and Gamma

prior for λ2
1: Σ

−1 ∼ W (S−1, ν), λ2
1 ∼ G(µ

λ2
1
, νλ2

1
).

The full conditional posterior for β is β ∼ N(β, V β), where V β = [(IN ⊗

X)
′
)(Σ−1⊗INk)(IN ⊗X)+(D∗

Γ)
−1]−1, and β = V β[(IN ⊗X)

′
(Σ−1⊗INk)y].

The Full conditional posterior for Σ−1 is W (S
−1

, ν), with S
−1

= (Y −

XB)
′
(Y − XB) + 2Q

′
Q + S−1 and ν = T + 2Nk + ν, with vec(Q) = Γ.

The Full conditional posterior for λ2
1 is G(µ̄λ1 , ν̄λ1), where ν̄λ1 = νλ1

+2N2k

and µ̄λ1 =
νλ1µλ1

νλ1
+2µ

λ1

∑
τ2j /σ

2
γj

Finally the full conditional posterior of 1
2η2j

is

Inverse Gaussian: IG(

√
λ2
1

β2
j σ

2
γj

,
λ2
1

σ2
γj

).1 Γ can not be directly drawn from the

posteriors. But it can be recovered in each Gibbs iteration using the draws

of 1
2η2j

and Σ .

Conditional on arbitrary starting values, the Gibbs sampler contains the

following six steps:

1. draw β|Σ,Λ1,Γ from N(β, V β);

2. draw Σ−1|β,Λ1,Γ from W (S
−1

, ν)

3. draw λ2
1|Σ, β,Γ from G(µ̄λ1 , ν̄λ1)

4. draw 1
2η2j

|β,Σ,Λ1 from IG(

√
λ2
1

β2
j σ

2
γj

,
λ2
1

σ2
γj

) for j = 1, 2, ...N2k.

5. calculate Γ based on draws of Σ and 1
2η2j

in the current iteration.

1We adopt the same form of the inverse-Gaussian density used in Park and Casella
(2008).
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1.2 Adaptive Lasso VAR Shrinkage

We define the adaptive Lasso estimator for a VAR as:

β̂AL = arg minβ{[y − (In ⊗X)β]
′
[y − (In ⊗X)β] +

N2k∑
j=1

λ1,j |βj |} (12)

Correspondingly, the conditional multivariate mixture prior for β takes

the following form:

π(β|Σ,Γ,Λ1) ∝
N2k∏
j=1

{
∫ ∞

0

1√
2πfj(Γ))

exp[− 1

2fj(Γ)
β2
j ]d(fj(Γ))}

× {|M |−
1
2 exp(−1

2
Γ

′
M−1Γ)}2

(13)

where Γ = [γ1, γ2, ..., γN2k]
′
, M = Σ⊗ INk, and fj(Γ) is a function of Γ

and Λ1 to be defined later. In this mixture prior, the terms associated with

the L1 penalty are conditional on Σ through fj(Γ). In equation (13), the

variances of βa and βb for a ̸= b are related through M . However, βa and

βb themselves are independent of each other.

We need to find an appropriate fj(Γ) which provides us tractable pos-

teriors. The last term in equation (13) takes the form of a multivariate

Normal distribution Γ ∼ N(0,M). For ease of exposition, we first write the

N2k ×N2k covariance matrix M as following:

6



M =



M1,1 ... M1,j M1,j+1 ... M1,N2k

... ... ... ... ... ...

Mj,1 ... Mj,j Mj,j+1 ... Mj,N2k

Mj+1,1 ... Mj+1,j Mj+1,j+1 ... Mj+1,N2k

... ... ... ... ... ...

MN2k,1 ... MN2k,j MN2k,j+1 ... MN2k,N2k


(14)

Let Hj = (Mj,j+1, ...,Mj,N2k)


Mj+1,j+1 ... Mj+1,N2k

... ... ...

MN2k,j+1 ... MN2k,N2k


−1

.

We next construct independent variables τj for j = 1, 2, ..., N2k using stan-

dard textbook techniques (e.g. Anderson, 2003; Muirhead 1982).

τ1 = γ1 +H1(γ2, γ3, ..., γN2k)
′

(15)

τ2 = γ2 +H2(γ3, γ4, ..., γN2k)
′

(16)

...

τN2K−1 = γN2k−1 +HN2k−1γN2k (17)

τN2K = γN2k (18)

The joint density of τ1, τ2, ...., τN2k is

N(τ1|0, σ2
γ1)N(τ2|0, σ2

γ2)...N(τN2k|0, σ2
γN2k

) (19)
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where σ2
γj = Mj,j −Hj(Mj,j+1, ...,Mj,N2k)

′, with σ2
γN2k

= MN2k,N2k. Note

that it is computationally feasible to derive σ2
γj when M is sparse.

The Jacobian of transforming Γ ∼ N(0,M) to (19) is 1. Defining ηj =

τj/λ1,j , we can write (19) as

N(η1|0, σ2
γ1λ

−2
1,1)N(η2|0, σ2

γ2λ
−2
1,2)...N(ηN2k|0, σ2

γN2k
λ−2
1,N2k

) (20)

Let fj(Γ) = 2(η2j ), the scale mixture prior is:

π(β|Σ,Γ,Λ1) ∝
N2k∏
j=1

{
∫ ∞

0

1√
2π(2η2j ))

exp[−
β2
j

2(2η2j )
]d(2η2j )

×
λ2
1,j

2σ2
γj

exp[−1

2

2η2j
(σ2

γj )/λ
2
1,j

]}

(21)

Equation (21) shows that the conditional prior for βj is N(0, 1
2η2j

), and

the conditional prior for β is

β|Γ,Σ,Λ1,Λ2 ∼ N(0, D∗
Γ) (22)

where D∗
Γ = diag([ 1

2η21
, 1
2η22

, ..., 1
2η2

N2k

]).

Priors for Σ and λ2
1,j can be elicited following standard practice in VAR

and Lasso literature. In this paper, we set Wishart prior for Σ−1 and Gamma

prior for λ2
1,j : Σ

−1 ∼ W (S−1, ν), λ2
1,j ∼ G(µ

λ2
1,j
, νλ2

1,j
).

The full conditional posterior for β is β ∼ N(β, V β), where V β = [(IN ⊗

X)
′
)(Σ−1⊗INk)(IN ⊗X)+(D∗

Γ)
−1]−1, and β = V β[(IN ⊗X)

′
(Σ−1⊗INk)y].

The Full conditional posterior for Σ−1 is W (S
−1

, ν), with S
−1

= (Y −

XB)
′
(Y −XB)+ 2Q

′
Q+S−1 and ν = T +2Nk+ ν, with vec(Q) = Γ. The
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Full conditional posterior for λ2
1,j is G(µ̄λ1,j

, ν̄λ1,j
), where ν̄λ1,j

= νλ1,j
+ 2

and µ̄λ1,j
=

νλ1,jσ
2
jµλ1,j

2τ2j µλ1,j
+νλ1,j

σ2
γj

. Finally the full conditional posterior of 1
2η2j

is

Inverse Gaussian: IG(

√
λ2
1,j

β2
j σ

2
γj

,
λ2
1,j

σ2
γj

). Γ can not be directly drawn from the

posteriors. But it can be recovered in each Gibbs iteration using the draws

of 1
2η2j

and Σ .

Conditional on arbitrary starting values, the Gibbs sampler contains the

following six steps:

1. draw β|Σ,Λ1,Γ from N(β, V β);

2. draw Σ−1|β,Λ1,Γ from W (S
−1

, ν)

3. draw λ2
1,j |β,Σ,Λ1,−j ,Γ from G(µ̄λ1,j

, ν̄λ1,j
) for j = 1, 2, ...N2k

4. draw 1
2η2j

|β,Σ,Λ1 from IG(

√
λ2
1,j

β2
j σ

2
γj

,
λ2
1,j

σ2
γj

) for j = 1, 2, ...N2k.

5. calculate Γ based on draws of Σ and 1
2η2j

in the current iteration.

1.3 E-net Lasso VAR Shrinkage

We define the e-net Lasso estimator for a VAR as:

β̂EL = arg minβ{[y − (In ⊗X)β]
′
[y − (In ⊗X)β] + λ1

N2k∑
j=1

|βj |+ λ2

N2k∑
j=1

β2
j }

(23)

Correspondingly, the conditional multivariate mixture prior for β takes
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the following form:

π(β|Σ,Γ, λ1, λ2) ∝
N2k∏
j=1

{
√
λ2√
2π

exp(−λ2

2
β2
j )

×
∫ ∞

0

1√
2πfj(Γ))

exp[− 1

2fj(Γ)
β2
j ]d(fj(Γ))}

× {|M |−
1
2 exp(−1

2
Γ

′
M−1Γ)}2

(24)

where Γ = [γ1, γ2, ..., γN2k]
′
, M = Σ ⊗ INk, and fj(Γ) is a function of Γ

and Λ1 to be defined later. In this mixture prior, the terms associated with

the L1 penalty are conditional on Σ through fj(Γ). In equation (24), the

variances of βa and βb for a ̸= b are related through M . However, βa and

βb themselves are independent of each other.

We need to find an appropriate fj(Γ) which provides us tractable pos-

teriors. The last term in equation (24) takes the form of a multivariate

Normal distribution Γ ∼ N(0,M). For ease of exposition, we first write the

N2k ×N2k covariance matrix M as following:

M =



M1,1 ... M1,j M1,j+1 ... M1,N2k

... ... ... ... ... ...

Mj,1 ... Mj,j Mj,j+1 ... Mj,N2k

Mj+1,1 ... Mj+1,j Mj+1,j+1 ... Mj+1,N2k

... ... ... ... ... ...

MN2k,1 ... MN2k,j MN2k,j+1 ... MN2k,N2k


(25)
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Let Hj = (Mj,j+1, ...,Mj,N2k)


Mj+1,j+1 ... Mj+1,N2k

... ... ...

MN2k,j+1 ... MN2k,N2k


−1

.

We next construct independent variables τj for j = 1, 2, ..., N2k using stan-

dard textbook techniques (e.g. Anderson, 2003; Muirhead 1982).

τ1 = γ1 +H1(γ2, γ3, ..., γN2k)
′

(26)

τ2 = γ2 +H2(γ3, γ4, ..., γN2k)
′

(27)

...

τN2K−1 = γN2k−1 +HN2k−1γN2k (28)

τN2K = γN2k (29)

The joint density of τ1, τ2, ...., τN2k is

N(τ1|0, σ2
γ1)N(τ2|0, σ2

γ2)...N(τN2k|0, σ2
γN2k

) (30)

where σ2
γj = Mj,j −Hj(Mj,j+1, ...,Mj,N2k)

′, with σ2
γN2k

= MN2k,N2k. Note

that it is computationally feasible to derive σ2
γj when M is sparse.

The Jacobian of transforming Γ ∼ N(0,M) to (30) is 1. Defining ηj =

τj/λ1, we can write (30) as

N(η1|0, σ2
γ1λ

−2
1 )N(η2|0, σ2

γ2λ
−2
1 )...N(ηN2k|0, σ2

γN2k
λ−2
1 ) (31)
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Let fj(Γ) = 2(η2j ), the scale mixture prior is:

π(β|Σ,Γ, λ1, λ2) ∝
N2k∏
j=1

{
√
λ2√
2π

exp(−λ2

2
β2
j )

×
∫ ∞

0

1√
2π(2η2j ))

exp[−
β2
j

2(2η2j )
]d(2η2j )

× λ2
1

2σ2
γj

exp[−1

2

2η2j
(σ2

γj )/λ
2
1

]}

(32)

where ηj = τj/λ1.

The last two terms in (32) constitute a scale mixture of Normals (with

an exponential mixing density), which can be expressed as the univariate

Laplace distribution λ1

2
√

σ2
γj

exp(− λ1√
σ2
γj

|βj |).

Equation (32) shows that the conditional prior for βj is N(0,
2η2j

2λ2η2j+1
),

and the conditional prior for β is

β|Γ,Σ,Λ1,Λ2 ∼ N(0, D∗
Γ) (33)

where D∗
Γ = diag([

2η21
2λ2η21+1

,
2η22

2λ2η22+1
, ...,

2η2
N2k

2λ2η2
N2k

+1
]).

Priors for Σ and λ2
1 can be elicited following standard practice in VAR

and Lasso literature. In this paper, we set Wishart prior for Σ−1 and Gamma

priors for λ2
1 and λ2: Σ

−1 ∼ W (S−1, ν), λ2
1 ∼ G(µ

λ2
1
, νλ2

1
), λ2 ∼ G(µ

λ2
, νλ2

).

The full conditional posterior for β is β ∼ N(β, V β), where V β = [(IN ⊗

X)
′
)(Σ−1⊗INk)(IN ⊗X)+(D∗

Γ)
−1]−1, and β = V β[(IN ⊗X)

′
(Σ−1⊗INk)y].

The Full conditional posterior for Σ−1 is W (S
−1

, ν), with S
−1

= (Y −

XB)
′
(Y −XB)+ 2Q

′
Q+S−1 and ν = T +2Nk+ ν, with vec(Q) = Γ. The
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Full conditional posterior for λ2
1 is G(µ̄λ1 , ν̄λ1), where ν̄λ1 = νλ1

+2N2k and

µ̄λ1 =
νλ1µλ1

νλ1
+2µ

λ1

∑
τ2j /σ

2
γj

. The Full conditional posterior for λ2 is G(µ̄λ2 , ν̄λ2),

where ν̄λ2 = νλ2
+N2k and µ̄λ2 =

µ
λ2

ν̄λ2

νλ2
+µ

λ2

∑
β2
j
. Finally the full conditional

posterior of 1
2η2j

is Inverse Gaussian: IG(

√
λ2
1

β2
j σ

2
γj

,
λ2
1

σ2
γj

). Γ can not be directly

drawn from the posteriors. But it can be recovered in each Gibbs iteration

using the draws of 1
2η2j

and Σ .

Conditional on arbitrary starting values, the Gibbs sampler contains the

following six steps:

1. draw β|Σ,Λ1,Λ2,Γ from N(β, V β);

2. draw Σ−1|β,Λ1,Λ2,Γ from W (S
−1

, ν)

3. draw λ2
1|β,Σ,Λ2,Γ from G(µ̄λ1 , ν̄λ1)

4. draw λ2|β,Σ,Λ1,Γ from G(µ̄λ2 , ν̄λ2)

5. draw 1
2η2j

|β,Σ,Λ1,Λ2 from IG(

√
λ2
1

β2
j σ

2
γj

,
λ2
1

σ2
γj

) for j = 1, 2, ...N2k.

6. calculate Γ based on draws of Σ and 1
2η2j

in the current iteration.

1.4 Adaptive E-net Lasso VAR Shrinkage

In line with Zou and Zhang (2009), we define the adaptive e-net Lasso

estimator for a VAR as following:

β̂AEL = arg minβ{[y− (In⊗X)β]
′
[y− (In⊗X)β]+

N2k∑
j=1

λ1,j |βj |+λ2

N2k∑
j=1

β2
j }

(34)
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Correspondingly, the conditional multivariate mixture prior for β takes

the following form:

π(β|Σ,Γ,Λ1, λ2) ∝
N2k∏
j=1

{
√
λ2√
2π

exp(−λ2

2
β2
j )

×
∫ ∞

0

1√
2πfj(Γ))

exp[− 1

2fj(Γ)
β2
j ]d(fj(Γ))}

× {|M |−
1
2 exp(−1

2
Γ

′
M−1Γ)}2

(35)

where Γ = [γ1, γ2, ..., γN2k]
′
, M = Σ⊗ INk, and fj(Γ) is a function of Γ and

Λ1 to be defined later. In this mixture prior, the terms associated with the

L1 penalty are conditional on Σ through fj(Γ).

We need to find an appropriate fj(Γ) which provides us tractable pos-

teriors. The last term in equation (35) takes the form of a multivariate

Normal distribution Γ ∼ N(0,M). For ease of exposition, we first write the

N2k ×N2k covariance matrix M as following:

M =



M1,1 ... M1,j M1,j+1 ... M1,N2k

... ... ... ... ... ...

Mj,1 ... Mj,j Mj,j+1 ... Mj,N2k

Mj+1,1 ... Mj+1,j Mj+1,j+1 ... Mj+1,N2k

... ... ... ... ... ...

MN2k,1 ... MN2k,j MN2k,j+1 ... MN2k,N2k


(36)
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Let Hj = (Mj,j+1, ...,Mj,N2k)


Mj+1,j+1 ... Mj+1,N2k

... ... ...

MN2k,j+1 ... MN2k,N2k


−1

.

We next construct independent variables τj for j = 1, 2, ..., N2k using stan-

dard textbook techniques (e.g. Anderson, 2003; Muirhead 1982).

τ1 = γ1 +H1(γ2, γ3, ..., γN2k)
′

(37)

τ2 = γ2 +H2(γ3, γ4, ..., γN2k)
′

(38)

...

τN2K−1 = γN2k−1 +HN2k−1γN2k (39)

τN2K = γN2k (40)

The joint density of τ1, τ2, ...., τN2k is

N(τ1|0, σ2
γ1)N(τ2|0, σ2

γ2)...N(τN2k|0, σ2
γN2k

) (41)

where σ2
γj = Mj,j −Hj(Mj,j+1, ...,Mj,N2k)

′, with σ2
γN2k

= MN2k,N2k. Note

that it is computationally feasible to derive σ2
γj when M is sparse.

The Jacobian of transforming Γ ∼ N(0,M) to (41) is 1. Defining ηj =

τj/λ1,j , we can write (41) as

N(η1|0, σ2
γ1λ

−2
1,1)N(η2|0, σ2

γ2λ
−2
1,2)...N(ηN2k|0, σ2

γN2k
λ−2
1,N2k

) (42)
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Let fj(Γ) = 2(η2j ). The scale mixture prior in (35) can be rewritten as:

π(β|Σ,Γ,Λ1, λ2) ∝
N2k∏
j=1

{
√
λ2√
2π

exp(−λ2

2
β2
j )

×
∫ ∞

0

1√
2π(2η2j ))

exp[−
β2
j

2(2η2j )
]d(2η2j )

×
λ2
1,j

2σ2
γj

exp[−1

2

2η2j
(σ2

γj )/λ
2
1,j

]}

(43)

The last two terms in (43) constitute a scale mixture of Normals (with

an exponential mixing density), which can be expressed as the univariate

Laplace distribution
λ1,j

2
√

σ2
γj

exp(− λ1,j√
σ2
γj

|βj |).

Equation (43) shows that the conditional prior for βj is N(0,
2η2j

2λ2η2j+1
),

and the conditional prior for β is

β|Γ,Σ,Λ1,Λ2 ∼ N(0, D∗
Γ) (44)

where D∗
Γ = diag([

2η21
2λ2η21+1

,
2η22

2λ2η22+1
, ...,

2η2
N2k

2λ2η2
N2k

+1
]).

Priors for Σ and λ2
1,j can be elicited following standard practice in VAR

and Lasso literature. In this paper, we set Wishart prior for Σ−1 and Gamma

priors for λ2
1,j and λ2,j : Σ−1 ∼ W (S−1, ν), λ2

1,j ∼ G(µ
λ2
1,j
, νλ2

1,j
), λ2,j ∼

G(µ
λ2
, νλ2

).

The full conditional posterior for β is β ∼ N(β, V β), where V β = [(IN ⊗

X)
′
)(Σ−1⊗INk)(IN ⊗X)+(D∗

Γ)
−1]−1, and β = V β[(IN ⊗X)

′
(Σ−1⊗INk)y].

The Full conditional posterior for Σ−1 is W (S
−1

, ν), with S
−1

= (Y −

XB)
′
(Y −XB)+ 2Q

′
Q+S−1 and ν = T +2Nk+ ν, with vec(Q) = Γ. The
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Full conditional posterior for λ2
1,j is G(µ̄λ1,j

, ν̄λ1,j
), where ν̄λ1,j

= νλ1,j
+2 and

µ̄λ1,j
=

νλ1,jσ
2
jµλ1,j

2τ2j µλ1,j
+νλ1,j

σ2
γj

. The Full conditional posterior for λ2 is G(µ̄λ2 , ν̄λ2),

where ν̄λ2 = νλ2
+N2k and µ̄λ2 =

µ
λ2

ν̄λ2

νλ2
+µ

λ2

∑
β2
j
. Finally the full conditional

posterior of 1
2η2j

is Inverse Gaussian: IG(

√
λ2
1,j

β2
j σ

2
γj

,
λ2
1,j

σ2
γj

). Γ can not be directly

drawn from the posteriors. But it can be recovered in each Gibbs iteration

using the draws of 1
2η2j

and Σ .

Conditional on arbitrary starting values, the Gibbs sampler contains the

following six steps:

1. draw β|Σ,Λ1,Λ2,Γ from N(β, V β);

2. draw Σ−1|β,Λ1,Λ2,Γ from W (S
−1

, ν)

3. draw λ2
1,j |β,Σ,Λ1,−j ,Λ2,Γ from G(µ̄λ1,j

, ν̄λ1,j
) for j = 1, 2, ...N2k

4. draw λ2|β,Σ,Λ1,Γ from G(µ̄λ2 , ν̄λ2)

5. draw 1
2η2j

|β,Σ,Λ1,Λ2 from IG(

√
λ2
1,j

β2
j σ

2
γj

,
λ2
1,j

σ2
γj

) for j = 1, 2, ...N2k.

6. calculate Γ based on draws of Σ and 1
2η2j

in the current iteration.

2 Detailed Forecast Evaluation Results

Tables 1-4 report the DAELasso forecasts results along with Lasso, adaptive

Lasso, e-net Lasso, adaptive e-net Lasso, and those of the factor models

and the seven popular Bayesian shrinkage priors in Koop (2011). In line

with Koop (2011), we present MSFE relative to the random walk and log

predictive likelihood for GDP, CPI and FFR. The results for DAELasso
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and four other Lasso types of shrinkage methods are reported at the top

of each table, followed by those of the methods reported in Koop (2011).

Koop (2011) considers three variants of the Minnesota prior. The first is

the natural conjugate prior used in Banbura et al (2010), which is labelled

‘Minn. Prior as in BGR’. The second is the traditional Minnesota prior of

Litterman (1986), which is labelled ‘Minn. Prior Σ diagonal’. The third

is the traditional Minnesota prior except that the upper left 3 × 3 block

of Σ is not assumed to be daigonal, which is labelled ‘Minn. Prior Σ not

diagonal’. Koop (2011) also evaluates the performances of four types of

SSVS priors. The first is the same as George et al (2008), which is labelled

‘SSVS Non-conj. semi-automatic’. The second is a combination of the

non-conjugate SSVS prior and Minnesota prior with variables selected in a

data based fashion, which is labelled ‘SSVS Non-conj. plus Minn. Prior’.

The Third is a conjugate SSVS prior, which is labelled ‘SSVS Conjugate

Semi-automatic’. The fourth is a combination of the conjugate SSVS prior

and Minnesota prior, which is labelled ‘SSVS Conjugate plus Minn. Prior’.

Finally the results for factor-augmented VAR models with one and four

lagged factors are labelled as ‘Factor model p=1’ and ‘Factor model p=4’,

respectively. We refer to Koop (2011) for a lucid description of these priors.
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Table 1: Rolling Forecasting for h = 1

GDP CPI FFR

DAELasso
0.58 0.32 0.57

( -198.9 ) ( -192.7 ) ( -211.7 )

adaptive e-net Lasso
0.67 0.40 0.63

( -195.8 ) ( -199.4 ) ( -215.0 )

e-net Lasso
0.68 0.40 0.63

( -215.3 ) ( -211.6 ) ( -223.7 )

adaptive Lasso
0.77 0.31 0.62

( -225.6 ) ( -209.2 ) ( -228.3 )

Lasso
0.67 0.39 0.63

( -255.8 ) ( -241.3 ) ( -257.6 )

Minn. Prior as in BGR
0.58 0.34 0.51

( -190.5) ( -209.2 ) ( -177.4 )

Minn. Prior Σ diagonal
0.61 0.30 0.52

( -194.0 ) ( -193.0 ) ( -181.7 )

Minn. Prior Σ not diagonal
0.61 0.31 0.53

( -192.1 ) ( -202.4 ) ( -185.9 )

SSVS Conjugate semi-automatic
0.81 0.38 0.63

( -209.4 ) ( -231.8 ) ( -175.8 )

SSVS Conjugate plus Minn. Prior
0.59 0.35 0.51

( -191.4 ) ( -212.1 ) ( -179.2 )

SSVS Non-conj. semi-automatic
0.88 0.47 0.73

( -234.3 ) ( -236.0 ) ( -213.0 )

SSVS Non-conj. plus Minn. Prior
0.68 0.34 0.52

( -197.9 ) ( -195.2 ) ( -177.2 )

Factor model p=1
1.21 0.59 1.42

( -252.8 ) ( -242.7 ) ( -236.4 )

Factor model p=4
4.46 1.88 2.88

( -401.7 ) ( -457.0 ) ( -352.7 )

Notes:

MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.
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Table 2: Rolling Forecasting for h = 4

GDP CPI FFR

DAELasso
0.55 0.48 0.65

( -206.9 ) ( -205.9 ) ( -230.9 )

adaptive e-net Lasso
0.53 0.47 0.55

( -195.7 ) ( -204.4 ) ( -219.9)

e-net Lasso
0.53 0.47 0.55

( -215.2 ) ( -213.5 ) ( -225.5 )

adaptive Lasso
0.74 0.54 0.78

( -233.9 ) ( -223.0 ) ( -247.7 )

Lasso
0.53 0.47 0.55

( -255.9 ) ( -242.6 ) ( -259.0 )

Minn. Prior as in BGR
0.59 0.55 0.59

( -217.1 ) ( -227.7 ) ( -213.4 )

Minn. Prior Σ diagonal
0.59 0.55 0.59

( -211.1 ) ( -232.4 ) ( -246.6 )

Minn. Prior Σ not diagonal
0.58 0.58 0.58

( -210.6 ) ( -222.2 ) ( -212.1 )

SSVS Conjugate semi-automatic
1.23 0.99 1.32

( -282.6 ) ( -284.3 ) ( -273.8 )

SSVS Conjugate plus Minn. Prior
0.63 0.54 0.61

( -230.2 ) ( -221.2 ) ( -213.5 )

SSVS Non-conj. semi-automatic
1.60 1.22 1.64

( -294.1 ) ( -266.2 ) ( -268.8 )

SSVS Non-conj. plus Minn. Prior
0.63 0.51 0.58

( -209.9 ) ( -201.3 ) ( -198.1 )

Factor model p=1
1.39 0.91 1.35

( -280.1 ) ( -255.5 ) ( -283.4 )

Factor model p=4
5.03 3.64 6.73

( -562.9 ) ( -522.3 ) ( -593.8 )

Notes:

MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.
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Table 3: Recursive Forecasting for h = 1

GDP CPI FFR

DAELasso
0.55 0.29 0.56

( -210.4 ) ( -190.9 ) ( -224.2 )

adaptive e-net Lasso
0.67 0.40 0.63

( -242.0 ) ( -201.6 ) ( -239.8 )

e-net Lasso
0.68 0.40 0.63

( -225.6 ) ( -212.5 ) ( -237.9 )

adaptive Lasso
0.62 0.28 0.60

( -219.2 ) ( -196.4 ) ( -226.8 )

Lasso
0.67 0.39 0.62

( -236.5 ) ( -221.1 ) ( -242.9 )

Minn. Prior as in BGR
0.56 0.30 0.51

( -192.3 ) ( -195.9 ) ( -229.1 )

Minn. Prior Σ diagonal
0.58 0.28 0.54

( -204.3 ) ( -182.2 ) ( -238.8 )

Minn. Prior Σ not diagonal
0.55 0.27 0.52

( -195.4 ) ( -184.1 ) ( -249.5 )

SSVS Conjugate semi-automatic
0.68 0.27 0.63

( -199.9 ) ( -191.2 ) ( -245.3 )

SSVS Conjugate plus Minn. Prior
0.56 0.31 0.51

( -192.5 ) ( -197.6 ) ( -228.5)

SSVS Non-conj. semi-automatic
0.64 0.32 0.58

( -205.1 ) ( -196.5 ) ( -237.2 )

SSVS Non-conj. plus Minn. Prior
0.65 0.29 0.54

( -203.9 ) ( -187.6 ) ( -228.9 )

Factor model p=1
0.68 0.30 0.67

( -198.3 ) ( -193.2 ) ( -227.9 )

Factor model p=4
0.90 0.35 0.77

( -212.9 ) ( -219.1 ) ( -245.6 )

Notes:

MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.

21



Table 4: Recursive Forecasting for h = 4

GDP CPI FFR

DAELasso
0.54 0.48 0.61

( -218.3 ) ( -206.6 ) ( -239.6 )

adaptive e-net Lasso
0.53 0.47 0.55

( -215.6 ) ( -207.0 ) ( -247.3 )

e-net Lasso
0.53 0.47 0.55

( -225.5 ) ( -213.7 ) ( -239.0 )

adaptive Lasso
0.63 0.52 0.66

( -228.0 ) ( -214.7 ) ( -242.2 )

Lasso
0.53 0.47 0.55

( -236.2 ) ( -222.8 ) ( -244.3 )

Minn. Prior as in BGR
0.61 0.52 0.59

( -214.7 ) ( -219.4 ) ( -249.6 )

Minn. Prior Σ diagonal
0.61 0.52 0.61

( -214.0 ) ( -217.6 ) ( -278.1 )

Minn. Prior Σ not diagonal
0.62 0.52 0.59

( -213.3 ) ( -216.1 ) ( -244.8 )

SSVS Conjugate semi-automatic
0.65 0.60 0.59

( -212.4 ) ( -225.0 ) ( -249.5 )

SSVS Conjugate plus Minn. Prior
0.84 0.70 0.67

( -219.6 ) ( -246.6 ) ( -258.5 )

SSVS Non-conj. semi-automatic
0.75 0.77 0.88

( -293.2 ) ( -226.4 ) ( -268.1 )

SSVS Non-conj. plus Minn. Prior
0.67 0.49 0.53

( -219.0 ) ( -201.6 ) ( -233.7 )

Factor model p=1
0.84 0.55 0.69

( -228.9 ) ( -211.6 ) ( -244.1 )

Factor model p=4
0.89 0.62 0.68

( -243.6 ) ( -227.4 ) ( -249.1 )

Notes:

MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.
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