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1 Technical Details for Models Nested in DAE-

Lasso

This section presents the priors, posteriors, and full conditional Gibbs schemes

for Lasso, adaptive Lasso, e-net Lasso, and adaptive e-net Lasso.

1.1 Lasso VAR Shrinkage
Following Song and Bickel (2011), we define Lasso estimator for a VAR as:

N2k

B = argming{ly — (I, ® X)8] [y — (L. ® X)Bl + M Y_ 18,1} (1)
j=1

Correspondingly, the conditional multivariate mixture prior for 3 takes

the following form:
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where I' = [’yl,fyg,...,'yNzk]/, M = ¥ ® Ing, and f;(I') is a function of I'
and A; to be defined later. In this mixture prior, the terms associated with
the L, penalty are conditional on ¥ through f;(I'). In equation (2), the
variances of 8, and B for a # b are related through M. However, 5, and
By themselves are independent of each other.

We need to find an appropriate f;(I') which provides us tractable pos-
teriors. The last term in equation (2) takes the form of a multivariate

Normal distribution I' ~ N (0, M). For ease of exposition, we first write the



N2k x N2k covariance matrix M as following:

Myy . My Mgy .. Mpyey
M, M;;,  M;, M,
7, Jod g+l e N2k
M = (3)
Mjt1a o Mjy; Mjpaj o Mg N2
MNQk:,l MNQk,j MNQk‘,j-I—l MN2k7N2k‘
-1
M1 o My v

Let H; = (M; j1, ---an,N%)

MNQk-’]_'_l ces MNQk,NQk
We next construct independent variables 7; for j =1,2,..., N 2k using stan-

dard textbook techniques (e.g. Anderson, 2003; Muirhead 1982).
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T1 :71+H1(727737"')7N2k) (4)
T2 = Y2 + Ha (3,74, ---7'7N2k), (5)
TN2K—1 = YN2k—1 T Hy2p— 17Nk (6)
TN2K = YN2k (7)



The joint density of 71, 79, ...., Tn2j, 1S

N (110,02 )N (7210,02,)...N (12410, 02, ) (®)

where o = M;j; — Hj(Mjj1,..., M; n2p)', with o2

YN2k = MNQk,NQk‘ Note

that it is computationally feasible to derive o2

i when M is sparse.

The Jacobian of transforming I' ~ N (0, M) to (8) is 1. Defining n; =

7j/ A1, we can write (8) as

N(m1]0, 02 AT2)N (1210, 02,27 2).e.N (g0, 02, A7) (9)

Let f;(I') = (77]) the scale mixture prior is:
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The last two terms in (10) constitute a scale mixture of Normals (with

an exponential mixing density), which can be expressed as the univariate

Laplace distribution —1—ezp(——2_|8;
NS ( ﬁ' 1)
Equation (10) shows that the conditional prior for 3; is N(0, o 2) and

the conditional prior for 3 is

B‘szvAhAQ NN(()?DF) (11)
where Df. = dzag([i% ﬁ, vy ﬁ])



Priors for ¥ and A} can be elicited following standard practice in VAR,
and Lasso literature. In this paper, we set Wishart prior for ©~! and Gamma
prior for A2: 7 ~ W(S71 v), A2 ~ G(H/\%,g)\%).

The full conditional posterior for 8 is 8 ~ N(j,V 3), where Vg = [(In ®
X)) ET@Ing) (v @ X)+(Dp) 717 and B = Vi[(In @ X) (571 @ Iy )y)-
The Full conditional posterior for X! is W(g_l,ﬁ), with §7' = (Y —
XB)'(Y —XB)+2Q'Q+ S " and v = T + 2Nk + v, with vec(Q) = T

The Full conditional posterior for A? is G(fiy,, 7y, ), where vy, = vy, +2N%k
v/\lﬁxl
£>\1+2ﬁ)\1 ZTJ?/O'?YJ_

A2 YRt .
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and fiy, = Finally the full conditional posterior of ﬁ is
J

Inverse Gaussian: IG(
posteriors. But it can be recovered in each Gibbs iteration using the draws
1
of ﬁ and X .
Conditional on arbitrary starting values, the Gibbs sampler contains the

following six steps:

1. draw 3|3, Ay, T from N(B,V);

2. draw X7YB, Ay, T from W (S l,ﬁ)

3. draw M\}|X, 8, T from G(fiy,, Dy, )
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) for j =1,2,..N?k.

4. draw ﬁ\B,Z,Al from IG(
J

5. calculate I" based on draws of ¥ and # in the current iteration.
i

'We adopt the same form of the inverse-Gaussian density used in Park and Casella
(2008).



1.2 Adaptive Lasso VAR Shrinkage

We define the adaptive Lasso estimator for a VAR as:
N2k

Bar = argming{ly — (L, ® X)B] [y — (L ® X)B] + Y Myl61}  (12)
j=1

Correspondingly, the conditional multivariate mixture prior for 3 takes

the following form:
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where T = [y1, 72, ..., Yn2i] » M = £ ® Iy, and fj(I') is a function of I'
and Aq to be defined later. In this mixture prior, the terms associated with
the L; penalty are conditional on ¥ through f;(I'). In equation (13), the
variances of 8, and B for a # b are related through M. However, 5, and
By themselves are independent of each other.

We need to find an appropriate f;(I') which provides us tractable pos-
teriors. The last term in equation (13) takes the form of a multivariate
Normal distribution I' ~ N (0, M). For ease of exposition, we first write the

N2k x N2k covariance matrix M as following:
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We next construct independent variables 7; for j =1,2,..., N 2k using stan-

dard textbook techniques (e.g. Anderson, 2003; Muirhead 1982).

T =7 + H1(727737 "'77N2k‘)

T2 = 72 + H2(737’y4) "')’YNzk’)

/
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TN2K—1 = YN2k—1 T Hy2p—1vnveg

TN2K = VYN2k

The joint density of 71,79, ...., Ty2} 18
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where O' = M;; Hj(Mj,j—i—l; '-'7M'N2k)/7 with U'2y

7, N2k = MN2k7N2k' Note

that it is computationally feasible to derive o2

i when M is sparse.

The Jacobian of transforming I' ~ N (0, M) to (19) is 1. Defining n; =

7; /1,5, we can write (19) as

(771|07 'yl ) (772|07 72 )"‘N(nN2k|070-'yN2k)‘1?\72k) (20)

Let f;(I') = 2(77]2-), the scale mixture prior is:
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Equation (21) shows that the conditional prior for 3; is N(0, 2772) and

the conditional prior for 3 is

B‘Fv %, A17A2 ~ N(O7D>Ik‘) (22)
where D} = dzag([2n2, 27172,. . ﬁ])

Priors for ¥ and )\2 can be elicited following standard practice in VAR
and Lasso literature. In this paper, we set Wishart prior for ¥~ and Gamma
prior for /\%j: YA WS ), )\%j ~ G(,u)\2 NZVIDE

) 2 — Lj 1,]

The full conditional posterior for 8 is 8 ~ N(3,V ), where Vg = [(In ®
X)) ET @ In)(In®X)+(Dp) 7 and B = V[(In© X) (7 @ Ink)y).
The Full conditional posterior for ¥ is W(?il, v), with S = (Y —
XB)(Y-XB)+2Q'Q+ S and 7 = T + 2Nk + v, with vec(Q) =T'. The



Full conditional posterior for )\%J is G([in, 5, Vn, ), Where Dy, o = vy -+ 2
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posteriors. But it can be recovered in each Gibbs iteration using the draws
1
of g7 and X .

Conditional on arbitrary starting values, the Gibbs sampler contains the

following six steps:

1. draw 8%, A1, T from N(B,Vp);

2. draw X7!B, Ay, T from W (S 1,?)

3. draw )\%JW,E,AL_j,F from G(py, ;, 7z, ;) for j =1,2, .N?k

7

1 [ M, M _ 2
4. draw W\B,Z,Al from IG( B]Tf%j’ 1) for j =1,2,...N°k.

5. calculate I" based on draws of ¥ and ﬁ in the current iteration.
i

1.3 E-net Lasso VAR Shrinkage

We define the e-net Lasso estimator for a VAR as:

N2k N2k
Bur, = arg ming{[y — (I, ® X)B]'ly — (I, ® X)B] + M\ > 1B + X2 > _ 87}
=1 j=1

(23)

Correspondingly, the conditional multivariate mixture prior for 3 takes



the following form:
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where I' = [71,72,...,7N2k]/, M = ¥ ® Ing, and f;(I') is a function of I'
and A; to be defined later. In this mixture prior, the terms associated with
the Ly penalty are conditional on ¥ through f;(I'). In equation (24), the
variances of 8, and B for a # b are related through M. However, 5, and
By themselves are independent of each other.

We need to find an appropriate f;(I') which provides us tractable pos-
teriors. The last term in equation (24) takes the form of a multivariate
Normal distribution I' ~ N(0, M). For ease of exposition, we first write the

N2k x N2k covariance matrix M as following:
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Let Hj = (Mj,j+17 ...,ijNQk)

MNzk‘,j-i-l MNQk:,NQk:
We next construct independent variables 7; for j =1,2,..., N 2k using stan-

dard textbook techniques (e.g. Anderson, 2003; Muirhead 1982).

/

=71+ Hi(72,73, -, YN2k) (26)
Ty = v2 + Ha (3,74, --w’YNQk)/ (27)
TN2K—1 = YN2k—1 T Hy2p— 17Nk (28)
TN2K = TN2k (29)
The joint density of 71,79, ...., Ty2}, 1S
N (7|0, Ugl)N(7'2|0>032)'--N(TN2k|07U§N2k) (30)

where U’2Yj = de' - Hj(Mj,j—i-la "'7Mj,N2k)/7 with 0'27N2k = MN2k,N2k' Note

that it is computationally feasible to derive 02], when M is sparse.

3
The Jacobian of transforming I' ~ N(0, M) to (30) is 1. Defining n; =

7; /A1, we can write (30) as
N(ﬁ1|07 031)‘1_2)N(772|07 032)\1_2)N(77N2k‘07 02 )\1_2) (31)

TN2k
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Let f;(I') = 2(77?), the scale mixture prior is:

7(BI5,T, M, he) ocﬂ{rv; ep(~22)
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where 7; = 7; /1.
The last two terms in (32) constitute a scale mixture of Normals (with

an exponential mixing density), which can be expressed as the univariate

Laplace distribution rexp \/7| Bil)-

2
Equation (32) shows that the conditional prior for 5; is N(0, 2/\2277#“),
i
and the conditional prior for 3 is
BIT, %, A1, As ~ N(0, D) (33)
. on2 on2 202 5
where Dikw = dzag([z)\zn%}ﬂ, 2)\217%2+17 a3} 2)\217]]\\;2:4_1])'

Priors for 3 and A? can be elicited following standard practice in VAR
and Lasso literature. In this paper, we set Wishart prior for ©~! and Gamma
priors for A2 and Ag: ©7F ~ W (S v), A2 ~ G(H/\%:ZAf)a Ag ~ G(H,\272Az)'

The full conditional posterior for 8 is 8 ~ N(j3,V 3), where Vg = [(In ®
X)) (S L@ L) Iy © X) + (D7) 1L, and B = Vs[(In © X) (57L& L)yl
The Full conditional posterior for 37! is W(F_I,D), with §~' = Y —
XB)' (Y —XB)+2Q'Q+ 5" and 7 = T+ 2Nk + v, with vec(Q) = I'. The
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Full conditional posterior for A} is G(fiy,, 7, ), where vy, = vy, +2N?k and
- Paky,
Hxy = b‘l-l,-Qﬁ/\lZ‘er/a%j

. The Full conditional posterior for Ay is G(fix,, U, ),

g 20
Z)\2 +H>\2 Z IBJQ ’

. . . A2 A2 .
posterior of —27172 is Inverse Gaussian: IG( ﬂ%lz , =3-). I' can not be directly
‘ \/ 72 39

where vy, = vy, + N%k and iy, = Finally the full conditional

J j

drawn from the posteriors. But it can be recovered in each Gibbs iteration
using the draws of # and X .
i
Conditional on arbitrary starting values, the Gibbs sampler contains the

following six steps:

[

. draw B|Z, Ay, Ao, T from N(B,V3);
2. draw X713, A1, Ao, T from W(?il,ﬁ)
3. draw M\|8,%, Ag, T from G(jiy,, 7y, )

4. draw A2|B, %, A1, T from G(fiy,,7n,)

A2 A2 .
5. draw ﬁ‘ﬁ,E,Al,AQ from IG(, /%T%’UTI) for j =1,2,...N%k.

7

6. calculate I" based on draws of > and # in the current iteration.
i

1.4 Adaptive E-net Lasso VAR Shrinkage

In line with Zou and Zhang (2009), we define the adaptive e-net Lasso

estimator for a VAR as following:

N2k N2k

Bapr = arg ming{[y— (L, ® X)B) [y— (L@ X)B+ > _ A1 ;18| + X2 Y 57}
j=1 J=1

(34)
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Correspondingly, the conditional multivariate mixture prior for 3 takes

the following form:

T(BIS, T, Ar, Ao) mﬂ{ﬁ p(-228)

<[ W erpl 57 AU )

< {IM[ S eap(— 5T M)

where T = [v1,92, ..., Yv2i) » M = £ @ Iy, and f3(I') is a function of I and
A1 to be defined later. In this mixture prior, the terms associated with the
Ly penalty are conditional on ¥ through f;(I').

We need to find an appropriate f;(I') which provides us tractable pos-
teriors. The last term in equation (35) takes the form of a multivariate
Normal distribution I' ~ N (0, M). For ease of exposition, we first write the

N2k x N2k covariance matrix M as following:

M171 Ml,j M17j+1 MI,N2k
Ji,1 JiJ J,j+1 N2k
M — ! (36)
Mjyrn o Mg Mjrjen oo My nop
MN2]€,1 MN2k,j MN2k,j+1 MN2k,N2k
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Let Hj = (Mj,j+17 ...,ijNQk)

MNzk‘,j-i-l MNQk:,NQk:
We next construct independent variables 7; for j =1,2,..., N 2k using stan-

dard textbook techniques (e.g. Anderson, 2003; Muirhead 1982).

/

=71+ Hi(72,73, -, YN2k) (37)
T2 = Y2 + Ho (Y3, Y4, -, TN2%). (38)
TN2K—1 = YN2k—1 T Hy2p— 17Nk (39)
TN2K = TN2k (40)
The joint density of 71,79, ...., Ty2}, 1S
N (7|0, agl)N(7‘2|O,052)...N(TN2,€|O,J§N%) (41)

where U’2Yj = de' - Hj(Mj,j—i-la "'7Mj,N2k)/7 with 0'27N2k = MN2k,N2k' Note

that it is computationally feasible to derive 02], when M is sparse.

3
The Jacobian of transforming I' ~ N(0, M) to (41) is 1. Defining n; =

7; /1,5, we can write (41) as
N (1[0, 3 ALTIN (1210, 05,20 5) .- N (g0, 05 ) Aey)  (42)

TN2k 1,N2k
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Let f;(I') = 2(77?). The scale mixture prior in (35) can be rewritten as:

N2k
VA2 A
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The last two terms in (43) constitute a scale mixture of Normals (with

an exponential mixing density), which can be expressed as the univariate

e A AL
Laplace distribution —~r exp(——2L155)).
2 /J?Yj /U?Yj J
27?2
Equation (43) shows that the conditional prior for 5; is N(0, 72)\2:7% i)
J

and the conditional prior for 3 is

BIT, %, A1, Az ~ N(0, Dr) (44)
. 2772 2772 2n?2 2
where D} = dzag([2)\2n%+17 pyvy R RN 2)\2,7%2:“]).

Priors for > and )\% ; can be elicited following standard practice in VAR
and Lasso literature. In this paper, we set Wishart prior for ¥~ and Gamma
priors for )‘%,j and Ao ;0 X7l ~ W(S™%v), )\%7]- ~ G(H/\ij’b‘ij)’ Aoj ~
Gpy, > Vns)-

The full conditional posterior for 8 is 8 ~ N(j3,V 3), where Vg = [(In ®
X)) (S L@ L) Iy © X) + (D7) 1L, and B = Vs[(In © X) (57L& L)yl
The Full conditional posterior for 37! is W(g_l,ﬁ), with §~' = (Y —

XB)' (Y —XB)+2Q'Q+ 5" and 7 = T+ 2Nk + v, with vec(Q) = I'. The
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Full conditional posterior for )‘ij is G(fir, ;> P, ), Where 1y, . = vy,,;+2and

— . ’j o . . . — —
Axg =52 o T The Full conditional posterior for A2 is G(fix,, 7x, ),
By 100,595

HA25A2
ZA2+H/\2 218]2 ’
2 2
)\17]' /\1,'

). T can not be directly

252 1 52
Bioy;’ o4

where vy, = vy, + N 2k and By = Finally the full conditional

posterior of # is Inverse Gaussian: IG/(
i

drawn from the posteriors. But it can be recovered in each Gibbs iteration
using the draws of ﬁ and X .
J
Conditional on arbitrary starting values, the Gibbs sampler contains the

following six steps:

1. draw 3|¥, A1, Ao, T from N(B,V3);

2. draw X718, A1, Ay, T from W (S 1,ﬁ)
3. draw )\%yjm, ¥, A1, —j, A2, T from G(fiy, ;, 7z, ;) for j =1,2, ..N?k
4. draw A\2|B, X, A1, T from G(fix,,Uy,)

2 2
5. draw ﬁ\B,E,Al,Ag from IG(, /52%, 2173) for j =1,2,...N?k.
J J7g

7

6. calculate I based on draws of ¥ and # in the current iteration.
b

2 Detailed Forecast Evaluation Results

Tables 1-4 report the DAELasso forecasts results along with Lasso, adaptive
Lasso, e-net Lasso, adaptive e-net Lasso, and those of the factor models
and the seven popular Bayesian shrinkage priors in Koop (2011). In line
with Koop (2011), we present MSFE relative to the random walk and log
predictive likelihood for GDP, CPI and FFR. The results for DAELasso

17



and four other Lasso types of shrinkage methods are reported at the top
of each table, followed by those of the methods reported in Koop (2011).
Koop (2011) considers three variants of the Minnesota prior. The first is
the natural conjugate prior used in Banbura et al (2010), which is labelled
‘Minn. Prior as in BGR’. The second is the traditional Minnesota prior of
Litterman (1986), which is labelled ‘Minn. Prior ¥ diagonal’. The third
is the traditional Minnesota prior except that the upper left 3 x 3 block
of ¥ is not assumed to be daigonal, which is labelled ‘Minn. Prior 3 not
diagonal’. Koop (2011) also evaluates the performances of four types of
SSVS priors. The first is the same as George et al (2008), which is labelled
‘SSVS Non-conj. semi-automatic’. The second is a combination of the
non-conjugate SSVS prior and Minnesota prior with variables selected in a
data based fashion, which is labelled ‘SSVS Non-conj. plus Minn. Prior’.
The Third is a conjugate SSVS prior, which is labelled ‘SSVS Conjugate
Semi-automatic’. The fourth is a combination of the conjugate SSVS prior
and Minnesota prior, which is labelled ‘SSVS Conjugate plus Minn. Prior’.
Finally the results for factor-augmented VAR models with one and four
lagged factors are labelled as ‘Factor model p=1" and ‘Factor model p=4’,

respectively. We refer to Koop (2011) for a lucid description of these priors.

18



Table 1: Rolling Forecasting for h =1

GDP CPI FFR
0.58 0.32 0.57
DARLasso (-198.9) (-192.7) (-211.7)
adaptive e-net Lasso 0.67 0.40 0.63
(-195.8) (-199.4) (-215.0)
e-net Lasso 0.68 0.40 0.63
( -215.3 ) ( -211.6 ) ( -223.7 )
adaptive Lasso 0.77 0.31 0.62
(-225.6 ) (-209.2) (-228.3)
Lasso 0.67 0.39 0.63
(-255.8) (-241.3) (-257.6)
i : : 0.58 0.34 0.51
Minn. Prior as in BGR (1005) (-2002) (-177.4)
i ; : 0.61 0.30 0.52
Minn. Prior ¥ diagonal (1940) (-193.0) (-180L7)
; ; : 0.61 0.31 0.53
Minn. Prior ¥ not diagonal (1921) (-2024) (-185.9)
: . . 0.81 0.38 0.63
SSVS Conjugate semi-automatic (-2094) (-231.8) (-175.8)
: . . 0.59 0.35 0.51
SSVS Conjugate plus Minn. Prior (11914) (2121) (-179.2)
. . . 0.88 0.47 0.73
SSVS Non-conj. semi-automatic (2343) (-2360) (-213.0)
: . . 0.68 0.34 0.52
SSVS Non-conj. plus Minn. Prior (11979) (1952) (177.2)
1.21 0.59 1.42
Factor model p=1 (252.8) (2427) (2964 )
4.46 1.88 2.88

Factor model p=4 (-401.7) (-457.0) (-352.7)

Notes:
MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.
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Table 2: Rolling Forecasting for h = 4

GDP CPI FFR
0.55 0.48 0.65
DABLasso (-206.9) (-205.9) (-230.9)
adaptive e-net Lasso 0.53 0.47 0.55
(-195.7) (-204.4) (-219.9)
e-net Lasso 0.53 0.47 0.55
( -215.2 ) ( -213.5 ) ( -225.5 )
adaptive Lasso 0.74 0.54 0.78
(-233.9) (-223.0) (-247.7)
Lasso 0.53 0.47 0.55
(-255.9) (-242.6) (-259.0)
i : : 0.59 0.55 0.59
Minn. Prior as in BGR (2171) (227.7) (-2134)
i ; : 0.59 0.55 0.59
Minn. Prior ¥ diagonal (2111) (-2324) (-2466)
; ; : 0.58 0.58 0.58
Minn. Prior ¥ not diagonal (2106) (2222) (-=2121)
: . . 1.23 0.99 1.32
SSVS Conjugate semi-automatic (2826) (-2843) (-2738)
. : . 0.63 0.54 0.61
SSVS Conjugate plus Minn. Prior (2302) (2212) (-2135)
o . 1.60 1.22 1.64
SSVS Non-conj. semi-automatic (2041) (-2662) (-268.8)
: . . 0.63 0.51 0.58
SSVS Non-conj. plus Minn. Prior (-209.9) (-201.3) (-198.1)
1.39 0.91 1.35
Factor model p=1 (2801) (-2555) (-2834)
5.03 3.64 6.73

Factor model p=4 (-562.9) (-522.3) (-593.8)

Notes:
MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.
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Table 3: Recursive Forecasting for h = 1

GDP CPI FFR
0.55 0.29 0.56
DARLasso (-2104) (-190.9) (-224.2)
adaptive e-net Lasso 0.67 0.40 0.63
(-242.0) (-201.6) (-239.8)
e-net Lasso 0.68 0.40 0.63
( -225.6 ) ( -212.5 ) ( -237.9 )
adaptive Lasso 0.62 0.28 0.60
(-219.2) (-196.4) (-226.8)
Lasso 0.67 0.39 0.62
(-236.5) (-221.1) (-242.9)
i : : 0.56 0.30 0.51
Minn. Prior as in BGR (1923) (-195.9) (-2201)
i ; : 0.58 0.28 0.54
Minn. Prior ¥ diagonal (2043) (-1822) (-2388)
; ; : 0.55 0.27 0.52
Minn. Prior ¥ not diagonal (-1954) (-184.1) (-249.5)
: . . 0.68 0.27 0.63
SSVS Conjugate semi-automatic (11999) (-191.2) (-2453)
. : . 0.56 0.31 051
SSVS Conjugate plus Minn. Prior (-1925) (-197.6) (-228.5)
. . . 0.64 0.32 0.58
SSVS Non-conj. semi-automatic (2051) (-1965) (-2372)
; . . 0.65 0.29 0.54
SSVS Non-conj. plus Minn. Prior (2039) (1876) (-2289)
0.68 0.30 0.67
Factor model p=1 (1983) (-1932) (-2279)
0.90 0.35 0.77

Factor model p=4 (-212.9) (-2191) (-245.6)

Notes:
MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.
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Table 4: Recursive Forecasting for h = 4

GDP CPI FFR
0.54 0.48 0.61
DARLasso (-218.3) (-206.6) (-239.6)
adaptive e-net Lasso 0.53 0.47 0.55
(-215.6 ) (-207.0) (-247.3)
e-net Lasso 0.53 0.47 0.55
( -225.5 ) ( -213.7 ) ( -239.0 )
adaptive Lasso 0.63 0.52 0.66
(-228.0) (-214.7) (-242.2)
Lasso 0.53 0.47 0.55
(-236.2) (-222.8) (-244.3)
; : : 0.61 0.52 0.59
Minn. Prior as in BGR (2147) (-2194) (-2496)
i ; : 0.61 0.52 0.61
Minn. Prior ¥ diagonal (2140) (2176) (-2781)
i : . 0.62 0.52 0.59
Minn. Prior ¥ not diagonal (-213.3) (-216.1) (-244.8)
; . . 0.65 0.60 0.59
SSVS Conjugate semi-automatic (-2124) (-225.0) (-249.5)
. : : 0.84 0.70 0.67
SSVS Conjugate plus Minn. Prior (2196) (-2466) (-2585)
; . . 0.75 0.77 0.88
SSVS Non-conj. semi-automatic (-2932) (-226.4) (-268.1)
: . . 0.67 0.49 0.53
SSVS Non-conj. plus Minn. Prior (-219.0) (-201.6) (-233.7)
0.84 0.55 0.69
Factor model p=1 (-228.9) (-211.6) (-244.1)
0.89 0.62 0.68

Factor model p=4 (-243.6) (-227.4) (-249.1)

Notes:
MSFEs as proportion of random walk MSFEs.

Sum of log predictive likelihoods in parentheses.
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