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Abstract 

 

Background: In health technology assessment (HTA), decisions about reimbursement for new health 

technologies are largely based on effectiveness estimates. However sometimes the target effectiveness 

estimates are not readily available. This may be because many alternative instruments measuring these 

outcomes are being used (and not all always reported) or an extended follow-up time of clinical trials is 

needed to evaluate long-term endpoints leading to the limited data on the target clinical outcome. In the 

areas of highest priority in healthcare, decisions are required to be made on a short time scale. Therefore 

alternative clinical outcomes, including surrogate endpoints, are increasingly being considered for use in 

evidence synthesis as part of economic evaluation. Methods: Bayesian multivariate meta-analysis 

(MVMA) has been used to synthesize data on correlated outcomes in rheumatoid arthritis (RA) and to 

incorporate external data in the model in the form of informative prior distributions. Estimates of Health 

Assessment Questionnaire (HAQ) were then mapped onto the health-related quality of life measure EQ-

5D and the effect was compared to mapping the HAQ obtained from the univariate approach. Results: 

The use of multivariate meta-analysis can lead to reduced uncertainty around the effectiveness parameter 

and ultimately uncertainty around the utility. Conclusions: By allowing all the relevant data to be 

incorporated in estimating clinical effectiveness outcomes, multivariate meta-analysis improves the 

estimation of health utilities estimated through mapping methods. While reduced uncertainty may impact 

on decisions based on economic evaluation of new health technologies, the use of short-term surrogate 

endpoints can allow for early decisions . 

 

Introduction 

 

 

In health technology assessment (HTA), decisions are made about reimbursement of new health 

technologies. Such decisions are largely based on effectiveness outcomes, alongside cost and quality of 

life estimates. Effectiveness measures are usually estimated by meta-analysing outcomes from 

randomized controlled trials (RCTs). However, the outcomes of interest (target outcomes) are sometimes 
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not readily available. It may prove too costly to obtain the target clinical endpoint, or take an extended 

period of time to measure these outcomes, both of which conflict with the need for efficient and timely 

assessment of new technologies  especially in areas of healthcare that are considered a priority in society 

such as for example cancer.  Another reason for the target outcome not always being readily available is 

the wide diversity of alternative instruments measuring disease activity or response to treatment, as is the 

case for example in rheumatoid arthritis (RA), leading to  variation in the choice of an endpoint for a 

primary outcome in RCTs. Taking into account only the target outcome measure can lead to the amount of 

data included in the meta-analysis being radically reduced. In circumstances of absence of data on the 

primary clinical outcome, surrogate endpoints are sometimes used in lieu of that outcome (7). 

Alternatively, in some circumstances data on target endpoint may exist but, in addition to the primary 

outcome, is also available either on alternative scales or measured by surrogate outcome. Some 

manufacturers may choose a biomarker as a primary outcome, for example when such endpoint can be 

measured early leading to a shorter time to licensing and hence quicker profit from the new 

pharmaceutical product. When drug is conditionally licensed based on a biomarker, data needed for HTA, 

such as overall survival in cancer treatments, is not available from the clinical trial evaluating this product. 

Multivariate approach to meta-analysis can allow to include the data on biomarker by combining it with 

data on a target outcome from other RCTs. Synthesizing the data from all sources of evidence can lead to 

a reduced bias (8) and potentially also the uncertainty (9). 

 

Multivariate meta-analytic methods have already been developed to synthesize simultaneously evidence 

from correlated outcomes (10; 11). In a recent review, Jackson et al describe advances in the 

development of the methodology of multivariate meta-analysis and discuss the advantages and 

disadvantages of the use of these methods (12). Bujkiewicz et al. have recently developed a Bayesian 

multivariate meta-analysis (MVMA) framework for combining data from multiple correlated outcomes (9). 

One of the advantages of the multivariate approach that was exploited in this model was the incorporation 

of additional data by the inclusion of studies reporting multiple outcomes. In addition to this, the Bayesian 

aspect of this approach made it possible to incorporate external data in the MVMA model in the form of 

informative prior distributions, especially on correlations. This method, developed using an example in RA 
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for combining data from studies reporting the Health Assessment Questionnaire (HAQ) and the Disease 

Activity Score (DAS-28) measures, and the American College of Rheumatology (ACR) response criteria, 

allowed for extending the range of data that could be included in the analysis, thus reducing possible 

biases (8) and also led to a reduced uncertainty around the outcome of interest (HAQ in this case). The 

aim of this work was to apply such multivariate meta-analytic framework which allows evidence to be 

combined from studies that are a mixture of those reporting the target clinical outcome, an alternative 

clinical endpoint or both (rather than reducing the number of studies to those reporting the clinical 

outcome of interest or including the surrogate endpoint alone in the economic model) to jointly estimate 

effect of treatment on HAQ. This is a flexible approach which permits the use of multiple outcomes and 

hence prevents valuable data from clinical trials from being discarded and potentially can lead to reduced 

uncertainty around the clinical outcome of interest. 

 

 Clinical effectiveness outcomes are often used to derive health-related quality of life or utility estimates, 

as part of the economic evaluation of the new health technologies. Increasingly, mapping methods are 

being developed to predict health state utility values from preference-based measures, such as EuroQoL 

(EQ-5D)  values, using disease-specific outcomes. For example, mapping methods have been applied to 

predict EQ-5D values from (i) the St. George’s Respiratory Questionnaire in patients with chronic 

obstructive pulmonary disease (1), (ii) functional assessment of cancer therapy-melanoma (2), (iii) 

disease-specific quality-of-life scores in patients with migraine (3), (iv) the Western Ontario and McMaster 

Universities Osteoarthritis Index in patients with knee osteoarthritis (4) and, finally, (v) using HAQ in 

rheumatoid arthritis (RA) (5; 6). In this article we explore how reducing uncertainty around the target 

clinical outcome, in this case HAQ, by the use of multivariate meta-analysis can ultimately lead to better 

estimation of health utility such as EQ-5D obtained by a mapping technique. 

 

 

Methods 

 

Sources of evidence 
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As our motivating example, we used a systematic review and meta-analysis which was carried out by 

Lloyd et al (14) to investigate the effectiveness of the TNF-α inhibitors, etanercept, infliximab and 

adalimumab used sequentially (as a second line treatment used sequentially in patients who switched 

from one anti-TNF to another due to lack of response or adverse effects on the first) in the treatment of 

RA. The data from this systematic review is single arm (i.e. uncontrolled) due to the lack of comparative 

studies such as randomised controlled trials evaluating these treatment as second line. Outcome 

measures included in the analysis in this paper were amongst the standard instruments for measuring 

response to treatment in RA: changes from baseline in the HAQ (ΔHAQ) and in the DAS-28 (ΔDAS-28) 

measures, and 20% response to treatment measured by the ACR criteria (ACR20). Data collected in this 

systematic review is used to investigate how multivariate meta-analysis can be applied to incorporate 

multiple outcomes of effectiveness simultaneously in evidence synthesis. Table 2 gives details of the three 

outcomes which were reported in each of the studies within the systematic review. We will refer to these 

data as the ``Lloyd data'' throughout this paper. 

 

Additional sources of evidence were used to construct prior distributions for some of the parameters of the 

Bayesian evidence synthesis model. External individual patient data (IPD) was obtained from the British 

Rheumatoid Outcome Study Group (BROSG) trial which was designed to assess the benefit of aggressive 

disease-modifying anti-rheumatic drug treatments in patients with established RA (15). The trial, which 

recruited 466 patients with stable RA, assessed clinical outcomes (i.e. HAQ, DAS-28 and ACR20) in two 

cohorts of patients managed using either a regime focussed on (i) symptomatic control of pain and 

stiffness in the shared care setting, or (ii) a more aggressive regime focussing on control of symptoms and 

joint inflammation in the hospital setting. (The BROSG trial found no difference between the aggressive 

versus symptomatic treatment arms, therefore this data set was used as a single cohort of 466 patients 

with established RA.) Another source of evidence, external summary data (ESD), was obtained from a 

systematic review of the anti TNF-α inhibitors in biologically naïve patients (16). Both external sources of 

evidence (IPD and ESD) were used to construct prior distributions for correlations between outcomes as 

described below. 
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Evidence synthesis: statistical methods  

 

In our motivating example, we aimed to model the summary data of the correlated outcomes from the 

“Lloyd data” using a MVMA in a Bayesian form. We used a trivariate random effects meta-analysis 

(TRMA), described in much more detail elsewhere (9), in the following form 

�
∆𝐻𝐴𝐴𝑖
∆𝐷𝐷𝐷𝑖
𝐴𝐴𝐴20𝑖

�~𝑁��
𝜇𝐻𝐻
𝜇𝐷𝐷
𝜇𝐴𝐴

� ,�
𝜎𝐻𝐻2 𝜎𝐻𝐻𝜎𝐷𝐷𝜌𝑤𝑤𝐻𝐻 𝜎𝐻𝐻𝜎𝐴𝐴𝜌𝑤𝑤𝐻𝐻

𝜎𝐻𝐻𝜎𝐷𝐷𝜌𝑤𝑤𝐻𝐻 𝜎𝐷𝐷2 𝜎𝐷𝐷𝜎𝐴𝐴𝜌𝑤𝑤𝐷𝐷

𝜎𝐻𝐻𝜎𝐴𝐴𝜌𝑤𝑤𝐻𝐻 𝜎𝐷𝐷𝜎𝐴𝐴𝜌𝑤𝑤𝐷𝐷 𝜎𝐴𝐴2
�� [1] 

�
𝜇𝐻𝐻
𝜇𝐷𝐷
𝜇𝐴𝐴

�~𝑁��
𝛽𝐻
𝛽𝐷
𝛽𝐴
� ,�

𝜏𝐻2 𝜏𝐻𝜏𝐷𝜌𝑏𝐻𝐻 𝜏𝐻𝜏𝐴𝜌𝑏𝐻𝐻

𝜏𝐻𝜏𝐷𝜌𝑏𝐻𝐻 𝜏𝐷2 𝜏𝐷𝜏𝐴𝜌𝑏𝐷𝐷

𝜏𝐻𝜏𝐴𝜌𝑏𝐻𝐻 𝜏𝐷𝜏𝐴𝜌𝑏𝐷𝐷 𝜏𝐴2
�� [2] 

 

which has a hierarchical structure: the correlated outcomes (ΔHAQ,ΔDAS and ACR20) in each study 𝑖 follow 

a multivariate normal distribution and they are assumed to be the estimates of underlying correlated 

effects (𝜇𝐻𝐻 , 𝜇𝐷𝐷, 𝜇𝐴𝐴) for the individual studies (the within-study models in equation [1]). These study-level 

effects are assumed to follow a common distribution (the between-study model in equation [2]). This meta-

analytic model can be used for a bivariate and univariate analyses by reducing the size of the matrices in 

the equations. The within-study variances (𝜎𝐻𝐻2 ,𝜎𝐷𝐷2 ,𝜎𝐴𝐴2 ) are assumed to be known (for studies reporting the 

relevant outcomes) but prior distributions need to be specified for the within-study correlations 

(𝜌𝑤𝑤𝐻𝐻,𝜌𝑤𝑤𝐻𝐻,𝜌𝑤𝑤𝐷𝐷) as none of the studies in the “Lloyd data” reported them. Prior distributions for the within-

study correlations were constructed using the external IPD described above. The elements of the 

covariance matrix of the between-study model (the between-study variances (𝜏𝐻2 , 𝜏𝐷2 , 𝜏𝐴2) and the between-

study correlations (𝜌𝑏𝐻𝐻,𝜌𝑏𝐻𝐻,𝜌𝑏𝐷𝐷)) also need prior distributions to be placed on them. In our model, prior 

distributions on the between-study correlations were constructed by meta-analysing ESD using the 

trivariate model [1]-[2] but this time with non-informative prior distributions. Resulting posterior between-

study correlations were then used as prior distributions to the between-study correlations in meta-analysis 

of the “Lloyd data”. In order to inform the between-study correlation by the ESD directly, we parameterised 

the between-study model in the form of the product of univariate conditional distributions (in contrast to 
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using a multivariate Normal distribution and a prior distribution on the precision matrix, such as Wishart 

distribution (17) or using a spherical parameterisation of the between-study correlation matrix (18) (19)). 

Non-informative (half-normal) prior distributions are placed on the standard deviations of these conditional 

distributions. ΔDAS-28 and ACR20 are both conditional on ΔHAQ in this model. This parameterisation 

assumes a conditional independence between ΔDAS-28 and ACR20. This assumption may not always be 

valid, especially in the circumstances when the two variables are strongly correlated. We have carried out 

a sensitivity analysis on the external data to investigate the impact of the choice of such parameterisation 

on estimates and in particular the resulting prior distributions for the between-study correlation. Details of 

this sensitivity analysis are included in the Web Appendix. The advantages of this approach along with all 

the details of the statistical modelling (including models in different number of outcomes) are reported 

elsewhere (9).  

 

Mapping the HAQ onto EQ-5D 

 

A number of methodological approaches to modelling utility estimates in RA for the purpose of economic 

evaluation have been developed. The estimate of the HAQ, a self-reported measure of physical function, 

is often used to predict EQ-5D, an estimate of health-related quality of lifeby mapping the HAQ score onto 

EQ-5D (5; 6). These methods often focus on the relationship between EQ-5D and HAQ scores, usually 

expressed in a linear form (5), and have been compared with EQ-5D values based on patient responses 

in a number of datasets in RA (6). The purpose of this paper was to illustrate the potential impact of 

reduced uncertainty around the clinical outcome on the utility when estimating it from a multivariate meta-

analysis. To do this, we modelled the relationship between the HAQ and the health-related quality of life 

measure, EQ-5D, in a linear form estimated by Chen et al (16) from data reported in a study by Hurst (20): 

𝐸𝐸 − 5𝐷 = 𝑎 + 𝑏 × 𝐻𝐻𝐻, where the intercept 𝑎 ~𝑁(𝜇𝑎, 𝑠𝑎2) and slope 𝑏 ~𝑁(𝜇𝑏 , 𝑠𝑏2), with means μa=0.628 

and μb=-0.327, and standard deviations sa=0.034 and sb=0.021 (note that this approach assumed 

independence of intercept and slope).This relationship can be assumed to remain the same at any time 

point, hence the relationship between the change from baseline of EQ-5D and the change from baseline 

of HAQ can be modelled as ∆𝐸𝐸 − 5𝐷 = 𝑏 × ∆𝐻𝐻𝐻. 
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The change from baseline in HAQ estimate, ∆𝐻𝐻𝐻, used in the above mapping equation, typically comes 

from a meta-analysis. As can be seen in Table 2, there are only 8 studies reporting the HAQ in the ``Lloyd 

data'', while there were many more studies investigating effectiveness of the same treatment in the same 

type of patients but reporting DAS-28 and/or ACR20. To be able to include all outcome data from all 

studies we have used the multivariate approach to meta-analysis as described above. 

 

Software implementation 

All models were implemented in WinBUGS (17) where the estimates were obtained using MCMC 

simulation using 100,000 iterations (including 50,000 burn-in). All posterior estimates are presented as 

means with the 95% highest probability density intervals (HPDI) (21) obtained using the BOA package 

(22). This evidence synthesis aimed to give an estimate of ΔHAQ from all available sources of evidence of 

the effectiveness (of studies reporting a variety of outcomes) which can then be used to estimate ΔEQ-5D. 

 

Results 

 

We have applied the MVMA model to the ``Lloyd data'' in order to model simultaneously data on the HAQ, 

DAS-28 and ACR20. To investigate the impact of including more data in the analysis on uncertainty 

around the HAQ estimate and consequently the EQ-5D, we explored results of the meta-analyses on 

three levels: using univariate random effects meta-analysis (URMA) of ΔHAQ, bivariate random-effects 

meta-analysis (BRMA) combining the ΔHAQ and the ΔDAS-28 and finally trivariate random-effects meta-

analysis (TRMA) by extending the data by including ACR20. The prior correlations between DAS-28 and 

HAQ obtained from the external data were: ρwiHD= 0:24 (95% HPDI: 0.13 to 0.35) obtained from the IPD 

and ρbHD = 0:86 (95% HPDI: 0.46 to 0.999) obtained from bivariate meta-analysis of the ESD.  For the 

trivariate case, the prior within-study correlations, constructed using the IPD, were ρwiHD = 0.24 (95% HPDI: 

0.10 to 0.38), ρwiHA  = -0.13 (95% HPDI: -0.29 to 0.0103) and ρwiDA = -0.20 (95% HPDI: -0.31 to -0.08), and 

the prior between-study correlations, constructed using the ESD, were ρbHD= 0.78 (95% HPDI: 0.27 to 
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0.998) and ρbHA = -0.14 (95% HPDI: -0.80 to 0.56) (only the two correlations were required in the product 

normal parameterisation of the between-study model). 

 

Table 3 shows results of applying all of the three models. Mapping estimate of ΔHAQ of -0.25 (95% HPDI: 

-0.43 to -0.09), obtained from URMA of the eight studies reporting only the HAQ outcomes, resulted in 

ΔEQ-5D equal 0.08 (95% HPDI: 0.025 to 0.141). Extending the evidence synthesis by ten cohorts 

reporting the ΔDAS-28 (but not ΔHAQ), by the use of BRMA, lead to a shift in the estimate of HAQ and 

the reduction in the uncertainty around the estimate to -0.28 (95% HPDI: -0.41 to -0.14). This has also 

reduced the uncertainty around the estimate of ΔEQ-5D which in this case was 0.09 (95% HPDI: 0.041 to 

0.138). This effect can be seen in Figure 1 where horizontal lines represent the 95% HPDIs. The intervals 

are reduced for the estimates of ΔHAQ and ΔEQ-5D when using BRMA compared to URMA. As can be 

seen in Table 3 and also in Figure 1, extending the evidence synthesis to TRMA by adding further three 

studies reporting the ACR20 did not contribute to further reduction of the uncertainty around the estimates 

of interest (ΔHAQ and ΔEQ-5D). This is likely due to increased heterogeneity by introducing the three 

studies. More detailed description of results (related to the effectiveness outcomes only) are reported 

elsewhere (9). Results of the bivariate meta-analyses of the HAQ with ACR20 and the DAS-28 with 

ACR20 are shown in Table 3 for completeness. Bivariate model of the HAQ and ACR20 did not lead to 

reduced uncertainty around the HAQ similarly as for the trivariate case discussed above. 

 

 

 

Figure 1. Estimates of change from baseline of HAQ, obtained from meta-analysis of HAQ only, HAQ and DAS-28 and finally 

HAQ, DAS-28 and ACR20, and resulting estimates of the change from baseline in EQ-5D. 
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Discussion 

 

We have applied a Bayesian meta-analytic framework to synthesise diverse sources of evidence and 

multiple endpoints in RA. Our aim was to increase the use of available data to estimate effectiveness of 

second line biologics in treatment of RA measured by the change from baseline in HAQ and ultimately the 

health-related quality of life measured by the change from baseline in EQ-5D. We employed external IPD 

to construct prior distributions for the within-study correlations and ESD for the between-study 

correlations. We found that using this Bayesian approach to evidence synthesis of outcomes in RA, by 

combining the HAQ endpoint with the DAS-28,  leads to a 20% reduction in the uncertainty around the 

HAQ from -0.25 (95% HPDI: -0.43 to -0.09)) obtained from URMA of synthesizing data on HAQ alone to -

0.28 (95% HPDI: -0.41 to -0.14) obtained from BRMA. The use of BRMA has also led to a reduced 

uncertainty, by 16%, around the health-related quality of life estimate EQ-5D from 0.083 (95% HPDI: 

0.025 to 0.141) when mapping HAQ obtained from URMA to 0.091 (95% HPDI: 0.041 to 0.138) when 

using the estimate of HAQ from BRMA. Similar results have been obtained when using TRMA of the HAQ, 

DAS-28 and ACR20. The inclusion of the third outcome, ACR20, did not contribute to the HAQ estimate or 

further reduction of uncertainty around it. A 20% reduction in uncertainty around the effectiveness 

outcome may lead to a change of the cost effectiveness outcomes, for example alter the cost-

effectiveness acceptability curve, leading to a change in decision made based on such analysis. Joint 

analysis of multiple outcomes may have advantages in many areas of decision making, for example in 

risk-benefit analysis, where multiple outcomes contribute to net benefit function and sometimes the risk 

function as well. For example, in a study on hormone replacement therapy by Minelli et al (23), net benefit 

was constructed by adding benefits measure by relative risk of hip fracture, menopausal symptoms, 

colorectal cancer and endometrial cancer, whereas the overall harm was estimated by combining relative 

risk of breast cancer, coronary heart disease, pulmonary embolism and stroke. Each of these eight 

outcomes were estimates by a separate univariate meta-analyses. Modelling such outcomes jointly may 

lead to more precise estimates especially in circumstances where outcomes are measured in randomised 

controlled trials which are powered with respect to one outcome, but may be underpowered for others. 

This may also be the case when adverse events are included in the analysis whilst RCTs are not powered 
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to for such outcomes, therefore there is a lot of uncertainty about them when including them in net-beneft 

analysis. 

 

When pooling data by means of the Bayesian random-effects meta-analysis, we allow for `borrowing of 

strength'' across studies which leads to “shrinkage” of the estimates from individual studies towards the 

overall mean (with reduced uncertainty around the estimates) (21). In addition to this, multivariate meta-

analysis allows ``borrowing of strength'' across outcomes.  This may lead to reduced uncertainty around 

the pooled estimates. However, it is difficult to predict the extent of the gain in precision of the estimates. 

In fact, the inclusion of studies reporting additional outcomes through the multivariate approach can lead 

to higher heterogeneity in the data set (which is the case in our example in RA when extending the 

bivariate case by the third outcome) which can in fact lead to increased uncertainty. The issue of the 

potential gain in precision of the estimates obtained from multivariate models have been discussed 

previously. Nam et al observed that the gain is more likely to be noticeable when the data sets are small 

(10). Riley et al showed that the gain in  precision is expected unless either the outcome are not correlated 

or the data is complete on both outcomes which are also reported with equal variance (11). In their recent 

review, Jackson et al reported that the gain in precision increases with increased within-study correlation, 

but noted that also it can depend of the between-study variance (12). Whilst the factors driving the 

uncertainty around the estimates of the multivariate meta-analytic models seem complex and it is difficult 

to predict the gain in precision or whether its degree will besatisfactory to the analysts, there are further 

advantages of employing the multivariate scheme. Restricting the analysis to a single outcome may lead 

to ignoring data from clinical trials which either report treatment effect measured by a different 

instrument(s) or simply choose to report only positive and/or significant results. In the former case, 

multivariate approach allows using more diverse sources of evidence and hence prevents relevant data 

from being discarded. In the latter case, in the presence of outcome reporting bias, the multivariate 

approach can lead to a more appropriate estimate of the clinical outcome as it has been shown by 

Kirkham et al that (8).This may apply to the case of RA where, due to the availability of a number of 

instruments for measuring the disease activity or response to treatment, authors may choose to report 

only those outcomes whose estimates are positive and/or significant. The pooling of multiple outcomes 
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through the multivariate approach can obviously be achieved by means of frequentist analysis. The 

Bayesian approach, however, brings additional advantages of incorporating external evidence in the form 

of prior distributions. Individual patient data (used in our example to construct the prior distributions for the 

within-study correlations) is not always available. However, other sources of evidence can be used to 

inform the parameters of the model. The Bayesian approach, for example, allows elicitation techniques to 

be employed to take into account experts' opinions in the form of prior distributions in a model. For 

example, methods for inclusion of expert opinion on bias in the synthesis of studies were developed by 

Turner et al (24). WinBUGS provides suitable software environment for implementing such Bayesian 

analysis. Multivariate meta-analysis can be conducted for example in Stata using the mvmeta command 

(25) or in R mvmeta package (26) in a frequentist approach. WinBUGS allows for the use of the full 

Bayesian framewok, but can be interfaced with R, which is convenient when decision models are 

developed in R (27). 

 

In this multivariate approach to evidence synthesis, studies reporting a variety of relevant measures 

associated with an outcome of interest can be included. Outcomes can include surrogate endpoints, so far 

mostly used instead of the primary outcome of interest when there is no available evidence on the target 

outcome (7). In the method described here the surrogate outcomes are used alongside the primary 

outcome, and therefore the analysis is not restricted to a single primary outcome or a surrogate endpoint. 

The main interest of this research is in uncertainty (and magnitude of the effect) in terms of the EQ-5D as 

it is this outcome that is used for the decision making. In our example, none of the studies in the “Lloyd 

data” reported EQ-5D and hence the linear mapping was chosen to estimate EQ-5D from HAQ. However, 

when some of studies included in evidence synthesis report EQ-5D, the multivariate meta-analysis can 

include the EQ-5D as one of the multiple outcomes and the pooled effect is then estimated simultaneously 

with the clinical outcomes (borrowing strength from data across studies and outcomes). Clinical outcomes 

can then be considered surrogate endpoints to utility. This approach may be preferable to the linear 

mapping as often the regression models are developed based on small amount of data.  Cooper et al (25) 

have shown that the data quality (together with quantity, and therefore uncertainty) can be least for utility 
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estimates (e.g. EQ-5D) especially compared with effectiveness and therefore, in the absence of better 

direct utility data, the methods considered here may at least reduce uncertainty in the decision problem.  

 

In our view, the approach described here is an important step towards the inclusion of the surrogate 

endpoints in HTA, especially in the early stages of the drug development process when the target 

outcome is not readily available. Modelling simultaneously data on surrogate (potentially short-term 

outcome) and the ultimate endpoint can increase the available evidence allowing analysts and decision 

makers an early assessment of new technologies. Surrogate endpoints play an increasingly important role 

in drug development as reported by the European Medicines Agency (26) and HTA and their use will need 

to increase in HTA as reimbursement decisions are taken closer to regulatory ones (27) and randomized 

controlled trials become shorter in duration (28). 
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Table 1 Relevant instruments measuring disease activity and/or response to treatment in patients with RA. 

Measure Description Range  

(best to worst) 

Form used  

in this paper 

Disease 

Activity Score 

(DAS-28) 

Composite of disease activity based on 28 

swollen & tender joint count, ESR (or CRP), 

and patient global assessment (15). 

0-9.3 Change from 

baseline 

(ΔDAS-28) 

American 

College of 

Rheumatology 

criteria 

(ACR) 

Indicated by % improvement in tender or 

swollen joint counts and three out of the 

following five measures: acute phase 

reactant (e.g. ESR/CRP), patient global 

assessment, physician global assessment, 

pain scale (e.g.  pain VAS), 

disability/function (e.g. HAQ) (16).  

1, 0 (Binary 

outcome) 

20% 

improvement 

(ACR20) 

Health 

Assessment 

Questionnaire 

(HAQ) 

Functional disability assessed using on 8 

domains (dressing and grooming, rising, 

eating, walking, hygiene, reach, grip, 

activities) (17).  

0 -3  Change from 

baseline 

(ΔHAQ) 

 

Table 2 Studies and outcomes included in the "Lloyd data". 

Study 

ΔHAQ 

Mean (se) 

ΔDAS28 

Mean (se) 

ACR20 

r/n 

Bennett (2005)  -0.31 (0.13) -1.7 (0.25) – 
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Bingham (2009) -0.35 (0.05) -1.6 (0.1) 85/188 

Bombardieri (2007)  -0.48 (0.02) -1.9 (0.05) 486/810 

Haraoui (2004)  -0.45 (0.14) – 14/22 

Hyrich (2008)  -0.12 (0.03) – – 

Iannone (2009) 0.15 (0.13) – – 

Navarro-Sarabia (2009) -0.21 (0.07) -1.1 (0.18) – 

Van der Bijl (2005)  -0.21 (0.08) -1.5 (0.25) 19/41 

Buch (2007)  – -1.47 (0.18) 55/72 

Cohen (2005)  – -1.87 (0.24) – 

Di Poi (2007)  – -2.1 (0.29) – 

Finckh (2007)  – -0.98 (0.18) – 

Hjardem (2007)  – -1 (0.11) – 

Laas  (2008) InTol – -1.17 (0.66) – 

Laas (2008) InEff – -1.26 (0.35) – 

Nikas (2006)  – -2.4 (0.16) 18/24 

Wick (2005) EA – -1.9 (0.22) 7/9 

Wick (2005)IA – -1.3 (0.28) 19/27 

Buch (2005)  – – 18/25 
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Karlsson (2008) – – 172/337 

Van Vollenhoven (2003)  – – 12/18 

 

Table 3 Results of evidence synthesis from the three models: URMA, BRMA and TRMA and resulting health-related quality of 

life estimates. 

Model 
Number of 

cohorts/studies 
ΔHAQ ΔDAS-28 ACR20 ΔEQ-5D 

HAQ only 8/8 
-0.25 

(-0.43, -0.09) 
̶ ̶ 

0.083 

(0.025, 0.142) 

DAS-28 only 15/13 ̶ 
-1.57 

(-1.84, -1.31) 
̶ ̶ 

ACR20 only 11/10 ̶ ̶ 
62% 

(53%, 71%) 
̶ 

HAQ & DAS-28 18/16 
-0.28 

(-0.41, -0.14) 

-1.51 

(-1.67, -1.35) 
̶ 

0.091 

(0.044, 0.139) 

HAQ & ACR20 15/14 
-0.31 

(-0.5, -0.13) 
̶ 

60%  

(51%, 69%)        

0.101 

(0.039, 0.163) 

DAS & ACR20 19 ̶ 
-1.56 

(-1.82, 1.30) 

62% 

(52%, 71%) 
̶ 

HAQ , DAS-28  

& ACR20 
21/19 

-0.28 

(-0.42, -0.13) 

-1.51 

(-1.70, -1.33) 

61% 

(52%, 71%) 

0.091 

(0.041, 0.142) 

 

 

 


