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Key points 28 

• Impact of distribution differences among five GOSAT CO2 data on flux estimation was 29 

assessed 30 

• Distribution differences can cause flux spreads as large as half the flux annual amplitude 31 

• Impact on global annual flux was found to be rather small 32 

 33 

Abstract 34 

We assessed to what extent differences in the number distribution of satellite-based CO2 data 35 

can impact the estimation of surface CO2 fluxes on monthly and regional scales. Study 36 

motivation comes from the fact that CO2 data number yields by existing five algorithms for 37 

retrieving CO2 data from GOSAT spectral soundings differ largely from one another over 38 

some parts of the globe. For this assessment, we used a single inversion system and five 39 

synthetic CO2 datasets whose geolocations are identical to those of the actual datasets. The 40 

synthetic data were used to eliminate confusion coming from possible differences in 41 

concentration and bias adjustment among the five actual datasets. We found flux spreads as 42 

large as 2.0 gC m-2 day-1 in a month in some regions, and some spreads were found to exceed 43 

half the flux annual amplitude. The impact of these large spreads on the annual global flux 44 

was rather small. 45 
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 50 

1. Introduction 51 

Atmospheric inversion is a technique that systematically searches for spatiotemporal 52 

distributions of trace gas fluxes that yield modeled atmospheric concentrations close to 53 

observations. This technique, also known as Bayesian optimization, has been commonly used 54 

for the inference of surface CO2 flux distributions. As the flux inference relies heavily upon 55 

observational constraints, several sensitivity studies were conducted in the past [e.g. Law et 56 

al., 2001; Maksyutov et al., 2003; Yuen et al., 2005; Gurney et al., 2008;  Bruhwiler et al., 57 

2011; Saeki et al., 2013]. These studies showed that the CO2 flux estimation is highly 58 

sensitive to changes in the spatial distribution of surface CO2 observation sites. Bruhwiler et 59 

al. [2011], in particular, demonstrated that additional constraints introduced to the flux 60 

estimation can significantly reduce the uncertainties of fluxes especially for under-sampled 61 

regions, but they can also cause sudden changes in the fluxes that sometimes exceed the 62 

amplitudes of flux inter-annual variability. Changes in observational constraints both in time 63 

and space can be problematic when trends of the estimated fluxes are studied. 64 

Now, with the advent of the Japanese Greenhouse gases Observing SATellite (GOSAT) 65 

in 2009 and more recently NASA’s Orbiting Carbon Observatory-2 in 2014, the satellite 66 

retrievals of column-averaged CO2 concentration (XCO2), which can complement the surface-67 

based measurements, are available for constraining surface CO2 fluxes. These satellite-based 68 

XCO2 retrievals are, however, quite different from the surface-based measurements in 69 

precision, frequency, and spatial distribution. In the case of GOSAT retrievals, their precision 70 

is reported to be ~2 ppm [Oshchepkov et al., 2013a], which is about one-order-of-magnitude 71 

larger than that of typical surface measurements [e.g. Tans and Thoning, 2008]. About one 72 

hundred thousand GOSAT XCO2 retrievals over land are available in a year, but unlike the 73 

surface measurements at fixed locations, success in XCO2 retrieving is highly dependent on 74 



local cloudiness and aerosol loading and thus repeat retrievals at the same location on 75 

subsequent satellite orbits are not guaranteed. Further, for obtaining better results, existing 76 

five algorithms for retrieving GOSAT XCO2 differ in a number of aspects including input 77 

spectral data pre-screening, cloud and aerosol modeling, radiative transfer modeling, and 78 

post-retrieval screening, all of which impact the XCO2 number yield. The XCO2 number yields 79 

by the five algorithms were found to differ by tens of thousands in a year [Takagi et al., 80 

2014]. Variations in XCO2 number distribution are equivalent to introducing or withdrawing 81 

observational constraints in flux inference, as in the study by Bruhwiler et al. [2011].  82 

We thus assessed to what extent the XCO2 number distribution variations, owing to the 83 

XCO2 retrieval algorithm differences, can impact CO2 flux estimation. We did so by inter-84 

comparing regional fluxes estimated from five different synthetic XCO2 datasets whose 85 

geographical distribution patterns are identical to those of the five actual GOSAT XCO2 86 

datasets. A single inversion system was used for this estimation. The use of synthetic XCO2 87 

data eliminates confusion coming from possible differences in concentration and bias 88 

adjustment among the five actual XCO2 datasets; this way only the contribution of the number 89 

distribution differences to the flux estimation can be evaluated. 90 

 91 

2. Method 92 

 The five XCO2 retrieval algorithms considered here were developed independently by 93 

the National Institute for Environmental Studies (NIES), Japan (NIES [Yoshida et al., 2013] 94 

and PPDF-S [Oshchepkov et al., 2013b] algorithms), the NASA Atmospheric CO2 95 

Observation from Space (ACOS) team [O’Dell et al., 2012] (ACOS algorithm), the 96 

Netherlands Institute for Space Research / Karlsruhe Institute for Technology [Butz et al., 97 

2011] (RemoTeC algorithm), Germany, and the University of Leicester (UoL), UK [Boesch et 98 

al., 2011] (UoL-FP algorithm). Descriptions of these five algorithms can be found in an inter-99 



comparison study by Oshchepkov et al. [2013a]. Key differences among these algorithms are 100 

summarized in Table 1 of a previous GOSAT flux inter-comparison report by Takagi et al. 101 

[2014] (T14). The versions of the retrieval datasets used here are as follows: NIES v02.11, 102 

PPDF-S v02.11, ACOS B3.4, RemoTeC v2.11, and UoL-FP v4. For creating the synthetic 103 

XCO2 datasets, information on XCO2 geolocation and column averaging kernel was taken from 104 

each of the five datasets and used to sample XCO2 in a forward concentration simulation in 105 

five different ways. The forward simulation was performed with version 08.1i of the NIES 106 

atmospheric tracer transport model (NIES-TM) [Belikov et al., 2013] (resolution: 2.5°×2.5° 107 

horizontal and 32 vertical) driven by the Japan Meteorological Agency (JMA)’s JCDAS 108 

(JMA Climate Data Assimilation System) meteorological analysis data [Onogi et al., 2007]. 109 

We used a surface-data-optimized CO2 flux dataset by Chevalier et al. [2010] (ver.13.1; 110 

available at http://apps.ecmwf.int/datasets/data/macc-ghg-inversions/) as “truth” in this 111 

forward simulation.     112 

 The flux inference by the five synthetic XCO2 datasets was performed with an inverse 113 

modeling system used in T14 and described in detail by Maksyutov et al. [2013]. The system 114 

consists of NIES-TM and a fixed-lag Kalman Smoother optimization scheme [Bruhwiler et 115 

al., 2005] that estimates monthly fluxes of 64 global regions on sub-continental and ocean-116 

basin scales (42 terrestrial and 22 oceanic) [Patra et al., 2005]. The a priori flux data used here 117 

consist of the following four components: anthropogenic emissions by ODIAC (Open source 118 

Data Inventory of Anthropogenic CO2 emission) high-resolution dataset [Oda and 119 

Maksyutov, 120 

2011] combined with the Carbon Dioxide Information Analysis Center’s monthly 1° × 1° 121 

resolution dataset [Andres et al., 2011]; monthly biomass burning emissions by GFED 122 

(Global Fire Emissions Database) version 3.1 inventory [van der Werf et al. 2010]; daily net 123 

ecosystem exchange (NEE) predicted by VISIT (Vegetation Integrative SImulator for Trace 124 



gases) terrestrial biosphere process model [Ito 2010; Saito et al. 2011]; monthly ocean-125 

atmosphere CO2 fluxes generated with an ocean pCO2 data assimilation system [Valsala and 126 

Maksyutov 2010]. 127 

 Only the land synthetic XCO2 values (oceanic data not included in UoL-FP v4 dataset) 128 

over a period between June 2009 and March 2011 were used for this flux inference. Surface-129 

based CO2 observations were not involved here. A model-observation mismatch uncertainty 130 

of 3 ppm (above-mentioned XCO2 precision of 2 ppm + forward modeling error of ~1 ppm 131 

[Belikov et al., 2013]) was assigned to all individual synthetic XCO2 values. Unlike T14, the 132 

individual XCO2 retrievals were not aggregated nor monthly-averaged in the inversion so that 133 

the full extent of the impact of the spatial distribution variations can be evaluated. Along with 134 

the synthetic XCO2 inversion, we also performed inversion with the actual XCO2 retrievals 135 

(biases were corrected by individual data providers) for a comparison purpose. In this 136 

analysis, we focused on flux estimates for 12 months in 2010 out of the 25-months calculation 137 

period.  138 

 139 

3. Results 140 

 Presented in Figure 1 is the spread of the five regional fluxes estimated from the five 141 

synthetic XCO2 datasets. Values shown here are the standard deviations (SD) of five regional 142 

fluxes in gC m-2 day-1 over the one-year analyzed period. One characteristic found in this time 143 

series is that many of SDs of temperate and boreal regions in the Northern Hemisphere (NH) 144 

peak out between May and September of the analyzed year and gradually diminish toward 145 

December, implying XCO2 distribution variations change with time. On one hand, SDs of 146 

Amazonia (Regions 9-12; region IDs are found in upper left panel of Figure 1) and tropical 147 

Asia (33) remain large throughout the year. Those of southwestern North America (5), 148 

southern tips of South America and Africa (13, 21, and 22), and southwestern Australia (35) 149 



stay very small (<0.15 gC m-2 day-1) over the analyzed period, suggesting small XCO2 150 

distribution variations. We take a close look at the flux time series and XCO2 spatial 151 

distributions of three selected regions that are representative of the above-mentioned 152 

characteristics: Regions 6 (NH temperate), 9 (large SD year-round), and 13 (small SD year-153 

round).  154 

 Panel A of Figure 2 shows the one-year time series of five estimated fluxes for Region 155 

6, the southeastern quadrant of the contiguous US. The fluxes shown are net but without 156 

anthropogenic emissions. The a posteriori uncertainties of the estimated fluxes are shown with 157 

the error bars. The five fluxes are in good agreement from January through April (SD in 158 

January = 0.1 gC m-2 day-1), but after that period the spread among them becomes large 159 

toward June and July (SD in June = 0.7 gC m-2 day-1) and diminishes toward the end of the 160 

year. Panel A of Figure 3 displays the spatial distributions of the five XCO2 retrievals over this 161 

region (circles in red) and the surroundings (in pink). Distributions for January and June 2010 162 

are contrasted here. The total number of XCO2 retrievals found over the region in each month 163 

is also indicated in the figure. We note here that the circles are drawn over the others thus 164 

some may not be visible in the figure. The January distributions shown here resemble those of 165 

spring, fall, and winter seasons; the number of XCO2 retrievals found over this region (2.23 166 

million km2) in a month during these seasons is similar among the five XCO2 datasets (January 167 

population range: 183 – 273 per region). Although some fine differences exist, XCO2 retrievals 168 

by the five algorithms are distributed nearly similarly over the region. During the summer 169 

months (June to August), however, the XCO2 populations drop significantly and become quite 170 

different from one to another (June population range: 15 – 122 per region). The population 171 

difference causes variations in the spatial coverage, as shown in the lower part of Panel A 172 

(June 2010). The overall population drop can be attributed to increased local cloudiness 173 

and/or aerosol loading, and the population differences among the five datasets suggest 174 



differences in the current XCO2 retrieval approaches. A separate, detailed investigation is 175 

needed to understand which processes and approaches in the five retrieval algorithms 176 

contribute most to these population differences.  177 

 The largest difference in population and spatial distribution can be seen between NIES 178 

and UoL-FP datasets, and the difference resulted in the largest flux spread of 1.6 gC m-2 day-1 179 

in June 2010 (between NIES and UoL-FP estimates), which is 40 times larger than that in 180 

January (0.04 gC m-2 day-1). The June spread is also 56% of the mean peak-to-peak amplitude 181 

of the five one-year flux time series (2.8 gC m-2 day-1). The XCO2 population difference is 182 

reflected in the magnitude of the a posteriori flux uncertainty: NIES = 0.8 gC m-2 day-1 183 

(smaller population and less constrained); UoL-FP = 0.4 gC m-2 day-1 (larger population thus 184 

better constrained). In terms of a priori flux uncertainty reduction (pUR), which denotes the 185 

degree of how well a monthly regional flux is constrained by observations (given as  pUR in 186 

% = 100 × (1 – a posteriori uncertainty / a priori uncertainty)), the UoL-FP retrievals attain a 187 

74% reduction while the NIES retrievals only achieve 42% (a 32% difference).  188 

 The time series of the five flux estimates for Region 9, the southwestern part of 189 

Amazonia, are shown in Panel B of Figure 2. The time series indicate much larger spreads 190 

among the five estimates than those of Region 6 almost throughout the year. These larger 191 

spreads are attributable to considerably scant XCO2 retrievals over the region (2.59 million 192 

km2, similar to Region 6) and those scattered around the region. The XCO2 spatial distributions 193 

for March 2010 are shown in Panel B of Figure 3 (population range: 0 – 6 per region), which 194 

are representative of those in early and late 2010 (some XCO2 retrievals exist between May 195 

and August). The fluxes of these months are not well constrained by XCO2 retrievals within 196 

the region thus influenced by those found in the neighboring regions that are variable in 197 

spatial pattern (see distributions of pink circles in the figure). The largest flux spread (between 198 

PPDF-S and RemoTeC estimates) in March was found to be 2.0 gC m-2 day-1, which is the 199 



largest among all the monthly regional cases in 2010 (also indicated in Figure 1 with dark red; 200 

SD = 0.8 gC m-2 day-1). The average pUR for this month is 37%, which is close to that of the 201 

Region 6 NIES case in June 2010. 202 

 Regions associated with very small flux SDs year-round (5, 13, 21, 22, and 35) are 203 

mostly semi-arid; owing to the frequent occurrence of clear sky, XCO2 retrievals by the five 204 

algorithms are constantly available throughout the year over these regions. Population 205 

differences among the five XCO2 datasets are found to be small throughout the year, and that is 206 

reflected in small SDs for these regions (Figure 1). Panel C of Figure 3 shows the five XCO2 207 

distributions over Region 21, the southern tip of Africa (2.21 million km2), for June 2010. The 208 

five XCO2 populations and the spatial distributions over this region and the surroundings are 209 

similar to one another throughout the year, and the five fluxes estimated for this region are 210 

found to agree well year round (Panel C of Figure 2). The range of flux spread over the one-211 

year is 0.07 – 0.35 gC m-2 day-1 (annual mean SD = 0.04 gC m-2 day-1). 212 

 SD of Region 20, the eastern half of the Sahara Desert, is found to be the smallest in 213 

2010 (0.0 gC m-2 day-1; Figure 1), but this case may be considered as an exception because of 214 

its near-zero regional NEE predicted throughout the year and a very small a priori uncertainty 215 

assigned that leave nearly no room for being optimized by XCO2 retrievals. 216 

 The impact that these XCO2 spatial distribution variations have on the regional and 217 

global fluxes on an annual time scale was also checked. The five global annual flux estimates, 218 

obtained by aggregating the individual 64 monthly regional estimates over the one-year 219 

period, differ as much as 0.2 GtC yr-1 (SD = 0.1 GtC yr-1), or 4% of the mean of the five net 220 

annual global flux values (5.0 GtC yr-1). The fluxes of the three focused regions (Regions 6, 9 221 

and 21) on an annual scale were found to differ as much as 0.2, 0.6, and 0.1 GtC region-1 yr-1, 222 

respectively. The largest annual-scale difference was 0.8 GtC region-1 yr-1 (Region 30), which 223 

is 16% of the net annual global flux. Other regions with particularly large flux differences 224 



(>0.3 GtC region-1 yr-1) include Regions 15, 26, 32, 33, and 34. These large regional spreads, 225 

however, do not surface as much in the global annual estimates (SD = 0.1 GtC yr-1) after the 226 

aggregation of the 64 regional values.  227 

 Comparing the five fluxes estimated from the synthetic XCO2 retrievals with those 228 

estimated from the actual XCO2 retrievals may indicate the extent that the XCO2 spatial 229 

distribution variations account for the spreads among the actual flux estimates, in which 230 

contributions from both the spatial distribution variations and possible concentration/bias 231 

differences are reflected. We calculated SDs of five fluxes estimated from the five actual XCO2 232 

datasets, and the values are shown in Figure S1 in the supplementary information. SDs of the 233 

actual flux estimates (SDact) are overall larger than SDs of the synthetic flux estimates (SDsyn), 234 

although a few SDact are found to be smaller than the corresponding SDsyn (e.g. Region 21 in 235 

January 2010: SDact = 0.1 and SDsyn = 0.2), suggesting that the concentration contributions 236 

may have worked to bring the flux estimates closer to one another. On average, the ratio of 237 

SDact to SDsyn turned out to be 1:0.38 (cases with SDact < SDsyn were excluded). The exact 238 

contribution of concentration and/or bias differences among the five XCO2 datasets to SDact is 239 

not yet known, but our finding here implies that a large contribution to spreads found in the 240 

actual flux estimates comes from concentration/bias differences among the five XCO2 datasets, 241 

although the contribution from XCO2 distribution variations is not trivial.     242 

  243 

4. Discussion and concluding remarks 244 

A few things may be worth noting on what we found out in this assessment. First, 245 

XCO2 population differences found among the five XCO2 datasets have potentials to cause 246 

significant differences in fluxes estimated on monthly and regional scales. As demonstrated in 247 

the case of Region 6 (SE part of US) in June 2010, a XCO2 population difference of this extent 248 

can lead to flux spreads greater than a half of the amplitude of the flux seasonal cycle, which 249 



can sum up to 0.6 GtC difference in a year (12% of the global annual flux). This is clearly 250 

disadvantageous to studying both short- and long-term CO2 flux trends. XCO2 population 251 

differences during the growing season of plants over temperate and boreal regions, for 252 

instance, can confuse the inference of NEE for those regions. Again, in the case of Region 6 253 

in June, the a priori flux (NEE + biomass burning emission) was prescribed at -1.4 gC m-2 254 

day-1, and the NIES and UoL a posteriori flux estimates were -0.3 and -1.9 gC m-2 day-1, 255 

respectively; the NIES XCO2 retrievals adjust the a priori flux toward the source side by 1.1 gC 256 

m-2 day-1, whereas the UoL retrievals force it toward the sink side by 0.5 gC m-2 day-1. Notice 257 

here that the departure from the a priori value in the NIES case (1.1 gC m-2 day-1) is nearly 258 

equivalent to the absolute value of the prescribed a priori flux itself. In the long run, such 259 

population differences can also complicate the process of distinguishing anomalies in flux 260 

time series. In view of diminishing current differences in XCO2 number yield, further XCO2 261 

retrieval algorithm inter-comparison studies are desired, particularly on differences in the 262 

approaches of pre-filtering input spectral data and post-screening low quality XCO2 retrievals. 263 

Second, it is necessary to evaluate the impact of XCO2 distribution variations on the 264 

flux estimation on smaller spatial and temporal scales than what we adopted in this study 265 

(~3000 km mesh and monthly), as the population and spatial distribution differences among 266 

the datasets can become more pronounced on smaller spatiotemporal scales. As shown in 267 

Panel A of Figure 3, despite the population similarities found among the five XCO2 datasets 268 

over Region 6 in January 2010, their distributions are not identical to one another; fine 269 

differences exist in a mesh size of several degrees (e.g. distribution differences near the NW 270 

corner of Region 6). Additional synthetic inversion studies on smaller scales are desired. Also 271 

needed for characterizing satellite-based inversion is an inter-comparison of current flux 272 

inversion systems to understand how differences among those systems can impact flux 273 

estimates, using a common input XCO2 retrieval dataset.  274 



Third, as implied in the case of Region 9 (SW Amazonia), there is a clear need to 275 

improve the current XCO2 spatial coverage based on GOSAT spectral measurement. Shown in 276 

Figure 4 are the one-year population distributions of the five XCO2 datasets on a 2.5-degree 277 

mesh used for the inference of the 2010 fluxes. Although the GOSAT XCO2 retrievals fill out 278 

many blanks in the existing networks of ground-based monitoring stations (Figure 4 top 279 

panel), the populations are mostly concentrated over the mid-latitudinal regions in the both 280 

hemispheres, such as the US, temperate Eurasia, Australia, and southern parts of South 281 

America and Africa. The populations over Amazonia, tropical Africa, southeastern and 282 

tropical Asia, and NH boreal and arctic regions, on the other hand, are one to two orders-of-283 

magnitude smaller than those of the mid-latitudinal bands (only a few to several tens per grid 284 

cell per year; light green to blue color in the log scale). The reasons behind this include the 285 

fact that the NH boreal regions see most XCO2 retrievals only between May and August, and 286 

over the rest of the year these regions become undersampled due to low local solar zenith 287 

angles. Also, retrieving XCO2 over tropical Asia, tropical Africa, and Amazonia is heavily 288 

hindered by frequent cloud coverage around local noon when GOSAT measurement is made. 289 

To better cover these regions and seasons that are currently undersampled by GOSAT, some 290 

future missions are being considered that utilize observing platforms placed in a quasi-291 

geostationary orbit to observe the Arctic and NH boreal regions [Nassar et al., 2014] and in 292 

several geostationary orbits to scan specific parts of the globe [Polonsky et al., 2014; Butz et 293 

al., 2015]. These platforms may allow for more contiguous and frequent spectral sounding. 294 

Combining the outcomes of measurement by platforms such as these may yield 295 

spatiotemporally more seamless CO2 distributions favorable for inferring fluxes globally. 296 

Until such future space-based CO2 data have become available and the impact of 297 

differences among the existing XCO2 retrieval algorithms and flux inversion systems on the 298 

estimates of surface CO2 fluxes have been well characterized and understood, it may be sound 299 



to take into account the above-mentioned potential uncertainties in translating the results of 300 

GOSAT-based flux estimates. 301 
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 423 

 424 

Figure 1. Standard deviation of five monthly regional fluxes estimated from the five synthetic 425 

XCO2 datasets. IDs of terrestrial regions are indicated at the bottom. 426 



  427 

  428 

Figure 2. Time series of five estimated fluxes for Region 6 (top), 9 (middle), and 21 (bottom) 429 

over the year 2010. Values shown are net without the anthropogenic emissions. Blue: NIES 430 

v02.11; Light blue: ACOS B3.4; Purple: PPDF-S v02.11; Green: RemoTeC v2.11; Yellow: 431 

UoL-FP v4. Error bars indicate the a posteriori flux uncertainties. 432 
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 436 

 437 

Figure 3.  Spatial distributions of the five XCO2 retrievals over Regions 6 (top; southeastern 438 

quadrant of contiguous US), 9 (middle; southwestern part of Amazonia), and 21 (bottom; 439 

southern tip of Africa). Circles indicate the locations of XCO2 retrievals over the regions of 440 

focus (in red) and the surrounding areas (in pink). The circles may be overlaid onto one 441 

another. The total number of XCO2 retrievals over the region (N) is shown in each panel. 442 
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 444 



Figure 4. One-year population distributions of the five XCO2 datasets on a 2.5-degree mesh 445 

used for the inference of the 2010 fluxes. Red circles in the top panel indicate the location of 446 

surface-based CO2 monitoring stations (220 as used in Takagi et al. [2014]). 447 
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 450 

Figure S1. Standard deviation of five monthly regional fluxes estimated from the five actual 451 

XCO2 datasets. Note that the scale range shown here is wider than that in Figure 1 (range: 0 – 1 452 

gC m-2 day-1). 453 
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