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Key points

e Impact of distribution differences among five GOSAT CO, data on flux estimation was
assessed

e Distribution differences can cause flux spreads as large as half the flux annual amplitude

e Impact on global annual flux was found to be rather small

Abstract

We assessed to what extent differences in the number distribution of satellite-based CO, data
can impact the estimation of surface CO, fluxes on monthly and regional scales. Study
motivation comes from the fact that CO, data number yields by existing five algorithms for
retrieving CO, data from GOSAT spectral soundings differ largely from one another over
some parts of the globe. For this assessment, we used a single inversion system and five
synthetic CO, datasets whose geolocations are identical to those of the actual datasets. The
synthetic data were used to eliminate confusion coming from possible differences in
concentration and bias adjustment among the five actual datasets. We found flux spreads as
large as 2.0 gC m™ day™ in a month in some regions, and some spreads were found to exceed
half the flux annual amplitude. The impact of these large spreads on the annual global flux

was rather small.

Keywords: GOSAT, column-averaged CO, concentration, surface CO, flux estimation
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1. Introduction

Atmospheric inversion is a technique that systematically searches for spatiotemporal
distributions of trace gas fluxes that yield modeled atmospheric concentrations close to
observations. This technique, also known as Bayesian optimization, has been commonly used
for the inference of surface CO, flux distributions. As the flux inference relies heavily upon
observational constraints, several sensitivity studies were conducted in the past [e.g. Law et
al., 2001; Maksyutov et al., 2003; Yuen et al., 2005; Gurney et al., 2008; Bruhwiler et al.,
2011; Saeki et al., 2013]. These studies showed that the CO, flux estimation is highly
sensitive to changes in the spatial distribution of surface CO, observation sites. Bruhwiler et
al. [2011], in particular, demonstrated that additional constraints introduced to the flux
estimation can significantly reduce the uncertainties of fluxes especially for under-sampled
regions, but they can also cause sudden changes in the fluxes that sometimes exceed the
amplitudes of flux inter-annual variability. Changes in observational constraints both in time
and space can be problematic when trends of the estimated fluxes are studied.

Now, with the advent of the Japanese Greenhouse gases Observing SATellite (GOSAT)
in 2009 and more recently NASA’s Orbiting Carbon Observatory-2 in 2014, the satellite
retrievals of column-averaged CO, concentration (Xcoz), which can complement the surface-
based measurements, are available for constraining surface CO, fluxes. These satellite-based
Xcoz retrievals are, however, quite different from the surface-based measurements in
precision, frequency, and spatial distribution. In the case of GOSAT retrievals, their precision
is reported to be ~2 ppm [Oshchepkov et al., 2013a], which is about one-order-of-magnitude
larger than that of typical surface measurements [e.g. Tans and Thoning, 2008]. About one
hundred thousand GOSAT Xco, retrievals over land are available in a year, but unlike the

surface measurements at fixed locations, success in Xco» retrieving is highly dependent on
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local cloudiness and aerosol loading and thus repeat retrievals at the same location on
subsequent satellite orbits are not guaranteed. Further, for obtaining better results, existing
five algorithms for retrieving GOSAT Xcop differ in a number of aspects including input
spectral data pre-screening, cloud and aerosol modeling, radiative transfer modeling, and
post-retrieval screening, all of which impact the Xco, number yield. The X, number yields
by the five algorithms were found to differ by tens of thousands in a year [Takagi et al.,
2014]. Variations in Xco, number distribution are equivalent to introducing or withdrawing
observational constraints in flux inference, as in the study by Bruhwiler et al. [2011].

We thus assessed to what extent the Xco, number distribution variations, owing to the
Xcop retrieval algorithm differences, can impact CO, flux estimation. We did so by inter-
comparing regional fluxes estimated from five different synthetic Xco, datasets whose
geographical distribution patterns are identical to those of the five actual GOSAT Xcoz
datasets. A single inversion system was used for this estimation. The use of synthetic Xcoz
data eliminates confusion coming from possible differences in concentration and bias
adjustment among the five actual Xco, datasets; this way only the contribution of the number

distribution differences to the flux estimation can be evaluated.

2. Method

The five X0, retrieval algorithms considered here were developed independently by
the National Institute for Environmental Studies (NIES), Japan (NIES [Yoshida et al., 2013]
and PPDF-S [Oshchepkov et al., 2013b] algorithms), the NASA Atmospheric CO,
Observation from Space (ACOS) team [O’Dell et al., 2012] (ACOS algorithm), the
Netherlands Institute for Space Research / Karlsruhe Institute for Technology [Butz et al.,
2011] (RemoTeC algorithm), Germany, and the University of Leicester (UoL), UK [Boesch et

al., 2011] (UoL-FP algorithm). Descriptions of these five algorithms can be found in an inter-
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comparison study by Oshchepkov et al. [2013a]. Key differences among these algorithms are
summarized in Table 1 of a previous GOSAT flux inter-comparison report by Takagi et al.
[2014] (T14). The versions of the retrieval datasets used here are as follows: NIES v02.11,
PPDF-S v02.11, ACOS B3.4, RemoTeC v2.11, and UoL-FP v4. For creating the synthetic
Xcop datasets, information on Xco, geolocation and column averaging kernel was taken from
each of the five datasets and used to sample X, in a forward concentration simulation in
five different ways. The forward simulation was performed with version 08.11 of the NIES

atmospheric tracer transport model (NIES-TM) [Belikov et al., 2013] (resolution: 2.5°X2.5°

horizontal and 32 vertical) driven by the Japan Meteorological Agency (JMA)’s JCDAS
(JMA Climate Data Assimilation System) meteorological analysis data [Onogi et al., 2007].
We used a surface-data-optimized CO, flux dataset by Chevalier et al. [2010] (ver.13.1;
available at http://apps.ecmwf.int/datasets/data/macc-ghg-inversions/) as “truth” in this
forward simulation.

The flux inference by the five synthetic Xco, datasets was performed with an inverse
modeling system used in T14 and described in detail by Maksyutov et al. [2013]. The system
consists of NIES-TM and a fixed-lag Kalman Smoother optimization scheme [Bruhwiler et
al., 2005] that estimates monthly fluxes of 64 global regions on sub-continental and ocean-
basin scales (42 terrestrial and 22 oceanic) [Patra et al., 2005]. The a priori flux data used here
consist of the following four components: anthropogenic emissions by ODIAC (Open source
Data Inventory of Anthropogenic CO, emission) high-resolution dataset [Oda and
Maksyutov,

2011] combined with the Carbon Dioxide Information Analysis Center’s monthly 1° x 1°
resolution dataset [Andres et al., 2011]; monthly biomass burning emissions by GFED
(Global Fire Emissions Database) version 3.1 inventory [van der Werf et al. 2010]; daily net

ecosystem exchange (NEE) predicted by VISIT (Vegetation Integrative SImulator for Trace
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gases) terrestrial biosphere process model [Ito 2010; Saito et al. 2011]; monthly ocean-
atmosphere CO; fluxes generated with an ocean pCO, data assimilation system [Valsala and
Maksyutov 2010].

Only the land synthetic Xco, values (oceanic data not included in UoL-FP v4 dataset)
over a period between June 2009 and March 2011 were used for this flux inference. Surface-
based CO, observations were not involved here. A model-observation mismatch uncertainty
of 3 ppm (above-mentioned Xco, precision of 2 ppm + forward modeling error of ~1 ppm
[Belikov et al., 2013]) was assigned to all individual synthetic Xco, values. Unlike T14, the
individual Xco; retrievals were not aggregated nor monthly-averaged in the inversion so that
the full extent of the impact of the spatial distribution variations can be evaluated. Along with
the synthetic Xy inversion, we also performed inversion with the actual Xco, retrievals
(biases were corrected by individual data providers) for a comparison purpose. In this
analysis, we focused on flux estimates for 12 months in 2010 out of the 25-months calculation

period.

3. Results

Presented in Figure 1 is the spread of the five regional fluxes estimated from the five
synthetic Xco, datasets. Values shown here are the standard deviations (SD) of five regional
fluxes in gC m™ day'1 over the one-year analyzed period. One characteristic found in this time
series is that many of SDs of temperate and boreal regions in the Northern Hemisphere (NH)
peak out between May and September of the analyzed year and gradually diminish toward
December, implying Xco, distribution variations change with time. On one hand, SDs of
Amazonia (Regions 9-12; region IDs are found in upper left panel of Figure 1) and tropical
Asia (33) remain large throughout the year. Those of southwestern North America (5),

southern tips of South America and Africa (13, 21, and 22), and southwestern Australia (35)
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stay very small (<0.15 gC m™ day') over the analyzed period, suggesting small Xcon

distribution variations. We take a close look at the flux time series and Xco, spatial
distributions of three selected regions that are representative of the above-mentioned
characteristics: Regions 6 (NH temperate), 9 (large SD year-round), and 13 (small SD year-
round).

Panel A of Figure 2 shows the one-year time series of five estimated fluxes for Region
6, the southeastern quadrant of the contiguous US. The fluxes shown are net but without
anthropogenic emissions. The a posteriori uncertainties of the estimated fluxes are shown with
the error bars. The five fluxes are in good agreement from January through April (SD in
January = 0.1 gC m™ day™), but after that period the spread among them becomes large
toward June and July (SD in June = 0.7 gC m™ day") and diminishes toward the end of the
year. Panel A of Figure 3 displays the spatial distributions of the five Xco» retrievals over this
region (circles in red) and the surroundings (in pink). Distributions for January and June 2010
are contrasted here. The total number of Xco; retrievals found over the region in each month
is also indicated in the figure. We note here that the circles are drawn over the others thus
some may not be visible in the figure. The January distributions shown here resemble those of
spring, fall, and winter seasons; the number of X, retrievals found over this region (2.23
million km?®) in a month during these seasons is similar among the five Xco, datasets (January
population range: 183 — 273 per region). Although some fine differences exist, Xco, retrievals
by the five algorithms are distributed nearly similarly over the region. During the summer
months (June to August), however, the Xco, populations drop significantly and become quite
different from one to another (June population range: 15 — 122 per region). The population
difference causes variations in the spatial coverage, as shown in the lower part of Panel A
(June 2010). The overall population drop can be attributed to increased local cloudiness

and/or aerosol loading, and the population differences among the five datasets suggest



175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

differences in the current Xco, retrieval approaches. A separate, detailed investigation is
needed to understand which processes and approaches in the five retrieval algorithms
contribute most to these population differences.

The largest difference in population and spatial distribution can be seen between NIES
and UoL-FP datasets, and the difference resulted in the largest flux spread of 1.6 gC m™ day™
in June 2010 (between NIES and UoL-FP estimates), which is 40 times larger than that in
January (0.04 gC m™ day™). The June spread is also 56% of the mean peak-to-peak amplitude
of the five one-year flux time series (2.8 gC m™ day"). The Xco» population difference is
reflected in the magnitude of the a posteriori flux uncertainty: NIES = 0.8 gC m™ day’
(smaller population and less constrained); UoL-FP = 0.4 gC m™” day™ (larger population thus
better constrained). In terms of a priori flux uncertainty reduction (pUR), which denotes the
degree of how well a monthly regional flux is constrained by observations (given as pUR in

% =100 X (1 — a posteriori uncertainty / a priori uncertainty)), the UoL-FP retrievals attain a

74% reduction while the NIES retrievals only achieve 42% (a 32% difference).

The time series of the five flux estimates for Region 9, the southwestern part of
Amazonia, are shown in Panel B of Figure 2. The time series indicate much larger spreads
among the five estimates than those of Region 6 almost throughout the year. These larger
spreads are attributable to considerably scant Xco, retrievals over the region (2.59 million
kmz, similar to Region 6) and those scattered around the region. The X0, spatial distributions
for March 2010 are shown in Panel B of Figure 3 (population range: 0 — 6 per region), which
are representative of those in early and late 2010 (some Xco; retrievals exist between May
and August). The fluxes of these months are not well constrained by Xco, retrievals within
the region thus influenced by those found in the neighboring regions that are variable in
spatial pattern (see distributions of pink circles in the figure). The largest flux spread (between

PPDF-S and RemoTeC estimates) in March was found to be 2.0 gC m? day'l, which is the
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largest among all the monthly regional cases in 2010 (also indicated in Figure 1 with dark red;
SD = 0.8 gC m™ day™). The average pUR for this month is 37%, which is close to that of the
Region 6 NIES case in June 2010.

Regions associated with very small flux SDs year-round (5, 13, 21, 22, and 35) are
mostly semi-arid; owing to the frequent occurrence of clear sky, Xco, retrievals by the five
algorithms are constantly available throughout the year over these regions. Population
differences among the five Xco, datasets are found to be small throughout the year, and that is
reflected in small SDs for these regions (Figure 1). Panel C of Figure 3 shows the five Xco2
distributions over Region 21, the southern tip of Africa (2.21 million km?), for June 2010. The
five Xcoz populations and the spatial distributions over this region and the surroundings are
similar to one another throughout the year, and the five fluxes estimated for this region are
found to agree well year round (Panel C of Figure 2). The range of flux spread over the one-
year is 0.07 — 0.35 gC m™ day™ (annual mean SD = 0.04 gC m™ day™).

SD of Region 20, the eastern half of the Sahara Desert, is found to be the smallest in
2010 (0.0 gC m™ day’'; Figure 1), but this case may be considered as an exception because of
its near-zero regional NEE predicted throughout the year and a very small a priori uncertainty
assigned that leave nearly no room for being optimized by Xco; retrievals.

The impact that these Xco, spatial distribution variations have on the regional and
global fluxes on an annual time scale was also checked. The five global annual flux estimates,
obtained by aggregating the individual 64 monthly regional estimates over the one-year
period, differ as much as 0.2 GtC yr' (SD = 0.1 GtC yr'"), or 4% of the mean of the five net
annual global flux values (5.0 GtC yr'). The fluxes of the three focused regions (Regions 6, 9
and 21) on an annual scale were found to differ as much as 0.2, 0.6, and 0.1 GtC region'1 yr'l,
respectively. The largest annual-scale difference was 0.8 GtC region’1 yr'1 (Region 30), which

is 16% of the net annual global flux. Other regions with particularly large flux differences



225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

(>0.3 GtC region™ yr') include Regions 15, 26, 32, 33, and 34. These large regional spreads,
however, do not surface as much in the global annual estimates (SD = 0.1 GtC yr'') after the
aggregation of the 64 regional values.

Comparing the five fluxes estimated from the synthetic Xco, retrievals with those
estimated from the actual Xco, retrievals may indicate the extent that the Xco, spatial
distribution variations account for the spreads among the actual flux estimates, in which
contributions from both the spatial distribution variations and possible concentration/bias
differences are reflected. We calculated SDs of five fluxes estimated from the five actual Xco»
datasets, and the values are shown in Figure S1 in the supplementary information. SDs of the
actual flux estimates (SD,) are overall larger than SDs of the synthetic flux estimates (SDgyn),
although a few SD, are found to be smaller than the corresponding SDyy, (e.g. Region 21 in
January 2010: SD,¢ = 0.1 and SDgy, = 0.2), suggesting that the concentration contributions
may have worked to bring the flux estimates closer to one another. On average, the ratio of
SDgct to SDgyq turned out to be 1:0.38 (cases with SD,¢ < SDgy, were excluded). The exact
contribution of concentration and/or bias differences among the five Xco, datasets to SD, is
not yet known, but our finding here implies that a large contribution to spreads found in the
actual flux estimates comes from concentration/bias differences among the five X0, datasets,

although the contribution from Xco;, distribution variations is not trivial.

4. Discussion and concluding remarks

A few things may be worth noting on what we found out in this assessment. First,
Xcoz2 population differences found among the five Xco, datasets have potentials to cause
significant differences in fluxes estimated on monthly and regional scales. As demonstrated in
the case of Region 6 (SE part of US) in June 2010, a Xco, population difference of this extent

can lead to flux spreads greater than a half of the amplitude of the flux seasonal cycle, which
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can sum up to 0.6 GtC difference in a year (12% of the global annual flux). This is clearly
disadvantageous to studying both short- and long-term CO, flux trends. Xco> population
differences during the growing season of plants over temperate and boreal regions, for
instance, can confuse the inference of NEE for those regions. Again, in the case of Region 6
in June, the a priori flux (NEE + biomass burning emission) was prescribed at -1.4 gC m™
day™, and the NIES and UoL a posteriori flux estimates were -0.3 and -1.9 ¢gC m™ day’,
respectively; the NIES Xco, retrievals adjust the a priori flux toward the source side by 1.1 gC
m~ day’', whereas the UoL retrievals force it toward the sink side by 0.5 gC m™ day™'. Notice
here that the departure from the a priori value in the NIES case (1.1 gC m™ day™) is nearly
equivalent to the absolute value of the prescribed a priori flux itself. In the long run, such
population differences can also complicate the process of distinguishing anomalies in flux
time series. In view of diminishing current differences in Xco, number yield, further Xcop
retrieval algorithm inter-comparison studies are desired, particularly on differences in the
approaches of pre-filtering input spectral data and post-screening low quality Xco; retrievals.
Second, it is necessary to evaluate the impact of Xco, distribution variations on the
flux estimation on smaller spatial and temporal scales than what we adopted in this study
(~3000 km mesh and monthly), as the population and spatial distribution differences among
the datasets can become more pronounced on smaller spatiotemporal scales. As shown in
Panel A of Figure 3, despite the population similarities found among the five Xco, datasets
over Region 6 in January 2010, their distributions are not identical to one another; fine
differences exist in a mesh size of several degrees (e.g. distribution differences near the NW
corner of Region 6). Additional synthetic inversion studies on smaller scales are desired. Also
needed for characterizing satellite-based inversion is an inter-comparison of current flux
inversion systems to understand how differences among those systems can impact flux

estimates, using a common input Xco; retrieval dataset.
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Third, as implied in the case of Region 9 (SW Amazonia), there is a clear need to
improve the current Xco, spatial coverage based on GOSAT spectral measurement. Shown in
Figure 4 are the one-year population distributions of the five Xco, datasets on a 2.5-degree
mesh used for the inference of the 2010 fluxes. Although the GOSAT Xco; retrievals fill out
many blanks in the existing networks of ground-based monitoring stations (Figure 4 top
panel), the populations are mostly concentrated over the mid-latitudinal regions in the both
hemispheres, such as the US, temperate Eurasia, Australia, and southern parts of South
America and Africa. The populations over Amazonia, tropical Africa, southeastern and
tropical Asia, and NH boreal and arctic regions, on the other hand, are one to two orders-of-
magnitude smaller than those of the mid-latitudinal bands (only a few to several tens per grid
cell per year; light green to blue color in the log scale). The reasons behind this include the
fact that the NH boreal regions see most Xco;, retrievals only between May and August, and
over the rest of the year these regions become undersampled due to low local solar zenith
angles. Also, retrieving Xco, over tropical Asia, tropical Africa, and Amazonia is heavily
hindered by frequent cloud coverage around local noon when GOSAT measurement is made.
To better cover these regions and seasons that are currently undersampled by GOSAT, some
future missions are being considered that utilize observing platforms placed in a quasi-
geostationary orbit to observe the Arctic and NH boreal regions [Nassar et al., 2014] and in
several geostationary orbits to scan specific parts of the globe [Polonsky et al., 2014; Butz et
al., 2015]. These platforms may allow for more contiguous and frequent spectral sounding.
Combining the outcomes of measurement by platforms such as these may yield
spatiotemporally more seamless CO; distributions favorable for inferring fluxes globally.

Until such future space-based CO, data have become available and the impact of
differences among the existing Xco» retrieval algorithms and flux inversion systems on the

estimates of surface CO, fluxes have been well characterized and understood, it may be sound
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to take into account the above-mentioned potential uncertainties in translating the results of

GOSAT-based flux estimates.
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425  Figure 1. Standard deviation of five monthly regional fluxes estimated from the five synthetic

426 Xcop datasets. IDs of terrestrial regions are indicated at the bottom.
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Figure 2. Time series of five estimated fluxes for Region 6 (top), 9 (middle), and 21 (bottom)
over the year 2010. Values shown are net without the anthropogenic emissions. Blue: NIES
v02.11; Light blue: ACOS B3.4; Purple: PPDF-S v02.11; Green: RemoTeC v2.11; Yellow:

UoL-FP v4. Error bars indicate the a posteriori flux uncertainties.
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437

438  Figure 3. Spatial distributions of the five Xco, retrievals over Regions 6 (top; southeastern
439  quadrant of contiguous US), 9 (middle; southwestern part of Amazonia), and 21 (bottom;
440  southern tip of Africa). Circles indicate the locations of Xco, retrievals over the regions of
441  focus (in red) and the surrounding areas (in pink). The circles may be overlaid onto one

442  another. The total number of X0, retrievals over the region (N) is shown in each panel.
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445  Figure 4. One-year population distributions of the five Xco, datasets on a 2.5-degree mesh
446  used for the inference of the 2010 fluxes. Red circles in the top panel indicate the location of

447  surface-based CO, monitoring stations (220 as used in Takagi et al. [2014]).
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451  Figure S1. Standard deviation of five monthly regional fluxes estimated from the five actual
452  Xcop datasets. Note that the scale range shown here is wider than that in Figure 1 (range: 0 — 1
453  gC m™day™).
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