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ABSTRACT

We investigate the evolution of low mad¥l{/M;, = 0.005) misaligned gaseous discs around
eccentric supermassive black hole (SMBH) binaries. Thesegpected to form from ran-
domly oriented accretion events onto a SMBH binary formed galaxy merger. When ex-
panding the interaction terms between the binary and alaircing to quadrupole order and
averaging over the binary orbit, we expect four non-prengsdisc orientations: aligned or
counter-aligned with the binary, or polar orbits aroundhieary eccentricity vector with ei-
ther sense of rotation. All other orientations precess rmiaeither of these, with the polar
precession dominating for high eccentricity. These exqiaxtis are borne out by smoothed
particle hydrodynamics simulations of initially misaligghviscous circumbinary discs, result-
ing in the formation of polar rings around highly eccentiiicdyies in contrast to the co-planar
discs around circular binaries. Moreover, we observe @iadrig and violent interactions be-
tween diferentially precessing rings in the disc significantly dighog the disc structure and
causing gas to fall onto the binary with little angular motuen. While accretion from a polar
disc may not promote SMBH binary coalescence (solving tmalfparsec problem’), ejec-
tion of this infalling low-angular momentum material viaagitational slingshot is a possible
mechanism to reduce the binary separation. Moreover, thisegs acts on dynamical rather
than viscous time scales, and so is much faster.
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1 INTRODUCTION sulting in what is known as ‘the final parsec problem’ (Milaka
jevic & Merritt 2003; Berczik et al. 2005).

Potential stellar dynamical solutions have been soughgdsr
poor systems. Berczik et al. (2006) studied SMBH binariediev
tion in realistic triaxial rotating galaxies and found thla¢ galax-
ies supply stars on centrophilic orbits refilling the losspeat a
high enough rate to prevent the SMBH binary from stalling and
that complete coalescence is achieved in less than 10 Gwan Kh
et al. (2013) found that for axisymmetric galaxies with asdtio
c/a< 0.8 the hardening rate is 25 times faster than for spherical
galaxies. Self-consistef-body simulations of merging galaxies
containing SMBH found binary hardening rates much highanth
idealized spherical models andicient to shrink the binary to the
gravitational wave coalescence regime (Khan et al. 201h]dBu
dris & Merritt 2012).

Interactions with circumbinary gas discs may change the evo
lution of the SMBH binary. The mass of such a disc is uncerdaih
depends on its formation. A galaxy rich merger can chanmgkla
amounts of gas towards the centre. If this gas can cihaliently
and avoid fragmentation and substantial star formatioms@wlith
* Email: ha183@le.ac.uk, walter.dehnen@le.ac.uk mass comparable to that of the binary may form.

+ Einstein Fellow For a prograde disc, spiral density waves in the disc driwen b

It is widely accepted that most massive galaxies host a mazer
sive black hole (SMBH) at their centre. Galaxy mergers, etqu
from the hierarchical structure growth scenario based enttold
dark matter ACDM) cosmological model, then result in the for-
mation of SMBH binaries (Begelman et al. 1980). Both SMBHs
of such a binary sink towards the galactic centre due to dycam
friction and form a hard binary (Merritt 2001). However, rhssch
SMBHSs appear to be single rather than binary SMBHSs, implying
that SMBH binaries quickly coalesce and merge. One proaiss d
ing further binary shrinking are slingshot interactionshnstars in
the ‘loss cone’: those on orbits intersecting with the byn&aslaw

et al. 1974). Since the slingshot mechanism ejects the, dtws
‘loss cone’ needs to be replenished in a relatively shorésicale

in order to shrink the binary all the way down to separatigi€-2

pc where gravitational waves are expected to drive coatescé&or
spherical collisionally relaxed stellar systems, it isitgbt that the
slingshot mechanism stalls well before reaching this sejuar, re-
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the outer-Lindblad resonance with the binary transportiErgno-
mentum away from the binary (Goldreich & Tremaine 1979).sThi
mechanism isféicient if the disc reaches very close to the binary,
so that it occupies the resonance, and fE@ently massive for the
angular-momentum absorption not to result in an expandioineo
inner disc edge (Escala et al. 2005; MacFadyen & Milosaidjev
2008). For a disc wittMy = 0.2Mp,, Cuadra et al. (2009) found that
binary orbital decay can stall because the disc expandsadak-t
sorption of angular momentum from the binary, severely sigw
further angular momentum exchange (see also Lodato et@®)20

Apart from the classical density-wave mechanism, the linfal
of gas from the inner edge of the disc into the cavity can beoimp
tant (Roedig et al. 2012; Roedig & Sesana 2014). The binagy ma
either eject such infalling gas via a gravitational slingisivhereby
losing angular momentum and energy, or capture it onto areacc
tion disc around either component, which adds to the binagylkar
momentum. The binary evolution is determined by the cortipati
between these twoffects and it remains unclear, which one wins
in the long tern.

For a retrograde co-planar disc, the lack of orbital resoean
allows the disc to extend to small radii. This enables theyin
to accrete or capture material with negative angular mooment
(Nixon et al. 2011). IfMyq ~ My, this may siffice to achieve coa-
lescence (Roedig & Sesana 2014).

In reality, discs with mass in excess of their aspect rathes
the binary mass are gravitationally unstable and hencetalthe
short cooling time in these discs, fragment and form starshmu
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pect the formation of misaligned circumbinary discs aroBiMBH
binaries. In the case of a circular SMBH binary, the intacact
between the misaligned disc and the binary is similar to eens
Thirring precession on an accretion disc around a spinniagkb
hole (Bardeen & Petterson 1975; Pringle 1992; Scheuer &kFelil
1996). King et al. (2005) showed that the inducefiiedential pre-
cession will cause a misaligned disc to counter-align whightilack
hole spin provided
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whereJy and Jy, are the disc and black hole angular momenta, re-
spectively; and is the angle between them. The disc will co-align
with the black hole spin if this relation is not satisfied. blixet al.
(2011) showed that the same analysis applies to the case isfa m
aligned disc around a binary (though the precession ratiglglg
different). Thus, if counter-alignment is stable (Nixon 201Rjs
mechanism can provide a solution to the final parsec problgm b
supplying retrograde discs to achieve coalescence.

Recently, Nixon et al. (2013) performed 3-D hydrodynamical
simulations of circumbinary discs around a circular bin@myvar-
ious tilt anglesd. In addition to co- and counter-alignment, they
found that in many cases the discs is torn into distinct ringsh
precess almost independently (Nixon et al. 2012). The peicg
rings, which have partially opposed angular momentum, may i
teract causing partial cancellation of their angular mamend
thus gas infall close to the binary. This disc tearing sigaifilly
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faster than binary coalescence (Gammie 2001; Goodman 2003;increases the accretion rate and may play an importantiqieoi

Levin 2007). The numerical treatment of fragmentationr &te
mation, and stellar feedback is extremely challenging.linfahe
aforementioned simulations with such massive discs, tipese

moting the binary final coalescence.
Those studies considered the case of a circular binaryaictter
ing with a circumbinary disc, when disc precession is ontyuad

cesses have simply been suppressed (by assuming slowgoolin the pole of the binary plane. In this study, we consider theemo

which prevents star formation), overestimating thgcency of
disc-driven binary coalescence. Although star formatiath nob

the disc of a significant amount of gas, the newly formed stars
may still contribute to binary orbital decay (e.g. Sesare.2007,
2008), though less so than the gas owing to the lack offazient
dissipation mechanism to reduce their pericentres.

A more likely scenario than binary coalescence driven by the
interaction with a single massive disc is the repeated acten
with low-mass discs resulting from the infall and tidal digtion of
molecular clouds onto the binary. Such discs are expectbdve
masses 10°M,, typical of molecular clouds, small compared to
the typical mass 19°M,, of a SMBH binary. Nixon et al. (2011)
studied retrograde discs of this type and found that theyengeef-
ficient in reducing the binary angular momentum through etomn
of gas with negative angular momentum onto the secondack bla
hole. This enhanced accretion onto the secondary blackihele
creases the binary’s eccentricity, decreasing the perieéistance
in the process, and coalescence is achieved when a massreempa
ble to the secondary black hole has been accreted.

If accretion events in galactic nuclei are chaotic and ramigio
oriented (King & Pringle 2006, 2007; King et al. 2008), we ex-

1 This efect was present in the simulations of Cuadra et al. (2009)lidut
not efectuate significant binary evolution. On the other handetam an
extrapolation to 50 times longer than actually modelleded®g & Sesana
(2014) claim dicient binary shrinking. However, since the infall of gas de-
pends on the disc structure at its inner edge, this resudirissensitive to the
thermodynamical treatment. Roedig et al. (2012), for eXanfpund that
for isothermal instead of adiabatic gas with an imposeddstat cooling
prescription, the binary orbital decay can be significargiyuced.

general situation of an eccentric binary. For a SMBH binaryfed

via a galaxy merger, we expect high eccentricities in margesa
(Aarseth 2003; Khan et al. 2011; Wang et al. 2014). Moreoeg,
rograde accretion onto a circular binary naturally resualtsccen-
tricity growth as discussed earlier. One importafieet of binary
eccentricity is to make the time averaged binary potentiakigl
rather than axisymmetric as for a circular binary. Previsusglies
have shown that misaligned discs in triaxial galaxies ca&tgss
around both the major and the minor axes (Steiman-Cameron &
Durisen 1984; Thomas et al. 1994).

The paper is organised as follows. In Section 2 we present an-
alytic results for a simple orbit-averaged model for theabyrdisc
interaction up to quadrupole order. Section 3 describesébep
of our 3D hydrodynamical simulations, the of which results a
presented in Section 4 and discussed in Section 5. Finatlgwmn-
marise and conclude in Section 6.

2 BINARY-DISC QUADRUPOLE INTERACTION

The dynamics of a circumbinary gaseous ring orbiting anrcice
binary is not analytically treatable, even without consiag any
dissipation. However, useful insight can be obtained bjricat-
ing the binary gravitational potential at quadrupole ordiy as-
suming that the ring is circular, (iii) time-averaging ovke binary
orbit, and (iv) neglecting dissipation. Assumptions (ifdfi) are
valid as long as the ring is fiiciently distant from the binary, while
assumption (i) requires that orbital resonances betwéaenand
binary are not important.

The monopole of the gravitational interaction results ipKe



lerian motion of the ring around the binary centre of massjevh
the quadrupole describes the lowest-order deviation obthary
from a central point mass.

Recently, Naoz et al. (2013) have used Hamiltonian perturba
tion theory to obtain the equations for the secular evoutib a
hierarchical triple up to octopole order. For a circularesutinary,
their results are equivalent to the situation of a circuliaciuen-
binary ring. We now summarise the relevant relations (olethin
Appendix A with Newtonian dynamics, but otherwise equinale
those of Naoz et al.) in terms of vectors rather than orbleahents
to describe the system.

The binary is parametrised by its mass rafiem,/m; < 1, to-
tal massM = my + mp, semi-major axi|, specific angular momen-
tum h, and eccentricity vectae. Let R = x; — X, the instantaneous
binary separation vector, then

q

=M s+ s = — 4 RxE

h= Mxlxx1+Mx2><x2_(l+q)2R><R and 2)
_RX(RXR) A
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The vectore is conserved for the binary orbit and points from the
centre of mass to peri-apse (hence is always orthogonia). ttis
magnitude is the orbital eccentricity and is related to didt by

h?(1+q)* = *GMa(1-€?). 4

2.1 Ring evolution

The circular circumbinary ring is parametrised by its massa-
dius r, and poIeT. The latter is the unit vector in direction of
the ring’s specific angular momentumwhich has amplitudé =
VG(M+m)r. The ring radius must satisfiy> a(1 +€)/(1+ q) for
the quadrupole-approximation to be valid (and in order toichv
collision with a binary component). Note that the tilt anglef the
ring with respect to the binary satisfies éesi-h.

The quadrupole interaction energy between binary and ring,
averaged over both the binary orbit and the ring, is

mw?a’q
8(1+0?

with w = 4/G(M +m)/r3 the orbital frequency of the ring , in agree-
ment with equation (22) of Naoz et al. (2013). The time-agech
binary quadrupole torques the ring according to

(Epyr) = |66? - 1-156%(1-8)? + 3(1-€)(1 - h)?]

®)

1=@xI ©)
with the vector
_3wq
ppTeRrEE 2[5e2(| e-(1-&)(-hh|. @

From equation (6) we have 1 =0, i.e.[ =0=1 and the ring is

merely precessing (this is no longer true at octopole antiehig

order, wher # 0, see Naoz et al. 2013).
Sincewmr?® = §(Ey,)/0l, equation (6) implies

di &(Ewr) _

a o

Thus, (in the assumed approximation) no energy is exchabged

tween binary and a single ring, but only angular momenturthéf

binary interacts with several rings, the individual inttian ener-
gies with each ring are no longer conserved).

®)
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2.2 Binary evolution

The torque of the binary from the ring can be worked out analo-
gously to that of the ring from the binary. After averagingothe
binary orbit, we obtain

)

In particular, the total angular momentuMh+ml, is conserved at
quadrupole order. For the case«x M considered here, the orien-
tationh only varies slightly even if the disc orlentatlmmlndergoes
large changes. .

For a circular binary® is parallel toh such thath-h =0, i.e.
h = |h| is conserved and the binary is merely precessing (with an
amplitude that is smaller than that of the disc by a facipM).
This fact together with conservation of total angular motasm
was the basis of the analysis by Nixon et al. (2011).

For an eccentric binary, the evolution fofs not simply a pre-
cession andh not conserved. Instead, we find

. m
h=-— l.
M@x

. 150°m ¢€h
h_—Tm—(l-e)(l k) (10)
with Q = 4/GM/a3 the binary orbital frequency. Thuk,remains

unchanged only ie= 0 (circular binary), or ifl is perpendicular
to eitheréor k, i.e. if eitheré€ or k are in the ring plane. Other-
wise, h oscillates, sincé - k oscillates around zero under the ring
precession.

The change of the eccentricity vector is

. 3w'm
6= Z?Z—Me {[2 (i-hy2-5(-82] k+
+(1-k(d-hyh+50-8(- k)e} (11)
and the corresponding change in eccentricity
= 1—E’ﬂ“evl—eZ(i-é)(i- k). (12)

4 QM

in agreement with equation A34 of Naoz et al. 2013, but algh wi
equation (10) in conjunction with equation (4). In additimnthe
precession of the orbital plane and the oscillation of tleestricity
(both already described by equation 10), the binary alsengueds
apsidal precession with rate

Vi-&[2-(I-hy?-5(-8?|.

b= e

4 QM (13)

which is prograde for near-planar disc orientations (vwﬁd?n ~1),
but retrograde for near-polar discs (wherg ~ 1).

2.3 Ring precession

The rates of change of the directions of the binary and rirgmkam
momenta satisfy
dﬁl dTl

s @ (14)

<

Mh
and a similar relation holds fgdé/dt|. Thus, as long am< M,
the binary orientation changes only very little gsrdmuch more
slowly than that of the ring (except for extreme binary etdgen
ities whenMh o« V1-€2 can be small). We therefore consider in
this subsection the limitn/M — 0 when the binary orientation and
eccentricity are constant.
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Figure 1. Precession paths for the directibof the angular momentum of a dissipation-less circular ahgegligible mass orbiting a binary with eccentricity
e as indicated. The binary orbits counter clockwise in thex@lperpendicular to its specific angular momentuwith peri-apse in the directior. For a
circular binary €=0, Ieft),T always precesses arouhdn a retrograde sense. For eccentric binaries, prograde pmcession (blue) aroumglthe long axis
of the time-averaged binary potential, is also possible fHgions of polar and azimuthal precession are separatedohyreat circles (black). The four ring
orientationsl = +h andi = +& are stable (non-precessing), while the orientatibas-k are unstable. Dissipation would damp the precession anduealty
align the ring with one of the four stable orientations. Ise®f a massive ring, the binary orbit evolves too: the vedicainde oscillate and precess, aed
andk rotate aroundh.

Then, equation (8) implies that the ring precesses alongesur
of constantEy,). Isolated minima and maxima ¢E,,) denote sta-
ble, non-precessing ring orientations. In the presenceissigh-
tion (due to viscosity in the disc), these orientations dneetors,
i.e. the dissipative damping of the precession eventuditipsithe
poIeT of the ring with the extrema ofE,) (Steiman-Cameron &
Durisen 1984). For ang < 1, the orientations = +h are isolated
minima of (Ey,) and correspond to co-planar ring orientations ei-
ther co- or counter-rotating with the binary.

For a circular binary €= 0), these are the only stable orien-
tations, but all polar orbitsd(= 90°) maximise(Ey,). @ is parallel
to h and ring precession is circuldrdescribes a circle around ei-
ther of the stable orientations, see also the left plot in Eigrhe oo o2 o2 s o8 I
precession rate is lower than the orbital frequency by tlogofa eccentricity
3qe? cosd/4r?(1 + q)?. This is the situation previously studied by
Nixon et al. (2011). We now turn to the more general case of an
eccentric binary.

Fore> 0, the orientations = +& are maxima of Ey), corre-
sponding to polar rings (with opposite senses of rotationjed
& Fore<1,1=+k are saddle points and correspond to polar rings

40 60 80 100

% polar precession

20

Figure 2. Percentage of ring orientations undergoing polar precesas a
function of binary eccentricity.

3 SIMULATION SETUP

around We perform a set of 3-D Smoothed Particle Hydrodynamics (SPH
o (Gingold & Monaghan 1977; Lucy 1977) simulations of georinetr
k=hxg (15) cally thin accretion discs with fferent initial misalignment around

an eccentric binary. We use a range dfelient binary eccentrici-
the intermediate axis of the time-averaged binary potentia tiese=0, 0.3, 0.6, and 0.9. The disc setup is very similar to that

These latter ring orientations are unstable, i.e. smaibdiewns will used by Nixon et al. (2013): the disc is initially flat and exde
result in precession around either of the four stable caiéons. from an inner radius of to an outer radius of@with an inner
For O< e< 1, ring precession is never circuldrdescribes a curve  thicknessH/R=0.01. We use a disc viscosity déieient (Shakura
elongated towards the unstable orientations, rather theincke. & Sunyaev 1973 = 0.1 which we setup using an appropriate SPH
Azimuthal and polar precessions are retrograde and pregrad artificial viscosity coéficientaay corresponding to our resolution
spectively. See Fig.1 for a visualisation of the precespaths. (Lodato & Price 2010). All simulations start with 4 millionP$i

The regions of polar and azimuthal precession are separatedparticles, while the the binary is modelled using two equaks
by the contours ofEy,) passing through the saddle points. These sink particles with accretion radius off®a. The disc initial surface
separatrices are circular and shown as black in Fig. 1. Twidn density follows the profil& « R, and we use a locally isother-
of ring orientations undergoing polar precession is mal equation of state with sound spegdx R34, These choices
ensure a uniform vertical resolution (and hence uniformsptaf
viscosity, see Lodato & Pringle 2007). We assume a disc niass o
Ma/M;, = 0.005< H/R, which ensures that disc self-gravity is not
important (we do not include gas self-gravity in our simialas, but
At small e, this grows linearly ¢ v20e/x) with eccentricity (see we do self-consistently include the back-reaction fromdhe on
Fig. 2). Azimuthal and polar precession are equally likelyd= the binary). The simulations were performed using our owtheco
6712~ 0.408. (Dehnen & Aly 2012), which implements an SPH scheme very

1 a1-6¢
P d 1+4e2”

(16)
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=60

Figure 3. Density rendering of the simulations after 600 (= 95 binary orbits) for dierent binary eccentricities and initial misalignment asgs indicated.
The projections are along the intermediate binary &xigith the angular- momentum vectbrpointing upwards and the eccentricity vecédo the right.

similar to that used by Nixon et al. (2013), and we verified tha
our results fore= 0 agree with theirs. The disc has initial angular
momentum direction

1= sin@cosp e+ singsing k + coso h, 17)

whereg is thetwistangle of the disc. We ran a total of 118 simula-
tions fore=0, 0.3, 0.6, and 0.9=0°, 10, 30", 45, 60, 80, 90,
100, 120, 135, 150, 170, and 180; ¢ = 0°, —45°, and-90.°.

In the next sectioryp will be taken to be zero whenever it is not
specified, we discuss th&ects of varyings separately.

We point out that the choice of a locally isothermal equatibn
state implies that the disc instantly radiates away all ¢ hained
from the viscous dissiaption and shocks. This is justifiatiéfthe
cooling time is much shorter than the precession time. Whin t
assumption does not hold, the disc thickness will increasenall
be more able to resist breaking. We leave more advanced therm
dynamic treatment to future investigation.

4  SIMULATION RESULTS

Fig. 3 shows snapshots afte®5 binary orbits for the twenty sim-
ulations with initial tilt anglesy = 30°, 45°, 60°, 80°, and 90 ini-
tial binary eccentricitieg =0, 0.3, 0.6, and 0.9. As expected from
the analysis in Section 2, the disc precesses arbufut circular
and low-eccentricity binaries, while for very high eccézities the
precession is predominantly arouedri almost all cases, the disc
breaks into distinct rings, which interact with each othed,ade-
pending on the details of each case, result in either conteoy or
polar-alignment of the disc. In some cases the interactawéen
independently precessing such rings is very violent andipiis/e,
leading to ejection of gas. We now visit each possible outeam
detail.

4.1 Polar alignment

Nixon et al. (2011) showed that for a circular binary, whére Ibi-
nary induced precession is only aroumche disc eventually co- or
counter-aligns with the binary orbital plane dependingfmndisc
angular momentum and its initial misalignment angle. Owalyn
sis in Section 2 suggests that for an eccentric binary theegsgon
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Figure 4. Evolution of tilt profiles fore=0 (top) ande= 0.9 (bottom) discs
with initial tilt #=60° att=0, 100, 200, 300, 400, 500, and 600 (see legend)
in code units.

will be aroundh or &. In the latter case, dissipation results in polar-
alignment.

Fig. 4 shows the time evolution of the tilt profilé&R) for two
simulations with initiab = 60° but eithere= 0 (top) ore= 0.9 (bot-
tom). For the circular binary case, the inner part of the digen-
tually co-aligns with the binaryd(— 0°), as expected. In contrast,
for the highly eccentric binary we see the disc aligning inokap
configuration with respect to the binary angular momentuntore
(6 — 90°). The variations ir¥ as function of both time and radius
are caused by the precession aroend ~

This is more evident from Fig. 5, where we plot the orientatio
1 of the angular momentum in annuli of the disa at100 for four
simulations with diferent binary eccentricity but identical initial
disc orientation afl = 60°. We see that the discs in our simulations
closely follow the predicted precession paths especialtiie outer
parts of the disc. The inner parts of the disc, which have drigh
precession rates, dissipate faster and start to align iéth or éas
expected.

4.2 Violentring interactions

Our simulations starting from discs misaligned to both firendé
show rather violent gas dynamics. The radiallffefiential binary
torque tears the disc and causes the formation of separafe. ri
These rings are mutually misaligned and start to interatit @ach
other, presumably because they gained some eccentrioity ifi-
teractions with the binary. The ring interactions causeigacan-
cellation of angular momentum and hence a significant irseréa

the accretion rate. This is identical to the picture rembkig Nixon
et al. (2013) for circumbinary discs around circular bieari

However, for very high eccentricities we find disc tearing¢o
much more violent and lead to afiirent evolution from that for
circular and low-eccentricity binaries. There are two ogasfor
this difference: first the precession rate increases with eccéwtrici
second, the low-angular-momentum gas resulting from ther-in
actions and falling onto the binary will align to polar oriation
rather than a prograde or retrograde orientation as in tbe acba
near-circular binary. This allows this highly eccentrisvlangular-
momentum gas to come very close to the binary withoffesing
a lot of accretion. This non-circular gas in the central zioteracts
with the outer disc further increasing its orbital eccegityj throw-
ing more gas to the centre, and promoting more interactiois T
run away é&ect is shown in Fig. 6 and can also be seen in the bot-
tom left panel of Fig. 3. Eventually, this process sends areising
amount of gas plunging onto the binary on almost radial stthiat
can reach very close to the binary, avoiding significant etamn,
and receiving energy kicks from one of the binary components
a manner very similar to the slingshot mechanism. Some ef thi
gas will get ejected producing outward, almost radial sstre that
can act as a possible observational signature of a highlgneic
SMBH binary.

Fig. 6 shows density rendering (left panels) and partiabéspl
coloured by eccentricity magnitude (right panels) of 5 shays
for the simulation withe= 0.9 and initially § = 150" at timest =
0, 200, 400, 600, and 800. We can see that the amount of chaotic
gas resulting from the ring interactions keeps increasimring the
simulation. The outward streams of gas resulting from timgshot
mechanism are very clear.

4.3 Precession rate

In order to provide a quantitative comparison between tleelips
tions of our analytical model in Section 2 and the resultsioied
from the simulations, we plot in Fig. 7 the analytical presies rate

O derived from equation (7) for a disc with an initial misaligant

of # =60 around binaries with four ffierent eccentricities along
with the equivalent precession computed from the simutagiod
averaged over 10 binary orbits starting froe50. We find that the
simulations agree quite well with the predicted precessita at
radii > 2.5R/a. For discs around eccentric binaries, we observe 0s-
cillations on binary orbital timescales and a good agreemsemly
found when the precession rate is averaged over a few bimkitg.o

We note that only a modest agreement is to be expected simce ou
model ignores dissipativeffects, contributions from higher than
qguadrupole order, and orbital resonances.

4.4 Non-zero initial disc twist angle

So far, all the results shown here are for twist angle<", i.e. ini-
tially the disc line of nodes with the binary plane is thelirection:

Tis tilted toward=" In general, however, we should expect any disc
orientation, i.e. non-zero.

In Fig. 8 we present snapshots for simulations with binary ec
centricitye= 0.9, initial twist anglesp = 0°, 45°, and 90, and ini-
tial tilt anglesd = 30, 45, 60°, 8C°, and 90. For¢ =90, we only
observe azimuthal precession, akin to the circular binadyded
precession. This confirms our prediction since for that tasale
are always orthogonal, causing the first term in equatioto(van-
ish, and we are left with only azimuthal precession. §er45°,
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Figure 5. Projections of angular momenta of the radially binned disour simulations compared to the analytical precessionspstiown in Fig. 1. Solid
circles represent seven radial bins of the disc ranging fRoml (light gray) toR =8 (dark gray) at = 100 for simulations of dferent eccentricity (as
indicated) but the same initial tift= 60°. Obviously, the inner disc precesses faster, nicely fotiguthe theoretical precession paths. The innermost parts o

the discs around eccentric binaries start to align with takls polar orientation.

we find the same trend discussed earlier, i.e. experiendthgre
polar or azimuthal precession, or violent ring interactionFig. 9
we compare the precession paths of all thsa@lues for the case
of e=0.9 andd = 60° to the analytical contours. Similar to Fig. 5,
we see the simulations closely follow the analytical cord@apart
from the innermost parts where disc disc breaking and alitaie
dominant. This strongly suggests that our analysis abave $d0°
carries over to the general case.

5 IMPLICATIONS FOR THE FINAL-PARSEC PROBLEM

The solution suggested by Nixon et al. (2011) to the final gzars
problem requires the binary to accrete negative angular enem
tum from a retrograde disc, which gradually increases tharli
eccentricity until coalescence is achieved via energyel®ss grav-
itational radiation at pericentre. Nixon et al. (2011) skadwthat for
a circular binary counter-alignment of randomly orientedration
events can provide a continuous supply of the required gedde
discs. In particular, they showed that for cases whigre 2J4, all
accretion events with initial misalignmentdof 90° will result in

a retrograde disc, i.e. roughly half of randomly orientedratgon
events will counter-align with the binary as long as the birdom-
inates the angular momentum of the system.

Our results somewhat change this picture. As the binary ec-
centricity increases (due to retrograde accretion as iroiNet al.
or earlier stellar dynamical processes) disc counter- ardalign-
ment becomes ever less likely at the expense of polar alighme
The subsequent accretion of such polar discs merely ratetem-
gular momentum vector of the binary presumably hardigaing
the binary eccentricity. Thus simply retrograde gas atmmeap-
pears less viable a solution to the final parse problem.

There are however, still several ways gas can solve this prob
lem. First, a single massive retrograde accretion evenf mayin-
ciple, supply enough negative angular momentum to comgiete
binary merger. However, for a massive disc self-gravityonees
important, likely causing clumping and star formation, ere-
duces the amount of gas that can be accreted. Moreover, le sing
massive retrograde accretion event may be not Gicmntly likely
to explain the coalescence of all SMBH binaries (which forithw
each major merger of massive galaxies).

A more intriguing possibility involves more violent gas dy-
namics. We showed that, in many cases, the disc does notlsijnoot
align, instead the strong féierential precession (in particular for
misaligned discs around eccentric binaries) leads tortgani the

disc into separate mutually misaligned rings. In the inngc dlose

to the binary, the gravity of the binary cause these ringetmme
eccentric such that they inevitably interact with each o#ma with
the outer disc. These interactions cause further eccéntgiowth

on a dynamical time scale and eventually result in plungiag g
infall. Some of this infalling gas will be accreted by eith@nary
component. This will change the binary angular momentun, bu
may not reduce its absolute value, depending on the orientand

in contrast to the situation with pre-dominantly retrogradcretion
(Nixon et al. 2013).

If the infalling gas evades this fate, it will most likely get
ejected from the binary via a slingshot interaction. Thisuim re-
duces the binary separation in much the same way as theogjedti
penetrating stars, thus exactly as required to solve thedaraec
problem. Indeed, we find in our simulations which undergderio
gas dynamics not only significant gas accretion but alsoialshg
of the binary orbit.

Clearly, this violent interaction and accretion procesaes
rather complex and chaotic and certainly not well resolvedd
equately modelled in our simulations. Nonetheless, whasou-
ulations quite clearly show is that such violent gas-dyrmafpro-
cesses are inevitable if the gas is initially misalignechviite bi-
nary, in particular if the binary is eccentric. We leave a ende-
tailed investigation into the binary orbital evolution g chaotic
environment for a future study.

6 CONCLUSIONS

We have studied the interaction of an eccentric binary with a
gaseous disc initially misaligned with the binary angulamnen-
tum. Such a configuration should occur naturally from thellnf
and subsequent circularisation of gas into the inner fewgqmaof

a merger remnant still hosting a supermassive black holeB{3M
binary (e.g. Dunhill et al. 2014). The binary exerts a torqnehe
disc, resulting in disc precession and, due to viscouspiisin, in
eventual alignment of the disc with the binary. In case ofreutar
binary, this alignment is always co-planar, resultingeitim a pro-

or retro-gradely rotating circumbinary disc (Nixon et 8012).

We find that in the general case of an eccentric binary po-
lar alignment also occurs, when disc angular momentumgsiedi
with the binary peri- or apo-apse direction. The binary terqn the
disc can be quite accurately understood analytically assp@n
orbit-averaged binary potential to quadrupole order (ssi&n 2).
The fraction of initial disc orientations which give rise polar
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0=45°

Figure 8. Density rendering of the= 0.9 simulations at = 600 (~ 95 orbits of the binary) projected on thez plane with diferent values fop andé as

indicated in the figure.

alignment grows with binary eccentricity, reaching 0.5at0.4.
The precession paths (neglecting dissipation) are notleircbut
elongated towards the intermediate axis of the orbit-ayextabi-
nary.

The prospect of accretion onto the binary from a polar irtstea
of co-planar disc impedes the solution (proposed by Nixoal.et
2011) to the final-parsec problem for coalescing a supeliveass
black-hole binary. In that picture consecutive randomliemtied
accretion events lead to the formation of either pro- ororgnade
co-planar circum-binary discs. While accretion from thenfer is
largely suppressed (by orbital resonances as discusshkd intto-
duction), accretion from the latter reduces the binary &rgmo-
mentum and drives it to larger eccentricities. Howeveragie ec-
centricities polar disc orientations dominate, when aeamne(not
resolved in our simulations) has presumably littfeeet on the bi-
nary orbit (since the accreted angular momentum is perpeladi
to that of the binary). Thus, eccentricity growth via acioetis
likely to be significantly reduced well before gravitatibieave
emission can take over as driver for coalescence.

However, in many of our simulations, in particular for large
binary eccentricity and stronger initial misalignmeng tlisc does
not smoothly align, but is torn into separate mutually migad
rings. This process was already reported by Nixon et al.3p6dr
a circular binary and can be understood by the radialfiecéntial
binary torque, which overcomes the adhesiffec of gas viscos-
ity. The prominence of tearing with binary eccentricity aniial
disc misalignment can be understood as consequence ofrtfes la
binary torque in these cases.

However, some basic results appear to be robust. The insérmo
rings are sfficiently perturbed by the binary to acquire some or-
bital eccentricity. This in turn inevitably leads to intet@ns be-
tween the rings, resulting in partial cancellation of thamgular
momenta. This process is more prominent in more eccentric bi
naries, because the stronger binary torque results inrlangeual
misalignment between adjacent rings. The cancellatiomgtikar
momentum of the rings will increase their eccentricity, yiding

a positive feedback loop and hence a run-away process,ualisnt
resulting in gas plunging onto the central binary. This matenay

be accreted onto either hole, but when coming from a nearpol
orientation, this will hardly help with the final-parsec plem, as
explained above.

Alternatively, the infalling gas, which for a highly eccent
binary can come much closer to the binary whilst avoidingecc
tion, may get ejected from the binary via a gravitationahgsihot
interaction with one of its components. This also helps teesthe
final-parsec problem, though this time by reducing its serajer
axis. This is similar to the stellar-dynamical process airdting
the binary orbit via ejection of stars penetrating into theaby.
The diference is that the total amount of stars in the ‘loss cone
(whose orbit carries them into inner parsec) is limited aanot
be easily re-filled, while gas being dissipative and callisil by
nature may provide a better agent. This is particularly et

The subsequent evolution of these gas rings can be ratherthe parsec scale where the SMBH dominates the dynamics and by

chaotic and is not quite adequately modelled in our simumati

its gravitational torques shepherds some gas into the wss. ¢



Figure 6. Density rendering (left panels) and particle plots coldung ec-
centricity magnitude (right panels) of 5 snapshots oféke0.9 6 = 150°
run at times (from top to bottont)= 0, 200, 400, 600, and 800.
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Figure 7. Comparison between the disc precession rate measuredteom t
simulation (solid) with initiald = 60° ande=0, 0.3, 0.6, and 0.9 and our an-
alytical model (dotted) of equation (7). For each case weth®dominant
component of, i.e.®y, for e=0, 0.3 andd, for e=0.6, 0.9.
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APPENDIX A: BINARY-DISC QUADRUPOLE
INTERACTION

Here, we give the details of the analysis leading to the tesal
ported in Section 2. Our results, obtained via Newtoniaradyigs,
agree with the more general results of Naoz et al. (20133iodd
via Hamiltonian perturbation theory, for a circular ringdaignor-
ing octopole terms.

The three unit vectorb, & andk = hx & are conserved under
the binary motion and are mutually orthogonal, such that

ﬁiﬁj+eé]+f(i&=5ij. (Al)
The binary components are at positions

9 -t
X1= l+q , Xo= 1+qR (A2)
with
R=a(cosy—e)é+aV1l-esingk. (A3)

Here,  is the eccentric anomaly, which is related to the mean

anomaly¢ via
{=n—esiny, (A4)

such that d = (1 - ecosy)dn and an orbit average becomés =
2m1 foz"-(l— ecosy)dn. When orbit-averagingR;, the cross term
betweere'and k averages to zero and
(RR) = 1a?|(1+4€?)88) + (1- &)k |

= :—2L8.2 [SeZé.é, +(1—e2)(6i,- — ﬁi F]J)] s

(A5)
(A6)

where the second form follows from eliminatikgy; in favour of
hih; with the help of the identity (A1). From this result, we can
work out the orbit-averaged trace-free specific quadrupaeent
of the binary as

Qj = M_l[m1<X1i Xgj — £ X363 ) + Mp(Xoi Xp) — X505 )] (A7)
- ﬁ[mm—%mwij] (A8)
aq o o
= @rgr (=)o + 588 -3 (1-€)hh]. (A9)
We will also need the orbit average
(RRR) = 1a’QeVi-¢&(8ka+kga—268k). (A10)

with Q = 4/GM/a3 the binary orbital frequency.



Al Ring evolution

A ring particle at positionr experiences the orbit-averaged
quadrupole potential of the binary

(@p)(r)=- (A11)
Averaging over the ring, we obtain
(riry) = 3r¥(s; —1ify), (A12)

such that the trace-free specific quadrupole moment of tigeisi
qu :rz[%5|J—%ﬂﬂ] (A13)

The quadrupole interaction energy between binary and awey-
aged over the the binary orbit and the ring, is then

(B =~ r(0) (A14)
with interaction tenso® = q - Q, which has components

_ 2 1 @) seas - 11— @) A15

ij—6(1+q)2 (5— )ij+§ 8§ -3(1-e)hh - (A15)

(3 -3l - Ze(l-9)ig + 3(1-&)(1- hyiiky |-

Taking its trace in equation (A14) we obtain equation (5) ©lbit-
averaged torque on the ring also involves the interactiosde Us-
ing index notation, we have

dd, 3GM

]81, = 5 Euke]k

Note that only the anti-symmetric part @ contributes to the
torque. Inserting equation (A15), we find that we can writis th
asl=0xI With the vector

H)].

3wq
wherew = 4/G(M +m)/r3 is the ring angular frequency.

ii = —&ijk(Ij (A16)

[5e2(| de-(1-) (- (A17)

T A(Teqrr?

A2 Binary evolution

The torque of the binary from the ring can be worked out analo-

gously to that of the ring from the binary. The quadrupolesptél

due to the ring at the binary is
m

F X-q-X.

Adding the torque from each binary component and averagiag o

the orbit, we find

O, = (A18)

- 3Gm
hi:r—5

Eijk ekj- (Alg)
In particular, the total angular momentuid,h + ml, is conserved
at quadrupole order. Together with the precession of thg this
implies that the evolution ofi is not simply a precession and that
h=1h| is in general not conserved. Instead, we find
. 15¢2h P
L d-a3 k.

OM 4y1_¢
Thus,hremains unchanged only for a circular bina"ry: Ofore=0
or if I is perpendicular to eitheror k. Otherwiseh oscillates, since
|- k oscillates around zero under the ring precession.

The change of the eccentricity vector is

_ 2R(R-R)-R(R-R)-R(R-R)
- GM

(A20)

(A21)
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with
o0 _ oo,

Xy 0%

3Gm

==—%-Rq. (A22)

Inserting (A22) into (A21) and orbit averaging (using equa-
tion AlO), we find

e= SWe 1-e5 [k e-ek-q-e-1k-q] (A23)
= 3—e -e[(3-d- e)z)k (-9 e+ -] (A24)
- Z%ne { y2-50-82] k+
+(1-k(d-hyh+50-8)(- k)e} (A25)
From this, we obtain
_15e'm ied ek (A26)

“40M

in agreement with equation A34 of Naoz et al. (2013), but alito
equation (A20) and (4 €?)h=—heg (from equation 4).

A3 Ring precession

If the mass of the ring is negligible compared to that of theaby,
we can approximate the binary orientation as fixed and thekec
h, & andk as constants. In this case, the evolution of the ring orien-
tation allows some further analytical treatment.

Since® is parallel toé(Ebr)/BT, precession is along lines of
constantEy,). This gives the equation

C=(1-€)(-h?-5¢(1-e)? (A27)

with constantC for the precession path€.= 0 corresponds to the
contour of(Ey,) through the unstable orientatiohs: +k. Hence,
this contour separates the regions of polar and azimutleslegr
sion. The r.h.s. of equation (A27) can be written Bsug) (1 - uy)
with

U, = V1—eh + Vbe,

Thus, the separatrices are great circles with polgsThe fraction
of ring orientations undergoing polar precession is
, 1-6¢

1+4e?’

(A28)

1 cos(0;-0p) = 1 cos (A29)
T T
At small e, this grows linearly ¢ V20e/x) with eccentricity. Az-
imuthal and polar precession are equally likelydior{d, = 0, which
occurs ae= 672~ 0.408.

If the constanC in equation (A27) is positive (negative), we
have azimuthal (polar) precession. This equatioﬁ foas the para-
metric solutions for the precession paths (see also Fig. 1)

T.e= 71_62_(:00 Tk= 71_ez_csin
=N Trae 0% K= Tmg s

(A30)
for 0< C < 1-¢€? (azimuthal precession), and
«  [se2+C - \/ﬁ .
T-h= e cosl/, |-k= e sing (A31)

for —5¢% < C < 0 (polar precession). In either case, the third com-
ponent ofi follows from the normalisation conditiqﬁ =1.

The instantaneous precession ndf¢dt| = |G)><T| varies along
the precession paths. It is minimal at the largest valye &[along
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the precession path and drops to zeroiferk (the unstable ori-
entations). The instantaneous precession rate becomeshatat
|- k=0 (at zero twistp), when

3wq &
4(1+q)? r?
Thus, the maximum precession rate is much larger for higbly e

centric than for circular binaries. The largest variatidrihe pre-
cession rate occurs for precession paths close to the sepesa

|dl /Ct|max = (1+4€?) sinfcosh. (A32)



