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ABSTRACT

We investigate the evolution of low mass (My/M}, = 0.005) misaligned gaseous discs around
eccentric supermassive black hole (SMBH) binaries. These are expected to form from ran-
domly oriented accretion events on to a SMBH binary formed in a galaxy merger. When
expanding the interaction terms between the binary and a circular ring to quadrupole order
and averaging over the binary orbit, we expect four non-precessing disc orientations: aligned
or counter-aligned with the binary, or polar orbits around the binary eccentricity vector with
either sense of rotation. All other orientations precess around either of these, with the polar
precession dominating for high eccentricity. These expectations are borne out by smoothed
particle hydrodynamics simulations of initially misaligned viscous circumbinary discs, result-
ing in the formation of polar rings around highly eccentric binaries in contrast to the coplanar
discs around circular binaries. Moreover, we observe disc tearing and violent interactions
between differentially precessing rings in the disc significantly disrupting the disc structure
and causing gas to fall on to the binary with little angular momentum. While accretion from
a polar disc may not promote SMBH binary coalescence (solving the ‘final-parsec problem’),
ejection of this infalling low-angular momentum material via gravitational slingshot is a pos-
sible mechanism to reduce the binary separation. Moreover, this process acts on dynamical

rather than viscous time-scales, and so is much faster.
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1 INTRODUCTION

Itis widely accepted that most massive galaxies host a supermassive
black hole (SMBH) at their centre. Galaxy mergers, expected from
the hierarchical structure growth scenario based on the A cold dark
matter (ACDM) cosmological model, then result in the formation of
SMBH binaries (Begelman, Blandford & Rees 1980). Both SMBHs
of such a binary sink towards the galactic centre due to dynamical
friction and form a hard binary (Merritt 2001). However, most such
SMBHs appear to be single rather than binary SMBHs, implying
that SMBH binaries quickly coalesce and merge. One process driv-
ing further binary shrinking is slingshot interactions with stars in
the ‘loss cone’: those on orbits intersecting with the binary (Saslaw,
Valtonen & Aarseth 1974). Since the slingshot mechanism ejects
the stars, the ‘loss cone’ needs to be replenished in a relatively short
time-scale in order to shrink the binary all the way down to sepa-
rations <1072 pc where gravitational waves are expected to drive
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coalescence. For spherical collisionally relaxed stellar systems, it
is thought that the slingshot mechanism stalls well before reaching
this separation, resulting in what is known as ‘the final-parsec prob-
lem’ (Milosavljevi¢ & Merritt 2003; Berczik, Merritt & Spurzem
2005).

Potential stellar dynamical solutions have been sought for gas-
poor systems. Berczik et al. (2006) studied SMBH binaries evolu-
tion in realistic triaxial rotating galaxies and found that the galax-
ies supply stars on centrophilic orbits refilling the loss cone at a
high enough rate to prevent the SMBH binary from stalling and
that complete coalescence is achieved in less than 10 Gyr. Khan
et al. (2013) found that for axisymmetric galaxies with axis ratio
c¢/a < 0.8 the hardening rate is 25 times faster than for spherical
galaxies. Self-consistent N-body simulations of merging galaxies
containing SMBH found binary hardening rates much higher than
idealized spherical models and sufficient to shrink the binary to the
gravitational wave coalescence regime (Khan, Just & Merritt 2011;
Gualandris & Merritt 2012).

Interactions with circumbinary gas discs may change the evolu-
tion of the SMBH binary. The mass of such a disc is uncertain and
depends on its formation. A galaxy-rich merger can channel large
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amounts of gas towards the centre. If this gas can cool efficiently
and avoid fragmentation and substantial star formation, a disc with
mass comparable to that of the binary may form.

For a prograde disc, spiral density waves in the disc driven by
the outer Lindblad resonance with the binary transport angular mo-
mentum away from the binary (Goldreich & Tremaine 1979). This
mechanism is efficient if the disc reaches very close to the binary,
so that it occupies the resonance, and is sufficiently massive for the
angular momentum absorption not to result in an expansion of the
inner disc edge (Escala et al. 2005; MacFadyen & Milosavljevié
2008). For a disc with My = 0.2 My, Cuadra et al. (2009) found
that binary orbital decay can stall because the disc expands due to
absorption of angular momentum from the binary, severely slowing
further angular momentum exchange (see also Lodato et al. 2009).

Apart from the classical density-wave mechanism, the infall of
gas from the inner edge of the disc into the cavity can be important
(Roedig et al. 2012; Roedig & Sesana 2014). The binary may either
eject such infalling gas via a gravitational slingshot whereby losing
angular momentum and energy, or capture it on to an accretion
disc around either component, which adds to the binary angular
momentum. The binary evolution is determined by the competition
between these two effects and it remains unclear, which one wins
in the long term.!

For a retrograde coplanar disc, the lack of orbital resonances
allows the disc to extend to small radii. This enables the binary to
accrete or capture material with negative angular momentum (Nixon
et al. 2011a). If My ~ M,, this may suffice to achieve coalescence
(Roedig & Sesana 2014).

In reality, discs with mass in excess of their aspect ratio times the
binary mass are gravitationally unstable and hence, due to the short
cooling time in these discs, fragment and form stars much faster than
binary coalescence (Gammie 2001; Goodman 2003; Levin 2007).
The numerical treatment of fragmentation, star formation, and stel-
lar feedback is extremely challenging. In all of the aforementioned
simulations with such massive discs, these processes have simply
been suppressed (by assuming slow cooling which prevents star
formation), overestimating the efficiency of disc-driven binary co-
alescence. Although star formation will rob the disc of a significant
amount of gas, the newly formed stars may still contribute to binary
orbital decay (e.g. Sesana, Haardt & Madau 2007, 2008), though
less so than the gas owing to the lack of an efficient dissipation
mechanism to reduce their pericentres.

A more likely scenario than binary coalescence driven by the
interaction with a single massive disc is the repeated interaction
with low-mass discs resulting from the infall and tidal disruption of
molecular clouds on to the binary. Such discs are expected to have
masses 10°-° Mg typical of molecular clouds, small compared to
the typical mass 10%° M of a SMBH binary. Nixon et al. (2011a)
studied retrograde discs of this type and found that they are very ef-
ficient in reducing the binary angular momentum through accretion
of gas with negative angular momentum on to the secondary black
hole. This enhanced accretion on to the secondary black hole in-
creases the binary’s eccentricity, decreasing the pericentre distance

U This effect was present in the simulations of Cuadra et al. (2009) but did
not effectuate significant binary evolution. On the other hand, based on an
extrapolation to 50 times longer than actually modelled, Roedig & Sesana
(2014) claim efficient binary shrinking. However, since the infall of gas
depends on the disc structure at its inner edge, this result is very sensitive
to the thermodynamical treatment. Roedig et al. (2012), for example, found
that for isothermal instead of adiabatic gas with an imposed standard B
cooling prescription, the binary orbital decay can be significantly reduced.
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in the process, and coalescence is achieved when a mass comparable
to the secondary black hole has been accreted.

If accretion events in galactic nuclei are chaotic and randomly
oriented (King & Pringle 2006, 2007; King, Pringle & Hofmann
2008), we expect the formation of misaligned circumbinary discs
around SMBH binaries. In the case of a circular SMBH binary, the
interaction between the misaligned disc and the binary is similar
to Lense—Thirring precession on an accretion disc around a spin-
ning black hole (Bardeen & Petterson 1975; Pringle 1992; Scheuer
& Feiler 1996). King et al. (2005) showed that the induced differ-
ential precession will cause a misaligned disc to counter-align with
the black hole spin provided:

—|Jdl
21 Jnl’

where J4 and Jy are the disc and black hole angular momenta,
respectively, and 6 is the angle between them. The disc will co-
align with the black hole spin if this relation is not satisfied. Nixon,
King & Pringle (2011b) showed that the same analysis applies to
the case of a misaligned disc around a binary (though the precession
rate is slightly different). Thus, if counter-alignment is stable (Nixon
2012), this mechanism can provide a solution to the final-parsec
problem by supplying retrograde discs to achieve coalescence.

Recently, Nixon, King & Price (2013) performed 3D hydrody-
namical simulations of circumbinary discs around a circular binary
for various tilt angles 6. In addition to co- and counter-alignment,
they found that in many cases the discs is torn into distinct rings
which precess almost independently (Nixon et al. 2012). The pre-
cessing rings, which have partially opposed angular momentum,
may interact causing partial cancellation of their angular momenta
and thus gas infall close to the binary. This disc tearing signifi-
cantly increases the accretion rate and may play an important role
in promoting the binary final coalescence.

Those studies considered the case of a circular binary interacting
with a circumbinary disc, when disc precession is only around the
pole of the binary plane. In this study, we consider the more general
situation of an eccentric binary. For a SMBH binary formed via a
galaxy merger, we expect high eccentricities in many cases (Aarseth
2003; Khan et al. 2011; Wang et al. 2014). Moreover, retrograde
accretion on to a circular binary naturally results in eccentricity
growth as discussed earlier. One important effect of binary eccen-
tricity is to make the time averaged binary potential triaxial rather
than axisymmetric as for a circular binary. Previous studies have
shown that misaligned discs in triaxial galaxies can precess around
both the major and the minor axes (Steiman-Cameron & Durisen
1984; Thomas, Vine & Pearce 1994).

The paper is organized as follows. In Section 2 we present ana-
Iytic results for a simple orbit-averaged model for the binary—disc
interaction up to quadrupole order. Section 3 describes the set-up of
our 3D hydrodynamical simulations, results of which are presented
in Section 4 and discussed in Section 5. Finally, we summarize and
conclude in Section 6.

cosfh <

ey

2 BINARY-DISC QUADRUPOLE
INTERACTION

The dynamics of a circumbinary gaseous ring orbiting an eccen-
tric binary is not analytically treatable, even without considering
any dissipation. However, useful insight can be obtained by (i)
truncating the binary gravitational potential at quadrupole order,
(ii) assuming that the ring is circular, (iii) time-averaging over the
binary orbit, and (iv) neglecting dissipation. Assumptions (i) and
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(ii) are valid as long as the ring is sufficiently distant from the binary,
while assumption (iii) requires that orbital resonances between ring
and binary are not important.

The monopole of the gravitational interaction results in Keplerian
motion of the ring around the binary centre of mass, while the
quadrupole describes the lowest order deviation of the binary from
a central point mass.

Recently, Naoz et al. (2013) have used Hamiltonian perturba-
tion theory to obtain the equations for the secular evolution of a
hierarchical triple up to octopole order. For a circular outer binary,
their results are equivalent to the situation of a circular circumbi-
nary ring. We now summarize the relevant relations (obtained in
Appendix A with Newtonian dynamics, but otherwise equivalent to
those of Naoz et al.) in terms of vectors rather than orbital elements
to describe the system.

The binary is parametrized by its mass ratio g = m,/m; < 1, total
mass M = m; + m,, semimajor axis a, specific angular momentum
h, and eccentricity vector e. Let R = x| — x, the instantaneous
binary separation vector, then

h—@x X X +@x xX—LRxR )
= Lt ¥ 2_(1+q)2
and
Rx(RxR)
=—" " "°_R. 3)
GM

The vector e is conserved for the binary orbit and points from the
centre of mass to periapse (hence is always orthogonal to k). Its
magnitude is the orbital eccentricity and is related to that of & by

W (1 +¢)* = ¢>GMa(l — ). 4)

2.1 Ring evolution

The circular circumbinary ring is parametrized by its mass m, radius
r, and pole I. The latter is the unit vector in direction of the ring’s spe-
cific angular momentum I, which has amplitude I = /G(M+m)r.
The ring radius must satisfy r > a(1 + ¢)/(1 + g) for the quadrupole
approximation to be valid (and in order to avoid collision with a
binary component). Note that the tilt angle 6 of the ring with respect
to the binary satisfies cos 6 = i-h.

The quadrupole interaction energy between binary and ring, av-
eraged over both the binary orbit and the ring, is

maw?a’q

m[6e2 —1—=15¢*1 - &)43(1 — A - b)*,

(Ebr> = -

&)

withw = y/ G(M+m)/r3 the orbital frequency of the ring, in agree-
ment with equation (22) of Naoz et al. (2013). The time-averaged
binary quadrupole torques the ring according to

i=exl, (6)
with the vector
3wq
m 2[Se d-e)e — (1 — A -h)h). @)

From equation (6) we have / 1=0,ie.l=0=F and the ring
is merely precessing (this is no longer true at octopole and higher
order, when i # 0; see Naoz et al. 2013).

Since wmr?® = 3(E,)/dl, equation (6) implies
dl a(Ebr)
dt ol

=0. €]
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Thus (in the assumed approximation), no energy is exchanged be-
tween binary and a single ring, but only angular momentum (if
the binary interacts with several rings, the individual interaction
energies with each ring are no longer conserved).

2.2 Binary evolution

The torque of the binary from the ring can be worked out analo-
gously to that of the ring from the binary. After averaging over the
binary orbit, we obtain

In particular, the total angular momentum, Mk + ml, is conserved
at quadrupole order. For the case m <« M considered here, the orien-
tation h only varies slightly even if the disc orientation i undergoes
large changes.

For a circular binary © is parallel to / such that -k = 0, i.e.
h = |h| is conserved and the binary is merely precessing (with an
amplitude that is smaller than that of the disc by a factor m/M). This
fact together with conservation of total angular momentum was the
basis of the analysis by Nixon et al. (2011b).

For an eccentric binary, the evolution of A is not simply a preces-
sion and £ not conserved. Instead, we find
. 150 m e*h . . . 4
h= 49Mm(l-e)(l~k), (10)
with Q@ = /G M /a? the binary orbital frequency Thus, & remains
unchanged only 1f e = 0 (circular bmary) orif I is perpendicular
to either & or k, ie. if either & or k are in the ring plane.
Otherwise, h 0sc111ates, since I - k oscillates around zero under the
ring precession.

The change of the eccentricity vector is

%%eﬁ{m—(! Ry - 5071k

+d-kyd-h+50-)d - ke, an
and the corresponding change in eccentricity

ISwm
T ham’

in agreement with equation (A34) of Naoz et al. (2013), but also with
equation (10) in conjunction with equation (4). In addition to the
precession of the orbital plane and the oscillation of the eccentricity
(both already described by equation 10), the binary also undergoes
apsidal precession with rate

k= TRy — 5o (13)
VA ' o

1—e2l

12)

which is prograde for near-planar disc orientations (when |i . il| ~
1), but retrograde for near-polar discs (when |/ - &| ~ 1).

2.3 Ring precession

The rates of change of the directions of the binary and ring angular
momenta satisfy
di
dr|’

dh
dr

ml

Mh 14
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Figure 1. Precession paths for the direction 1 of the angular momentum of a dissipationless circular ring of negligible mass orbiting a binary with eccentricity
e as indicated. The binary orbits counterclockwise in the plane perpendicular to its specific angular momentum A with periapse in the direction é. For a circular
binary (e = 0, left), 1 always precesses around £ in a retrograde sense. For eccentric binaries, prograde polar precession (blue) around e, the long axis of
the time-averaged binary potential, is also possible. The regions of polar and azimuthal precession are separated by two great circles (black). The four ring
orientations I = +h and I = =2 are stable (non-precessing), while the orientations I = +k are unstable. Dissipation would damp the precession and eventually
align the ring with one of the four stable orientations. In the case of a massive ring, the binary orbit evolves too: the vectors k and e oscillate and precess, and

e and k rotate around h.

and a similar relation holds for |dé/dz|. Thus, as long as m < M,
the binary orientation changes only very little and/or much more
slowly than that of the ring (except for extreme binary eccentricities
when Mh « +/1 — €2 can be small). We therefore consider in this
subsection the limit m/M — 0 when the binary orientation and
eccentricity are constant.

Then, equation (8) implies that the ring precesses along curves of
constant (E},). Isolated minima and maxima of (Ey,) denote stable,
non-precessing ring orientations. In the presence of dissipation (due
to viscosity in the disc), these orientations are attractors, i.e. the
dissipative damping of the precession eventually aligns the pole i
of the ring with the extrema of (E,) (Steiman-Cameron & Durisen
1984). For any e < 1, the orientations 1 = 4h are isolated minima
of (Ey:) and correspond to coplanar ring orientations either co- or
counter-rotating with the binary.

For a circular binary (e = 0), these are the only stable orientations,
but all polar orbits (& = 90°) maximize (Ey,). © is parallel to /2 and
ring precession is circular: i describes a circle around either of
the stable orientations, see also the left-hand plot in Fig. 1. The
precession rate is lower than the orbital frequency by the factor
3ga*cos 0 /4r*(1 + ¢)*. This is the situation previously studied by
Nixon et al. (2011b). We now turn to the more general case of an
eccentric binary.

For e > 0, the orientations | = +é are maxima of (Ey;), corre-
sponding to polar rings (with opposite senses of rotation) around é.
Fore < 1,1 = +k are saddle points and correspond to polar rings
around

Y
1
>
X
>

(15)

the intermediate axis of the time-averaged binary potential. These
latter ring orientations are unstable, i.e. small deviations will re-
sult in precession around any of the four stable orientations. For
0 < e < 1, ring precession is never circular: i describes a curve
elongated towards the unstable orientations, rather than a circle.
Azimuthal and polar precessions are retrograde and prograde, re-
spectively. See Fig. 1 for a visualization of the precession paths.
The regions of polar and azimuthal precession are separated by
the contours of (Ey,) passing through the saddle points. These sep-

MNRAS 449, 65-76 (2015)

40 60 80 100

% polar precession

20

T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
eccentricity

Figure 2. Percentage of ring orientations undergoing polar precession as a
function of binary eccentricity.

aratrices are circular and shown as black in Fig. 1. The fraction of
ring orientations undergoing polar precession are
1 1-6¢
— cos .

1+ 4e?

16)

At small e, this grows linearly (ox+/20e/7) with eccentricity (see
Fig. 2). Azimuthal and polar precession are equally likely for
e=6"12~0.408.

3 SIMULATION SET-UP

We perform a set of 3D smoothed particle hydrodynamics (SPH;
Gingold & Monaghan 1977; Lucy 1977) simulations of geometri-
cally thin accretion discs with different initial misalignment around
an eccentric binary. We use a range of different binary eccentrici-
ties e = 0, 0.3, 0.6, and 0.9. The disc set-up is very similar to that
used by Nixon et al. (2013): the disc is initially flat and extends
from an inner radius of 2a to an outer radius of 8a with an inner
thickness H/R = 0.01. We use a disc viscosity coefficient (Shakura
& Sunyaev 1973) o = 0.1 which we set up using an appropriate
SPH artificial viscosity coefficient o ay corresponding to our resolu-
tion (Lodato & Price 2010). All simulations start with four million
SPH particles, while the binary is modelled using two equal mass
sink particles with accretion radius of 0.05a. The disc initial surface
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0=60° 0=2380° 9=190°

Figure 3. Density rendering of the simulations after t = 600 (*95 binary orbits) for different binary eccentricities and initial misalignment angles as indicated.
The projections are along the intermediate binary axis k£ with the angular momentum vector & pointing upwards and the eccentricity vector e to the right.

density follows the profile ¥ oc R=*/?, and we use a locally isother-

mal equation of state with sound speed ¢, o R~3/#. These choices
ensure a uniform vertical resolution (and hence uniform physical
viscosity; see Lodato & Pringle 2007). We assume a disc mass of
My/My, = 0.005 < H/R, which ensures that disc self-gravity is not
important (we do not include gas self-gravity in our simulations,
but we do self-consistently include the backreaction from the gas
on the binary). The simulations were performed using our own
code (Dehnen & Aly 2012), which implements an SPH scheme
very similar to that used by Nixon et al. (2013), and we verified that
our results for e = 0 agree with theirs. The disc has initial angular
momentum direction

i:sin@cos¢é—|—sin@sinzf)ic—}—cos@iz, 17)

where ¢ is the twist angle of the disc. We ran a total of 118 simu-
lations for e = 0, 0.3, 0.6, and 0.9; 9 = 0°, 10°, 30°, 45°, 60°, 80°,
90°, 100°, 120°, 135°, 150°, 170°, and 180°; ¢ = 0°, —45°, and
—90°. In the next section ¢ will be taken to be zero whenever it is
not specified, we discuss the effects of varying ¢ separately.

We point out that the choice of a locally isothermal equation
of state implies that the disc instantly radiates away all the heat

gained from the viscous dissipation and shocks. This is justified if
the cooling time is much shorter than the precession time. When
this assumption does not hold, the disc thickness will increase and
will be more able to resist breaking. We leave more advanced ther-
modynamic treatment to future investigation.

4 SIMULATION RESULTS

Fig. 3 shows snapshots after ~95 binary orbits for the 20 simula-
tions with initial tilt angles 8 = 30°, 45°, 60°, 80°, and 90° initial
binary eccentricities e = 0, 0.3, 0.6, and 0.9. As expected from
the analysis in Section 2, the disc precesses around h for circular
and low-eccentricity binaries, while for very high eccentricities the
precession is predominantly around é. In almost all cases, the disc
breaks into distinct rings, which interact with each other and, de-
pending on the details of each case, result in either co-, counter-, or
polar alignment of the disc. In some cases the interaction between
independently precessing such rings is very violent and disruptive,
leading to ejection of gas. We now visit each possible outcome in
detail.

MNRAS 449, 65-76 (2015)
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Figure 4. Evolution of tilt profiles for e = 0 (top) and 0.9 (bottom) discs
with initial tilt & = 60° at t+ = 0, 100, 200, 300, 400, 500, and 600 (see
legend) in code units.

4.1 Polar alignment

Nixon et al. (2011b) showed that for a circular binary, where the
binary induced precession is only around h, the disc eventually co-
or counter-aligns with the binary orbital plane depending on the disc
angular momentum and its initial misalignment angle. Our analysis
in Section 2 suggests that for an eccentric binary the precession
will be around /2 or &. In the latter case, dissipation results in polar
alignment.

Fig. 4 shows the time evolution of the tilt profiles 8(R) for two
simulations with initial = 60° but either e = 0 (top) or 0.9 (bottom).
For the circular binary case, the inner part of the disc eventually

co-aligns with the binary (6 — 0°), as expected. In contrast, for
the highly eccentric binary we see the disc aligning in a polar
configuration with respect to the binary angular momentum vector
(@ — 90°). The variations in 6 as function of both time and radius
are caused by the precession around e.

This is more evident from Fig. 5, where we plot the orientation i
of the angular momentum in annuli of the disc at ¢ = 100 for four
simulations with different binary eccentricity but identical initial
disc orientation at = 60°. We see that the discs in our simulations
closely follow the predicted precession paths especially in the outer
parts of the disc. The inner parts of the disc, which have higher
precession rates, dissipate faster and start to align with the horéas
expected.

4.2 Violent ring interactions

Our simulations starting from discs misaligned to both the & and
é show rather violent gas dynamics. The radially differential bi-
nary torque tears the disc and causes the formation of separate
rings. These rings are mutually misaligned and start to interact with
each other, presumably because they gained some eccentricity from
interactions with the binary. The ring interactions cause partial can-
cellation of angular momentum and hence a significant increase in
the accretion rate. This is identical to the picture reported by Nixon
et al. (2013) for circumbinary discs around circular binaries.
However, for very high eccentricities we find disc tearing to be
much more violent and lead to a different evolution from that for
circular and low-eccentricity binaries. There are two reasons for this
difference: first the precession rate increases with eccentricity; sec-
ond, the low-angular-momentum gas resulting from the interactions
and falling on to the binary will align to polar orientation rather than
a prograde or retrograde orientation as in the case of a near-circular
binary. This allows this highly eccentric low-angular-momentum
gas to come very close to the binary without suffering a lot of ac-
cretion. This non-circular gas in the central zone interacts with the
outer disc further increasing its orbital eccentricity, throwing more
gas to the centre, and promoting more interaction. This run away
effect is shown in Fig. 6 and can also be seen in the bottom left-
hand panel of Fig. 3. Eventually, this process sends an increasing
amount of gas plunging on to the binary on almost radial orbits that
can reach very close to the binary, avoiding significant accretion,
and receiving energy kicks from one of the binary components in
a manner very similar to the slingshot mechanism. Some of this
gas will get ejected producing outward, almost radial, streams that

Figure 5. Projections of angular momenta of the radially binned disc in our simulations compared to the analytical precession paths shown in Fig. 1. Solid
circles represent seven radial bins of the disc ranging from R = 1 (light grey) to 8 (dark grey) at = 100 for simulations of different eccentricity (as indicated)
but the same initial tilt & = 60°. Obviously, the inner disc precesses faster, nicely following the theoretical precession paths. The innermost parts of the discs
around eccentric binaries start to align with the stable polar orientation.
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Figure 6. Density rendering (left-hand panels) and particle plots coloured
by eccentricity magnitude (right-hand panels) of five snapshots of the
e =09, 0 = 150° run at times (from top to bottom) ¢t = 0, 200, 400,
600, and 800.
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Figure 7. Comparison between the disc precession rate measured from the
simulation (solid) with initial & = 60° and e = 0, 0.3, 0.6, and 0.9 and our
analytical model (dotted) of equation (7). For each case we plot the dominant
component of @, i.e. ®, fore =0, 0.3 and O, for e = 0.6, 0.9.

can act as a possible observational signature of a highly eccentric
SMBH binary.

Fig. 6 shows density rendering (left-hand panels) and particle
plots coloured by eccentricity magnitude (right-hand panels) of five
snapshots for the simulation with e = 0.9 and initially 6 = 150° at
times ¢ = 0, 200, 400, 600, and 800. We can see that the amount
of chaotic gas resulting from the ring interactions keeps increasing
during the simulation. The outward streams of gas resulting from
the slingshot mechanism are very clear.

4.3 Precession rate

In order to provide a quantitative comparison between the predic-
tions of our analytical model in Section 2 and the results obtained
from the simulations, we plot in Fig. 7 the analytical precession rate
® derived from equation (7) for a disc with an initial misalignment
of & = 60° around binaries with four different eccentricities along
with the equivalent precession computed from the simulation and
averaged over 10 binary orbits starting from # = 50. We find that the
simulations agree quite well with the predicted precession rate at
radii 22.5R/a. For discs around eccentric binaries, we observe os-
cillations on binary orbital time-scales and a good agreement is only
found when the precession rate is averaged over a few binary orbits.
We note that only a modest agreement is to be expected since our
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6=30° 0=45°

9=0°

@=45°

0=60° 6=280° 6=90°

B

Figure 8. Density rendering of the e = 0.9 simulations at t = 600 (*95 orbits of the binary) projected on the x—z plane with different values for ¢ and 6 as

indicated in the figure.

model ignores dissipative effects, contributions from higher than
quadrupole order, and orbital resonances.

4.4 Non-zero initial disc twist angle

So far, all the results shown here are for twist angles ¢ = 0°, i.e.
initially the disc line of nodes with the binary plane is the k direction:
1 is tilted towards &. In general, however, we should expect any disc
orientation, i.e. non-zero ¢.

In Fig. 8 we present snapshots for simulations with binary eccen-
tricity e = 0.9, initial twist angles ¢ = 0°, 45°, and 90°, and initial
tilt angles 6 = 30°, 45°, 60°, 80°, and 90°. For ¢ = 90°, we only
observe azimuthal precession, akin to the circular binary-induced
precession. This confirms our prediction since for that case fandeé
are always orthogonal, causing the first term in equation (7) to van-
ish, and we are left with only azimuthal precession. For ¢ = 45°,
we find the same trend discussed earlier, i.e. experiencing either
polar or azimuthal precession, or violent ring interaction. In Fig. 9
we compare the precession paths of all three ¢ values for the case
of e = 0.9 and 6 = 60° to the analytical contours. Similar to Fig. 5,
we see the simulations closely follow the analytical contours apart
from the innermost parts where disc breaking and alignment are
dominant. This strongly suggests that our analysis above for ¢ = 0°
carries over to the general case.

5 IMPLICATIONS FOR THE FINAL-PARSEC
PROBLEM

The solution suggested by Nixon et al. (2011a) to the final-parsec
problem requires the binary to accrete negative angular momen-
tum from a retrograde disc, which gradually increases the binary
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Figure 9. Precession paths for e = 0.9 and 6 = 60° at r = 100 with three
different ¢ values: ¢ = 0° (circles), 45° (rectangles), and 90° (triangles).

eccentricity until coalescence is achieved via energy losses to gravi-
tational radiation at pericentre. Nixon et al. (2011b) showed that for
a circular binary counter-alignment of randomly oriented accretion
events can provide a continuous supply of the required retrograde
discs. In particular, they showed that for cases where J, > 2J4, all
accretion events with initial misalignment of & > 90° will result
in a retrograde disc, i.e. roughly half of randomly oriented accre-
tion events will counter-align with the binary as long as the binary
dominates the angular momentum of the system.

Our results somewhat change this picture. As the binary eccen-
tricity increases (due to retrograde accretion as in Nixon et al. or
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earlier stellar dynamical processes) disc counter- (and co-) align-
ment becomes ever less likely at the expense of polar alignment. The
subsequent accretion of such polar discs merely rotates the angular
momentum vector of the binary presumably hardly affecting the
binary eccentricity. Thus simply retrograde gas accretion appears
less viable a solution to the final parse problem.

There are, however, still several ways gas can solve this problem.
First, a single massive retrograde accretion event may, in principle,
supply enough negative angular momentum to complete the binary
merger. However, for a massive disc self-gravity becomes impor-
tant, likely causing clumping and star formation, which reduces the
amount of gas that can be accreted. Moreover, a single massive ret-
rograde accretion event may be not be sufficiently likely to explain
the coalescence of all SMBH binaries (which form with each major
merger of massive galaxies).

A more intriguing possibility involves more violent gas dynam-
ics. We showed that, in many cases, the disc does not smoothly
align, instead the strong differential precession (in particular for
misaligned discs around eccentric binaries) leads to tearing of the
disc into separate mutually misaligned rings. In the inner disc close
to the binary, the gravity of the binary causes these rings to become
eccentric such that they inevitably interact with each other and with
the outer disc. These interactions cause further eccentricity growth
on a dynamical time-scale and eventually result in plunging gas
infall. Some of this infalling gas will be accreted by either binary
component. This will change the binary angular momentum, but
may not reduce its absolute value, depending on the orientation and
in contrast to the situation with predominantly retrograde accretion
(Nixon et al. 2013).

If the infalling gas evades this fate, it will most likely get ejected
from the binary via a slingshot interaction. This in turn reduces
the binary separation in much the same way as the ejection of
penetrating stars, thus exactly as required to solve the final-parsec
problem. Indeed, we find in our simulations which undergo violent
gas dynamics not only significant gas accretion but also a shrinking
of the binary orbit.

Clearly, this violent interaction and accretion processes are rather
complex and chaotic and certainly not well resolved or adequately
modelled in our simulations. Nonetheless, what our simulations
quite clearly show is that such violent gas dynamical processes are
inevitable if the gas is initially misaligned with the binary, in partic-
ular if the binary is eccentric. We leave a more detailed investigation
into the binary orbital evolution in this chaotic environment for a
future study.

6 CONCLUSIONS

We have studied the interaction of an eccentric binary with a gaseous
disc initially misaligned with the binary angular momentum. Such a
configuration should occur naturally from the infall and subsequent
circularization of gas into the inner few parsec of a merger remnant
still hosting a SMBH binary (e.g. Dunhill et al. 2014). The binary
exerts a torque on the disc, resulting in disc precession and, due
to viscous dissipation, in eventual alignment of the disc with the
binary. In the case of a circular binary, this alignment is always
coplanar, resulting either in a progradely or retrogradely rotating
circumbinary disc (Nixon et al. 2011b).

We find that in the general case of an eccentric binary polar
alignment also occurs, when disc angular momentum is aligned
with the binary periapse or apoapse direction. The binary torque on
the disc can be quite accurately understood analytically assuming an
orbit-averaged binary potential to quadrupole order (see Section 2).
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The fraction of initial disc orientations which give rise to polar
alignment grows with binary eccentricity, reaching 0.5 at e ~ 0.4.
The precession paths (neglecting dissipation) are not circular, but
elongated towards the intermediate axis of the orbit-averaged binary.

The prospect of accretion on to the binary from a polar instead
of coplanar disc impedes the solution (proposed by Nixon et al.
2011a) to the final-parsec problem for coalescing a SMBH binary.
In that picture consecutive randomly oriented accretion events lead
to the formation of either prograde or retrograde coplanar circumbi-
nary discs. While accretion from the former is largely suppressed
(by orbital resonances as discussed in the Introduction), accretion
from the latter reduces the binary angular momentum and drives it
to larger eccentricities. However, at large eccentricities polar disc
orientations dominate, when accretion (not resolved in our simu-
lations) has presumably little effect on the binary orbit (since the
accreted angular momentum is perpendicular to that of the binary).
Thus, eccentricity growth via accretion is likely to be significantly
reduced well before gravitational wave emission can take over as
driver for coalescence.

However, in many of our simulations, in particular for larger
binary eccentricity and stronger initial misalignment, the disc does
not smoothly align, but is torn into separate mutually misaligned
rings. This process was already reported by Nixon et al. (2013) for
a circular binary and can be understood by the radially differential
binary torque, which overcomes the adhesive effect of gas viscosity.
The prominence of tearing with binary eccentricity and initial disc
misalignment can be understood as consequence of the larger binary
torque in these cases.

The subsequent evolution of these gas rings can be rather chaotic
and is not quite adequately modelled in our simulations. However,
some basic results appear to be robust. The innermost rings are suffi-
ciently perturbed by the binary to acquire some orbital eccentricity.
This in turn inevitably leads to interactions between the rings, result-
ing in partial cancellation of their angular momenta. This process
is more prominent in more eccentric binaries, because the stronger
binary torque results in larger mutual misalignment between adja-
cent rings. The cancellation of angular momentum of the rings will
increase their eccentricity, providing a positive feedback loop and
hence a runaway process, eventually resulting in gas plunging on to
the central binary. This material may be accreted on to either hole,
but when coming from a near-polar orientation, this will hardly help
with the final-parsec problem, as explained above.

Alternatively, the infalling gas, which for a highly eccentric bi-
nary can come much closer to the binary whilst avoiding accretion,
may get ejected from the binary via a gravitational slingshot in-
teraction with one of its components. This also helps to solve the
final-parsec problem, though this time by reducing its semimajor
axis. This is similar to the stellar dynamical process of shrinking
the binary orbit via ejection of stars penetrating into the binary. The
difference is that the total amount of stars in the ‘loss cone’ (whose
orbit carries them into inner parsec) is limited and cannot be easily
refilled, while gas being dissipative and collisional by nature may
provide a better agent. This is particularly the case at the parsec scale
where the SMBH dominates the dynamics and by its gravitational
torques shepherds some gas into the loss cone.
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APPENDIX A: BINARY-DISC QUADRUPOLE
INTERACTION

Here, we give the details of the analysis leading to the results re-
ported in Section 2. Our results, obtained via Newtonian dynamics,
agree with the more general results of Naoz et al. (2013), obtained
via Hamiltonian perturbation theory, for a circular ring and ignoring
octopole terms.

The three unit vectors /2, &, and k = i x & are conserved under
the binary motion and are mutually orthogonal, such that

The binary components are at positions
q 1
x1=—R, x,=———R, (A2)
1+g¢ l1+g¢q
with
R =a(cosn—e)ée+av/1—esinnk. (A3)

Here, n is the eccentric anomaly, which is related to the mean
anomaly ¢ via

£ =mn—esiny, (A4)

such that d¢ = (1 — ecos n)dn and an orbit average becomes (-) =
Qm)~! fOZﬂ -(1 — ecos n)dn. When orbit-averaging R;R;, the cross
term between & and k averages to zero and

(RiR;) = %az [(1 +4eM)ee; + (1 — ekik;] (A5)

= %az [Se*e;e; + (1 —e®) (8 — hihy)] . (A6)

where the second form follows from eliminating l},- 12]» in favour of
fl,fzj with the help of the identity (Al). From this result, we can
work out the orbit-averaged trace-free specific quadrupole moment
of the binary as

1 1
Q,'j =M l:m1<x1,'x1j — gx%&j> —|—m2<xz,-xzj — gxgﬁij>:|

(A7)
q 1
= m (RiRj) - g(RkRk)fSij (AS)
2 1 1 -
= ﬁ [(6 - e2> 8 + %ez 28— (1 - e2)h,-h]} . (A9)

We will also need the orbit average
. 1 A A A
(RiR;Ry) = §a3Qe\/1 — &2 (eikie + kigjer — 28,8k
(A10)
with Q@ = /G M /a? the binary orbital frequency.

A1l Ring evolution

A ring particle at position r experiences the orbit-averaged
quadrupole potential of the binary:

3GM
(Pp)(r) = — r-Q-r. (A11)
2r3
Averaging over the ring, we obtain
1 N
(rirj) = Erz(‘sff = Lilp), (A12)
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such that the trace-free specific quadrupole moment of the ring is
) [1 | ON

The quadrupole interaction energy between binary and ring, aver-
aged over the binary orbit and the ring, is then

GMm
T

with interaction tensor ® = q - Q, which has components

1 5
(6 - 62) 8,‘] + Eezé,'éj -

1 s 15 5. o 3
— (5 - 3e2) lil_,—7e2(l olig+301 - e - bk

(Epr) = — r(0), (Al4)

(127'2(]

L
0; = 4 ~(1 = ik,
T 61+ q) R (1= eDhi

(A15)

Taking its trace in equation (A14) we obtain equation (5). The orbit-
averaged torque on the ring also involves the interaction tensor.
Using index notation, we have

. od 3GM
i = —eijx <Vj?b> = —5 ik O (Al6)
k

Note that only the antisymmetric part of @ contributes to the torque.
Inserting equation (A15), we find that we can write thisasl = @ x [
with the vector

3wq
4(1+ )2 r?

where w = \/G(M + m)/r? is the ring angular frequency.

[Se d-e)e— (1 —eHd-H)h, (A17)

A2 Binary evolution

The torque of the binary from the ring can be worked out analo-

gously to that of the ring from the binary. The quadrupole potential

due to the ring at the binary is

3Gm
2r3

Adding the torque from each binary component and averaging over

the orbit, we find

. 3Gm
/’l,’ = TS,’jk ®kj- (A19)

®, = —

X-q-x. (A18)

In particular, the total angular momentum, Mh + ml, is conserved
at quadrupole order. Together with the precession of the ring, this
implies that the evolution of & is not simply a precession and that
h = |h| is in general not conserved. Instead, we find
jo_@m 15¢h i-od-b (A20)

e -e . .

QM 4./1 — ¢

Thus, & remains unchanged only for a circular binary. i = 0 for
e =0orif/ is perpendicular to either e or k. Otherwise, & oscillates,
since [ - k oscillates around zero under the ring precession.

The change of the eccentricity vector is

_2R(R-R)—R(R-R)—RRR-R)

A21
M (A21)
with
. b, 00,
R 0% 0% _3CGmp o (A22)
0x, Ox rd
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Inserting (A22) into (A21) and orbit averaging (using
equation A10), we find
2

2T, . 1.
e=32" 0/ 1—cZ lke.q-e—éek-q-6—-k-q| (A23)
QM r2

2

=3ﬂe\/l—e2{(%—(i-é)2) k+d - -be+= (l k)l}

QM
(A24)
%%e\/l —e2—d-hyY =50k
+d-bA-bHh+50-8)d- ke (A25)
From this, we obtain
s eim 1 —ed-e)d- b, (A26)

4 QM

in agreement with equation (A34) of Naoz et al. (2013), but also
with equation (A20) and (1 — e*)h = —heé (from equation 4).

A3 Ring precession

If the mass of the ring is negligible compared to that of the binary,
we can approximate the binary orientation as fixed and the vectors
fz, 2, and k as constants. In this case, the evolution of the ring
orientation allows some further analytical treatment.

Since O is parallel to 0(E\,)/ ol, precession is along the lines of

constant (Ey,). This gives the equation
C=(1-e)1-h? -5 e, (A27)

with constant C for the precession paths. C = 0 corresponds to the
contour of (Ey,) through the unstable orientations i = +k. Hence,
this contour separates the regions of polar and azimuthal preces-
sion. The right-hand side (rhs) of equation (A27) can be written as
(@ -up) (- uy) with

ui,=+v1-e2h ++/5e. (A28)

Thus, the separatrices are great circles with poles u; ». The fraction
of ring orientations undergoing polar precession is

1 U, - i) 1, 1-6&
— cos” (@) - i) = — cos .
L e T 1+ 4e?

(A29)

At small e, this grows linearly (x+/20e/m) with eccentricity.
Azimuthal and polar precession are equally likely for @, - @t = 0,
which occurs at e = 67/2 ~ 0.408.

If the constant C in equation (A27) is positive (negative), we have
azimuthal (polar) precession. This equation for I has the parametric
solutions for the precession paths (see also Fig. 1):

1—e2— PN 1—@2
Trae cos; l- k= sm;‘ (A30)

for 0 < C < 1 — ¢? (azimuthal precession), and

N [5¢2 4+ C j 5e2 +
= 142 cos ¢, 502 smg“ (A31)

for —5¢> < C < 0 (polar precession). In either case, the
third component of [/ follows from the normalization condition
7] =1.

N)
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The instantaneous precession rate |di /dt] = |© x i | varies along
the precession paths. It is minimal at the largest value of -k
along the precession path and drops to zero for I = k (the unstable
orientations). The instantaneous precession rate becomes maximal
atl k=0 (at zero twist ¢), when

3wg a’®

dl /Aty = ———
1dE/dt | 41 4+ ¢)? r?

(1 + 4€®)sin 6 cos 6. (A32)

MNRAS 449, 65-76 (2015)

Thus, the maximum precession rate is much larger for highly eccen-
tric than for circular binaries. The largest variation of the precession
rate occurs for precession paths close to the separatrices.
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