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ABSTRACT
We present an analysis of 123 gamma-ray bursts (GRBs) with known redshifts possessing an
afterglow plateau phase. We reveal that La-T ∗

a correlation between the X-ray luminosity La at
the end of the plateau phase and the plateau duration, T ∗

a , in the GRB rest frame has a power-law
slope different, within more than 2σ , from the slope of the prompt Lf-T ∗

f correlation between
the isotropic pulse peak luminosity, Lf, and the pulse duration, T ∗

f , from the time since the
GRB ejection. Analogously, we show differences between the prompt and plateau phases in the
energy duration distributions with the afterglow emitted energy being on average 10 per cent
of the prompt emission. Moreover, the distribution of prompt pulse versus afterglow spectral
indexes does not show any correlation. In the further analysis we demonstrate that the Lpeak–La

distribution, where Lpeak is the peak luminosity from the start of the burst, is characterized
with a considerably higher Spearman correlation coefficient, ρ = 0.79, than the one involving
the averaged prompt luminosity, Lprompt–La, for the same GRB sample, yielding ρ = 0.60.
Since some of this correlation could result from the redshift dependences of the luminosities,
namely from their cosmological evolution we use the Efron–Petrosian method to reveal the
intrinsic nature of this correlation. We find that a substantial part of the correlation is intrinsic.
We apply a partial correlation coefficient to the new de-evolved luminosities showing that the
intrinsic correlation exists.

Key words: methods: data analysis – methods: statistical – gamma-ray burst: general –
cosmological parameters.

1 IN T RO D U C T I O N

Gamma-ray bursts (GRBs) are the most distant and most luminous
object observed in the Universe with redshifts up to z ≈ 9.4 and
isotropic energies up to 1054 erg. Discovering universal properties
is crucial in understanding the processes responsible for the GRB
phenomenon. However, GRBs seem to be anything but standard
candles, with their energetics spanning over eight orders of magni-
tude. There have been numerous attempts to standardize GRB by
finding some correlations among the observables, which can then
be used for cosmological studies. Examples of these are the claimed
correlations between the isotropic total prompt emitted energy Eiso

and the peak photon energy of the ν Fν spectrum Epeak (Lloyd & Pet-
rosian 1999; Amati et al. 2002; Amati, Frontera & Guidorzi 2009),

� E-mail: mariagiovannadainotti@yahoo.it

the beaming corrected energy Eγ and Epeak (Ghirlanda, Ghisellini &
Lazzati 2004; Ghirlanda, Ghisellini & Firmani 2006), the luminos-
ity L and Epeak (Schaefer 2003; Yonekotu et al. 2004) and luminosity
and variability V (Fenimore & Ramirez-Ruiz 2000; Riechart et al.
2001). However, because of the large dispersion in these relations
(Butler et al. 2007; Butler, Kocevski & Bloom 2009; Yu, Qi & Lu
2009) and possible impact of detector thresholds, the utility of these
correlation as a proxy for standard candle and cosmological stud-
ies (Shahmoradi & Nemiroff 2009) have been questioned (Cabrera
et al. 2007; Collazzi & Schaefer 2008).

In this paper we investigate whether some common features may
be identified in the light curves during both the prompt and af-
terglow phases. A crucial breakthrough in this field has been the
observation of GRBs by the Swift satellite, launched in 2004. The
onboard instruments Burst Alert Telescope (BAT; 15–150 keV),
X-Ray Telescope (XRT; 0.3–10 keV) and Ultraviolet/Optical Tele-
scope (UVOT; 170–650 nm) provide a broad wavelength coverage
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and a rapid follow-up of the afterglows. Swift has revealed a com-
plex behaviour of the light curves (O’Brien et al. 2006; Sakamoto
et al. 2007), where one can distinguish two, three or even more seg-
ments in the afterglow. The second segment, when it is flat, is called
the plateau emission. Investigating the X-ray afterglow, Dainotti,
Cardone & Capozziello (2008) and Dainotti et al. (2010) discov-
ered a power-law (PL) anticorrelation between the rest-frame time
T ∗

a , when the plateau ends and a PL decay phase begins, and La, the
isotropic X-ray luminosity at T ∗

a .1 This correlation has also been
reproduced independently by other authors with slopes within 1σ

of the above value (Ghisellini et al. 2009; Sultana, Kazanas & Fuku-
mura 2012).2 However, some of this correlation is induced by the
redshift dependences of the variables. More recently, Dainotti et al.
(2013a) have demonstrated that after correcting for this observa-
tional bias there remains a significant (at 12σ level) anticorrelation
with the intrinsic slope b = −1.07+009

−0.14.
The La-T ∗

a anticorrelation has been a useful test for theoreti-
cal interpretation of GRB models involving accretion (Cannizzo
& Gehrels 2009; Cannizzo, Troja & Gehrels 2011), a magnetar
(Dall’Osso et al. 2011; O’Brien, Lyons & Rowlinson 2011; Rowl-
inson et al. 2013, 2014; Bernardini et al. 2012a,b), the long-lived
reverse shock models (Leventis, Wijers & van der Horst 2014; Van
Erten 2014b) and other additional models such as the prior emis-
sion model (Yamazaki 2009), the unified GRB and active galac-
tic nucleus (AGN) model (Nemmen et al. 2012) and the induced
gravitational collapse scenario (Izzo et al. 2012). There are sev-
eral models, e.g. the photospheric emission model (Ito et al. 2014),
that can account for this observed correlation. In addition, Dainotti
et al. (2011a) attempted to use this relation as a redshift estima-
tor and Cardone, Capozziello & Dainotti (2009), Cardone et al.
(2010) and Postnikov et al. (2014) have used it for cosmological
studies. But Dainotti et al. (2013b) have described some caveats
on the use of non-intrinsic correlations to constrain cosmological
parameters. Dainotti et al. (2015) used this correlation to evaluate
the redshift-dependent ratio �(z) = (1 + z)α of the GRB rate to the
star formation rate.

The aim of this paper is to compare similar luminosity–duration
correlations in the light curve of the prompt emission with the
afterglow ones. This may shed light on the relative energizing, dis-
sipation and radiative processes of afterglow and prompt emission.
Dainotti et al. (2011b) have demonstrated the existence of a tight
correlation between the afterglow luminosity La and the average
Lprompt luminosity over all the prompt emission phase. Moreover,
Qi & Lu (2010) have discovered for the first time the existence of
luminosity–duration anticorrelation in the prompt emission. Later,
Sultana et al. (2012) used a sample of 12 GRBs to show that the
burst peak isotropic luminosity, Lpeak, and the spectral lag, τ , distri-
bution continuously extrapolates into the La-T ∗

a distribution, with
a common correlation slope close to −1.0. The authors conclude
that, if indeed the underlying physics is common, it should be of
kinematic origin. Because the lag time τ is somewhat different
variable than the durations in the light curves, we propose a more

1 Here, and subsequently, ∗ denotes the rest-frame quantities. These quan-
tities are obtained by fitting the light curves to the phenomenological Will-
ingale et al. (2007, hereafter W07) model and all luminosities and the re-
spective derived energies are for an assumed isotropic emission. To simplify
the notation we omit the subscript ‘iso’.
2 A luminosity–time (L–T) correlation has been found also for short GRBs
with extended emission (Dainotti et al. 2010) and future perspective will
be the investigation of this class of GRBs within the model of Barkov &
Pozanenko (2011).

direct comparison between the La-T ∗
a correlation and the Lf–T ∗

f ,
where Lf and T ∗

f stand for the peak luminosity and pulse width of
individual gamma-ray pulses in the prompt emission. We here use
the same notation of Lf and Tf following the original notation of
Willingale et al. (2010, hereafter W10). Because the W07 model
masks out the flares in the light curve, we use the W10 model which
is more appropriate for dealing with individual pulses. In the next
section we present the theoretical motivations for this data analysis
and what can be learned from the results. In Section 3 we describe
the modelling of the light curves, and in Section 4 we describe the
data analysis. The results on the luminosity–duration correlation
are presented in Section 5, and a brief summary and discussion is
presented in Section 6.

2 T H E O R E T I C A L M OT I VAT I O N

To start we summarize some selected models in the literature which
address the luminosity–duration correlations and attempt to explain
the observed luminosity prompt–afterglow correlations.

(1) The commonly invoked cause of the plateau formation by
continuous energy injection into the GRB generated forward shock
leads to an efficiency crisis for the prompt mechanism as soon
as the plateau duration exceeds 103 s. Hascoet et al. (2014) stud-
ied two possible alternatives: the first one within the framework
of the standard forward shock model but allows for a variation of
the microphysics parameters to reduce the radiative efficiency at
early times; in the second scenario the early afterglow results from
a long-lived reverse shock in the forward shock scenario. In both
scenarios the plateaus following the prompt–afterglow correlations
can be obtained under the condition that additional parameters are
added. In the forward shock scenario the preferred model supposes
a wind external medium and a microphysics parameter εe, the frac-
tion of the internal energy that goes into electrons (or positrons)
and can in principle be radiated away. This varies as nν (where n
is the external density), with ν ≈ 1 to obtain a flat plateau. They
conclude that acting on one single parameter can lead to the forma-
tion of a plateau that also satisfies the observed prompt–afterglow
correlations presented in Dainotti et al. (2011b). Another possibil-
ity presented by Hascoet et al. (2014) is the reverse shock scenario,
in which the typical Lorentz factor of the ejecta should increase
with burst energy to satisfy the prompt–afterglow relations, more in
particular the ejecta must contain a tail of low Lorentz factor with a
peak of energy deposition at � ≥ 10.

(2) Van Erten (2014a) shows that the observed Lprompt–Lafterglow

correlations rule out basic thin shell models but not basic thick
ones. In the thick shell case, both forward shock and reverse shock
outflows are shown to be consistent with the correlations, through
randomly generated samples of thick shell model afterglows. A
more strict approach with the standard assumption on relativistic
blast waves is used in the contexts of both thick and thin shell
models. In the thin shell model, the afterglow plateau phase is the
result of the pre-deceleration emission from a slower component
in a two-component or jet-type model. For thick shells, the plateau
phase results from energy injection either in the form of late central
source activity or via additional kinetic energy transfer from slower
ejecta which catches up with the blast wave. It is shown that thin
shell models cannot be reconciled with the observed L–T correla-
tion and, then, it is inferred the existence of a correlation between
the plateau end time and the ejecta energy that is not seen in the
observational data. However, this does not mean that acceptable fits
using a thin shell model are not possible, it might even be possible
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to successfully fit all the bursts with plateau stages. Thick shell
models, on the other hand, can easily reproduce the L–T correlation
even if uncorrelated values for the model parameters are applied
in modelling. In this context it is difficult to distinguish between
forward shock and reverse shock emission dominated models, or
homogeneous and stellar wind-type environments.

(3) A supercritical pile-up model (Sultana, Kazanas & Mas-
tichiadis 2013) provides an explanation for both the steep-decline-
and-plateau or the steep-decline-and-PL-decay structures of the
GRB afterglow phase, as observed in a large number of light curves,
and to the L–T relation. Since in this model, the detailed calcula-
tions of an estimate of the energy of the prompt is needed, it would
be relevant to evaluate if the Lprompt–Lafterglow and the Lpeak–Tpeak

relations, as defined here, can be reproduced.
(4) Ruffini et al. (2014) show that the induced gravitational col-

lapse paradigm is able to reproduce the La–Lprompt relations very
tightly. More in general, this model addresses the very energetic
(1052–1054 erg) long GRBs associated with supernovae. They man-
age to reproduce the light curves giving different scenarios for the
circumburst medium, with either a radial structure for the wind
(Guida et al. 2008) or with a fragmentation of the shell (Dainotti
et al. 2007) thus well fitting the afterglow plateau and the prompt
emission.

Given this wide possible theoretical interpretations it is important
to take into consideration additional information from the observa-
tional correlations presented in this paper. This can help to provide
new constraints for the physical models of GRB explosion mecha-
nism.

3 MO D E L L I N G T H E G R B L I G H T C U RV E S

Usually the X-ray light curves of afterglows observed by XRT are
modelled using a series of PLs segments plus pulses (see e.g. Evans
et al. 2009, 2010, 2014; Margutti et al. 2013). Here we use a different
approach whereby we fit the light curves to the analytic functional
forms of W10, which, as mentioned above, is an improved ver-
sion of W07 and fits the complete BAT+XRT light curves without
masking the X-ray flares. This procedure uses somewhat physically
motivated pulse profile for the prompt emission, based on the spher-
ical expanding shell model (Ryde & Petrosian 2002; Dermer 2007),
where the shells are energized during the rise of the pulse and the
decay phase of the pulse involves emission generated further away
from the line of sight that arrive latter and with a smaller Doppler
boost.

The peak luminosity and pulse width of the individual pulse are
denoted as Lf and Tf while La and Ta refer to the afterglow values
define above. Fig. 1 shows these quantities for a schematic light
curve. We also determine the total energy fluence E for pulses and
the afterglow phase. The rest-frame times T ∗

f and T ∗
a represent the

times when the respective energy supply is switched off.

3.1 Nomenclature

For clarity we report a summary of the nomenclature adopted in
the paper (cf. Fig. 1). All times described below are given in the
observer frame, while with the upper index ∗ we denote in the text
the observables in the GRB rest frame. All considered energies and
luminosities are derived assuming the isotropic emission.

(i) Tpeak, is the peak luminosity time in the prompt emission,
measured since the start of the burst. Its corresponding luminosity
is Lpeak.

Figure 1. A schematic light curve which illustrates how the prompt and
afterglow emission components are integrated to obtain the respective ener-
gies within the W010 model. The red+blue area is proportional to the energy
of the prompt emission, where we also indicated the time Tf, the duration
of the pulse since the time of the GRB ejection. The green one+the blue
area indicates the afterglow’s energy, where Ta is the time of the end of the
plateau emission. In the joint area (blue) Tt is the time where the luminosities
of the decaying prompt emission and the afterglow emission are equal. The
solid line is the total luminosity.

(ii) Tf is the pulse peak time in the prompt emission computed
from the GRB ejection time, Tej. Its corresponding luminosity is Lf.

(iii) Tprompt is the sum of all the pulse peak times, Tf, for each
GRB in the prompt.

(iv) T90 is the time between the 5 and 95 per cent of the energy
released in the GRB prompt phase.

(v) T45 is the time between the 5 and 50 per cent of the energy
released in the GRB prompt phase.

(vi) L and T indicate the luminosity and time which can be either
for the prompt (Lf or Lpeak; Tf or Tpeak) or the afterglow (La; Ta)
emission. The equivalent energy–duration E and T relations are
also considered.

(vii) Emin and Emax are, respectively, the minimum and maximum
energy in the bandpass of the instrument. For the XRT a respective
range is (0.3, 10) keV, while for the BAT it is (15, 150) keV.

4 DATA A NA LY SIS

We have analysed the sample of long GRBs with known redshifts
detected by Swift from 2005 January up to 2011 September, for
which the light curves include early XRT data. The redshifts z are
taken from J. Greiner’s web site3 and from Xiao & Schaefer (2009).
Among these GRBs we have selected 123 with early XRT coverage
for the fitting. Thus, the BAT–XRT combined data give us almost
continuous monitoring of the GRB varying emission. On the other
hand, we rejected all bursts where a gap in the XRT coverage reveal
flares with only partial coverage, missing the turn on, the peak and/or
the decay phases. For both prompt and afterglow components we
compute the luminosity in the appropriate energy bandpass, (Emin,
Emax), as

L(Emin, Emax, t) = 4πD2
L(z) F (t)K(Emin, Emax), (1)

3 http://www.mpe.mpg.de/~jcg/grbgen.html
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where DL(z) is the luminosity distance computed in the flat � cold
dark matter (�CDM) cosmological model with 
M = 0.291 and
h = 0.70 in units of 100 km s−1 Mpc−1, F is the measured X-ray
energy flux and K is the K-correction for the cosmic expansion
(Bloom, Frail & Sari 2001):

K =
∫ Emax/(1+z)

Emin/(1+z) �(E)dE∫ Emax

Emin
�(E)dE

, (2)

where the energy spectrum �(E) of the afterglows is described by
a simple PL �(E) = E−βa , while the one of the prompt pulses by
the Band function (Band et al. 1993).4

We also employ another way to compute Lpeak, instead of using
the functional form of W10, we follow Schaefer (2007) and equation
(1), using the brightest peak flux over 1 s interval.5 For the functional
form for the spectrum, we use either a PL or a PL with a cut-
off (CPL), depending on the best χ2 fit presented in the second
BAT catalogue (differently from the approach used in W010 in
which the Band function for the pulse profile is adopted). All of the
BAT spectra are acceptably fitted by either a PL or a CPL model.
The same criterion as in the first BAT catalogue, �χ2 between
a PL and a CPL fit greater than 6 (�χ2 ≡ �χ2

PL − �χ2
CPL), was

used to determine if the CPL model is a better spectral model for
the data. Note that none of the BAT spectra shows a significant
improvement in �χ2 with a Band function (Band et al. 1993) fit
compared to that of a CPL model fit. For GRBs not presented in
the catalogue we have chosen the spectral energy distribution as a
function that gives the best χ2 according to the Swift Burst Analyser,
http://www.swift.ac.uk/burstanalyser/ (Evans et al. 2009), which is
consistent with the approach of the second BAT catalogue. For
the derivation of the pulse energy we integrated the fitted model
luminosity curve for each pulse as follows:

Epulse =
∫ Tend

T0

4πD2
L(z) F (t) K(Emin, Emax)dt, (3)

where T0 = Tf − Tej following the W010 notation, while Tend is the
time end of the pulse width, for these definitions see Section 3.1.
The energy is presented on the lower panel of Fig. 2.

In what follows we use the above data for comparing the prompt
and afterglow characteristics and correlations.

5 R ESULTS

The results are presented in Fig. 2. The top panel shows the L–T
scatter diagram including both pulses (Lf -T ∗

f , black points) and the
afterglow (La-T ∗

a , red points) while the middle panel shows the en-
ergy, E–T, scatter diagram, where the afterglow energy is calculate
as Ea = LaT

∗
a . The lower panel shows the distribution on num-

ber of pulses per GRB. For each GRB we also show the brightest
luminosity (integrated over 1 s) Lf, max (green) and Epeak, max (yel-
low) taken as the maximum Lf and Epeak among the pulses of a

4 For the prompt pulses βpulse is the low-energy index of the Band spectrum
and the spectral fits are calculated separately from the afterglow ones within
the (Emin, Emax) = (15–150) keV in the four BAT energy channels (15–25,
25–50, 50–100 and 100–150 keV). We point out here that the spectrum is
not extrapolated at low energy in the afterglow, but it has been computed
separately. Moreover, in the afterglow phase generally there is no spectral
evolution; few bursts which show spectral evolution are not in our list of
GRBs.
5 In our sample there is always a peak flux defined for 1 s interval.

Figure 2. Distributions of L versus T∗ (upper panel) and E versus T∗ (middle
panel) for each single pulse both in the prompt (black symbols) and in the
afterglow (red symbols) emissions. L and E are equal to Lf and Ef for the
prompt emission pulses, while being equal to La and Eafterglow = LaT

∗
a

for the afterglows, and, respectively, the time T∗ represents T ∗
f for the

prompt emission pulses and T ∗
a for the afterglow phase. The green points

represent the highest luminosity prompt emission pulses (TLmax , Lmax), while
the yellow ones represent (TEmax , Emax). In the bottom panel, we show a
distribution of the number of maximum luminosity pulses in the GRB pulse
histogram.

given GRB.6 We first note that using the new and larger sample we
have repeated the analysis carried out in Dainotti et al. (2013a) on
the La-T ∗

a correlation and find similar results. A fit to this relation
log La = log a + b log T ∗

a using a Bayesian method (D’Agostini
2005) yields the observed intercept log aplateau = 51.14 ± 0.58 and

6 We note that the catalogue uses a PL or a PL with an exponential break,
instead of the Band function, for the spectral fitting.
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Figure 3. Spectral index distributions for the prompt emission pulses,
βpulses (left-hand panel); the pulses in the afterglow phase (right-hand panel),
βa. We represent all the pulses both in the prompt and in the afterglow emis-
sion.

slope bplateau = −0.90+0.19
−0.17 and the probability of the correlation

occurring by chance for an uncorrelated sample is P ≈ 10−35 (Bev-
ington & Robinson 2003).

5.1 The L-T correlations

As shown in the upper panel of Fig. 2 there is a strong L–T∗ an-
ticorrelation for both the prompt pulses and the plateau. Linear
fits to log L versus log T using the D’Agostini method (D’Agostini
2005) described in Appendix APPENDIX A:, yield slopes and
intercepts, respectively, to be bprompt = −1.52+0.13

−0.11, log aprompt =
52.98 ± 0.08 erg s−1 for the prompt pulses, and bplateau =
−0.90+0.19

−0.17, log aplateau = 51.14 ± 0.58 for the plateau. The slopes
differ almost by 3σ implying a significance difference at least in the
observed correlations. More credence can be given to this result,
because we have used the same W10 method for determining the
luminosities and duration for both prompt and afterglow compo-
nents. This makes the comparison between Lf–T ∗

f and La-T ∗
a well

defined. It has already been demonstrated within the context of W07
that both prompt and afterglow emission can be represented by the
same functional form. The underlying hypothesis, which we test
here, is that the plateau can be considered as a single flare with
origin similar to the peaks of the prompt emission. Another way
to look at this correlation is to consider the energy–duration cor-
relation, where the energy is computed integrating the pulse shape
over the pulse width. As expected we see much shallower relation
for energies than luminosities. The prompt pulses show still a weak
anticorrelation, but there is no correlation between Ea and T ∗

a for the
plateau. The prompt emission pulses and the plateau data occupy
two distinctive regions on the energy–duration plane. The pulses
are short and have slightly higher average energy as compared to
the plateau, which are in average 214 times longer. However, there
is continuity in the distribution between prompt and plateau pulses,
namely there is also a small region of overlapping among the two
phases.

For clarity, in the lower panel of Fig. 2, we present the distri-
bution of Lmax, which is the maximum value of Lpeak in a burst,
in correspondence of its peak number, namely at which the peak
occurs. We note that the majority of Lmax occur between the first
and second peaks of the prompt emission, only in rare cases Lmax

corresponds to a peak number which exceeds 10.

5.2 Spectral features of the pulses

We now compare the spectral characteristics. Fig. 3 shows the dis-
tribution of spectral indexes of 628 prompt pulses and 123 from

Figure 4. Spectral index distribution of the averaged βpulses among the
pulses in each GRB versus βa both computed within the W010 model. We
note that there is no correlation among the two distributions.

the afterglows. The two distributions are significantly different. The
distribution of the prompt pulse indexes is broader than that of the
afterglow. As mentioned above, the spectral index βa does usually
not evolve (Evans et al. 2014), it is constant over the plateau phase
and later during the afterglow decay phase, while the values of
βpulses may vary during the prompt emission phase. In Fig. 4 we
plot the average index of prompt pulses in each source versus the
afterglow index. There seem to be very little correlation between the
two indexes with most GRBs having a harder prompt than afterglow
spectra.

Moreover, the spectral parameters do not correlate strongly with
the other parameters we have introduced so far such as E, L and the
various time-scales. When inspecting the Fig. 3, the spectral index
of the pulses evolves and this evolution has been considered in the
pulse model fit. Here, the spectrum of each single pulse has been
computed. We note that the βpulses computed for each pulse have
wider distributions than the typical values, integrated over T90, of β

in the prompt phase. These differences in spectral index do not imply
necessarily or justify a difference in the L–T correlation slopes. In
fact, spectral breaks and spectral evolution can in principle explain
their diverse distributions.

5.3 Luminosity–luminosity correlation

We now compare prompt energy–afterglow energy and prompt
luminosity–afterglow luminosity correlations.

In Fig. 5 we compare the average prompt and the afterglow ener-
gies. The 〈Eprompt〉 = ∑N

i=1 Epulse,i/N , where Epulse, i is the energy
of each single pulse computed following equation (3) in each GRB
and N is the number of pulses in each GRB. For the afterglow the
average afterglow energy, 〈Eafterglow〉, coincides with Eafterglow of the
single pulses since we do not have multiple pulses in the afterglow
in this sample, in fact N = 1 for each GRB afterglow. Previously
W07 found that in few cases Eafterglow ≡ 〈Eprompt〉, but in most cases
Eafterglow was roughly 10 per cent of the prompt emission. Here, with
many more GRBs analysed and within the pulse-afterglow model
we confirm this result.

The correlation of the prompt peak pulse isotropic luminosity
averaged over all single GRB pulses and the afterglow luminosity
computed within the W010 model is comparable with the one pre-
sented in the upper panel of Fig. 6, that correlates Lpeak, the isotropic
peak luminosity of the brightest GRB prompt emission pulse from
the time of the burst, and La where Lpeak has been computed using
the approach adopted in the second BAT catalogue (Sakamoto et al.
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Figure 5. Prompt averaged energy 〈Eprompt〉 versus afterglow energy,
Eafterglow, for 123 GRBs computed using the W010 model. The solid line
for equal prompt and afterglow energies is provided for reference.

Figure 6. GRB distributions in redshift bins at La–Lpeak plane, where Lpeak

is computed using the approach used in the second BAT catalogue. The
sample is splited into four different equipopulated redshift bins: z ≤ 0.84
(blue), 0.84 ≤ z < 1.8 (magenta), 1.8 ≤ z < 2.9 (green) and z ≥ 2.9 (red).
The dashed line is the fitting correlation line.

2011), as described in Section 4. We have tested over all the GRB
sample that Lpeak, presented in Fig. 6 (upper panel), has a consistent
distribution compared to Lf, obtained from the pulse fitting.

In Fig. 6 we show that the correlation between Lpeak and La

exists even for different redshift bins. The fitted correlation reads as
follows:

log La = A + B log Lpeak, (4)

where A = −14.67 ± 3.46 and B = 1.21+0.14
−0.13.

Dainotti et al. (2011b) demonstrated that correlations exist be-
tween La and the luminosities for the prompt emission, computed
as E/T∗, where T∗ are the characteristic GRB rest-frame time-
scales T ∗

p = Tp/(1 + z), T ∗
90 = T90/(1 + z) and T ∗

45 = T45/(1 + z).7

We stress here that ρ = 0.79 for the Lpeak–La correlation, where Lpeak

is computed according to the second BAT catalogue, is consider-

7 T ∗
90 and T ∗

45 are the rest-frame time-scales for GRB energy emission be-
tween 5 and 95 per cent and 5 and 50 per cent ranges of the total prompt
emission, respectively, while T ∗

p is the rest-frame time at the end of the
prompt emission in the W07 model.

ably increased compared to ρ = 0.60 for the L90 = E/T90 versus La

correlation (Dainotti, Ostrowski & Willingale 2011b). This means
that a more suitable choice of the parameters in the luminosities or
energies definition can increase of the 24 per cent the correlation
coefficient. We also note that here the sample is doubled compared
to the analysis performed by Dainotti et al. (2011b) in which the
GRBs analysed were 62. In Fig. 6 we selected the value of Lpeak

computed from equation (1) assuming a broken PL or a simple PL
as a spectral model (as it has been explained in Section 4) thus not
involving error propagation due to time and energy as in the previ-
ous defined luminosities. This is the reason why for this correlation
we obtain an increment of ρ.

We here underline the importance of the choice of the Lpeak–La

correlation and not of the E–La correlations presented in Dainotti
et al. (2011b), because E may suffer from the systematic bias in
duration measurements. This would mean that although E evolution
studies may in fact be biased at high redshift where a fraction
of detected bursts grow with a low signal-to-noise ratio, no such
bias should exist for Lpeak (Lloyd & Petrosian 1999). Therefore,
the luminosity–duration is more reliable than the energy–duration
correlation, and in the present paper this is the reason why we
addressed the attention to the Lpeak–La relation, instead of E–La.

6 T H E R E D S H I F T D E P E N D E N C E

The Lpeak–La correlation could be due to the dependence of lumi-
nosity on distance, since it involves two luminosities. We compare
Figs 6 and 7 in order to clarify how much this dependence influences
the existence of the correlation itself. In support of the existence of
the Lpeak–La correlation we show the correlation between observed
fluxes Fa, the flux at time Ta, versus the peak flux in the prompt emis-
sion, Fpeak, Fa–Fpeak, with a Spearman (1904) correlation coefficient
ρ = 0.63 (see Fig. 7). Thus, we remove with a first rough approxi-
mation the redshift dependence induced by the distance luminosity
using fluxes instead of luminosities. In fact, if the Lpeak–La corre-
lation was completely due to the induced redshift dependence this
would have caused a disappearing of the correlation or a drastically
reduced value of ρ less than 0.5 and a probability of occurrence
by chance >5 per cent, which is not the case. Then, to evaluate

Figure 7. GRB distributions in redshift bins at the Fa–Fpeak plane, where
Fpeak is computed following the approach used in the second BAT catalogue.
The sample is splited into four different equipopulated redshift bins: z ≤ 0.84
(blue), 0.84 ≤ z < 1.8 (magenta), 1.8 ≤ z < 2.9 (green) and z ≥ 2.9 (red).
The dashed line is the fitting correlation line.
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the presence of redshift evolution we follow the approach adopted
in Dainotti et al. (2011a, 2013a) by dividing the sample into four
redshift bins. The GRBs distribution in each redshift bin is not clus-
tered or confined in a given subspace, see Fig. 6, thus suggesting no
strong redshift evolution. This is expected for La, because Dainotti
et al. (2013a) demonstrated that there is no redshift evolution of this
luminosity. However, Petrosian, Kitanidis & Kocevski (2015) show
that Lpeak is affected by the redshift evolution as Lpeak/(1 + z)2.3

using a more complex function than the simple PL, used previously
for GRBs (Dainotti et al. 2013a). Here the sample has been chosen
differently from Petrosian et al. (2015), because only observations
which have good coverage of the data in the early prompt and can
be fitted within the W010 model are taken into account. Therefore,
for a more precise evaluation we have to address the problem of
the luminosity evolution for this specific sample. For a quantitative
analysis of this problem we apply the Efron & Petrosian (1992)
method.

7 T H E E F RO N A N D P E T RO S I A N M E T H O D

The first important step for determining the distribution of true
correlations among the variables is the quantification of the bi-
ases introduced by the observational selection effects due to the
selected sample and the instrumental limits. In the case under study
the selection effect or bias that distorts the statistical correlations
is the flux limit and the temporal resolution of the instrument. To
account for these effects we apply the Efron–Petrosian (EP) tech-
nique, already successfully applied for GRBs (Lloyd & Petrosian
2000; Kocevski & Liang 2006; Petrosian, Bouvier & Ryde 2009).
The EP method reveals the intrinsic correlation because the method
is specifically designed to overcome the biases resulting from in-
complete data. Moreover, it identifies and removes also the redshift
evolution present in both variables, time and luminosity.

The EP method uses a modified version of the Kendall τ statistic
to test the independence of variables in a truncated data. Instead
of calculating the ranks Ri of each data points among all observed
objects, which is normally done for an untruncated data, the rank
of each data point is determined among its ‘associated sets’ which
include all objects that could have been observed given the obser-
vational limits.

Here we give a brief summary of the algebra involved in the EP
method. This method uses the Kendall rank test to determine the
best-fitting values of parameters describing the correlation functions
using the test statistic,

τ =
∑

i (Ri − Ei)√∑
i Vi

, (5)

to determine the independence of two variables in a data set, say
(xi, yi) for i = 1, . . . , n. Here Ri is the rank of variable y of the
data point i in a set associated with it. For an untruncated data (i.e.
data truncated parallel to the axes) the associated set of point i
includes all of the data with xj < xi. If the data are truncated one
must form the associated set consisting only of those points which
satisfy conditions imposed by the limiting instrumental values, see
definition below.

If (xi, yi) were independent then the rank Ri should be dis-
tributed continuously between 0 and 1 with the expectation value
Ei = (1/2)(i + 1) and variance Vi = (1/12)(i2 − 1). Independence
is rejected at the nσ level if | τ | > n. Here the mean and variance are
calculated separately for each associated set and summed accord-
ingly to produce a single value for τ . This parameter represents the

Figure 8. Upper panel: the bivariate distribution of Lpeak and redshift
with the flux limit assuming the K-correction K = 1. The BAT flux limit,
4.0 × 10−8 erg cm−2 (solid red line) which better represents the limit of
the sample. Lower panel: the bivariate distribution of the rest-frame time
T ∗

prompt and the redshift, where with Tprompt we denote the sum of the peak
pulses width of each single pulse in each GRB. The chosen limiting value
of the observed pulse width in the sample, Tprompt, lim = 0.24 s. The red line
is the limiting rest-frame time, Tprompt, lim/(1 + z).

degree of correlation for the entire sample with proper accounting
for the data truncation.

With this statistic, we find the parametrization that best describes
the luminosity and time evolution for the prompt emission. For the
afterglow emission we refer to results already presented in Dainotti
et al. (2013a). We now have to determine the limiting flux, Flim,
which gives the minimum observed luminosity for a given redshift,
Llim = 4πD2

L(z) FlimK . In the upper panel of Fig. 8 we show the
limiting luminosity for K = 1 just not to show fuzzy boundaries, but
for an appropriate evaluation of the luminosity evolution we assign
to each GRB its own K-correction. We have investigated several lim-
iting fluxes to determine a good representative value, while keeping
an adequate size of the sample itself. We have finally chosen the
limiting flux Flim = 4.0 ×10−8 erg cm−2, which allows 116 GRBs
in the sample. We have also chosen the observed minimum pulse
width of the prompt, which is T ∗

prompt,lim = 0.24/(1 + z) s, lower
panel of Fig. 8. This time has been computed as the sum of the
single pulses width in each GRB. In such a way we can employ a
comparison with previous time evolution in the afterglow as pre-
sented in Dainotti et al. (2013a).
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7.1 The luminosity and time evolutions

For the luminosity and time evolution it is necessary to first de-
termine whether the variables Lpeak and T ∗

prompt are correlated with
redshift or are statistically independent. For example, the correla-
tion between Lpeak and the redshift, z, is what we call luminosity
evolution, and independence of these variables would imply ab-
sence of such evolution. The EP method prescribed how to remove
the correlation by defining new and independent variables.

We determine the correlation functions g(z) and f(z) when deter-
mining the evolution of Lpeak and T ∗

prompt so that de-evolved vari-
ables, namely the local variables, L′

peak ≡ Lpeak/g(z) and T ′
prompt ≡

T ∗
prompt/f (z), are not correlated with z. The evolutionary functions

are parametrized both by simple correlation functions or more com-
plex ones.

The simple PL functions are represented by

g(z) = (1 + z)kLpeak , f (z) = (1 + z)kT ∗,prompt , (6)

so that L′
peak = Lpeak/g(z) refer to the local (z = 0) luminosities.

The more complex function chooses a fiducial critical Z, where we
define Z = 1 + z. We chose Zcr = 3.5, thus allowing the following
functional form for

g(z) = ZkL
(
1 + ZkL

cr

)
ZkL + Z

kL
cr

, f (z) =
Zk∗

T

(
1 + Z

k∗
T

cr

)

Zk∗
T + Z

k∗
T

cr

. (7)

We computed both approaches obtaining compatible results. The
associated set for the source i to obtain the luminosity evolution is

Ji ≡ {j : Lj > Lmin(i)} ∨ {j : Lj > Li} ∨ {j : zj < zi}, (8)

where Lmin(i) is the minimum luminosity of the object i correspon-
dent to Li, zi is the redshift of the object i. The objects of all the
sample are indicated with i, while the objects in the associated sets
are denoted with j. With the symbol ∨ we indicate the union of the
sets.

Analogously, to obtain the pulse width evolution factor we need
to compute the associated set for a given object i, which are

Ji ≡ {j : Tj > Tmin,i} ∨ {j : Tj > Ti} ∨ {j : zj > zi}, (9)

where Tmin(Tprompt, i) is the minimum Tprompt at which object i could
be still included in the survey given its peak width duration and the
limiting time of the observation.

With the specialized version of Kendell’s τ statistic, the values of
kLpeak and kT ∗

prompt
for which τLpeak = 0 and τT ∗prompt = 0 are the ones

that best fit the luminosity and width pulse evolution, respectively,
with the 1σ range of uncertainty given by |τ x| ≤ 1. Plots of τLpeak

and τT ∗
prompt

versus kLpeak and τT ∗
prompt

are shown in Figs 9 and 10,
respectively. With kLpeak and kT ∗prompt we are able to determine the
de-evolved observables T′

prompt and L′
peak.

There is a significant luminosity evolution in the prompt, kLpeak =
2.13+0.33

−0.37, and much less significant in the time, kT ∗
prompt

= −0.62 ±
0.38, for the simple PL functions. If we consider the more complex
function for the evolution we obtain kLpeak = 3.09+0.40

−0.35 and kT ∗
prompt

=
−0.17+0.24

−0.27. It is straightforward that we achieve a higher evolution
for luminosity and a smaller evolution for the time for the way we
chose the function. We also note that the results of the luminosity
evolutions among the two different functions are compatible within
2σ , while the time evolutions are compatible within 1σ .

Figure 9. Upper: test statistic τ versus kLpeak,prompt , the luminosity evolution
defined by equation (6) using a simple PL as g(z). Lower: the same test
statistic using a more complex function for the evolution g(z), defined by
the equation (7).

7.2 The intrinsic Lpeak-La correlation

We here focus on determining the intrinsic correlation among the
local luminosities L′

peak-L∗
a .8 Following the method presented in

8 Here we do not consider the de-evolved L′
peak-T ′

prompt correlation because
the T ′

prompt adopted is the sum of the all time widths of all the pulses for each
GRB and not the width of the single pulse. Therefore, we cannot determine
with accuracy the evolution in time for the prompt since for single pulses we
are not able to apply the EP method, because we have only one limiting time
for all the total integrated time over all the pulses and this does not coincide
with the minimum time among each single pulse. Thus, this discrepancy in
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Figure 10. Upper panel: test statistic τ versus kT ∗
prompt

, the time evolution
defined by equation (6). Lower panel: the same test statistic using a more
complex function for the evolution g(z), defined by the equation (7).

Petrosian & Singal (2014) we compute the dependence of this cor-
relation from the luminosity distance. According to equation (4) we
can rename the variables with an abuse of notation for simplicity as
log L′

a = L′
a, log L′

peak = L′
peak and log DL = DL in order to write

the limiting time determination can lead to an inaccuracy in the evaluation
of the time evolution. Notwithstanding this difficulty for the time evolution,
for the luminosity evolution this problem does not occur, since we chose the
maximum peak luminosity of each GRB among the all pulses in that given
GRB.

Figure 11. Local luminosity–luminosity correlation coefficient versus the
intrinsic slope showing the best value where L′

peak and L′
a are significantly

correlated (the central thick line). The two thinner lines parallel to r = 0
show the 0.05 per cent probability that the sample is drawn by chance.

in a simpler way the partial correlation coefficient in the log space
domain:

rL′
peakL′

a,DL
=

rL′
peak,L′

a
-rL′

peak,DL
rL′

a,DL(
1 − r2

L′
peak,DL

) (
1 − r2

L′
a,DL

) , (10)

which accounts for mutual distance dependence of the luminosities.
We now consider the correlation in the local luminosity space so
that L

′′
a = L′

peak − αL′
a and we calculate the rL′

peak,L′
a,DL

as a function
of the index α, namely the intrinsic slope. As shown in Fig. 11 the
correlation becomes significant for α = 1.140.83

−0.32, which is very
close to the observed correlation. The error bars quoted are at the
2σ significance level.

8 SU M M A RY A N D D I S C U S S I O N

The analysis presented in this study reveals that the following.

(i) Prompt and plateau phases dissipate similar amounts of en-
ergy, but over very different time scales as shown through Figs 1, 2
and 5.

(ii) Slopes in the luminosity–duration distributions between the
prompt and plateau emissions Lf -T ∗

f versus La-T ∗
a differ almost 3σ ,

while in the local luminosity space more than 3σ . However, for the
evaluation of the time evolutions of the pulse in the prompt there is
the problem of determining the proper limiting time of the pulses,
as we explained in Footnote 8. Therefore, a definite conclusion on
the differences in the slopes still needs to be reached and this will
be object of a forthcoming investigation. The evidence of difference
between prompt and afterglow is then recalled also by the difference
in the spectral parameters of the prompt and the afterglow phases.
Also this fact does not imply necessarily a diverse mechanism as
we have pointed out in Section 5.2.

(iii) The extended luminosity–duration distributions Lf -T ∗
f , see

upper panel of Fig. 2, and the energy–duration correlation, see
the middle panel of Fig. 2, show that there is continuity in
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transition from prompt distribution to the afterglow one, namely
no gap in the data. Difference between the prompt and plateau
slopes is present independently from the choice of luminosity or
energy. The luminosity–duration and energy–duration spaces are
just two ways of looking at the same data, as well as the difference
in the correlations. The Etotal–duration plot in the lower panel of
Fig. 2 clearly shows that the plateaus occupy a different area of the
energy–duration plane to the pulses. Individual prompt pulses and
plateaus both produce energy values in the same broad range, but
the plateau duration is on average a factor of 100 larger.

(iv) Stronger correlations are present when we compare, respec-
tively, 〈Lprompt〉 − La and Lpeak–La luminosities, see Fig. 6, rather
than considering La and the prompt emission luminosities computed
as ratio of energy over a particular time-scale, such as L45 = E/T45

and L90 = E/T90, (Dainotti et al. 2011b).
(v) We found very interestingly that the Lpeak–La correlation is

very robust also in the local luminosity space when we removed the
luminosity evolution both in the prompt and in the afterglow and it
presents a compatible result of the intrinsic slope with the observed
slope within 1σ . This will have impact on the investigation for the
theoretical models.

From this analysis we hypothesize that the following.

(i) Both the different slopes in the luminosity–duration and in
the energy–duration space of prompt pulses and plateau ones might
indicate that these two are quite distinct features of the emission.
The former probably come from internal shocks and the latter from
the external shock. The prompt pulses are fast cooling while the
plateau pulses are slow cooling. This is known from the literature
for the prompt and afterglow phases (Rees & Meszaros 1994, 1998),
but the upper panel of Fig. 2 shows that this statement might be true
also for the plateau phase. So this is another significant difference
between the prompt and plateau phase indicating that if the latter is
due to synchrotron from the external shock (which is likely), then
the pulses all have very similar physical conditions in the shock. In
particular, the PL index of the electron distribution is very similar
in all cases.

(ii) The present study is relevant to quantify the mentioned rela-
tions in order to improve or modify the existing physical model of
GRB emission which should predict the Lpeak versus La correlation
together with the combined L–T correlations both in prompt and
afterglow phases. In particular, among the models we have men-
tioned in the theoretical motivation of this work the one that better
describe the observed correlations is the model by Hascoet et al.
(2014), because some particular configurations of the microphysical
parameters are able to reproduce the L–T correlations difference in
slopes and the 〈Lprompt〉–La correlations. Also the model proposed
by Ruffini et al. (2014) is able to reproduce these observational
features, while thin shell models, (Van Erten 2014b), are ruled out.

In conclusion, all these observational evidences taken into ac-
count contemporaneously are able to better test and discriminate
some of the existing theoretical models.
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A P P E N D I X A : T H E D ’ AG O S T I N I F I T T I N G
M E T H O D

We briefly present the D’Agostini method (D’Agostini 2005), used
to fit the above mentioned correlations. This takes into account the

intrinsic scatter, thus providing more reliable errors. Let us suppose
that R and Q are two quantities related by a linear relation

R = aQ + b, (A1)

and denote with σ int the intrinsic scatter around this relation. Cal-
ibrating such a relation means determining the two coefficients
(a, b) and the intrinsic scatter σ int. To this aim, we will resort to a
Bayesian motivated technique (D’Agostini 2005) thus maximizing
the likelihood function L(a, b, σint) = exp [−L(a, b, σint)] with

L(a, b, σint) = 1

2

∑
ln L1 + 1

2

∑
ln L2, (A2)

where

L1 = (σ 2
int + σ 2

Ri
+ a2σ 2

Qi
) (A3)

and

L2 = (Ri − aQi − b)2

σ 2
int + σ 2

Qi
+ a2σ 2

Qi

, (A4)

where the sum is over the N objects in the sample. The above
formulae easily applies to our case setting R = log L∗

X(Ta) and Q =
log T ∗

a . We estimate the uncertainty on log L∗
X(Ta) by propagating

the errors on (Ta, Fa, βa).
The Bayesian approach used here also allows us to quantify

the uncertainties on the fit parameters. To this aim, for a given
parameter pi, we first compute the marginalized likelihood Li(pi)
by integrating over the other parameter. The median value for the
parameter pi is then found by solving∫ pi,med

pi,min

Li(pi)dpi = 1

2

∫ pi,max

pi,min

Li(pi)dpi. (A5)

The 68 per cent (95 per cent) confidence range (pi, l, pi, h) are then
found by solving∫ pi,med

pi,l

Li(pi)dpi = 1 − ε

2

∫ pi,max

pi,min

Li(pi)dpi, (A6)

∫ pi,h

pi,med

Li(pi)dpi = 1 − ε

2

∫ pi,max

pi,min

Li(pi)dpi, (A7)

with ε = 0.68 (0.95) for the 68 per cent (95 per cent) range,
respectively.

The a and b parameters are independent and the computation
of the error is performed around the actual variable and not in the
barycentre of points.
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