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ABSTRACT

We present an analysis of 123 Gamma-ray bursts (GRBs) with known redshifts
possessing an afterglow plateau phase. We reveal that La−T ∗

a correlation between the
X-ray luminosity La at the end of the plateau phase and the plateau duration, T ∗

a , in
the GRB rest frame has a power law slope different, within more than 2 σ, from the
slope of the prompt Lf − T ∗

f correlation between the isotropic pulse peak luminosity,
Lf , and the pulse duration, T ∗

f , from the time since the GRB ejection. Analogously,
we show differences between the prompt and plateau phases in the energy-duration
distributions with the afterglow emitted energy being on average 10% of the prompt
emission. Moreover, the distribution of prompt pulse versus afterglow spectral indexes
do not show any correlation. In the further analysis we demonstrate that the Lpeak −
La distribution, where Lpeak is the peak luminosity from the start of the burst, is
characterized with a considerably higher Spearman correlation coefficient, ρ = 0.79,
than the one involving the averaged prompt luminosity, Lprompt − La, for the same
GRB sample, yielding ρ = 0.60. Since some of this correlation could result from the
redshift dependences of the luminosities, namely from their cosmological evolution
we use the Efron-Petrosian method to reveal the intrinsic nature of this correlation.
We find that a substantial part of the correlation is intrinsic. We apply a partial
correlation coefficient to the new de-evolved luminosities showing that the intrinsic
correlation exists.

Key words: gamma-rays bursts: general – radiation mechanisms: non-thermal –
cosmological parameters

1 INTRODUCTION

GRBs are the most distant and most luminous object ob-
served in the Universe with redshifts up to z ≈ 9.4 and
isotropic energies up to 1054 ergs. Discovering universal
properties is crucial in understanding the processes respon-
sible for the GRB phenomenon. However, GRBs seem to be
anything but standard candles, with their energetics span-
ning over 8 orders of magnitude. There have been numer-
ous attempts to standardize GRB by finding some correla-
tions among the observables, which can then be used for
cosmological studies. Examples of these are the claimed cor-
relations between the isotropic total prompt emitted energy
Eiso and the peak photon energy of the ν × Fν spectrum
Epeak. (Lloyd & Petrosian 1999; Amati et al. 2002, 2009),
the beaming corrected energy Eγ and Epeak Ghirlanda et al.
(2004, 2006), the Luminosity L and Epeak Schaefer (2003);

Yonekotu (2004), and luminosity and variability V Fenimore
& Ramirez - Ruiz (2000); Riechart et al. (2001). However,
because of the large dispersion in these relations (Butler et
al. 2007, 2009; Yu et al. 2009) and possible impact of de-
tector thresholds, the utility of these correlation as a proxy
for standard candle and cosmological studies (Shahmoradi
& Nemiroff 2009) have been questioned (Cabrera et al. 2007;
Collazzi & Schaefer 2008).

In this paper we investigate whether some common fea-
tures may be identified in the light curves during both the
prompt and afterglow phases. A crucial breakthrough in this
field has been the observation of GRBs by the Swift satel-
lite, launched in 2004. The on board instruments Burst Alert
Telescope (BAT, 15-150 keV), X-Ray Telescope (XRT, 0.3-
10 keV), and Ultra-Violet/Optical Telescope (UVOT, 170-
650 nm), provide a broad wavelength coverage and a rapid
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2 M. Dainotti et al.

follow-up of the afterglows. Swift has revealed a complex be-
havior of the light curves (O’ Brien et al. 2006; Sakamoto et
al. 2007), where one can distinguish two, three or even more
segments in the afterglow. The second segment, when it is
flat, is called the plateau emission. Investigating the X-ray
afterglow Dainotti et al. (2008, 2010) discovered a power-law
anti-correlation between the rest frame time T ∗a , when the
plateau ends and a power-law decay phase begins, and La,
the isotropic X-ray luminosity at T ∗a .1 This correlation has
also been reproduced independently by other authors with
slopes within 1 σ of the above value. (Ghisellini et al. 2009;
Sultana et al. 2012) 2. However, some of this correlation is
induced by the redshift dependences of the variables. More
recently, Dainotti et al. (2013a) have demonstrated that af-
ter correcting for this observational bias there remains a sig-
nificant (at 12 sigma level) anti-correlation with the intrinsic
slope b = −1.07+009

−0.14.
The La − T ∗a anti-correlation has been a useful test for

theoretical interpretation of GRB models involving accre-
tion (Cannizzo & Gehrels 2009; Cannizzo et al. 2011), a
magnetar (Dall’Osso et al. 2010; Bernardini et al. 2012a,b;
Rowlinson et al. 2010, 2013, 2014), the long-lived reverse
shock models (Leventis et al. 2014; Van Erten 2014a), and
other additional models such as the prior emission model
(Yamazaki 2009), the unified GRB and AGN model (Nem-
men et al. 2012) and the induced gravitational collapse sce-
nario (Izzo et al. 2012). There are several models, e.g the
photosperic emission model (Ito et al. 2014), that can ac-
count for this observed correlation. In addition, Dainotti et
al. (2011a) attempted to use this relation as a redshift es-
timator and Cardone et al. (2009); Cardone et al. (2010);
Postnikov et al. (2014), have used it for cosmological studies.
But Dainotti et al. (2013b) have described some caveats on
the use of non-intrinsic correlations to constrain cosmologi-
cal parameters. Dainotti et al. (2015) used this correlation
to evaluate the redshift-dependent ratio Ψ(z) = (1 + z)α of
the GRB rate to the star formation rate.

The aim of this paper is to compare similar luminosity-
duration correlations in the light curve of the prompt emis-
sion with the afterglow ones. This may shed light on the
relative energizing, dissipation and radiative processes of af-
terglow and prompt emission. Dainotti et al. (2011b) have
demonstrated the existence of a tight correlation between
the afterglow luminosity La and the average Lprompt lu-
minosity over all the prompt emission phase. Moreover, Qi
(2010) has discovered for the first time the existence of lu-
minosity duration anti-correlation in the prompt emission.
Later, Sultana et al. (2012) used a sample of 12 GRBs to
show that the burst peak isotropic luminosity, Lpeak, and
the spectral lag, τ , distribution continuously extrapolates
into the La − T ∗a distribution, with a common correlation

1 Here, and subsequently, ∗ denotes the rest frame quantities.
These quantities are obtained by fitting the light curves to the
phenomenological Willingale et al. (2007) model, hereafter called

W07, and all luminosities and the respective derived energies are
for an assumed isotropic emission. To simplify the notation we
omit the subscript ‘iso”.
2 A luminosity-time correlation has been found also for short
GRBs with extended emission (Dainotti et al. 2010) and future

perspective will be the investigation of this class of GRBs within
the model of Barkov & Pozanenko (2011)

slope close to −1.0. The authors conclude that, if indeed
the underlying physics is common, it should be of kinematic
origin. Because the lag time τ is somewhat different variable
than the durations in the light curves, we propose a more
direct comparison between the La − T ∗a correlation and the
Lf -T ∗f where Lf and T ∗f stand for the peak luminosity and
pulse width of individual gamma ray pulses in the prompt
emission. We here use the same notation of Lf and Tf follow-
ing the original notation of Willingale et al. (2010). Because
the W07 model masks out the flares in the light curve, we
use the Willingale et al. (2010) model (hereafter W10) which
is more appropriate for dealing with individual pulses. In the
next section we present the theoretical motivations for this
data analysis and what can be learned from the results. In
§3 we describe the modeling of the light curves ans in §4 we
describe the data analysis. The results on the luminosity du-
ration correlation are presented in §5 and a brief summary
and discussion is presented in §6.

2 THEORETICAL MOTIVATION

To start we summarize some selected models in the literature
which address the luminosity-duration correlations and at-
tempt to explain the observed luminosity prompt-afterglow
correlations.

1) The commonly invoked cause of the plateau for-
mation by continuous energy injection into the GRB
generated forward shock leads to an efficiency crisis for
the prompt mechanism as soon as the plateau duration
exceeds 103 seconds. Hascoet et al. (2014) studied two
possible alternatives: the first one within the framework of
the standard forward shock model but allows for a variation
of the microphysics parameters to reduce the radiative
efficiency at early times; in the second scenario the early
afterglow results from a long-lived reverse shock in the
forward shock scenario. In both scenarios the plateaus
following the prompt-afterglow correlations can be obtained
under the condition that additional parameters are added.
In the forward shock scenario the preferred model supposes
a wind external medium and a microphysics parameter εe,
the fraction of the internal energy that goes into electrons
(or positrons) and can in principle be radiated away.
This varies as nν (where n is the external density), with
ν ≈ 1 to obtain a flat plateau. They conclude that acting
on one single parameter can lead to the formation of a
plateau that also satisfies the observed prompt-afterglow
correlations presented in Dainotti et al. (2011b). Another
possibility presented by Hascoet et al. (2014) is the reverse
shock scenario, in which the typical Lorentz factor of the
ejecta should increase with burst energy to satisfy the
prompt-afterglow relations, more in particular the ejecta
must contain a tail of low Lorentz factor with a peak of
energy deposition at Γ > 10.

2) Van Eerten (2014b) shows that the observed
Lprompt − Lafterglow correlations rule out basic thin shell
models but not basic thick ones. In the thick shell case, both
forward shock and reverse shock outflows are shown to be
consistent with the correlations, through randomly gener-
ated samples of thick shell model afterglows. A more strict
approach with the standard assumption on relativistic blast
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Correlations for GRB prompt and afterglow plateau emissions 3

waves is used in the contexts of both thick and thin shell
models. In the thin shell model, the afterglow plateau phase
is the result of the pre-deceleration emission from a slower
component in a two-component or jet type model. For thick
shells, the plateau phase results from energy injection either
in the form of late central source activity or via additional
kinetic energy transfer from slower ejecta which catches up
with the blast wave. It is shown that thin shell models can
not be reconciled with the observed LT correlation and,
then, it is inferred the existence of a correlation between
the plateau end time and the ejecta energy that is not seen
in the observational data. However, this does not mean that
acceptable fits using a thin shell model are not possible,
it might even be possible to successfully fit all the bursts
with plateau stages. Thick shell models, on the other hand,
can easily reproduce the LT correlation even if uncorrelated
values for the model parameters are applied in modeling.
In this context it is difficult to distinguish between forward
shock and reverse shock emission dominated models, or
homogeneous and stellar wind-type environments.

3) A supercritical pile-up model (Sultana et al. 2013)
provides an explanation for both the steep-decline-and-
plateau or the steep-decline-and-power-law-decay structures
of the GRB afterglow phase, as observed in a large number
of light curves, and to the LT relation. Since in this model,
the detailed calculations an estimate of the Energy of the
prompt is needed, it would be relevant to evaluate if the
Lprompt − Lafterglow and the Lpeak − Tpeak relations, as
defined here, can be reproduced.

4) Ruffini et al. (2014) show that the induced grav-
itational collapse paradigm is able to reproduce the
La − Lprompt relations very tightly. More in general,
this model addresses the very energetic (1052 − 1054 erg)
long GRBs associated with Supernovae. They manage to
reproduce the lightcurves giving different scenarios for the
circumburst medium, with either a radial structure for the
wind (Guida et al. 2008) or with a fragmentation of the
shell (Dainotti et al. 2007) thus well fitting the afterglow
plateau and the prompt emission.

Given this wide possible theoretical interpretations it is
important to take into consideration additional information
from the observational correlations presented in this paper.
This can help to provide new constraints for the physical
models of GRB explosion mechanism.

3 MODELING THE GRB LIGHT CURVES

Usually the X-ray light curves of afterglows observed by
XRT are modeled using a series of power laws segments plus
pulses; see e.g. (Evans et al. 2009, 2010, 2014; Margutti et al.
2013). Here we use a different approach whereby we fit the
light curves to the analytic functional forms of W10, which,
as mentioned above, is an improved version of W07 and fits
the complete BAT+XRT light curves without masking the
X-ray flares. This procedure uses somewhat physically mo-
tivated pulse profile for the prompt emission, based on the
spherical expanding shell model (Ryde & Petrosian 2002;

Figure 1. A schematic light curve which illustrates how the

prompt and afterglow emission components are integrated to ob-

tain the respective energies within the W010 model. The red +
blue area is proportional to the energy of the prompt emission,

where we also indicated the time Tf , the duration of the pulse

since the time of the GRB ejection. The green one + the blue
area indicates the afterglow’s energy, where Ta is the time of the

end of the plateau emission. In the joint area (blue) Tt is the time
where the luminosities of the decaying prompt emission and the

afterglow emission are equal. The solid line is the total luminosity.

Dermer 2007), where the shells are energized during the rise
of the pulse and the decay phase of the pulse involves emis-
sion generated further away from the line of sight that arrive
latter and with a smaller Doppler boost.

The peak luminosity and pulse width of the individual
pulse are denoted as Lf and Tf while La and Ta refer to the
afterglow values define above. Fig. 1 shows these quantities
for a schematic light curve. We also determine the total en-
ergy fluence E for pulses and the afterglow phase. The rest
frame times T ∗f and T ∗a represent the times when the respec-
tive energy supply is switched off.

3.1 Nomenclature

For clarity we report a summary of the nomenclature
adopted in the paper (c.f. Fig. 1). All times described below
are given in the observer frame, while with the upper index
∗ we denote in the text the observables in the GRB rest
frame. All considered energies and luminosities are derived
assuming the isotropic emission.

• Tpeak, is the peak luminosity time in the prompt emis-
sion, measured since the start of the burst. Its corresponding
luminosity is Lpeak.
• Tf is the pulse peak time in the prompt emission com-

puted from the GRB ejection time, Tej . Its corresponding
luminosity is Lf .
• Tprompt is the sum of all the pulse peak times, Tf , for

each GRB in the prompt
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4 M. Dainotti et al.

• T90 is the time between the 5% and 95% of the energy
released in the GRB prompt phase.
• T45 is the time between the 5% and 50% of the energy

released in the GRB prompt phase.
• L and T indicate the luminosity and time which can

be either for the prompt (Lf or Lpeak; Tf or Tpeak) or the
afterglow (La; Ta) emission. The equivalent energy-duration
E and T relations are also considered.
• Emin and Emax are respectively the minimum and max-

imum energy in the band pass of the instrument. For the
XRT a respective range is (0.3, 10) keV, while for the BAT
it is (15, 150) keV.

4 DATA ANALYSIS

We have analyzed the sample of long GRBs with known red-
shifts detected by Swift from January 2005 up to September
2011, for which the light curves include early XRT data. The
redshifts z are taken from J. Greiner’s Web site 3 and from
Xiao & Schaefer (2009). Among these GRBs we have se-
lected 123 with early XRT coverage for the fitting. Thus, the
BAT-XRT combined data give us almost continuous mon-
itoring of the GRB varying emission. On the other hand,
we rejected all bursts where a gap in the XRT coverage re-
veal flares with only partial coverage, missing the turn on,
the peak and/or the decay phases. For both prompt and
afterglow components we compute the luminosity in the ap-
propriate energy bandpass, (Emin, Emax), as:

L(Emin, Emax, t) = 4πD2
L(z)F (t) ·K(Emin, Emax), (1)

where DL(z) is the luminosity distance computed in the
flat ΛCDM cosmological model with ΩM = 0.291 and h =
0.70 in units of 100 km s−1 Mpc−1, F is the measured X-
ray energy flux and K is the K -correction for the cosmic
expansion Bloom et al. (2001):

K =

∫ Emax/(1+z)

Emin/(1+z)
Φ(E)dE∫ Emax

Emin
Φ(E)dE

, (2)

where the energy spectrum Φ(E) of the afterglows is
described by a simple power law Φ(E) = E−βa , while the
one of the prompt pulses by the Band function (Band et al.
1993). 4

We also employ another way to compute Lpeak, instead
of using the functional form of Willingale et al. (2010), we
follow Schaefer et al. (2007) and Eq. 1, using the brightest
peak flux over 1 sec interval 5. For the functional form for
the spectrum, we use either a power-law (PL) or a power

3 http://www.mpe.mpg.de/ jcg/grbgen.html
4 For the prompt pulses βpulse is the low energy index of the

Band spectrum and the spectral fits are calculated separately
from the afterglow ones within the (Emin, Emax) = (15-150)

keV in the 4 BAT energy channels (15 − 25 keV, 25 − 50 keV,

50−100 keV, 100−150 keV). We point out here that the spectrum
is not extrapolated at low energy in the afterglow, but it has been

computed separately. Moreover, in the afterglow phase generally

there is no spectral evolution; few bursts which show spectral
evolution are not in our list of GRBs.
5 In our sample there is always a peak flux defined for 1 sec

interval.
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Figure 2. Distributions of L vs T ∗ (upper panel) and E vs. T ∗

(middle panel) for each single pulse both in the prompt (black
symbols) and in the afterglow (red symbols) emissions. L and E
are equal to Lf and Ef for the prompt emission pulses, while be-

ing equal to La and Eafterglow = La ∗T ∗a for the afterglows, and,
respectively, the time T ∗ represents T ∗f for the prompt emission
pulses and T ∗a for the afterglow phase. The green points represent

the highest luminosity prompt emission pulses (TLmax,Lmax),

while the yellow ones represent (TEmax, Emax). In the bottom
panel, we show a distribution of the number of maximum lumi-
nosity pulses in the GRB pulse histogram.

law with a cutoff (CPL), depending on the best χ2 fit pre-
sented in the Second BAT Catalog (differently from the ap-
proach used in W010 in which the Band function for the
pulse profile is adopted). All of the BAT spectra are ac-
ceptably fitted by either a PL or a CPL model. The same
criterion as in the first BAT catalog, ∆χ2 between a PL
and a CPL fit greater than 6 (∆χ2 ≡ ∆χ2

PL − ∆χ2
CPL),

was used to determine if the CPL model is a better spec-
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Correlations for GRB prompt and afterglow plateau emissions 5

tral model for the data. Note that none of the BAT spec-
tra show a significant improvement in ∆χ2 with a Band
function (Band et al. 1993) fit compared to that of a
CPL model fit. For GRBs not presented in the Catalog we
have chosen the spectral energy distribution as a function
that gives the best χ2 according to the Swift Burst Ana-
lyzer, http : //www.swift.ac.uk/burstanalyser/ (Evans et
al. 2009), which are consistent with the approach of the sec-
ond BAT catalog. For the derivation of the pulse en-
ergy we integrated the fitted model luminosity curve
for each pulse as follows:

Epulse =

∫ Tend

T0

4πD2
L(z)F (t) ·K(Emin, Emax)dt, (3)

where T0 = Tf −Tej following the W010 notation,
while Tend is the time end of the pulse width, for
these definitions see section 3.1. The energy is presented
on the lower panel of Fig. 2.

In what follows we use the above data for comparing
the prompt and afterglow characteristics and correlations.

5 RESULTS

The results are presented in Fig. 2. The top panel shows
the luminosity-time, LT, scatter diagram including both
pulses (Lf − T ∗f , black points) and the afterglow (La − T ∗a ,
red points) while the middle panel shows the energy, ET,
scatter diagram, where the afterglow energy is calculate as
Ea = La ∗ T ∗a . The lower panel shows the distribution on
number of pulses per GRB. For each GRB we also show
the brightest luminosity (integrated over 1 s) Lf,max (green)
and Epeak,max (yellow) taken as the maximum Lf and Epeak
among the pulses of a given GRB. 6 We first note that using
the new and larger sample we have repeated the analysis
carried out in Dainotti et al. (2013a) on the La − T ∗a corre-
lation and find similar results. A fit to this relation logLa =
log a+ b · log T ∗a using a Bayesian method (D’Agostini 2005)
yields the observed intercept log aplateau = 51.14± 0.58 and
slope bplateau = −0.90+0.19

−0.17 and the probability of the cor-
relation occurring by chance for an uncorrelated sample is
P ≈ 10−35 (Bevington & Robinson 2003).

5.1 The LT Correlations

As shown in the upper panel of Fig. 2) there is a strong
L− T ∗ anti-correlation for both the prompt pulses and the
plateau. Linear fits to logL vs log T using the D’Agostini
method (D’Agostini 2005) described in the Appendix,
yields slopes and intercepts respectively to be bprompt =
−1.52+0.13

−0.11, log aprompt = 52.98 ± 0.08 erg/s for the prompt
pulses, and bplateau = −0.90+0.19

−0.17, log aplateau = 51.14± 0.58
for the plateau. The slopes differ almost by 3σ implying a
significance difference at least in the observed correlations.
More credence can be given to this results, because we have
used the same W10 method for determining the luminosities
and duration for both prompt and afterglow components.

6 We note that the catalog uses a power law or a power law

with an exponential break, instead of the Band function, for the

spectral fitting.
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Figure 3. Spectral index distributions for the prompt emission

pulses, βpulses (left panel); the pulses in the afterglow phase (right

panel), βa. We represent all the pulses both in the prompt and in
the afterglow emission.

This makes the comparison between Lf -T ∗f and La − T ∗a
well defined. It has already been demonstrated within the
context of W07 that both prompt and afterglow emission
can be represented by the same functional form. The un-
derlying hypothesis, which we test here, is that the plateau
can be considered as a single flare with origin similar to the
peaks of the prompt emission. Another way to look at this
correlation is to consider the energy-duration correlation,
where the energy is computed integrating the pulse shape
over the pulse width. As expected we see much shallower
relation for energies than luminosities. The prompt pulses
show still a weak anti-correlation, but there is no correlation
between Ea and T ∗a for the plateau. The prompt emission
pulses and the plateau data occupy two distinctive regions
on the energy-duration plane. The pulses are short and have
slightly higher average energy as compared to the plateau,
which are in average 214 times longer. However, there is
continuity in the distribution between prompt and plateau
pulses, namely there is also a small region of overlapping
among the two phases.

For clarity, in the lower panel of Fig. 2, we present the
distribution of Lmax, which is the maximum value of Lpeak
in a burst, in correspondence of its peak number, namely at
which the peak occurs. We note that the majority of Lmax
occur between the first and second peaks of the prompt emis-
sion, only in rare cases Lmax correspond to a peak number
which exceeds 10.

5.2 Spectral Features of the pulses

We now compare the spectral characteristics. Fig. 3 shows
the distribution of spectral indexes of 628 prompt pulses
and 123 from the afterglows. The two distributions are sig-
nificantly different. The distribution of the prompt pulse in-
dexes is broader than that of the afterglow. As mentioned
above, the spectral index βa does usually not evolve (Evans
et al. 2014), it is constant over the plateau phase and later
during the afterglow decay phase, while the values of βpulses
may vary during the prompt emission phase. On Fig.4 we
plot the average index of prompt pulses in each source versus
the afterglow index. There seem to be very little correlation
between the two indexes with most GRBs having a harder
prompt than afterglow spectra.

Moreover, the spectral parameters do not correlate
strongly with the other parameters we have introduced so

c© 0000 RAS, MNRAS 000, 000–000
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Figure 4. Spectral index distribution of the averaged βpulses
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W010 model. We note that there is no correlation among the two

distributions.
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Figure 5. GRB distributions in redshift bins at La–Lpeak plane,
where Lpeak is computed using the approach used in the Sec-

ond BAT Catalog. The sample is split-ed into 4 different equi-

populated redshift bins: z 6 0.84 (blue), 0.84 6 z < 1.8 (ma-
genta), 1.8 6 z < 2.9 (green) and z > 2.9 (red). The dashed line
is the fitting correlation line.

far such as E, L and the various timescales. When inspecting
the Fig. 3, the spectral index of the pulses evolves and this
evolution has been considered in the pulse model fit. Here,
the spectrum of each single pulse has been computed. We
note that the βpulses computed for each pulse have wider
distributions than the typical values, integrated over T90,
of β in the prompt phase. These differences in spectral in-
dex do not imply necessarily or justify a difference in the
luminosity-time correlation slopes. In fact, spectral breaks
and spectral evolution can in principle explain their diverse
distributions.

5.3 Luminosity-Luminosity Correlation

We now compare prompt energy- afterglow energy and
prompt luminosity- afterglow luminosity correlations.

At Fig. 6 we compare the average prompt
and the afterglow energies. The 〈Eprompt〉 =∑N

i=1
Epulse,i/N , where Epulse,i is the energy of each
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Figure 6. Prompt averaged energy < Eprompt > vs. afterglow

energy, Eafterglow, for 123 GRBs computed using the W010

model. The solid line for equal prompt and afterglow energies
is provided for reference.

single pulse computed following Equ. 3 in each GRB,
N is the number of pulses in each GRB. For the af-
terglow the average afterglow energy, < Eafterglow >,
coincides with Eafterglow of the single pulses since we
do not have multiple pulses in the afterglow in this
sample, infact N = 1 for each GRB afterglow. Previ-
ously W07 found that in few cases Eafterglow ≡ 〈Eprompt〉,
but in most cases Eafterglow was roughly 10% of the prompt
emission. Here, with many more GRBs analyzed and within
the pulse-afterglow model we confirm this result.

The correlation of the prompt peak pulse isotropic lumi-
nosity averaged over all single GRB pulses and the afterglow
luminosity computed within the W010 model is comparable
with the one presented in the upper panel of Fig. 5, that
correlates Lpeak, the isotropic peak luminosity of the bright-
est GRB prompt emission pulse from the time of the burst,
and La where Lpeak has been computed using the approach
adopted in the Second BAT Catalog (Sakamoto et al. 2011),
as described in §4. We have tested over all the GRB sample
that Lpeak, presented in Fig. 5 (upper panel), has a consis-
tent distribution compared to Lf , obtained from the pulse
fitting.

In Fig. 5 we show that the correlation between Lpeak
and La exists even for different redshift bins. The fitted cor-
relation reads as follows:

logLa = A+B ∗ logLpeak (4)

where A = −14.67± 3.46 and B = 1.21+0.14
−0.13.

Dainotti et al. (2011b) demonstrated that correlations
exist between La and the luminosities for the prompt emis-
sion, computed as E/T ∗, where T ∗ are the characteris-
tic GRB rest frame time scales T ∗p = Tp/(1 + z), T ∗90 =
T90/(1 + z) and T ∗45 = T45/(1 + z) 7. We stress here that
ρ = 0.79 for the Lpeak−La correlation, where Lpeak is com-
puted according to the Second Bat Catalog, is considerably
increased compared to ρ = 0.60 for the L90 = E/T90 vs
La correlation (Dainotti et al. 2011b). This means that a

7 T ∗90 and T ∗45 are the rest frame time scales for GRB energy
emission between 5 and 95 % and 5 and 50% ranges of the total
prompt emission respectively, while T ∗p is the rest frame time at

the end of the prompt emission in the W07 model.
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more suitable choice of the parameters in the luminosities
or energies definition can increase of the 24% the correla-
tion coefficient. We also note that here the sample is dou-
bled compared to the analysis performed by Dainotti et al.
(2011b) in which the GRBs analyzed were 62. In Fig. 5 we
selected the value of Lpeak computed from Eq. 1 assuming a
broken power law or a simple power law as a spectral model
(as it has been explained in section 4) thus not involving
error propagation due to time and energy as in the previous
defined luminosities. This is the reason why for this correla-
tion we obtain an increment of ρ.

We here underline the importance of the choice of the
Lpeak-La correlation and not of the E-La correlations pre-
sented in Dainotti et al. (2011b), because E may suffer
from the systematic bias in duration measurements. This
would mean that although E evolution studies may in fact
be biased at high redshift where a fraction of detected
bursts grows with a low signal-to-noise ratio, no such bias
should exist for Lpeak (Lloyd & Petrosian 1999). Therefore,
the luminosity-duration is more reliable than the energy-
duration correlation, and in the present paper this is the
reason why we addressed the attention to the Lpeak-La re-
lation, instead of E − La.

6 THE REDSHIFT DEPENDENCE

The Lpeak −La correlation could be due to the dependence
of luminosity on distance, since it involves two luminosities.
We compare Fig. 5 and Fig. 7 in order to clarify how much
this dependence influences the existence of the correlation
itself. In support of the existence of the Lpeak-La correlation
we show the correlation between observed fluxes Fa, the flux
at time Ta, vs. the peak flux in the prompt emission, Fpeak,
Fa-Fpeak, with a Spearman correlation coefficient ρ = 0.63
(see Fig. 7). Thus, we remove with a first rough approxi-
mation the redshift dependence induced by the distance lu-
minosity using fluxes instead of luminosities. In fact, if the

Lpeak − La correlation was completely due to the induced
redshift dependence this would have caused a disappearing
of the correlation or a drastically reduced value of ρ less than
0.5 and a probability of occurrence by chance > 5%, which
is not the case. Then, to evaluate the presence of redshift
evolution we follow the approach adopted in Dainotti et al.
(2011a, 2013a) by dividing the sample into 4 redshift bins.
The GRBs distribution in each redshift bin is not clustered
or confined in a given subspace, see Fig. 5, thus suggesting
no strong redshift evolution. This is expected for La, be-
cause Dainotti et al. (2013a) demonstrated that there is no
redshift evolution of this luminosity. However, Petrosian et
al. (2015) show that Lpeak is affected by the redshift evolu-
tion as Lpeak/(1 + z)2.3 using a more complex function than
the simple power law, used previously for GRBs (Dainotti et
al. 2013a). Here the sample has been chosen differently from
Petrosian et al. (2015), because only observations which have
good coverage of the data in the early prompt and can be
fitted within the W010 model are taken into account. There-
fore, for a more precise evaluation we have to address the
problem of the luminosity evolution for this specific sam-
ple. For a quantitative analysis of this problem we apply the
Efron and Petrosian (1992) method.

7 THE EFRON AND PETROSIAN METHOD

The first important step for determining the distribution
of true correlations among the variables is the quantifica-
tion of the biases introduced by the observational selection
effects due to the selected sample and the instrumental lim-
its. In the case under study the selection effect or bias that
distorts the statistical correlations are the flux limit and
the temporal resolution of the instrument. To account for
these effects we apply the Efron & Petrosian technique, al-
ready successfully applied for GRBs (Petrosian et al. 2009;
Lloyd & Petrosian 2000; Kocevski & Liang 2006). The EP
method reveals the intrinsic correlation because the method
is specifically designed to overcome the biases resulting from
incomplete data. Moreover, it identifies and removes also the
redshift evolution present in both variables, time and lumi-
nosity.

The EP method uses a modified version of the Kendall τ
statistic to test the independence of variables in a truncated
data. Instead of calculating the ranks Ri of each data points
among all observed objects, which is normally done for an
untruncated data, the rank of each data point is determined
among its “associated sets” which include all objects that
could have been observed given the observational limits.

Here we give a brief summary of the algebra involved
in the EP method. This method uses the Kendall rank test
to determine the best-fit values of parameters describing the
correlation functions using the test statistic

τ =

∑
i
(Ri − Ei)√∑

i
Vi

(5)

to determine the independence of two variables in a data set,
say (xi, yi) for i = 1, . . . , n. Here Ri is the rank of variable
y of the data point i in a set associated with it. For a un-
truncated data (i.e. data truncated parallel to the axes) the
associated set of point i includes all of the data with xj < xi.
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Figure 8. Upper Panel: The bivariate distribution of Lpeak and

redshift with the flux limit assuming the K correction K = 1. The

BAT flux limit, 4.0×10−8 erg cm−2 (solid red line) which better
represents the limit of the sample. Lower panel: The bivari-

ate distribution of the rest frame time T ∗prompt and the redshift,

where here with Tprompt we denote the sum of the peak pulses
width of each single pulse in each GRB. The chosen limiting value

of the observed pulse width in the sample, Tprompt,lim = 0.24 s.

The red line is the limiting rest frame time, Tprompt,lim/(1 + z).

If the data is truncated one must form the associated set con-
sisting only of those points which satisfy conditions imposed
by the limiting instrumental values, see definition below.

If (xi, yi) were independent then the rank Ri should be
distributed continuously between 0 and 1 with the expecta-
tion value Ei = (1/2)(i+1) and variance Vi = (1/12)(i2−1).
Independence is rejected at the nσ level if | τ | > n. Here the
mean and variance are calculated separately for each associ-
ated set and summed accordingly to produce a single value
for τ . This parameter represents the degree of correlation
for the entire sample with proper accounting for the data
truncation.

With this statistic, we find the parametrization that
best describes the luminosity and time evolution for the
prompt emission. For the afterglow emission we refer to re-
sults already presented in Dainotti et al. (2013a). We now
have to determine the limiting flux, Flim, which gives the
minimum observed luminosity for a given redshift, Llim =
4πD2

L(z)FlimK. At the upper panel of Fig. 8 we show the
limiting luminosity for K = 1 just not to show fuzzy bound-
aries, but for an appropriate evaluation of the luminosity
evolution we assign to each GRB its own K correction.

We have investigated several limiting fluxes to determine
a good representative value, while keeping an adequate size
of the sample itself. We have finally chosen the limiting flux
Flim = 4.0×10−8 erg cm−2, which allows 116 GRBs in the
sample. We have also chosen the observed minimum pulse
width of the prompt, which is T ∗prompt,lim = 0.24/(1 + z) s,
lower panel of Fig. 8. This time has been computed as the
sum of the single pulses width in each GRB. In such a way
we can employ a comparison with previous time evolution
in the afterglow as presented in Dainotti et al. (2013a).

7.1 The luminosity and time evolutions

For the luminosity and time evolution it is necessary to first
determine whether the variables Lpeak and T ∗prompt, are cor-
related with redshift or are statistically independent. For
example, the correlation between Lpeak and the redshift, z,
is what we call luminosity evolution, and independence of
these variables would imply absence of such evolution. The
EP method prescribed how to remove the correlation by
defining new and independent variables.

We determine the correlation functions, g(z) and f(z)
when determining the evolution of Lpeak and T ∗prompt so that
de-evolved variables, namely the local variables, L′peak ≡
Lpeak/g(z) and T ′prompt ≡ T ∗prompt/f(z) are not correlated
with z. The evolutionary functions are parametrized both
by simple correlation functions or more complex ones.

The simple power law functions are represented by

g(z) = (1 + z)
kLpeak , f(z) = (1 + z)kT∗,prompt (6)

so that L′peak = Lpeak/g(z) refer to the local (z = 0)
luminosities. The more complex function chooses a fiducial
critical Z, where we define Z = 1 + z. We chose Zcr = 3.5,
thus allowing the following functional form for

g(z) =
ZkL(1 + ZkLcr )

ZkL + ZkLcr
, f(z) =

Zk
∗
T (1 + Z

k∗T
cr )

Zk
∗
T + Z

k∗
T
cr

(7)

We computed both approaches obtaining compatible re-
sults. The associated set for the source i to obtain the lumi-
nosity evolution is :

Ji ≡ {j : Lj > Lmin(i)} ∨ {j : Lj > Li} ∨ {j : zj < zi}, (8)

where Lmin(i) is the minimum luminosity of the object
i corrispodent to Li, zi is the redshift of the object i. The
objects of all the sample are indicated with i, while the ob-
jects in the associated sets are denoted with j. With the the
simbol ∨ we indicate the union of the sets.

Analogously, to obtain the pulse width evolution factor
we need to compute the associated set for a given object i,
which are :

Ji ≡ {j : Tj > Tmin,i} ∨ {j : Tj > Ti} ∨ {j : zj > zi}, (9)

where Tmin(Tprompt,i) is the minimum Tprompt at which ob-
ject i could be still included in the survey given its peak
width duration and the limiting time of the observation.

With the specialized version of Kendell’s τ statistic, the
values of kLpeak and kT∗

prompt
for which τLpeak = 0 and

τT∗prompt = 0 are the ones that best fit the luminosity and
width pulse evolution respectively, with the 1σ range of un-
certainty given by |τx| 6 1. Plots of τLpeak and τT∗

prompt

versus kLpeak and τT∗
prompt

are shown in Fig. 9 and Fig. 10
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Figure 9. Upper: Test statistic τ vs. kLpeak,prompt
, the lumi-

nosity evolution defined by Eq. 6 using a simple power law as

g(z).Lower: The same test statistic using a more complex func-
tion for the evolution g(z), defined by the Eq. 7.

respectively. With kLpeak and kT∗prompt we are able to de-
termine the de-evolved observables T ′prompt and L′peak.

There is a significant luminosity evolution in the
prompt, kLpeak = 2.13+0.33

−0.37, and much less significant in
the time, kT∗

prompt
= −0.62 ± 0.38 for the simple power

law functions. If we consider the more complex function for
the evolution we obtain kLpeak = 3.09+0.40

−0.35 and kT∗
prompt

=

−0.17+0.24
−0.27. It is straightforward that we achieve an higher

evolution for luminosity and a smaller evolution for the time
for the way we chose the function. We also note that the re-
sults of the luminosity evolutions among the two different
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Figure 10. Upper panel: Test statistic τ vs. kT∗
prompt

, the time

evolution defined by Eq. 6, Lower panel: The same test statistic

using a more complex function for the evolution g(z), defined by
the Eq. 7

functions are compatible within 2σ, while the time evolu-
tions are compatible within 1 σ.
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7.2 The intrinsic Lpeak − La correlation

8 We here focus on determining the intrinsic correlation
among the local luminosities L

′
peak − L∗a. Following the

method presented in Petrosian & Singal (2014) we com-
pute the dependence of this correlation from the luminosity
distance. According to Eq. 4 we can rename the variables
with an abuse of notation for simplicity as logL

′
a = L

′
a,

logL
′
peak = L

′
peak and logDL = DL in order to write in

a simpler way the partial correlation coefficient in the log
space domain:

r
L
′
peak

L
′
a,DL

=
r
L
′
peak

,L
′
a
− r

L
′
peak

,DL
∗ r

L
′
a,DL

(1− r2
L
′
peak

,DL
) ∗ (1− r2

L
′
a,DL

)
(10)

which accounts for mutual distance dependence of the
luminosities. We now consider the correlation in the local
luminosity space so that L

′′
a = L

′
peak − αL

′
a and we calcu-

late the r
L
′
peak

,L
′
a,DL

as a function of the index α, namely

the intrinsic slope. As shown in Fig. 11 the correlation be-
comes significant for α = 1.140.83

−0.32, which is very close to
the observed correlation. The errorbars quoted are at the 2
σ significance level.

8 SUMMARY AND DISCUSSION

The analysis presented in this study reveals that

• prompt and plateau phases dissipate similar amounts of
energy, but over very different time scales as shown through
the figures 1, 2 and 6.
• slopes in the luminosity-duration distributions between

the prompt and plateau emissions Lf −T ∗f vs La−T ∗a differ
almost 3 σ, while in the local luminosity space more than
3 σ. However, for the evaluation of the time evolutions of
the pulse in the prompt there is the problem of determining
the proper limiting time of the pulses, as we explained in
footnote 8. Therefore, a definite conclusion on the differences
in the slopes still needs to be reached and this will be object
of a forthcoming investigation. The evidence of difference
between prompt and afterglow is then recalled also by the
difference in the spectral parameters of the prompt and the
afterglow phases. Also this fact does not imply necessarily a
diverse mechanism as we have pointed out in §5.2.
• The extended luminosity-duration distributions Lf −

T ∗f , see upper panel of Fig. 2 and the energy-duration cor-
relation, see the middle panel of Fig. 2 show that there is

8 Here we do not consider the de-evolved L
′
peak − T

′
prompt cor-

relation because the T
′
prompt adopted is the sum of the all time

widths of all the pulses for each GRB and not the width of the
single pulse. Therefore, we cannot determine with accuracy the
evolution in time for the prompt since for single pulses we are

not able to apply the Efron and Petrosian method, because we
have only 1 limiting time for all the total integrated time over
all the pulses and this does not coincide with the minimum time

among each single pulse. Thus, this discrepancy in the limiting
time determination can lead to an inaccuracy in the evaluation

of the time evolution. Notwithstanding this difficulty for the time
evolution, for the luminosity evolution this problem does not oc-

cur, since we chose the maximum peak luminosity of each GRB
among the all pulses in that given GRB.
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Figure 11. Local luminosity-luminosity correlation coefficient vs

the intrinsic slope showing the best value where L
′
peak and L

′
a are

significantly correlated (the central thick line). The two thinner

lines parallel to r = 0 shows the 0.05% probability that the sample

is drawn by chance.

continuity in transition from prompt distribution to the af-
terglow one, namely no gap in the data. Difference between
the prompt and plateau slopes is present independently from
the choice of luminosity or energy. The luminosity-duration
and energy-duration spaces are just two ways of looking
at the same data, as well as the difference in the correla-
tions. The Etotal-duration plot in the lower panel of Fig. 2
clearly shows that the plateaus occupy a different area of
the energy-duration plane to the pulses. Individual prompt
pulses and plateaus both produce energy values in the same
broad range, but the plateau duration is on average a factor
of 100 larger.
• Stronger correlations are present when we compare re-

spectively < Lprompt > −La and Lpeak−La luminosities, see
Fig. 5, rather than considering La and the prompt emission
luminosities computed as ratio of energy over a particular
time scale, such as L45 = E/T45 and L90 = E/T90, (Dainotti
et al. 2011b).
• We found very interestingly that the Lpeak − La corre-

lation is very robust also in the local luminosity space when
we removed the luminosity evolution both in the prompt and
in the afterglow and it presents a compatible result of the
intrinsic slope with the observed slope within 1 σ. This will
have impact on the investigation for the theoretical models.

From this analysis we hypothesize that

• Both the different slopes in the luminosity-duration and
in the energy-duration space of prompt pulses and plateau
ones might indicate that these two are quite distinct features
of the emission. The former probably come from internal
shocks and the latter from the external shock. The prompt
pulses are fast cooling while the plateau pulses are slow cool-
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ing. This is known from the literature for the prompt and
afterglow phases, (Rees & Meszaros 1994, 1998), but the
upper panel of Fig. 2 shows that this statement might be
true also for the plateau phase. So this is another significant
difference between the prompt and plateau phase indicating
that if the latter is due to synchrotron from the external
shock (which is likely) then the pulses all have very similar
physical conditions in the shock. In particular, the power
law index of the electron distribution is very similar in all
cases.
• The present study is relevant to quantify the mentioned

relations in order to improve or modify the existing physical
model of GRB emission which should predict the Lpeak vs.
La correlation together with the combined luminosity-time
correlations both in prompt and afterglow phases. In partic-
ular, among the models we have mentioned in the theoretical
motivation of this work the one that better describe the ob-
served correlations is the model by Hascoet et al. (2014),
because some particular configurations of the microphysical
parameters are able to reproduce the luminosity-time corre-
lations difference in slopes and the < Lprompt > −La cor-
relations. Also the model proposed by Ruffini et al. (2014)
is able to reproduce these observational features, while thin
shell models, (Van Erten 2014a), are ruled out.

In conclusion, all these observational evidences taken into
account contemporaneously are able to better test and dis-
criminate some of the existing theoretical models.
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APPENDIX A: THE D’AGOSTINI FITTING
METHOD

We briefly present the D’ Agostini method (D’Agostini
2005), used to fit the above mentioned correlations. This
takes into account the intrinsic scatter, thus providing more
reliable errors. Let us suppose that R and Q are two quan-
tities related by a linear relation

R = aQ+ b (A1)

and denote with σint the intrinsic scatter around this re-
lation. Calibrating such a relation means determining the
two coefficients (a, b) and the intrinsic scatter σint. To
this aim, we will resort to a Bayesian motivated technique
D’Agostini (2005) thus maximizing the likelihood function
L(a, b, σint) = exp [−L(a, b, σint)] with :

L(a, b, σint) =
1

2

∑
lnL1 +

1

2

∑
lnL2 (A2)

where

L1 = (σ2
int + σ2

Ri
+ a2σ2

Qi
) (A3)

and

L2 =
(Ri − aQi − b)2

σ2
int + σ2

Qi
+ a2σ2

Qi

(A4)

where the sum is over the N objects in the sample.
The above formulae easily applies to our case setting R =
logL∗X(Ta) and Q = log T ∗a . We estimate the uncertainty on
logL∗X(Ta) by propagating the errors on (Ta, Fa, βa).

The Bayesian approach used here also allows us to quan-
tify the uncertainties on the fit parameters. To this aim, for
a given parameter pi, we first compute the marginalized like-
lihood Li(pi) by integrating over the other parameter. The
median value for the parameter pi is then found by solving :∫ pi,med

pi,min

Li(pi)dpi =
1

2

∫ pi,max

pi,min

Li(pi)dpi . (A5)

The 68% (95%) confidence range (pi,l, pi,h) are then found
by solving :∫ pi,med

pi,l

Li(pi)dpi =
1− ε

2

∫ pi,max

pi,min

Li(pi)dpi , (A6)

∫ pi,h

pi,med

Li(pi)dpi =
1− ε

2

∫ pi,max

pi,min

Li(pi)dpi , (A7)

with ε = 0.68 (0.95) for the 68% (95%) range respectively.
The a and b parameters are independent and the com-

putation of the error is performed around the actual variable
and not in the barycenter of points.
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