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We introduce two new thermostats, one of Langevin type and one of gradient (Brownian) type,
for rigid body dynamics. We formulate rotation using the quaternion representation of angular
coordinates; both thermostats preserve the unit length of quaternions. The Langevin thermostat
also ensures that the conjugate angular momenta stay within the tangent space of the quaternion
coordinates, as required by the Hamiltonian dynamics of rigid bodies. We have constructed three
geometric numerical integrators for the Langevin thermostat and one for the gradient thermostat.
The numerical integrators reflect key properties of the thermostats themselves. Namely, they all
preserve the unit length of quaternions, automatically, without the need of a projection onto the
unit sphere. The Langevin integrators also ensure that the angular momenta remain within the
tangent space of the quaternion coordinates. The Langevin integrators are quasi-symplectic and
of weak order two. The numerical method for the gradient thermostat is of weak order one. Its
construction exploits ideas of Lie-group type integrators for differential equations on manifolds.
We numerically compare the discretization errors of the Langevin integrators, as well as the
efficiency of the gradient integrator compared to the Langevin ones when used in the simulation
of rigid TIP4P water model with smoothly truncated electrostatic interactions. We observe that
the gradient integrator is computationally less efficient than the Langevin integrators. We also
compare the relative accuracy of the Langevin integrators in evaluating various static quantities
and give recommendations as to the choice of an appropriate integrator.
Keywords. stochastic differential equations, weak approximation, ergodic limits, stochastic
geometric integrators, Langevin equations
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I. INTRODUCTION

In most molecular simulations it is desirable
to specify and keep constant the temperature of
the simulated system. This is typically achieved
by designing a system evolution which samples
from the NV T ensemble (Gibbs measure). Within
Monte Carlo methods, this is done by accep-
tance/rejection of trial moves (random displace-
ments of particle positions) according to the
Metropolis criterion (see, for example, Refs. 1
and 2 and references therein). In molecular dy-
namics (MD) simulations, the thermostatting is
achieved either deterministically (e.g. Nosé-Hoover
thermostats), through coupling the system to ad-
ditional degrees of freedom representing a thermal
bath1,3, or by a combination of damping and ran-
dom perturbation of the motion formulated as a
stochastic Langevin equation2,4–6. A combination
of the deterministic and stochastic approaches is
also possible7–9.
A particular advantage of the Langevin ap-

proach is that each degree of freedom of the sys-
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tem can be thermostated independently, without
having to rely on the efficient energy exchange be-
tween different degrees of freedom, which is nec-
essary when using dynamic thermostatting. Good
energy exchange is particularly hard to achieve be-
tween components of the system which evolve on
different time scales (i.e., fast-slow separation of
degrees of freedom). For Langevin equations, it is
easier to ensure and to prove ergodicity (with the
Gibbsian invariant measure) of the thermostat.

Langevin thermostats are also useful for models
of dilute molecules in which the solvent is treated
implicitly4. In the absence of thermostatting, iso-
lated molecules would move ballistically and the
energy of the solute would be conserved. Aug-
menting the Hamiltonian dynamics of the solute
with damping and noise leads to diffusive motion
and couples the simulated molecules to a thermal
reservoir, mimicking some of the effects of a sol-
vent.

In systems which contain rigid bodies, Langevin
or gradient approaches need to be developed for
thermostatting rotational degrees of freedom. In
our previous work5, Langevin dynamics were pro-
posed for rotational degrees of freedom based on
the quaternion representation of rotational dynam-
ics of Miller III et al.10 Using the operator splitting
approach, two different weak 2nd-order (i.e., with
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2nd-order convergence of approximate averages to
the exact ones; see further details on stochastic
numerics, for example, in Refs. 6 and 11) meth-
ods were presented and tested. They were com-
bined with either Langevin or gradient dynamics
for the translational degrees of freedom. The re-
sulting numerical methods were tested on a variant
of the popular TIP4P rigid model of water. Sub-
sequently, this method was applied to simulate a
coarse-grained, implicit-solvent model of DNA in
a range of contexts.12–15

In this work we first revise the Langevin thermo-
stat for rigid body dynamics proposed in Ref. 5.
The thermostat from Ref. 5 automatically pre-
serves the unit length of quaternions but does
not keep the angular momenta conjugate to the
quaternion coordinates on the tangent space, as re-
quired by the Hamiltonian dynamics of rigid bod-
ies. As we show here, this non-physical behaviour
of the thermostat does not affect evaluation of
quantities of physical interest; it can, however, in-
troduce rounding errors in numerical integration.
The new Langevin thermostat proposed in this pa-
per does not have this deficiency. For this new
thermostat, we construct three geometric integra-
tors (Langevin A, B and C) of weak order two.
Langevin A and B are related to Langevin A and
B proposed in Ref. 5. We also introduce a new
Langevin C integrator, whose performance is sim-
ilar to Langevin A with respect to the size of the
leading terms in the discretization errors but, like
Langevin B, it can be used with large values of
the friction parameters (i.e. approaching the over-
damped limit). Our new approach also highlights
several simplifications in construction of integra-
tors, eliminating the need for explicit matrix expo-
nentials and Cholesky decompositions, which were
required in Ref. 5. Further, we propose a new
gradient (Brownian) thermostat for rigid body dy-
namics and construct a 1st-order geometric inte-
grator for it. Both the gradient thermostat and the
numerical scheme for it preserve the unit length of
quaternions. We perform numerical comparison of
the proposed Langevin and gradient thermostats
and of the derived numerical integrators. The nu-
merical tests demonstrate that the Langevin ther-
mostat and its numerical integration by Langevin
A or Langevin C constitute a powerful numerical
technique for computing NV T ensemble averages
for systems which contain rigid bodies.

The rest of the paper is organised as follows. In
Section II we explicitly formulate the model of a
molecular system with rotational degrees of free-
dom in quaternion representation, recalling and
clarifying previous results from Ref. 5. A re-
vised Langevin thermostat for rigid body dynam-
ics is introduced in Section III and a new gradi-
ent (Brownian) thermostat is introduced in Sec-
tion IV. In Section V we derive numerical methods

for the thermostats of Sections III and IV: revised
Langevin A and B integrators, new Langevin C,
and a numerical method for the gradient thermo-
stat. In Section VI we present results of numerical
experiments with the proposed numerical integra-
tors applied to the system of rigid water molecules
described by a screened TIP4P model interaction
potential. Comparative performance of the ther-
mostats and numerical methods for them is dis-
cussed in Section VII.

II. PRELIMINARIES

We consider a system of n rigid three-
dimensional molecules described by the center-
of-mass coordinates r = (r1T, . . . , rnT)T ∈ R

3n,

rj = (rj1, r
j
2, r

j
3)

T ∈ R
3, and the rotational co-

ordinates in the quaternion representation q =
(q1T, . . . , qnT)T, qj = (qj0, q

j
1, q

j
2, q

j
3)

T, such that
|qj | = 1, i.e., qj ∈ S

3, which is the three-
dimensional unit sphere with center at the origin.
We use standard matrix notations, and “T” de-
notes transpose. For further background on the
quaternion representation of rigid body dynamics,
see, for example, Refs. 16–18.

Following Ref. 10, we write the system Hamilto-
nian in the form

H(r,p,q,π) =
pTp

2m
+

n
∑

j=1

3
∑

l=1

Vl(q
j , πj) + U(r,q),

(1)
where p = (p1T, . . . , pnT)T ∈ R

3n, pj =

(pj1, p
j
2, p

j
3)

T ∈ R
3, are the center-of-mass mo-

menta conjugate to r; π = (π1T, . . . , πnT)T, πj =

(πj
0, π

j
1, π

j
2, π

j
3)

T are the angular momenta conju-
gate to q such that qj Tπj = 0, i.e., πj ∈ TqjS

3,
which is the tangent space of S3 at qj ; and U(r,q)
is the potential interaction energy. The second
term in (1) represents the rotational kinetic energy
of the system with

Vl(q, π) =
1

8Il

[

πTSlq
]2

, l = 1, 2, 3, (2)

where the three constant 4-by-4 matrices Sl are

S1 =







0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0






, S2 =







0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0






,

S3 =







0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0






,

and Il are the principal moments of iner-
tia of the rigid molecule. We also introduce
S0 = diag(1, 1, 1, 1), the diagonal matrix D =

2



diag(0, 1/I1, 1/I2, 1/I3), and the orthogonal ma-
trix:

S(q) = [S0q, S1q, S2q, S3q]

=







q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0






. (3)

Note that qTS(q) = (1, 0, 0, 0) and qTS(q)D =
(0, 0, 0, 0). The rotational kinetic energy of a
molecule can be expressed in terms of the matrices
D and S as follows:

3
∑

l=1

Vl(q, π) =
1

8
πTS(q)DST(q)π .

We assume that U(r,q) is a sufficiently smooth
function. Let f j(r,q) = −∇rjU(r,q) ∈ R

3, which
is the translational force acting on the centre of
mass of molecule j, and F j(r,q) = −∇̃qjU(r,q) ∈
TqjS

3, which is the rotational force. Note that,
while ∇rj is the gradient in the Cartesian coor-
dinates in R

3, ∇̃qj is the directional derivative19

tangent to the three dimensional sphere S
3 imply-

ing that

qT∇̃qjU(r,q) = 0. (4)

For a discussion of the evaluation of ∇̃qj , which
can also be calculated via Cartesian torques, see
Appendix A.

The derivatives of (1) with respect to coordi-
nates and momenta determine the dynamics prior
to incorporation of damping and noise. In partic-
ular, we note

3
∑

l=1

∇πVl(q, π) =
1

4

3
∑

l=1

1

Il
Slq [Slq]

T
π (5)

=
1

4
S(q)DST(q)π,

3
∑

l=1

∇qVl(q, π) = −1

4

3
∑

l=1

1

Il

[

πTSlq
]

Slπ.

The following Langevin thermostat for rigid
body dynamics, derived in Ref. 5, is written here

in a more explicit form:

dRj =
P j

m
dt, Rj(0) = rj , (6)

dP j = f j(R,Q)dt

−γP jdt+

√

2mγ

β
dwj(t), P j(0) = pj ,

dQj =
1

4
S(Qj)DST(Qj)Πjdt, Qj(0) = qj , (7)

|qj | = 1,

dΠj =
1

4

3
∑

l=1

1

Il

(

Πj TSlQ
j
)

SlΠ
jdt+ F j(R,Q)dt

−ΓJ(Qj)Πjdt+

√

2MΓ

β
dW j(t),

Πj(0) = πj , j = 1, . . . , n,

where (wT,WT)T = (w1T, . . . , wnT,W 1T, . . . ,
WnT)T is a (3n+4n)-dimensional standardWiener

process with wj = (wj
1, w

j
2, w

j
3)

T and W j =

(W j
0 ,W

j
1 ,W

j
2 ,W

j
3 )

T; γ ≥ 0 and Γ ≥ 0 are the fric-
tion coefficients for the translational and rotational
motions, respectively, measured in units of inverse
time, which control the strength of coupling of the
system to the “heat bath”with the inverse temper-
ature β = 1/(kBT ) > 0. In the above equations
we also use

J(q) =
M

4
S(q)DST(q), M =

4
∑3

l=1
1
Il

. (8)

Note that TrJ(q) = 1.
It was shown in Ref. 5 that the solution of (6)-(7)

preserves the quaternion length

|Qj(t)| = 1, j = 1, . . . , n , for all t ≥ 0, (9)

i.e., there is no need to prescribe an additional al-
gebraic constraint on (6)-(7). At the same time,
the condition qj Tπj = 0, which is satisfied by
the deterministic Hamiltonian dynamics of a rigid
body10, is not preserved by the solution of the
stochastic thermostat (6)-(7) as explained below.

Let us introduce Ωj(t) := 1
2 (Q

j(t))TΠj(t). We

see that 2Ωj(t) represents the component of the
angular momenta Πj(t) parallel to the rotational
coordinates Qj(t). Recall that Qj(t), being unit
quaternions, are constrained to unit spheres; there-
fore, as in the deterministic case, the quantities
Ωj(t) should be zero from the physical point of
view, i.e., Πj(t) ∈ TQjS

3. However, the Langevin
thermostat (6)-(7) does not keep Πj(t) on the tan-
gent space TQjS

3. Indeed, by direct calculations
we obtain

dΩj = 1
2

√

2MΓ/βQj TdW j(t), j = 1, . . . , n .
(10)
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Consequently, if Ωj(0) = 0 then EΩj(t) = 0 and

E
[

Ωj(t)
]2

= MΓt/(2β). Nevertheless, the pres-

ence in (6)-(7) of the component of Πj(t) parallel
to Qj(t) does not affect evaluation of quantities
of physical interest (see Appendix B), and hence
they are computed correctly using (6)-(7). At the
same time, unbounded growth of the variance of
this non-physical component with time can intro-
duce rounding errors in numerical integration of
this thermostat. The new thermostat (see Sec-
tion III) does not have this deficiency.

III. NEW LANGEVIN THERMOSTAT FOR RIGID

BODY DYNAMICS

As we discussed in the previous section, the
Langevin thermostat in Ref. 5 has a non-zero value
for the non-physical component in the angular mo-
menta Πj(t) parallel to the rotational coordinates
Qj(t), which can introduce rounding errors in nu-
merical integration of this thermostat. Here we
propose a new stochastic thermostat which pre-
serves both the unit length of quaternions and the
condition (Qj(t))TΠj(t) = 0, i.e., Πj(t) ∈ TQjS

3.
This thermostat takes the form

dRj =
P j

m
dt, Rj(0) = rj , (11)

dP j = f j(R,Q)dt

−γP jdt+

√

2mγ

β
dwj(t), P j(0) = pj ,

dQj =
1

4
S(Qj)DST(Qj)Πjdt, Qj(0) = qj , (12)

|qj | = 1,

dΠj =
1

4

3
∑

l=1

1

Il

(

Πj TSlQ
j
)

SlΠ
jdt+ F j(R,Q)dt

−ΓJ(Qj)Πjdt+

√

2MΓ

β

3
∑

l=1

SlQ
jdW j

l (t),

Πj(0) = πj , qj Tπj = 0, j = 1, . . . , n,

where (wT,WT)T = (w1 T, . . . , wnT,W 1T, . . . ,
WnT)T is a (3n+3n)-dimensional standardWiener

process with wj = (wj
1, w

j
2, w

j
3)

T and W j =

(W j
1 ,W

j
2 ,W

j
3 )

T; the rest of the notation is as in
(6)-(7).
It is not difficult to show that the new thermo-

stat (11)-(12) possesses the following properties:

• The Ito interpretation of the system of
stochastic differential equations (SDEs) (11)-
(12) coincides with its Stratonovich interpre-
tation.

• As in the case of (6)-(7), the solution of
(11)-(12) preserves the quaternion length (cf.
(9)).

• The solution of (11)-(12) automatically pre-
serves the following constraint:

QT(t)Π(t) = 0, for all t ≥ 0. (13)

• Assume that the solution X(t) = (RT(t),
PT(t),QT(t),ΠT(t))T of (11)-(12) is an er-
godic process20,21 on

D = {x = (rT,pT,qT,πT)T ∈ R
14n :

|qj | = 1, qj Tπj = 0, j = 1, . . . , n}.

Then it can be shown that the invariant mea-
sure of X(t) is Gibbsian with the density
ρ(r,p,q,π) on D:

ρ(r,p,q,π) ∝ exp(−βH(r,p,q,π)), (14)

which corresponds to the NV T ensemble of
rigid bodies, as required.

We note that the old thermostat (6)-(7) required
a 7n-dimensional Wiener process while the new
thermostat (11)-(12) requires a 6n-dimensional
Wiener process, which is consistent with the num-
ber of degrees of freedom in the system.

IV. GRADIENT THERMOSTAT FOR RIGID

BODY DYNAMICS

Gradient systems are popular in molecular dy-
namics for thermostatting translational degrees of
freedom2,6,22 (see also references therein). In Ref. 5
a mixture of a gradient system for the translational
dynamics and a Langevin-type equation for the ro-
tational dynamics was suggested. In this Section
we propose Brownian dynamics for thermostatting
rigid body dynamics, i.e., a gradient system for the
center-of-mass coordinates and the rotational coor-
dinates in the quaternion representation.

It is easy to verify that
∫

Dmom

exp(−βH(r,p,q,π))dpdπ (15)

∝ exp(−βU(r,q)) =: ρ̃(r,q),

where (rT,qT)T ∈ D
′ = {(rT,qT)T ∈ R

7n : |qj | =
1} and the domain of conjugate momenta Dmom =
{(pT,πT)T ∈ R

7n : qT
π = 0}.

We introduce the gradient system in the form of
Stratonovich SDEs:

dR =
υ

m
f(R,Q)dt+

√

2υ

mβ
dw(t), R(0) = r,

(16)

dQj =
Υ

M
F j(R,Q)dt+

√

2Υ

Mβ

3
∑

l=1

SlQ
j ⋆ dW j

l (t),

(17)

Qj(0) = qj , |qj | = 1, j = 1, . . . , n,

4



where “⋆” indicates the Stratonovich form of the
SDEs, parameters υ > 0 and Υ > 0 control the
speed of evolution of the gradient system (16)-(17),
f = (f1T, . . . , fnT)T and the rest of the notation
is as in (11)-(12). Note that, unlike in the case of
(11)-(12), the Stratonovich and Ito interpretations
of the SDEs (16)-(17) do not coincide.
This new gradient thermostat possesses the fol-

lowing properties.

• As in the case of (6)-(7) and (11)-(12), the
solution of (16)-(17) preserves the quaternion
length (cf. (9)).

• Assume that the solution X(t) =
(RT(t),QT(t))T ∈ D

′ of (16)-(17) is an
ergodic process20. Then, by the usual means
of the stationary Fokker-Planck equation
(see Appendix C), one can show that its
invariant measure is Gibbsian with the
density ρ̃(r,q) from (15).

When a thermostat is used only to control the
temperature of a simulated system, and not also
to mimic the dynamical effects of an implicit sol-
vent, the Langevin thermostat (11)-(12) is suitable
for computing both dynamical and static quanti-
ties (provided the friction coefficients are relatively
small), whereas the gradient thermostat (16)-(17)
can be used to compute only static quantities2,6 in
such systems.

V. NUMERICAL METHODS

In this section we construct geometric integra-
tors for the new Langevin thermostat (11)-(12)
(Sections VA-VC) and for the new gradient ther-
mostat (16)-(17) (Section VD). The numerical
methods for the Langevin thermostat are based
on the splitting technique. It was observed in
Ref. 23 that numerical schemes based on differ-
ent splittings might have considerably different
properties. Roughly speaking, Langevin ther-
mostat SDEs (11)-(12) consist of three compo-
nents: Hamiltonian + damping + noise. The
integrator Langevin A is based on the splitting
of (11)-(12) into the stochastic Hamiltonian sys-
tem (Hamiltonian + noise) and the determinis-
tic system of linear differential equations corre-
sponding to the Langevin damping. The other two
schemes, Langevin B and C, are based on splitting
of (11)-(12) into the deterministic Hamiltonian sys-
tem and the Ornstein-Uhlenbeck process (damping
+ noise) using their different concatenations. All
three schemes are of weak order 2 and use one eval-
uation of forces per step. The numerical method
for the gradient thermostat (16)-(17) also uses one
force evaluation per step, but it is of weak order
1. To preserve the length of quaternions in the

case of numerical integration of (16)-(17), we use
ideas of Lie-group type integrators for differential
equations on manifolds (see, for example, Ref. 24).

In what follows we assume that (11)-(12) and
(16)-(17) have to be solved on a time interval [0, T ]
and, for simplicity, we use a uniform time dis-
cretization with the step h = T/N .

In Sections VA-VC we use the mapping
Ψt,l(q, π) : (q, π) 7→ (Q,Π ) defined by (see, e.g.
Refs. 5 and 10):

Q = cos(χlt)q + sin(χlt)Slq ,

Π = cos(χlt)π + sin(χlt)Slπ ,
(18)

where

χl =
1

4Il
πTSlq .

We also introduce a composite map

Ψt = Ψt/2,3 ◦Ψt/2,2 ◦Ψt,1 ◦Ψt/2,2 ◦Ψt/2,3 , (19)

where “◦” denotes function composition, i.e., (g ◦
f)(x) = g(f(x)).

A. Geometric integrator Langevin A: revisited

The geometric integrator of this section for solv-
ing the new Langevin thermostat (11)-(12) is simi-
lar to the proposed in Ref. 5 Langevin A for (6)-(7).
It is based on splitting the Langevin system (11)-
(12) into the stochastic Hamiltonian system (i.e.,
(11)-(12) without the damping terms) and the de-
terministic system of linear differential equations

ṗ = −γp

π̇j = −ΓJ(qj)πj , j = 1, . . . , n .
(20)

We construct a weak 2nd-order quasi-symplectic
integrator for the stochastic Hamiltonian
system11,25 and appropriately concatenate11,26 it
with the exact solution of (20). The resulting
numerical method has the form:

P0 = p, R0 = r, (21)

Q0 = q with |qj | = 1, j = 1, . . . , n,

Π0 = π with qTπ = 0,

P1,k = e−γ h
2 Pk ,

Π
j
1,k = e−ΓJ(Qj

k
)h
2 Πj

k, j = 1, . . . , n,

5



P2,k = P1,k +
h

2
f(Rk,Qk) +

√
h

2

√

2mγ

β
ξk

Π
j
2,k = Π

j
1,k +

h

2
F j(Rk,Qk)

+

√
h

2

√

2MΓ

β

3
∑

l=1

SlQkη
j,l
k ,

j = 1, . . . , n,

Rk+1 = Rk +
h

m
P2,k,

(Qj
k+1,Π

j
3,k) = Ψh(Q

j
k,Π

j
2,k), j = 1, . . . , n,

Π
j
4,k = Π

j
3,k +

h

2
F j(Rk+1,Qk+1)

+

√
h

2

√

2MΓ

β

3
∑

l=1

SlQk+1η
j,l
k , j = 1, . . . , n,

P3,k = P2,k +
h

2
f(Rk+1,Qk+1) +

√
h

2

√

2mγ

β
ξk,

Pk+1 = e−γ h
2 P3,k ,

Πj
k+1 = e−ΓJ(Qj

k+1
)h
2 Π

j
4,k, j = 1, . . . , n,

k = 0, . . . , N − 1,

where ξk = (ξ1,k, . . . , ξ3n,k)
T and ηj,lk , l = 1, 2, 3,

j = 1, . . . , n, with their components being i.i.d. (in-
dependent and identically distributed) with the
same probability distribution

P (θ = 0) = 2/3, P (θ = ±
√
3) = 1/6. (22)

We proved (the proof is not presented here) that
the geometric integrator (21)-(22) possesses prop-
erties stated in the next proposition. The con-
cept of quasi-symplectic methods is described in
Refs. 11 and 26 and also Refs. 5 and 6. The proof
of weak convergence order is done by standard ar-
guments based on the general convergence theorem
(see p. 100 in Ref. 11).

Proposition V.1 The numerical scheme (21)-
(22) for (11)-(12) is quasi-symplectic, it preserves

the structural properties (9) and (13) and it is of

weak order two.

We note that one can choose ξk and ηj,lk , l =
1, 2, 3, j = 1, . . . , n, so that their components are
i.i.d. Gaussian random variables with zero mean
and unit variance. In this case the weak order of
the scheme remains second as when we use the
simple discrete distribution (22). Let us remark
in passing that in the case of Gaussian random
variables the above scheme also converges in the

mean-square (also called strong) sense11 with order
one.

Finally, writing J(q) explicitly in terms of S(q)
and D, see (8), reveals that the exponent appear-
ing in (21) is easier to compute than originally sug-
gested in Ref. 5. In particular, explicit evaluation
of a matrix exponent is not required:

e−ΓJ(q) h
2 = S(q)e−

ΓMh
8

DST(q)

=
3
∑

l=1

e
−ΓMh

8Il Slq [Slq]
T. (23)

B. Geometric integrator Langevin B: revisited

The geometric integrator of this section for solv-
ing the new Langevin thermostat (11)-(12) is simi-
lar to the proposed in Ref. 5 Langevin B for (6)-(7).
It is based on the following splitting:

dPI = −γPI dt+

√

2mγ

β
dw(t),

dΠj
I = −ΓJ(q)Πj

Idt+

√

2MΓ

β

3
∑

l=1

SlqdW
j
l (t);

(24)

dRII =
PII

m
dt

dPII =f(RII ,QII)dt,

dQj
II =

1

4
S(Qj

II)DST(Qj
II)Π

j
IIdt ,

dΠj
II =F j(RII ,QII)dt

+
1

4

3
∑

l=1

1

Il

[

(Πj
II)

TSlQ
j
II

]

SlΠ
j
IIdt ,

j =1, . . . , n.

(25)

The SDEs (24) have the exact solution:

PI(t) = PI(0)e
−γt +

√

2mγ

β

∫ t

0

e−γ(t−s)dw(s),

Πj
I(t) = e−ΓJ(q)tΠj

I(0)

+

√

2MΓ

β

3
∑

l=1

∫ t

0

e−ΓJ(q)(t−s)SlqdW
j
l (s).

(26)

To construct a method based on the splitting
(24)-(25), we take half a step of (24) using (26),
one step of the symplectic method for (25) from
Ref. 10, and again half a step of (24).

The vector
∫ t

0
e−ΓJ(q)(t−s)SlqdW

j
l (s) in (26) is

Gaussian with zero mean and covariance

Cl(t; q) =

∫ t

0

e−ΓJ(q)(t−s)Slq(Slq)
Te−ΓJ(q)(t−s)ds.
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One can show that the covariance matrix C(t; q)

of the sum
∑3

l=1

∫ t

0
e−ΓJ(q)(t−s)SlqdW

j
l (s) is equal

to

C(t; q) =
2

MΓ
S(q)ΛC(t; Γ)S

T(q),

where

ΛC(t; Γ) =diag(0, I1(1 − exp(−MΓt/(2I1))),

I2(1 − exp(−MΓt/(2I2))),

I3(1 − exp(−MΓt/(2I3)))).

If we introduce a 4 × 3-dimensional matrix σ(t, q)
such that

σ(t; q)σT(t; q) = C(t; q), (27)

e.g., σ(t; q) with the columns

σl(t; q) =

√

2

MΓ
Il

(

1− e
−MΓt

2Il

)

Slq,

l = 1, 2, 3, then the expression for Πj
I(t) in (26) can

be written as

Πj
I(t) = e−ΓJ(q)tΠj

I(0) +

√

2MΓ

β

3
∑

l=1

σl(t; q)χ
j
l ,

where χj
l are independent Gaussian random vari-

ables with zero mean and unit variance. We point
out a substantial simplification in the calculation
of σ relative to the equivalent stage of Langevin B
in Ref. 5, which is made evident by the explicit use
of the matrix S(q).
Using the above calculations, and simpler (but

analogous) procedures for the linear momenta, we
obtain the following quasi-symplectic scheme for
(11)-(12):

P0 = p, R0 = r, Q0 = q, |qj | = 1, j = 1, . . . , n

Π0 = π, qTπ = 0

P1,k = Pke
−γh/2 +

√

m

β
(1− e−γh)ξk

Π
j
1,k = e−ΓJ(Qj

k
)h
2 Πj

k

+

√

4

β

3
∑

l=1

√

Il

(

1− e
−MΓh

4Il

)

SlQ
j
kη

j,l
k , j = 1, . . . , n,

(28)

P2,k = P1,k +
h

2
f(Rk,Qk),

Π
j
2,k = Π

j
1,k +

h

2
F j(Rk,Qk), j = 1, . . . , n,

Rk+1 = Rk +
h

m
P2,k,

(Qj
k+1,Π

j
3,k) = Ψh(Q

j
k,Π

j
2,k), j = 1, . . . , n,

Π
j
4,k = Π

j
3,k +

h

2
F j(Rk+1,Qk+1), j = 1, . . . , n,

P3,k = P2,k +
h

2
f(Rk+1,Qk+1),

Pk+1 = P3,ke
−γh/2 +

√

m

β
(1− e−γh)ζk,

Πj
k+1 = e−ΓJ(Qj

k+1
)h
2 Π

j
4,k

+

√

4

β

3
∑

l=1

√

Il

(

1− e
−MΓh

4Il

)

SlQ
j
k+1ς

j,l
k ,

j = 1, . . . , n,

k = 0, . . . , N − 1,

where ξk = (ξ1,k, . . . , ξ3n,k)
T, ζk =

(ζ1,k, . . . , ζ3n,k)
T and ηjk = (ηj1,k, . . . , η

j
3,k)

T,

ςjk = (ςj1,k, . . . , ς
j
3,k)

T, j = 1, . . . , n, with their
components being i.i.d. random variables with the
same law (22).

Properties of the integrator (28), (22) are sum-
marized in the next proposition; proofs, obtainable
by standard methods as for Langevin A, are omit-
ted here.

Proposition V.2 The numerical scheme (28),
(22) for (11)-(12) is quasi-symplectic, it preserves

(9) and (13) and it is of weak order two.

We note that in the case of translational degrees
of freedom Langevin B coincides with the scheme
called ‘OBABO’ in Ref. 23.

C. Geometric integrator: Langevin C

This integrator is based on the same splitting
(24)-(25) as Langevin B but using a different con-
catenation: we take half a step o f a symplectic
method for (25), one step of (24) using (26), and
again half a step of (25). The resulting method
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takes the form

P0 = p, R0 = r, Q0 = q,

|qj | = 1, j = 1, . . . , n,

Π0 = π, qTπ = 0,

P1,k = Pk +
h

2
f(Rk,Qk),

Π
j
1,k = Πj

k +
h

2
F j(Rk,Qk), j = 1, . . . , n,

R1,k = Rk +
h

2m
P1,k,

(Qj
1,k,Π

j
2,k) = Ψh/2(Q

j
k,Π

j
1,k), j = 1, . . . , n,

P2,k = P1,ke
−γh +

√

m

β
(1− e−2γh)ξk

Π
j
3,k = e−ΓJ(Qj

1,k
)h
Π

j
2,k

+

√

4

β

3
∑

l=1

√

Il

(

1− e
−MΓh

2Il

)

SlQj
1,kη

j,l
k ,

j = 1, . . . , n,

(29)

Rk+1 = R1,k +
h

2m
P2,k,

(Qj
k+1,Π

j
4,k) = Ψh/2(Qj

1,k,Π
j
3,k), j = 1, . . . , n,

Pk+1 = P2,k +
h

2
f(Rk+1,Qk+1),

Πj
k+1 = Π

j
4,k +

h

2
F j(Rk+1,Qk+1), j = 1, . . . , n,

where ξk = (ξ1,k, . . . , ξ3n,k)
T and ηjk =

(ηj1,k, . . . , η
j
3,k)

T, j = 1, . . . , n, with their compo-
nents being i.i.d. random variables with the same
law (22).
Properties of the integrator (29) are summarized

in the next proposition (its proof is omitted here).

Proposition V.3 The numerical scheme (29) for
(11)-(12) is quasi-symplectic, it preserves (9) and

(13) and it is of weak order two.

We note that in the case of translational degrees
of freedom Langevin C coincides with the scheme
called ‘BAOAB’ in Ref. 23, which was shown there
to be the most efficient scheme among various
types of splittings of translational Langevin equa-
tions for systems without rotational degrees of free-
dom.

D. Numerical scheme for the gradient thermostat

To preserve the length of quaternions in the
case of numerical integration of the gradient sys-

tem (16)-(17), we use ideas of Lie-group type inte-
grators for deterministic ordinary differential equa-
tions on manifolds (see, e.g., Ref. 24 and the ref-
erences therein and also Ref. 27 were such ideas
where used for constructing mean-square approx-
imations for Stratonovich SDEs). The main idea
is to rewrite the components Qj of the solution
to (16)-(17) in the form Qj(t) = exp(Y j(t))Qj(0)
and then solve numerically the SDEs for the 4× 4-
matrices Y j(t). To this end, we introduce the 4×4
skew-symmetric matrices:

Fj(r,q) = F j(r,q)qj T − qj(F j(r,q))T,

j = 1, . . . , n.

Note that Fj(r,q)q
j = F j(r,q) under |qj | = 1 and

the equations (17) can be written as

dQj =
Υ

M
Fj(R,Q)Qjdt

+

√

2Υ

Mβ

3
∑

l=1

SlQ
j ⋆ dW j

l (t),

Qj(0) = qj , |qj | = 1. (30)

We also remark that if Fj(r,q) = 0, Qj are Wiener
processes on the three-dimensional sphere28–31.
One can show that

Y j(t+ h) = h
Υ

M
Fj(R(t),Q(t))

+

√

2Υ

Mβ

3
∑

l=1

(

W j
l (t+ h)−W j

l (t)
)

Sl

+ terms of higher order.

Consequently, we derived the following numeri-
cal method for (16)-(17):

R0 = r, Q0 = q, |qj | = 1, j = 1, . . . , n, (31)

Rk+1 = Rk + h
υ

m
f(Rk,Qk) +

√
h

√

2υ

mβ
ξk,

Y
j
k = h

Υ

M
Fj(Rk,Qk) +

√
h

√

2Υ

Mβ

3
∑

l=1

ηj,lk Sl,

Qj
k+1 = exp(Y j

k )Q
j
k, j = 1, . . . , n,

where ξk = (ξ1,k, . . . , ξ3n,k)
T and ξi,k, i =

1, . . . , 3n, ηj,lk , l = 1, 2, 3, j = 1, . . . , n, are i.i.d.
random variables with the same law

P (θ = ±1) = 1/2. (32)

Since the matrix Y
j
k is skew symmetric, the ex-

ponent exp(Y j
k ) can be effectively computed using

the Rodrigues formula (see Appendix D).
Note that it is sufficient here to use the simpler

distribution (32) than (22) used in the Langevin
integrators since the scheme (31) is of weak order
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one, while the Langevin integrators from the pre-
vious sections are of weak order two (for further
reading see, e.g. Ref. 11). We proved (the proof
is not included here) that the geometric integrator
(31) possesses properties stated in the following
proposition.

Proposition V.4 The numerical scheme (31) for
(16)-(17) preserves the length of quaternions, i.e.,

|Qj
k| = 1, j = 1, . . . , n , for all k, and it is of weak

order one.

We note that one can choose ξk and ηj,lk , l =
1, 2, 3, j = 1, . . . , n, so that their components are
i.i.d. Gaussian random variables with zero mean
and unit variance. In this case the weak order of
the scheme remains 1st as when we use the simple
discrete distribution (32). Let us remark in passing
that in the case of Gaussian random variables the
above scheme also converges in the mean-square
sense with order 1/2. It is not difficult to derive a
method of mean-square order one, which preserves
the length of quaternions, but it is not of applicable
interest in our context and hence omitted. As far
as we know, this is the first time when a Lie-group
type weak scheme is considered and applied in the
context of stochastic thermostats.

VI. NUMERICAL EXPERIMENTS

We have implemented Langevin A, B, and C
integrators and the weak 1-st order gradient in-
tegrator in the simulation of a rigid TIP4P wa-
ter model with smoothly truncated electrostatic
interactions32. The system with periodic bound-
ary conditions contains 1728 molecules and den-
sity 989.85kg/m3. All simulation runs start from
the same initial state, which is a well-equilibrated
liquid state at 300K obtained in a long simulation
with h = 1fs. After a further 20 000 step equilibra-
tion run (which gives a sufficiently long equilibra-
tion time for all the considered time steps, taking
into account that the initial state is already well
equilibrated), the measurements are accumulated
during the subsequent 200 000 steps.
During the simulations, we have monitored the

preservation of the constraint |qj | = 1 by all in-
tegrators and qj Tπj = 0 by the Langevin integra-
tors, j = 1, . . . , n. At the beginning of the simu-
lation |qj | = 1 to within the machine precision of
about 10−16. The behavior of maxj |qj | − 1 and
minj |qj | − 1 as functions of the simulation time
indicates that |qj | are conserved by the integra-
tors to within the round-off error, which gradually
accumulates with increasing number of steps, but
independent of the step size h. After 200 000 steps
the largest deviation is of order 10−13. Similar be-
havior is observed for the maximum deviation of
qj Tπj from zero.
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FIG. 1. Langevin A thermostat with γ = 5ps−1 and
Γ = 10 ps−1. Error bars denote estimated 95% confi-
dence intervals in the measure quantities.

The following quantities are measured during
simulation runs:

• Translational kinetic temperature

〈Ttk〉h =
〈pTp〉h
3mkBn

;

• Rotational kinetic temperature

〈Trk〉h =
2
〈

∑n
j=1

∑3
l=1 Vl(q

j , πj)
〉

h

3kBn
;

• Translational configurational temperature

〈Ttc〉h =

〈

∑n
j=1 |∇rjU |2

〉

h

kB

〈

∑n
j=1 ∇2

rjU
〉

h

;

• Rotational configurational temperature33

〈Trc〉h =

〈

∑n
j=1 |∇ωjU |2

〉

h

kB

〈

∑n
j=1 ∇2

ωjU
〉

h

,

where ∇ωj is the angular gradient operator
for molecule j;
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FIG. 2. Langevin B thermostat with γ = 5ps−1 and
Γ = 10 ps−1.

• Potential energy per molecule

〈U〉h =
1

n
〈U〉h;

• Excess pressure

〈Pex〉h = −

〈

∑n
j=1 r

j Tf j
〉

h

3V
,

where V is the system volume.

Angle brackets with subscript h represent the av-
erage over a simulation run with time step h.
We run simulations with different time steps h

ranging from 1 to 9 fs. Due to the discretization
errors of the numerical methods, measured quanti-
ties exhibit the following dependence on h for small
h11,34:

〈A〉h = 〈A〉0 + EAh
p +O(hp+1), (33)

where p is the order of the integrator. Thus, p = 2
for the 2nd-order Langevin integrators, and p = 1
for the 1-st order gradient integrator. 〈A〉0 denotes
the value of the average in the limit h → 0, and
EA characterises the size of the leading term of the
discretization error for the measured quantity A.
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FIG. 3. Langevin C thermostat with γ = 5ps−1 and
Γ = 10 ps−1.

The results are presented in Figs. 1-4. Error bars
represent 95% confidence intervals estimated using
the block averaging approach35. As expected, we
observe at small h a linear dependence of average
measured quantities 〈A〉h on h2 for the Langevin
thermostats and on h for the gradient thermostat.
Using linear regression, we calculate the values of
〈A〉0 and EA for the measured quantities as defined
in Eq. (33). The results are presented in Table I.
We observe that for all numerical methods all four
measures of the system temperature converge in
the limit h → 0 to the correct value of T = 300K
set by the thermostats. At the same time, the lead-
ing discretization error terms, characterised by EA,
are different for different measures of temperature
and for different numerical methods. We also see
that the estimated values of 〈U〉0 and 〈Pex〉0 agree
for all integrators, which is an indicator that all
the integrators sample from the same ensemble.

While here we present only results for one set
of thermostat parameters (γ = 5ps−1 and Γ =
10 ps−1 for the Langevin thermostat and υ = 4 fs
and Υ = 1 fs for the gradient thermostat), we have
investigated the performance of the integrators in
a wide range of parameter values. The results ob-
tained with Langevin A and B integrators are iden-
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TABLE I. Results for Langevin A, B, and C thermostats with γ = 5ps−1 and Γ = 10 ps−1 and gradient thermostat
with υ = 4 fs and Υ = 1 fs. Values of 〈A〉0 and EA, defined in Eq. (33), were obtained by linear regression from
〈A〉h for h ≤ 6 fs for Langevin integrators and for h ≤ 4 fs for the gradient integrator. Quantities EA are measured
in the units of the corresponding quantity A per fsp, where p = 2 for Langevin integrators and p = 1 for the
gradient integrator. Numbers in parentheses indicate the statistical error in the last digit(s) shown with a 95%
confidence level.

Langevin A Langevin B Langevin C Gradient

A (unit) 〈A〉0 EA 〈A〉0 EA 〈A〉0 EA 〈A〉0 EA

Ttk (K) 300.0(2) −0.136(8) 299.9(2) 0.100(13) 300.0(2) −0.135(7) − −

Trk (K) 299.9(2) −0.808(8) 299.8(3) −0.092(13) 300.1(2) −0.803(8) − −

Ttc (K) 300.1(3) 0.022(13) 299.9(4) 0.45(2) 300.1(3) 0.021(13) 299.6(1.0) 3.6(5)

Trc (K) 299.8(3) 0.158(11) 299.6(4) 0.99(2) 299.9(3) 0.152(11) 298.6(1.6) 9.9(4)

U (kcal/mol) −9.068(4) −0.0004(2) −9.071(4) 0.0059(2) −9.066(3) −0.0005(2) −9.075(11) 0.033(4)

Pex (MPa) −117.4(1.3) −0.02(5) −117.4(1.6) 0.27(9) −117.5(1.4) −0.01(5) −118(11) 1.7(2.8)
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FIG. 4. Gradient thermostat with υ = 4 fs and Υ =
1 fs.

tical within the sampling errors to those of the cor-
responding integrators in Refs. 5 and 32. This is
expected since, as demonstrated in Appendix B,
the components of πj parallel to qj do not influ-
ence the physical properties of the system.

Because of the exact treatment of the Ornstein-
Uhlenbeck process, Langevin B and C integrators

can be used with arbitrarily large values of γ and Γ.
On the other hand, Langevin A integrator breaks
down for γ larger than about 100ps−1 and for
Γ larger than about 200ps−1 (see also Fig. 9 in
Ref. 5). We determine that optimal Langevin ther-
mostat parameters for the sampling of this sys-
tem are γ = 3-6 ps−1 and Γ = 7-15 ps−1. The
‘optimality’ is understood in the following sense.
Larger values of γ and Γ lead to the slowing down
of the system evolution, as indicated by the de-
creasing diffusion coefficient32, resulting in less ef-
ficient sampling, i.e. larger statistical errors in
the measured quantities. With smaller values of
γ and Γ the thermostat takes longer to reach the
equilibrium state if the system is initially out of
equilibrium. Of course, when the system is well
equilibrated, it is reasonable to use smaller val-
ues of γ and Γ, especially if one wants to measure
time-dependent properties, e.g., time autocorrela-
tion functions. Also note that stronger coupling to
the thermostat stabilizes the integrator: while it
becomes unstable at around h = 8 fs for very small
values of γ and Γ, it is stable up to about h = 10 fs
when γ + Γ is larger than about 8 ps−1.

With the gradient system, scaling υ and Υ to-
gether does not change the properties of the tra-
jectories, only the speed at which these trajecto-
ries are traversed. This property is manifest in the
integrator by the fact that thermostat parameters
appear together with the time step h as hυ and hΥ.
As a consequence, it is always possible to use larger
h with smaller υ and Υ; clearly, however, this does
not represent better sampling. For simplicity of
numerical experimentation, we use the same range
of h values as with the Langevin integrators, while
adjusting υ and Υ to achieve optimal simulation
efficiency. For a given h, it is obviously preferable
to use larger values of υ and Υ in order to make
larger effective integration steps, thus faster ex-
ploring the system configuration space. However,
we found that the gradient integrator becomes un-
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stable when hυ exceeds approximately 150 fs2 for
small hΥ and hΥ exceeds approximately 70 fs2 for
small hυ. Also, the linear dependence of the dis-
cretization errors on h in Eq. (33) extends only up
to hυ ≈ 20 fs2 for small hΥ and up to hΥ ≈ 5 fs2

for small hυ. In Fig. 4 we present results for the
gradient integrator with υ = 4 fs and Υ = 1 fs and
use simulation runs with h ≤ 4 fs to obtain linear
regression results presented in Table I.

VII. DISCUSSION AND CONCLUSIONS

When making measurements in molecular sim-
ulations, we are interested in accuracy and effi-
ciency. By efficiency we mean obtaining results
of desired precision using the least computational
time. Efficiency of a thermostat + an integrator is
usually measured in terms of force calculations be-
cause they dominate computational time in molec-
ular dynamics simulations of large systems. Since
all four integrators presented here use one force
calculation per step, the computational times per
step are essentially the same for all of them and
hence we measure the efficiency in terms of the
number of integration steps.
Accuracy is determined by the size of the errors.

When computing stationary averages (ergodic lim-
its), we usually encounter four types of errors: (1)
system size error, i.e. error due a relatively small
size of a simulated system representing a much
larger real system (usually with the help of periodic
boundary conditions); (2) equilibration error, i.e.
error due to the distance from the stationary dis-
tribution caused by insufficient equilibration; (3)
statistical error due to fluctuations of a measured
quantity along a simulation trajectory; and (4) the
numerical integration (discretization) error due to
numerical approximation with finite time step h of
the dynamical equations describing system evolu-
tion in time (see, for example, Refs. 6 and 36 and
also Appendix B in Ref. 37).
The system size error is typically independent of

the choice of the thermostat or numerical scheme
and, therefore, is not relevant to the present dis-
cussion. The equilibration error can be made rel-
atively insignificant by a preceding equilibration
run, even though establishing the necessary dura-
tion of the equilibration run is not always straight-
forward. The statistical error is controlled by the
length of integration time. When making measure-
ments from a single long simulation run of N steps
with step size h, the statistical error depends on
the total simulation time T = Nh as O(

√

tc/T ),
where tc characterises the time over which succes-
sive measurements become uncorrelated. As such,
the statistical error can be reduced by increasing
either the number of simulation steps N or the step
size h, although increase of the latter is limited by

the size of the numerical integration error and ul-
timately by the stability of the integrator.

The numerical integration error can be reduced
by decreasing the step size h, although smaller h
results in a less efficient calculation for achieving
a prescribed size of the statistical error (i.e. more
steps are necessary). As we have seen in our nu-
merical experiments, the size of the numerical er-
ror in the measurement of a quantity A is deter-
mined by the value of EA [see Eq. (33)], which is
influenced by the choice of a thermostat and its
parameters, such as damping coefficients. There-
fore, a better way to reduce the numerical error is
to choose a thermostat and its parameters so that
the magnitude of EA is small for the quantity of
interest A. In some cases it is possible to make
EA = 0, which means that for the measurement
of A the numerical integrator behaves as a method
of higher order23,32,38. Since it is not always pos-
sible to make EA small simultaneously for all A,
when choosing the thermostat and its parameters
we have to consider which quantity we need to de-
termine most accurately.

Comparing the performance of the three
Langevin integrators, we observe that Langevin B
is better at controlling the kinetic temperatures,
while Langevin A and C are better for more ac-
curate measurements of the configurational tem-
peratures, potential energy, and excess pressure.
Since in most cases the quantities of interest are
configurational (i.e. those that depend on particle
positions), Langevin A and C should be the in-
tegrators of choice. In addition, while Langevin A
cannot be used with very large values of the damp-
ing coefficients γ and Γ, Langevin C does not have
such a restriction and can be used with arbitrarily
large values of γ and Γ, which could be desirable
if the thermostat is needed to also play the role of
an implicit solvent.

It is interesting to note in passing that, despite
the very different structure of Langevin A and C,
their numerical errors for various measured quanti-
ties are surprisingly similar. We do not have an ex-
planation for this “coincidence”, and further anal-
ysis of the integrators is required to understand
it.

From the comparison between the Langevin in-
tegrators and the gradient integrator we see that
the statistical errors in the results (as measured by
the estimated error bars on 〈A〉0) of the gradient
method are much larger, so the sampling efficiency
of the gradient method is lower. This conclusion is
reinforced by the observation that the mean-square
displacement of molecules after the same number
of integration steps is about 10 times larger for the
Langevin integrators than for the gradient integra-
tor with the same step size h and maximum possi-
ble values of υ and Υ. Thus the gradient integrator
takes about 10 times more steps between successive
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uncorrelated states. It is also clear that the sam-
pling efficiency is limited by the stability of the gra-
dient integrator, and so it cannot be substantially
improved by designing higher order schemes. Be-
sides, a weak 2nd-order gradient integrator would
require at least two force evaluations per step.
In conclusion, we summarize our experimental

observations as follows:

• Langevin A and C are the integrators of
choice for the Langevin thermostat. Also, if
Langevin thermostat needs to be used with
relatively large values of the damping coeffi-
cients, then Langevin C should be used.

• The Langevin thermostat is better than the
Brownian thermostat for sampling (i.e., the
statistical error discussed at the start of this
Section is smaller for the Langevin thermo-
stat).

Even though we reached these conclusions based
on the observations of a particular molecular sys-
tem, we believe they are sufficiently generic. At
the same time, there might be situations when the
Brownian thermostat introduced in this paper is
preferable to the Langevin one.
We also note that the Brownian thermostat in-

tegrator is of order one while the Langevin integra-
tors are of order two. Further work in developing
numerical methods for gradient systems is needed.
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Appendix A: Evaluation of the rotational force

To calculate the rotational force, F j(r,q) =

−∇̃qjU(r,q) ∈ TqjS
3, it is necessary to evaluate

a directional derivative of the potential tangent to
the three dimensional sphere S3, ∇̃qjU(r,q). If the
potential is expressed in quaternions, it is natural
to calculate this derivative directly via

∇̃qjU(r,q) = ∇qjU(r,q)− (qj T∇qjU(r,q))qj ,

where ∇qj is a conventional 4-component gradient.

Alternatively, the rotational force F j(r,q) can
be represented as F j(r,q) = 2S(qj)(0, τ j T)T,

where τ j = (τ j1 , τ
j
2 , τ

j
3 )

T ∈ R
3 is the torque acting

on molecule j in the body-fixed reference frame10.
To illustrate how F j(r,q) can be computed, we
consider a specific example – a system of rigid

molecules with pairwise interaction between inter-
action sites within molecules:

U(r,q) =
∑

j

∑

m<j

∑

α,β

uαβ(|rj,α − rm,β |) , (A1)

where rj,α = rj+AT(qj)dα is the coordinate of the
interaction site α within molecule j, with dα being
the site coordinate relative to the center of mass of
a molecule in the body-fixed reference frame. Here

A(q) = 2







q20 + q21 − 1
2 q1q2 + q0q3 q1q3 − q0q2

q1q2 − q0q3 q20 + q22 − 1
2 q2q3 + q0q1

q1q3 + q0q2 q2q3 − q0q1 q20 + q23 − 1
2







(A2)
is the rotational matrix expressed in terms of
quaternion coordinates. Force acting on the in-
teraction site α of molecule j is given by

f j,α = −∇rj,αU(r,q)

= −
∑

m 6=j

∑

β

u′
αβ(|rj,α − rm,β |) rj,α − rm,β

|rj,α − rm,β | .

(A3)

The total force acting on molecule j is f j =
∑

α f j,α. The torque acting on molecule j in the
body-fixed reference frame is given by

τ j =
∑

α

dα × (A(qj)f j,α) . (A4)

Appendix B: Proof that the Langevin thermostat

from Ref. 5 is correct for physical quantities

In this appendix we show that Ωj(t) being non-
zero has no consequences for the measurement of
physical quantities. First, we modify the solution
X(t) of the SDEs (6)-(7) to turn it into an ergodic
process. Let us introduce

Π̃j(t) := Πj(t)− (Qj(t))TΠj(t)Qj(t)

= Πj(t)− Y j(t)Qj(t), j = 1, . . . , n,

which are the projections of Πj(t) on the tangent

space TQjS
3, i.e., Π̃j are orthogonal to Qj . By

elementary calculations, we get

dQj =
1

4
S(Qj)DST(Qj)Π̃jdt, (B1)

Qj(0) = qj , |qj | = 1,

dΠ̃j =
1

4

3
∑

l=1

1

Il

(

Π̃j TSlQ
j
)

SlΠ̃
jdt

+ F j(R,Q)dt− ΓJ(Qj)Π̃jdt

+

√

2MΓ

β
(I −QjQj T)dW j(t),

Π̃j(0) = πj , qj Tπj = 0, j = 1, . . . , n.
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We note the fact that the solution to (6), (B1) pre-

serves the constraint (Qj(t))TΠ̃j(t) = 0 in addition

to the constraint (9), i.e., unlike Πj(t), Π̃j(t) have
an appropriately constrained dynamics from the
physical point of view.
Let ϕ(x) : D → R be a function with polynomial

growth at infinity. Recall that

D = {x = (rT,pT,qT,πT)T ∈ R
14n :

|qj | = 1, (qj)Tπj = 0, j = 1, . . . , n}.

Assume that the process X̃(t) :=

(RT(t),PT(t),QT(t), Π̃T(t))T with Π̃ =

(Π̃1T, . . . , Π̃nT)T is ergodic, i.e., there exists

a unique invariant measure µ of X̃ and indepen-
dently of x ∈ D there exists the limit (see, for
example, Refs. 20 and 21 and references therein):

lim
t→∞

Eϕ(X̃(t;x0)) =

∫

D

ϕ(x) dµ(x) := ϕerg, (B2)

where X̃(t;x0) is attributed to the solution X̃(t)

of (6), (B1) with the initial condition X̃(0) =

X̃(0;x0) = x0 ∈ D. Using the stationary Fokker-
Planck equation, it is not difficult to check that µ
is the Gibbsian (canonical ensemble) measure on
D possessing the density ρ(r,p,q,π) from (14).

Now we will show that Eϕ(X̃(t;x0)) =
Eϕ(X(t;x0)) for ϕ which has physical meaning.
To this end, introduce ω̂ = (ω̂1T, . . . , ω̂nT)T ∈
R

4n, ω̂j = (ωj
0, ω

j
1, ω

j
2, ω

j
3)

T ∈ R
4 and ω =

(ω1T, . . . , ωnT)T ∈ R
3n, ωj = (ωj

1, ω
j
2, ω

j
3)

T ∈ R
3

so that ω̂j = 1
2S

T(qj)πj , j = 1, . . . , n. We see

that ωj
1, ω

j
2, ω

j
3 are the (conventional) angular mo-

menta about the axes in the body-centred frame of
molecule j, while the components ωj

0 are of an ax-

illary nature. Let D̆ = {x = (rT,pT,qT,πT)T ∈
R

14n : |qj | = 1, j = 1, . . . , n} = {x =
(rT,pT,qT, ω̂T)T ∈ R

14n : |qj | = 1, j =
1, . . . , n}. Note that D = {x = (rT,pT,qT, ω̂T)T ∈
R

14n : |qj | = 1, ωj
0 = 0, j = 1, . . . , n}. Assume

that ϕ(x) : D̆ → R is a function with polynomial
growth at infinity which does not depend on the
non-physical variable ω0 = (ω1

0 , . . . , ω
n
0 )

T. It is not
difficult to see that

ϕ(x) = ϕ(rT,pT,qT,πT) = ϕ(rT,pT,qT, 2ω̂1TST(q1), . . . , 2ω̂nTST(qn)) (B3)

= ϕ(rT,pT,qT, 2(ω1
0 , ω

1
1 , ω

1
2 , ω

1
3)S

T(q1), . . . , 2(ωn
0 , ω

n
1 , ω

n
2 , ω

n
3 )S

T(qn))

= ϕ(rT,pT,qT, 2(0, ω1
1, ω

1
2 , ω

1
3)S

T(q1), . . . , 2(0, ωn
1 , ω

n
2 , ω

n
3 )S

T(qn))

= ϕ(rT,pT,qT, (π1 − q1Tπ1q1)T, . . . , (πn − qnTπnqn)T).

In (B3), we may put ω0 = 0 since ϕ(x) does not
depend on the non-physical quantity ω0 and any
value can be assigned to ω0 without changing the
value of ϕ. Further, (B3) implies that

Eϕ(RT,PT,QT,ΠT)|(6)-(7)
= Eϕ(RT,PT,QT, Π̃T(t))|(6),(B1),

where expectation on the left is computed with re-
spect to the system (6)-(7) and on the right with
respect to (6), (B1). This explains why (6)-(7) can
be used for calculating ergodic limits ϕerg for func-
tions ϕ(x) of physical interest (i.e., independent of
qj Tπj) despite (6)-(7) being not ergodic (cf. (10)).
In essence, the evolution of the physical degrees

of freedom is unaffected by the non-physical com-
ponent Ωj(t), and the physical degrees of freedom
sample from the Gibbs measure as desired. Fur-
ther, no quantity of interest depends on the non-
physical component of Π, and so averages obtained
using the old Langevin thermostat (6)-(7) are cor-
rect.

Appendix C: The stationary Fokker-Planck equation

for the gradient thermostat

Recall that in (16), (30)

f j(r,q) = −∇rjU(r,q),

Fj(r,q) = F j(r,q)qj T − qj(F j(r,q))T,

F j(r,q) = −∇qjU(r,q)+qj T∇qjU(r,q)qj ,

and hence

Fj(r,q)q
j = −∇qjU(r,q)qj Tqj+qj T∇qjU(r,q)qj ,

where the gradients ∇rj and ∇qj are in the Carte-
sian coordinates in R

3 and R
4, respectively. The

stationary Fokker-Planck equation corresponding
to (16), (30) has the form (see, for example,
Refs. 20, 21, and 31):

L∗ρ = 0, (C1)

where
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L∗ρ =

n
∑

j=1

[

υ

mβ

3
∑

i=1

∂2

(

∂rji
)2 ρ+

Υ

Mβ

3
∑

i,k,l=0

∂

∂qji

{

(Slq
j)i

∂

∂qjk

(

(Slq
j)kρ

)

}

+
υ

m

3
∑

i=1

∂

∂rji

(

∂U(r,q)

∂rji
ρ

)

+
Υ

M

3
∑

i=0

∂

∂qji

{(

∂U(r,q)

∂qji
qj Tqj − qj T∇qjU(r,q)qji

)

ρ

}]

.

By direct calculations one can verify that the
Gibbsian density ρ̃(r,q) from (15) satisfies (C1).
We note that (C1) is written for (r,q) ∈ R

7n using
the fact that (16), (30) is defined in R

7n, i.e., we do
not work here with the manifold S

3 on which Qj(t)
from (30) naturally live. Instead we work with R

4

in which S
3 is embedded. As the dynamics of our

thermostat and integrator have the property that
trajectories initially on the manifold do not leave
it, the observation that the Gibbsian density is sta-
tionary over R7n means that it is also an invariant
probability measure on the manifold of relevance
to our modelling and simulations.

Appendix D: Computing the exponent of a real

skew-symmetric matrix of order 4

The exponent of a skew-symmetric matrix

A =











0 u6 u5 u3

−u6 0 u4 u2

−u5 −u4 0 u1

−u3 −u2 −u1 0











,

is calculated according to the Rodrigues formula

eA = cosµI +
sinµ

µ
A+ (aA+ bI)(A2 + µ2I) ,

where

a =
sinα/α− sinµ/µ

δ
, b =

cosα− cosµ

δ

and

α =
√

1
2 (a2 − δ), µ =

√

1
2 (a2 + δ),

δ =
√

a22 − 4a0,

a0 = (u1u6 + u3u4 − u2u5)
2, a2 =

6
∑

i=1

u2
i .

This Rodrigues formula was considered in [T.
Politi. A formula for the exponential of a real skew-
symmetric matrix of order 4. BIT Numer. Math.

41 (2001), 842–845] but the expression given there
contains misprints, namely signs in the denomina-
tor of a and in c are incorrect in Eq. (2.5) of Politi’s
paper.

Note that a0, a2 ≥ 0 and a22 ≥ 4a0, and so µ ≥ α.
When α and/or µ, or µ − α are close to zero, the
evaluation of the above expressions needs to be
done with care to avoid subtractive cancellation or
division by zero. In particular, if α < 10−4, then
replace sinα/α with (α2/20 − 1)α2/6 + 1. Also
replace sinµ/µ with (µ2/20−1)µ2/6+1 when a2 <
10−8.

When µ = α (i.e. in the limit δ → 0), the eigen-
values of A are degenerate. In this case the expres-
sions for a, and b can be approximated as follows:

a =
sin γ/γ − cos γ

a2
+O(δ2), b =

sin γ

2γ
+O(δ2),

where γ =
√

a2/2. We use this expression when
δ < 10−8.

If the matrix A is close to zero, i.e., when a2 is
small, then the approximations which can be used
for a and b are of the form

a = 1
6 − 1

120a2 +O(a22), b = 1
2 − 1

24a2 +O(a22).

We use these expressions when a2 < 10−8.
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