DISCONTINUOUS GALERKIN METHODS
FOR MASS TRANSFER
THROUGH SEMI-PERMEABLE MEMBRANES
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Abstract. A discontinuous Galerkin (dG) method for the numerical solution of initial /boundary
value multi-compartment partial differential equation (PDE) models, interconnected with interface
conditions, is presented and analysed. The study of interface problems is motivated by models of mass
transfer of solutes through semi-permeable membranes. More specifically, a model problem consisting
of a system of semilinear parabolic advection-diffusion-reaction partial differential equations in each
compartment, equipped with respective initial and boundary conditions, is considered. Nonlinear
interface conditions modelling selective permeability, congestion and partial reflection are applied to
the compartment interfaces. An interior penalty dG method is presented for this problem and it is
analysed in the space-discrete setting. The a priori analysis shows that the method yields optimal
a priori bounds, provided the exact solution is sufficiently smooth. Numerical experiments indicate
agreement with the theoretical bounds and highlight the stability of the numerical method in the
advection-dominated regime.
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1. Introduction. Models of mass transfer of substances (solutes) through semi-
permeable membranes appear in various contexts, such as biomedical and chemical
engineering applications [26]. Examples include the modelling of electrokinetic flows,
solute dynamics across arterial walls, and cellular signal transduction (see, e.g., [10,
53, 15] and the references therein).

This work is concerned with the development and analysis of numerical methods
for a class of continuum models for mass transfer based on initial/boundary value
multi-compartment partial differential equation (PDE) problems, closed by nonlinear
interface conditions. The interface conditions considered are the Kedem-Katchalsky
(KK) equations, which represent an established model for the mass transfer mecha-
nisms [37, 36]. More specifically, we consider a generic model problem consisting of
a system of semilinear advection-diffusion-reaction parabolic PDE problems in multi-
compartment configurations, coupled with nonlinear interface KK-type conditions.
The focus is to address some challenges in the numerical solution of these models,
such as the treatment of nonlinearities due to both the interface modelling and the
nonlinear reactions, the discontinuity of the state variables across the interface, as well
as the development of stable numerical methods in the advection-dominated regime.

Numerical methods for mass transfer problems based on conforming finite ele-
ments have been developed for the solution of solute dynamics across arterial walls;
see [53, 46, 45] and the references therein for more details. Some existence results for
the purely diffusing interface problem without forcing, coupled with KK-type interface
conditions, along with some numerical experiments are given in [14]. Further, numer-
ical approaches to the treatment of interface conditions for PDE problems, resulting
to globally continuous solutions can be found, e.g., in [6, 3, 16, 44, 41].
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Discontinuous Galerkin (dG) methods (see, e.g., [31, 47, 18] and the references
therein) and mortar methods (see, e.g., [9] for a survey) have also been proposed for
the treatment of coupled systems via interface conditions in various contexts [50, 27,
28, 22, 23, 33, 30, 29]. Also, the advantages of dG methods for interfacing different
numerical methods (numerical interfaces) have been identified [43, 17], as well as their
use on transmission-type/high-contrast problems, yielding continuous solutions across
the transmission interface, has been investigated [21, 12, 24, 13].

Here, we consider a dG method of interior penalty type for the solution of the
semilinear parabolic advection-diffusion-reaction PDE system coupled with nonlinear
interface conditions of KK-type across the subdomains. The use of dG is motivated
partly by the observation that the interface conditions, yielding discontinuous so-
lutions across the interface, can be imposed by modifying the interior penalty dG
numerical fluxes. Another important factor for employing a dG method is the desired
stability property of the numerical method in the advection-dominated regime. A
priori bounds for the proposed spatially discrete dG method in both the L°(L?)- and
L?(H"Y)-type norms are presented for a range of reaction fields, under the simplifying
assumption that the finite element mesh is aligned with the subdomain interfaces.

A priori error bounds for interior penalty dG methods for parabolic problems
have been considered in various settings (see, e.g., [47] for an exposition and the more
recent [19]). DG methods for semilinear parabolic spatially self-adjoint problems with
locally Lipschitz continuous nonlinearity have been analysed in [40]. In the present
analysis, advection terms are included and systems of equations are considered. In
the presence of advection, the analysis of the symmetric interior penalty dG method
in [40] would require the assumption of quasi-uniformity of the mesh. To avoid this
assumption, a different continuation argument is employed in the derivation of the
a priori bounds presented here, at the expense of a stricter growth condition on the
nonlinearity of the forcing term. This continuation argument is inspired by the deriva-
tion of a posteriori bounds for semilinear parabolic phase-field models [38, 8]. The
nonlinear interface terms are tackled using a non-standard elliptic projection which
is inspired by a classical construction of Douglas and Dupont [20] for the treatment
of nonlinear boundary conditions.

The paper is organised as follows. In Section 2, the PDE model along with a short
derivation of the nonlinear interface conditions is presented. Section 3 is devoted to the
description of the dG method proposed for the advection-diffusion part of the spatial
operator incorporating the nonlinear interface conditions. Section 4 contains error
estimates for the new elliptic projection, which is, in turn, utilised in the subsequent
a priori error analysis presented in Section 5. Section 6 contains numerical experiments
highlighting the stability and the optimal rate of convergence of the proposed method
in practice. Finally, some conclusions are offered in Section 7.

2. Interface modelling and governing PDEs. We shall consider systems of
parabolic semilinear PDEs describing the flux of solutes around and through a semi-
permeable membrane. The membrane is modelled as an internal boundary equipped
with nonlinear interface conditions which are described in the following section.

2.1. Interface modelling. We outline the Kedem-Katchalsky (KK) equations
modelling solutes flow across semi-permeable membranes. The KK equations have
been introduced in [37]; we refer to [51] for earlier works and to [26] for a thorough
exposition.

It is assumed that the membrane separates two compartments Q' and Q2 filled
with a free fluid which is called the solvent and that the membrane permeabilities are
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uniform in space and time. The KK equations specify the dependence of the solutes
and solvent fluxes across the membrane in terms of two driving forces, namely the
hydrostatic and osmotic pressure jumps. In the case of a single solute, the solvent and
solute fluxes from Q' to Q2 normal to the membrane walls are given by, respectively,

Jy = Lp(dp — 04 07), (2.1)
Js =wor + J,(1 —of)a,

in terms of the hydrostatic and osmotic pressure jumps 6p = p' —p? and 7 = RTdu,
with R being the ideal gas constant, T' denoting temperature, and du = u! — u?
the solute concentration jump across the membrane. Here, u represents the average
concentration of the solute across the membrane. The above constitutive laws are
characterised by the phenomenological coefficients of filtration Lp, reflection o4 and
o¢, and permeation w. These coefficients may depend on the concentration while they
are assumed to be constant with respect to both the position along the membrane
and time.

Equation (2.1), which is known as Starling’s law of filtration, shows that the
solvent flow is affected by the osmotic flow of the solute. This observation introduces
a nonlinearity in the transport term of the solute flux in equation (2.2). Indeed,
substituting J, into (2.2) we get the final model for the solute flux:

Js=wRT éu+ Lp(0p — 04RTSu)(1 — of)u = p(u',u?) du — ra(b - n)|ge.

In this last expression, we have collected the diffusive part of the flux by introducing
the nonlinear permeability function p(u',u?), and written the advective transport in
terms of the friction coefficient r € [0, 1] and the normal component of the transport
field yielded by the hydrostatic pressure, denoted by b - n.

In presence of n solutes, it is usually assumed that there is no direct coupling
between the solutes’ fluxes [26]. Under this simplifying assumption the KK equations
describing the flux of the solvent and n solutes read

Jy=1Lp (5P - Z 0d,j 677]')7 (23)
j=1
JS’Z‘ZOJ(S’ITZ‘—FJU(l—O'f)ﬂi, 1=1,...,n, (24)

with J, ;, 0m;, and @; representing, respectively, the flux, osmotic pressure, and average
concentration of the i-th solute. Proceeding as in the case of one solute we get the
following expression for the solute fluxes:

Jsi = piluj, uf) du; — Zﬁm‘(ul, u?) du; — r;1;(b - m) g2
=1
:pi(ul,u2)-(5u—riﬂi(b-n)|Qz7 i=1,...,n, (2.5)

with du = u! —u?, w = (u],...,u))7, j = 1,2, where uf denotes the concentration

of the i-th solute in the j-th compartment, p; the corresponding permeability, and
Di,; the cross-coefficients expressing the crowding effect inside the membrane. For the
second equality, we have collected in the vector permeability function p;(u',u?) all
diffusion terms.

1
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FIG. 2.1. The domain of solution  is subdivided into two subdomains Q', Q2. The interface
boundary is defined as 'y := (9Q' N 9N>)\oN.

It remains to fix a model for the average concentrations inside the membrane.
In the case of relatively thick membranes [53, 45], it is appropriate to consider a me-
chanical approach describing solutes flow within the membrane through an advection-
diffusion model. This approach yields a weighted arithmetic average of the concen-
tration at the membrane’s faces. Thus, denoting by u! and u?, i = 1,...,n, such
concentrations, we get

- 1.1, 2 2
Uy = Oy = vy u; + vjug, (2.6)

for some given weights v; = (v},v2) with v} +v? = 1. These can be expressed in

terms of the internal Peclet number of the membrane advection-diffusion model and
are so that the upwind value dominates [53], ¢f. the conditions given below in (2.13).

In what follows, the fluxes given by (2.5) together with the model (2.6) for the
average concentration inside the membrane are used to close the PDE problem with

appropriate interface conditions.

2.2. Notation. We denote by L?(w), 1 < p < +oo, the standard Lebesgue
spaces, w C R%, d € {2,3}, with corresponding norms || - ||, o,; if w = Q, we shall write
instead || - ||, Also the norm of L?(w) will be denoted by |||, and if w = Q by ||-|| for
brevity; by (-, ) we write the standard L2-inner product on ; when the arguments are
vectors of L?-functions, the L?-inner product is modified in the standard fashion. We
denote by H*(w) the standard Hilbertian Sobolev space of index s € R of real-valued
functions defined on w C RY; in particular H}(w) signifies the space of functions in
H'(w) whose traces onto the boundary dw vanish. For 1 < p < +00, we denote the
standard Bochner spaces LP(0,T; X), with X being a Banach space with norm || - || x.
Finally, we denote by C(0,7T; X) the space of continuous functions v : [0,7] — X
with norm ||v[|¢(o,7;x) := maxo<i<7 [[v(t)||x < +o0.

Let Q be a bounded open domain with Lipschitz boundary in R?, and let 99
be the boundary of . The domain  is subdivided into two subdomains Q! and
02, such that Q = Q' U Q2 UTy, where T'y := (90 N 90?)\9Q, see Figure 2.1. For
i = 1,2, we assume that Q° has Lipschitz boundary and that 9Q N 9Q has positive
(d — 1)-dimensional (Hausdorff) measure. We define H* := [H*(Q! U Q?)]", s € R.

We shall employ the following notational convention: vectors are indicated with
lower case bold symbols, n x n diagonal matrices with upper case (non-bold) symbols,
and n X d tensors with upper case bold symbols.

The gradient Vv of a vector function v : Q' UQ? — R” in H' is a mapping
0 U Q? — R"¥4 gained from componentwise application of the gradient operation:
Vv := (Vuy,...,Vo,)T. Similarly the divergence V - Q of the tensor-valued function
Q: QU R™isV-Q:=(V-Q1,...,V -Q,)" where the Q; are rows of Q.
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2.3. Model Problem. For a time interval [0,T], T > 0, and for
uc L*0,T;HY), u; € L2(0,T;H™Y),
with u := (ug,...,u,)", we consider the system of semilinear parabolic equations
W, — V- (AVu—-UB)+F(u)=0 in (0,7] x (' UQ?), (2.7)

with U denoting the diagonal matrix U = diag(u,...,uy,). Here, B is an n x d
tensor field with rows B; € C1(0,T; WL (Q\I')¢ N W (div,Q)), i = 1,...,n, and
A € [0([0,T] x QY U Q?)]"*" diagonal, with A = diag(ay,az,...,a,), where a; :
[0, 7] xQ'UN? - R,i=1,...,n. We assume that there exists a constant ay;, > 0 of
uniform parabolicity such that a;(t, ) > amin foralli = 1,...,nand (¢,2) € [0, T]xQ.
For simplicity, we also require that the matrix 1/2 diag(V -B) is positive semi-definite.
Finally, F : R™ — R” is a vector field satisfying the growth condition

[F(w) —F(v)| < C(1+ |w|+[v])T|w —v], (2.8)

for w,v € R™ and v > 0 constant, where | - | denotes the Euclidean distance on R™.
The admissible values of the constant v will be discussed in detail at various instances
in the text.

We impose the initial condition

u(0,z) = ug(x) on {0} x Q, (2.9)

for ug € [L*(2)]™. On [0, 7] x 02, we impose mixed Dirichlet and Neumann boundary
conditions as follows. Let ¢ be an index running over the set {1,...,n}. For each i
the boundary 9 is split into 9Q = I'P UTYN, with TP being of positive (d — 1)-
dimensional (Hausdorff) measure. Further, we subdivide 9Q = 9Q; U 09, where
00 = {x € 9Q : (Bin)(x) < 0} and 99 = 90\, are the inflow and outflow

parts of the boundary 92 for the i-th equation. Finally, we assign

u;=gP onTP,
a;Vu;-n=g" onT}NoQS, (2.10)
(al-Vui — BZTuZ) ‘n = glN on Fi-\f noQ,,

for Dirichlet and Neumann data ¢g° € HY2(I'P), gN € L*(TY), respectively; here
and in what follows n denotes the unit outward normal vector to 9Q2. We denote by
X; : 0Q; — R the characteristic function of 9Q;. We let I'p := I'? x -+ x T'D,

and I'y = 'Y x -+ x I'N so that, with a little abuse of notation, we can write (2.10)
collectively as

u=gp onlp and (AVu-X"UB)n=gy only, (2.11)

upon defining X~ := diag(x],...,x;) and X* :=1 - X~, gp := (¢P,...,¢2)T, and
(N N\T
gx = (g, g,
The model problem is completed imposing, across I'y, the fluxes described in
Section 2.1. In view of (2.5) and (2.6), we define the friction coefficients and weights
Ti,vil’Q : Ty — [0,1] and the permeabilities p; : R*® — R", i = 1,...,n, as functions

of the traces of u from both sides of the interface. The interface conditions read
(a;Vu; —u;B) -njgr = p;(ut,u?) - (u? — ul) — ri(viul + v2u?)(Bin)|gr, on Ty,

(a;iVu; —u;B) -n|g2 = p;(u',u?) - (u! — u?) — r;(viu} +v?u?)(Bim)|gz, on Ty,
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where v/ := u|g r,, j = 1,2. Introducing, 17 = diag(vd,...,vl), je{1,2},R=
diag(ry,...,mn), and P(u) = (py(ut,u?),...,p,(u!,u?))T, the interface conditions
can be written in vector notation as

(AVu — UB)n|g: = P(u)(u? —u') — R(T'U' + T2U?)(Bn)|q:, on Ty,

2.12
(AVu — UB)n|g: = P(u)(u! —u?) - R(T'U' + Y2U?)(Bn)|g2, on I'y. (212)

We make the following assumptions on the weights and permeabilities in accor-
dance with Section 2.1. For every i = 1, ..., n, the weights Uil’Q satisfy, for any x € 'y,

L(x) > v3(x) if (Bin|pa1)(x) >0,

(K
: 2.13
v (x) < v?(x) otherwise. (2.13)

vi (%) + 07 (x) = 1, {

We let p : R?” — R” denote the function describing the diffusive flux across the
interface I'y, that is, with x! = (z1,...,2,) and x*> = (T,41,...,T2n),

p(x) :=P(x)(x' —x?) VxeR™, (2.14)

and assume that p € C*!(R??) and that its Jacobian p’ is bounded.

Throughout this work, we assume that the problem given by (2.7), (2.9), (2.11),
and (2.12) has a unique solution that remains bounded up to, and including, the final
time T

3. Space discretisation by the discontinuous Galerkin method.

3.1. Finite element spaces. Let T be a shape-regular and locally quasi-uniform
subdivision of €2 into disjoint open elements x € T, such that I'y C Uxeg0k =: T, the
skeleton. Further we decompose I' into three disjoint subsets I' = 9Q U 'y, U Ty,
where Ty, = T'\(02 UTy). We assume that the subdivision T is constructed via
mappings Fj;, where F; : & — x are smooth maps with non-singular Jacobian, and &
is the reference d-dimensional simplex or the reference d-dimensional (hyper)cube. It
is assumed that the union of the closures of the elements x € T forms a covering of
the closure of ; i.e., Q = U,egk.

For m € N we denote by P,,(%) the set of polynomials of total degree at most
m if i is the reference simplex, and the set of all tensor-product polynomials on & of
degree k in each variable, if & is the reference hypercube. Let m, € N be given for
each k € T. We consider the hp-discontinuous finite element space

Vi :={ve L*Q):v|,0F, €P,, (i), x € T}, (3.1)

and set Vj, 1= [V]™.

Next, we introduce relevant trace operators. Let k¥, K~ be two elements sharing
an edge e := Okt N Ok~ C Iy UTy. Denote the outward normal unit vectors on
e of Okt and Ok~ by nt and n~, respectively. For functions q : 2 — R” and
Q : Q — R™*4 that may be discontinuous across I, we define the following quantities:
for q* :=ql.+, a7 :=q|.- and QT := Q.+, Q" := Q|.- on the restriction to e,
we set {q} := 3(q" +q7), {Q} == 3(Q"+Q7), and [q] :=q" ®nT +q ®n",
[Q] := Q"'n" + Q n~, where ® denotes the standard tensor product operator, with
q@w = qw'. If e € Ok N Ty, these definitions are modified as follows: {q} :=
q", {Q}:=Q" and [q] := ¢t ®n, [Q] :==Q"n.

Further, we introduce the mesh quantities h : @ - R, m :  — R with h(z) =
diam x, m(z) = my, if € &k, and the averaged values h(z) = {h}, m(z) = {m}, if
x € I'. Finally, we define Ay sy := max,cqh and Ay, := mingeq h.
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We shall assume the existence of a constant C'y > 1 independent of T such that,
on any face that is mot contained in I'g, given the two elements x, s’ sharing that
face, the diffusion matrix A satisfies

Ch' < ||Allso kA7 < Cyu. (3.2)

co,k! —

This assumption can be removed using the ideas from [24], but we refrain from doing
so here for simplicity of the presentation.

The next result is a modification of the classical trace estimate for functions in
HY(Q UO?) + Vy; see [11] for similar results.

LEMMA 3.1. Assume that the mesh T is both shape-reqular and locally quasi-
uniform. Then for v € HY(Q' UQ?) + Vy,, the following trace estimate holds:

2
>llelasli?, < cre( D IVOIZ + BT 2RIIR, ) e 0I2 (33)
j=1

RET

for any € > hyax and for some constants ¢; > 0 and co > 0, depending only on the
shape-regularity of the mesh and on the domain 2.

Proof. We use the decomposition of v € H1(Q'UQ?) + V), into a conforming part
v, and a non-conforming part vg := v — v, € V. This decomposition is described
in [34, 35] for functions in Vj; the extension to H(Q! U Q?) + V), follows by taking
ve € HY(Q' UQ?). Using Theorem 2.1(iii) from [35], there exists a vi € H}(Q' UQ?),
i = 1,2, such that

DD (w = vi)Fngs < Cl!/27 1))
KET

%intﬂﬂi’ (34)

where D is the differentiation operator for a multi-index « with |a| = 0,1. Hence,
(3.4) implies

D ID*w = wo)lZ < Cl' 2|, (3.5)
KET
for (ve)|qs =i, j =1,2.
The triangle inequality implies
2 2
D lvlasl?, <207 (loelasll?, + 10 = ve)las IF,)- (3.6)
j=1 j=1

To bound the first term on the right-hand side of (3.6), we note that v. € H'(Q'UQ?),
giving

2 2
> lleclasllf, < €7 (leells + lvcllasIVvella) 7 < O (el + eIV ec)
j=1 j=1
< C(e el + el Vo 2) 2,
(3.7
for any e > 0 sufficiently small. To further bound the right-hand side of (3.7), we use
the triangle inequality for each term, viz.,

lvell < o —vell + o] and [[Vo|* <2 (V@ —wo)l2 +[IVo]2),  (3.8)
RET
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in conjunction with (3.5), to arrive at

2
S velen B, < C (e BRI, + ol + a0l +e 3 (v0f2)
Jj=1 KET
< (ol + v 2RI, + e 3 192)
KET

(3.9)
using the assumption that € > hpyax.
To bound the second term on the right-hand side of (3.6), we use the trace estimate
on each element in conjunction with (3.5), viz.,

2
Z v—voloslf, <C Y (W72 (0 = w2 + 02V (0 —wo)lI}) < ClI]IE,,.
j=1 KET:RNT g #£D
(3.10)
Noting the assumption € > hpax, the use of (3.9) and (3.10) in (3.6) concludes the
proof. O

3.2. Space discretization. The discretization of the space variables will be
based on a discontinuous Galerkin method of interior penalty type for the diffusion
part and of upwind type for the advection. Special care has to be given to the
incorporation of the interface conditions.

More specifically, we shall introduce a interior penalty discontinuous Galerkin
(IPDG, for short) discretisation of the advection-diffusion operator

-V . (AVw — WB), (3.11)
where W := diag(wy, wa, . .., wy,), for w := (w1, ws, ..., w,)".
To this end, we define B(wp, v},) to be the IPDG bilinear form

> [ (AVw, — W,,B) : vVh+/

KETVF Iy

_ /F  ({AVwL = WiBY - vl + {AVV) £ ] = (5 4+ B)lwal : [val )

({WhB} + Bg[[wh]]>  [va]

(3.12)
- /F ((Ath —XTW,B) : (v, @n) + (AVvy) : (W), ® n) — Zwy, - Vh)

+/ (DC+WhB) : (Vh X n),
I';:
and define

N(wn,vh) ;:/F (P(wn)[wa] — (1= R) ({(WaB} + Bo[wal)) : [va].  (3.13)

Here, ¥ := C, Am*h~! denotes the discontinuity-penalization parameter matrix with
Cy > 1 constant. Furthermore, B := I diag(|B; -nl,...,|B, -n|) and By := (T! —
:1)Bn|g: = (T2 — 11)Bn|q: is diagonal with non negative entries.

REMARK 3.2. We comment on the interface terms. The diffusion term, appearing
in N, is simply given by frg P(w)[w] : [vn]. This resembles the typical jump stabil-
isation term with the permeability coefficient replacing the discontinuity-penalization
parameter, rendering its implementation within a dG computer code straightforward.
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To ensure the coercivity of B, the advective interface term has been split as R =
I—(I-R), resulting into contributions in both B and N. Indeed, the advective interface
contribution in B can be recast using the weighted mean {W,B}¥ := YW, B|q: +
T2W;,Blgz2, so that

{WhB}U : [[Vh]] = ({WhB} + 'Bg[[Wh]]) : [[Vh]], (314)

thereby resembling the typical dG upwinding for linear advection problems and, hence,
ensuring the coercivity of B.

REMARK 3.3. In this setting, I'n can have non-trivial intersection with both 0},
and an, thereby extending the discontinuous Galerkin method proposed in [32].

4. Elliptic projection error. The a priori error analysis is based on a (non-
standard) elliptic projection inspired by a construction of Douglas and Dupont for
the treatment of nonlinear boundary conditions in the context of conforming finite
element methods [20].

DEFINITION 4.1. For each t € [0,T] we define the elliptic projection wy, € V, to
be the solution of the problem: find wp, = wp(t) € V,, such that

B(u—wp,vp) + Xu—wp,vp)+ N(u,vy) — N(wp,vy) =0 Vv, €Vy, (4.1)

for some fixzed A > 0, and u denoting the exact solution.

The constant A > 0 in the definition above will be chosen large enough to ensure
the uniqueness of the projection wy,, cf. Lemma 4.4 below.

Next, denoting by S* := H* 4+ V},, s € R, we define the dG-norm on S!

Il = 3 (VATwIE + 5 | a(@ BIwlE) + IVED] Ry,
KRET
(4.2)

1/2
VB, + ||¢E[[wﬂ||%g) ,

where ||Q||Z := [ >, [Q:(2)|* dz, denotes the Frobenius norm whenever Q is a nxd
tensor. We assume that (4.2) is a norm. This is satisfied when standard assumptions
on the solution in conjunction with the boundary conditions hold on each subdomain,
e.g., I'p N O has positive (d — 1)-dimensional (Hausdorff) measure for j = 1,2. If
the interface manifold I'y is not characteristic to the advection field, such hypotheses
can be further relaxed.

For the remainder of this work, we shall make the simplifying assumption that B
is such that:

B;-V(vp); € Vy, for i=1,...,n, (4.3)

for any function v, := ((vn)1,. .., (a)n)" € V. We note, however, that this appears
not to be a genuine limitation in the arguments presented below: ideas on how to
circumvent this assumption have been presented, e.g., in [32, 5], for the case of scalar
linear advection-diffusion problems.

The next two results show the coercivity and the continuity of the bilinear form
B(+,-). Their proofs follow straightforward variations of well-known arguments (see,
e.g., [4, 32]) and are, therefore, omitted for brevity.

LEMMA 4.2. There exists a positive constant Ceper € R, such that, for vy € Vy,

B(V}“Vh) > Ccoer|||vh|||2'
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LEMMA 4.3. Let IT : [L?(Q)]" — V), denote the L*-orthogonal projection onto
Vy. For any w € H®, s > 3/2 and vy, € Vj, we have

[B(n, vi)| < Ceontll[nlllslllvall,

where n :=w — [Iw and

llmllf == Il + 1572 {AVR}Fyor,, + VB IE + IVBo{m}F,.  (44)

The next result establishes the well-posedness of the problem (4.1) and relevant
approximation properties.

LEMMA 4.4. Assume that u € H*, s > 3/2 for all t € (0,T]. For A > 0
sufficiently large and for hmax sufficiently small, the variational problem (4.1) has a
unique solution wp, € Vy, for each t € (0,T]. Moreover, the following bound holds:

Ceoerllol* + Mlpll* < lInll% A, (4.5)
and, if also u; € H?, then
Ceoerllloell” + Algl* < el 5 + llnlll 5 (4.6)
where p:=u — wyp, n:=u—1lu, and
Imlll3 x = Celllnlli + 7A[ln]%,

with C (4cgont + 3 coer)/CCOCT

Proof. Well-posedness of (4.1) is established by proving that the associated
mapping is strongly monotone on V;. Using the assumption that p € C%1(R?"), we
get

IN(v,2) = N(w,z)| < /F (IPp(v) = p(W)| + Czlv — w)|) [[z]|

< / (CPlv = w| + C|v — wl) |[2] (4.7)

i)

Z (v = w)las IF, + llzles [IF,).

where CP is a Lipschitz constant for the function p, C's > 0 is a constant proportional
to max | Bin||oo,r,, and C% > 0 is a constant depending on both C? and C.
i=1,...,n

This, in conjunction with the coercivity of the bilinear form B provided by
Lemma 4.2, gives

B(Vh — Wh, Vh — Wh) + )\<Vh — Wh, Vl — Wh> + N(Vh,Vh — Wh) - N(Wh,vh — Wh)
2
> Ceoerl[Vi = Walll® + Mva = wal® = C& D [1(vi = w)los IR,
=1
2CT cieo

Ccoer 2
> ——|||lvh = wr]||”+ (A —
||| ||| ( CoerQmin

> = v — w2,
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the last inequality owning to the trace estimate (3.3) with € = Croer@min/(2C%c1).
Hence strong monotonicity is ensured as soon as A > QC% 162/ CeoerCmin-

To show (4.5) and (4.6), we split the error u — wy, = n + &, with n := u —ITu
and & := ITu — wy. Then, setting v, = £ in (4.1), we deduce

B(£,€) + A& &) = —Bn,£) — A(n, &) — N(u, &) + N(wp, §). (4.8)

Using the coercivity and the continuity of B along with the bound (4.7) in (4.8) gives

3 3 c? 2
1(/“cmll\£|||2+EAH&H2 < =2t lnl|% + Ml +C5 > (Inlas |7, + 1€l I},)- (4.9)
coer ]:1

Using (3.3) with € = Ceoerumin/(4C%c1) on the last term on the right-hand side of
(4.9), we arrive at

1 3 _
§Ccoer|H€|”2 + 1>\||€H2 < CellInlll% + Mnll* + Cheae™ (Inl* + [1€1)-
Choosing A > 16(C%)?c1c2/(CeoerOmin), we deduce

1 1 5
5 Ceoer €117 + SAEN" < CelllmlliE + AlIml*. (4.10)

A triangle inequality already gives (4.5).
In view of obtaining (4.6), we differentiate (4.1) with respect to ¢ and then test
with v, =&,

B(&,&) + M& &) = —B(ny, &) — My, &)

_/F %(ﬁ(u)—ﬁ(Wh)+(I—R)({(U—Wh)B}+fBJ[[p]])):[[ﬁt]]_ (4.11)

Using the assumption that the Jacobian p’ € C%!(R?") and is bounded we obtain

ﬁ 2 (Bu) — Blwn) + (1 - R) ({(U —~ Wi)B} + Bolo]) ) : [€]

dt
2
SAU = B (wa)) [l + B/ (wa)lp,)| + Cs Y (Ipyles| + Iplas ) ) €]
J j=1
2 2
< (D2(Ch ullelov e, + Chlipddalin,)) D gl e,
j=1 j=1
2 ~
<> (Ch allplasl?, + 2Ch Imelas 12, + (Ch u + 3CH)lE o2, )

j=1

2
uy (lplasllf, + lImelos I, + 1€ lasl,)
j=1

<Cy
} (4.12)
with Cf, 1, C% y > 0 constants depending on C% and on ||| Lo (jo,r)xq). Here and
in what follows, square brackets are used to denote the argument of a linear operator.



12 A. CANGIANI, E. H. GEORGOULIS AND M. JENSEN

Applying (4.12) to the right-hand side of (4.11) and using the coercivity and
continuity of B yields

J

3 3 Clon
*Ccoer|H§tH|2 + *)‘HgtHQ < : |||77t|||23 + )‘HTHH2
4 4 coer
2 (4.13)
+Chu ) (IolaslI, + Imdaslif, + 1€daillE,) -

1

As before, using the trace estimate (3.3) on the last term on the right-hand side
of (4.13) with e = C’coerozmin/(élC%’ucl), we arrive to

1 4C2, ., + 3C?

1 COoNn coer 5 1
5 CeoerlI€lI? + GNP < =T 3+ el + Il

for any A > 16(max{C% ;, C3})?*c1¢a/(Ceoer@min). Now (4.6) easily follows by the
triangular inequality. 0

We conclude this section with an L?-error bound of the elliptic projection (4.1).
This is obtained by an Aubin-Nitsche duality-type argument, inspired by a construc-
tion of Douglas and Dupont [20] for nonlinear boundary conditions.

The interface operator N given in (3.13) consists of a nonlinear component driven
by the function p(w) = P(w)[w] and a linear component which we can characterise
by introducing the linear operator Lw]| := —(I—R)({WB} + B4[w]). We abbreviate
S :=S! and let S* be the dual space of S. It is convenient to momentarily view N as
an operator from S — S*, indicated with a calligraphic font:

N: S S we (v — / (P(w) + L[w]) : [[v]]),
Ty

where the dependence on v represents a linear mapping S — R in S*. Thus the
derivative N’ is a mapping S — L(S,S*), where L(S,S*) denotes the linear mappings
from S to S*. Therefore the integral

P(t,v) ::/0 N (wi (£, ) (v) db,

where w? := fu + (1 — 0)wy,, belongs to S* for each ¢t € (0,T), v € S. In particular
P(t,u(t, ) — wp(t,-)) € S* and

1
Plt,ult,) ~ walt) = [ Nt (ult) - wilt,)) 8
0
1
= [ an¥w?(1)) d = N(u(t, ) - Newn(t.),  (4.14)
0
using that [0, 1] — S*, 0 — N(w?(¢,-)) is continuously differentiable as p € C1*(R?").
We shall frequently abbreviate P(¢,z(t,-)) by Pz below.

We assume that there is an s € (3/2,2] such that for all a € [L?(2)]" and
B € [H'/?(I'g)]?>" there exists a solution ¢ € H® of the linear dual equation:

Bv,{) + AMv, ) + (Pv,¢) = (v,a) +(v,B)r, VveE H:. (4.15)
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Further, we assume that the dual solution ¢ satisfies the elliptic regularity bound:

2
Yl S llell + 18l 2y (4.16)

Jj=1

The bound is motivated by [42] and [48]: Suppose Q' and Q2 are smooth or creased
domains. Assuming the existence of ¢ allows to decouple the problem into the sub-
domains, using ¢ for the boundary data on the interface. With H! control available,
lower-order terms may be moved to the right-hand side before applying elliptic regu-
larity bounds such as those mentioned above, leading typically to control in fractional
Sobolev norms.

LEMMA 4.5. Assume that the hypothesis of Lemma 4.4 and (4.15) with (4.16)
hold true. For A > 0 sufficiently large, for hmax sufficiently small, the following error
bounds holds:

lpll < CO+ hiax ) 2R 7l 5.5, (4.17)

If in addition the function p defined in (2.14) is twice differentiable with bounded
second partials and u,u; € W>°([0,T] x I'y) then

lpall < O+ R ) 2R (el s + [l 0)- (4.18)

The constant C' depends only on C4 and the shape-reqularity of the mesh.

Proof. Let z solve (4.15) with @ = p and 8 = 0. Owing to the adjoint con-
sistency of the symmetric interior penality bilinear form B as well as of P, the dual
solution z also satisfies (4.15) for v € Vj: Because z belongs to H!, the integral terms
over I'jy; in B vanish, so that upon integration by parts B(v,z) is equal to the L?(Q)
scalar product of v and the adjoint differential operator applied to z, as well as L?
scalar products over I'y and 0f2. In all scalar products, also including those arising
from P, derivatives are then only acting on z and not on v, implying by density of
smooth functions in L? that (4.15) also holds for dG test functions v. This allows us
to test in (4.15) with v = p = u — w), and get:

lpll* = B(p,2) + Xp.2) + (Pp.2z)
= B(p,z) + X(p,z) + N(u,z) — N(wy, z) (4.19)
= B(p,n") + XMp,n") + N(u,n") — N(wp,n%),
with n* = z — IIz. The second equality follows from (4.14); the last equality follows

from the definition of the elliptic projection (4.1).
We now bound each term on the right-hand side of (4.19). Observe that

z z —1/2 z
[Blp, )| < CllollIn? I3 + D2 ( max fla; B2, ll7]12)"2
weT (4.20)
< Cllpll(a* 13 + A I)2 < Cllpll 177l .

for A big enough. The nonlinear interface term in (4.19) is bounded as in the proof
of Lemma 4.4, yielding

2 2
z 2 1/2 z 1/2
IN(u,17) =N (wp,n°)] <4C5 (Y llplaslI?,) " (D In*loslIZ,)
j=1 j=1
_ 1/2 » 1z
< (Ceoerlllpl? +4CH c2e  pl?)* (Ceoerllln? |2 + ACH cae ™ 7]1?)

1/2 1/2
< (Ccoerll|p‘||2+)‘||p||2> (Ccoer|H77Z|||2+)‘H772||2) )

L (421)
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using once again (3.3) with € = Croer@min/(4CHc1), for A > 16(0%)20102/(C’weram1n).
Using the above inequalities and applying the bounds on the elliptic projection
error given in Lemma 4.4, we obtain

lel* < Climllls Allm*ll5 5 (4.22)

for A big enough.
The term in 7% can be bounded using standard approximation estimates for the
error of the (orthogonal) L?-projection (see, e.g., [49]) yielding

zZ (|12 s—
50 < C Y W2V L+ REA) Izl . (4.23)
KET
Further, inserting (4.23) into (4.22) and then using (4.16) we get

2 = fnax 172 fnai B, Hs(Q9)
lpl? < C(L+ hfueX) 2Bl [lmll 2]

Jj=1
< O(1+ )ik Il s Al

(4.24)

thus yielding (4.17).
We now prove (4.18). Let z be the solution (4.15) with & = p, and 3 = 0. Using
the linearity of P in the second argument, we have

4,2 (¢, plt)) = (0,2)], = 7|

e Pt T O oy = Pliespion P + P oy

Testing in (4.15) with v = p, gives, for each ¢,

)
lpe(t)II* = Blpy, 2) + Mpy, 2) + (Ppy, 2)
= B(p,2) + Mpy, 2) + (d:P(t, p(t)), ~> —(0:P,2)

(ptvz) +A<pt7 > <dt( (Wa ) Wh7 ) > atj) Z

= B(py, ") + Mpy,m°) + (de(N(w,-) = N(wy, ), n°)—(0,P, 2)

with 7 = z — I1z. The last equality follows from differentiating with respect to time
the definition of the elliptic projection (4.1).

The first three terms on the right-hand side of (4.25) can be bounded by the

same argument used above. In particular, following the argument in (4.12) and then
applying the bounds on the elliptic projection error given in Lemma 4.4 yields

|d; (N(u,7°) = N(wp,n%)) |

2 2
1/2 3 1/2
<40 (S (plas 12, + oo l2)) 2 (S I las 12, (4.26)
Jj=1 j=1

N

(4.25)

< C(lImllls x + Ml DlIm* 5 5

As for the last term, we proceed as follows. Spelling out the definition of P, we have
<g>|(t,p(t)) / N/ d6 Z>
=/<(< )+ 1) (ol la] ) a0
0
1
[ ([ e'oieh+ pig) - 1) o
J
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Thus, using the assumption that the Hessian p” is bounded, the embedding of H* ()
into L°°(€27), j = 1,2, and then using (4.16), Lemma 3.1, and (4.6), we get:

0712 = | [ 1 (f (B ) 1) o)

< / 1 ( A |ﬁ“<w9>||atw0|p||uzm) b

(4.27)
annw / (18ep] + 19wl o]

< C||pt||(||ptHH1/2(Fg) 10w nll /2 (ry)llol e r,)-
< Cullpllllll 2 ry)--
Hence we are left in need of an estimate of ||pl|g1/2(r,)-. This can be obtained
by the following duality argument.

Let z be the solution (4.15) with & = 0 and 8 = §(p). Here § is the duality
map [52, IIB, p. 860] between H/?(I'5) and H'/?(I')* such that 10| ez (ry) =

ol iz g+ and (p,d(p))r, = ||p||§{1/2(rj)*. Testing in (4.15) with v = p yields

IolZ12(0,)- = (P 8(P))rs
= B(p,i) + Xp

B(p,z) + Xp

= B(p,n") + \(

z) + (Pp,2),
z) + N(u,z) — N(wp, )

’ (4.28)
p:n°) + N(u,n*) — N(wy,n%),

with n° = 2 — TIz.
Now a bound for ||pl|g1/2(r,)- can be derived by following the same steps used
above to get (4.24), yielding:

||P||§{1/2(1‘3)* <C(1+ h?nax )1/2hfna}( 7]l A Z 12]| £ ()
j=1

< O+ D) 2R llls 5 160 L1721, )

(4.29)

having used (4.16) once again. Finally, by inserting in (4.29) the definition of 6(p) we
conclude that

ol 2,y < COL+ R M) 2B Il 5 - (4.30)

Using (4.30) in (4.27) we bound last term on the right-hand side of (4.25). Now,
recalling (4.26), the bound (4.18) easily follows from (4.25). 0

5. DG method for the parabolic system and its error analysis. The
above discussion motivates the introduction of the following IPDG-in-space method
for the system (2.7), (2.9), (2.11), and (2.12).

For t =0, let up,(0) = w,(0). For ¢t € (0,7, find uy, = uy(t) € V), such that

((up)t, vh)+ B(ap, vi)+ N(up, vp)+ (F(up), vy) =1l(vy), forall v, €V, (5.1)
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where

U(vh) 5:—/ ((gD®n) t (AVvy)+(X™GpB) : (V}L®n)_EgD'Vh> +/ gn Vs (5.2)
FD 1_‘N
noting that (q®n) : (ve®n) = q-v, for q, v € R”, and having denoted Gp :=
diag(gh, - - - 9)-
We shall make use of the following result to treat the nonlinear reaction term.
LEMMA 5.1. Ifd =2, let g € [1,00) and if d = 3, let q € [1,6]. Then, there exists
a constant Cpg > 0, depending only on the geometry of the subdomains 7, j € {1,2}
and of the Dirichlet boundary, such that, for all v € St, we have
[l < Cprmax{1, agi, Hivll*. (5.3)

Moreover, for 0 <~y <2, ifd=2, and for 0 <y < 4/3, if d = 3, we have

lol332 < Crr max{L, agi, Hol"|lol]*. (5.4)
Finally, for d =2 and v = 2 (which corresponds to ¢ = o0), (5.3) and (5.4) hold for
v € Vy,, with Cpp := C|log(ming h)| for some constant C > 0 depending only on Q.
Proof. From the assumptions on the topology of the subdomains, we can apply
Theorem 3.7 from [39], to deduce
[v]13.0s < Cmax{L, agi, Hivll?,
with the boundary contribution taken as 97\I'y, for 1 < ¢ < oo if d = 2 and for
1< q<6if d=3. For the case ¢ = oo if d = 2, we make use of the standard inverse
estimate [Jv]|%, , < C'log |h,{|||v||§{1(ﬁ). Setting p = 2/, for 1/p+1/q = 1, which gives

q =2/(2 — ), Holder’s inequality implies (5.4). 0

We are now ready to prove a bound for the difference between the elliptic projec-
tion wy and the dG approximation uy,.

THEOREM 5.2. Consider the notation of Lemma 4.4 and let v as in Lemma 5.1.
Assume that u € L2(0, T;H*)NL>®(0,T xQ), s > 3/2, u; € L*(0,T; L?(Q2)), and that
hmax s small enough. Then, we have

10117 0,722 (2)) + Ceoer 101l 72(0,1.5) < 4677,

where 0 :=wj, —uy, C := C(ullss,0,rx02> A), and
T A 2
62(t) = / Clll* + (I35 + A" loi]1?) at. (5.5)

Proof. Without loss of generality assume that v > 0; the case v = 0 follows by
a simple modification of the argument presented below.

Let € := p+ 60, with p := u— wj, and 6 := w;, — u,. We note that the
continuity of wy, in the time variable is implied by the well-posedness of the elliptic
projection problem, and that of u; by a standard local existence argument near 0
on the resulting system of ordinary differential equations. Hence, 6 is continuous in
[0,T] with 6(0) = 0.

Orthogonality implies

(dhe,8) + Ble,0) + N(u,0) — N(uy,0) + (F(u) — F(uy), 8) = 0.
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From (4.1), we deduce
3 dt L 0)2+ B(6.6) = (F(wn) — F(w),0) + N(wy. 0) — N(w.0) + (\p — p,.6). (5.6)
Making use of the inequality
| v T jalgzs + b3t
for a,b > 0, the nonlinear reaction term can be bounded as follows:
[(P() = Fw,).0)] < C [ (1-+ "+ f ) = 6

<c / (1+ [ul")u - w,6] + C / u— e (67
Q Q
< c)(lpl2 + 1012) + C(lol7H3 + 10]773).

Also, using the regularity of p and (3.3), we have

2

1 A
[N (un,8) = N(wn,0)| < C5 > [16]asI7, < 7 Ceoerl611I* + S 11617, (5.8)
j=1
choosing € and A as in the proof of Lemma 4.4.
We also have
Aoz, L 2 2
(A = pi, O)| < SllplI" + S5 [l 1™ + AllOI. (5.9)
Lemma 5.1 implies

1011713 < Cprmax{1,azi,}6]7]16]]%. (5.10)

Using these bounds in (5.6), along with the coercivity and continuity bounds from
Lemmas 4.2 and 4.3, integrating the resulting inequality with respect to ¢ (and mul-
tiplying by 2) between 0 and 7, we arrive at

10G7) I + Ceer [ 161

<o*+.0 [ 10+ Casssup o [ llell (5.11)

t€(0,7]

T A 14+~/2
<6% + c/ 61> + C(esssup loI* + C/ IHBIH“") )
0 t€[0,7] 0

for 62 and C as in the statement of the theorem, and €' := Cmax{1, (CeoerOmin) "' }.
From the assumption that the mesh-size hyax is small enough, we can have

2+~

5 < O (4eCT)"

which implies CA’(4J5(52eC_VT)1+”Y/2 < 62. We now consider the set

I:={r€0,T]:esssup|6(t)| +Ocoer/ hnel* < 452eCT},
0

te[0,7]
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which is non-empty and closed due to the continuity of @ with respect to the time
variable, as 8(0) = 0. We set 7* = max [ and we suppose that 7* < T. Hence, for
7T < 7%, we have

ess sup 0D + Cooer / 6]|? < 26% + € / o).
0 0

te(0,7]

Gronwall’s Lemma then implies
1o¢r*)|1* + Ccoer/ 161> < 262, (5.12)
0

setting 7 = 7", which contradicts the hypothesis 7* < T', due to the continuity of the
left-hand side of (5.12). Hence, I = [0,T] and the result holds. 0

COROLLARY 5.3. Let 0 < v <2 ifd =2, and 0 <y <4/3 ifd = 3. With
the assumptions of Lemma 4.4 and of Theorem 5.2 and |, € H'(0,T;[H*+1(x)]"),
ko >1, Kk €T, we have

[a = an [ 0,7;22(02)) + Cever [0 = Wnll72¢0,75) < CE((0, ], b0, Vy),  (5.13)

for C independent of h and

T
8((0,T],h,u,Vh) = ZA h,is*i (|u|[2HkN+1(N)}" + |ut|[2HkN+1(I€)]")’ (514)
KET

for s, = min{my, k. }. Moreover, with the additional assumptions of Lemma 4.5, we
have

max

u — un|| 7 0. 7:22(0)) < Chimax €((0,T], h,u, Vi), (5.15)

fors € (1,2] dictated by the regularity of the exact solution of the dual problem (4.15).
Proof. We begin by using (5.3) to deduce the estimates ||p||1i§ < C|lpllI"*2,
llell < Clllplll, and ||p:]] < Clllp:lll- An application of Lemma 4.4 on the resulting
norms, along with standard approximation estimates for the error of the (orthogonal)
L2-projection (see, e.g., [32]) already implies (5.13).
For (5.15), we set € = min{2, ky/(s — 1)}. Then, we have the bound

+2 - + -
el < el = llell3 ey < Clel*~=llell™*,
which implies (for this choice of ¢, since then /e + 1 < 2) that

742 < ChiZ2e((0,7],h,u, V).

max

Lemma 4.5 and standard approximation estimates now imply (5.15). O

As it can be seen from the above proof, the use of the novel elliptic projection,
introduced and analyzed in Section 4, plays crucial role in the treatment of the in-
terface nonlinearity P(-), while the continuation argument, along with the Gagliardo-
Nirenberg-type inequality (5.10), treats the nonlinear reaction F(-).

REMARK 5.4. We note that the bounds in Theorem 5.2 and, correspondingly, in
Corollary 5.3 do not require any global mesh quasi-uniformity assumptions. This result
also holds on domains without internal interfaces as in the setting of [40]. There, a
different continuation argument is used for deriving a priori bounds which requires
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the mesh to be globally quasiuniform (for non-symmetric spatial operators), albeit for
a larger range of v than the one considered in the present work.

REMARK 5.5. It is interesting to note that, due to the careful use of L*-projection
operators in conjunction with assumption (4.3), the constant in (5.13) depends on the
Peclét number only through the control of the nonlinear interface conditions. Thus,
the present bound produces error control that is Peclét number independent for the dG
method applied to a single domain problem.

We remark that it is possible to show optimal error estimates with less restrictive
assumptions than (2.8) on the growth of the reaction term. Indeed, assuming only
that F'is locally Lipschitz, an optimal a priori bound can be proven, subject to certain
conditions on the mesh. This argument, motivated by ideas presented in [2, 25], for
different problems will be considered elsewhere.

6. Numerical examples. In view of the numerical tests, we introduce a fully
discrete discretisation for the system (2.7), (2.9), (2.12). The time discretization is
based on a second-order linearly implicit method analysed in [2, 1].

Let us write the semidiscrete DG formulation (5.1) in matrix notation as

MU, = LU + F(U) (6.1)

where L collects all linear terms and F the nonlinear terms in (5.1). Treating the
linear terms with the second-order Adams-Moulton method (trapezium rule) and the
nonlinear terms with the second-order Adams-Bashforth method yields the following
fully discrete method (AB2-AM2):

k
MU = MU + E(OLU™ + (1 — 0)LU™) + S (BFO™) - F(U™ ).

Convergence test. We test the validity of the IPDG method and above error
bounds on a system of two equations for which the exact solution is known.

Let the domain Q = [~1,1]? be subdivided into two subdomains interfacing at
z = 0; thus Q' = [-1,0] x[-1,1] and Q% = [0, 1] x [-1,1]. Weset I'p = {£1} x[-1,1]
and I'y = (—1,1) x {£1} and impose homogeneous Dirichlet and Neumann boundary
conditions on I'p and I'y, respectively, as shown in Figure 6.1 (left). For ¢ > 0 we
consider the system of two advection-diffusion equations

u? —v(l —v) in Q!

—Au—uy = fu
Uy u—uz = f%+ {v 02, 62)
v —Av—v, = f'+u in Q' UQ2,

and accordingly construct the forcing terms f*¥ : [0,1] x @ — R in order to yield as
exact solution

wy) _ cost S dx(1 + z) in Q' (6.3)
v sint (=423 + 3z +1) in Q2
The first component of the solution at time ¢ = 1 is shown in Figure 6.1 (right). The

functions in (6.3) are compatible with the interface conditions (2.12) with respect to
the interface parameters

P = diag(3,3), T! = diag(1,1), T2 = diag(0,0), R = diag(1,1),
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F1G. 6.1. Convergence test. Solution domain and boundary conditions (left). First component
of the ezxact solution at the final time t =1 (right).

| # cells | # dofs | L?(0,1;S) | L>=(0,1;L*(2)) |
m=1
4 32 | 1.579e+01 | - 2.498e+00 | -
16 128 | 7.617e4+00 | 1.05 | 8.293e-01 | 1.59

64 512 | 3.615e+00 | 1.08 | 2.400e-01 | 1.79
256 2048 | 1.736e+00 | 1.06 | 6.497e-02 | 1.89
1024 8192 | 8.475e-01 | 1.03 | 1.693e-02 | 1.94
4096 | 32768 | 4.182e-01 | 1.02 | 4.324e-03 | 1.97
m=2
4 72 | 4.781e400 - 3.812e-01 -

16 288 | 1.013e+00 | 2.24 | 5.422e-02 | 2.81
64 1152 | 2.282e-01 | 2.15 | 7.330e-03 | 2.89
256 4608 | 5.480e-02 | 2.06 | 1.240e-03 | 2.56
1024 | 18432 | 1.349e-02 | 2.02 | 1.743e-04 | 2.83

4096 | 73728 | 3.427e-03 | 1.98 | 2.259e-05 | 2.95
TABLE 6.1

Convergence test. Errors and convergence rates under uniform mesh refinement. A fixed time

step of size .5x 1073 was used. Bilinear (above) and biquadratic (below) dG in space discretizations.

which are therefore used to close problem (6.2) with conditions (2.12).

We tested the convergence rate of our method under space discretisation refine-
ment. A fixed time step of size .5 x 1072 is used throughout while an initial uniform
square 4 x 4 mesh is uniformly refined. The value C, = 10 was used through-
out for the discontinuity-penalization parameter costant. Numerical results are re-
ported in Table 6 in the cases of bilinear and biquadratic spatial discretizations.
The predicted error rates of convergenece are confirmed in both the L2(0,1;S), (viz.,
I 122018 = Jo lI1I%,) and L2°(0,1; L2(€2)) norms.

Advection-dominated test. With this numerical example we test the robust-
ness of the method in the advection-dominated regime. We consider once again the
domain 2 = [~1,1]? subdivided into the subdomains Q' and Q2 already considered in
the previous test. In €2, we solve a scalar equation with no reaction and the constant
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Fi1G. 6.2. Advection-dominated test. Snapshots of the solution computed on a uniform 16 X 16
mesh using bilinear elements: the initial condition (top-left) followed by the solution at time intervals
of 0.5.

diffusion a; = 1072 and the advection field B; = (0.5,0.5). On the boundary 99, we
set homogeneous Neumann boundary conditions. The parameters

P = 2/10, T =5/6, T?2=1/6, R =6/10,

are used in the interface conditions (2.12). In this case, transfer across the interface
is mainly advection-driven. Further, setting the friction coeflicient to less than one
models the case in which the interface acts as a filtering wall on the advected quantity;
hence a boundary layer in the upwind subdomain in the proximity of the interface is
expected.

We solve the problem on a uniform 16 x 16 mesh using bilinear elements. Such
mesh is not fine enough to resolve the layer forming in the proximity of the interface
where the solution is also discontinuous, see Figure 6.2. Nevertheless, the numerical
solution is stable, and the expected behaviour of the solution is accurately captured,
as we can see by comparison with the solution obtained with a layer resolving 64 x 64
mesh and shown in Figure 6.3. We note that the method remains stable when smaller
values that 1072 are used for the diffusion ai; these results are omitted for brevity.

7. Concluding remarks. A dG method for the numerical solution of nonlinear
interface problems modelling mass transfer through semi-permeable membranes is
presented and a priori error bounds are shown under typical regularity assumptions.
The good performance of the method is highlighted through numerical experiments. A
number of extensions of the presented results can be made with modest modifications.
For instance, hp-version error bounds can be shown and more general convection
coefficients B can be treated. We refrained from doing so in the interest of simplicity
of the presentation. Interesting directions of further research are the consideration of
the variational crimes due to inexact representation of the interface manifold, using,
e.g., unfitted finite elements [7, 16] or the related approach in [41], and the treatment
of more general interface nonlinearities. These will be considered elsewhere.
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Fic. 6.3. Advection-dominated test. Snapshots of the solution computed on a uniform 64 x 64

mesh using bilinear elements: solution att = 0.5 (left) and t = 1 (right) corresponding to the second
and third plots in the first row of Figure 6.2, respectively.
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