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Large-Scale GWAS ldentifies Multiple Loci for Hand Grip Strength Providing
Biological Insights into Muscular Fitness
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ABSTRACT

Hand grip strength is a widely-used proxy of muscular fithess, a marker of frailty and
predictor of a range of morbidities and all-cause mortality. To investigate the genetic
determinants of variation in grip strength, we perform a large-scale genetic discovery
analysis in a combined sample of 195,180 individuals and identify 16 loci associated with
grip strength (p < 5x10®) in combined analyses. A number of these loci contain genes
implicated in structure and function of skeletal muscle fibres (ACTG1), neuronal
maintenance and signal transduction (PEX14, TGFA, SYT1), or monogenic syndromes with
involvement of psychomotor impairment (PEX14, LRPPRC and KANSL1). Mendelian
randomization analyses are consistent with a causal effect of lower genetically-predicted grip
strength on higher fracture risk. In conclusion, our findings provide new biological insight into
the mechanistic underpinnings of grip strength and the causal role of muscular strength in
age-related morbidities and mortality.
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Muscle strength, measured by isometric hand grip strength, is an accessible and widely-
used proxy of muscular fitness. Lower grip strength is associated with impaired quality of life
in older adults, and is an established marker of frailty, predicting physical decline and
functional limitation in daily living*. The value of grip strength as a clinical predictor of
fracture risk has been demonstrated in different populations*®, and higher grip strength has
been found to be prognostic of walking recovery after hip fracture surgery in later life®. Grip
strength has also been shown to predict cardiovascular disease (CVD) and all-cause
mortality over many years of follow-up’. Whilst it remains unclear whether these
prospective associations with fracture risk, CVD and mortality are causal - or reflect early
manifestation of underlying disease processes - the role of muscular strength as a predictor
of functional capacity highlights the importance of understanding its aetiology.

Grip strength is highly heritable (h?*=30-65%)'**2. Whilst candidate gene approaches have
implicated multiple loci in this phenotype, including thermogenic and myogenic factors'®**,
there remain few robustly replicated associations. Two genome-wide association studies in

15,16

up to 27,000 individuals have been reported to date , yielding one intergenic genome-

wide significant association™®.

Here, in a combined sample size of 195,180 individuals, including 142,035 individuals from
the UK Biobank (UKB) cohort'’, we identified 16 genome-wide significant loci associated
with grip strength. We also performed Mendelian randomization (MR) analyses, which
showed no evidence for causality in the associations of grip strength with cardiovascular
disease or all-cause mortality, but were suggestive of a causal effect of muscular strength on

fracture risk.



145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

RESULTS

Multiple novel loci are associated with grip strength

In stage one analyses, we tested the association of > 17 million variants (minor allele
frequency (MAF) > 0.1%, imputation quality [info] > 0.4), in 142,035 white European
individuals from UK Biobank (Supplementary Table 1) with maximal grip strength. Genome-
wide single nucleotide variant (SNV) heritability was estimated at 23.9% (SE 2.7%). Twenty-
one loci showed genome-wide significant associations (p < 5 x 10°®) in stage one
(Supplementary Fig. 1), and were subsequently followed up in stage two analyses of up to
53,145 individuals from 8 additional studies (Supplementary Table 1, Supplementary
Note) including the Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) consortium®®. Twelve loci were independently replicated (directional consistency
with stage one, p < 0.05) in stage two cohorts (Supplementary Table 2A) and 16 loci
contained genome-wide significant associations (p < 5 x 10°®) in combined analyses. Effect
sizes on grip strength ranged from 0.14-0.42 kg per allele under an additive model (Table 1,
Supplementary Fig. 1, Supplementary Table 2A, Supplementary Table 2B). Given the
discordance in sample size between stage one and two analyses, and in the interests of
maximising power, we considered there to be evidence of association at any locus reaching
genome-wide significance in combined analyses, and pursued all 16 in downstream
analyses. Lead SNVs at the 16 grip strength-associated loci included common variants (
MAF = 5%) in or near POLD3, TGFA, ERP27, HOXB3, GLIS1, PEX14, MGMT, LRPPRC,
SYT1, GBF1, KANSL1, SLC8AL, IGSF9B, ACTG1, a low-frequency variant (MAF 3%) in
DEC1, and a further common variant falling within the human leukocyte antigen (HLA) region
(Table 1, Supplementary Fig. 2). Approximate conditional analyses identified no additional
signals at genome-wide significance at these 16 loci after conditioning on their respective
lead SNVs. At two loci, we saw evidence for a departure from additivity (p < 3.13x10° under
a dominance deviation model [see Methods]); at the GBF1 locus, we saw evidence for a
dominant effect of the grip strength-raising A allele (Pgomaev=2.3x10"%; Supplementary Fig.
3A), and at the SYT1 locus, we saw evidence for a recessive effect of the grip strength-
raising A allele pgomaev=3.0x10>; Supplementary Fig. 3B). No individual variants showed
significant effect modification by age or sex (Supplementary Tables 2C, 2D). The
association of the 16 SNV genetic score (modelled as the sum of the grip strength-
increasing allele dosage at each SNV per individual) showed no interaction with age
(Pinteraction=0.30), but was stronger in men than in women (men: 8 = 0.20 kg per grip strength-
increasing allele, p = 2.38x10™; women: 8 = 0.13 kg per grip strength-increasing allele, p =
3.61x10™%; Pineraciion=1.56%107 (Fig. 1, Supplementary Tables 2C, 2D). Age at recruitment
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was independent of strength-increasing allele dosage at each of the sixteen SNVs from
combined analyses. Equally, allele frequency at each SNP was not predicted by age,
suggesting that there is no selection of alleles by age at these loci'®. We did not replicate
the previously-reported association at rs752045 with grip strength®® (8 per minor allele =
0.01, 95% confidence interval (Cl) [-0.06, 0.08], p = 0.75).

A number of associated loci contained genes with biologically plausible roles in strength and
neuromuscular fitness, through effects on the structure and function of skeletal muscle
(ACTG1), excitation-contraction coupling (SLC8A1), evidence for neurotrophic roles (TGFA),
or involvement in the regulation of neurotransmission (SYT1). ACTG1 (Actin, y1A) encodes
a key component of the costamere — a protein complex localised to the Z-disc of skeletal
muscle which physically tethers myofibrils to the cell membrane and transmits contractile
force generated at the sarcomere to the extracellular matrix via the dystrophin glycoprotein
complex (DGC)™%. Monogenic loss of elements of the DGC results in muscular
dystrophies?!, whilst Actgl knockout mice display overt muscle weakness, progressive
myopathy and decreased isometric twitch force??. SLC8AL encodes a transmembrane
Na‘/Ca?" exchanger which is vital to restoring Ca®" concentration to pre-excitation levels in
excitable cells. Muscle-specific overexpression of SLC8AL has been shown to induce
dystrophy-like skeletal muscle pathology?®. Synaptotagmin-1, encoded by SYT1, is an
integral synaptic membrane protein which regulates Ca**-dependent neurotransmitter

release at the presynaptic terminal®*

, and is implicated in development of neuromuscular
junction pathology in rodent models of spinal muscular atrophy”. TGFA encodes
transforming growth factor alpha, a well-characterised growth factor which plays a key
neurotrophic role in the central and peripheral nervous systems?, and is upregulated during

the acute injury response of motor neurons, promoting neuronal survival®”?®

Three lead variants for grip strength map to or near to genes implicated in monogenic
syndromes characterised by neurological and/or psychomotor impairment (Table 1,
Supplementary Fig. 2). rs10186876 (Pcombines = 9.75 % 10™) lies 15kb upstream of
LRPPRC (leucine-rich pentacotripeptide-containing), which has been implicated in the
French-Canadian variant of Leigh Syndrome (MIM: 220111), a cytochrome C oxidase
deficiency with features including developmental delay, hypotonia and weakness?®.
Mutations in PEX14 (Peroxisomal Biogenesis Factor 14) (intronic lead variant rs6687430)
underlie certain forms of Zellweger Spectrum Peroxisomal Biogenesis Disorder (MIM:
614887), a syndrome characterised by absence of functional peroxisomes and systemic
neurological impairment®. Finally, rs80103986 is intronic in KANSL1, which has been

implicated in the complex impaired-psychomotor phenotype of Koolen-de Vries syndrome
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(MIM: 610443)%. Further, the signal at KANSL1 is in a large linkage disequilibrium (LD)
block also containing MAPT (rs754512, pyiscovery = 3.7><10'8), which encodes the microtubule-
associated tau protein. MAPT has been implicated in a suite of so-called tauopathies
characterised by progressive neurological deficit, and is also a risk locus for Parkinson’s
disease®. 17g21.31 has a complex haplotype structure comprising an inversion and three
structural copy number variants arising from duplication events, which has previously been
shown to be of relevance to health®. After imputing the nine common structural haplotypes
at this locus®*~*°, haplotype was significantly associated with grip strength. In particular, the
inverted haplotype was associated with lower strength (B = -0.17kg, p=3.85x10®),
independent of age, sex, height and BMI (Supplementary Table 3A). This association

appeared to be driven by the inverted 02.y2 structural variant (B = -0.18 kg, p=1.24x107).

In sensitivity analyses, we re-tested associations of the 16 grip strength variants in UKB after
exclusion of up to 8676 individuals with T1D, cancer, or other prevalent disease with
potential to influence muscle strength. No loci showed significant attenuation of effect

relative to overall analyses (Supplementary Tables 3B, 3C).

Signals are enriched for biologically-relevant tissues

To identify enrichment of association signals across different tissues and identify likely
effector tissues, we performed cell type-specific partitioned heritability*® analyses on
genome-wide association results from the discovery phase. After adjustment for multiple
testing across nine distinct tissue types (p < 0.0056), we observed significant enrichments of
associations with grip strength in tissue-specific regulatory regions for a number of tissues,
including bone/connective tissue (p = 2.03x10™°), skeletal muscle (p = 1.88x10°) and the
CNS (p = 7.37x10®). Enrichments at weaker levels of statistical significance were also
observed in cardiovascular and gastrointestinal tissue, as well as the adrenal/pancreas axis,

and ‘other’ tissues (Supplementary Fig. 4).

Integration of gene expression data

Guided by tissue-specific enrichments, we sought to identify putative effector transcripts
underlying these associations by investigating associations of lead SNVs or their proxies
(r*>0.8) with transcript levels in brain, tibial nerve and skeletal muscle in GTEx
(Supplementary Table 4). The grip strength-increasing allele at ACTG1 (rs6565586) was
associated with lower expression of ACTG1 in skeletal muscle (pEXp_Lead=3.81><1O'13, Pexp-Best
cor.=2.64x10", r’=0.85). At LRPPRC (rs10186876), the strength-increasing allele was
associated with higher LRPPRC expression levels in cerebellum (pExp_Lead=6.35><10'7, Pexp-
Besteqr.=9.35x107, r°=0.93) and cerebellar hemisphere (Pexp.Lear=1.29%10"°, Pexp-sest
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eQTL=3.62><10'8, r’=1.00), which appears directionally concordant with previously-
characterised loss of function and otherwise damaging mutations associated with the
disease phenotype of French-Canadian Leigh Syndrome®’. At rs1161433 (ERP27 locus),
the grip strength-increasing allele was associated with higher levels of MGP expression in
tibial nerve (Pexp-ead=5.90%10", Pexp.esteor.=2.19x10*, r?=0.84). MGP (Matrix Gla Protein)
is a well-characterised inhibitor of vascular tissue and cartilage calcification, and
consequently acts as a key regulator of bone formation®,

We also performed integrated transcriptome- and genome-wide analyses using MetaXcan®
and SMR approaches®. Accounting for 5973 independent expression probes (Bonferroni-
corrected p < 8.37x10° for a < 0.05), and potential coincidental overlap of eQTL signals with
GWAS loci, SMR analyses using whole blood transcriptome data** suggested correlation
between higher grip strength and lower expression levels of ERP27(psyr=2.50x10°) and
KANSL1 (psur=3.05%10"), both of which are implicated genes from our GWAS analysis.

MetaXcan analysis identified 25 protein-coding transcripts implicated in grip strength at
Bonferroni-corrected significance in at least one of twelve biologically-relevant tissues from
the GTEX resource (neuronal, muscle, connective, androgenic tissues and whole blood;
Supplementary Table 5). Transcripts showed concordantly altered expression across a
number of these candidate tissue types (Fig. 2). For LRPPRC, for example, we observed
association of higher expression levels across a number of brain tissue types, tibial nerve,
whole blood and testis, with higher grip strength. Higher MAPT expression in multiple brain
regions known to be implicated in motor coordination (cortex, cerebellum and cerebellar

hemisphere) was also associated with higher grip strength.

Pathways underlying variation in grip strength

Hypothesis-free gene set enrichment analysis (GSEA) based on gene-sets of common
functional annotation, or belonging to pre-defined canonical pathways (Supplementary
Table 6A, 6B), indicated five-fold enrichment of association in/near genes implicated in
‘positive regulation of protein catabolic process’ (gene ontology (GO): 1903364, false
discovery rate (FDR)=0.026), and nominal enrichment of associations near genes implicated
in ‘dual excision repair in global genomic nucleotide excision repair’ (Reactome: R-HSA-
5696400, FDR=0.047). Given the identification of established psychomotor disease loci
amongst index variants for grip strength, we additionally interrogated our association results
for enrichment of genes known to be implicated in monogenic myopathies and dystrophies

(Supplementary Table 6B). Grip strength associations were nominally enriched in the
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myopathy-linked gene set (p=0.017), but not at loci implicated in dystrophic conditions
(p=0.47).

Insights into overlap with pro-atrophic signalling

Myokine signalling via activin type Il receptors (ActRIl) has been recognised as a key
pathway by which muscle mass might be preserved in many clinical contexts****: yet, we
saw no evidence for enrichment of associations around genes in a custom-defined pathway
of myostatin/activin signalling through ActRII*2. (Supplementary Table 6A, 6B; described in
more detail in the methods section). We also performed gene-based association analyses
using VEGAS™* for genes encoding receptors and ligands in the ActRII signalling pathway,
as well as known atrophy effectors (Supplementary Table 7). Two genes (ACVR2B and
FBX032) showed a significant association with grip strength (p<0.0071, accounting for
seven gene-based tests) (Supplementary Table 7). ACVR2B, for which we found the
strongest evidence for gene-based association (p=0.0002), encodes the principal
transmembrane receptor of myostatin: the target of BYM338, a monoclonal antibody-based
inhibitor of ActRIIB, which has shown early promise in reversing muscle atrophy and
promoting hypertrophy in phase | trials**¢. FBXO32 encodes the E3 ubiquitin ligase

Atrogin-1/MAFbx, which is recognised as fundamental effector of atrophy*.

Implication of loci in elite athletic performance

Whilst poor grip strength is normally considered a marker of frailty, we also investigated the
role of grip strength-associated SNVs in the opposite extreme of physiology: elite athlete
status. We examined the association of grip strength-associated SNVs with odds of being an
elite sprint/power athlete in a meta-analysis of four studies of sprint and power athletes
(Nathietes=616, Nconrois=1610) (see Methods and Supplementary Note for further details of
methods and participants). Among the 14 available SNVs, we saw no evidence of
association with elite athlete status (Supplementary Table 8). Previously, a nonsense
mutation (R577X) in ACTN3, which encodes the actin-binding protein a-actinin 3 in skeletal
muscle, has been associated with elite athlete status*’. We found a nominally significant
association of the stop-gain variant (T allele) with lower grip strength (additive: 8 = -0.062 kg,
p = 0.018) (Supplementary Table 9) although we found no evidence for any departure from

an additive genetic model at this locus (Pgomdev = 0.72; Supplementary Fig. 5).

Variant association with muscle histology
We also examined whether the lead SNVs at grip strength-associated loci were associated
with muscle fibre type and capillary density in a small sample in which muscle fibre type

histology and genome-wide data were available (13 of 16 SNVs were available;
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Supplementary Table 10). Allowing for 13 tests (p<3.8x107®), the grip strength-raising allele
at TGFA was associated with a lower proportion of type | (slow-twitch oxidative) muscle
fibres (B=-0.16, p=3.3x107), and a tendency towards higher proportion of type 1B (fast-
twitch glycolytic) muscle fibres (B=0.16, p=5.5x10"°) (Supplementary Table 10). We
acknowledge limited power in this small sample to identify modest effect sizes. Given a
minor allele frequency of 0.1 and a sample size of 656 individuals, we estimated 80% power

to detect an effect size of ~0.35 SDs.

MR of intermediate phenotypes on muscle strength
Given the roles of sex- and growth hormones and related phenotypes in muscle growth and

4820 we performed summary statistic MR>* to test whether genetically-

development
determined sex hormone binding globulin (SHBG), dehydroepiandrosterone sulphate
(DHEA-S), insulin and insulin-like growth factor-I (IGF-I) levels were associated with grip
strength. Using genome-wide significantly associated SNVs for SHBG**, DHEA-S** and IGF-
1 levels®®, we saw no evidence for a causal association with grip strength (Supplementary
Table 11). We saw some indication of causality of insulin resistance and fasting insulin
levels in grip strength (Supplementary Table 11) in inverse-variance and median-weighted
analyses, although the considerable heterogeneity in inverse-variance weighted results

warrants a cautious interpretation (Supplementary Table 11, Supplementary Fig. 6).

Muscle strength as a possible causal exposure
Using a MR approach, we investigated the potentially causal role of muscular strength in
both mortality and disease outcomes, utilising the 16 replicated loci as an instrumental

variable to model genetically-determined grip strength as a proxy of wider muscular strength.

Mortality: We found no evidence for a causal relationship between muscular strength and
all-cause mortality in 21,043 participants (5,699 deaths) drawn from the EPIC-Norfolk cohort
(hazard ratio (HR) per kg higher grip strength [95% CI]: 0.96 [0.91, 1.03], p = 0.265) (Fig.
3A). However, given wide Cls we also sought to improve power using a recently published
approach leveraging data on parental lifespan®. Using this approach in UKB (102,072
paternal deaths, 83,315 maternal deaths), we again found no evidence for causality, with
greater precision (HR [95% CI]: 1.00 [0.98, 1.03], p = 0.739) (Fig. 3A).

Coronary heart disease (CHD): We next investigated a causal role for grip strength in
cardiovascular disease using genome-wide association results for CHD (60,801 cases,
123,504 controls) and myocardial infarction (Ml; 43,677 cases, 128,199 controls) from the
CARDIoGRAMplusC4D Consortium®’ (Fig. 3B). We found no evidence for a causal
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relationship between grip strength and CHD (odds ratio (OR) per genetically predicted kg
higher grip strength ([95% CI]: 0.99 [0.94, 1.03], p = 0.631) or Ml (OR 0.98 ([95% CI]: 0.93 -
1.03), p = 0.433) (Supplementary Table 12). This result was further supported by cross-trait
LD Score regression results showing no significant genetic correlation between grip strength
and CHD (rg= -0.045, p = 0.362; Supplementary Table 13).

Fracture risk and bone mineral density: We performed MR analyses of fracture risk using a
meta-analysis of 1) summary statistics MR results for fracture risk from the GEFOS
consortium (n cases=20,439; n controls=78,843) (Supplementary Note, Supplementary
Table 12) and 2) logistic regression results from association of the weighted grip strength
genetic score with fracture risk in the EPIC-Norfolk study (1,002 cases, 20,042 controls).
Meta-analysis results suggested a causal association of genetically-predicted higher grip
strength with lower risk of fracture (OR per genetically predicted kg higher grip strength [95%
Cl]: 0.95[0.90-0.99], p = 9.0x10°) (Fig. 3B). Summary statistic MR of genetically-
determined grip strength on publicly available bone mineral density (BMD) GWAS results®®
did not show significant associations between grip strength and BMD (Fig. 3C,
Supplementary Table 12). However, we did find genome-wide genetic correlations of bone
mineral density with grip strength (femoral neck BMD: ry = 0.123, p = 9.5 x 10°% lumbar spine
BMD: ry = 0.156, p = 6x10™) (Supplementary Table 13), supportive of a role for genetically
predicted higher grip strength in fracture risk.

Similar to the BMD results, MR analyses of genetically-determined grip strength on meta-
analysed GWAS results comprising 12,851 participants from the Fenland and EPIC-Norfolk
cohorts did not show significant associations between grip strength and lean mass index
(LML) or fat mass index (FMI) (LMI: 8 = .072 kg m?, p =.074; FMI: 8 =.013 kg m?, p = .878)
(Figure 3D, Supplementary Table 12).We observed, however, a significant genetic
correlation between grip strength and LMI (ry = 0.258, p = 2.8 x 10°°), but not FMI
(Supplementary Table 13).
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DiSCUSSION

We have identified 16 loci associated with maximal hand grip strength at genome-wide
significance. A number of the lead variants were located within or close to genes implicated
in structure and function of skeletal muscle fibres, neuronal maintenance and signal
transduction in the central and peripheral nervous systems. Partitioned heritability analyses
indicated significant tissue-specific enrichment of skeletal muscle, CNS, connective tissue
and bone in the genome-wide grip strength results. We observed evidence of shared genetic
aetiology of lean mass and grip strength levels, while pathway analyses indicated a role for
genes involved in regulation of protein catabolism in the aetiology of grip strength.

Due to the well-established observational associations of grip strength with mortality and
incident CHD it has been hypothesised that improvement of muscle strength might increase
longevity and reduce risk of adverse cardiovascular events’. Our MR analyses do not find
evidence supportive of a causal role of muscular strength in mortality risk, nor in risk of
cardiovascular events (CHD and MI), leaving open the possibility that these observational
associations may be attributable to confounding and/or reverse causality. Regardless, this
does not negate the importance of maintaining strength and muscle mass during ageing as a
strategy to maintain physical function®, and we acknowledge the potential limitations of our
MR. For example, the limited variance in intermediate traits explained by genetic variants
leaves uncertainty over the presence of a small causal effect. Thus, expanded genetic
discovery efforts and greater availability of large-scale studies of disease outcomes will
improve the precision of MR analyses in future. We saw evidence for shared genetic
aetiology of bone mineral density and lean mass with grip strength, and MR results
suggested a causal role for higher muscular strength in lower risk of fracture. Collectively,
these results suggest that the determinants of muscular strength are shared with the
determinants of fracture risk and are consistent with those from intervention studies to
increase muscle strength, which have been shown to improve functional capacity and
reduce the rate of falls®®, as well as attenuating the rate of functional decline and increased
frailty which often follows major fracture among the elderly®. Despite the established decline
in grip strength with increasing age, we did not observe heterogeneity in the effect of grip
strength-associated variants with grip strength by age. However, we did observe that the

cumulative effect of the genetic score was greater in men than women.

We saw evidence of enrichment of associations with grip strength around genes implicated
in myopathies. We also noted three loci with genome-wide significant associations

containing genes (KANSL1, PEX14 and LRPPRC) implicated in rare, severe clinical
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syndromes characterised by phenotypes of progressive psychomotor impairment, muscle
hypotonia and neuropathy?®>!. Within the UKB discovery cohort, the association of all three
loci with grip strength persisted at genome-wide significance even after sensitivity analyses
restricted to participants without any form of self-reported condition which might affect
muscle mass or function. Whilst these clinical conditions represent the extreme phenotype of
highly deleterious rare mutations in these genes, we demonstrate that proximal common
variants are likely to underpin more subtle population-level variation in strength in healthy
populations.

Finally, we found that common variation at ACVR2B, the principal receptor of myostatin and
activin in skeletal muscle, is associated with population-level variation in grip strength.
Ongoing clinical trials and development of pharmaceutical agents targeting this pathway
have demonstrated their potential to reverse atrophy and improve physical functioning*®, and

our findings provide some level of genetic support for a role in muscular strength.

In conclusion, we identified 16 loci robustly implicated in grip strength and provide insight
into the underlying biology of this important, widely studied, yet poorly characterised trait.
MR analyses suggest no causal role for muscular strength in mortality, but do provide
evidence for a causal role in fracture risk, highlighting the importance of interventions to
improve muscle strength as a means to reduce fracture risk and resultant morbidities.
Further genetic and functional work to characterise these loci will elucidate new pathways
involved in the regulation of muscle strength and inform the development of drugs to tackle

muscle wasting and weakness.
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METHODS

Study Cohorts

Stage one (discovery) analyses comprised participants drawn from the UK Biobank (UKB)
study'’, a large population-based cohort of middle and older-aged (40-69 years) British
residents recruited from UK National Health Service (NHS) primary care registers between
2006-2010. In total, 503,325 participants were enrolled, and attended an initial assessment
visit at one of 22 study centres located throughout England, Scotland and Wales, during
which a comprehensive catalogue of anthropometric, lifestyle and behavioural exposures
were assessed, and biological samples were attained. All participants provided informed
consent. UKB gained ethical approval from the National Research Ethics Committee (North
West) and was conducted in full compliance with principles of the World Medical Association
Declaration of Helsinki.

Independent lead variants from stage one were followed-up (stage two analyses) in an
independent sample of up to 53,145 white European individuals drawn from the Cohorts for
Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium*® and an
additional seven collaborating studies, which had assessed maximal isometric hand grip
strength by dynamometry. Details of all stage two cohorts (including the constituent cohorts
of CHARGE) are provided in the Supplementary Note. Further descriptive details of the
seven additional cohorts are provided in Supplementary Table 1. Descriptive details of
CHARGE Cohorts have been published in detail elsewhere™®.

Assessment of Grip Strength and Covariates

Hand grip strength at baseline in UKB was measured isometrically using a calibrated Jamar
J00105 hydraulic hand dynamometer (Lafayette Instrument Company, IN, USA) adjusted to
the individual's hand size. With the participant seated, one measurement was taken per
hand, and maximal grip strength taken as the higher of the two readings. Body mass was
assessed using a BC418MA Body Composition Analyser (Tanita Europe BV, Amsterdam,
The Netherlands), with the participant dressed in light clothing. Standing height was
measured on a rigid stadiometer (Seca, Birmingham, UK). Phenotyping details for each of

the stage two cohorts are detailed in Supplementary Table 1.

Genotyping and Imputation
Our stage one analyses use data from UKB’s imputed interim genotyping release (May
2015), restricted to biallelic SNVs with MAF =20.1%. Genotyping and imputation were

conducted by UKB using a centralised pipeline, for which detailed protocols are available
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(see URLs). Briefly, UKB extracted DNA from EDTA buffy coat, before shipping to
Affymetrix (Santa Clara, CA) for centralised genotyping. Samples were genotyped at
>800,000 loci on two custom-designed arrays (Affymetrix) with 95% common content,
designed to optimise quality and quantity of genome-wide imputation: the UK Biobank Axiom
array, and the UK BILEVE Axiom Array. After restriction to biallelic SNVs with MAF=1% and
additional sample genotyping QC, a subset of 641,081 autosomal SNVs from 152,256
samples were available for imputation. SNVs were pre-phased using SHAPEIT3 software
and imputed (using a modified version of IMPUTEZ2 software) to a merged reference panel
containing haplotypes from the UK10K Consortium combined with the 1000 Genomes
Project reference (see URLS). This approach has previously been shown to provide a high-
quality imputation reference in populations of mixed ancestry®. Genotyping and imputation

details of stage two cohorts are detailed in Supplementary Table 1.

17921.31 Haplotype Imputation and Analyses

Nine structural haplotypes previously reported at 17921.31 were imputed according to
previous work®*%. Imputation was based on a haplotype reference panel**, which uniquely
coded each structural haplotype using a combination of twelve surrogate, virtual binary
markers. In addition, the file contained 6302 flanking variant haplotypes. IMPUTE v2.3.2
was used to impute the genotypes of the surrogate markers against the reference panel.
The panel contained 284 genotyped variants within the reference region, pre-phased with
SHAPEIT v2.837. Variants within the copy-number variable region, or with MAF<0.01/HWE
p<1x10® were excluded. Surrogate markers were subsequently decoded into the
corresponding nine structural haplotypes for analysis. Association of haplotypes (inverted vs.
non-inverted, continuous structural variant [a/B/y] copy number, and 9 common haplotypes
as a categorical exposure) with grip strength was modelled using linear regression adjusted
for age, sex, height (m), BMI (kg ) and UKB genotype chip in up to 111 860 unrelated
genetic white Europeans defined centrally by UKB (see URLS) .

Heritability Estimation

In UKB, variance component analyses were performed in the subset of individuals of only
“white British” genetic ancestry using Restricted Estimate Maximum Likelihood (REML)
models in BOLT-LMM software (v2.2)%. Genetic variance was calculated on all quality
controlled genotyped autosomal SNVs, adjusting for genotyping array and the top five

genetically-determined principal components.

Genome-wide Association Analyses of Grip Strength
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142,035 UKB patrticipants had imputed genetic data, grip strength and full covariate
availability for genome-wide association analyses; all were of self-identified white ancestry,
with the majority (94.6%) reporting as white British. Discovery analyses for maximal grip
strength (n=142,035) were run using a Bayesian linear mixed model (LMM) adjusted for age
(years), sex, height (m) and BMI (kg m?), implemented in BOLT-LMM software (v2.2)%.
Primary analyses assumed additive (per-allele) effect. Analyses were restricted to biallelic
variants with MAF 2 0.1% which had been directly typed, or imputed with imputation quality
(IMPUTEZ2 info) 2 0.4. LMMs offer a robust solution to handle unknown confounding
(particularly that arising from sub-ethnic population stratification and cryptic relatedness) in
genome-wide association studies, and confer increased power in large population-based
cohorts®.

Independent loci from genome-wide discovery were defined as the 500kb region flanking
each lead variant reaching genome wide significance (p<5x107®). Independent lead variants
(n=21) were followed-up in up to 53,145 individuals. In cases where an index variant was not
typed or imputed at sufficient quality, appropriate proxies were defined as the variant with
the next-lowest p-value within 500kb of the index (Supplementary Table 15). Each stage
two cohort accounted for population structure according to its usual practice. Full details of
the analytical approach and model specification of each replication cohort are summarised in
Supplementary Table 1. Stage one and stage two results for each of the 21 variants were
combined by inverse variance-weighted fixed-effect meta-analysis using METAL. Sixteen
loci reached p<5x10°® in combined meta-analysis and were considered to be associated with

grip strength.

To examine local linkage disequilibrium structure of replicated loci, regional plots for each of
the 16 replicated loci were generated in LocusZoom using LD reference values from the
CEU panel of 1000G Phase I. To investigate possible secondary independent signals at
each of the 16 replicated loci, approximate conditional analyses were undertaken using

Genome-Wide Complex Trait Analysis software (GCTA, Version 1.25.2).

LD Score Regression

Using genome-wide summary statistics from our UKB phase one analyses, the recently-
described LD Score Regression method described by Bulik-Sullivan and colleagues®®
(implemented in LDSC software, v1.0.0) was used to (i) estimate genetic correlation
between grip strength and other phenotypes, and (ii) derive tissue-specific partitioned

heritability of grip strength, based on pre-calculated European LD Scores. To avoid
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confounding by imputation quality, all analyses were restricted to variants available in

HapMap Phase Il

Genetic Correlations: Using cross-trait LD Score regression, genome-wide genetic
correlations of grip strength were calculated with CHD risk, lean mass index (LMI), fat mass
index (FMI) and bone mineral density (BMD) measured at the forearm, femoral neck or
lumbar spine. For CHD and BMD we used publicly available GWAS summary statistics form
the CARDIOGRAMplusC4D*’ and GEFOS®® consortia, respectively. To obtain genome-wide
summary statistics for LMI and FMI, we conducted GWAS in up to 12,851 individuals drawn
from the Fenland Study and EPIC-Norfolk. Details of these cohorts are provided in the
Supplementary Note, and Supplementary Table 14. LMI and FMI (kg m™?) were defined
as dual x-ray absorptiometry (DXA)-derived lean mass or fat mass, respectively, divided by
the square of DXA-derived height (GE Lunar Prodigy processed using Lunar EnCORE
v14.1, GE Healthcare). GWAS were conducted separately in each cohort running a linear
mixed model using BOLT-LMM®. FMI analyses were adjusted for age and sex. Because of
the sex specific distribution of the phenotype, LMI analyses were run sex stratified and
adjusted for age. Results from both cohorts were combined by fixed-effect inverse variance-

weighted meta-analysis using METAL.

Tissue-Specific Partitioned Heritability: Partitioned heritability by LD Score Regression can
identify whether certain cell types are enriched for functional gene categories which
disproportionately contribute to the heritability of a phenotype®. In this way, over-
represented effector tissues important in the aetiology of the phenotype can be identified.
Partitioned heritability was run individually for each of the eight curated tissue classes
distributed with LDSC, adjusting in each case for heritability explained by each functional
category of variants across the genome (i.e. in a non-tissue-specific manner). A Bonferroni-
corrected log;o p-value accounting for eight tests was taken as indicative of statistical

significance.

Expression Analyses

To explore the potential functional significance of grip strength variants in gene expression,
and to prioritise functional genes falling within identified loci, we undertook a number of
expression-based analyses. Initially, a look-up of all 16 replicated grip strength variants or
their best proxy (r*>0.8) was conducted in skeletal muscle, transformed fibroblasts, nervous
system and brain regions in the GTEX resource to identify eQTL associations (see URLS).

Variants passing GTEX criteria for tissue-specific eQTL association, and in high LD (r>=0.8)
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with the best eQTL for the transcript in question in the tissue of interest were considered

significant eQTLs.

To supplement this variant-centric approach, we additionally took advantage of two new
methods for integrating genome wide GWAS summary statistics with expression
associations from independent studies: SMR*’ and MetaXcan®. By utilising established
eQTL datasets as reference, these approaches are able to effectively model expected
variation in the transcriptome of the GWAS sample based on variation in autosomal SNVs
across the genome, and then test for independent associations between imputed transcript
levels and the phenotype of interest. To test for associations of transcript abundance with
grip strength in whole blood, we implemented SMR software using published whole blood
eQTL data from Westra and colleagues*" as the reference panel. MetaXcan — an extension
of the PrediXcan approach modified to use summary-level association statistics as input -
analyses were used to explore further tissue-specific associations between modelled gene
expression and grip strength. Tissue-specific expression prediction models generated from
GTEXx were downloaded from the PredictDB resource (see URLS) as transcriptome
reference. We conservatively considered predicted expression of a gene to be associated
with grip strength at a MetaXcan p-value < 2.52x10”, taking each gene association in each

tissue as an independent test for the purposes of Bonferroni correction.

Gene Set Enrichment Analyses

Genome-wide discovery results from the UKB cohort were tested for enrichment of pre-
specified gene sets based on common functional annotation or known biological pathways in
MAGENTA (v2.4)%. Enrichment was assessed in a hypothesis-free manner across gene
sets drawn from six public databases of gene ontology, functional annotation and
canonical/curated pathways: GO Terms, the Protein Analysis through Evolutionary
Relationships (PANTHER) database, Ingenuity, the Kyoto Encyclopaedia of Genes and
Genomes (KEGG), Biocarta and Reactome pathways (downloaded via the Molecular
Signatures Database, MSigDB [see URLs], July 2011). Analyses were restricted to 3216
gene sets with an effective size of 210 genes after filtering of proximal genes and genes not
containing variants for analysis. Custom sets were also defined from literature review,
incorporating genes with known function in pathways or processes relevant to muscle
development and maintenance. Genes involved in signal transduction of myostatin/activin
signalling via Activin A type Il receptors (ACVR2A and ACVR2B) were defined from Han et
al*?. Monogenic genes implicated in muscular dystrophies and myopathies were based on

Kaplan & Hamroun (2014)% with additional manual curation to include collagen IV-opathies,
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congenital myopathies and glycogen storage diseases which may present with a similar

pattern of limb-girdle muscle weakness.

Gene-based Association Tests
Genes involved in myostatin/activin signalling via activin type Il receptors (FST, MSTN,
ACVR2A, ACVR2B) and known atrophy effectors TRIM63 and FBXO32 were identified from

literature***3

and defined as candidate genes for grip strength based on their biological prior
for an involvement in skeletal muscle trophism. Gene-based association tests were
performed for each candidate using the Versatile Gene-based Association Study (VEGAS)
algorithm**, calculating LD from HapMap Europeans. VEGAS was applied to the grip
strength discovery-phase association results across the whole genome, restricting to directly

typed and well-imputed variants (IMPUTE info>0.8).

Muscle Histology Lookup

To identify whether grip strength variants were associated with elements of muscle histology,
we looked-up each of the 16 replicated loci from combined analyses in a pre-existing GWAS
of muscle histology parameters in a sample of 656 men from three independent cohorts of
Swedish ancestry (see Supplementary Note for cohort details). Specifically, we
investigated the linear (additive) association of each of the 16 lead SNVs with percentage of
(i) type | fibres, (ii) type lIA fibres, and (iii) type 1IB fibres from muscle biopsy, as well as
capillary density (calculated as the number of capillaries divided by the total number of
fibres). To better quantify power in this sample, formal power calculations were performed

using Quanto (see URLS).

Mendelian Randomization Analyses

5152 {9 test whether

We performed summary statistic Mendelian randomisation (MR)
genetically-determined sex and growth hormone-related phenotypes were causally
associated with grip strength. As primary analyses we performed inverse variance weighted
summary statistics MR>. In addition, as sensitivity analyses for robust causal inference we
tested for heterogeneity using Cochran’s Q test, ran MR-Egger®’ to assess for pleiotropic
effect, and additionally used a weighted median estimator and penalized weighted median
estimator®. We used publicly available genome-wide association results for sex hormone
binding globulin (SHBG)*®, dehydroepiandrosterone sulphate (DHEA-S)*, fasting insulin®®,
insulin secretion” and insulin-like growth factor-1 (IGF-1)>°. The variants included in the MRs
are listed in Supplementary Table 16. Grip strength summary statistics were obtained from

our stage one GWAS in UKB.
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To infer causality in the association of grip strength with CHD, myocardial infarction (Ml),
fracture risk, BMD (forearm, lumbar spine, femoral neck), LMI and FMI, we ran summary
statistic MR as described above using the 16 identified loci as instrumental variable for
genetically-determined grip strength . For CHD, BMD, LMI and FMI we used the same
GWAS summary statistics as we used to test genetic correlations (see above). In addition,
we used publicly available MI summary statistics from the CARDIOGRAMplusC4D
consortium®’ , fracture risk summary statistics from an ongoing analysis by the GEFOS
consortium (Supplementary Note), and individual fracture risk data in EPIC-Norfolk. Where
grip strength lead SNVs were not available in the outcome phenotype summary statistics,
proxies were defined as the variant with the next-lowest p-value for association with grip
strength within 500kb of the index in stage one (UKB). All variants included in the analyses
are detailed in Supplementary Table 18. Because EPIC-Norfolk was included in the LMI
and FMI GWAS meta-analyses, and in the individual level data fracture risk analyses, we
used the grip strength effect sizes obtained after exclusion of the EPIC-Norfolk study in the
grip strength-LMI, grip strength-FMI and individual level grip strength-fracture risk MR
analyses (Supplementary Table 17). On the individual level fracture risk data we ran a
logistic regression model adjusted for age and sex. Summary statistics and individual level
fracture risk MR results from GEFOS and EPIC-Norfolk were meta-analysed using fixed

effects meta-analysis.

To test the causal relationship with all-cause mortality, we calculated a genetic grip strength
risk score per individual in the EPIC-Norfolk study (n total = 21,043, n cases = 5,699 cases)
based on the number of grip strength-increasing alleles weighted by the effect size from the
combined phase one and follow-up analyses. We used effect sizes obtained by fixed-effect
inverse variance-weighted meta-analysis of the phase one and two results, excluding EPIC-
Norfolk, to generate weights that were independent of EPIC-Norfolk (Supplementary Table
17). The genetic risk score to mortality association was tested under a Cox proportional
hazards model adjusted for age and sex. Proportional hazards were confirmed using

standard technique.

We also sought to improve power by using parental lifespans in UKB (paternal: nrotaL =
133,123, npeatns = 102,072; maternal: Nrora. = 138,096, Npeaths = 83,315), in line with
previous work®. Parental lifespans and alive/dead status were regressed using cox models
on offspring genotype, in effect imputing parent genotype from offspring. The effects
observed thus reflect the effect of offspring genotype on parental phenotype, and the

expected allelic dosages in the parental generation are half the measured dosages in
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offspring. Effect estimates per parental allele are correspondingly twice that observed per

offspring allele: results shown are the effect of one allele in parents on parents’ lifespan.

Association of Replicated Loci with Elite Athletic Status

Using data from four multi-ethnic cohorts of elite athletes, including elite Japanese athletes
and controls (Natietes=54, Ncontrois=406); elite African-American ((Natietes=79, Neontrois=391) and
Jamaican sprint/power athletes (Natietes=88, Neontrois=87), and European athletes
(Nathietes=395, Nconrols=726) (Supplementary Note), we assessed the association of the 16
replicated grip strength index variants with odds of attaining elite athlete status, relative to
age, sex and ethnically-matched controls, using conditional logistic regression (additive
model). Analyses were performed separately in each cohort, and meta-analysed using
METAL

Tests of Model Fit

To test for departure from additivity, we used a test of dominance deviation, including two
terms for best guess genotypes: a term encoding the major homozygotes, heterozygotes
and minor allele homozygotes as 0,1,2 and another coding them as 0,1,0, which tests
whether the heterozygotes have mean trait values halfway between the homozygote groups

and can detect a departure from additivity.

Checks for Allele Selection by Age

Given that observational grip strength is strongly predictive of mortality®, we ran two
complementary analyses in UKB to ensure that strength-increasing alleles from combined
stage one + two analyses were not under selection by age. Modelling each SNV as
strength-increasing allele dosage, linear regression was used to assess the association of
age with allele dosage (age as dependent variable). We then performed the inverse of this
regression to gauge whether allele dosage was predicted by age (age as the independent
variable). This approach has recently been applied to test for selection of variants by age in
the Genetic Epidemiology Research on Aging (GERA) cohort'®. Analyses were restricted to
112337 unrelated white Europeans defined centrally by UKB, and adjusted for sex and
genotyping chip.

URLSs
UK Biobank Genotyping and QC Documentation
http://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping gc.pdf

UK Biobank Phasing and Imputation Protocol
http://biobank.ctsu.ox.ac.uk/crystal/docs/impute ukb v1.pdf



http://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping_qc.pdf
http://biobank.ctsu.ox.ac.uk/crystal/docs/impute_ukb_v1.pdf
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MSigDB
http://software.broadinstitute.org/gsea/msigdb/
SMR

http://cnsgenomics.com/software/smr/
PredictDB Database

http://predictdb.hakyimlab.org

Quanto
http://biostats.usc.edu/Quanto.html

Data Availability

Stage one data are from UK Biobank, and can be obtained upon application
(ukbiobank.ac.uk). Access to underlying replication and follow-up data including histology
and elite athletic performance cohorts may be limited by participant consent and data
sharing agreements; requests should be directed in the first instance via the corresponding
authors. Pre-defined gene sets used in (MSigDB), expression data (GTEXx) and
transcriptome models used by MetaXcan (PredictDB) and SMR methods are available from
the listed URLSs.
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Table 1

Association of the sixteen loci reaching genome-wide significance in combined analyses

Stage One (UKB)* Stage Two Cohorts Combined

rsID Gene® All. EAF Effect” SE P-value Effect” SE P-value Effect® SE P-value N

rs958685 TGFA A/C 052 0.154  0.026 2.8x10°  0.164  0.04 3.8x10° 0.157 0.022 4.8x10"° 191754
rs72979233 POLD3  A/G 076 0210  0.03 3.7x10™  0.112  0.041 5.8x10° 0.175 0.024 5.0x10° 192490
rs11614333 ERP27 C/T 062 0181 0027 50x10™ 0117 004 3.5x10° 0.16 0.023 1.6x10"% 195154
rs2288278 HOXB3 A/G 066 0.162  0.027 3.0x10° 0.147 004 28x10* 0157 0.023 3.8x10” 195133
rs4926611 GLIS1 C/T 064 0173 0.027 13x10° 0.115 0041 5.1x10° 0.156 0.023 4.8x107% 192964
rs6687430 PEX14 G/A 046 0.15 0.026 7.6x10° 0124 004 1.7x10° 0.142 0022 G5.6x10" 195176
rs10186876  LRPPRC A/G 036 0.162  0.027 2.7x10° 0113  0.041 6.2x10° 0.147 0.023 9.8x10™" 192490
rs374532236 MGMT  T/C 038 0157  0.027 55x10° 0121  0.042 4.2x10° 0147 0023 1.1x10"° 189701
rs10861798  SYTI A/G 043 0145  0.026 4.3x10° 0159  0.047 7.4x10° 0.148 0.023 1.3x10™° 189 160
rs78325334 HLA T/C 0.84 0228 0038 24x10° 0113 005 0.024 0.186 0.03  9.6x10™° 193127
rs2273555 GBF1 A/G 061 0153  0.027 9.1x10° 0096  0.041 0.019 0.136 0.022 1.1x10° 191754
rs80103986  KANSLI A/T 081 0201 0033 1.8x10°  0.098  0.052 0.059 0.171 0.028 1.2x10° 193090
rs2110927 SLC8A1  C/T 027 0161 0029 4.4x10° 0098  0.045 0.029 0.142 0.025 7.7x10° 192490
rs6565586 ACTGI ~ A/T 025 0169  0.03 2.2x10°  0.096  0.064 0.14 0.156 0.027 12x10° 187072
rs72762373 DEC1 A/G 003 0424 0078 49x10° 0359 0255 0.16 0.418 0074 1.8x10° 152162
rs34845616  IGSF9B  A/G 025 0.168  0.03 1.7x10%  0.07 0.049 0.15 0.141  0.025 2.7x10° 189666

(A) Stage one analyses include 142,035 participants (B) Nearest gene to the lead SNP (C)
Effect estimates are in kg per allele and correspond to the first allele shown. Results are

sorted by combined stage one + stage two p-value. Abbreviations: All. — Alleles
(effect/other), EAF — effect allele frequency, UKB — UK Biobank, SE — standard error , N —
sample size, HLA — HLA Region.



Figure 1
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Associations of the grip strength-increasing genetic score with observed grip strength by age
and sex strata in a subset of 111,860 unrelated UK Biobank participants from stage one
analyses. Associations shown are from linear regression

Figure 2
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MetaXcan-predicted association of imputed gene transcript levels with grip strength across
biologically-relevant tissues in GTEx. Data are shown for all genes at which altered
transcription was significantly associated with grip strength in at least one biologically-
relevant tissue, after accounting for multiple testing. Data are z-scores of transcript level
association with higher handgrip strength, clustered by tissue. Direction of z-score indicates
whether higher or lower gene expression is associated with higher grip strength. Absolute z-
score > 1.96 indicates nominal significance at p<0.05, and 24.94 indicates significance after
adjustment for multiple testing (p<7.91x10). NAcc — Nucleus accumbens.

Figure 3
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Mendelian randomization estimates of the association of grip strength with mortality and
morbidity outcomes. a: mortality and parental lifespan in UKB and EPIC-Norfolk; b: forearm
bone mineral density (BMD), lumbar spine BMD and femoral neck BMD in GEFOS; c:
coronary heart disease (CHD and myocardial infarction (MIl) in CARDIoOGRAMplusC4D, and
fracture risk in GEFOS + EPIC-Norfolk; d: lean mass index (LMI) and fat mass index (FMI)
in the Fenland Study + EPIC-Norfolk (n=12,851). Error bars reflect 95% CI.



