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Abstract

Class-switch recombination (CSR) is an essential B cell process that alters the isotype
of antibody produced by the B cell, tailoring the immune response to the nature of the
invading pathogen. CSR requires the activity of the mutagenic enzyme AID (encoded
by AICDA) to generate chromosomal lesions within the immunoglobulin genes that
initiate the class switching recombination event. These AID-mediated mutations also
participate in somatic-hypermutation of the immunoglobulin variable region, driving
affinity maturation. As such, AID poses a significant oncogenic threat if it functions
outside of the immunoglobulin locus. We found that expression of the microRNA,
miR-29b, was repressed in B cells isolated from tonsil tissue, relative to circulating
naive B cells. Further investigation revealed that miR-29b was able to directly initiate
the degradation of AID mRNA. Enforced overexpression of miR-29b in human B
cells precipitated a reduction in overall AID protein and a corresponding diminution
in CSR to IgE. Given miR-29b’s ability to potently target AID, a mutagenic molecule
that can initiate chromosomal translocations and “off-target” mutations, we propose
that miR-29b acts to silence premature AID expression in naive B cells, thus reducing

the likelihood of inappropriate and potentially dangerous deamination activity.



43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

1. Introduction

During the course of the immune response, mature B cells undergo two diversification
events at the immunoglobulin loci, somatic hypermutation (SHM) and class-switch
recombination (CSR) (Stavnezer, 2011). SHM introduces mutations in the
hypervariable loops of the antigen binding site, found within the CDRs of the
Immunoglobulin Heavy (/GH) and light (/GL) chain variable regions. This allows for
selection of B cell clones which harbour Igs with increased affinity for antigen,
promoting the development of highly specific Ig molecules. In contrast, CSR replaces
the Cp and Cd heavy chain gene exons (encoding IgM and IgD respectively) with the
downstream C-region exons of the a, y, or € isotypes (encoding IgA, IgG and IgE)
(Stavnezer and Schrader, 2014). This process, which is driven by cytokines released
from T helper cell populations, ensures that the effector functions of the antibodies
produced by B cells are tailored to the nature of the invading pathogen. Both CSR and
SHM require the activity of the mutagenic enzyme, activation-induced cytidine
deaminase (AID, encoded by AICDA) (Muramatsu et al., 2000; Revy et al., 2000).
AID acts to deaminate deoxycytidine residues within the /G variable and the /IGH
constant regions, resulting in the production of deoxyuracils(Neuberger et al., 2003).
In the case of SHM, the ensuing mismatches initiate low-fidelity DNA repair
pathways leading to the incorporation of mutations within the /GH and /GL variable
regions, whereas in CSR the mismatches trigger a deletional-recombination event that
replaces the upstream “acceptor” C-region (initially Cu and Co ) with a downstream

“donor” C region (Cy1-4, Ce or Cal1-2) (Keim et al., 2013).
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The mechanisms targeting AID to the Ig genes are incompletely understood. It has
been proposed that transcriptional stalling (Pavri et al., 2010), the formation of
RNA:DNA hybrids called R loops (Shinkura et al., 2003), the exosome (Basu et al.,
2011), super-enhancers (Qian et al., 2014), germline transcript RNA (Wang et al.,
2015), 14-3-3 adaptor proteins (Xu et al., 2010), as well as the sequence location of
the Ig genes (Yeap et al., 2015), recruit AID to the DNA and promote deamination.
However, AID activity is promiscuous, and deamination-induced mutations are
detected at multiple non-Ig sites (M. Liu et al., 2008). This collateral damage has
significant oncogenic potential, as demonstrated by AID-induced chromosomal
translocations that occur in the context of genomic instability (Robbiani et al., 2008;
2009) and AID-induced mutations of non-Ig genes (Duquette et al., 2005; Pasqualucci
et al., 1998; 2001). Therefore, AID expression and activity must be carefully

controlled.

One mechanism by which cells are able to fine-tune their protein expression is
through microRNAs (miRNAs), short non-coding RNAs that regulate gene
expression by promoting mRNA decay and translational repression (Bartel, 2009). In
mice miR-155 has been shown to directly repress AID (Teng et al., 2008) and
removing the miR-155 binding site within the Aicda 3° UTR increases the likelithood
of AlID-induced Igh-Myc chromosomal translocations (Dorsett et al., 2008), a
transforming event frequently observed in Burkitt’s Lymphoma. Similarly, miR-181
can also directly target Aicda and is proposed to prevent inappropriate AID
expression in the absence of B cell activation (de Yebenes et al., 2008). Although the
miRNA-mediated regulation of AID expression has been well studied in mice, this

mode of regulation has not been extensively studied in human B cells.
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To identify miRNAs involved in coordinating the B cell response in humans,
we analysed the published literature that had profiled the miRNA pool of distinct
human B cell subpopulations (Basso et al., 2009; Malumbres et al., 2009; Tan et al.,
2009; J. Zhang et al., 2009). These studies consistently reported that the conserved
miRNA miR-29b was less abundant in germinal centre B cells relative to naive and
memory cell compartments. Similarly, we show that miR-29b has diminished
expression in B cells isolated from tonsil tissue relative to naive B cells isolated from
peripheral blood. It is of interest to note that miR29b expression has also been
reported to be reduced in mantle cell lymphoma, a lymphoma thought to originate
from Pre-GC mature B cells (Zhao et al., 2010). In this report we investigate
potential miR29b targets and demonstrate that it is able to directly target 4/CDA
mRNA. Enforced overexpression of miR-29b in human B cells reduces overall AID
protein and causes a corresponding diminution of CSR to IgE in vitro. Together, these
results suggest that miR-29b is able to silence “leaky” expression of AID, limiting its
expression to appropriately activated B cells and thus helping to maintain

chromosomal integrity.
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2. Materials and Methods

2.1 Ethics

Ethical approval was granted by London Bridge Research Ethics Committee for both
peripheral blood donations (09/H0804/77 and 14/LO/1699) and for tonsil donations
(08/H0804/94). Full written informed consent was obtained from all donors or the

donors’ parents or legal guardian.

2.2 B cell isolation, transfection and culture

Naive B cells were isolated from peripheral blood using the Naive B Cell Isolation
Kit II (Miltenyi Biotec). B cells were isolated from tonsil tissue as previously
described (Cooper et al., 2012). Briefly, mononuclear cells were isolated from
dissected tonsil tissue on a density gradient (Lymphoprep, Axis-Shield PoC AS)
followed by incubation with aminoethyl isothiouronium bromide-treated sheep red
blood cells to rosette T cells. To overexpress miR-29b, 800 nM miR-29b Pre-miR
miRNA Precursor (Thermo Fisher Scientific) or the equivalent non-targeting negative
control molecules was delivered into 5 x 10° freshly isolated primary B cells using the
Amaxa Human B cell Nucleofector Kit (LONZA). The Pre-miR miRNA Precursors
used were proprietary short (16-28bp) double stranded RNA molecules chemically
modified to ensure the desired strand is loaded into the RISC complex(Barnes et al.,
2012). To inhibit miR-29b, 800 nM miR-29b of mirVana miRNA Inhibitor (Thermo
Fisher Scientific) or the equivalent non-targeting negative control molecule was
delivered into 5 x 10° freshly isolated primary B cells using the Amaxa Human B cell
Nucleofector Kit (LONZA). The mirVana miRNA Inhibitors used were single

stranded, chemically modified RNA molecules designed to irreversibly bind and
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inhibit endogenous miRNAs (Barnes et al., 2012). Samples were nucleofected using
program U-15 on the Nucleofector Device and cultured at a concentration 5 x 10° mL’
"in RPMI 1640, 10% HyClone Fetal Bovine Serum, 100 pg/mL Streptomycin, 100
U/ml Penicillin, 2 mM L-Glutamine. To stimulate CSR, the medium was
supplemented with 1 mg/mL of anti-CD40 antibody, 200 IU/mL of recombinant
human IL-4, 5 mg/mL of insulin and 35 mg/mL of transferrin. The human
monoclonal IgM "™ IgD" CLO1 B cell line (Cerutti et al., 1998) was cultured in RPMI
1640, 10% HyClone Fetal Bovine Serum, 100 pg/mL Streptomycin, 100 U/mL
Penicillin, 2 mM L-Glutamine and kept at a concentration of between 1-5 x 10°
cells/mL. To induce expression of AID, the culture medium was supplemented with 1
mg/mL of anti-CD40 antibody and 200 IU/mL of recombinant human IL-4. The CLO1
cell line was nucleofected using the Amaxa Cell Line Nucleofector Kit V along with

program C-09 on the Nucleofector Device. All cells were cultured in a humidified

incubator at 37°C, 5% CO2.

2.3 RNA Isolation and quantitative (q) RT-PCR analysis

Total RNA was extracted from cultured cells using the miRNeasy Mini Kit with
QIAzol Lysis Reagent (Qiagen). Residual gDNA was removed by incubating the
extracted sample with 20 units of TURBO DNase enzyme (Thermo Fisher Scientific)
at 37°C for one hour followed by a second phenol-chloroform cleanup. The integrity
and yield of isolated RNA was checked on a 2100 Bioanalyzer (Agilent) using the
RNAG6000 Pico Assay. For analysis of mRNA expression, cDNA was generated from
total RNA using random hexamers with RevertAid H Minus Reverse Transcriptase
(Thermo Fisher Scientific) and all genes (with the exception of 4AICDA, ¢GLT, IgG

and IgE) were detected expression using TagMan MGB Gene Expression Assays
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(Thermo Fisher Scientific). The primer and probe set for AICDA was designed using
the Universal Probe Library Assay Design Centre (Roche) while the eGLT, IgG and
IgE primer and probe sets were designed in house. Individual samples were subjected
to qPCR and run in triplicate with TagMan Universal Master Mix II on the ViiA 7
Real-Time PCR System using 18S rRNA as a normalization control and gene
expression was determined using the 2*“' method. For qRT-PCR analysis of miRNA
expression, the TagMan Small RNA Assay for miRNA quantification (Thermo Fisher
Scientific) was used. This involved separate cDNA generation for each miRNA,
utilising a miRNA-specific, stem-loop primer to facilitate reverse transcription. The
small nucleolar RNA RNU6B was used as a normalization control and gene

2-AACt

expression was determined using the method.

2.4 Gene expression arrays

Fresh tonsil B cells were transfected with a miR-29b mimic or its associated negative
control and cultured in class switching stimuli for 24 hours. RNA was isolated using
the miRNeasy Mini Kit with QIAzol Lysis Reagent (Qiagen) and then DNase-treated
as described. 10 ng RNA was amplified using the Ovation Pico WTA System V2
(Nugen). 4 pg of amplified single-stranded cDNA was biotin-labeled using the
Encore BiotinIL Module (Nugen). Finally, transcriptomic analysis was performed by
hybridizing 750 ng of biotin-labeled single-stranded cDNA onto a HumanHT-12 v4
Expression BeadChip (Illumina) and scanned using the Illumina iScan System. QC
analysis and RMA normalization was performed in Illumina’s Genome Studio Suite
v1.0. Assessment of differential gene expression and statistical analysis was
performed in Partek Genomics Suite version 6.6. Data from this study have been

deposited in NCBI's Gene Expression Omnibus (Edgar et al., 2002) and are accessible
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through GEO Series accession number GSE100735
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100735).

Immunoblotting

B cells were stimulated for 60 hours in class-switching stimuli following transfection.
Cells were harvested in protein lysis buffer (pH 7.4, 25 mM Tris, 150 mM NacCl, 1
mM EDTA, 1% NP40, 5% Glycerol, 10% Roche Protease Inhibitor). Total protein
levels were quantified using the bicinchoninic acid assay and approximately 50 ug
protein lysate were run on SDS-polyacridimide gels. Following wet transfer onto
nitrocellulose membranes, the membranes were probed with the following antibodies
for protein expression (AID - EK2 5G9, STAT6 - D3H4, p-STAT6"™*' - C11A12,
p38 MAPK - DI3EIl, p-p38™ 8082 _ p3pg  AKT - 40D4, p-AKT* ** - DOE,
GAPDH - 6C5), and images were developed using the Molecular Imager®

ChemiDoc™ XRS System (Bio-Rad). GAPDH (clone 6C5, Abcam) was used as a

loading control.

2.5 Luciferase Assays

The region of the AICDA 3° UTR encompassing the miR-29 binding site was
subcloned into the pmirGLO Dual-Luciferase miRNA Target Expression Vector
(Promega), which harbours both a firefly luciferase reporter gene, for analysis of
miRNA-mRNA binding site interactions, and a renilla luciferase reporter gene, which
acts as a transfection efficiency control. For the mismatched construct, the miR-29
binding site in the AID 3° UTR was replaced with a BamHI restriction site using
sequential rounds of mutation cloning. HEK293T cells were seeded onto white 96-
well tissue culture plates and having reached 70% confluence were transfected with

50 ng of one of the luciferase constructs and 10 nM of miR-29 mimic using
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Lipofectamine 2000 (Thermo Fisher Scientific). Reactions were performed in
triplicate. Luciferase activity was quantified after 24 hours on a GloMax-Multi
Microplate Luminometer (Promega, 2 seconds integration time) using the Dual-Glo
Luciferase Assay System (Promega). The luciferase signal ratio was calculated by
dividing firefly luciferase activity by renilla luciferase activity and normalized to cells

transfected with an insert-free pmirGLO vector.

2.6 Flow Cytometry

Apoptosis staining was performed using the Annexin V Apoptosis Detection Kit
(eBioscience). For cell proliferation analysis, 10’ transfected CLO1 cells were washed
with PBS, resuspended in 1 mL PBS containing 1 uM CellTrace Violet dye (Thermo
Fisher Scientific), and left in the dark at 37°C for 10 minutes. The reaction was
quenched by the addition of cell culture media. The cells were washed, resuspended
and cultured in a 37°C incubator until analysis via flow cytometry. Intracellular
antibody staining of IgG and IgE was performed as previously described'® using the a

fixable viability stain (Zombie Aqua Thermo Fisher Scientific).

10
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3. Results

3.1 miR-29b is repressed in tonsil B cells relative to peripheral naive B cells

In order to identify dynamically regulated miRNAs within the context of mature
human B cells, we analysed the available literature profiling the miRNA pool in
different B cell subpopulations (Basso et al., 2009; Malumbres et al., 2009; Tan et al.,
2009; J. Zhang et al., 2009). We observed that the evolutionarily conserved miRNA
miR-29b was less abundant in germinal centre B cells relative to naive and memory
cell compartments (supplementary Fig. 1A & 1B). miR-29b is a member of the miR-
29 family, also including miR-29a and miR-29c, which share the same seed region
and thus overlap in their predicted targets (Liston et al., 2012). Interestingly miR29c¢
was also less abundant in GC B cells compared to naive or memory compartments,
potentially reinforcing the effects of this miRNA family (supplementary Fig. 1A &
1B). We analysed the abundance of miR-29b in B cells isolated from tonsils, a large
proportion of which have a germinal centre phenotype (CD19" CD38" CD27 or
CD19" CD38" CD27") (supplementary Fig. 2A), and compared its prevalence to naive
B cells (CD19"IgD" CD27’) (supplementary Fig. 2B) isolated from peripheral blood.
In line with previous reports(Malumbres et al., 2009), miR-29b was nearly 3 times

more abundant in the circulating naive B cells than in tonsil-derived B cells (Fig. 1).

3.2 Identification of AICDA as a miR-29b target gene in human tonsil B cells

To gain insight into the role of miR-29b in the context of B cell activation we
overexpressed miR-29b in tonsil B cells and investigated global gene expression
changes following 24 hours culture with IL-4 and anti-CD40 stimulation using

[Mllumina BeadChip Microarrays (HumanHT-12 v4). Transfection of a miR-29b mimic

11
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into tonsil B cells increased miR-29b abundance by approximately 15-fold 24 hours
after transfection, compared to cells transfected with a negative control mimic
molecule (supplementary Fig. 3A). No detectable difference was seen in cell viability
between the miR29b mimic or negative control as judged by flow cytometry
FSC/SSC although cell viability was reduced approximately 2 fold compared to un-
transfected cells. Analysis of the array data revealed only a moderate effect on overall
gene expression, with just 29 genes being modulated by more than 1.2 fold
(supplementary table I and Fig. 2A). However, of these genes, 20 (69%) contained
miR-29 binding sites within their 3° UTRs, suggesting potential for direct targeting by
miR-29 (Fig. 2B). Further analysis of the genes with miR29 binding sites revealed
that 16 (80%) of the seed regions contained either 8mers (an exact match to positions
1-8 of the mature miRNA including an A opposite position 1 of the miRNA) or 7mers

(an exact match to positions 2-8 of the mature miRNA) (Fig. 2B).

Of particular interest to B cell regulation, we observed that AICDA was one of the top
target genes repressed by miR-29 overexpression, while the previously validated miR-
29b target, CDK6 (Zhao et al., 2010), was also robustly repressed (Fig. 2A, C). Other
validated miR-29 targets repressed following miR-29b overexpression in tonsil B
cells included the guanine exchange factor RCC2 (Matsuo et al., 2013), the thymine
glycosylase TDG (Morita et al., 2013; P. Zhang et al., 2013) and the trafficking

protein TRAK?2 (Kato et al., 2016) (Fig. 2C).

Given its indispensable role in promoting B cell antibody diversification, the
repression of AICDA following miR-29b overexpression was of particular interest. To

further explore the potential regulation of AICDA by miR-29b, tonsil B cells were

12
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transfected with a miR-29b mimic and cultured in the presence of IL-4 and anti-CD40
antibody to induce AICDA expression CSR and plasmablast differentiation; as
previously demonstrated this resulted in an 15 fold increase in miR29b levels,
supplementary figure 3A). RNA was isolated 24 hours after transfection and the
expression of a series of miR-29 targets associated with either CSR-, GC- and plasma

cell differentiation and function, including AICDA, were assessed via qRT-PCR.

In line with the array data, 4ICDA was consistently repressed by over 2-fold
following miR-29b overexpression (Fig. 3A). Similarly, the bona fide miR-29 target,
CDK6 (Zhao et al., 2010), was also robustly reduced following miR-29b
overexpression, demonstrating the biological validity of these experiments (Fig. 3A).
However, two previously reported miR-29 targets, AKT3 (Wei et al., 2013) and SP/
(Jia et al., 2014), remained unperturbed (Fig. 3A), suggesting that in the context of
human B cells, they are not subject to miR-29b repression at the transcript level. The
expression levels of BATF (Ise et al., 2011), HOXC4 (Park et al., 2009), MYC
(Fernandez et al., 2013) and IRF4 ((Luo and Tian, 2010), previously reported to
directly regulate AID transcription, and the expression of factors critical to the GC/PB
phenotype (BCL6, PAXS, XBP1 and BLIMP1) were all perturbed by >20%, although

BATF, XBP1 and MYC did show small but reproducible decreases.

The repression of AICDA mRNA following miR-29b overexpression was also
mirrored at the protein level. Immunoblotting 60 hours post transfection using the
EK2 5G9 anti-AID monoclonal antibody showed a clear reduction in AID protein

(Fig. 3B). Densitometry revealed this to be an approximate 60% decrease, indicating a
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strong correlation between mRNA and protein expression changes (Fig. 3B). Overall,
the data show that the overexpression of miR-29 in tonsil B cells activated to express
AID was indeed capable of repressing AID expression at both the protein and mRNA

level.

3.3 Knockdown of miR-29b in activated naive B cells augments AID expression

To gain further insight into the role of miR-29b in the context of B cell activation,
naive B cells, which express endogenous miR-29b, were transfected with a
commercial miR-29 inhibitor (see methods for details) or non-silencing control and
cultured with IL-4 and anti-CD40 stimulation. Delivery of the inhibitor repressed
endogenous miR-29b by approximately 60% (as assessed by qPCR) when compared
to B cells transfected with a negative control, and lasted for approximately 48 hours
before beginning to recover (supplementary Fig. 3B). As in total B cell experiments,
no detectable difference was seen in cell viability between the miR29b inhibitor or
non-silencing control as judged by flow cytometry FSC/SSC although cell viability
was reduced approximately 2 fold compared to un-transfected cells. The biological
consequences of this inhibition were assessed by monitoring the expression of 4/CDA
as well as CSR, GC and plasma cell associated genes and three previously validated

miR-29 targets, by qRT-PCR.

In a reciprocal manner to the miR-29b overexpression results, we observed that
AICDA was significantly increased following 60% miR-29b inhibition
(supplementary Figure 3B & Fig. 4A). Similarly, expression of the previously

validated miR-29 target, CDK6 (Zhao et al., 2010) and MYC, previously indirectly
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linked to miR-29 (S. Liu et al., 2010), were elevated. Although a modest increase in
eGLT expression was detected following miR29 knockdown this was not found to be
significant compared to the control. Also in line with our overexpression analysis, the
reported miR-29 targets, AKT3 (Wei et al., 2013) and SPI (Garzon et al., 2009), were

unaltered following miR-29b inhibition (Fig. 4A).

To determine whether the elevated 4/CDA mRNA expression was reflected at the
protein level, we performed immunoblots 60 hours post transfection. Further
confirming the effect at the mRNA level, we observed that AID protein expression
was increased by 1.6-fold following miR-29b inhibition, as determined via
densitometry (Fig. 4B). Together, these data demonstrate that reducing the
physiological levels of miR-29 expression found in naive B cells is sufficient to de-

repress AID in circulating naive B cells.

3.4 miR-29b directly targets the miR-29 binding site within the AICDA 3" UTR

To investigate the possibility that AID may be indirectly regulated by miR-29b, the
expression of a number of signalling components of the B cell activation pathway
were investigated to determine the impact of potential indirect modes of regulation.
Following miR-29b manipulation, the expression and phosphorylation of members of
the PI3K, MAPK and STAT6 pathway were found to be unperturbed (supplementary
Fig. 3C). This further confirmed that miR-29b is likely directly targeting AICDA.
Bioinformatic analysis of the human 4A/CDA 3° UTR revealed the presence of a
pronounced miR-29 binding site (Fig. SA). This site is found in the AICDA 3° UTR of
other primate species, such as chimpanzees and rhesus macaques, but not in more
distantly related mammals, such as mice, rats and rabbits. The miR-29 binding site in

the AICDA 3° UTR shows complementarity from nucleotides 1-10 at the 5° end of the

15
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miRNA, and includes an adenosine opposite position 1 (Fig. 5A). Seed region
complementarity and an adenosine opposite position 1 are both strong indicators of
miRNA targeting (Agarwal et al., 2015). In addition, the site is located in a favourable
genomic context, it is under 200 nucleotides away from the 3’ end of the 3° UTR, and
embedded in an AU-rich environment. The miRNA targeting prediction tool
TargetScan reported 4/CDA to be in the 4th percentile in terms of favourability for all

miR-29 binding sites (not shown).

Since AICDA possessed a strong miR-29b binding site in its 3’UTR, the direct
targeting of AID by miR-29b was assessed. The region encapsulating the miR-29
binding site of the AICDA 3’UTR was sub-cloned into a luciferase reporter vector.
Constructs in which the miR-29 binding site was mutated and replaced with a BamHI
restriction site (Fig. 5SA) and constructs containing no insert were used as negative
controls. Each vector was separately cotransfected into HEK293 cells along with a
miR-29b mimic molecule. Following 24 hours in culture, miR-29b was shown to be
capable of repressing the luciferase activity of the test vector, relative to both negative
control vectors (Fig. 5B). This demonstrated that miR-29b was indeed capable of

directly interacting with the AICDA 3° UTR and suppressing protein expression.

3.5 miR-29 dampens CSR to IgE in stimulated tonsil B cells

In order to mount a diversified humoral immune response, B cells not only undergo
CSR and SHM but must also coordinate their proliferative and apoptotic potential
(Recaldin and Fear, 2016). As such, the phenotypic consequences of miR-29b
overexpression were assessed in both activated tonsil B cells and the CLO1 germinal

centre cell line. Following anti-CD40 and IL-4 stimulation, overexpression of miR-
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29b had no detectable effect on apoptosis or cell proliferation (supplementary Fig.

3D-F).

Given that miR-29b modulates AID levels, we also investigated its effect on in vitro
stimulated CSR. Although we show that transient transfection of naive B cells could
be successfully accomplished and that mir29b over-expression resulted in a robust
diminution of induced AID expression, cells transfected with either the miRNA
mimic or non-silencing control produced very little isotype switched immunoglobulin
following 14 days culture. In order to demonstrate a biological consequence of
miRNA29b diminished AID expression we overexpressed miR29b in total tonsillar B
cells. CSR to IgE is most robustly stimulated in tonsil B cells following activation
with IL-4 and anti-CD40(Ramadani et al., 2017; 2015) and we reasoned that although
miR-29b repression of AID is only transient (approx. 48 hours) in this system, this is
the timepoint at which most AID is functionally active, and thus might affect CSR.
When provided with anti-CD40 and IL-4 stimulation, tonsil B cells maintain their IgG
expression, with switching to and from IgG being balanced, over the course of 7 days,
but significantly increase switching to IgE from negligible to detectable levels, and
thus can be tracked via flow cytometry (Ramadani et al., 2015). Assessment of Ig
gene expression in B cell cultures by qRT-PCR, 5 days after transfection with a miR-
29b mimic, revealed a moderate but reproducible, 30% decrease in IgE mRNA (Fig.
6A). After 7 days in culture, IL-4 and anti-CD40 stimulated B cells transfected with
either the miR29b mimic or non-silencing control were similarly viable (cell viability
10.3% /. 2.2 versus 11.2% */. 2.0), although viability was reduced 2.5 fold compared

to similarly stimulated un-transfected cells(Ramadani et al., 2015). Intracellular
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staining of immunoglobulin protein at day 7 reproduced a similar moderate but
statistically significant reduction in the percentage of IgE-expressing cells (Fig. 6B).
The percentage of IgG-expressing cells was not significantly altered (Fig. 6B).
Knockdown of AID through use of a short-interfering RNA to A/ICDA resulted in a
similar pattern of Ig expression; giving a small but reproducible reduction in the
percentage of IgE-expressing cells, but no significant alteration in IgG-expressing
cells (Fig. 6C). Together these results demonstrated that miR-29b, a miRNA
downregulated in activated B cells, is capable of directly targeting 4/CDA mRNA,
and that this decreases CSR to IgE following stimulation with IL-4 and anti-CD40
antibody. We posit that miR 29 represents a previously unrecognised player in human

B cell biology that warrants further investigation.
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4. Discussion

miRNAs play an important role in fine tuning cells’ protein output and have
previously been shown to regulate important aspects of B cell biology (Taganov et al.,
2007). However, the functional role of miRNAs have not been extensively studied in
the activation of human B cells. This study sought to identify miRNAs that were
dynamically and temporally regulated between different mature B cell
subpopulations, and identify their functional consequences in the development of the
humoral response. Previous studies have used PCR, microarray or RNA-seq to
monitor the miRNA expression changes that occur during the course of a B cell
response, predominantly focusing on the differences between naive, GC and memory
B cells found within the same secondary lymphoid organs (Basso et al., 2009;

Malumbres et al., 2009; Tan et al., 2009; J. Zhang et al., 2009). The original data

from Malumbres et al., (Malumbres et al., 2009) indicated that miR-29b, a member of
the miR-29 family that is important in coordinating the lymphocyte response to
intracellular pathogens such as Listeria monocytogenes (Ma et al., 2011), was
repressed in the GC compartment. Interrogation of data from other papers that
analysed the human B cell miRNome (Basso et al., 2009; Tan et al., 2009; J. Zhang et
al., 2009) confirmed this observation. The miR-29 family of miRNAs are known to be
particularly important in T cells, where they control aspects of development and
effector function (Ma et al., 2011; Papadopoulou et al., 2011; Steiner et al., 2011), and
in B cells have recently been shown to regulate germinal centre dynamics in a murine
model of collagen-induced arthritis (Nieuwenhuijze, 2017). However, the functional
consequences of this miRNA in naive human B cells and B cell activation have not

previously been studied.
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Here, we found that mature miR-29b was approximately 3-fold less abundant in B
cells isolated from tonsil lymphoid tissue than in circulating naive B cells isolated
from blood, confirming that miR-29b was dynamically regulated upon exit from the
circulation and entry into the lymphoid tissue. In order to identify miR-29b’s function
in this context and identify potential target molecules, it was overexpressed through
the use of miRNA mimic molecules and global gene expression changes monitored
by microarray analysis. This revealed that the second most dynamically regulated
gene following miR-29b overexpression, after the eukaryotic initiation factor EIF4E2,
was found to be AICDA, which plays a critical role in B cell biology (Fig. 2A, B).
Considering that AID is also a potent genome mutator and has oncogenic potential
(Robbiani et al., 2009; 2008) its expression and activity must be carefully regulated.
In mice, Aicda is post-transcriptionally regulated by miR-155 and miR-181b (de
Yebenes et al., 2008; Dorsett et al., 2008; Teng et al., 2008). However, regulation of
AICDA by different miRNA members has not been fully investigated in human B

cells.

The human AICDA 3° UTR contains a pronounced miR-29 binding site with
extensive complementarity, indicating the possibility of a direct interaction. This is
confirmed by our results which show that over expression of a miR-29b mimic
represses luciferase activity in HEK293 cells transfected with a luciferase reporter
construct containing the region of AICDA 3> UTR bearing the miR-29 binding site
Fig. 5B) while miR-29b overexpression in tonsil B cells significantly reduced 4/CDA
expression, AID protein levels (Fig. 3) and CSR to IgE (Fig. 6). This raises the
question as to the purpose of such an interaction. AID and miR-29b expression are

inversely correlated. 4ICDA is detectable in the lymphoid follicles and most abundant
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in GC B cells, but absent in circulating naive B cells. Conversely, miR-29b is reduced
in the follicles but prominent in circulating naive B cells. This indicates that the
function of miR-29b may be to suppress premature AID at the early stages of a
mature B cell’s life cycle, or following inappropriate activation in the absence of

suitable T cell help or T-independent “danger” signals.

Upon entry into the lymphoid tissue and subsequently the GC, where AID expression
is appropriate, the down regulation of miR-29b would relieve the block on 4/CDA
and allow its full regulated expression. Indeed, the potential of endogenous miR-29b
to regulate AID in this context was demonstrated by the increase of AID mRNA and
protein expression levels when miR-29b was inhibited in IL4 and antiCD40
stimulated naive B cells (Fig. 4A and 2B). In contrast, in tonsil B cells, where miR-
29b is less abundant, miR29b inhibitors did not elevate A/CDA (data not shown). This
strongly suggests that while endogenous miR-29b expression in naive B cells is
sufficient to suppress AICDA expression, the low levels of miR-29b in GC B cells is
insufficient to do so (although overexpression of miR29b strongly repressing AID and
partially blocks CSR). As such, it is likely that miR-29b is able to repress leaky or
inappropriate expression of AID prior to B cell activation. In relation to miR29s
potential role in preventing inappropriate AID expression, and therefore function, in
naive B cells, it of interest to note that miR29 (a, b and c¢) was found to be decreased
in Mantle cell lymphoma (MCL) (Zhao et al., 2010), a lymphoma with characteristics
of CD5", antigen-naive pregerminal center B-cells. Although Cyclin D1 translocation
and the up-regulation of CDK6 (a direct miR29 target) is thought to account for the

transformation of MCL cells, they were also found to frequently express AID possibly
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accounting for at least some of wide range of chromosomal abnormalities present in

this disease(Babbage et al., 2004).

Following B cell exit from the circulation, miR-29b silencing in GC B cells leads to a
de-repression of AICDA transcription. Such a model has been previously ascribed to
miR-181b regulation of aicda in mice (de Yebenes et al., 2008). Interestingly,
miR29c¢ shares a similar expression pattern to miR-29b, being most highly expressed
in naive B cells and low in GC B cells (Supplementary Figure 1). Since miR29 family
members share seed region homology and therefore predicted targets, the expression
of these miRs would be expected to reinforce their functional effects. It should be
noted that the miR-29 site in the AICDA 3° UTR is conserved amongst other primate
species, but not in more distantly related mammals, such as mice, rats and rabbits.
Thus, it is not an interaction that has been strongly conserved throughout mammalian
evolution and may have arisen more recently.

In conclusion, the data in this paper have shown that miR-29b, a member of
the conserved miR-29 family, is repressed in tonsil B cells relative to circulating
naive B cells. Enforced overexpression of miR-29b in tonsil B cells led to the direct
targeting of AICDA, through a pronounced binding site in the AICDA 3° UTR and this
interaction was sufficient to reduce CSR to IgE. Similarly, inhibition of endogenous
miR-29b in naive B cells resulted in elevated AID expression. We hypothesise that
one of the endogenous functions of miR-29 is to silence leaky expression of AID, a
mutagenic protein whose expression must be controlled in order to maintain

chromosomal integrity.
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Figure legends

Figure 1: miR-29 is less abundant in B cells isolated from tonsillar tissue than in
naive B cells isolated from peripheral blood.

The expression level of miR-29 in IgD" CD27 naive B cells isolated from peripheral
blood compared to CD19" tonsil B cells, as assessed via qRT-PCR. Values are plotted

relative to the small nucleolar RNA RNUG6B. ** P < (0.01(unpaired t-test).

Figure 2: Genome-wide analysis of miR-29b targeting in tonsillar B cells shows
an enrichment in miR-29 binding sites within the 3° UTR of downregulated
genes.

(A) Heatmap representing expression changes in the most downregulated genes in
tonsillar B cells transfected with a miR-29 mimic and stimulated with anti-CD40
antibody and IL-4 cytokine for 24 hours, as detected by Illumina BeadChip Array.
Genes containing predicted miR-29 binding sites in their 3° UTR are listed in red. P
values (two-way ANOVA) are also included.

(B) Pie chart displaying the prevalence of miR-29 binding sites within the 3> UTR of
genes downregulated following miR-29b overexpression. The percentage of 8mers
(an exact match to positions 2-8 of the mature miRNA with an A opposite position 1
of the miRNA), 7mer-m8s (an exact match to positions 2-8 of the mature miRNA)
and 6mers (an exact match to positions 2-7 of the mature miRNA) within the miR-29
binding sites is also shown.

(C) Dot plot representations of the change in fluorescence intensity for 4/CDA, as
well as previously validated targets including CDK6, RCC1, TDG and TRAK2, in

tonsil B cells transfected with a miR-29 mimic and stimulated with anti-CD40
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antibody and IL-4 cytokine for 24 hours, as detected by Illumina BeadChip Array.
Figure 3: Overexpression of miR-29 reduces AID abundance in tonsillar B cells.
tonsil B cells were transfected with a miR-29b mimic or its associated negative
control molecule and subsequently activated with IL-4 and anti-CD40.

(A) Gene expression of key B cell molecules after 24 hours of stimulation as assessed
via qRT-PCR. Values are normalized to 18S ribosomal RNA and plotted relative to
the abundance of each gene in the control transfected cells, which were arbitrarily
assigned a value of 1. N =3 - 12, mean and s.e.m. * P <0.05, ** P < 0.01, **** P <
0.0001 (paired t-test).

(B) Representative immunoblot and cumulative densitometry analysis (n = 3) of AID
protein in follicular B cells following miR-29b overexpression and 60h of culture in
IL-4 and anti-CD40 stimulus, compared to AID protein in the control transfected

cells. GAPDH served as a loading control.

Figure 4: Knockdown of miR-29 increases AID abundance in naive B cells.

Naive B cells were transfected with a miR-29 inhibitor or its associated negative
control molecule and subsequently activated with IL-4 and anti-CD40.

(A) Gene expression of key B cell molecules after 48 hours of stimulation as assessed
via qRT-PCR. Values were normalized to 18S ribosomal RNA and plotted relative to
the abundance of each gene in the control transfected cells, which were arbitrarily
assigned a value of 1. N =6 - 12. Mean and s.e.m. ** P <0.01, *** P <(0.001, **** P
<0.0001 (paired t-test).

(B) Representative immunoblot and cumulative densitometry analysis (n = 3) of AID
protein in naive B cells following miR-29b knockdown and 60h of culture in IL-4 and

anti-CD40 stimulus, compared to AID protein in the control transfected cells.
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GAPDH served as a loading control.

Figure 5: miR-29 is capable of directly targeting the miR-29 binding site within
the AICDA 3’ UTR.

(A) The miR-29 binding site within the human, chimpanzee and rhesus macaque
AICDA 3° UTR, as well as the mismatched sequence used for luciferase analysis.

(B) HEK293T cells were contransfected with one of the dual luciferase plasmids
(endogenous A/CDA 3’ UTR, mismatched 3’ UTR or no insert) and a miR-29 mimic.
Firefly luciferase activity was quantified after 24 hours, normalized to renilla
luciferase and plotted relative to the no insert plasmid. * P < 0.05 (one-way ANOVA).

N =3, mean and s.e.m.

Figure 6: miR-29 overexpression dampens induction of class switching to IgE.
Tonsil B cells were transfected with a miR-29 mimic or negative control molecules
and subsequently cultured in class-switching conditions (IL-4 and ati-CD40
antibody).

(A) IgE and IgG mRNA were detected via qRT-PCR following 5 days of culture.
Values are plotted relative to 18S ribosomal RNA. N =7 for IgE and 5 for IgG, mean
and s.e.m.

(B) Intracellular IgE and IgG was analysed following 7 days of culture via flow
cytometry. * P < (.05 (paired t test).

(C) Intracellular IgE and IgG was analysed following 7 days of culture via flow
cytometry. Values were plotted relative to the control transfected cells, which were
arbitrarily assigned a value of 1. N = 3 for siAID, and 10 for miR-29 versus the

negative control mimic. * P <0.05 (paired t test). Mean and s.e.m.
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Abstract

Class-switch recombination (CSR) is an essential B cell process that alters the isotype
of antibody produced by the B cell, tailoring the immune response to the nature of the
invading pathogen. CSR requires the activity of the mutagenic enzyme AID (encoded
by AICDA) to generate chromosomal lesions within the immunoglobulin genes that
initiate the class switching recombination event. These AID-mediated mutations also
participate in somatic-hypermutation of the immunoglobulin variable region, driving
affinity maturation. As such, AID poses a significant oncogenic threat if it functions
outside of the immunoglobulin locus. We found that expression of the microRNA, miR-
29b, was repressed in B cells isolated from tonsil tissue, relative to circulating naive B
cells. Further investigation revealed that while enforced overexpression of miR-29b in
human B cells precipitated a reduction in overall AID protein and a corresponding
diminution in CSR to IgE, miR-29b knockdown in naive B cells resulted in elevated
AID expression. Similarly, miR-29b was able to directly interact with the AID 5’-UTR
and modulate expression in reporter assays. Given miR-29b’s ability to potently target
AID, a mutagenic molecule that can initiate chromosomal translocations and “off-
target” mutations, we propose that miR-29b acts to silence premature AID expression
in naive B cells, thus reducing the likelihood of inappropriate and potentially dangerous

deamination activity.
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1. Introduction

During the course of the immune response, mature B cells undergo two diversification
events at the immunoglobulin loci, somatic hypermutation (SHM) and class-switch
recombination (CSR) (Stavnezer, 2011). SHM introduces mutations in the
hypervariable loops of the antigen binding site, found within the CDRs of the
Immunoglobulin Heavy (IGH) and light (/GL) chain variable regions. This allows for
selection of B cell clones which harbour Igs with increased affinity for antigen,
promoting the development of highly specific Ig molecules. In contrast, CSR replaces
the Cp and CO heavy chain gene exons (encoding IgM and IgD respectively) with the
downstream C-region exons of the a, vy, or € isotypes (encoding IgA, IgG and IgE)
(Stavnezer and Schrader, 2014). This process, which is driven by cytokines released
from T helper cell populations, ensures that the effector functions of the antibodies
produced by B cells are tailored to the nature of the invading pathogen. Both CSR and
SHM require the activity of the mutagenic enzyme, activation-induced cytidine
deaminase (AID, encoded by AICDA) (Muramatsu et al., 2000; Revy et al., 2000). AID
acts to deaminate deoxycytidine residues within the /G variable and the /GH constant
regions, resulting in the production of deoxyuracils(Neuberger et al., 2003). In the case
of SHM, the ensuing mismatches initiate low-fidelity DNA repair pathways leading to
the incorporation of mutations within the /GH and IGL variable regions, whereas in
CSR the mismatches trigger a deletional-recombination event that replaces the
upstream “acceptor” C-region (initially Cp and CO ) with a downstream “donor” C

region (Cyl-4, Ce or Ca1-2) (Keim et al., 2013).
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The mechanisms targeting AID to the Ig genes are incompletely understood. It has been
proposed that transcriptional stalling (Pavri et al., 2010), the formation of RNA:DNA
hybrids called R loops (Shinkura et al., 2003), the exosome (Basu et al., 2011), super-
enhancers (Qian et al., 2014), germline transcript RNA (Wang et al., 2015), 14-3-3
adaptor proteins (Xu et al., 2010), as well as the sequence location of the Ig genes (Yeap
etal., 2015), recruit AID to the DNA and promote deamination. However, AID activity
is promiscuous, and deamination-induced mutations are detected at multiple non-Ig
sites (M. Liu et al., 2008). This collateral damage has significant oncogenic potential,
as demonstrated by AID-induced chromosomal translocations that occur in the context
of genomic instability (Robbiani et al., 2008; 2009) and AID-induced mutations of non-
Ig genes (Duquette et al., 2005; Pasqualucci et al., 1998; 2001). Therefore, AID

expression and activity must be carefully controlled.

One mechanism by which cells are able to fine-tune their protein expression is through
microRNAs (miRNAs), short non-coding RNAs that regulate gene expression by
promoting mRNA decay and translational repression (Bartel, 2009). In mice miR-155
has been shown to directly repress AID (Teng et al., 2008) and removing the miR-155
binding site within the Aicda 3’ UTR increases the likelihood of AID-induced Igh-Myc
chromosomal translocations (Dorsett et al., 2008), a transforming event frequently
observed in Burkitt’s Lymphoma. Similarly, miR-181 can also directly target Aicda
and is proposed to prevent inappropriate AID expression in the absence of B cell
activation (de Yebenes et al., 2008). Although the miRNA-mediated regulation of AID
expression has been well studied in mice, this mode of regulation has not been

extensively studied in human B cells.
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To identify miRNAs involved in coordinating the B cell response in humans,
we analysed the published literature that had profiled the miRNA pool of distinct
human B cell subpopulations (Basso et al., 2009; Malumbres et al., 2009; Tan et al.,
2009; J. Zhang et al., 2009). These studies consistently reported that the conserved
miRNA miR-29b was less abundant in germinal centre B cells relative to naive and
memory cell compartments. Similarly, we show that miR-29b has diminished
expression in B cells isolated from tonsil tissue relative to naive B cells isolated from
peripheral blood. It is of interest to note that miR29b expression has also been reported
to be reduced in mantle cell lymphoma, a lymphoma thought to originate from Pre-GC
mature B cells (Zhao et al., 2010). In this report we investigate potential miR29b targets
and demonstrate that it is able to directly target AICDA mRNA. Enforced
overexpression of miR-29b in human B cells reduces overall AID protein and causes a
corresponding diminution of CSR to IgE in vitro. Together, these results suggest that
miR-29b is able to silence “leaky” expression of AID, limiting its expression to

appropriately activated B cells and thus helping to maintain chromosomal integrity.
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2. Materials and Methods

2.1 Ethics

Ethical approval was granted by London Bridge Research Ethics Committee for both
peripheral blood donations (09/H0804/77 and 14/L.LO/1699) and for tonsil donations
(08/HO804/94). Full written informed consent was obtained from all donors or the

donors’ parents or legal guardian.

2.2 B cell isolation, transfection and culture

Naive B cells were isolated from peripheral blood using the Naive B Cell Isolation Kit
IT (Miltenyi Biotec). B cells were isolated from tonsil tissue as previously described
(Cooper et al., 2012). Briefly, mononuclear cells were isolated from dissected tonsil
tissue on a density gradient (Lymphoprep, Axis-Shield PoC AS) followed by
incubation with aminoethyl isothiouronium bromide-treated sheep red blood cells to
rosette T cells. To overexpress miR-29b, 800 nM miR-29b Pre-miR miRNA Precursor
(Thermo Fisher Scientific) or the equivalent non-targeting negative control molecules
was delivered into 5 x 10¢ freshly isolated primary B cells using the Amaxa Human B
cell Nucleofector Kit (LONZA). The Pre-miR miRNA Precursors used were
proprietary short (16-28bp) double stranded RNA molecules chemically modified to
ensure the desired strand is loaded into the RISC complex(Barnes et al., 2012). To
inhibit miR-29b, 800 nM miR-29b of mirVana miRNA Inhibitor (Thermo Fisher
Scientific) or the equivalent non-targeting negative control molecule was delivered into
5 x 10r freshly isolated primary B cells using the Amaxa Human B cell Nucleofector
Kit (LONZA). The mirVana miRNA Inhibitors used were single stranded, chemically

modified RNA molecules designed to irreversibly bind and inhibit endogenous
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miRNAs (Barnes et al., 2012). Samples were nucleofected using program U-15 on the
Nucleofector Device and cultured at a concentration 5 x 10° mL+in RPMI 1640, 10%
HyClone Fetal Bovine Serum, 100 pg/mL Streptomycin, 100 U/ml Penicillin, 2 mM L-
Glutamine. To stimulate CSR, the medium was supplemented with 1 mg/mL of
anti-CD40 antibody, 200 IU/mL of recombinant human IL-4, 5 mg/mL of insulin and
35 mg/mL of transferrin. The human monoclonal IgM- IgD- CLO1 B cell line (Cerutti
et al., 1998) was cultured in RPMI 1640, 10% HyClone Fetal Bovine Serum, 100
pg/mL Streptomycin, 100 U/mL Penicillin, 2 mM L-Glutamine and kept at a
concentration of between 1-5 x 10¢ cells/mL. To induce expression of AID, the culture
medium was supplemented with 1 mg/mL of anti-CD40 antibody and 200 IU/mL of
recombinant human IL-4. The CLO1 cell line was nucleofected using the Amaxa Cell
Line Nucleofector Kit V along with program C-09 on the Nucleofector Device. All

cells were cultured in a humidified incubator at 37°C, 5% CO2.

2.3 RNA Isolation and quantitative (q) RT-PCR analysis

Total RNA was extracted from cultured cells using the miRNeasy Mini Kit with QIAzol
Lysis Reagent (Qiagen). Residual gDNA was removed by incubating the extracted
sample with 20 units of TURBO DNase enzyme (Thermo Fisher Scientific) at 37°C for
one hour followed by a second phenol-chloroform cleanup. The integrity and yield of
isolated RNA was checked on a 2100 Bioanalyzer (Agilent) using the RNA6000 Pico
Assay. For analysis of mRNA expression, cDNA was generated from total RNA using
random hexamers with RevertAid H Minus Reverse Transcriptase (Thermo Fisher
Scientific) and all genes (with the exception of AICDA, eGLT, IgG and IgE) were
detected expression using TagMan MGB Gene Expression Assays (Thermo Fisher

Scientific). The primer and probe set for AICDA was designed using the Universal
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Probe Library Assay Design Centre (Roche) while the eGLT, IgG and IgE primer and
probe sets were designed in house. Individual samples were subjected to qPCR and run
in triplicate with TagMan Universal Master Mix II on the ViiA 7 Real-Time PCR
System using 18S rRNA as a normalization control and gene expression was
determined using the 2~>method. For qRT-PCR analysis of miRNA expression, the
TagMan Small RNA Assay for miRNA quantification (Thermo Fisher Scientific) was
used. This involved separate cDNA generation for each miRNA, utilising a miRNA-
specific, stem-loop primer to facilitate reverse transcription. The small nucleolar RNA
RNUG6B was used as a normalization control and gene expression was determined using

the 2+method.

24 Gene expression arrays

Fresh tonsil B cells were transfected with a miR-29b mimic or its associated negative
control and cultured in class switching stimuli for 24 hours. RNA was isolated using
the miRNeasy Mini Kit with QIAzol Lysis Reagent (Qiagen) and then DNase-treated
as described. 10 ng RNA was amplified using the Ovation Pico WTA System V2
(Nugen). 4 ug of amplified single-stranded cDNA was biotin-labeled using the Encore
BiotinIL Module (Nugen). Finally, transcriptomic analysis was performed by
hybridizing 750 ng of biotin-labeled single-stranded cDNA onto a HumanHT-12 v4
Expression BeadChip (Illumina) and scanned using the Illumina iScan System. QC
analysis and RMA normalization was performed in Illumina’s Genome Studio Suite
v1.0. Assessment of differential gene expression and statistical analysis was performed
in Partek Genomics Suite version 6.6. Data from this study have been deposited in

NCBI's Gene Expression Omnibus (Edgar et al., 2002) and are accessible through GEO
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Series accession number GSE100735
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100735).

Immunoblotting

B cells were stimulated for 60 hours in class-switching stimuli following transfection.
Cells were harvested in protein lysis buffer (pH 7.4, 25 mM Tris, 150 mM NaCl, 1 mM
EDTA, 1% NP40, 5% Glycerol, 10% Roche Protease Inhibitor). Total protein levels
were quantified using the bicinchoninic acid assay and approximately 50 ug protein
lysate were run on SDS-polyacridimide gels. Following wet transfer onto nitrocellulose
membranes, the membranes were probed with the following antibodies for protein
expression (AID - EK2 5G9, STAT6 - D3H4, p-STAT6» - C11A12, p38 MAPK -
D13E1, p-p38mw=== - D3F9, AKT - 40D4, p-AKT=- DOE, GAPDH - 6C5), and images
were developed using the Molecular Imager® ChemiDoc™ XRS System (Bio-Rad).

GAPDH (clone 6C5, Abcam) was used as a loading control.

2.5 Luciferase Assays

The region of the AICDA 3’ UTR encompassing the miR-29 binding site was subcloned
into the pmirGLO Dual-Luciferase miRNA Target Expression Vector (Promega),
which harbours both a firefly luciferase reporter gene, for analysis of miRNA-mRNA
binding site interactions, and a renilla luciferase reporter gene, which acts as a
transfection efficiency control. For the mismatched construct, the miR-29 binding site
in the AID 3’ UTR was replaced with a BamHI restriction site using sequential rounds
of mutation cloning. HEK293T cells were seeded onto white 96-well tissue culture
plates and having reached 70% confluence were transfected with 50 ng of one of the
luciferase constructs and 10 nM of miR-29 mimic using Lipofectamine 2000 (Thermo

Fisher Scientific). Reactions were performed in triplicate. Luciferase activity was
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quantified after 24 hours on a GloMax-Multi Microplate Luminometer (Promega, 2
seconds integration time) using the Dual-Glo Luciferase Assay System (Promega). The
luciferase signal ratio was calculated by dividing firefly luciferase activity by renilla
luciferase activity and normalized to cells transfected with an insert-free pmirGLO

vector.

2.6 Flow Cytometry

Apoptosis staining was performed using the Annexin V Apoptosis Detection Kit
(eBioscience). For cell proliferation analysis, 107 transfected CLO1 cells were washed
with PBS, resuspended in 1 mL. PBS containing 1 uM CellTrace Violet dye (Thermo
Fisher Scientific), and left in the dark at 37°C for 10 minutes. The reaction was
quenched by the addition of cell culture media. The cells were washed, resuspended
and cultured in a 37°C incubator until analysis via flow cytometry. Intracellular
antibody staining of IgG and IgE was performed as previously described” using the a

fixable viability stain (Zombie Aqua Thermo Fisher Scientific).
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3. Results

3.1 miR-29b is repressed in tonsil B cells relative to peripheral naive B cells

In order to identify dynamically regulated miRNAs within the context of mature human
B cells, we analysed the available literature profiling the miRNA pool in different B
cell subpopulations (Basso et al., 2009; Malumbres et al., 2009; Tan et al., 2009; J.
Zhang et al., 2009). We observed that the evolutionarily conserved miRNA miR-29b
was less abundant in germinal centre B cells relative to naive and memory cell
compartments (supplementary Fig. 1A & 1B). miR-29b is a member of the miR-29
family, also including miR-29a and miR-29c, which share the same seed region and
thus overlap in their predicted targets (Liston et al., 2012). Interestingly miR29¢ was
also less abundant in GC B cells compared to naive or memory compartments,
potentially reinforcing the effects of this miRNA family (supplementary Fig. 1A & 1B).
We analysed the abundance of miR-29b in B cells isolated from tonsils, a large
proportion of which have a germinal centre phenotype (CD19-CD38-CD27- or CD19-
CD38:CD27-) (supplementary Fig. 2A), and compared its prevalence to naive B cells
(CD19-1gDh-CD27) (supplementary Fig. 2B) isolated from peripheral blood. In line with
previous reports(Malumbres et al., 2009), miR-29b was nearly 3 times more abundant

in the circulating naive B cells than in tonsil-derived B cells (Fig. 1).

3.2 ldentification of AICDA as a miR-29b target gene in human tonsil B cells

To gain insight into the role of miR-29b in the context of B cell activation we
overexpressed miR-29b in tonsil B cells and investigated global gene expression
changes following 24 hours culture with IL-4 and anti-CD40 stimulation using [llumina

BeadChip Microarrays (HumanHT-12 v4). Transfection of a miR-29b mimic into tonsil
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B cells increased miR-29b abundance by approximately 15-fold 24 hours after
transfection, compared to cells transfected with a negative control mimic molecule
(supplementary Fig. 3A). No detectable difference was seen in cell viability between
the miR29b mimic or negative control as judged by flow cytometry FSC/SSC although
cell viability was reduced approximately 2 fold compared to un-transfected cells.
Analysis of the array data revealed only a moderate effect on overall gene expression,
with just 29 genes being modulated by more than 1.2 fold (supplementary table I and
Fig. 2A). However, of these genes, 20 (69%) contained miR-29 binding sites within
their 3’ UTRs, suggesting potential for direct targeting by miR-29 (Fig. 2B). Further
analysis of the genes with miR29 binding sites revealed that 16 (80%) of the seed
regions contained either 8mers (an exact match to positions 1-8 of the mature miRNA
including an A opposite position 1 of the miRNA) or 7mers (an exact match to positions

2-8 of the mature miRNA) (Fig. 2B).

Although, a 15 fold overexpression of miR-29 is non-physiological, the incorporation
of miR into “active” RISC complexes is known to be far lower than cytoplasmic levels
(Flores et al., 2014). Despite this, these data demonstrate the potential for miR-29 to
regulate a number of genes of interest to B cell regulation. We observed that AICDA
was one of the top target genes repressed by miR-29 overexpression, while the
previously validated miR-29b target, CDK6 (Zhao et al., 2010), was also robustly
repressed (Fig. 2A, C). Other validated miR-29 targets repressed following miR-29b
overexpression in tonsil B cells included the guanine exchange factor RCC2 (Matsuo
et al., 2013), the thymine glycosylase TDG (Morita et al., 2013; P. Zhang et al., 2013)

and the trafficking protein TRAK?2 (Kato et al., 2016) (Fig. 2C).
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Given its indispensable role in promoting B cell antibody diversification, the repression
of AICDA following miR-29b overexpression was of particular interest. To further
explore the potential regulation of AICDA by miR-29b, tonsil B cells were transfected
with a miR-29b mimic and cultured in the presence of IL-4 and anti-CD40 antibody to
induce AICDA expression CSR and plasmablast differentiation; as previously
demonstrated this resulted in an 15 fold increase in miR29b levels, supplementary
figure 3A). RNA was isolated 24 hours after transfection and the expression of a series
of miR-29 targets associated with either CSR-, GC- and plasma cell differentiation and

function, including AICDA, were assessed via qRT-PCR.

In line with the array data, AICDA was consistently repressed by over 2-fold following
miR-29b overexpression (Fig. 3A). Similarly, the bona fide miR-29 target, CDK6
(Zhao et al., 2010), was also robustly reduced following miR-29b overexpression,
demonstrating the biological validity of these experiments (Fig. 3A). However, two
previously reported miR-29 targets, AKT3 (Wei et al., 2013) and SP/ (Jia et al., 2014),
remained unperturbed (Fig. 3A), suggesting that in the context of human B cells, they
are not subject to miR-29b repression at the transcript level. The expression levels of
BATF (Ise et al.,2011), HOXC4 (Park et al., 2009), MYC (Fernandez et al., 2013) and
IRF4 ((Luo and Tian, 2010), previously reported to directly regulate AID transcription,
and the expression of factors critical to the GC/PB phenotype (BCL6, PAXS, XBP1
and BLIMP1) were all perturbed by >20%, although BATF, XBP1 and MYC did show

small but reproducible decreases.
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The repression of AICDA mRNA following miR-29b overexpression was also mirrored
at the protein level. Immunoblotting 60 hours post transfection using the EK2 5G9 anti-
AID monoclonal antibody showed a clear reduction in AID protein (Fig. 3B).
Densitometry revealed this to be an approximate 60% decrease, indicating a strong
correlation between mRNA and protein expression changes (Fig. 3B). Overall, the data
show that the overexpression of miR-29 in tonsil B cells activated to express AID was

indeed capable of repressing AID expression at both the protein and mRNA level.

3.3 Knockdown of miR-29b in activated naive B cells augments AID expression

To gain further insight into the role of miR-29b in the context of B cell activation, naive
B cells, which express endogenous miR-29b, were transfected with a commercial miR-
29 inhibitor (see methods for details) or non-silencing control and cultured with IL-4
and anti-CD40 stimulation. Delivery of the inhibitor repressed endogenous miR-29b by
approximately 2 fold (as assessed by qPCR) when compared to B cells transfected with
a negative control, and lasted for approximately 48 hours before beginning to recover
(supplementary Fig. 3B). This repression of miR-29 represents a far more
physiological, and therefore biologically relevant, manipulation; bringing miR-29
expression down to a similar level to that seen in tonsil B cells (3-fold lower than naive
B cells). As in total B cell experiments, no detectable difference was seen in cell
viability between the miR29b inhibitor or non-silencing control as judged by flow
cytometry FSC/SSC although cell viability was reduced approximately 2 fold
compared to un-transfected cells. The biological consequences of this inhibition were
assessed by monitoring the expression of AICDA as well as CSR, GC and plasma cell

associated genes and three previously validated miR-29 targets, by qRT-PCR.
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In a reciprocal manner to the miR-29b overexpression results, we observed that AICDA
was significantly increased following 60% miR-29b inhibition (supplementary Figure
3B & Fig. 4A). Similarly, expression of the previously validated miR-29 target, CDK6
(Zhao et al., 2010) and MYC, previously indirectly linked to miR-29 (S. Liu et al.,
2010), were elevated. Although a modest increase in eGLT expression was detected
following miR29 knockdown this was not found to be significant compared to the
control. Also in line with our overexpression analysis, the reported miR-29 targets,
AKT3 (Wei et al., 2013) and SP1 (Garzon et al., 2009), were unaltered following miR-

29b inhibition (Fig. 4A).

To determine whether the elevated AICDA mRNA expression was reflected at the
protein level, we performed immunoblots 60 hours post transfection. Further
confirming the effect at the mRINA level, we observed that AID protein expression was
increased by 1.6-fold following miR-29b inhibition, as determined via densitometry
(Fig. 4B). Together, these data demonstrate that even reducing the physiological levels
of miR-29 expression found in naive B cells less than that seen in tonsil B cells (which
express 3 fold less miR-29 than naive B cells rather than the 2 fold reduction induced)

is sufficient to de-repress AID in circulating naive B cells.

3.4 miR-29b directly targets the miR-29 binding site within the AICDA 3’ UTR

To investigate the possibility that AID may be indirectly regulated by miR-29b, the
expression of a number of signalling components of the B cell activation pathway were
investigated to determine the impact of potential indirect modes of regulation.

Following miR-29b manipulation, the expression and phosphorylation of members of
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the PI3K, MAPK and STAT6 pathway were found to be unperturbed (supplementary
Fig. 3C). This further confirmed that miR-29b is likely directly targeting AICDA.
Bioinformatic analysis of the human AICDA 3° UTR revealed the presence of a
pronounced miR-29 binding site (Fig. SA). This site is found in the AICDA 3’ UTR of
other primate species, such as chimpanzees and rhesus macaques, but not in more
distantly related mammals, such as mice, rats and rabbits. The miR-29 binding site in
the AICDA 3’ UTR shows complementarity from nucleotides 1-10 at the 5’ end of the
miRNA, and includes an adenosine opposite position 1 (Fig. 5SA). Seed region
complementarity and an adenosine opposite position 1 are both strong indicators of
miRNA targeting (Agarwal et al., 2015). In addition, the site is located in a favourable
genomic context, it is under 200 nucleotides away from the 3’ end of the 3° UTR, and
embedded in an AU-rich environment. The miRNA targeting prediction tool
TargetScan reported AICDA to be in the 4th percentile in terms of favourability for all

miR-29 binding sites (not shown).

Since AICDA possessed a strong miR-29b binding site in its 3’UTR, the direct targeting
of AID by miR-29b was assessed. The region encapsulating the miR-29 binding site of
the AICDA 3’UTR was sub-cloned into a luciferase reporter vector. Constructs in
which the miR-29 binding site was mutated and replaced with a BamHI restriction site
(Fig. 5A) and constructs containing no insert were used as negative controls. Each
vector was separately cotransfected into HEK293 cells along with a miR-29b mimic
molecule. Following 24 hours in culture, miR-29b was shown to be capable of
repressing the luciferase activity of the test vector, relative to both negative control
vectors (Fig. 5B). This demonstrated that miR-29b was indeed capable of directly

interacting with the AICDA 3° UTR and suppressing protein expression.
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3.5 miR-29 dampens CSR to IgE in stimulated tonsil B cells

In order to mount a diversified humoral immune response, B cells not only undergo
CSR and SHM but must also coordinate their proliferative and apoptotic potential
(Recaldin and Fear, 2016). As such, the phenotypic consequences of miR-29b
overexpression were assessed in both activated tonsil B cells and the CLO1 germinal
centre cell line. Following anti-CD40 and IL-4 stimulation, overexpression of miR-29b

had no detectable effect on apoptosis or cell proliferation (supplementary Fig. 3D-F).

Given that miR-29b modulates AID levels, we also investigated its effect on in vitro
stimulated CSR. Although we show that transient transfection of naive B cells could be
successfully accomplished and that mir29b over-expression resulted in a robust
diminution of induced AID expression, cells transfected with either the miRNA mimic
or non-silencing control produced very little isotype switched immunoglobulin
following 14 days culture. In order to demonstrate a biological consequence of
miRNA29b diminished AID expression we overexpressed miR29b in total tonsillar B
cells. CSR to IgE is most robustly stimulated in tonsil B cells following activation with
IL-4 and anti-CD40(Ramadani et al., 2017; 2015) and we reasoned that although miR-
29b repression of AID is only transient (approx. 48 hours) in this system, this is the
timepoint at which most AID is functionally active, and thus might affect CSR. When
provided with anti-CD40 and IL-4 stimulation, tonsil B cells maintain their IgG
expression, with switching to and from IgG being balanced, over the course of 7 days,
but significantly increase switching to IgE from negligible to detectable levels, and thus

can be tracked via flow cytometry (Ramadani et al., 2015). Assessment of Ig gene
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expression in B cell cultures by qRT-PCR, 5 days after transfection with a miR-29b
mimic, revealed a moderate but reproducible, 30% decrease in IgE mRNA (Fig. 6A).
After 7 days in culture, IL-4 and anti-CD40 stimulated B cells transfected with either
the miR29b mimic or non-silencing control were similarly viable (cell viability 10.3%
/2.2 versus 112% +/ 2.0), although viability was reduced 2.5 fold compared to
similarly stimulated un-transfected cells(Ramadani et al., 2015). Intracellular staining
of immunoglobulin protein at day 7 reproduced a similar moderate but statistically
significant reduction in the percentage of IgE-expressing cells (Fig. 6B). The
percentage of IgG-expressing cells was not significantly altered (Fig. 6B). Knockdown
of AID through use of a short-interfering RNA to AICDA resulted in a similar pattern
of Ig expression; giving a small but reproducible reduction in the percentage of IgE-
expressing cells, but no significant alteration in IgG-expressing cells (Fig. 6C).
Demonstrating that miR-29 OE not only modulates AID expression but is able to illicit
a biologically relevant functional effect. Together these results demonstrated that miR-
29b, a miRNA downregulated in activated B cells, is capable of directly targeting
AICDA mRNA, and decreases CSR to IgE following stimulation with IL-4 and anti-
CD40 antibody. We posit that miR 29 represents a previously unrecognised player in

human B cell biology that warrants further investigation.
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4. Discussion

miRNAs play an important role in fine tuning cells’ protein output and have previously
been shown to regulate important aspects of B cell biology (Taganov et al., 2007).
However, the functional role of miRNAs have not been extensively studied in the
activation of human B cells. This study sought to identify miRNAs that were
dynamically and temporally regulated between different mature B cell subpopulations,
and identify their functional consequences in the development of the humoral response.
Previous studies have used PCR, microarray or RNA-seq to monitor the miRNA
expression changes that occur during the course of a B cell response, predominantly
focusing on the differences between naive, GC and memory B cells found within the
same secondary lymphoid organs (Basso et al., 2009; Malumbres et al., 2009; Tan et

al., 2009; J. Zhang et al., 2009). The original data from Malumbres et al., (Malumbres

et al., 2009) indicated that miR-29b, a member of the miR-29 family that is important
in coordinating the lymphocyte response to intracellular pathogens such as Listeria
monocytogenes (Ma et al., 2011), was repressed in the GC compartment. Interrogation
of data from other papers that analysed the human B cell miRNome (Basso et al., 2009;
Tan et al., 2009; J. Zhang et al., 2009) confirmed this observation. The miR-29 family
of miRNAs are known to be particularly important in T cells, where they control aspects
of development and effector function (Ma et al., 2011; Papadopoulou et al., 2011;
Steiner et al.,2011), and in B cells have recently been shown to regulate germinal centre
dynamics in a murine model of collagen-induced arthritis (Nieuwenhuijze, 2017).
However, the functional consequences of this miRNA in naive human B cells and B

cell activation have not previously been studied.
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Here, we found that mature miR-29b was approximately 3-fold less abundant in B cells
isolated from tonsil lymphoid tissue than in circulating naive B cells isolated from
blood, confirming that miR-29b was dynamically regulated upon exit from the
circulation and entry into the lymphoid tissue. In order to identify miR-29b’s function
in this context and identify potential target molecules, it was overexpressed through the
use of miRNA mimic molecules and global gene expression changes monitored by
microarray analysis. This revealed that the second most dynamically regulated gene
following miR-29b overexpression, after the eukaryotic initiation factor EIF4E2, was
found to be AICDA, which plays a critical role in B cell biology (Fig. 2A, B).
Considering that AID is also a potent genome mutator and has oncogenic potential
(Robbiani et al., 2009; 2008) its expression and activity must be carefully regulated. In
mice, Aicda is post-transcriptionally regulated by miR-155 and miR-181b (de Yebenes
et al., 2008; Dorsett et al., 2008; Teng et al., 2008). However, regulation of AICDA by

different miRNA members has not been fully investigated in human B cells.

The human AICDA 3’ UTR contains a pronounced miR-29 binding site with extensive
complementarity, indicating the possibility of a direct interaction. This is confirmed by
our results which show that over expression of a miR-29b mimic represses luciferase
activity in HEK293 cells transfected with a luciferase reporter construct containing the
region of AICDA 3° UTR bearing the miR-29 binding site (Fig. 5B) while miR-29b
overexpression in tonsil B cells significantly reduced AICDA expression, AID protein
levels (Fig. 3) and CSR to IgE (Fig. 6). Although we cannot rule out additional indirect
mechanisms of miR-29b eliciting a response on both AID expression and CSR to IgE,
miR-29b OE did not affect the expression of apoptotic markers in either tonsil b cells

(as evidenced by the microarray study) or a B cell line (Supplementary figure 3E) and
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did not affect cell proliferation (Supplementary figure 3F). This raises the question as
to the purpose of such an interaction. AID and miR-29b expression are inversely
correlated. AICDA is detectable in the lymphoid follicles and most abundant in GC B
cells, but absent in circulating naive B cells. Conversely, miR-29b is reduced in the
follicles but prominent in circulating naive B cells. This indicates that the function of
miR-29b may be to suppress premature AID at the early stages of a mature B cell’s life
cycle, or following inappropriate activation in the absence of suitable T cell help or T-

independent “danger” signals.

Upon entry into the lymphoid tissue and subsequently the GC, where AID expression
is appropriate, the down regulation of miR-29b would relieve the block on AICDA and
allow its full regulated expression. Indeed, the potential of endogenous miR-29b to
regulate AID in this context was demonstrated by the increase of AID mRNA and
protein expression levels when miR-29b was inhibited in IL4 and antiCD40 stimulated
naive B cells (Fig. 4A and 2B). We believe this to be a far more compelling result
(being carried out at a physiologically relevant level of miR-29b) than the
overexpression study and evidence of the potential for miR-29b to regulate AID
expression. In contrast, in tonsil B cells, where miR-29b is less abundant, miR29b
inhibitors did not elevate AICDA (data not shown). This strongly suggests that while
endogenous miR-29b expression in naive B cells is sufficient to suppress AICDA
expression, the low levels of miR-29b in GC B cells is insufficient to do so (although
overexpression of miR29b above physiological levels does indeed strongly repressing
AID and partially blocks CSR). As such, it is likely that miR-29b is able to repress
leaky or inappropriate expression of AID prior to B cell activation. In relation to

miR29s potential role in preventing inappropriate AID expression, and therefore
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function, in naive B cells, it of interest to note that miR29 (a, b and c¢) was found to be
decreased in Mantle cell lymphoma (MCL) (Zhao et al., 2010), a lymphoma with
characteristics of CD5-, antigen-naive pregerminal center B-cells. Although Cyclin D1
translocation and the up-regulation of CDK6 (a direct miR29 target) is thought to
account for the transformation of MCL cells, they were also found to frequently express
AID possibly accounting for at least some of wide range of chromosomal abnormalities

present in this disease(Babbage et al., 2004).

Following B cell exit from the circulation, miR-29b silencing in GC B cells leads to a
de-repression of AICDA transcription. Such a model has been previously ascribed to
miR-181b regulation of aicda in mice (de Yebenes et al., 2008). Interestingly, miR29c
shares a similar expression pattern to miR-29b, being most highly expressed in naive B
cells and low in GC B cells (Supplementary Figure 1). Since miR29 family members
share seed region homology and therefore predicted targets, the expression of these
miRs would be expected to reinforce their functional effects. It should be noted that the
miR-29 site in the AICDA 3’ UTR is conserved amongst other primate species, but not
in more distantly related mammals, such as mice, rats and rabbits. Thus, it is not an
interaction that has been strongly conserved throughout mammalian evolution and may
have arisen more recently.

In conclusion, the data in this paper have shown that miR-29b, a member of the
conserved miR-29 family, is repressed in tonsil B cells relative to circulating naive B
cells. Enforced overexpression of miR-29b in tonsil B cells led to the direct targeting
of AICDA, through a pronounced binding site in the AICDA 3° UTR and this interaction
was sufficient to reduce CSR to IgE. Similarly, inhibition of endogenous miR-29b in

naive B cells resulted in elevated AID expression. We hypothesise that one of the
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endogenous functions of miR-29 is to silence leaky expression of AID, a mutagenic

protein whose expression must be controlled in order to maintain chromosomal

integrity.
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Figure legends

Figure 1: miR-29 is less abundant in B cells isolated from tonsillar tissue than in
naive B cells isolated from peripheral blood.

The expression level of miR-29 in IgD- CD27 naive B cells isolated from peripheral
blood compared to CD19- tonsil B cells, as assessed via qRT-PCR. Values are plotted

relative to the small nucleolar RNA RNUG6B. ** P < 0.01(unpaired t-test).

Figure 2: Genome-wide analysis of miR-29b targeting in tonsillar B cells shows an
enrichment in miR-29 binding sites within the 3° UTR of downregulated genes.
(A) Heatmap representing expression changes in the most downregulated genes in
tonsillar B cells transfected with a miR-29 mimic and stimulated with anti-CD40
antibody and IL-4 cytokine for 24 hours, as detected by Illumina BeadChip Array.
Genes containing predicted miR-29 binding sites in their 3’ UTR are listed in red. P
values (two-way ANOVA) are also included.

(B) Pie chart displaying the prevalence of miR-29 binding sites within the 3> UTR of
genes downregulated following miR-29b overexpression. The percentage of 8mers (an
exact match to positions 2-8 of the mature miRNA with an A opposite position 1 of the
miRNA), 7mer-m8s (an exact match to positions 2-8 of the mature miRNA) and 6mers
(an exact match to positions 2-7 of the mature miRNA) within the miR-29 binding sites
is also shown.

(C) Dot plot representations of the change in fluorescence intensity for AICDA, as well
as previously validated targets including CDK6, RCC1, TDG and TRAK?2, in tonsil B
cells transfected with a miR-29 mimic and stimulated with anti-CD40 antibody and IL-

4 cytokine for 24 hours, as detected by Illumina BeadChip Array.
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Figure 3: Overexpression of miR-29 reduces AID abundance in tonsillar B cells.
tonsil B cells were transfected with a miR-29b mimic or its associated negative control
molecule and subsequently activated with IL-4 and anti-CD40.

(A) Gene expression of key B cell molecules after 24 hours of stimulation as assessed
via qRT-PCR. Values are normalized to 18S ribosomal RNA and plotted relative to the
abundance of each gene in the control transfected cells, which were arbitrarily assigned
avalue of 1. N =3 - 12, mean and s.e.m. * P <0.05, ** P < 0.01, **** P < (0.0001
(paired t-test).

(B) Representative immunoblot and cumulative densitometry analysis (n = 3) of AID
protein in follicular B cells following miR-29b overexpression and 60h of culture in
IL-4 and anti-CD40 stimulus, compared to AID protein in the control transfected cells.

GAPDH served as a loading control.

Figure 4: Knockdown of miR-29 increases AID abundance in naive B cells.

Naive B cells were transfected with a miR-29 inhibitor or its associated negative control
molecule and subsequently activated with IL-4 and anti-CD40.

(A) Gene expression of key B cell molecules after 48 hours of stimulation as assessed
via qRT-PCR. Values were normalized to 18S ribosomal RNA and plotted relative to
the abundance of each gene in the control transfected cells, which were arbitrarily
assigned a value of 1. N =6 - 12. Mean and s.e.m. ** P < (0.01, *** P < (0.001, **** P
< 0.0001 (paired t-test).

(B) Representative immunoblot and cumulative densitometry analysis (n = 3) of AID
protein in naive B cells following miR-29b knockdown and 60h of culture in IL-4 and
anti-CD40 stimulus, compared to AID protein in the control transfected cells. GAPDH

served as a loading control.
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Figure 5: miR-29 is capable of directly targeting the miR-29 binding site within
the AICDA 3’ UTR.

(A) The miR-29 binding site within the human, chimpanzee and rhesus macaque
AICDA 3’ UTR, as well as the mismatched sequence used for luciferase analysis.

(B) HEK293T cells were contransfected with one of the dual luciferase plasmids
(endogenous AICDA 3’ UTR, mismatched 3” UTR or no insert) and a miR-29 mimic.
Firefly luciferase activity was quantified after 24 hours, normalized to renilla luciferase
and plotted relative to the no insert plasmid. * P < 0.05 (one-way ANOVA). N = 3,

mean and s.e.m.

Figure 6: miR-29 overexpression dampens induction of class switching to IgE.
Tonsil B cells were transfected with a miR-29 mimic or negative control molecules and
subsequently cultured in class-switching conditions (IL-4 and ati-CD40 antibody).
(A) IgE and IgG mRNA were detected via qRT-PCR following 5 days of culture.
Values are plotted relative to 18S ribosomal RNA. N =7 for IgE and 5 for IgG, mean
and s.e.m.

(B) Intracellular IgE and IgG was analysed following 7 days of culture via flow
cytometry. * P < 0.05 (paired t test).

(C) Intracellular IgE and IgG was analysed following 7 days of culture via flow
cytometry. Values were plotted relative to the control transfected cells, which were
arbitrarily assigned a value of 1. N = 3 for siAID, and 10 for miR-29 versus the negative

control mimic. * P < 0.05 (paired t test). Mean and s.e.m.
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