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Main text
Summary
While several lung cancer susceptibility loci have been identified, much of lung cancer

heritability remains unexplained. Here, 14,803 cases and 12,262 controls of European descent
were genotyped on the OncoArray and combined with existing data for an aggregated GWAS
analysis of lung cancer on 29,266 patients and 56,450 controls. We identified 18 susceptibility
loci achieving genome wide significance, including 10 novel loci. The novel loci highlighted the
striking heterogeneity in genetic susceptibility across lung cancer histological subtypes, with four
loci associated with lung cancer overall and six with lung adenocarcinoma. Gene expression

quantitative trait analysis (eQTL) in 1,425 normal lung tissues highlighted RNASET2,

SECISBP2L and NRGI as candidate genes. Other loci include genes such as a cholinergic
nicotinic receptor, CHRNA2, and the telomere-related genes, OFBCI and RTELI. Further
exploration of the target genes will continue to provide new insights into the etiology of lung

cancer.

Text.
Lung cancer continues to be the leading cause of cancer mortality worldwide'. Although tobacco

smoking is the main risk factor, the heritability of lung cancer has been estimated at 18%”.

Genome-wide association studies (GWAS) have identified several lung cancer susceptibility loci

including CHRNA3/5, TERT, HLA, BRCA2, CHEK? and several more3’4, nevertheless most of
its heritability remains unexplained. With the goal of conducting a comprehensive

characterization of common lung cancer genetic susceptibility loci, we undertook

additional genotyping of lung cancer cases and controls using the OncoArray’ genotyping
platform, which queried 517,482 SNPs chosen for fine mapping of susceptibility to common
cancers as well as for de novo discovery (Supplementary Table 1, and Online methods). All
participants gave an informed consent and each study obtained local ethics committee approval
and after quality control filters (Online Methods), a total of 14,803 cases and 12,262 controls of
European ancestry were retained and underwent imputation techniques to infer additional
genotypes for genetic variants included in the 1000 Genomes Project data (Online Methods).
Logistic regression was then used to assess the association between variants (n=10,439,017
SNPs) and lung cancer risk, as well as by predominant histological types and by smoking
behaviour (Online Methods). Fixed-effects models (Online Methods) were used to combine the

34,6
S

OncoArray results with previously published lung cancer GWA , allowing for analysis of
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29,266 patients and 56,450 controls of European descent (Table 1). There were no signs of
genomic inflation overall or for any subtypes (Supplementary
Figure 1) indicating little evidence for confounding by cryptic population structure (Online
methods). All findings with a P-value less than 1x10” are reported in Supplementary
Table 2. As shown in Figure 1, the genetic architecture of lung cancer varies markedly among
histological subtypes, with striking differences between lung adenocarcinoma and squamous cell
carcinoma. Manhattan plots for small cell carcinoma (SCLC), ever and never smoking are
displayed in Supplementary Figure 2. The array heritability estimates were comparable among
histological subsets, but squamous cell carcinoma appeared to share more genetic architecture

with small cell carcinoma (SCLC) than with adenocarcinoma (Supplementary Table 3).

Table 2 presents summary results of all loci with sentinel variants (defined as the variant with the

lowest P-value at each locus) that reached genome-wide significance (P-value < 5x10°®) for lung
cancer overall and by histological subtypes. Sentinel variants stratified by new and previous
genotyping and additional statistical significance assessed based on the number of effective tests,
Approximate Bayes Factors, and Bayesian False Discovery Probability are presented in
Supplementary Table 4 and 5, respectively. Repeat genotyping of 12% of the OncoArray
genotyped samples confirmed the fidelity of the genotyping or imputation for the risk loci, and
showed excellent concordance of imputation for SNPs with MAF>0.05 (Online methods,
Supplementary note). Among the 18 loci that reached GWAS significance, 10 had not reached
significance in a genome-wide scan (Figure 1). Of these, four novel loci were associated with

lung cancer overall and six with adenocarcinoma.

To decipher the association between these 18 loci and lung cancer risk, we further investigated
their association with gene expression level in normal lung tissues (n=1,425) (Supplementary
Table 6, Supplementary Figure 3), genomic annotations (Supplementary Table 7) smoking
propensity (cigarettes smoked per day (n=91,046) and Fagerstrom Test for Nicotine Dependence
metrics (n=17,074)) (Table 2). Previous studies have shown shared risk for lung cancer and
COPD through inflammation and ROS pathways’; therefore, we also assessed the association
between sentinel SNPs and reduced lung capacity through spirometry measurements (forced
expiratory volume in 1 second [FEV1], forced vital capacity [FVC], n =30,199) (Table 2 and
Online Methods).



Variants at 4 novel loci (1p31.1, 6q27, 8p21, 15q21.1) were associated with lung cancer risk

overall, with little evidence for heterogeneity among subtypes (Supplementary Figure 4). The

1p31.1 locus, recently identified in a pathway-based analysis of the TRICL data®, represented by
rs71658797 (Odds Ratio [OR]=1.14, 95% Confidence Interval [CI] 1.09-1.18, P-value=3.25 x

10", is located near FUBPI/DNAJB4 (Supplementary Figure 4). At 6q27, rs6920364 was

associated with lung cancer risk with an OR of 1.07 (95% CI 1.04-1.09, P-value=2.9x10*) with
little heterogeneity found by smoking status (Supplementary Figure 4). This locus is predicted
to regulate RNASET? (Supplementary Figure 5, Supplementary Table 7). We identified
16920364 as a lung cis-eQTL for RNASET2, an extracellular ribonuclease, in all five cohorts

tested (Supplementary Table 6), with increased lung cancer risk correlating with increased

RNASET? expression (Figure 2). Variants correlated with rs6920364 (r*>0.88) have been noted

in GWAS of Crohn’s disease and inflammatory bowel disease’™"”.

The 8p21 locus has been suggested as a lung cancer susceptibility locus by pathway analysis™
and now confirmed at GWAS significance level. It is a complex locus represented by sentinel
variant rs11780471 associated with Ilung cancer (OR=0.87, 95% CI 0.83-0.91, P-
value=1.69x10™) (Supplementary Figure 4) but this region contained additional uncorrelated
variants (pairwise r’< 0.10) associated with lung cancer (Supplementary Table 8). Multivariate
analysis was consistent with multiple susceptibility alleles at this locus (Supplementary Table
8). In contrast to lung tissue (Figure 3A, Supplementary Table 6, Supplementary Figure 3), we
noted that the alleles associated with lung cancer tended to be associated with cerebellum
expression of CHRNA2, a member of the cholinergic nicotinic receptor (Figure 3B). The
CHRNAZ2 rs11780471 cis-eQTL effect in the brain was limited to the cerebellum (Figure 3C), a
region not traditionally linked with addictive behaviour but where an emerging role is
suggested'’. We therefore investigated rs11780471 in the context of smoking behaviour
(Supplementary Methods). Unlike the well- described 15q25.1 (rs55781567) CHRNAS locus
(Table 2), rs11780471 was not associated with number of cigarettes smoked per day or the
FTND metrics (Figure 3D). Nevertheless, lung cancer risk allele carriers of rs11780471 tended
to be smokers and initiated smoking at earlier ages (Figure 3D), implying that this variant’s
association with lung cancer could potentially be mediated via influencing aspects of smoking
behaviour. Another potentially relevant gene in this region is EPHX2, a xenobiotic metabolism

gene.



The genetic locus at 15921 (rs66759488) was shown to be associated with lung cancer (OR=1.07,
95% CI 1.04-1.10, p=2.83x10™) overall and across lung cancer histologies (Supplementary
Figure 4). Genomic annotation suggests that genetic variants correlated with rs66759488 may
influence the SEMA6D gene (Supplementary Table 7), but there was no clear eQTL effect
(Supplementary Table 6) and this variant did not appear to have a major influence on smoking

propensity or lung function (Table 2).

For specific lung cancer histology subtypes, we identified 6 novel loci associated with lung
adenocarcinoma (15qg21, 8pl12, 10q24, 20q13.33, 11g923.3 and 9p21.3) (Table 2). The locus at
15921 (1577468143, OR=0.86, 95% CI0.82-0.89, p=1.15x10"%) is predicted to target SECISBP2L
(Supplementary Figure 5) and expression analysis indicated rs77468143 to be a cis-eQTL for
SECISBP2L in lung tissue in all eQTL cohorts tested (Supplementary Table 6). The genetic risk
allele appears to correlate with decreased expression levels of SECISBP2L (Figure 2,
Supplementary Figure 5), an observation that is consistent with SECISBP2L being down
regulated in lung cancers™. rs77468143 was nominally associated with lung function (Table

2), potentially implicating inflammation of lung as part of the mechanism at this locus.

At 8pl2, expression analysis indicated that the alleles associated with lung adenocarcinoma
(represented by the sentinel variant rs4236709 (Table 2)), also appear to be a lung cis-eQTL for
the NRGI gene (Supplementary Table 6, Supplementary Figure 5). This region also contains
putative regulatory regions (Supplementary Figure 5). Somatic translocations of NRGI are
infrequently observed in lung adenocarcinomas'’. While somatic translocations at 8p12 generally
take place in never smokers and linked with ectopic activation of NRG1, rs4236709 was associated
with lung cancer in both ever and never smokers (Supplementary Figure 4) and its genetic risk
correlated with decreased NRG 1 expression (Figure 2). Interestingly, 6q22.1 variants located near
ROSI, another gene somatically translocated in lung adenocarcinoma and in which nearby
germline variants have been associated with never smoking lung adenocarcinoma in Asian

women'®, were associated with lung adenocarcinoma at borderline genome wide significance

(rs9387479; OR=0.92, 95% CI 0.89-0.95, p=6.57x10'8) (Supplementary Table 2).

Three of sentinel variants associated with lung adenocarcinoma are located near genes related to

telomere regulation; rs7902587 (10g24) and rs41309931 (20q13.33) near OBFCI and RTELI,
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d"?°. The variants at 10q24 associated

respectively, and rs2853677 near TERT as previously note
with lung adenocarcinoma also appear associated with telomere length (Supplementary Figure
6). By contrast, and consistent with observations with 20q13.33 variants associated with glioma
21 the variants associated with telomere length at 20q13.33 were not necessarily those associated
with lung adenocarcinoma (Supplementary Figure 6). Nevertheless, more generally the variants
associated by GWAS with longer telomere length® appear linked with risk of lung

21,24

adenocarcinoma® and glioma®**, a finding consistent with our expanded analysis here

(Supplementary Figure 6).

We additionally identified a complex locus at 11g23.3. The sentinel variant rs1056562
(OR=1.11, 95% CI 1.07-1.14, p=2.7x10"%) is more prominently associated with lung
adenocarcinoma (Supplementary Figure 4). rs1056562 was correlated with expression of two
genes at this locus, AMICAI and MPZL3 (Supplementary Table 6). However, there did not appear
to be a consistent relationship between the alleles related with AMICAI and MPZL3 gene
expression and those with lung adenocarcinoma (Figure 2, Supplementary Table 9), suggesting

that expression of these genes alone is unlikely to mediate this association.

At 9p21.3 we identified rs885518 that appeared to be associated with lung adenocarcinoma
(OR=1.17, 95% CI 1.11-1.23, p=6.8x10"'%). 9p21.3 is a region containing CDNK2A and variants
associated with multiple cancer types, including lung cancer. Nevertheless, rs885518 is located
approximately 200kb centromeric the previously described variants (Supplementary Figure 4)
and shows little evidence for LD (all pairwise r’< 0.01) with rs1333040, a variant previously
associated with lung squamous cell carcinoma® and rs62560775, another variant suggested to be
associated with lung adenocarcinoma® that we confirm to genome significance here. Intriguingly,
these variants appear to confer predominant associations with different lung cancer histologies

suggesting that they are independent associations (Supplementary Figure 7).

Aside from the clear smoking-related effects on lung cancer risk through the CHRNAS5 and
CYP2A6 regions and association with CHRNA2 noted above, the rest of variants we have identified
do not appear to clearly influence smoking behaviors (Table 2), implying that these associations
are likely mediated by other mechanisms. Nevertheless, there is shared genetic architecture

between smoking behavior and lung cancer risk, consistent with the notion that



genetic variants do influence lung cancer risk also through behavioural mechanisms

(Supplementary Figure 8).

In conclusion, the genetic susceptibility alleles we describe here explain approximately 12.3% of
the familial relative risk previously reported in family cancer databases*®*’, out of which 3.5%
was accounted for by the novel loci. Our findings emphasize striking heterogeneity across
histological subtypes of lung cancer. We expect that further exploration of the related target
genes of these susceptibility loci, as well as validation and identification of new loci, will

continue to provide insights into the etiology of lung cancer.
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Figure Legends

Figure 1. Manhattan plots of lung cancer risk overall and by histological subtypes. (a) lung
cancer risk overall, 29,266 cases and 56,450 controls (b) adenocarcinoma, 11,273 cases and
55,483 controls (c) squamous cell carcinoma 7,426 cases and 55,627 controls. Each locus is
annotated by their cytoband locations. The X-axis represents chromosomal locations and the Y-
axis represents -log10(P-value). Black denotes the previously known loci and Red denotes the
new loci identified in this analysis

Figure 2. Scatter plots comparing variants across the 6q27, 15q21.1, 8p12 and 11¢q23.3
susceptibility loci and (Y-axis) their associated with lung cancer (or lung adenocarcinoma,
as relevant) and (X-axis) the lung cis—eQTL (GTEXx). Each variant (dot) is colored relative the
degree of linkage disequilibrium (r?) with sentinel lung cancer variant (marked) at that locus.
Indented table, association between sentinel variant and lung cancer (or histological subtype) as
well as the eQTL evidence in lung epithelium for the microarray (Laval, UBC, Groningen) and
RNAseq (NCI and GTEX) cohorts. At 6q27, 15g21.1 and 8p12, the variants associated with lung
cancer also tend to be those that that are lung cis-eQTL’s for RNASET2, SECISBP2L and NRG1,
respectively. At 11g23.3, while the sentinel variant (rs1056562) is a lung cis-eQTL for AMICAI,
additional variants are AMICA I lung cis-eQTL’s but not associated with lung adenocarcinoma
and vice versa suggesting an alternate candidate gene may be responsible for this association or a
pleiotropic effect at this locus.

Figure 3. eQTL and smoking behavior analysis of the 8p21 lung cancer susceptibility locus. Upper
panel, Scatter plots of variants across the 8p21 locus and their associated with lung cancer (Y-
axis) and CHRNA?2 eQTL (X-axis) in lung epithelial tissues (panel a) and CHRNA2 eQTL in
brain cerebellum tissues (panel b). Panel C. eQTL association between rs11780471 across
tissues from different parts of the brain from GTEx and Braineac consortia noting CHRNA?2 cis-
eQTL effect appears restricted to the brain cerebellum. Panel D. Association between
rs11780471 and smoking phenotypes, noting evidence for association between smoking status
(ever vs never) and age of initiation, with lung cancer risk allele carriers (G) more likely to be
ever smokers and take up smoking earlier. Fagerstrom Test for Nicotine Dependence (FTND)
index, error bars indicate the 95% confidence intervals.

16



Table 1. Demographic characteristics of the participating studies after quality control filters

Lung cancer patients Controls
number (%) number (%)
OncoArray studies- passed QC 14803 (51) 12262 (22)
Published GWAS studies® 14463 (49) 44188 (78)
Total 29266 56450
Age
<=50 3112 (12) 6032 (12)
>50 23025 (88) 44075 (88)
Sex
Male 18208 (62) 27178 (53)
Female 11059 (38) 24069 (47)
Smoking status
Never 2355 (9) 7504 (31)
Ever 23223 (91) 16964 (69)
Former 9037 (35) 8554 (35)
Current 13356 (52) 7477 (31)
Histology
Adenocarcinoma 11273 (39) 55483 °
Squamous cell carcinoma 7426 (25) 55627°
Small cell carcinoma 2664 (9) 21444°

? Previous GWAS studies include IARC, MDACC, SLRI, ICR, Harvard, ATBC, CPSIl, German and deCODE

studies.

® number of non-cancer individuals included in the corresponding histology-specific analysis.

“The remaining 27% includes other histological subsets, such as large cell carcinoma, non-small

cell lung cancer, NOS, mixed histology, and unknown.
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Table 2. The association between sentinel variants representing each lung cancer locus and lung cancer risk.

Strata Locus* rs number Gene Allele® Imputed Candidate EAF | OR 95%Cl P-value CPD FTND FEV1 FVC FEV1/
or Oncoarray FVC
oncoarray | Customized p- p- p- p- p-
genotyped panel value value value value value
Lung 1p31.1* rs71658797 | FUBP1 TA Oncoarray | No 0.103 | 1.1 | 1.09-1.18 | 3.3E-11 0.056 0.334 0.445 0.898 0.334
Lung 6q27* rs6920364 RNASET2 G_C Imputed eQTL 0.456 | 1.1 | 1.05-1.10 | 1.3E-08 0.833 0.104 0.927 0.876 0.986
Lung 8p21.1* rs11780471 | CHRNA2 G_A Imputed Lung 0.060 | 0.9 | 0.83-0.91 | 1.7E-08 0.646 0.403 6.9E-04 0.055 0.016
Lung 13g13.1 rs11571833 | BRCA2 AT Imputed Lung 0.011 | 1.6 | 1.43-1.80 | 6.1E-16 0.890 0.312 0.601 0.667 0.237
Lung 15g21.1* | rs66759488 | SEMA6D G_A imputed Lung 0.362 | 1.1 | 1.05-1.10 | 2.8E-08 0.266 0.888 0.739 0.200 0.202
Lung 15¢25.1 rs55781567 | CHRNAS CG Imputed Lung 0.367 | 1.3 | 1.27-1.33 | 3.1E-103 | 6.8E-38 9.7E-16 7.2E-03 0.020 0.144
Lung 19q13.2~ | rs56113850 | CYP2A6 CT Oncoarray | Lung 0.440 | 0.9 | 0.86-0.91 | 5.0E-19 8.1E-20 7.5E-04 0.822 0.826 0.319
Adeno | 3928 rs13080835 | TP63 G_T Imputed Lung 0.493 | 0.9 | 0.87-0.92 | 7.5E-12 0.803 0.336 0.135 0.445 0.834
Adeno | 5p15.33 rs7705526 TERT CA Oncoarray | All 0.342 | 1.3 | 1.21-1.29 | 3.8E-35 0.511 0.738 0.292 0.038 0.657
Adeno | 8p12* rs4236709 NRG1 A G Imputed eQTL 0.218 | 1.1 | 1.09-1.18 | 1.3E-10 0.991 0.957 0.503 0.151 0.403
Adeno | 9p21.3* rs885518 CDNK2A A G Imputed Several 0.101 | 1.2 | 1.11-1.23 | 9.96E-10 | 0.904 0.321 0.421 0.096 0.146
Adeno | 10g24.3* | rs11591710 | OBFC1 AC Imputed Lung 0.137 | 1.2 | 1.11-1.22 | 6.3E-11 0.500 0.152 0.027 0.019 0.533
Adeno | 11g23.3* rs1056562 AMICA1 CT Oncoarray | Breast 0.473 | 1.1 | 1.07-1.14 | 2.8E-10 0.717 0.538 0.449 0.718 0.039
Adeno | 15g21.1* | rs77468143 | SECISBP2L | T_G Imputed No 0.253 | 0.9 | 0.83-0.89 | 1.7E-16 0.071 0.184 4.9E-03 0.440 1.4E-03
Adeno | 20g13.33* | rs41309931 | RTEL1 G_T Imputed Prost/ColR | 0.117 | 1.2 | 1.11-1.23 | 1.3E-09 0.146 0.939 0.964 0.657 0.284
sQC 6p21.33 rs116822326 | MHC A G Imputed Lung 0.155 | 1.3 | 1.19-1.32 | 3.8E-19 0.392 0.774 0.132 0.498 0.103
sQC 12p13.33 | rs7953330 RAD52 G_C Oncoarray | Lung 0.315 | 0.9 | 0.83-0.90 | 7.3E-13 0.800 0.463 0.019 3.3E-03 | 0.424
sQC 22g12.1 rs17879961 | CHEK2 A G Oncoarray | Lung 0.005 | 0.4 | 0.32-0.52 | 5.7E-13 0.441 0.360 0.041 0.040 0.805

* denote novel locus identified to GWAS significance by this study; a, reference_effect. Bolded p-values indicate significant associations with consistent direction as expected. Genome
positions relative to GRCh37, EAF, effective allele frequency; OR, odds (log additive) ratio; 95%Cl, 95% confidence interval. P-value, based on fixed-effect meta-analysis adjusted for age,
sex and genetically derived ancestry; CPD, cigarette per day; FTND, Fagerstrom Test for Nicotine Dependence; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity.
Adeno, adenocarcinoma; SQC, squamous cell carcinoma. » marker had an acceptable, but not ideal concordance rate (see Supplementary Note)




Online methods

This work is conducted based on the collaboration of Transdisciplinary Research of Cancer in Lung of the
International Lung Cancer Consortium (TRICL-ILCCO) and the Lung Cancer Cohort Consortium (LC3). The
participating studies are individually described in the Supplementary Note.

OncoArray genotyping.
Genotyping was completed at the Center for Inherited Disease Research (CIDR), the Beijing Genome

Institute, the HelmholtzCenter Munich (HMGU), Copenhagen University Hospital, and the University of
Cambridge. Quality control steps follow the approach described previously for the OncoArray’
(Supplementary Note).

Genotype quality control.

After removing the 1,193 expected duplicates, QC procedures for the 43,398 individuals are summarized
in Supplementary Note Figure 1. Standard quality control procedures (detailed in the Supplementary Note)
were used to exclude underperforming individuals (number of DNAs=1,708) and genotyping assays
(judged by success rate, genotype distributions deviated from that expected by Hardy Weinberg
equilibrium, number of variants=16,149). After filtering, there were 517,482 SNPs available for analysis.

Identity by Descent (IBD) was calculated between each pair of samples in the data using PLINK to
detect unexpected duplicates and relatedness. Details are described in Supplementary Note. 340
unexpected duplicated samples (proportion IBD>0.95) and 940 individuals were removed as related
samples with proportion IBD between 0.45 and 0.95. Of these, 721 of them were expected first
degree relatives. In total, 0.56% of the total samples were removed as unexpected duplicates or
relatives in the QC analysis. We additionally considered the potential that more distant familial
relationships could have impacted the results. However, further restriction to proportion IBD > 0.2
identified 139 second degree relatives and excluding these had minimal impact on the association
results (Supplementary Note Table 1).

Complete genotype data for X chromosomes were used to verify reported sex by using PLINK sex
inference and a support vector machine procedure resulting in 306 non concordant samples being

removed (Supplementary Note).

We used the program FastPop (http://sourceforge.net/projects/fastpop/)*® was used to identify 5,406

individuals of non-European ancestry (Supplementary Note) resulting in an final association analysis
including 14,803 lung cancer cases and 12,262 controls.

We confirmed the fidelity genotyping (directly and imputed) of the OncoArray platform by considering
concordance of these genotypes relative to genotypes obtained from analogous genotyping platform
(Supplementary Note).

Imputation analysis.
A detailed description of the imputation procedures used by the OncoArray consortium and in this Lung
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Oncoarray project, has been described previously.” Briefly, the reference Dataset was the 1000
Genomes Project (GP) Phase 3 (Haplotype release date October 2014). The forward alignment of SNPs

genotyped on the Oncoarray was confirmed by blasting the sequences used for defining SNPs against
the 1000 Genomes. Any ambiguous SNPs were subjected to a frequency comparison to 1000 Genomes
variants. Allele frequencies were calculated from a large collection of control samples from Europeans
(from 108,000 samples) and Asians (11,000 samples). A difference statistic is calculated by the formula:
(|p1-p2]- 0.01)*2/((p1+p2)(2-p1-p2)) where pl and p2 are the frequencies our dataset and in the 1000
genomes respectively®. A cutoff of 0.008 in Europeans and 0.012 in Asians is needed to pass. SNPs
where the frequency would match if the alleles were flipped were excluded from imputation but not
from the association analyses.” AT/GC SNPs were not present in previously genotyped lower density
arrays. Because all imputation was performed to the same standard all SNPs had the same orientation
at the time of imputation. The OncoArray whole genome data were imputed in a two-stage procedure
using SHAPEIT to derive phased genotypes, and IMPUTEv2* to perform imputation of the phased data.
We included for imputation only the more common variant if more than one variant yielded a match at
the same position. The detailed parameter settings are in the Supplementary Note.

Meta analysis of lung cancer GWAS.

FlashPCA*® was run for principal component analysis (PCA) to infer genetic ancestry by genotype.
The regression model assumed an additive genetic model and included the first three eigenvalues
from FlashPCA as covariates. For imputed data of smaller sample size, which was enrolled in our
analysis later, we changed the method score to EM algorithm to accommodate smaller sample size.

We combined imputed genotypes from 14,803 cases and 12,262 controls from the OncoArray series with
14,436 cases and 44,188 controls samples undertaken by the previous lung cancer GWAS **®, including
studies of IARC, MDACC, SLRI, ICR, Harvard, NCI, Germany and deCODE as described previously”’6 , and
we ensured that there were no overlap between the ATBC, EAGLE and CARET studies included in both
the previous GWAS and current OncoArray dataset by comparing the identity tags (IDs) of all study

participants.

In addition to lung cancer, histological strata (adenocarcinoma, squamous cell carcinoma, small cell
carcinoma (SCLC) and smoking status (Ever/Never) was assessed where data were available. Additional
details on subsets that were used are available upon request.

We conducted the fixed effects meta-analysis with the inverse variance weighting and random effects
meta-analysis from the DerSimonian-Laird method *'. All meta-analysis and calculations were performed
using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). As the same referent panel was used for all
studies, all SNPs showed the same forward alignment profiles. We excluded poorly imputed SNPs
defined by imputation quality Rsq < 0.3 or Info < 0.4 for each meta-analysis component and SNPs with a
Minor allele frequency (MAF) >0.01 (except for CHEK2 rs17879961 and BRCA2 rs11571833 which we
have validated extensively previously®. We generated the index of heterogeneity(l*) and P-value of
Cochran’s Q statistic to assess heterogeneity in meta-analyses and considered only variants with little
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evidence for heterogeneity in effect between the studies (P-value of Cochran’s Q statistic >0.05). SNPs
were retained for study provided the average imputation R-square was at least 0.4. For SNPs in the
0.4-0.8 range that reached genome wide significance results were evaluated for consistency with
neighboring SNPs to assure a reliable inference. Due to the smaller sample size and fewer sites
contributing in the strata of Never Smokers and SCLC, we additionally required variants to be present in
each of the meta-analysis components to be retained for these 2 stratified analyses.

Conditional analysis was undertaken using SNPTEST where individual level data was available and
GCTA* packages for the previous lung cancer GWAS, with the LD estimates obtained from individuals of
European origin for the later. Results were combined using fixed effects inverse variance weighted
meta-analysis as described above®.

Assessing Statistical Significance

Genome wide statistical significance was considered at P-values of 5X10°® or lower, but we also
presented significance per alternative criteria following Bonferroni correction for the number of
effective tests or Bayesian False Discovery Probability (BFDP) described below.

To evaluate the effective number of tests we used the Li and Ji (2005)** method which performs an
initial step of filtering out SNPs with MAF<0.01 (imputation is less reliable for these and power is also
limited for most odds ratios). Among the 4,751,148 markers with that MAF there were 1,182,363
effective tests.

The BFDP combines significance level, study power, and cost of false discovery and non-discovery into
consideration. The detailed procedures of this method are described in Wakefield, 20073*. Essentially,
the approximate Bayes Factor (ABF) which BFDP uses reflects how much the prior odds change in the
light of the observed data (i.e. relative probability of the observed estimates under the null versus
alternative hypothesis). Given the nature of GWA studies, we applied a flat prior for all variants at prior
probability of 10 and 10°® to demonstrate the range of BFDP.

Annotation of susceptibility loci.

We combined multiple sources of in silico functional annotation from public databases to help identify
potential functional SNPs and target genes, based on previous observations that cancer susceptibility
alleles are enriched in cis-regulatory elements and alter transcriptional activity. The details are
described in the Supplementary Note.

eQTL analysis of lung cancer sentinel variants.
To investigate the association between the sentinel variants and mRNA expression, we used three
different eQTL datasets : (i) Microarray eQTL study: The lung tissues for eQTL analyses were from
patients who underwent lung surgery at three academic sites, Laval University, University of British
Columbia (UBC), and University of Groningen. Whole-genome gene expression profiling in the lung was
performed on a custom Affymetrix array (GPL10379). Microarray pre-processing and quality controls
were described previously. Genotyping was carried on the lllumina Human 1M-Duo BeadChip array.
Genotypes and gene expression levels were available for 409, 287 and 342 patients at Laval, UBC, and
Groningen, respectively. (ii) NCI RNAseq eQTL study: RNA was extracted from lung tissue samples within
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the Environment and Genetics in Lung cancer Etiology (EAGLE) study. RNAseq was carried out on 90 lung

tissue sampled from an area distant from the tumor (defined here as “non-malignant lung tissue”) to
minimize the potential for local cancer field effects. Transcriptome sequencing of 90 non-tumor sample
was performed on the lllumina HiSeq2000/2500 platform with 100-bp paired-end reads. Genotyping
was undertaken using Illumina bead arrays as described previously. (iii) GTEx: eQTL summary statistics
based on RNAseq analysis were obtained for eQTL summary statistics from the GTEx data portal

http://www.gtexportal.org/home/ **. This data included 278 individuals with data from lung tissue.

Details of these three eQTL studies are included in the Supplementary Note.

The Microarray eQTL study was used as a discovery cohort. Probe sets located within 1 Mb up and
downstream of lung cancer SNPs were considered for cis-eQTL analyses. We have also explored a 5 Mb
interval for lung cancer-associated SNPs not acting as lung eQTL within the 1 Mb window. The top eQTL
association for that sentinel variant (or if contained multiple eQTL's with P-value<0.0005 each was

S

considered), this particular eQTL was then chosen and assessed specifically in the independent NCl and

GTEx RNAseq eQTL datasets. Statistical significance was defined the eQTL surpassed a locus specific
Bonferroni correlation in the discovery cohort (P-value=0.05/number of probes at that locus) and

subsequently there was evidence for replication of the eQTL effect with that variant and gene within the

validation cohorts (NCI/GTEx RNAseq).

Lung cancer susceptibility variants in other phenotypes.

We assessed associations between sentinel genetic variant associated with lung cancer and other
phentoypes, including smoking behavior Fagerstrom Test for Nicotine Dependence, lung function and
telomere length. Additional details of these analyses for other phenotypes are described in
Supplementary Note. Briefly:

Smoking behaviors.

The effects of lung cancer sentinel variants and smoking behavior were assessed based on the meta-
analysis across 3 studies: ever-smoking controls with intensity information from the Oncoarray
studies (N=8,120), deCODE (N=40,882) and UK Biobank (N=42,044). The association with nicotine
dependence was evaluated based on Fagerstrom Test for Nicotine Dependence (FTND) data collected
in 4 studies (n=17,074): deCODE Genetics, Environment and Genetics in Lung Cancer Etiology
(EAGLE), Collaborative Genetic Study of Nicotine Dependence (COGEND), and Study of Addiction:
Genetics and Environment (SAGE) and among current smokers in one other study [Chronic
Obstructive Pulmonary Disease Gene (COPDGene). The study-specific SNP association results were
combined using fixed effects, inverse variance-weighted meta-analysis with genomic control applied.
Specifically for the 8p21 variant rs11780471, we additionally considered other aspects of smoking
behavior data from UKBiobank, deCODE and OncoArray controls. We additionally included summary
statistics for the rs11780471 variants from the TAG consortium (described in detail in the
Supplementary Note).

Lung function.

The lung function in silico look up was conducted in SpiroMeta consortium, which included 38,199
European ancestry individuals. The genomewide associations between genetic variants and forced
expiratory volume in 1 second (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes
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Project (phase 1)-imputed genotypes in the GWAS with 38,199 individuals™®.

Telomere Length (TL).

Sentinel genetic variants associated with telomere length were those described by Codd et al?.
Telomere lengths in 6,766 individuals from the UK Studies of Epidemiology and Risk Factors in Cancer
Heredity (SEARCH) study controls using a real-time PCR methodology and genotyping as described in
Pooley et al., 2013%.

Genetic heritability and correlations.

Genome-wide SNP heritability and correlation estimates were obtained using association summary
statistics and linkage disequilibrium (LD) information through LD Score (LDSC) regression analyses ***°.
These analyses were restricted to HapMap3 SNPs with minor allele frequency above 5% in European
populations of 1000 Genomes. Association summary statistics used for these analyses were based on

lung cancer histological/smoking types (lung cancer overall, adenocarcinoma, squamous cell, small cell,

ever smokers and never smokers) and smoking behavior parameters (cigarettes per day (CPD), smoking

status (ever vs never smokers), and smoking cessation (current vs former smokers) from TRICL-ILCCO
OncoArray consortium and Tobacco And Genetics consortium
(https://www.med.unc.edu/pgc/downloads)®.

Estimating the percentage of familial relative risks explained

The familial relative risk to a first degree relative accounted for by an individual variant (denoted as Aj) is

estimated based on relative risk per allele and allele frequency for that variant, using the method

I** and Bahcall*

described in Hemminki et a , under the assumption of log-additive effect. Assuming the
effects of all susceptibility variants combined multiplicatively and not in linkage disequilibrium, the
combined effect (A1) can then be expressed as the product of all Ai. The proportion of the familial
relative risk attributable to the totality of the susceptibility variants can then be computed as
log(A1)/log(As). For lung cancer, the Ap is approximately 2.0 based on the family cancer databases®®?’.
The percentage reported is based on the 18 sentinel variants reported in Table 2. The multiple

independent alleles in the same locus are not accounted for in this estimation.

Data Availability

The datasets generated during the current study are available in the dbGAP repository under
phs0012733.

MetaAnalyses included in the analysis are available at dbGAP under phs000877.

The Oncoarray data deposited at dbGAP includes data excluded from the analyses presented in this
paper to avoid overlap with prior studies. Readers interested in obtaining a copy of the original data
can do so by completing a proposal request form that is located at http://oncoarray.dartmouth.edu.
Cluster plots of all SNPs on the Oncoarray are located at http://oncoarray.dartmouth.edu
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