
 
 

Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung 
function and pulmonary fibrosis 
 
Brian D. Hobbs1,2, Kim de Jong3,4, Maxime Lamontagne5, Yohan Bossé5,6, Nick Shrine7, María Soler 
Artigas7, Victoria E. Jackson7, Louise V. Wain7, Ian P. Hall8, Annah B. Wyss9, Stephanie J. London9, 
Kari E. North10, Nora Franceschini10, David P. Strachan11, Terri H. Beaty12, John E. Hokanson13, James 
D. Crapo14, Peter J. Castaldi1,15, Robert P. Chase1, Traci M. Bartz16,17, Susan R. Heckbert16,18,19, Bruce 
M. Psaty16,19,20,, Sina A. Gharib21, Pieter Zanen22, Jan W. Lammers23, Matthijs Oudkerk24, H. J. Groen25, 
Nick Locantore26, Ruth Tal-Singer26, Stephen I. Rennard27,28, Wim Timens29, Peter D. Paré30, Jeanne 
C. Latourelle31, Josée Dupuis32,33, George T. O'Connor33,34, Jemma B. Wilk33, Woo Jin Kim35, Mi Kyeong 
Lee35, Yeon-Mok Oh36, Judith M. Vonk3,4, Harry J. de Koning37, Shuguang Leng38, Steven A. Belinsky38, 
Yohannes Tesfaigzi38, Ani Manichaikul39,40, Xin-Qun Wang40, Stephen S. Rich39,40, R Graham Barr41, 
David Sparrow42, Augusto A. Litonjua1,2, Per Bakke43, Amund Gulsvik43, Lies Lahousse44,45, Guy G. 
Brusselle44,45,46, Bruno H. Stricker44,47,48,49, André G. Uitterlinden44,48,49, Elizabeth J. Ampleford50, 
Eugene R. Bleecker50, Prescott G. Woodruff51, Deborah A. Meyers50, Dandi Qiao1, David A. Lomas52, 
Jae-Joon Yim53, Deog Kyeom Kim54, Iwona Hawrylkiewicz55, Pawel Sliwinski55, Megan Hardin1,2,28, 
Tasha E. Fingerlin56,57, David A. Schwartz56,58,59, Dirkje S. Postma4,25, William MacNee60, Martin D. 
Tobin7,61, Edwin K. Silverman1,2, H. Marike Boezen3,4, *Michael H. Cho1,2, COPDGene Investigators62, 
ECLIPSE Investigators62, LifeLines Investigators62, SPIROMICS Research Group62, International 
COPD Genetics Network Investigators62, UK BiLEVE Investigators62, International COPD Genetics 
Consortium62 
 
1 Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA 
2 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, 
USA 
3 University of Groningen, University Medical Center Groningen, Department of Epidemiology, 
Groningen, the Netherlands 
4 University of Groningen, University Medical Center Groningen, Groningen Research Institute for 
Asthma and COPD (GRIAC), Groningen, the Netherlands 
5 Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada 
6 Department of Molecular Medicine, Laval University, Québec, Canada 
7 Genetic Epidemiology Group, Department of Health Sciences, University of Leicester, Leicester, 
UK 
8 Division of Respiratory Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, 
UK 
9 Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of 
Health, Department of Health and Human Services, Research Triangle Park, NC, USA 
10 Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA 
11 St George's, University of London, Cranmer Terrace, London SW17 0RE, UK 
12 Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA 
13 Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 
14 National Jewish Health, Denver, CO, USA 
15 Division of General Internal Medicine, Brigham and Women's Hospital, Boston, MA, USA 
16 Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA 
17 Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA 
18 Department of Epidemiology, University of Washington, Seattle, WA, USA 
19 Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA 
20 Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, 
WA, USA 



 
 

21 Computational Medicine Core, Center for Lung Biology, UW Medicine Sleep Center, Department 
of Medicine, University of Washington, Seattle, WA, USA 
22 University Medical Center Utrecht, Department of Pulmonary Diseases, Utrecht, the Netherlands 
23 Department of Pulmonology, University Medical Center Utrecht, University of Utrecht, Utrecht, 
the Netherlands 
24 University of Groningen, University Medical Center Groningen, Center for Medical Imaging , the 
Netherlands 
25 University of Groningen, University Medical Center Groningen, Department of Pulmonology, 
Groningen, the Netherlands 
26 GSK R&D, King of Prussia, PA, USA 
27 Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, 
University of Nebraska Medical Center, Omaha, NE, USA 
28 Clinical Discovery Unit, AstraZeneca, Cambridge, UK 
29 Department of Pathology and Medical Biology, University of Groningen, University Medical 
Center Groningen, GRIAC Research Institute, Groningen, the Netherlands 
30 University of British Columbia Center for Heart Lung Innovation and Institute for Heart and 
Lung Health, St Paul’s Hospital, Vancouver, British Columbia, Canada 
31 Department of Neurology, Boston University School of Medicine, Boston, MA, USA 
32 Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA 
33 The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, USA 
34 Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, 
USA 
35 Department of Internal Medicine and Environmental Health Center, School of Medicine, 
Kangwon National University, Chuncheon, South Korea 
36 Department of Pulmonary and Critical Care Medicine, and Clinical Research Center for Chronic 
Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 
South Korea 
37 Department of Public Health, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands 
38 Lovelace Respiratory Research Institute, Albuquerque, NM, USA 
39 Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA 
40 Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA 
41 Department of Medicine, College of Physicians and Surgeons and Department of Epidemiology, 
Mailman School of Public Health, Columbia University, New York, NY, USA 
42 VA Boston Healthcare System and Department of Medicine, Boston University School of 
Medicine, Boston, MA, USA 
43 Department of Clinical Science, University of Bergen, Bergen, Norway 
44 Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands 
45 Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium 
46 Department of Respiratory Medicine, Erasmus Medical Center, Rotterdam, the Netherlands 
47 Netherlands Health Care Inspectorate, The Hague, the Netherlands 
48 Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands 
49 Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging 
(NCHA), Leiden, the Netherlands 
50 Center for Genomics and Personalized Medicine Research, Wake Forest University School of 
Medicine, Winston Salem, NC, USA 
51 Cardiovascular Research Institute and the Department of Medicine, Division of Pulmonary, 
Critical Care, Sleep, and Allergy, University of California at San Francisco, San Francisco, CA, USA 
52 University College London, London, UK 
53 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul 
National University College of Medicine, Seoul, South Korea 



 
 

54 Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, South 
Korea 
55 2nd Department of Respiratory Medicine, Institute of Tuberculosis and Lung Diseases, Warsaw, 
Poland 
56 Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA 
57 Department of Biostatistics and Informatics, University of Colorado Denver, Aurora, CO, USA 
58 Department of Medicine, School of Medicine, University of Colorado Denver, Aurora, CO, USA 
59 Department of Immunology, School of Medicine, University of Colorado Denver, Aurora, CO, USA 
60 University of Edinburgh, Edinburgh, UK 
61 National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit, 
Glenfield Hospital, Leicester, UK 
62 A list of consortia authors and affiliations is presented in the Supplementary Note 
 
H.M.B. & M.H.C. jointly supervised this work.  
 
*Corresponding author: 
Michael H. Cho (remhc@channing.harvard.edu) 
tel: 617-525-0897 
fax: 888-487-1078

mailto:remhc@channing.harvard.edu


 
 

1 

Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide1. 

We performed a genetic association in 15,256 cases and 47,936 controls, with replication of select 

top results (P < 5x10-6) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we 

identified 22 loci at genome-wide significance, including 13 new associations with COPD. Nine of 

these 13 loci have been associated with lung function in general population samples2-7; however, 4 

(EEFSEC, DSP, MTCL1, and SFTPD) are novel. We noted 2 loci shared with pulmonary fibrosis8,9 

(FAM13A and DSP) but with opposite risk alleles for COPD. None of our loci overlapped with 

genome-wide associations for asthma; however, one locus has been implicated in the joint 

susceptibility to asthma and obesity10. We also identified genetic correlation between COPD and 

asthma. Our findings highlight novel loci, demonstrate the importance of specific lung function loci 

to COPD, and identify potential regions of genetic overlap between COPD and other respiratory 

diseases. 

 

 
 COPD is characterized by persistent and progressive airflow limitation diagnosed by lung 

function testing1. While cigarette smoking is the major risk factor, susceptibility is also influenced 

by genetics11-13. We established the International COPD Genetics Consortium (ICGC) to coordinate 

efforts to find susceptibility loci14. We defined cases based on pre-bronchodilator evidence of 

moderate-to-severe airflow limitation by modified GOLD criteria15; controls had normal 

spirometry, and all analyses were adjusted for age and cigarette smoking (pack-years and smoking 

status). We performed a two-stage genome-wide association study (Figure 1). In Stage 1, we 

combined 26 cohorts (Supplementary Table 1 and 2) containing 63,192 individuals (15,256 COPD 

cases and 47,936 controls). We selected 79 loci with P < 5x10-6 and in analysis Stage 2, we tested 

them in the UK BiLEVE dataset (9,498 COPD cases and 9,748 controls) from the UK Biobank and 

performed an overall meta-analysis (Supplementary Table 3).  
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 We identified 13 genome-wide significant (P < 5x10-8) associations in Stage 1. Following the 

Stage 2 analysis, an additional 9 loci achieved genome-wide significance in the overall meta-

analysis (Table 1, Figure 2, Supplementary Figures 1 and 2). Analysis of only European ancestry 

(Supplementary Table 4) and only African ancestry (Supplementary Table 5 and Supplementary 

Figure 3) Stage 1 cohorts showed no unique association signals. Of the 22 genome-wide significant 

loci described in our study, 9 have been previously described as genome- (or exome-) wide 

significant in studies of COPD13,16-19: HHIP, CHRNA5/15q25, HTR4, FAM13A, RIN3, TGFB2, 

GSTCD/NPNT, CYP2A6/19q13, and 16p11.2/IL27.  The remaining 13 loci have not been previously 

associated with COPD at genome- (or exome-) wide significance. Eight of these 13 loci: 

ADGRG6/GPR126, THSD4, ADAM19, TET2, CFDP1, AGER, ARMC2, and RARB have been previously 

described and replicated (Supplementary Table 6) in general population GWASs of two measures of 

lung function (FEV1 and FEV1/FVC) that are used in conjunction to diagnose COPD2,4-7,20,21. One 

locus near PID1 was previously associated with FEV1/FVC, but had not replicated in those studies4,6. 

Four loci are newly being described as genome-wide significant in association with either COPD or 

lung function: EEFSEC, DSP, MTCL1, and SFTPD (Figure 3). 

To explore the potential function and causal genes for our novel loci, in addition to using 

publicly available datasets and prioritization tools (Supplementary Table 7), we also examined a 

larger set of lung expression quantitative trait loci (eQTL) in 1038 subjects, including subjects with 

COPD22 (Supplementary Table 8). As eQTL are pervasive, we also attempted to determine whether 

our association signal co-localized23 with an eQTL signal in lung tissue (Supplementary Table 9).  

We found strong evidence of co-localization (posterior probability > 0.8) for DSP, a major protein of 

desmosomes required for epidermal integrity 24, and MTCL1, important in epithelial-cell-specific 

microtubule stabilization25,26, and expressed in respiratory epithelial cells27. Variants in strong LD 

with our top MTCL1 variant rs647097 (NC_000018.9:g.8808464T>C) appear to have enhancer 

histone marks in fetal lung fibroblasts28,29.  In contrast, we found no evidence of a strong eQTL 
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signal or co-localization at our other two novel loci.  At 3q21, EEFSEC is a potential candidate, as it 

is a paralog of TUFM, a top blood and lung eQTL gene for the 16p11.2/IL27 COPD susceptibility 

locus19, recently part of a novel COPD-related pathway involving NLRX130-32.  At 10q22, pulmonary 

surfactant-associated protein D (SFTPD) is the most likely candidate, as it is highly expressed in 

pneumocytes27, and sftpd (-/-) mice develop pulmonary emphysema33.  SFTPD has been explored as 

a COPD biomarker34, and while rs721917 (NC_000010.10:g.81706324A>G) is not an eQTL, 

polymorphisms in SFTPD, including rs721917, may lead to decreased surfactant protein D levels35; 

though the association of SFTPD polymorphisms with COPD susceptibility have been inconsistent. 

Our analysis also led to some additional insights into other previously described loci. We found 

evidence of COPD association and eQTL statistical co-localization in lung tissue (posterior 

probability > 0.8) for THSD4, HHIP, AGER, CHRNA3, and RARB (Supplementary Table 9). Additional 

data on eQTLs (Supplementary Table 8), cohort-specific associations at each locus (Supplementary 

Figures 1a-v), fine mapping (Supplementary Results and Supplementary Table 10), causal gene 

(Supplementary Table 11 and 12), and other supportive analysis for previously described and novel 

loci can be found in the Supplementary Note. 

 We note that our top variant at DSP (rs2076295, NC_000006.11:g.7563232T>G) is also 

associated (P = 1.1x10-19) with pulmonary fibrosis8. Recently, a re-sequencing study36 at the DSP 

locus identified a second fibrosis-associated variant, rs2744371 (NC_000006.11:g.7554174A>C) 

with Pfibrosis = 0.002 and PCOPD = 0.04. We also note overlap at the FAM13A locus  (top fibrosis SNP8, 

rs2609255 [NC_000004.11:g.89811195G>T]; Pfibrosis = 2.2x10−11, PCOPD = 1.9x10-7). We performed 

additional analysis to investigate genetic overlap using gwas-pw37 (see Supplementary Results). We 

confirmed overlap at the DSP and FAM13A loci with a posterior probability of > 0.99, and 

additionally discovered overlap near MAPT/KANSL1 (top fibrosis SNP8, rs1981997 

[NC_000017.10:g.44056767G>A]; Pfibrosis = 8.87×10–14, PCOPD = 4.5x10-3) with posterior probability 

of 0.84. While the MAPT/KANSL1 locus did not reach genome-wide significance in our study, we 
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note its independent discovery in a genome-wide association in extremes of lung function7. Notably, 

for all four of these variants (in DSP [2], FAM13A, and MAPT), the fibrosis risk allele is protective for 

development of COPD.  Emphysema, a key component of COPD, and pulmonary fibrosis are both 

smoking-related lung diseases that have both shared and distinct pathophysiology38-40, though 

genetic loci with opposing effects have not been previously described.  Additional investigation of 

these loci as a well as a more comprehensive assessment of genetic overlap of COPD and pulmonary 

fibrosis may lead to insight into both disorders. 

Because our analysis relied on a spirometric definition of COPD alone, we did not 

specifically exclude other causes of airway obstruction such as asthma, which can overlap with 

COPD in adults41. To define COPD, we used pre-bronchodilator spirometry, which was available 

across all cohorts, and we included at least moderately affected cases (FEV1 < 80% predicted). We 

examined the top set of genome-wide significant results in a subset of our largest cohorts with both 

pre- and post-bronchodilator data and densely imputed genotypes; overall, the effect sizes (mean 

difference = 0.001) and P values (mean log10 P value difference = 0.18) were similar 

(Supplementary Table 13 and Supplementary Figures 4 and 5). In addition, a recent GWAS of FEV1, 

FVC, and FEV1/FVC did not find substantial differences including and excluding subjects with 

asthma7. In the 79 variants tested in Stage 2, we found no significant difference in the OR for COPD 

association when including and excluding individuals with asthma (Supplementary Figure 6).  

We examined COPD associations of genome-wide significant asthma (and asthma-

associated traits) loci from the NHGRI-EBI GWAS Catalog42 (Supplementary Table 14). We also 

compared our COPD association results to the GABRIEL asthma study43 (Supplementary Tables 15). 

None of the genome-wide significant loci from asthma and COPD overlapped. Further, no asthma or 

COPD loci showed Bonferroni-adjusted (for number of look-ups) significant association with the 

other disease, though several loci showed nominal (P<0.05) significance. The 16p11.2 (CCDC101) 

locus has been described in the joint susceptibility to asthma and obesity10. COPD susceptibility is 
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strongly related to cigarette smoking. Two of our loci (15q25 and 19q13) have been previously 

associated with smoking behavior44,45, though we found no additional evidence of overlap in 

genome-wide significant variants described in the NHGRI-EBI GWAS Catalog42 and Tobacco and 

Genetics Consortium GWAS45 (Supplementary Tables 16-18). We additionally evaluated overlap of 

our top 22 loci with COPD comorbidities (Supplementary Table 19) and radiographic imaging 

features (Supplementary Table 20). 

In contrast to minimal overlap in genome-wide significant results with asthma and smoking, 

we discovered a significant overall genetic correlation of COPD with asthma (rgenetic = 0.38, P = 

6.2x10-5) using LD score regression in our white subjects46,47. We also assessed genetic correlation 

with population-based lung function, pulmonary fibrosis, smoking behavior, and two common 

COPD comorbidities, coronary artery disease and osteoporosis.  We identified significant 

correlation of COPD with lung function and two aspects of smoking behavior, but not with common 

comorbidities or with pulmonary fibrosis (Figure 4). The lack of significant correlation of COPD 

with pulmonary fibrosis may indicate our overlapping loci for COPD and pulmonary fibrosis are not 

representative of a broader disease correlation; alternatively, it could reflect limited sample size or 

a mix of positive and negative genetic correlations across the genome for the diseases.  In potential 

support of this latter hypothesis, and in contrast to the loci we describe in this study, are recent 

descriptions of rare variants in telomere genes predisposing to both emphysema, a key feature of 

COPD, and pulmonary fibrosis40,48. Our analysis of partitioned heritability identified COPD genetic 

association enrichment in fetal lung tissue (coefficient P = 3.5x10-7); other analyses also support 

lung tissue or lung cell types (Supplementary Results). 

Our study is, to our knowledge, the largest genome-wide association study of COPD cases to 

date and includes over 60,000 subjects (including 15,256 COPD cases) in our Stage 1 analysis.   We 

chose to combine subjects of different ethnicities, hypothesizing that the benefit of shared risk 

factors across ethnicities would outweigh power loss due to heterogeneity.  While methods have 
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been developed that can more rigorously assess the degree of overlap and provide additional 

power in this setting49, none of our non-white cohorts were sufficiently sized or powered for these 

analyses. COPD is also a highly heterogeneous disease; whether a more precise phenotypic 

definition would result in greater power is not clear. We used a staged study design and examined 

overall meta-analysis P-values to determine genome-wide significance. Thus, 9 loci (TET2, CFDP1, 

TGFB2, AGER, ARMC2, PID1, MTCL1, SFTPD, and CYP2A6) from our Stage 1 analysis, which only 

reached genome-wide significance in either the Stage 2 UK BiLEVE analysis or the overall meta-

analysis, should be further replicated. However, six of these 9 association signals are significant if 

we consider a Bonferroni correction (P < 6.3x10-4) for the 79 variants tested in Stage 2. Further, 8 of 

these 9 variants are more strongly associated in the overall meta-analysis compared to Stage 1; the 

exception is RARB, which has a previously reported association with both lung function4 and airflow 

obstruction21 (Table 1). 

 The majority of our significant loci overlap with lung function loci, strengthening the 

foundation for investigating the relationship of lung function variability in the general population to 

risk of developing COPD. These loci are unlikely to reflect susceptibility for asthma or for cigarette 

smoking; however, our association results as a whole show evidence of shared heritability with 

asthma (supporting investigation into shared genetic etiologies for these diseases) and cigarette 

smoking behavior (despite adjustment for smoking in our statistical model).  We identified 

enrichment for fetal lung cells, supporting a role for early life events contributing to future risk of 

COPD. Finally, we identify loci that overlap with pulmonary fibrosis, but with opposite risk alleles. 

Our study highlights the important contribution of genetic association studies to understanding 

COPD, not only by identifying novel loci, but also illustrating relationships with other pulmonary 

traits and diseases. 
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Data Availability Statement 

The genome-wide association summary statistics generated in the Stage 1 analysis of the current 

study are available in the dbGaP repository, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000179.v4.p2  

The Stage 2 analysis summary statistics are available in Supplementary Table 3. 
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Figure Legends 
 
Figure 1. Study design showing cohorts used in each stage of the analysis. ARIC = Atherosclerosis 
Risk in Communities, B58 = British 1958 Birth Cohort, CHS = Cardiovascular Health Study, 
COPACETIC = COPD Pathology: Addressing Critical gaps, Early Treatment & Diagnosis and 
Innovative Concepts, ECLIPSE = Evaluation of COPD Longitudinally to Identify Predictive Surrogate 
End-points, eQTL = Lung Expression Quantitative Trait Loci Study, FHS = Framingham Heart Study, 
KARE = Korean Association Resource project, MESA = Multi-Ethnic Study of Atherosclerosis, NETT-
NAS = National Emphysema Treatment Trial / Normative Aging Study, RS = Rotterdam Study, 
SPIROMICS = Subpopulations and intermediate outcome measures in COPD study , EOCOPD = 
Boston Early-Onset COPD Study, ICGN = International COPD Genetics Network, TCGS = 
Transcontinental COPD Genetics Study, UK BiLEVE = UK Biobank Lung Exome Variant Evaluation; 
NHW = Non-Hispanic white, AA = African American, EA = European American.* Studies without 
genome-wide array genotyping (custom genotyping) 
 
Figure 2. Manhattan plot showing P values for Stage 1 analysis (small open diamonds) with overlay 
of overall meta-analysis P values for SNPs analyzed in UK BiLEVE Stage 2 analysis (filled circles). 
Gene names in gray are previously described COPD or lung function (FEV1 or FEV1/FVC) loci; black 
are novel loci discovered in this study. The Stage 1 cohorts with available genotyping data 
(Supplementary Figures 1a-v) and the UK BiLEVE cohort determined the sample size for each top 
variant. 
 
Figure 3a-d. Regional association for novel loci. LocusZoom plots showing regional association 
of variants at the four novel COPD loci. The point size is proportional to the sample size, where 
Stage 1 cohorts with available genotyping data (Supplementary Figures 1a-v) and the UK BiLEVE 
cohort determined the sample size for each top variant. 
 
Figure 4 Genetic correlation (using LD score regression) between COPD and other traits.  
Shading and numbers represents strength of correlation.  * indicates nominal (P < 0.05) 
significance, ** indicates significant after Bonferroni correction for number of pairwise 
comparisons.  fev1fvc and fev1 = lung function (FEV1/FVC ratio and FEV1 from 
CHARGE/SpiroMeta4, asthma taken from the asthma GWAS by the GABRIEL Consortium43, ild = 
pulmonary fibrosis from Fingerlin et al.8,9, bilSmk = subset of smokers in the UK BiLEVE study7, 
smkCpd = cigarettes per day smoking from the Tobacco and Genetics (TAG) Consortium45, 
smkFormer = current versus former smokers from TAG, smkOnset = age of smoking initiation from 
TAG, smkEver = ever versus never smoking from TAG.  cad = coronary artery disease from the 
CARDIoGRAM study50, height51 and bmi (body mass index)52 from the GIANT consortium, 
bmdLumbar and bmdFemoral = lumbar and femoral bone mineral density, respectively, from the 
Genetic Factors for Osteoporosis (GeFOS) Consortium53. 
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Table 1. Overall study results showing 22 loci with genome-wide significant P values in overall meta-analysis following UK BiLEVE Stage 
2 analysis. 

rsID Closest 
Gene 

Variant 
Annotation Locus Risk 

Allele 
Alt 

Allele 

Risk Allele 
Frequency Stage 1 Analysis Stage 1 

P Value 

UK BiLEVE (Stage 2) UK BiLEVE 
(Stage 2) 
P Value 

Overall 
Meta-Analysis 

P Value Mean Range OR 95% CI OR 95% CI 

rs13141641 HHIP intergenic 4q31.21 T C 0.59 0.52-0.89 1.23 1.18-1.28 1.16E-24 1.21 1.16-1.27 8.15E-18 9.10E-41 
rs17486278 CHRNA5 intronic 15q25.1 C A 0.35 0.24-0.44 1.22 1.18-1.27 2.61E-24 1.13 1.08-1.18 2.35E-07 1.77E-28 
rs7733088 HTR4 intronic 5q32 G A 0.60 0.47-0.69 1.18 1.13-1.23 4.40E-14 1.18 1.13-1.23 1.78E-13 5.33E-26 
rs9399401 ADGRG6 intronic 6q24.1 T C 0.72 0.61-0.75 1.14 1.09-1.19 3.59E-10 1.17 1.12-1.23 6.18E-11 1.81E-19 
rs1441358 THSD4 intronic 15q23 G T 0.33 0.19-0.55 1.13 1.09-1.18 2.06E-10 1.12 1.07-1.17 6.87E-07 8.22E-16 
rs6837671 FAM13A intronic 4q22.1 G A 0.41 0.36-0.58 1.16 1.11-1.20 1.02E-14 1.07 1.02-1.11 3.75E-03 7.48E-15 

rs11727735 GSTCD intronic 4q24 A G 0.94 0.93-0.99 1.27 1.17-1.37 1.55E-08 1.25 1.14-1.36 4.93E-07 3.84E-14 
rs754388 RIN3 intronic 14q32.12 C G 0.82 0.80-0.86 1.20 1.14-1.26 7.07E-12 1.11 1.05-1.17 1.85E-04 4.96E-14 

rs113897301 ADAM19 intronic 5q33.3 AT A 0.17 0.05-0.19 1.20 1.13-1.26 4.52E-10 1.13 1.07-1.19 2.79E-05 1.58E-13 
rs2047409* TET2 intronic 4q24 A G 0.62 0.22-0.65 1.10 1.06-1.15 1.58E-06 1.14 1.09-1.19 1.95E-08 2.46E-13 
rs2955083 EEFSEC intronic 3q21.3 A T 0.88 0.85-0.89 1.20 1.12-1.27 2.00E-08 1.17 1.09-1.25 4.01E-06 4.16E-13 

rs7186831* CFDP1 intergenic 16q23.1 A G 0.43 0.23-0.47 1.12 1.07-1.18 3.54E-06 1.12 1.07-1.17 6.63E-07 1.12E-11 
rs10429950* TGFB2 intergenic 1q41 T C 0.73 0.22-0.77 1.12 1.07-1.16 1.83E-07 1.10 1.04-1.15 1.94E-04 1.66E-10 
rs2070600* AGER coding 6p21.32 C T 0.95 0.85-0.99 1.28 1.15-1.41 3.54E-06 1.21 1.10-1.32 2.96E-05 5.94E-10 
rs17707300 CCDC101 intronic 16p11.2 C T 0.37 0.11-0.43 1.12 1.08-1.17 6.24E-09 1.06 1.02-1.11 6.10E-03 6.75E-10 
rs2806356* ARMC2 intronic 6q21 C T 0.18 0.05-0.24 1.12 1.07-1.18 2.84E-06 1.12 1.06-1.18 6.88E-05 8.34E-10 

rs16825267* PID1 intergenic 2q36.3 C G 0.93 0.87-0.94 1.24 1.15-1.34 5.22E-08 1.13 1.04-1.22 2.27E-03 1.68E-09 
rs2076295 DSP coding 6p24.3 T G 0.55 0.44-0.58 1.11 1.07-1.15 4.95E-08 1.06 1.02-1.11 7.45E-03 3.97E-09 
rs647097* MTCL1 intronic 18p11.22 C T 0.27 0.26-0.40 1.11 1.06-1.15 3.03E-06 1.09 1.04-1.14 4.66E-04 6.14E-09 
rs1529672 RARB intronic 3p24.2 C A 0.83 0.68-0.86 1.16 1.11-1.22 2.37E-09 1.05 0.99-1.11 9.95E-02 2.47E-08 
rs721917* SFTPD coding 10q22.3 G A 0.42 0.39-0.63 1.09 1.05-1.13 2.11E-06 1.07 1.02-1.11 2.60E-03 2.49E-08 

rs12459249* CYP2A6 intergenic 19q13.2 C T 0.66 0.62-0.70 1.13 1.07-1.18 2.89E-06 1.08 1.03-1.13 1.35E-03 3.42E-08 

 OR = odds ratio, CI = confidence interval.  *Genome-wide significant in overall meta-analysis only 
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Online Methods 

Study Cohorts 

We invited investigators from 22 studies with genome-wide association data and COPD 

case-control or general population samples with spirometry to participate in a genome-wide 

association meta-analysis. Additionally, we included four cohorts with Illumina HumanExome v1.2 

and custom genotyping based primarily on prior top results from a previously published COPD 

GWAS13, using results with P < 1x10-4 using plink ‘--clump’ on the COPDGene non-Hispanic whites 

to perform linkage disequilibrium pruning (r2 < 0.8), preferentially retaining both an imputed and 

genotyped top SNP at each locus. An additional group of variants was a candidate panel, based on 

results from a previous candidate gene analysis54, as well as variants identified in association with 

lung function (supplementing the existing content on the array, which included variants from 

previous genome-wide association studies), including the lead SNP and a 200kb region around that 

SNP pruned for variants with P < 0.01 and r2 < 0.8, and additional top-ranked SNPs for COPDGene-

specific analyses for lung function, bronchodilator responsiveness, exacerbations, and SNPs from 

candidate genes.  

The baseline characteristics of these 26 cohorts can be seen in Supplementary Table 1. Each 

cohort obtained approval from appropriate ethical/regulatory bodies; informed consent was 

obtained for all individuals. (Further cohort-specific methods can be found in the Data 

Supplement.) As most of these cohorts did not have post-bronchodilator spirometry, we used a 

modified definition of GOLD criteria based on pre-bronchodilator spirometry: forced expiratory 

volume in 1 second (FEV1) < 80% and FEV1 to forced vital capacity (FVC) ratio of < 0.7 for cases, 

and FEV1 > 80% and FEV1/FVC > 0.7 for controls. Logistic regression was performed in each cohort, 

adjusting for age, sex, pack-years of smoking, ever-smoking status, current-smoking status, and 

ancestry-based principal components, as appropriate for each study. Summary statistics were 
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assessed using EasyQC55 version 10.1. More detailed cohort information, including cohort-specific 

methods, can be found in the Supplementary Note. 

Genome-wide association quality control 

Summary statistics, including effect allele and other allele oriented to the + strand, effect 

allele frequency, chromosome and position (hg19), and imputation quality were uploaded to a 

secure site at the Brigham and Women’s Hospital / Channing Division of Network Medicine.  Quality 

control assessments included assessing allele frequencies versus 1000 Genomes reference, 

standard error versus sample size, and quantile-quantile plots.  Variants with an imputation quality 

metric of < 0.3 (provided a higher threshold for imputation quality was not already implemented), a 

minor allele count (MAC) of < 20 using the effective sample size or the number of cases and 

adjusted for imputation quality where applicable, were set to missing.  Variants were included for 

meta-analysis if they were present in at least 13 studies (those with European ancestry and at least 

7 million markers passing all quality control filters). 

Staged GWAS meta-analysis 

 In Stage 1 of the analysis, we used Metal56,57 version 2011-03-25 to perform a fixed-effects 

meta-analysis of genome-wide data from 22 studies and four additional COPD cohorts genotyped 

on an Illumina HumanExome v1.2 platform with custom content; this content included a set of 

COPD candidate genes and regions identified from prior COPD GWAS efforts13. We adjusted for 

inflation using genomic control correction in each study. We included study populations with 

subjects of non-European ancestry in the overall analysis, and additionally examined results limited 

to study populations of European ancestry.  To identify variants to test for association in Stage 2 in 

the UK BiLEVE study, we selected top results (P < 5x10-6) from the Stage 1 meta-analysis. We 

selected one lead variant from the chromosome 15q25, FAM13, and HHIP regions, as all of these 

have been described in multiple COPD GWASs13,16,17,21. For the remainder of the regions, we 

performed linkage disequilibrium pruning using the plink2 --clump procedure with an r2 of 0.5, 
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additionally examining these SNPs for the number of cohorts with passing quality control at each 

variant and including SNPs in strong LD (i.e., part of the same clump) with a lower degree of 

missingness. To identify independent results, we used GCTA-COJO58,59 on the Stage 1 meta-analysis 

for variants with P < 5x10-6 using the default distance of 10Mb. We used the COPDGene non-

Hispanic whites (as the largest representative population) as the reference population for these 

analyses. An overall meta-analysis across the Stage 1 and Stage 2 (UK BiLEVE) cohorts was 

performed and variants with P < 5x10-8 were considered genome-wide significant (Figure 1). 

Lung eQTL analysis 

 Lung expression quantitative trait loci (eQTL) were calculated from 1,111 human subjects 

who underwent lung surgery at three academic sites, Laval University, University of British 

Columbia (UBC), and University of Groningen, henceforth referred to as Laval, UBC, and Groningen, 

respectively. This lung eQTL dataset has been described previously22,60. Briefly, 66.7% to 91.2% of 

the individuals in this study were current or former smokers and 24.2% to 35.3% had moderate to 

severe COPD (GOLD spirometry grade 2 to 4). Whole-genome gene expression profiling in the lung 

was performed on a custom Affymetrix array (GPL10379). Microarray pre-processing and quality 

controls were described previously22,61,62. Probe sequences were mapped to the human genome 

(hg19) using Bowtie63 and probes not mapping to a coding region or having a common SNP (MAF ≥ 

5%) in their sequence were removed. Expression data were adjusted for age, sex, and smoking 

status using residuals obtained with the robust fitting of linear models function (rlm) in the R 

statistical package MASS. Residual values deviating from the median by more than three standard 

deviations were filtered as outliers. Genotyping was carried on the Illumina Human 1M-Duo 

BeadChip array.  

 Twenty-one out of the 22 SNPs (in main manuscript Table 1) were genotyped or imputed in 

the three cohorts, i.e. Laval, UBC, and Groningen. One of the SNPs, rs7186831, was not well-

imputed; a proxy, rs11865296 in modest linkage disequilibrium (r2 = 0.54, 1000 genomes phase 3, 
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EUR) was used instead.  These variants were tested for association with adjusted expression traits 

(43,465 probe sets) in the lung. SNPs within 1 Mb up and downstream of the transcription probe 

set were considered as local-eQTL. Distant-acting eQTLs were further than 1 Mb away or on a 

different chromosome. Association tests were carried with PLINK1.964,65 in each cohort and then 

meta-analyzed using Fisher’s method. All local eQTL with nominal P value < 0.05 in the meta-

analysis were considered. To provide an additional overall estimate of eQTL significance, we 

considered a Bonferroni correction threshold ([0.05/(22 SNPs x 43,465 probe sets) = P value < 5.2 

x 10-8]). Statistical analyses were performed in R3.2.366. 

Co-localization Analysis 

Co-localization of statistical signals between COPD genetic association and eQTL were 

examined using the coloc R package23. We used phenotypic summary statistics from whites with 

genome-wide association data and all eQTL results and examined 500kb flanks around the top 22 

genome-wide significant associations found in the overall meta-analysis (Table 1).   

Sensitivity Analysis 

 To estimate the effect of using pre- instead of post-bronchodilator lung function on our 

results, we examined the top set of genome-wide significant results in our largest cohorts with both 

pre- and post-bronchodilator data and densely imputed genotypes (COPDGene NHW and AA, 

ECLIPSE, NETT-NAS, and Norway / GenKOLS).  Since subjects from these cohorts (except for 

COPDGene) were included based on post-bronchodilator values, including all subjects with COPD 

based on post-bronchodilator spirometry would lead to larger sample sizes and make comparison 

of P-values more difficult.  Thus, we chose a random sample of post-bronchodilator cases and 

controls that matched the number of pre-bronchodilator cases and controls.  We performed logistic 

regression using these equal sized set of pre- and post-bronchodilator cohorts, and meta-analyzed 

the results.  

Asthma overlap analysis 
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 We assessed the overlap between our results and known asthma susceptibility loci. We 

downloaded information on genome-wide significant (P < 5x10-8) associations with asthma and 

asthma-related traits including asthma and hay fever, asthma (childhood onset), asthma 

(corticosteroid response), bronchodilator response in asthma, pulmonary function decline, and 

severe asthma in the NHGRI-EBI GWAS Catalog42. Additionally, we examined top associated 

variants (which were not genome-wide significant) in the susceptibility to the asthma-COPD 

overlap syndrome67. In all, we assessed the association statistics of 49 unique asthma-associated 

trait loci across 26 genomic regions in our Stage 1 meta-analysis results. We also examined the 

asthma association statistics of our top COPD loci from overall meta-analysis using publically 

available asthma GWAS data from the GABRIEL Consortium43. For COPD loci not present in the 

GABRIEL Consortium asthma GWAS data, we attempted to examine proxy SNPs in LD (r2 > 0.5, 

1000 genomes phase 1 CEU) with our top COPD loci. 

To examine the genetic correlation47 of COPD and asthma over the entire genome, we 

performed LD score regression46 using summary statistics from publically available asthma GWAS 

data from the GABRIEL Consortium43.  For all comparisons using LD score regression, we filtered to 

HapMap3 variants, limited to white subjects with genome-wide data, and filtered on missingness 

using default parameters in munge_sumstats.py.  For the GABRIEL data, we required a variant to be 

present in at least 35 of the studies.  

Smoking behavior overlap analysis 

 We downloaded information on genome-wide significant (P < 5x10-8) associations with the 

traits “nicotine dependence” and “smoking behaviour” in the NHGRI-EBI GWAS Catalog42. We 

assessed these top smoking-associated SNPs in our Stage 1 meta-analysis results. We also assessed 

overlap of smoking and COPD in the publically available summary statistics from the 2010 Tobacco 

and Genetics Consortium GWAS45.  We evaluated our top COPD loci associations from overall meta-

analysis with both cigarettes per day and ever-smoking traits. For COPD risk SNPs not directly 
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analyzed in the Tobacco and Genetics Consortium GWAS, we attempted to examine proxy SNPs in 

LD (r2 > 0.5, 1000 genomes phase1 CEU) with our top COPD loci.  

To examine the genetic correlation47 of COPD and smoking behaviours (cigarettes per day 

and ever-smoking status) over the entire genome, we performed LD score regression46 using 

summary statistics from our current COPD study as noted above and publically available summary 

statistics from the 2010 Tobacco and Genetics Consortium GWAS45. 

Fine mapping analysis 

 We attempted to determine, at each locus, whether we could identify a potentially causal 

variant.  We performed these analyses using European ancestry subjects alone, and in all subjects 

with genome-wide data, and excluded variants that were not present in at least 80% of the full 

sample.  We assumed a single causal variant at each locus, examined a +/- 250kb region around the 

top variant, and calculated approximate Bayes factors using the method of Wakefield68 to 

determine the 95% credible set. While specific trans-ethnic mapping approaches69,70 can 

significantly assist in identifying causal loci, we found that the number of non-European samples in 

our study were likely insufficient to leverage these methods. 

Functional enrichment analysis 

 To identify enriched cell types for our COPD associations, we applied LD score regression to 

GenoSkyline71 lung tissue annotations (the default LD score regression annotations collapse lung 

into the cardiovascular tissue type), as well as cell-type specific annotations from LD score 

regression46. We also performed analysis using only the 22 genome-wide significant loci and tested 

for enrichment of imputed chromatin marks from ROADMAP using HaploReg 4.129. Further, we 

applied a more sophisticated analysis adjusting for local linkage disequilibrium patterns, 

GoShifter72. Finally, we examined overlap with gene expression datasets using SNPsea73. 

Additional pulmonary fibrosis and COPD overlap analysis 
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To further examine overlapping loci for COPD and pulmonary fibrosis, we combined 

summary statistics from our study and the pulmonary fibrosis GWAS by Fingerlin et al.8,9 using 

gwas-pw37.  

Causal gene analysis 

 For the genome-wide significant loci from the overall meta-analysis, we explored potential 

causative genes at each association locus using the PrixFixe method74, assuming co-function of all 

significant loci. As required by the PrixFixe method, we assured our genome-wide significant loci 

were present in dbSNP v13775 and were represented HapMap76 phase III data; for loci not meeting 

these requirements, proxy SNPs from HapMap phase III were selected based on strongest LD (r2) 

with index SNP (see Supplementary Table 11 for details of the proxy variant used at each genome-

wide significant locus). 

COPD comorbidity overlap analysis 

We assessed the overlap between our results and two common COPD comorbidities, 

coronary artery disease and osteoporosis (through bone mineral density traits). We downloaded 

information on genome-wide significant (P < 5x10-8) associations with these comorbidities as 

reported in the NHGRI-EBI GWAS Catalog42. We assessed the association statistics of these 

comorbid trait loci in our Stage 1 meta-analysis results.   

Quantitative imaging overlap analysis 

 To explore the relationship between our top COPD-associated variants and imaging features 

of emphysema and airway thickness, we queried data from a GWAS of COPD quantitative imaging 

features77. For each genome-wide significant COPD susceptibility locus in our overall meta-analysis, 

we assessed the corresponding quantitative imaging GWAS effect size, effect direction, and P value 

for association with the following quantitative imaging traits: %LAA-950 (percentage low 

attenuation area, using a threshold of -950 Hounsfield units); Perc15 (value of Hounsfield units at 

the 15th percentile of the density histogram); Pi10 (airway wall area: the value for a hypothetical 
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10-mm airway obtained by plotting a regression line of the square root of the airway wall area 

versus the airway internal perimeter); and WAP (percentage of the wall area compared to the total 

bronchial area). 

Gene set enrichment analysis 

As an attempt to minimize false positives in our gene set enrichment analysis, we divided 

the Stage 1 GWAS cohorts with full genome-wide data into two sets of roughly equal size. We then 

used i-GSEA4GWAS (http://gsea4gwas.psych.ac.cn/)78 for each of the two GWAS data sets to assess 

enrichment of COPD GWAS loci in BioCarta (http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways) 

and KEGG79 pathways as well as gene ontology (GO) terms80,81. We first evaluated GO terms and 

pathways with a false-discovery rate (FDR) less than 5% in both analysis sets and then used a more 

stringent threshold of FDR < 1% to evaluate overlap of GO term and pathway enrichment in our 

two analysis sets. 
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